1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * kernel/sched/core.c
4 *
5 * Core kernel scheduler code and related syscalls
6 *
7 * Copyright (C) 1991-2002 Linus Torvalds
8 */
9 #include <linux/highmem.h>
10 #include <linux/hrtimer_api.h>
11 #include <linux/ktime_api.h>
12 #include <linux/sched/signal.h>
13 #include <linux/syscalls_api.h>
14 #include <linux/debug_locks.h>
15 #include <linux/prefetch.h>
16 #include <linux/capability.h>
17 #include <linux/pgtable_api.h>
18 #include <linux/wait_bit.h>
19 #include <linux/jiffies.h>
20 #include <linux/spinlock_api.h>
21 #include <linux/cpumask_api.h>
22 #include <linux/lockdep_api.h>
23 #include <linux/hardirq.h>
24 #include <linux/softirq.h>
25 #include <linux/refcount_api.h>
26 #include <linux/topology.h>
27 #include <linux/sched/clock.h>
28 #include <linux/sched/cond_resched.h>
29 #include <linux/sched/cputime.h>
30 #include <linux/sched/debug.h>
31 #include <linux/sched/hotplug.h>
32 #include <linux/sched/init.h>
33 #include <linux/sched/isolation.h>
34 #include <linux/sched/loadavg.h>
35 #include <linux/sched/mm.h>
36 #include <linux/sched/nohz.h>
37 #include <linux/sched/rseq_api.h>
38 #include <linux/sched/rt.h>
39
40 #include <linux/blkdev.h>
41 #include <linux/context_tracking.h>
42 #include <linux/cpuset.h>
43 #include <linux/delayacct.h>
44 #include <linux/init_task.h>
45 #include <linux/interrupt.h>
46 #include <linux/ioprio.h>
47 #include <linux/kallsyms.h>
48 #include <linux/kcov.h>
49 #include <linux/kprobes.h>
50 #include <linux/llist_api.h>
51 #include <linux/mmu_context.h>
52 #include <linux/mmzone.h>
53 #include <linux/mutex_api.h>
54 #include <linux/nmi.h>
55 #include <linux/nospec.h>
56 #include <linux/perf_event_api.h>
57 #include <linux/profile.h>
58 #include <linux/psi.h>
59 #include <linux/rcuwait_api.h>
60 #include <linux/sched/wake_q.h>
61 #include <linux/scs.h>
62 #include <linux/slab.h>
63 #include <linux/syscalls.h>
64 #include <linux/vtime.h>
65 #include <linux/wait_api.h>
66 #include <linux/workqueue_api.h>
67
68 #ifdef CONFIG_PREEMPT_DYNAMIC
69 # ifdef CONFIG_GENERIC_ENTRY
70 # include <linux/entry-common.h>
71 # endif
72 #endif
73
74 #include <uapi/linux/sched/types.h>
75
76 #include <asm/irq_regs.h>
77 #include <asm/switch_to.h>
78 #include <asm/tlb.h>
79
80 #define CREATE_TRACE_POINTS
81 #include <linux/sched/rseq_api.h>
82 #include <trace/events/sched.h>
83 #include <trace/events/ipi.h>
84 #undef CREATE_TRACE_POINTS
85
86 #include "sched.h"
87 #include "stats.h"
88 #include "autogroup.h"
89
90 #include "autogroup.h"
91 #include "pelt.h"
92 #include "smp.h"
93 #include "stats.h"
94
95 #include "../workqueue_internal.h"
96 #include "../../io_uring/io-wq.h"
97 #include "../smpboot.h"
98
99 EXPORT_TRACEPOINT_SYMBOL_GPL(ipi_send_cpu);
100 EXPORT_TRACEPOINT_SYMBOL_GPL(ipi_send_cpumask);
101
102 /*
103 * Export tracepoints that act as a bare tracehook (ie: have no trace event
104 * associated with them) to allow external modules to probe them.
105 */
106 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_cfs_tp);
107 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_rt_tp);
108 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_dl_tp);
109 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_irq_tp);
110 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_se_tp);
111 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_thermal_tp);
112 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_cpu_capacity_tp);
113 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_overutilized_tp);
114 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_cfs_tp);
115 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_se_tp);
116 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_update_nr_running_tp);
117
118 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
119
120 #ifdef CONFIG_SCHED_DEBUG
121 /*
122 * Debugging: various feature bits
123 *
124 * If SCHED_DEBUG is disabled, each compilation unit has its own copy of
125 * sysctl_sched_features, defined in sched.h, to allow constants propagation
126 * at compile time and compiler optimization based on features default.
127 */
128 #define SCHED_FEAT(name, enabled) \
129 (1UL << __SCHED_FEAT_##name) * enabled |
130 const_debug unsigned int sysctl_sched_features =
131 #include "features.h"
132 0;
133 #undef SCHED_FEAT
134
135 /*
136 * Print a warning if need_resched is set for the given duration (if
137 * LATENCY_WARN is enabled).
138 *
139 * If sysctl_resched_latency_warn_once is set, only one warning will be shown
140 * per boot.
141 */
142 __read_mostly int sysctl_resched_latency_warn_ms = 100;
143 __read_mostly int sysctl_resched_latency_warn_once = 1;
144 #endif /* CONFIG_SCHED_DEBUG */
145
146 /*
147 * Number of tasks to iterate in a single balance run.
148 * Limited because this is done with IRQs disabled.
149 */
150 const_debug unsigned int sysctl_sched_nr_migrate = SCHED_NR_MIGRATE_BREAK;
151
152 __read_mostly int scheduler_running;
153
154 #ifdef CONFIG_SCHED_CORE
155
156 DEFINE_STATIC_KEY_FALSE(__sched_core_enabled);
157
158 /* kernel prio, less is more */
__task_prio(const struct task_struct * p)159 static inline int __task_prio(const struct task_struct *p)
160 {
161 if (p->sched_class == &stop_sched_class) /* trumps deadline */
162 return -2;
163
164 if (rt_prio(p->prio)) /* includes deadline */
165 return p->prio; /* [-1, 99] */
166
167 if (p->sched_class == &idle_sched_class)
168 return MAX_RT_PRIO + NICE_WIDTH; /* 140 */
169
170 return MAX_RT_PRIO + MAX_NICE; /* 120, squash fair */
171 }
172
173 /*
174 * l(a,b)
175 * le(a,b) := !l(b,a)
176 * g(a,b) := l(b,a)
177 * ge(a,b) := !l(a,b)
178 */
179
180 /* real prio, less is less */
prio_less(const struct task_struct * a,const struct task_struct * b,bool in_fi)181 static inline bool prio_less(const struct task_struct *a,
182 const struct task_struct *b, bool in_fi)
183 {
184
185 int pa = __task_prio(a), pb = __task_prio(b);
186
187 if (-pa < -pb)
188 return true;
189
190 if (-pb < -pa)
191 return false;
192
193 if (pa == -1) /* dl_prio() doesn't work because of stop_class above */
194 return !dl_time_before(a->dl.deadline, b->dl.deadline);
195
196 if (pa == MAX_RT_PRIO + MAX_NICE) /* fair */
197 return cfs_prio_less(a, b, in_fi);
198
199 return false;
200 }
201
__sched_core_less(const struct task_struct * a,const struct task_struct * b)202 static inline bool __sched_core_less(const struct task_struct *a,
203 const struct task_struct *b)
204 {
205 if (a->core_cookie < b->core_cookie)
206 return true;
207
208 if (a->core_cookie > b->core_cookie)
209 return false;
210
211 /* flip prio, so high prio is leftmost */
212 if (prio_less(b, a, !!task_rq(a)->core->core_forceidle_count))
213 return true;
214
215 return false;
216 }
217
218 #define __node_2_sc(node) rb_entry((node), struct task_struct, core_node)
219
rb_sched_core_less(struct rb_node * a,const struct rb_node * b)220 static inline bool rb_sched_core_less(struct rb_node *a, const struct rb_node *b)
221 {
222 return __sched_core_less(__node_2_sc(a), __node_2_sc(b));
223 }
224
rb_sched_core_cmp(const void * key,const struct rb_node * node)225 static inline int rb_sched_core_cmp(const void *key, const struct rb_node *node)
226 {
227 const struct task_struct *p = __node_2_sc(node);
228 unsigned long cookie = (unsigned long)key;
229
230 if (cookie < p->core_cookie)
231 return -1;
232
233 if (cookie > p->core_cookie)
234 return 1;
235
236 return 0;
237 }
238
sched_core_enqueue(struct rq * rq,struct task_struct * p)239 void sched_core_enqueue(struct rq *rq, struct task_struct *p)
240 {
241 rq->core->core_task_seq++;
242
243 if (!p->core_cookie)
244 return;
245
246 rb_add(&p->core_node, &rq->core_tree, rb_sched_core_less);
247 }
248
sched_core_dequeue(struct rq * rq,struct task_struct * p,int flags)249 void sched_core_dequeue(struct rq *rq, struct task_struct *p, int flags)
250 {
251 rq->core->core_task_seq++;
252
253 if (sched_core_enqueued(p)) {
254 rb_erase(&p->core_node, &rq->core_tree);
255 RB_CLEAR_NODE(&p->core_node);
256 }
257
258 /*
259 * Migrating the last task off the cpu, with the cpu in forced idle
260 * state. Reschedule to create an accounting edge for forced idle,
261 * and re-examine whether the core is still in forced idle state.
262 */
263 if (!(flags & DEQUEUE_SAVE) && rq->nr_running == 1 &&
264 rq->core->core_forceidle_count && rq->curr == rq->idle)
265 resched_curr(rq);
266 }
267
sched_task_is_throttled(struct task_struct * p,int cpu)268 static int sched_task_is_throttled(struct task_struct *p, int cpu)
269 {
270 if (p->sched_class->task_is_throttled)
271 return p->sched_class->task_is_throttled(p, cpu);
272
273 return 0;
274 }
275
sched_core_next(struct task_struct * p,unsigned long cookie)276 static struct task_struct *sched_core_next(struct task_struct *p, unsigned long cookie)
277 {
278 struct rb_node *node = &p->core_node;
279 int cpu = task_cpu(p);
280
281 do {
282 node = rb_next(node);
283 if (!node)
284 return NULL;
285
286 p = __node_2_sc(node);
287 if (p->core_cookie != cookie)
288 return NULL;
289
290 } while (sched_task_is_throttled(p, cpu));
291
292 return p;
293 }
294
295 /*
296 * Find left-most (aka, highest priority) and unthrottled task matching @cookie.
297 * If no suitable task is found, NULL will be returned.
298 */
sched_core_find(struct rq * rq,unsigned long cookie)299 static struct task_struct *sched_core_find(struct rq *rq, unsigned long cookie)
300 {
301 struct task_struct *p;
302 struct rb_node *node;
303
304 node = rb_find_first((void *)cookie, &rq->core_tree, rb_sched_core_cmp);
305 if (!node)
306 return NULL;
307
308 p = __node_2_sc(node);
309 if (!sched_task_is_throttled(p, rq->cpu))
310 return p;
311
312 return sched_core_next(p, cookie);
313 }
314
315 /*
316 * Magic required such that:
317 *
318 * raw_spin_rq_lock(rq);
319 * ...
320 * raw_spin_rq_unlock(rq);
321 *
322 * ends up locking and unlocking the _same_ lock, and all CPUs
323 * always agree on what rq has what lock.
324 *
325 * XXX entirely possible to selectively enable cores, don't bother for now.
326 */
327
328 static DEFINE_MUTEX(sched_core_mutex);
329 static atomic_t sched_core_count;
330 static struct cpumask sched_core_mask;
331
sched_core_lock(int cpu,unsigned long * flags)332 static void sched_core_lock(int cpu, unsigned long *flags)
333 {
334 const struct cpumask *smt_mask = cpu_smt_mask(cpu);
335 int t, i = 0;
336
337 local_irq_save(*flags);
338 for_each_cpu(t, smt_mask)
339 raw_spin_lock_nested(&cpu_rq(t)->__lock, i++);
340 }
341
sched_core_unlock(int cpu,unsigned long * flags)342 static void sched_core_unlock(int cpu, unsigned long *flags)
343 {
344 const struct cpumask *smt_mask = cpu_smt_mask(cpu);
345 int t;
346
347 for_each_cpu(t, smt_mask)
348 raw_spin_unlock(&cpu_rq(t)->__lock);
349 local_irq_restore(*flags);
350 }
351
__sched_core_flip(bool enabled)352 static void __sched_core_flip(bool enabled)
353 {
354 unsigned long flags;
355 int cpu, t;
356
357 cpus_read_lock();
358
359 /*
360 * Toggle the online cores, one by one.
361 */
362 cpumask_copy(&sched_core_mask, cpu_online_mask);
363 for_each_cpu(cpu, &sched_core_mask) {
364 const struct cpumask *smt_mask = cpu_smt_mask(cpu);
365
366 sched_core_lock(cpu, &flags);
367
368 for_each_cpu(t, smt_mask)
369 cpu_rq(t)->core_enabled = enabled;
370
371 cpu_rq(cpu)->core->core_forceidle_start = 0;
372
373 sched_core_unlock(cpu, &flags);
374
375 cpumask_andnot(&sched_core_mask, &sched_core_mask, smt_mask);
376 }
377
378 /*
379 * Toggle the offline CPUs.
380 */
381 for_each_cpu_andnot(cpu, cpu_possible_mask, cpu_online_mask)
382 cpu_rq(cpu)->core_enabled = enabled;
383
384 cpus_read_unlock();
385 }
386
sched_core_assert_empty(void)387 static void sched_core_assert_empty(void)
388 {
389 int cpu;
390
391 for_each_possible_cpu(cpu)
392 WARN_ON_ONCE(!RB_EMPTY_ROOT(&cpu_rq(cpu)->core_tree));
393 }
394
__sched_core_enable(void)395 static void __sched_core_enable(void)
396 {
397 static_branch_enable(&__sched_core_enabled);
398 /*
399 * Ensure all previous instances of raw_spin_rq_*lock() have finished
400 * and future ones will observe !sched_core_disabled().
401 */
402 synchronize_rcu();
403 __sched_core_flip(true);
404 sched_core_assert_empty();
405 }
406
__sched_core_disable(void)407 static void __sched_core_disable(void)
408 {
409 sched_core_assert_empty();
410 __sched_core_flip(false);
411 static_branch_disable(&__sched_core_enabled);
412 }
413
sched_core_get(void)414 void sched_core_get(void)
415 {
416 if (atomic_inc_not_zero(&sched_core_count))
417 return;
418
419 mutex_lock(&sched_core_mutex);
420 if (!atomic_read(&sched_core_count))
421 __sched_core_enable();
422
423 smp_mb__before_atomic();
424 atomic_inc(&sched_core_count);
425 mutex_unlock(&sched_core_mutex);
426 }
427
__sched_core_put(struct work_struct * work)428 static void __sched_core_put(struct work_struct *work)
429 {
430 if (atomic_dec_and_mutex_lock(&sched_core_count, &sched_core_mutex)) {
431 __sched_core_disable();
432 mutex_unlock(&sched_core_mutex);
433 }
434 }
435
sched_core_put(void)436 void sched_core_put(void)
437 {
438 static DECLARE_WORK(_work, __sched_core_put);
439
440 /*
441 * "There can be only one"
442 *
443 * Either this is the last one, or we don't actually need to do any
444 * 'work'. If it is the last *again*, we rely on
445 * WORK_STRUCT_PENDING_BIT.
446 */
447 if (!atomic_add_unless(&sched_core_count, -1, 1))
448 schedule_work(&_work);
449 }
450
451 #else /* !CONFIG_SCHED_CORE */
452
sched_core_enqueue(struct rq * rq,struct task_struct * p)453 static inline void sched_core_enqueue(struct rq *rq, struct task_struct *p) { }
454 static inline void
sched_core_dequeue(struct rq * rq,struct task_struct * p,int flags)455 sched_core_dequeue(struct rq *rq, struct task_struct *p, int flags) { }
456
457 #endif /* CONFIG_SCHED_CORE */
458
459 /*
460 * Serialization rules:
461 *
462 * Lock order:
463 *
464 * p->pi_lock
465 * rq->lock
466 * hrtimer_cpu_base->lock (hrtimer_start() for bandwidth controls)
467 *
468 * rq1->lock
469 * rq2->lock where: rq1 < rq2
470 *
471 * Regular state:
472 *
473 * Normal scheduling state is serialized by rq->lock. __schedule() takes the
474 * local CPU's rq->lock, it optionally removes the task from the runqueue and
475 * always looks at the local rq data structures to find the most eligible task
476 * to run next.
477 *
478 * Task enqueue is also under rq->lock, possibly taken from another CPU.
479 * Wakeups from another LLC domain might use an IPI to transfer the enqueue to
480 * the local CPU to avoid bouncing the runqueue state around [ see
481 * ttwu_queue_wakelist() ]
482 *
483 * Task wakeup, specifically wakeups that involve migration, are horribly
484 * complicated to avoid having to take two rq->locks.
485 *
486 * Special state:
487 *
488 * System-calls and anything external will use task_rq_lock() which acquires
489 * both p->pi_lock and rq->lock. As a consequence the state they change is
490 * stable while holding either lock:
491 *
492 * - sched_setaffinity()/
493 * set_cpus_allowed_ptr(): p->cpus_ptr, p->nr_cpus_allowed
494 * - set_user_nice(): p->se.load, p->*prio
495 * - __sched_setscheduler(): p->sched_class, p->policy, p->*prio,
496 * p->se.load, p->rt_priority,
497 * p->dl.dl_{runtime, deadline, period, flags, bw, density}
498 * - sched_setnuma(): p->numa_preferred_nid
499 * - sched_move_task(): p->sched_task_group
500 * - uclamp_update_active() p->uclamp*
501 *
502 * p->state <- TASK_*:
503 *
504 * is changed locklessly using set_current_state(), __set_current_state() or
505 * set_special_state(), see their respective comments, or by
506 * try_to_wake_up(). This latter uses p->pi_lock to serialize against
507 * concurrent self.
508 *
509 * p->on_rq <- { 0, 1 = TASK_ON_RQ_QUEUED, 2 = TASK_ON_RQ_MIGRATING }:
510 *
511 * is set by activate_task() and cleared by deactivate_task(), under
512 * rq->lock. Non-zero indicates the task is runnable, the special
513 * ON_RQ_MIGRATING state is used for migration without holding both
514 * rq->locks. It indicates task_cpu() is not stable, see task_rq_lock().
515 *
516 * p->on_cpu <- { 0, 1 }:
517 *
518 * is set by prepare_task() and cleared by finish_task() such that it will be
519 * set before p is scheduled-in and cleared after p is scheduled-out, both
520 * under rq->lock. Non-zero indicates the task is running on its CPU.
521 *
522 * [ The astute reader will observe that it is possible for two tasks on one
523 * CPU to have ->on_cpu = 1 at the same time. ]
524 *
525 * task_cpu(p): is changed by set_task_cpu(), the rules are:
526 *
527 * - Don't call set_task_cpu() on a blocked task:
528 *
529 * We don't care what CPU we're not running on, this simplifies hotplug,
530 * the CPU assignment of blocked tasks isn't required to be valid.
531 *
532 * - for try_to_wake_up(), called under p->pi_lock:
533 *
534 * This allows try_to_wake_up() to only take one rq->lock, see its comment.
535 *
536 * - for migration called under rq->lock:
537 * [ see task_on_rq_migrating() in task_rq_lock() ]
538 *
539 * o move_queued_task()
540 * o detach_task()
541 *
542 * - for migration called under double_rq_lock():
543 *
544 * o __migrate_swap_task()
545 * o push_rt_task() / pull_rt_task()
546 * o push_dl_task() / pull_dl_task()
547 * o dl_task_offline_migration()
548 *
549 */
550
raw_spin_rq_lock_nested(struct rq * rq,int subclass)551 void raw_spin_rq_lock_nested(struct rq *rq, int subclass)
552 {
553 raw_spinlock_t *lock;
554
555 /* Matches synchronize_rcu() in __sched_core_enable() */
556 preempt_disable();
557 if (sched_core_disabled()) {
558 raw_spin_lock_nested(&rq->__lock, subclass);
559 /* preempt_count *MUST* be > 1 */
560 preempt_enable_no_resched();
561 return;
562 }
563
564 for (;;) {
565 lock = __rq_lockp(rq);
566 raw_spin_lock_nested(lock, subclass);
567 if (likely(lock == __rq_lockp(rq))) {
568 /* preempt_count *MUST* be > 1 */
569 preempt_enable_no_resched();
570 return;
571 }
572 raw_spin_unlock(lock);
573 }
574 }
575
raw_spin_rq_trylock(struct rq * rq)576 bool raw_spin_rq_trylock(struct rq *rq)
577 {
578 raw_spinlock_t *lock;
579 bool ret;
580
581 /* Matches synchronize_rcu() in __sched_core_enable() */
582 preempt_disable();
583 if (sched_core_disabled()) {
584 ret = raw_spin_trylock(&rq->__lock);
585 preempt_enable();
586 return ret;
587 }
588
589 for (;;) {
590 lock = __rq_lockp(rq);
591 ret = raw_spin_trylock(lock);
592 if (!ret || (likely(lock == __rq_lockp(rq)))) {
593 preempt_enable();
594 return ret;
595 }
596 raw_spin_unlock(lock);
597 }
598 }
599
raw_spin_rq_unlock(struct rq * rq)600 void raw_spin_rq_unlock(struct rq *rq)
601 {
602 raw_spin_unlock(rq_lockp(rq));
603 }
604
605 #ifdef CONFIG_SMP
606 /*
607 * double_rq_lock - safely lock two runqueues
608 */
double_rq_lock(struct rq * rq1,struct rq * rq2)609 void double_rq_lock(struct rq *rq1, struct rq *rq2)
610 {
611 lockdep_assert_irqs_disabled();
612
613 if (rq_order_less(rq2, rq1))
614 swap(rq1, rq2);
615
616 raw_spin_rq_lock(rq1);
617 if (__rq_lockp(rq1) != __rq_lockp(rq2))
618 raw_spin_rq_lock_nested(rq2, SINGLE_DEPTH_NESTING);
619
620 double_rq_clock_clear_update(rq1, rq2);
621 }
622 #endif
623
624 /*
625 * __task_rq_lock - lock the rq @p resides on.
626 */
__task_rq_lock(struct task_struct * p,struct rq_flags * rf)627 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
628 __acquires(rq->lock)
629 {
630 struct rq *rq;
631
632 lockdep_assert_held(&p->pi_lock);
633
634 for (;;) {
635 rq = task_rq(p);
636 raw_spin_rq_lock(rq);
637 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
638 rq_pin_lock(rq, rf);
639 return rq;
640 }
641 raw_spin_rq_unlock(rq);
642
643 while (unlikely(task_on_rq_migrating(p)))
644 cpu_relax();
645 }
646 }
647
648 /*
649 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
650 */
task_rq_lock(struct task_struct * p,struct rq_flags * rf)651 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
652 __acquires(p->pi_lock)
653 __acquires(rq->lock)
654 {
655 struct rq *rq;
656
657 for (;;) {
658 raw_spin_lock_irqsave(&p->pi_lock, rf->flags);
659 rq = task_rq(p);
660 raw_spin_rq_lock(rq);
661 /*
662 * move_queued_task() task_rq_lock()
663 *
664 * ACQUIRE (rq->lock)
665 * [S] ->on_rq = MIGRATING [L] rq = task_rq()
666 * WMB (__set_task_cpu()) ACQUIRE (rq->lock);
667 * [S] ->cpu = new_cpu [L] task_rq()
668 * [L] ->on_rq
669 * RELEASE (rq->lock)
670 *
671 * If we observe the old CPU in task_rq_lock(), the acquire of
672 * the old rq->lock will fully serialize against the stores.
673 *
674 * If we observe the new CPU in task_rq_lock(), the address
675 * dependency headed by '[L] rq = task_rq()' and the acquire
676 * will pair with the WMB to ensure we then also see migrating.
677 */
678 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
679 rq_pin_lock(rq, rf);
680 return rq;
681 }
682 raw_spin_rq_unlock(rq);
683 raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
684
685 while (unlikely(task_on_rq_migrating(p)))
686 cpu_relax();
687 }
688 }
689
690 /*
691 * RQ-clock updating methods:
692 */
693
update_rq_clock_task(struct rq * rq,s64 delta)694 static void update_rq_clock_task(struct rq *rq, s64 delta)
695 {
696 /*
697 * In theory, the compile should just see 0 here, and optimize out the call
698 * to sched_rt_avg_update. But I don't trust it...
699 */
700 s64 __maybe_unused steal = 0, irq_delta = 0;
701
702 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
703 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
704
705 /*
706 * Since irq_time is only updated on {soft,}irq_exit, we might run into
707 * this case when a previous update_rq_clock() happened inside a
708 * {soft,}irq region.
709 *
710 * When this happens, we stop ->clock_task and only update the
711 * prev_irq_time stamp to account for the part that fit, so that a next
712 * update will consume the rest. This ensures ->clock_task is
713 * monotonic.
714 *
715 * It does however cause some slight miss-attribution of {soft,}irq
716 * time, a more accurate solution would be to update the irq_time using
717 * the current rq->clock timestamp, except that would require using
718 * atomic ops.
719 */
720 if (irq_delta > delta)
721 irq_delta = delta;
722
723 rq->prev_irq_time += irq_delta;
724 delta -= irq_delta;
725 psi_account_irqtime(rq->curr, irq_delta);
726 delayacct_irq(rq->curr, irq_delta);
727 #endif
728 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
729 if (static_key_false((¶virt_steal_rq_enabled))) {
730 steal = paravirt_steal_clock(cpu_of(rq));
731 steal -= rq->prev_steal_time_rq;
732
733 if (unlikely(steal > delta))
734 steal = delta;
735
736 rq->prev_steal_time_rq += steal;
737 delta -= steal;
738 }
739 #endif
740
741 rq->clock_task += delta;
742
743 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
744 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
745 update_irq_load_avg(rq, irq_delta + steal);
746 #endif
747 update_rq_clock_pelt(rq, delta);
748 }
749
update_rq_clock(struct rq * rq)750 void update_rq_clock(struct rq *rq)
751 {
752 s64 delta;
753
754 lockdep_assert_rq_held(rq);
755
756 if (rq->clock_update_flags & RQCF_ACT_SKIP)
757 return;
758
759 #ifdef CONFIG_SCHED_DEBUG
760 if (sched_feat(WARN_DOUBLE_CLOCK))
761 SCHED_WARN_ON(rq->clock_update_flags & RQCF_UPDATED);
762 rq->clock_update_flags |= RQCF_UPDATED;
763 #endif
764
765 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
766 if (delta < 0)
767 return;
768 rq->clock += delta;
769 update_rq_clock_task(rq, delta);
770 }
771
772 #ifdef CONFIG_SCHED_HRTICK
773 /*
774 * Use HR-timers to deliver accurate preemption points.
775 */
776
hrtick_clear(struct rq * rq)777 static void hrtick_clear(struct rq *rq)
778 {
779 if (hrtimer_active(&rq->hrtick_timer))
780 hrtimer_cancel(&rq->hrtick_timer);
781 }
782
783 /*
784 * High-resolution timer tick.
785 * Runs from hardirq context with interrupts disabled.
786 */
hrtick(struct hrtimer * timer)787 static enum hrtimer_restart hrtick(struct hrtimer *timer)
788 {
789 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
790 struct rq_flags rf;
791
792 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
793
794 rq_lock(rq, &rf);
795 update_rq_clock(rq);
796 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
797 rq_unlock(rq, &rf);
798
799 return HRTIMER_NORESTART;
800 }
801
802 #ifdef CONFIG_SMP
803
__hrtick_restart(struct rq * rq)804 static void __hrtick_restart(struct rq *rq)
805 {
806 struct hrtimer *timer = &rq->hrtick_timer;
807 ktime_t time = rq->hrtick_time;
808
809 hrtimer_start(timer, time, HRTIMER_MODE_ABS_PINNED_HARD);
810 }
811
812 /*
813 * called from hardirq (IPI) context
814 */
__hrtick_start(void * arg)815 static void __hrtick_start(void *arg)
816 {
817 struct rq *rq = arg;
818 struct rq_flags rf;
819
820 rq_lock(rq, &rf);
821 __hrtick_restart(rq);
822 rq_unlock(rq, &rf);
823 }
824
825 /*
826 * Called to set the hrtick timer state.
827 *
828 * called with rq->lock held and irqs disabled
829 */
hrtick_start(struct rq * rq,u64 delay)830 void hrtick_start(struct rq *rq, u64 delay)
831 {
832 struct hrtimer *timer = &rq->hrtick_timer;
833 s64 delta;
834
835 /*
836 * Don't schedule slices shorter than 10000ns, that just
837 * doesn't make sense and can cause timer DoS.
838 */
839 delta = max_t(s64, delay, 10000LL);
840 rq->hrtick_time = ktime_add_ns(timer->base->get_time(), delta);
841
842 if (rq == this_rq())
843 __hrtick_restart(rq);
844 else
845 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
846 }
847
848 #else
849 /*
850 * Called to set the hrtick timer state.
851 *
852 * called with rq->lock held and irqs disabled
853 */
hrtick_start(struct rq * rq,u64 delay)854 void hrtick_start(struct rq *rq, u64 delay)
855 {
856 /*
857 * Don't schedule slices shorter than 10000ns, that just
858 * doesn't make sense. Rely on vruntime for fairness.
859 */
860 delay = max_t(u64, delay, 10000LL);
861 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
862 HRTIMER_MODE_REL_PINNED_HARD);
863 }
864
865 #endif /* CONFIG_SMP */
866
hrtick_rq_init(struct rq * rq)867 static void hrtick_rq_init(struct rq *rq)
868 {
869 #ifdef CONFIG_SMP
870 INIT_CSD(&rq->hrtick_csd, __hrtick_start, rq);
871 #endif
872 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
873 rq->hrtick_timer.function = hrtick;
874 }
875 #else /* CONFIG_SCHED_HRTICK */
hrtick_clear(struct rq * rq)876 static inline void hrtick_clear(struct rq *rq)
877 {
878 }
879
hrtick_rq_init(struct rq * rq)880 static inline void hrtick_rq_init(struct rq *rq)
881 {
882 }
883 #endif /* CONFIG_SCHED_HRTICK */
884
885 /*
886 * cmpxchg based fetch_or, macro so it works for different integer types
887 */
888 #define fetch_or(ptr, mask) \
889 ({ \
890 typeof(ptr) _ptr = (ptr); \
891 typeof(mask) _mask = (mask); \
892 typeof(*_ptr) _val = *_ptr; \
893 \
894 do { \
895 } while (!try_cmpxchg(_ptr, &_val, _val | _mask)); \
896 _val; \
897 })
898
899 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
900 /*
901 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
902 * this avoids any races wrt polling state changes and thereby avoids
903 * spurious IPIs.
904 */
set_nr_and_not_polling(struct task_struct * p)905 static inline bool set_nr_and_not_polling(struct task_struct *p)
906 {
907 struct thread_info *ti = task_thread_info(p);
908 return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
909 }
910
911 /*
912 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
913 *
914 * If this returns true, then the idle task promises to call
915 * sched_ttwu_pending() and reschedule soon.
916 */
set_nr_if_polling(struct task_struct * p)917 static bool set_nr_if_polling(struct task_struct *p)
918 {
919 struct thread_info *ti = task_thread_info(p);
920 typeof(ti->flags) val = READ_ONCE(ti->flags);
921
922 for (;;) {
923 if (!(val & _TIF_POLLING_NRFLAG))
924 return false;
925 if (val & _TIF_NEED_RESCHED)
926 return true;
927 if (try_cmpxchg(&ti->flags, &val, val | _TIF_NEED_RESCHED))
928 break;
929 }
930 return true;
931 }
932
933 #else
set_nr_and_not_polling(struct task_struct * p)934 static inline bool set_nr_and_not_polling(struct task_struct *p)
935 {
936 set_tsk_need_resched(p);
937 return true;
938 }
939
940 #ifdef CONFIG_SMP
set_nr_if_polling(struct task_struct * p)941 static inline bool set_nr_if_polling(struct task_struct *p)
942 {
943 return false;
944 }
945 #endif
946 #endif
947
__wake_q_add(struct wake_q_head * head,struct task_struct * task)948 static bool __wake_q_add(struct wake_q_head *head, struct task_struct *task)
949 {
950 struct wake_q_node *node = &task->wake_q;
951
952 /*
953 * Atomically grab the task, if ->wake_q is !nil already it means
954 * it's already queued (either by us or someone else) and will get the
955 * wakeup due to that.
956 *
957 * In order to ensure that a pending wakeup will observe our pending
958 * state, even in the failed case, an explicit smp_mb() must be used.
959 */
960 smp_mb__before_atomic();
961 if (unlikely(cmpxchg_relaxed(&node->next, NULL, WAKE_Q_TAIL)))
962 return false;
963
964 /*
965 * The head is context local, there can be no concurrency.
966 */
967 *head->lastp = node;
968 head->lastp = &node->next;
969 return true;
970 }
971
972 /**
973 * wake_q_add() - queue a wakeup for 'later' waking.
974 * @head: the wake_q_head to add @task to
975 * @task: the task to queue for 'later' wakeup
976 *
977 * Queue a task for later wakeup, most likely by the wake_up_q() call in the
978 * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
979 * instantly.
980 *
981 * This function must be used as-if it were wake_up_process(); IOW the task
982 * must be ready to be woken at this location.
983 */
wake_q_add(struct wake_q_head * head,struct task_struct * task)984 void wake_q_add(struct wake_q_head *head, struct task_struct *task)
985 {
986 if (__wake_q_add(head, task))
987 get_task_struct(task);
988 }
989
990 /**
991 * wake_q_add_safe() - safely queue a wakeup for 'later' waking.
992 * @head: the wake_q_head to add @task to
993 * @task: the task to queue for 'later' wakeup
994 *
995 * Queue a task for later wakeup, most likely by the wake_up_q() call in the
996 * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
997 * instantly.
998 *
999 * This function must be used as-if it were wake_up_process(); IOW the task
1000 * must be ready to be woken at this location.
1001 *
1002 * This function is essentially a task-safe equivalent to wake_q_add(). Callers
1003 * that already hold reference to @task can call the 'safe' version and trust
1004 * wake_q to do the right thing depending whether or not the @task is already
1005 * queued for wakeup.
1006 */
wake_q_add_safe(struct wake_q_head * head,struct task_struct * task)1007 void wake_q_add_safe(struct wake_q_head *head, struct task_struct *task)
1008 {
1009 if (!__wake_q_add(head, task))
1010 put_task_struct(task);
1011 }
1012
wake_up_q(struct wake_q_head * head)1013 void wake_up_q(struct wake_q_head *head)
1014 {
1015 struct wake_q_node *node = head->first;
1016
1017 while (node != WAKE_Q_TAIL) {
1018 struct task_struct *task;
1019
1020 task = container_of(node, struct task_struct, wake_q);
1021 /* Task can safely be re-inserted now: */
1022 node = node->next;
1023 task->wake_q.next = NULL;
1024
1025 /*
1026 * wake_up_process() executes a full barrier, which pairs with
1027 * the queueing in wake_q_add() so as not to miss wakeups.
1028 */
1029 wake_up_process(task);
1030 put_task_struct(task);
1031 }
1032 }
1033
1034 /*
1035 * resched_curr - mark rq's current task 'to be rescheduled now'.
1036 *
1037 * On UP this means the setting of the need_resched flag, on SMP it
1038 * might also involve a cross-CPU call to trigger the scheduler on
1039 * the target CPU.
1040 */
resched_curr(struct rq * rq)1041 void resched_curr(struct rq *rq)
1042 {
1043 struct task_struct *curr = rq->curr;
1044 int cpu;
1045
1046 lockdep_assert_rq_held(rq);
1047
1048 if (test_tsk_need_resched(curr))
1049 return;
1050
1051 cpu = cpu_of(rq);
1052
1053 if (cpu == smp_processor_id()) {
1054 set_tsk_need_resched(curr);
1055 set_preempt_need_resched();
1056 return;
1057 }
1058
1059 if (set_nr_and_not_polling(curr))
1060 smp_send_reschedule(cpu);
1061 else
1062 trace_sched_wake_idle_without_ipi(cpu);
1063 }
1064
resched_cpu(int cpu)1065 void resched_cpu(int cpu)
1066 {
1067 struct rq *rq = cpu_rq(cpu);
1068 unsigned long flags;
1069
1070 raw_spin_rq_lock_irqsave(rq, flags);
1071 if (cpu_online(cpu) || cpu == smp_processor_id())
1072 resched_curr(rq);
1073 raw_spin_rq_unlock_irqrestore(rq, flags);
1074 }
1075
1076 #ifdef CONFIG_SMP
1077 #ifdef CONFIG_NO_HZ_COMMON
1078 /*
1079 * In the semi idle case, use the nearest busy CPU for migrating timers
1080 * from an idle CPU. This is good for power-savings.
1081 *
1082 * We don't do similar optimization for completely idle system, as
1083 * selecting an idle CPU will add more delays to the timers than intended
1084 * (as that CPU's timer base may not be uptodate wrt jiffies etc).
1085 */
get_nohz_timer_target(void)1086 int get_nohz_timer_target(void)
1087 {
1088 int i, cpu = smp_processor_id(), default_cpu = -1;
1089 struct sched_domain *sd;
1090 const struct cpumask *hk_mask;
1091
1092 if (housekeeping_cpu(cpu, HK_TYPE_TIMER)) {
1093 if (!idle_cpu(cpu))
1094 return cpu;
1095 default_cpu = cpu;
1096 }
1097
1098 hk_mask = housekeeping_cpumask(HK_TYPE_TIMER);
1099
1100 guard(rcu)();
1101
1102 for_each_domain(cpu, sd) {
1103 for_each_cpu_and(i, sched_domain_span(sd), hk_mask) {
1104 if (cpu == i)
1105 continue;
1106
1107 if (!idle_cpu(i))
1108 return i;
1109 }
1110 }
1111
1112 if (default_cpu == -1)
1113 default_cpu = housekeeping_any_cpu(HK_TYPE_TIMER);
1114
1115 return default_cpu;
1116 }
1117
1118 /*
1119 * When add_timer_on() enqueues a timer into the timer wheel of an
1120 * idle CPU then this timer might expire before the next timer event
1121 * which is scheduled to wake up that CPU. In case of a completely
1122 * idle system the next event might even be infinite time into the
1123 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1124 * leaves the inner idle loop so the newly added timer is taken into
1125 * account when the CPU goes back to idle and evaluates the timer
1126 * wheel for the next timer event.
1127 */
wake_up_idle_cpu(int cpu)1128 static void wake_up_idle_cpu(int cpu)
1129 {
1130 struct rq *rq = cpu_rq(cpu);
1131
1132 if (cpu == smp_processor_id())
1133 return;
1134
1135 if (set_nr_and_not_polling(rq->idle))
1136 smp_send_reschedule(cpu);
1137 else
1138 trace_sched_wake_idle_without_ipi(cpu);
1139 }
1140
wake_up_full_nohz_cpu(int cpu)1141 static bool wake_up_full_nohz_cpu(int cpu)
1142 {
1143 /*
1144 * We just need the target to call irq_exit() and re-evaluate
1145 * the next tick. The nohz full kick at least implies that.
1146 * If needed we can still optimize that later with an
1147 * empty IRQ.
1148 */
1149 if (cpu_is_offline(cpu))
1150 return true; /* Don't try to wake offline CPUs. */
1151 if (tick_nohz_full_cpu(cpu)) {
1152 if (cpu != smp_processor_id() ||
1153 tick_nohz_tick_stopped())
1154 tick_nohz_full_kick_cpu(cpu);
1155 return true;
1156 }
1157
1158 return false;
1159 }
1160
1161 /*
1162 * Wake up the specified CPU. If the CPU is going offline, it is the
1163 * caller's responsibility to deal with the lost wakeup, for example,
1164 * by hooking into the CPU_DEAD notifier like timers and hrtimers do.
1165 */
wake_up_nohz_cpu(int cpu)1166 void wake_up_nohz_cpu(int cpu)
1167 {
1168 if (!wake_up_full_nohz_cpu(cpu))
1169 wake_up_idle_cpu(cpu);
1170 }
1171
nohz_csd_func(void * info)1172 static void nohz_csd_func(void *info)
1173 {
1174 struct rq *rq = info;
1175 int cpu = cpu_of(rq);
1176 unsigned int flags;
1177
1178 /*
1179 * Release the rq::nohz_csd.
1180 */
1181 flags = atomic_fetch_andnot(NOHZ_KICK_MASK | NOHZ_NEWILB_KICK, nohz_flags(cpu));
1182 WARN_ON(!(flags & NOHZ_KICK_MASK));
1183
1184 rq->idle_balance = idle_cpu(cpu);
1185 if (rq->idle_balance && !need_resched()) {
1186 rq->nohz_idle_balance = flags;
1187 raise_softirq_irqoff(SCHED_SOFTIRQ);
1188 }
1189 }
1190
1191 #endif /* CONFIG_NO_HZ_COMMON */
1192
1193 #ifdef CONFIG_NO_HZ_FULL
__need_bw_check(struct rq * rq,struct task_struct * p)1194 static inline bool __need_bw_check(struct rq *rq, struct task_struct *p)
1195 {
1196 if (rq->nr_running != 1)
1197 return false;
1198
1199 if (p->sched_class != &fair_sched_class)
1200 return false;
1201
1202 if (!task_on_rq_queued(p))
1203 return false;
1204
1205 return true;
1206 }
1207
sched_can_stop_tick(struct rq * rq)1208 bool sched_can_stop_tick(struct rq *rq)
1209 {
1210 int fifo_nr_running;
1211
1212 /* Deadline tasks, even if single, need the tick */
1213 if (rq->dl.dl_nr_running)
1214 return false;
1215
1216 /*
1217 * If there are more than one RR tasks, we need the tick to affect the
1218 * actual RR behaviour.
1219 */
1220 if (rq->rt.rr_nr_running) {
1221 if (rq->rt.rr_nr_running == 1)
1222 return true;
1223 else
1224 return false;
1225 }
1226
1227 /*
1228 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no
1229 * forced preemption between FIFO tasks.
1230 */
1231 fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
1232 if (fifo_nr_running)
1233 return true;
1234
1235 /*
1236 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left;
1237 * if there's more than one we need the tick for involuntary
1238 * preemption.
1239 */
1240 if (rq->nr_running > 1)
1241 return false;
1242
1243 /*
1244 * If there is one task and it has CFS runtime bandwidth constraints
1245 * and it's on the cpu now we don't want to stop the tick.
1246 * This check prevents clearing the bit if a newly enqueued task here is
1247 * dequeued by migrating while the constrained task continues to run.
1248 * E.g. going from 2->1 without going through pick_next_task().
1249 */
1250 if (sched_feat(HZ_BW) && __need_bw_check(rq, rq->curr)) {
1251 if (cfs_task_bw_constrained(rq->curr))
1252 return false;
1253 }
1254
1255 return true;
1256 }
1257 #endif /* CONFIG_NO_HZ_FULL */
1258 #endif /* CONFIG_SMP */
1259
1260 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
1261 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
1262 /*
1263 * Iterate task_group tree rooted at *from, calling @down when first entering a
1264 * node and @up when leaving it for the final time.
1265 *
1266 * Caller must hold rcu_lock or sufficient equivalent.
1267 */
walk_tg_tree_from(struct task_group * from,tg_visitor down,tg_visitor up,void * data)1268 int walk_tg_tree_from(struct task_group *from,
1269 tg_visitor down, tg_visitor up, void *data)
1270 {
1271 struct task_group *parent, *child;
1272 int ret;
1273
1274 parent = from;
1275
1276 down:
1277 ret = (*down)(parent, data);
1278 if (ret)
1279 goto out;
1280 list_for_each_entry_rcu(child, &parent->children, siblings) {
1281 parent = child;
1282 goto down;
1283
1284 up:
1285 continue;
1286 }
1287 ret = (*up)(parent, data);
1288 if (ret || parent == from)
1289 goto out;
1290
1291 child = parent;
1292 parent = parent->parent;
1293 if (parent)
1294 goto up;
1295 out:
1296 return ret;
1297 }
1298
tg_nop(struct task_group * tg,void * data)1299 int tg_nop(struct task_group *tg, void *data)
1300 {
1301 return 0;
1302 }
1303 #endif
1304
set_load_weight(struct task_struct * p,bool update_load)1305 static void set_load_weight(struct task_struct *p, bool update_load)
1306 {
1307 int prio = p->static_prio - MAX_RT_PRIO;
1308 struct load_weight *load = &p->se.load;
1309
1310 /*
1311 * SCHED_IDLE tasks get minimal weight:
1312 */
1313 if (task_has_idle_policy(p)) {
1314 load->weight = scale_load(WEIGHT_IDLEPRIO);
1315 load->inv_weight = WMULT_IDLEPRIO;
1316 return;
1317 }
1318
1319 /*
1320 * SCHED_OTHER tasks have to update their load when changing their
1321 * weight
1322 */
1323 if (update_load && p->sched_class == &fair_sched_class) {
1324 reweight_task(p, prio);
1325 } else {
1326 load->weight = scale_load(sched_prio_to_weight[prio]);
1327 load->inv_weight = sched_prio_to_wmult[prio];
1328 }
1329 }
1330
1331 #ifdef CONFIG_UCLAMP_TASK
1332 /*
1333 * Serializes updates of utilization clamp values
1334 *
1335 * The (slow-path) user-space triggers utilization clamp value updates which
1336 * can require updates on (fast-path) scheduler's data structures used to
1337 * support enqueue/dequeue operations.
1338 * While the per-CPU rq lock protects fast-path update operations, user-space
1339 * requests are serialized using a mutex to reduce the risk of conflicting
1340 * updates or API abuses.
1341 */
1342 static DEFINE_MUTEX(uclamp_mutex);
1343
1344 /* Max allowed minimum utilization */
1345 static unsigned int __maybe_unused sysctl_sched_uclamp_util_min = SCHED_CAPACITY_SCALE;
1346
1347 /* Max allowed maximum utilization */
1348 static unsigned int __maybe_unused sysctl_sched_uclamp_util_max = SCHED_CAPACITY_SCALE;
1349
1350 /*
1351 * By default RT tasks run at the maximum performance point/capacity of the
1352 * system. Uclamp enforces this by always setting UCLAMP_MIN of RT tasks to
1353 * SCHED_CAPACITY_SCALE.
1354 *
1355 * This knob allows admins to change the default behavior when uclamp is being
1356 * used. In battery powered devices, particularly, running at the maximum
1357 * capacity and frequency will increase energy consumption and shorten the
1358 * battery life.
1359 *
1360 * This knob only affects RT tasks that their uclamp_se->user_defined == false.
1361 *
1362 * This knob will not override the system default sched_util_clamp_min defined
1363 * above.
1364 */
1365 static unsigned int sysctl_sched_uclamp_util_min_rt_default = SCHED_CAPACITY_SCALE;
1366
1367 /* All clamps are required to be less or equal than these values */
1368 static struct uclamp_se uclamp_default[UCLAMP_CNT];
1369
1370 /*
1371 * This static key is used to reduce the uclamp overhead in the fast path. It
1372 * primarily disables the call to uclamp_rq_{inc, dec}() in
1373 * enqueue/dequeue_task().
1374 *
1375 * This allows users to continue to enable uclamp in their kernel config with
1376 * minimum uclamp overhead in the fast path.
1377 *
1378 * As soon as userspace modifies any of the uclamp knobs, the static key is
1379 * enabled, since we have an actual users that make use of uclamp
1380 * functionality.
1381 *
1382 * The knobs that would enable this static key are:
1383 *
1384 * * A task modifying its uclamp value with sched_setattr().
1385 * * An admin modifying the sysctl_sched_uclamp_{min, max} via procfs.
1386 * * An admin modifying the cgroup cpu.uclamp.{min, max}
1387 */
1388 DEFINE_STATIC_KEY_FALSE(sched_uclamp_used);
1389
1390 /* Integer rounded range for each bucket */
1391 #define UCLAMP_BUCKET_DELTA DIV_ROUND_CLOSEST(SCHED_CAPACITY_SCALE, UCLAMP_BUCKETS)
1392
1393 #define for_each_clamp_id(clamp_id) \
1394 for ((clamp_id) = 0; (clamp_id) < UCLAMP_CNT; (clamp_id)++)
1395
uclamp_bucket_id(unsigned int clamp_value)1396 static inline unsigned int uclamp_bucket_id(unsigned int clamp_value)
1397 {
1398 return min_t(unsigned int, clamp_value / UCLAMP_BUCKET_DELTA, UCLAMP_BUCKETS - 1);
1399 }
1400
uclamp_none(enum uclamp_id clamp_id)1401 static inline unsigned int uclamp_none(enum uclamp_id clamp_id)
1402 {
1403 if (clamp_id == UCLAMP_MIN)
1404 return 0;
1405 return SCHED_CAPACITY_SCALE;
1406 }
1407
uclamp_se_set(struct uclamp_se * uc_se,unsigned int value,bool user_defined)1408 static inline void uclamp_se_set(struct uclamp_se *uc_se,
1409 unsigned int value, bool user_defined)
1410 {
1411 uc_se->value = value;
1412 uc_se->bucket_id = uclamp_bucket_id(value);
1413 uc_se->user_defined = user_defined;
1414 }
1415
1416 static inline unsigned int
uclamp_idle_value(struct rq * rq,enum uclamp_id clamp_id,unsigned int clamp_value)1417 uclamp_idle_value(struct rq *rq, enum uclamp_id clamp_id,
1418 unsigned int clamp_value)
1419 {
1420 /*
1421 * Avoid blocked utilization pushing up the frequency when we go
1422 * idle (which drops the max-clamp) by retaining the last known
1423 * max-clamp.
1424 */
1425 if (clamp_id == UCLAMP_MAX) {
1426 rq->uclamp_flags |= UCLAMP_FLAG_IDLE;
1427 return clamp_value;
1428 }
1429
1430 return uclamp_none(UCLAMP_MIN);
1431 }
1432
uclamp_idle_reset(struct rq * rq,enum uclamp_id clamp_id,unsigned int clamp_value)1433 static inline void uclamp_idle_reset(struct rq *rq, enum uclamp_id clamp_id,
1434 unsigned int clamp_value)
1435 {
1436 /* Reset max-clamp retention only on idle exit */
1437 if (!(rq->uclamp_flags & UCLAMP_FLAG_IDLE))
1438 return;
1439
1440 uclamp_rq_set(rq, clamp_id, clamp_value);
1441 }
1442
1443 static inline
uclamp_rq_max_value(struct rq * rq,enum uclamp_id clamp_id,unsigned int clamp_value)1444 unsigned int uclamp_rq_max_value(struct rq *rq, enum uclamp_id clamp_id,
1445 unsigned int clamp_value)
1446 {
1447 struct uclamp_bucket *bucket = rq->uclamp[clamp_id].bucket;
1448 int bucket_id = UCLAMP_BUCKETS - 1;
1449
1450 /*
1451 * Since both min and max clamps are max aggregated, find the
1452 * top most bucket with tasks in.
1453 */
1454 for ( ; bucket_id >= 0; bucket_id--) {
1455 if (!bucket[bucket_id].tasks)
1456 continue;
1457 return bucket[bucket_id].value;
1458 }
1459
1460 /* No tasks -- default clamp values */
1461 return uclamp_idle_value(rq, clamp_id, clamp_value);
1462 }
1463
__uclamp_update_util_min_rt_default(struct task_struct * p)1464 static void __uclamp_update_util_min_rt_default(struct task_struct *p)
1465 {
1466 unsigned int default_util_min;
1467 struct uclamp_se *uc_se;
1468
1469 lockdep_assert_held(&p->pi_lock);
1470
1471 uc_se = &p->uclamp_req[UCLAMP_MIN];
1472
1473 /* Only sync if user didn't override the default */
1474 if (uc_se->user_defined)
1475 return;
1476
1477 default_util_min = sysctl_sched_uclamp_util_min_rt_default;
1478 uclamp_se_set(uc_se, default_util_min, false);
1479 }
1480
uclamp_update_util_min_rt_default(struct task_struct * p)1481 static void uclamp_update_util_min_rt_default(struct task_struct *p)
1482 {
1483 struct rq_flags rf;
1484 struct rq *rq;
1485
1486 if (!rt_task(p))
1487 return;
1488
1489 /* Protect updates to p->uclamp_* */
1490 rq = task_rq_lock(p, &rf);
1491 __uclamp_update_util_min_rt_default(p);
1492 task_rq_unlock(rq, p, &rf);
1493 }
1494
1495 static inline struct uclamp_se
uclamp_tg_restrict(struct task_struct * p,enum uclamp_id clamp_id)1496 uclamp_tg_restrict(struct task_struct *p, enum uclamp_id clamp_id)
1497 {
1498 /* Copy by value as we could modify it */
1499 struct uclamp_se uc_req = p->uclamp_req[clamp_id];
1500 #ifdef CONFIG_UCLAMP_TASK_GROUP
1501 unsigned int tg_min, tg_max, value;
1502
1503 /*
1504 * Tasks in autogroups or root task group will be
1505 * restricted by system defaults.
1506 */
1507 if (task_group_is_autogroup(task_group(p)))
1508 return uc_req;
1509 if (task_group(p) == &root_task_group)
1510 return uc_req;
1511
1512 tg_min = task_group(p)->uclamp[UCLAMP_MIN].value;
1513 tg_max = task_group(p)->uclamp[UCLAMP_MAX].value;
1514 value = uc_req.value;
1515 value = clamp(value, tg_min, tg_max);
1516 uclamp_se_set(&uc_req, value, false);
1517 #endif
1518
1519 return uc_req;
1520 }
1521
1522 /*
1523 * The effective clamp bucket index of a task depends on, by increasing
1524 * priority:
1525 * - the task specific clamp value, when explicitly requested from userspace
1526 * - the task group effective clamp value, for tasks not either in the root
1527 * group or in an autogroup
1528 * - the system default clamp value, defined by the sysadmin
1529 */
1530 static inline struct uclamp_se
uclamp_eff_get(struct task_struct * p,enum uclamp_id clamp_id)1531 uclamp_eff_get(struct task_struct *p, enum uclamp_id clamp_id)
1532 {
1533 struct uclamp_se uc_req = uclamp_tg_restrict(p, clamp_id);
1534 struct uclamp_se uc_max = uclamp_default[clamp_id];
1535
1536 /* System default restrictions always apply */
1537 if (unlikely(uc_req.value > uc_max.value))
1538 return uc_max;
1539
1540 return uc_req;
1541 }
1542
uclamp_eff_value(struct task_struct * p,enum uclamp_id clamp_id)1543 unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id)
1544 {
1545 struct uclamp_se uc_eff;
1546
1547 /* Task currently refcounted: use back-annotated (effective) value */
1548 if (p->uclamp[clamp_id].active)
1549 return (unsigned long)p->uclamp[clamp_id].value;
1550
1551 uc_eff = uclamp_eff_get(p, clamp_id);
1552
1553 return (unsigned long)uc_eff.value;
1554 }
1555
1556 /*
1557 * When a task is enqueued on a rq, the clamp bucket currently defined by the
1558 * task's uclamp::bucket_id is refcounted on that rq. This also immediately
1559 * updates the rq's clamp value if required.
1560 *
1561 * Tasks can have a task-specific value requested from user-space, track
1562 * within each bucket the maximum value for tasks refcounted in it.
1563 * This "local max aggregation" allows to track the exact "requested" value
1564 * for each bucket when all its RUNNABLE tasks require the same clamp.
1565 */
uclamp_rq_inc_id(struct rq * rq,struct task_struct * p,enum uclamp_id clamp_id)1566 static inline void uclamp_rq_inc_id(struct rq *rq, struct task_struct *p,
1567 enum uclamp_id clamp_id)
1568 {
1569 struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
1570 struct uclamp_se *uc_se = &p->uclamp[clamp_id];
1571 struct uclamp_bucket *bucket;
1572
1573 lockdep_assert_rq_held(rq);
1574
1575 /* Update task effective clamp */
1576 p->uclamp[clamp_id] = uclamp_eff_get(p, clamp_id);
1577
1578 bucket = &uc_rq->bucket[uc_se->bucket_id];
1579 bucket->tasks++;
1580 uc_se->active = true;
1581
1582 uclamp_idle_reset(rq, clamp_id, uc_se->value);
1583
1584 /*
1585 * Local max aggregation: rq buckets always track the max
1586 * "requested" clamp value of its RUNNABLE tasks.
1587 */
1588 if (bucket->tasks == 1 || uc_se->value > bucket->value)
1589 bucket->value = uc_se->value;
1590
1591 if (uc_se->value > uclamp_rq_get(rq, clamp_id))
1592 uclamp_rq_set(rq, clamp_id, uc_se->value);
1593 }
1594
1595 /*
1596 * When a task is dequeued from a rq, the clamp bucket refcounted by the task
1597 * is released. If this is the last task reference counting the rq's max
1598 * active clamp value, then the rq's clamp value is updated.
1599 *
1600 * Both refcounted tasks and rq's cached clamp values are expected to be
1601 * always valid. If it's detected they are not, as defensive programming,
1602 * enforce the expected state and warn.
1603 */
uclamp_rq_dec_id(struct rq * rq,struct task_struct * p,enum uclamp_id clamp_id)1604 static inline void uclamp_rq_dec_id(struct rq *rq, struct task_struct *p,
1605 enum uclamp_id clamp_id)
1606 {
1607 struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
1608 struct uclamp_se *uc_se = &p->uclamp[clamp_id];
1609 struct uclamp_bucket *bucket;
1610 unsigned int bkt_clamp;
1611 unsigned int rq_clamp;
1612
1613 lockdep_assert_rq_held(rq);
1614
1615 /*
1616 * If sched_uclamp_used was enabled after task @p was enqueued,
1617 * we could end up with unbalanced call to uclamp_rq_dec_id().
1618 *
1619 * In this case the uc_se->active flag should be false since no uclamp
1620 * accounting was performed at enqueue time and we can just return
1621 * here.
1622 *
1623 * Need to be careful of the following enqueue/dequeue ordering
1624 * problem too
1625 *
1626 * enqueue(taskA)
1627 * // sched_uclamp_used gets enabled
1628 * enqueue(taskB)
1629 * dequeue(taskA)
1630 * // Must not decrement bucket->tasks here
1631 * dequeue(taskB)
1632 *
1633 * where we could end up with stale data in uc_se and
1634 * bucket[uc_se->bucket_id].
1635 *
1636 * The following check here eliminates the possibility of such race.
1637 */
1638 if (unlikely(!uc_se->active))
1639 return;
1640
1641 bucket = &uc_rq->bucket[uc_se->bucket_id];
1642
1643 SCHED_WARN_ON(!bucket->tasks);
1644 if (likely(bucket->tasks))
1645 bucket->tasks--;
1646
1647 uc_se->active = false;
1648
1649 /*
1650 * Keep "local max aggregation" simple and accept to (possibly)
1651 * overboost some RUNNABLE tasks in the same bucket.
1652 * The rq clamp bucket value is reset to its base value whenever
1653 * there are no more RUNNABLE tasks refcounting it.
1654 */
1655 if (likely(bucket->tasks))
1656 return;
1657
1658 rq_clamp = uclamp_rq_get(rq, clamp_id);
1659 /*
1660 * Defensive programming: this should never happen. If it happens,
1661 * e.g. due to future modification, warn and fixup the expected value.
1662 */
1663 SCHED_WARN_ON(bucket->value > rq_clamp);
1664 if (bucket->value >= rq_clamp) {
1665 bkt_clamp = uclamp_rq_max_value(rq, clamp_id, uc_se->value);
1666 uclamp_rq_set(rq, clamp_id, bkt_clamp);
1667 }
1668 }
1669
uclamp_rq_inc(struct rq * rq,struct task_struct * p)1670 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p)
1671 {
1672 enum uclamp_id clamp_id;
1673
1674 /*
1675 * Avoid any overhead until uclamp is actually used by the userspace.
1676 *
1677 * The condition is constructed such that a NOP is generated when
1678 * sched_uclamp_used is disabled.
1679 */
1680 if (!static_branch_unlikely(&sched_uclamp_used))
1681 return;
1682
1683 if (unlikely(!p->sched_class->uclamp_enabled))
1684 return;
1685
1686 for_each_clamp_id(clamp_id)
1687 uclamp_rq_inc_id(rq, p, clamp_id);
1688
1689 /* Reset clamp idle holding when there is one RUNNABLE task */
1690 if (rq->uclamp_flags & UCLAMP_FLAG_IDLE)
1691 rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE;
1692 }
1693
uclamp_rq_dec(struct rq * rq,struct task_struct * p)1694 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p)
1695 {
1696 enum uclamp_id clamp_id;
1697
1698 /*
1699 * Avoid any overhead until uclamp is actually used by the userspace.
1700 *
1701 * The condition is constructed such that a NOP is generated when
1702 * sched_uclamp_used is disabled.
1703 */
1704 if (!static_branch_unlikely(&sched_uclamp_used))
1705 return;
1706
1707 if (unlikely(!p->sched_class->uclamp_enabled))
1708 return;
1709
1710 for_each_clamp_id(clamp_id)
1711 uclamp_rq_dec_id(rq, p, clamp_id);
1712 }
1713
uclamp_rq_reinc_id(struct rq * rq,struct task_struct * p,enum uclamp_id clamp_id)1714 static inline void uclamp_rq_reinc_id(struct rq *rq, struct task_struct *p,
1715 enum uclamp_id clamp_id)
1716 {
1717 if (!p->uclamp[clamp_id].active)
1718 return;
1719
1720 uclamp_rq_dec_id(rq, p, clamp_id);
1721 uclamp_rq_inc_id(rq, p, clamp_id);
1722
1723 /*
1724 * Make sure to clear the idle flag if we've transiently reached 0
1725 * active tasks on rq.
1726 */
1727 if (clamp_id == UCLAMP_MAX && (rq->uclamp_flags & UCLAMP_FLAG_IDLE))
1728 rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE;
1729 }
1730
1731 static inline void
uclamp_update_active(struct task_struct * p)1732 uclamp_update_active(struct task_struct *p)
1733 {
1734 enum uclamp_id clamp_id;
1735 struct rq_flags rf;
1736 struct rq *rq;
1737
1738 /*
1739 * Lock the task and the rq where the task is (or was) queued.
1740 *
1741 * We might lock the (previous) rq of a !RUNNABLE task, but that's the
1742 * price to pay to safely serialize util_{min,max} updates with
1743 * enqueues, dequeues and migration operations.
1744 * This is the same locking schema used by __set_cpus_allowed_ptr().
1745 */
1746 rq = task_rq_lock(p, &rf);
1747
1748 /*
1749 * Setting the clamp bucket is serialized by task_rq_lock().
1750 * If the task is not yet RUNNABLE and its task_struct is not
1751 * affecting a valid clamp bucket, the next time it's enqueued,
1752 * it will already see the updated clamp bucket value.
1753 */
1754 for_each_clamp_id(clamp_id)
1755 uclamp_rq_reinc_id(rq, p, clamp_id);
1756
1757 task_rq_unlock(rq, p, &rf);
1758 }
1759
1760 #ifdef CONFIG_UCLAMP_TASK_GROUP
1761 static inline void
uclamp_update_active_tasks(struct cgroup_subsys_state * css)1762 uclamp_update_active_tasks(struct cgroup_subsys_state *css)
1763 {
1764 struct css_task_iter it;
1765 struct task_struct *p;
1766
1767 css_task_iter_start(css, 0, &it);
1768 while ((p = css_task_iter_next(&it)))
1769 uclamp_update_active(p);
1770 css_task_iter_end(&it);
1771 }
1772
1773 static void cpu_util_update_eff(struct cgroup_subsys_state *css);
1774 #endif
1775
1776 #ifdef CONFIG_SYSCTL
1777 #ifdef CONFIG_UCLAMP_TASK
1778 #ifdef CONFIG_UCLAMP_TASK_GROUP
uclamp_update_root_tg(void)1779 static void uclamp_update_root_tg(void)
1780 {
1781 struct task_group *tg = &root_task_group;
1782
1783 uclamp_se_set(&tg->uclamp_req[UCLAMP_MIN],
1784 sysctl_sched_uclamp_util_min, false);
1785 uclamp_se_set(&tg->uclamp_req[UCLAMP_MAX],
1786 sysctl_sched_uclamp_util_max, false);
1787
1788 rcu_read_lock();
1789 cpu_util_update_eff(&root_task_group.css);
1790 rcu_read_unlock();
1791 }
1792 #else
uclamp_update_root_tg(void)1793 static void uclamp_update_root_tg(void) { }
1794 #endif
1795
uclamp_sync_util_min_rt_default(void)1796 static void uclamp_sync_util_min_rt_default(void)
1797 {
1798 struct task_struct *g, *p;
1799
1800 /*
1801 * copy_process() sysctl_uclamp
1802 * uclamp_min_rt = X;
1803 * write_lock(&tasklist_lock) read_lock(&tasklist_lock)
1804 * // link thread smp_mb__after_spinlock()
1805 * write_unlock(&tasklist_lock) read_unlock(&tasklist_lock);
1806 * sched_post_fork() for_each_process_thread()
1807 * __uclamp_sync_rt() __uclamp_sync_rt()
1808 *
1809 * Ensures that either sched_post_fork() will observe the new
1810 * uclamp_min_rt or for_each_process_thread() will observe the new
1811 * task.
1812 */
1813 read_lock(&tasklist_lock);
1814 smp_mb__after_spinlock();
1815 read_unlock(&tasklist_lock);
1816
1817 rcu_read_lock();
1818 for_each_process_thread(g, p)
1819 uclamp_update_util_min_rt_default(p);
1820 rcu_read_unlock();
1821 }
1822
sysctl_sched_uclamp_handler(struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)1823 static int sysctl_sched_uclamp_handler(struct ctl_table *table, int write,
1824 void *buffer, size_t *lenp, loff_t *ppos)
1825 {
1826 bool update_root_tg = false;
1827 int old_min, old_max, old_min_rt;
1828 int result;
1829
1830 guard(mutex)(&uclamp_mutex);
1831
1832 old_min = sysctl_sched_uclamp_util_min;
1833 old_max = sysctl_sched_uclamp_util_max;
1834 old_min_rt = sysctl_sched_uclamp_util_min_rt_default;
1835
1836 result = proc_dointvec(table, write, buffer, lenp, ppos);
1837 if (result)
1838 goto undo;
1839 if (!write)
1840 return 0;
1841
1842 if (sysctl_sched_uclamp_util_min > sysctl_sched_uclamp_util_max ||
1843 sysctl_sched_uclamp_util_max > SCHED_CAPACITY_SCALE ||
1844 sysctl_sched_uclamp_util_min_rt_default > SCHED_CAPACITY_SCALE) {
1845
1846 result = -EINVAL;
1847 goto undo;
1848 }
1849
1850 if (old_min != sysctl_sched_uclamp_util_min) {
1851 uclamp_se_set(&uclamp_default[UCLAMP_MIN],
1852 sysctl_sched_uclamp_util_min, false);
1853 update_root_tg = true;
1854 }
1855 if (old_max != sysctl_sched_uclamp_util_max) {
1856 uclamp_se_set(&uclamp_default[UCLAMP_MAX],
1857 sysctl_sched_uclamp_util_max, false);
1858 update_root_tg = true;
1859 }
1860
1861 if (update_root_tg) {
1862 static_branch_enable(&sched_uclamp_used);
1863 uclamp_update_root_tg();
1864 }
1865
1866 if (old_min_rt != sysctl_sched_uclamp_util_min_rt_default) {
1867 static_branch_enable(&sched_uclamp_used);
1868 uclamp_sync_util_min_rt_default();
1869 }
1870
1871 /*
1872 * We update all RUNNABLE tasks only when task groups are in use.
1873 * Otherwise, keep it simple and do just a lazy update at each next
1874 * task enqueue time.
1875 */
1876 return 0;
1877
1878 undo:
1879 sysctl_sched_uclamp_util_min = old_min;
1880 sysctl_sched_uclamp_util_max = old_max;
1881 sysctl_sched_uclamp_util_min_rt_default = old_min_rt;
1882 return result;
1883 }
1884 #endif
1885 #endif
1886
uclamp_validate(struct task_struct * p,const struct sched_attr * attr)1887 static int uclamp_validate(struct task_struct *p,
1888 const struct sched_attr *attr)
1889 {
1890 int util_min = p->uclamp_req[UCLAMP_MIN].value;
1891 int util_max = p->uclamp_req[UCLAMP_MAX].value;
1892
1893 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN) {
1894 util_min = attr->sched_util_min;
1895
1896 if (util_min + 1 > SCHED_CAPACITY_SCALE + 1)
1897 return -EINVAL;
1898 }
1899
1900 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX) {
1901 util_max = attr->sched_util_max;
1902
1903 if (util_max + 1 > SCHED_CAPACITY_SCALE + 1)
1904 return -EINVAL;
1905 }
1906
1907 if (util_min != -1 && util_max != -1 && util_min > util_max)
1908 return -EINVAL;
1909
1910 /*
1911 * We have valid uclamp attributes; make sure uclamp is enabled.
1912 *
1913 * We need to do that here, because enabling static branches is a
1914 * blocking operation which obviously cannot be done while holding
1915 * scheduler locks.
1916 */
1917 static_branch_enable(&sched_uclamp_used);
1918
1919 return 0;
1920 }
1921
uclamp_reset(const struct sched_attr * attr,enum uclamp_id clamp_id,struct uclamp_se * uc_se)1922 static bool uclamp_reset(const struct sched_attr *attr,
1923 enum uclamp_id clamp_id,
1924 struct uclamp_se *uc_se)
1925 {
1926 /* Reset on sched class change for a non user-defined clamp value. */
1927 if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)) &&
1928 !uc_se->user_defined)
1929 return true;
1930
1931 /* Reset on sched_util_{min,max} == -1. */
1932 if (clamp_id == UCLAMP_MIN &&
1933 attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN &&
1934 attr->sched_util_min == -1) {
1935 return true;
1936 }
1937
1938 if (clamp_id == UCLAMP_MAX &&
1939 attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX &&
1940 attr->sched_util_max == -1) {
1941 return true;
1942 }
1943
1944 return false;
1945 }
1946
__setscheduler_uclamp(struct task_struct * p,const struct sched_attr * attr)1947 static void __setscheduler_uclamp(struct task_struct *p,
1948 const struct sched_attr *attr)
1949 {
1950 enum uclamp_id clamp_id;
1951
1952 for_each_clamp_id(clamp_id) {
1953 struct uclamp_se *uc_se = &p->uclamp_req[clamp_id];
1954 unsigned int value;
1955
1956 if (!uclamp_reset(attr, clamp_id, uc_se))
1957 continue;
1958
1959 /*
1960 * RT by default have a 100% boost value that could be modified
1961 * at runtime.
1962 */
1963 if (unlikely(rt_task(p) && clamp_id == UCLAMP_MIN))
1964 value = sysctl_sched_uclamp_util_min_rt_default;
1965 else
1966 value = uclamp_none(clamp_id);
1967
1968 uclamp_se_set(uc_se, value, false);
1969
1970 }
1971
1972 if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)))
1973 return;
1974
1975 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN &&
1976 attr->sched_util_min != -1) {
1977 uclamp_se_set(&p->uclamp_req[UCLAMP_MIN],
1978 attr->sched_util_min, true);
1979 }
1980
1981 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX &&
1982 attr->sched_util_max != -1) {
1983 uclamp_se_set(&p->uclamp_req[UCLAMP_MAX],
1984 attr->sched_util_max, true);
1985 }
1986 }
1987
uclamp_fork(struct task_struct * p)1988 static void uclamp_fork(struct task_struct *p)
1989 {
1990 enum uclamp_id clamp_id;
1991
1992 /*
1993 * We don't need to hold task_rq_lock() when updating p->uclamp_* here
1994 * as the task is still at its early fork stages.
1995 */
1996 for_each_clamp_id(clamp_id)
1997 p->uclamp[clamp_id].active = false;
1998
1999 if (likely(!p->sched_reset_on_fork))
2000 return;
2001
2002 for_each_clamp_id(clamp_id) {
2003 uclamp_se_set(&p->uclamp_req[clamp_id],
2004 uclamp_none(clamp_id), false);
2005 }
2006 }
2007
uclamp_post_fork(struct task_struct * p)2008 static void uclamp_post_fork(struct task_struct *p)
2009 {
2010 uclamp_update_util_min_rt_default(p);
2011 }
2012
init_uclamp_rq(struct rq * rq)2013 static void __init init_uclamp_rq(struct rq *rq)
2014 {
2015 enum uclamp_id clamp_id;
2016 struct uclamp_rq *uc_rq = rq->uclamp;
2017
2018 for_each_clamp_id(clamp_id) {
2019 uc_rq[clamp_id] = (struct uclamp_rq) {
2020 .value = uclamp_none(clamp_id)
2021 };
2022 }
2023
2024 rq->uclamp_flags = UCLAMP_FLAG_IDLE;
2025 }
2026
init_uclamp(void)2027 static void __init init_uclamp(void)
2028 {
2029 struct uclamp_se uc_max = {};
2030 enum uclamp_id clamp_id;
2031 int cpu;
2032
2033 for_each_possible_cpu(cpu)
2034 init_uclamp_rq(cpu_rq(cpu));
2035
2036 for_each_clamp_id(clamp_id) {
2037 uclamp_se_set(&init_task.uclamp_req[clamp_id],
2038 uclamp_none(clamp_id), false);
2039 }
2040
2041 /* System defaults allow max clamp values for both indexes */
2042 uclamp_se_set(&uc_max, uclamp_none(UCLAMP_MAX), false);
2043 for_each_clamp_id(clamp_id) {
2044 uclamp_default[clamp_id] = uc_max;
2045 #ifdef CONFIG_UCLAMP_TASK_GROUP
2046 root_task_group.uclamp_req[clamp_id] = uc_max;
2047 root_task_group.uclamp[clamp_id] = uc_max;
2048 #endif
2049 }
2050 }
2051
2052 #else /* CONFIG_UCLAMP_TASK */
uclamp_rq_inc(struct rq * rq,struct task_struct * p)2053 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p) { }
uclamp_rq_dec(struct rq * rq,struct task_struct * p)2054 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p) { }
uclamp_validate(struct task_struct * p,const struct sched_attr * attr)2055 static inline int uclamp_validate(struct task_struct *p,
2056 const struct sched_attr *attr)
2057 {
2058 return -EOPNOTSUPP;
2059 }
__setscheduler_uclamp(struct task_struct * p,const struct sched_attr * attr)2060 static void __setscheduler_uclamp(struct task_struct *p,
2061 const struct sched_attr *attr) { }
uclamp_fork(struct task_struct * p)2062 static inline void uclamp_fork(struct task_struct *p) { }
uclamp_post_fork(struct task_struct * p)2063 static inline void uclamp_post_fork(struct task_struct *p) { }
init_uclamp(void)2064 static inline void init_uclamp(void) { }
2065 #endif /* CONFIG_UCLAMP_TASK */
2066
sched_task_on_rq(struct task_struct * p)2067 bool sched_task_on_rq(struct task_struct *p)
2068 {
2069 return task_on_rq_queued(p);
2070 }
2071
get_wchan(struct task_struct * p)2072 unsigned long get_wchan(struct task_struct *p)
2073 {
2074 unsigned long ip = 0;
2075 unsigned int state;
2076
2077 if (!p || p == current)
2078 return 0;
2079
2080 /* Only get wchan if task is blocked and we can keep it that way. */
2081 raw_spin_lock_irq(&p->pi_lock);
2082 state = READ_ONCE(p->__state);
2083 smp_rmb(); /* see try_to_wake_up() */
2084 if (state != TASK_RUNNING && state != TASK_WAKING && !p->on_rq)
2085 ip = __get_wchan(p);
2086 raw_spin_unlock_irq(&p->pi_lock);
2087
2088 return ip;
2089 }
2090
enqueue_task(struct rq * rq,struct task_struct * p,int flags)2091 static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
2092 {
2093 if (!(flags & ENQUEUE_NOCLOCK))
2094 update_rq_clock(rq);
2095
2096 if (!(flags & ENQUEUE_RESTORE)) {
2097 sched_info_enqueue(rq, p);
2098 psi_enqueue(p, (flags & ENQUEUE_WAKEUP) && !(flags & ENQUEUE_MIGRATED));
2099 }
2100
2101 uclamp_rq_inc(rq, p);
2102 p->sched_class->enqueue_task(rq, p, flags);
2103
2104 if (sched_core_enabled(rq))
2105 sched_core_enqueue(rq, p);
2106 }
2107
dequeue_task(struct rq * rq,struct task_struct * p,int flags)2108 static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
2109 {
2110 if (sched_core_enabled(rq))
2111 sched_core_dequeue(rq, p, flags);
2112
2113 if (!(flags & DEQUEUE_NOCLOCK))
2114 update_rq_clock(rq);
2115
2116 if (!(flags & DEQUEUE_SAVE)) {
2117 sched_info_dequeue(rq, p);
2118 psi_dequeue(p, flags & DEQUEUE_SLEEP);
2119 }
2120
2121 uclamp_rq_dec(rq, p);
2122 p->sched_class->dequeue_task(rq, p, flags);
2123 }
2124
activate_task(struct rq * rq,struct task_struct * p,int flags)2125 void activate_task(struct rq *rq, struct task_struct *p, int flags)
2126 {
2127 if (task_on_rq_migrating(p))
2128 flags |= ENQUEUE_MIGRATED;
2129 if (flags & ENQUEUE_MIGRATED)
2130 sched_mm_cid_migrate_to(rq, p);
2131
2132 enqueue_task(rq, p, flags);
2133
2134 p->on_rq = TASK_ON_RQ_QUEUED;
2135 }
2136
deactivate_task(struct rq * rq,struct task_struct * p,int flags)2137 void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
2138 {
2139 p->on_rq = (flags & DEQUEUE_SLEEP) ? 0 : TASK_ON_RQ_MIGRATING;
2140
2141 dequeue_task(rq, p, flags);
2142 }
2143
__normal_prio(int policy,int rt_prio,int nice)2144 static inline int __normal_prio(int policy, int rt_prio, int nice)
2145 {
2146 int prio;
2147
2148 if (dl_policy(policy))
2149 prio = MAX_DL_PRIO - 1;
2150 else if (rt_policy(policy))
2151 prio = MAX_RT_PRIO - 1 - rt_prio;
2152 else
2153 prio = NICE_TO_PRIO(nice);
2154
2155 return prio;
2156 }
2157
2158 /*
2159 * Calculate the expected normal priority: i.e. priority
2160 * without taking RT-inheritance into account. Might be
2161 * boosted by interactivity modifiers. Changes upon fork,
2162 * setprio syscalls, and whenever the interactivity
2163 * estimator recalculates.
2164 */
normal_prio(struct task_struct * p)2165 static inline int normal_prio(struct task_struct *p)
2166 {
2167 return __normal_prio(p->policy, p->rt_priority, PRIO_TO_NICE(p->static_prio));
2168 }
2169
2170 /*
2171 * Calculate the current priority, i.e. the priority
2172 * taken into account by the scheduler. This value might
2173 * be boosted by RT tasks, or might be boosted by
2174 * interactivity modifiers. Will be RT if the task got
2175 * RT-boosted. If not then it returns p->normal_prio.
2176 */
effective_prio(struct task_struct * p)2177 static int effective_prio(struct task_struct *p)
2178 {
2179 p->normal_prio = normal_prio(p);
2180 /*
2181 * If we are RT tasks or we were boosted to RT priority,
2182 * keep the priority unchanged. Otherwise, update priority
2183 * to the normal priority:
2184 */
2185 if (!rt_prio(p->prio))
2186 return p->normal_prio;
2187 return p->prio;
2188 }
2189
2190 /**
2191 * task_curr - is this task currently executing on a CPU?
2192 * @p: the task in question.
2193 *
2194 * Return: 1 if the task is currently executing. 0 otherwise.
2195 */
task_curr(const struct task_struct * p)2196 inline int task_curr(const struct task_struct *p)
2197 {
2198 return cpu_curr(task_cpu(p)) == p;
2199 }
2200
2201 /*
2202 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
2203 * use the balance_callback list if you want balancing.
2204 *
2205 * this means any call to check_class_changed() must be followed by a call to
2206 * balance_callback().
2207 */
check_class_changed(struct rq * rq,struct task_struct * p,const struct sched_class * prev_class,int oldprio)2208 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
2209 const struct sched_class *prev_class,
2210 int oldprio)
2211 {
2212 if (prev_class != p->sched_class) {
2213 if (prev_class->switched_from)
2214 prev_class->switched_from(rq, p);
2215
2216 p->sched_class->switched_to(rq, p);
2217 } else if (oldprio != p->prio || dl_task(p))
2218 p->sched_class->prio_changed(rq, p, oldprio);
2219 }
2220
check_preempt_curr(struct rq * rq,struct task_struct * p,int flags)2221 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
2222 {
2223 if (p->sched_class == rq->curr->sched_class)
2224 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
2225 else if (sched_class_above(p->sched_class, rq->curr->sched_class))
2226 resched_curr(rq);
2227
2228 /*
2229 * A queue event has occurred, and we're going to schedule. In
2230 * this case, we can save a useless back to back clock update.
2231 */
2232 if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
2233 rq_clock_skip_update(rq);
2234 }
2235
2236 static __always_inline
__task_state_match(struct task_struct * p,unsigned int state)2237 int __task_state_match(struct task_struct *p, unsigned int state)
2238 {
2239 if (READ_ONCE(p->__state) & state)
2240 return 1;
2241
2242 #ifdef CONFIG_PREEMPT_RT
2243 if (READ_ONCE(p->saved_state) & state)
2244 return -1;
2245 #endif
2246 return 0;
2247 }
2248
2249 static __always_inline
task_state_match(struct task_struct * p,unsigned int state)2250 int task_state_match(struct task_struct *p, unsigned int state)
2251 {
2252 #ifdef CONFIG_PREEMPT_RT
2253 int match;
2254
2255 /*
2256 * Serialize against current_save_and_set_rtlock_wait_state() and
2257 * current_restore_rtlock_saved_state().
2258 */
2259 raw_spin_lock_irq(&p->pi_lock);
2260 match = __task_state_match(p, state);
2261 raw_spin_unlock_irq(&p->pi_lock);
2262
2263 return match;
2264 #else
2265 return __task_state_match(p, state);
2266 #endif
2267 }
2268
2269 /*
2270 * wait_task_inactive - wait for a thread to unschedule.
2271 *
2272 * Wait for the thread to block in any of the states set in @match_state.
2273 * If it changes, i.e. @p might have woken up, then return zero. When we
2274 * succeed in waiting for @p to be off its CPU, we return a positive number
2275 * (its total switch count). If a second call a short while later returns the
2276 * same number, the caller can be sure that @p has remained unscheduled the
2277 * whole time.
2278 *
2279 * The caller must ensure that the task *will* unschedule sometime soon,
2280 * else this function might spin for a *long* time. This function can't
2281 * be called with interrupts off, or it may introduce deadlock with
2282 * smp_call_function() if an IPI is sent by the same process we are
2283 * waiting to become inactive.
2284 */
wait_task_inactive(struct task_struct * p,unsigned int match_state)2285 unsigned long wait_task_inactive(struct task_struct *p, unsigned int match_state)
2286 {
2287 int running, queued, match;
2288 struct rq_flags rf;
2289 unsigned long ncsw;
2290 struct rq *rq;
2291
2292 for (;;) {
2293 /*
2294 * We do the initial early heuristics without holding
2295 * any task-queue locks at all. We'll only try to get
2296 * the runqueue lock when things look like they will
2297 * work out!
2298 */
2299 rq = task_rq(p);
2300
2301 /*
2302 * If the task is actively running on another CPU
2303 * still, just relax and busy-wait without holding
2304 * any locks.
2305 *
2306 * NOTE! Since we don't hold any locks, it's not
2307 * even sure that "rq" stays as the right runqueue!
2308 * But we don't care, since "task_on_cpu()" will
2309 * return false if the runqueue has changed and p
2310 * is actually now running somewhere else!
2311 */
2312 while (task_on_cpu(rq, p)) {
2313 if (!task_state_match(p, match_state))
2314 return 0;
2315 cpu_relax();
2316 }
2317
2318 /*
2319 * Ok, time to look more closely! We need the rq
2320 * lock now, to be *sure*. If we're wrong, we'll
2321 * just go back and repeat.
2322 */
2323 rq = task_rq_lock(p, &rf);
2324 trace_sched_wait_task(p);
2325 running = task_on_cpu(rq, p);
2326 queued = task_on_rq_queued(p);
2327 ncsw = 0;
2328 if ((match = __task_state_match(p, match_state))) {
2329 /*
2330 * When matching on p->saved_state, consider this task
2331 * still queued so it will wait.
2332 */
2333 if (match < 0)
2334 queued = 1;
2335 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
2336 }
2337 task_rq_unlock(rq, p, &rf);
2338
2339 /*
2340 * If it changed from the expected state, bail out now.
2341 */
2342 if (unlikely(!ncsw))
2343 break;
2344
2345 /*
2346 * Was it really running after all now that we
2347 * checked with the proper locks actually held?
2348 *
2349 * Oops. Go back and try again..
2350 */
2351 if (unlikely(running)) {
2352 cpu_relax();
2353 continue;
2354 }
2355
2356 /*
2357 * It's not enough that it's not actively running,
2358 * it must be off the runqueue _entirely_, and not
2359 * preempted!
2360 *
2361 * So if it was still runnable (but just not actively
2362 * running right now), it's preempted, and we should
2363 * yield - it could be a while.
2364 */
2365 if (unlikely(queued)) {
2366 ktime_t to = NSEC_PER_SEC / HZ;
2367
2368 set_current_state(TASK_UNINTERRUPTIBLE);
2369 schedule_hrtimeout(&to, HRTIMER_MODE_REL_HARD);
2370 continue;
2371 }
2372
2373 /*
2374 * Ahh, all good. It wasn't running, and it wasn't
2375 * runnable, which means that it will never become
2376 * running in the future either. We're all done!
2377 */
2378 break;
2379 }
2380
2381 return ncsw;
2382 }
2383
2384 #ifdef CONFIG_SMP
2385
2386 static void
2387 __do_set_cpus_allowed(struct task_struct *p, struct affinity_context *ctx);
2388
2389 static int __set_cpus_allowed_ptr(struct task_struct *p,
2390 struct affinity_context *ctx);
2391
migrate_disable_switch(struct rq * rq,struct task_struct * p)2392 static void migrate_disable_switch(struct rq *rq, struct task_struct *p)
2393 {
2394 struct affinity_context ac = {
2395 .new_mask = cpumask_of(rq->cpu),
2396 .flags = SCA_MIGRATE_DISABLE,
2397 };
2398
2399 if (likely(!p->migration_disabled))
2400 return;
2401
2402 if (p->cpus_ptr != &p->cpus_mask)
2403 return;
2404
2405 /*
2406 * Violates locking rules! see comment in __do_set_cpus_allowed().
2407 */
2408 __do_set_cpus_allowed(p, &ac);
2409 }
2410
migrate_disable(void)2411 void migrate_disable(void)
2412 {
2413 struct task_struct *p = current;
2414
2415 if (p->migration_disabled) {
2416 p->migration_disabled++;
2417 return;
2418 }
2419
2420 preempt_disable();
2421 this_rq()->nr_pinned++;
2422 p->migration_disabled = 1;
2423 preempt_enable();
2424 }
2425 EXPORT_SYMBOL_GPL(migrate_disable);
2426
migrate_enable(void)2427 void migrate_enable(void)
2428 {
2429 struct task_struct *p = current;
2430 struct affinity_context ac = {
2431 .new_mask = &p->cpus_mask,
2432 .flags = SCA_MIGRATE_ENABLE,
2433 };
2434
2435 if (p->migration_disabled > 1) {
2436 p->migration_disabled--;
2437 return;
2438 }
2439
2440 if (WARN_ON_ONCE(!p->migration_disabled))
2441 return;
2442
2443 /*
2444 * Ensure stop_task runs either before or after this, and that
2445 * __set_cpus_allowed_ptr(SCA_MIGRATE_ENABLE) doesn't schedule().
2446 */
2447 preempt_disable();
2448 if (p->cpus_ptr != &p->cpus_mask)
2449 __set_cpus_allowed_ptr(p, &ac);
2450 /*
2451 * Mustn't clear migration_disabled() until cpus_ptr points back at the
2452 * regular cpus_mask, otherwise things that race (eg.
2453 * select_fallback_rq) get confused.
2454 */
2455 barrier();
2456 p->migration_disabled = 0;
2457 this_rq()->nr_pinned--;
2458 preempt_enable();
2459 }
2460 EXPORT_SYMBOL_GPL(migrate_enable);
2461
rq_has_pinned_tasks(struct rq * rq)2462 static inline bool rq_has_pinned_tasks(struct rq *rq)
2463 {
2464 return rq->nr_pinned;
2465 }
2466
2467 /*
2468 * Per-CPU kthreads are allowed to run on !active && online CPUs, see
2469 * __set_cpus_allowed_ptr() and select_fallback_rq().
2470 */
is_cpu_allowed(struct task_struct * p,int cpu)2471 static inline bool is_cpu_allowed(struct task_struct *p, int cpu)
2472 {
2473 /* When not in the task's cpumask, no point in looking further. */
2474 if (!cpumask_test_cpu(cpu, p->cpus_ptr))
2475 return false;
2476
2477 /* migrate_disabled() must be allowed to finish. */
2478 if (is_migration_disabled(p))
2479 return cpu_online(cpu);
2480
2481 /* Non kernel threads are not allowed during either online or offline. */
2482 if (!(p->flags & PF_KTHREAD))
2483 return cpu_active(cpu) && task_cpu_possible(cpu, p);
2484
2485 /* KTHREAD_IS_PER_CPU is always allowed. */
2486 if (kthread_is_per_cpu(p))
2487 return cpu_online(cpu);
2488
2489 /* Regular kernel threads don't get to stay during offline. */
2490 if (cpu_dying(cpu))
2491 return false;
2492
2493 /* But are allowed during online. */
2494 return cpu_online(cpu);
2495 }
2496
2497 /*
2498 * This is how migration works:
2499 *
2500 * 1) we invoke migration_cpu_stop() on the target CPU using
2501 * stop_one_cpu().
2502 * 2) stopper starts to run (implicitly forcing the migrated thread
2503 * off the CPU)
2504 * 3) it checks whether the migrated task is still in the wrong runqueue.
2505 * 4) if it's in the wrong runqueue then the migration thread removes
2506 * it and puts it into the right queue.
2507 * 5) stopper completes and stop_one_cpu() returns and the migration
2508 * is done.
2509 */
2510
2511 /*
2512 * move_queued_task - move a queued task to new rq.
2513 *
2514 * Returns (locked) new rq. Old rq's lock is released.
2515 */
move_queued_task(struct rq * rq,struct rq_flags * rf,struct task_struct * p,int new_cpu)2516 static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf,
2517 struct task_struct *p, int new_cpu)
2518 {
2519 lockdep_assert_rq_held(rq);
2520
2521 deactivate_task(rq, p, DEQUEUE_NOCLOCK);
2522 set_task_cpu(p, new_cpu);
2523 rq_unlock(rq, rf);
2524
2525 rq = cpu_rq(new_cpu);
2526
2527 rq_lock(rq, rf);
2528 WARN_ON_ONCE(task_cpu(p) != new_cpu);
2529 activate_task(rq, p, 0);
2530 check_preempt_curr(rq, p, 0);
2531
2532 return rq;
2533 }
2534
2535 struct migration_arg {
2536 struct task_struct *task;
2537 int dest_cpu;
2538 struct set_affinity_pending *pending;
2539 };
2540
2541 /*
2542 * @refs: number of wait_for_completion()
2543 * @stop_pending: is @stop_work in use
2544 */
2545 struct set_affinity_pending {
2546 refcount_t refs;
2547 unsigned int stop_pending;
2548 struct completion done;
2549 struct cpu_stop_work stop_work;
2550 struct migration_arg arg;
2551 };
2552
2553 /*
2554 * Move (not current) task off this CPU, onto the destination CPU. We're doing
2555 * this because either it can't run here any more (set_cpus_allowed()
2556 * away from this CPU, or CPU going down), or because we're
2557 * attempting to rebalance this task on exec (sched_exec).
2558 *
2559 * So we race with normal scheduler movements, but that's OK, as long
2560 * as the task is no longer on this CPU.
2561 */
__migrate_task(struct rq * rq,struct rq_flags * rf,struct task_struct * p,int dest_cpu)2562 static struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf,
2563 struct task_struct *p, int dest_cpu)
2564 {
2565 /* Affinity changed (again). */
2566 if (!is_cpu_allowed(p, dest_cpu))
2567 return rq;
2568
2569 rq = move_queued_task(rq, rf, p, dest_cpu);
2570
2571 return rq;
2572 }
2573
2574 /*
2575 * migration_cpu_stop - this will be executed by a highprio stopper thread
2576 * and performs thread migration by bumping thread off CPU then
2577 * 'pushing' onto another runqueue.
2578 */
migration_cpu_stop(void * data)2579 static int migration_cpu_stop(void *data)
2580 {
2581 struct migration_arg *arg = data;
2582 struct set_affinity_pending *pending = arg->pending;
2583 struct task_struct *p = arg->task;
2584 struct rq *rq = this_rq();
2585 bool complete = false;
2586 struct rq_flags rf;
2587
2588 /*
2589 * The original target CPU might have gone down and we might
2590 * be on another CPU but it doesn't matter.
2591 */
2592 local_irq_save(rf.flags);
2593 /*
2594 * We need to explicitly wake pending tasks before running
2595 * __migrate_task() such that we will not miss enforcing cpus_ptr
2596 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
2597 */
2598 flush_smp_call_function_queue();
2599
2600 raw_spin_lock(&p->pi_lock);
2601 rq_lock(rq, &rf);
2602
2603 /*
2604 * If we were passed a pending, then ->stop_pending was set, thus
2605 * p->migration_pending must have remained stable.
2606 */
2607 WARN_ON_ONCE(pending && pending != p->migration_pending);
2608
2609 /*
2610 * If task_rq(p) != rq, it cannot be migrated here, because we're
2611 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
2612 * we're holding p->pi_lock.
2613 */
2614 if (task_rq(p) == rq) {
2615 if (is_migration_disabled(p))
2616 goto out;
2617
2618 if (pending) {
2619 p->migration_pending = NULL;
2620 complete = true;
2621
2622 if (cpumask_test_cpu(task_cpu(p), &p->cpus_mask))
2623 goto out;
2624 }
2625
2626 if (task_on_rq_queued(p)) {
2627 update_rq_clock(rq);
2628 rq = __migrate_task(rq, &rf, p, arg->dest_cpu);
2629 } else {
2630 p->wake_cpu = arg->dest_cpu;
2631 }
2632
2633 /*
2634 * XXX __migrate_task() can fail, at which point we might end
2635 * up running on a dodgy CPU, AFAICT this can only happen
2636 * during CPU hotplug, at which point we'll get pushed out
2637 * anyway, so it's probably not a big deal.
2638 */
2639
2640 } else if (pending) {
2641 /*
2642 * This happens when we get migrated between migrate_enable()'s
2643 * preempt_enable() and scheduling the stopper task. At that
2644 * point we're a regular task again and not current anymore.
2645 *
2646 * A !PREEMPT kernel has a giant hole here, which makes it far
2647 * more likely.
2648 */
2649
2650 /*
2651 * The task moved before the stopper got to run. We're holding
2652 * ->pi_lock, so the allowed mask is stable - if it got
2653 * somewhere allowed, we're done.
2654 */
2655 if (cpumask_test_cpu(task_cpu(p), p->cpus_ptr)) {
2656 p->migration_pending = NULL;
2657 complete = true;
2658 goto out;
2659 }
2660
2661 /*
2662 * When migrate_enable() hits a rq mis-match we can't reliably
2663 * determine is_migration_disabled() and so have to chase after
2664 * it.
2665 */
2666 WARN_ON_ONCE(!pending->stop_pending);
2667 preempt_disable();
2668 task_rq_unlock(rq, p, &rf);
2669 stop_one_cpu_nowait(task_cpu(p), migration_cpu_stop,
2670 &pending->arg, &pending->stop_work);
2671 preempt_enable();
2672 return 0;
2673 }
2674 out:
2675 if (pending)
2676 pending->stop_pending = false;
2677 task_rq_unlock(rq, p, &rf);
2678
2679 if (complete)
2680 complete_all(&pending->done);
2681
2682 return 0;
2683 }
2684
push_cpu_stop(void * arg)2685 int push_cpu_stop(void *arg)
2686 {
2687 struct rq *lowest_rq = NULL, *rq = this_rq();
2688 struct task_struct *p = arg;
2689
2690 raw_spin_lock_irq(&p->pi_lock);
2691 raw_spin_rq_lock(rq);
2692
2693 if (task_rq(p) != rq)
2694 goto out_unlock;
2695
2696 if (is_migration_disabled(p)) {
2697 p->migration_flags |= MDF_PUSH;
2698 goto out_unlock;
2699 }
2700
2701 p->migration_flags &= ~MDF_PUSH;
2702
2703 if (p->sched_class->find_lock_rq)
2704 lowest_rq = p->sched_class->find_lock_rq(p, rq);
2705
2706 if (!lowest_rq)
2707 goto out_unlock;
2708
2709 // XXX validate p is still the highest prio task
2710 if (task_rq(p) == rq) {
2711 deactivate_task(rq, p, 0);
2712 set_task_cpu(p, lowest_rq->cpu);
2713 activate_task(lowest_rq, p, 0);
2714 resched_curr(lowest_rq);
2715 }
2716
2717 double_unlock_balance(rq, lowest_rq);
2718
2719 out_unlock:
2720 rq->push_busy = false;
2721 raw_spin_rq_unlock(rq);
2722 raw_spin_unlock_irq(&p->pi_lock);
2723
2724 put_task_struct(p);
2725 return 0;
2726 }
2727
2728 /*
2729 * sched_class::set_cpus_allowed must do the below, but is not required to
2730 * actually call this function.
2731 */
set_cpus_allowed_common(struct task_struct * p,struct affinity_context * ctx)2732 void set_cpus_allowed_common(struct task_struct *p, struct affinity_context *ctx)
2733 {
2734 if (ctx->flags & (SCA_MIGRATE_ENABLE | SCA_MIGRATE_DISABLE)) {
2735 p->cpus_ptr = ctx->new_mask;
2736 return;
2737 }
2738
2739 cpumask_copy(&p->cpus_mask, ctx->new_mask);
2740 p->nr_cpus_allowed = cpumask_weight(ctx->new_mask);
2741
2742 /*
2743 * Swap in a new user_cpus_ptr if SCA_USER flag set
2744 */
2745 if (ctx->flags & SCA_USER)
2746 swap(p->user_cpus_ptr, ctx->user_mask);
2747 }
2748
2749 static void
__do_set_cpus_allowed(struct task_struct * p,struct affinity_context * ctx)2750 __do_set_cpus_allowed(struct task_struct *p, struct affinity_context *ctx)
2751 {
2752 struct rq *rq = task_rq(p);
2753 bool queued, running;
2754
2755 /*
2756 * This here violates the locking rules for affinity, since we're only
2757 * supposed to change these variables while holding both rq->lock and
2758 * p->pi_lock.
2759 *
2760 * HOWEVER, it magically works, because ttwu() is the only code that
2761 * accesses these variables under p->pi_lock and only does so after
2762 * smp_cond_load_acquire(&p->on_cpu, !VAL), and we're in __schedule()
2763 * before finish_task().
2764 *
2765 * XXX do further audits, this smells like something putrid.
2766 */
2767 if (ctx->flags & SCA_MIGRATE_DISABLE)
2768 SCHED_WARN_ON(!p->on_cpu);
2769 else
2770 lockdep_assert_held(&p->pi_lock);
2771
2772 queued = task_on_rq_queued(p);
2773 running = task_current(rq, p);
2774
2775 if (queued) {
2776 /*
2777 * Because __kthread_bind() calls this on blocked tasks without
2778 * holding rq->lock.
2779 */
2780 lockdep_assert_rq_held(rq);
2781 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
2782 }
2783 if (running)
2784 put_prev_task(rq, p);
2785
2786 p->sched_class->set_cpus_allowed(p, ctx);
2787
2788 if (queued)
2789 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
2790 if (running)
2791 set_next_task(rq, p);
2792 }
2793
2794 /*
2795 * Used for kthread_bind() and select_fallback_rq(), in both cases the user
2796 * affinity (if any) should be destroyed too.
2797 */
do_set_cpus_allowed(struct task_struct * p,const struct cpumask * new_mask)2798 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
2799 {
2800 struct affinity_context ac = {
2801 .new_mask = new_mask,
2802 .user_mask = NULL,
2803 .flags = SCA_USER, /* clear the user requested mask */
2804 };
2805 union cpumask_rcuhead {
2806 cpumask_t cpumask;
2807 struct rcu_head rcu;
2808 };
2809
2810 __do_set_cpus_allowed(p, &ac);
2811
2812 /*
2813 * Because this is called with p->pi_lock held, it is not possible
2814 * to use kfree() here (when PREEMPT_RT=y), therefore punt to using
2815 * kfree_rcu().
2816 */
2817 kfree_rcu((union cpumask_rcuhead *)ac.user_mask, rcu);
2818 }
2819
alloc_user_cpus_ptr(int node)2820 static cpumask_t *alloc_user_cpus_ptr(int node)
2821 {
2822 /*
2823 * See do_set_cpus_allowed() above for the rcu_head usage.
2824 */
2825 int size = max_t(int, cpumask_size(), sizeof(struct rcu_head));
2826
2827 return kmalloc_node(size, GFP_KERNEL, node);
2828 }
2829
dup_user_cpus_ptr(struct task_struct * dst,struct task_struct * src,int node)2830 int dup_user_cpus_ptr(struct task_struct *dst, struct task_struct *src,
2831 int node)
2832 {
2833 cpumask_t *user_mask;
2834 unsigned long flags;
2835
2836 /*
2837 * Always clear dst->user_cpus_ptr first as their user_cpus_ptr's
2838 * may differ by now due to racing.
2839 */
2840 dst->user_cpus_ptr = NULL;
2841
2842 /*
2843 * This check is racy and losing the race is a valid situation.
2844 * It is not worth the extra overhead of taking the pi_lock on
2845 * every fork/clone.
2846 */
2847 if (data_race(!src->user_cpus_ptr))
2848 return 0;
2849
2850 user_mask = alloc_user_cpus_ptr(node);
2851 if (!user_mask)
2852 return -ENOMEM;
2853
2854 /*
2855 * Use pi_lock to protect content of user_cpus_ptr
2856 *
2857 * Though unlikely, user_cpus_ptr can be reset to NULL by a concurrent
2858 * do_set_cpus_allowed().
2859 */
2860 raw_spin_lock_irqsave(&src->pi_lock, flags);
2861 if (src->user_cpus_ptr) {
2862 swap(dst->user_cpus_ptr, user_mask);
2863 cpumask_copy(dst->user_cpus_ptr, src->user_cpus_ptr);
2864 }
2865 raw_spin_unlock_irqrestore(&src->pi_lock, flags);
2866
2867 if (unlikely(user_mask))
2868 kfree(user_mask);
2869
2870 return 0;
2871 }
2872
clear_user_cpus_ptr(struct task_struct * p)2873 static inline struct cpumask *clear_user_cpus_ptr(struct task_struct *p)
2874 {
2875 struct cpumask *user_mask = NULL;
2876
2877 swap(p->user_cpus_ptr, user_mask);
2878
2879 return user_mask;
2880 }
2881
release_user_cpus_ptr(struct task_struct * p)2882 void release_user_cpus_ptr(struct task_struct *p)
2883 {
2884 kfree(clear_user_cpus_ptr(p));
2885 }
2886
2887 /*
2888 * This function is wildly self concurrent; here be dragons.
2889 *
2890 *
2891 * When given a valid mask, __set_cpus_allowed_ptr() must block until the
2892 * designated task is enqueued on an allowed CPU. If that task is currently
2893 * running, we have to kick it out using the CPU stopper.
2894 *
2895 * Migrate-Disable comes along and tramples all over our nice sandcastle.
2896 * Consider:
2897 *
2898 * Initial conditions: P0->cpus_mask = [0, 1]
2899 *
2900 * P0@CPU0 P1
2901 *
2902 * migrate_disable();
2903 * <preempted>
2904 * set_cpus_allowed_ptr(P0, [1]);
2905 *
2906 * P1 *cannot* return from this set_cpus_allowed_ptr() call until P0 executes
2907 * its outermost migrate_enable() (i.e. it exits its Migrate-Disable region).
2908 * This means we need the following scheme:
2909 *
2910 * P0@CPU0 P1
2911 *
2912 * migrate_disable();
2913 * <preempted>
2914 * set_cpus_allowed_ptr(P0, [1]);
2915 * <blocks>
2916 * <resumes>
2917 * migrate_enable();
2918 * __set_cpus_allowed_ptr();
2919 * <wakes local stopper>
2920 * `--> <woken on migration completion>
2921 *
2922 * Now the fun stuff: there may be several P1-like tasks, i.e. multiple
2923 * concurrent set_cpus_allowed_ptr(P0, [*]) calls. CPU affinity changes of any
2924 * task p are serialized by p->pi_lock, which we can leverage: the one that
2925 * should come into effect at the end of the Migrate-Disable region is the last
2926 * one. This means we only need to track a single cpumask (i.e. p->cpus_mask),
2927 * but we still need to properly signal those waiting tasks at the appropriate
2928 * moment.
2929 *
2930 * This is implemented using struct set_affinity_pending. The first
2931 * __set_cpus_allowed_ptr() caller within a given Migrate-Disable region will
2932 * setup an instance of that struct and install it on the targeted task_struct.
2933 * Any and all further callers will reuse that instance. Those then wait for
2934 * a completion signaled at the tail of the CPU stopper callback (1), triggered
2935 * on the end of the Migrate-Disable region (i.e. outermost migrate_enable()).
2936 *
2937 *
2938 * (1) In the cases covered above. There is one more where the completion is
2939 * signaled within affine_move_task() itself: when a subsequent affinity request
2940 * occurs after the stopper bailed out due to the targeted task still being
2941 * Migrate-Disable. Consider:
2942 *
2943 * Initial conditions: P0->cpus_mask = [0, 1]
2944 *
2945 * CPU0 P1 P2
2946 * <P0>
2947 * migrate_disable();
2948 * <preempted>
2949 * set_cpus_allowed_ptr(P0, [1]);
2950 * <blocks>
2951 * <migration/0>
2952 * migration_cpu_stop()
2953 * is_migration_disabled()
2954 * <bails>
2955 * set_cpus_allowed_ptr(P0, [0, 1]);
2956 * <signal completion>
2957 * <awakes>
2958 *
2959 * Note that the above is safe vs a concurrent migrate_enable(), as any
2960 * pending affinity completion is preceded by an uninstallation of
2961 * p->migration_pending done with p->pi_lock held.
2962 */
affine_move_task(struct rq * rq,struct task_struct * p,struct rq_flags * rf,int dest_cpu,unsigned int flags)2963 static int affine_move_task(struct rq *rq, struct task_struct *p, struct rq_flags *rf,
2964 int dest_cpu, unsigned int flags)
2965 __releases(rq->lock)
2966 __releases(p->pi_lock)
2967 {
2968 struct set_affinity_pending my_pending = { }, *pending = NULL;
2969 bool stop_pending, complete = false;
2970
2971 /* Can the task run on the task's current CPU? If so, we're done */
2972 if (cpumask_test_cpu(task_cpu(p), &p->cpus_mask)) {
2973 struct task_struct *push_task = NULL;
2974
2975 if ((flags & SCA_MIGRATE_ENABLE) &&
2976 (p->migration_flags & MDF_PUSH) && !rq->push_busy) {
2977 rq->push_busy = true;
2978 push_task = get_task_struct(p);
2979 }
2980
2981 /*
2982 * If there are pending waiters, but no pending stop_work,
2983 * then complete now.
2984 */
2985 pending = p->migration_pending;
2986 if (pending && !pending->stop_pending) {
2987 p->migration_pending = NULL;
2988 complete = true;
2989 }
2990
2991 preempt_disable();
2992 task_rq_unlock(rq, p, rf);
2993 if (push_task) {
2994 stop_one_cpu_nowait(rq->cpu, push_cpu_stop,
2995 p, &rq->push_work);
2996 }
2997 preempt_enable();
2998
2999 if (complete)
3000 complete_all(&pending->done);
3001
3002 return 0;
3003 }
3004
3005 if (!(flags & SCA_MIGRATE_ENABLE)) {
3006 /* serialized by p->pi_lock */
3007 if (!p->migration_pending) {
3008 /* Install the request */
3009 refcount_set(&my_pending.refs, 1);
3010 init_completion(&my_pending.done);
3011 my_pending.arg = (struct migration_arg) {
3012 .task = p,
3013 .dest_cpu = dest_cpu,
3014 .pending = &my_pending,
3015 };
3016
3017 p->migration_pending = &my_pending;
3018 } else {
3019 pending = p->migration_pending;
3020 refcount_inc(&pending->refs);
3021 /*
3022 * Affinity has changed, but we've already installed a
3023 * pending. migration_cpu_stop() *must* see this, else
3024 * we risk a completion of the pending despite having a
3025 * task on a disallowed CPU.
3026 *
3027 * Serialized by p->pi_lock, so this is safe.
3028 */
3029 pending->arg.dest_cpu = dest_cpu;
3030 }
3031 }
3032 pending = p->migration_pending;
3033 /*
3034 * - !MIGRATE_ENABLE:
3035 * we'll have installed a pending if there wasn't one already.
3036 *
3037 * - MIGRATE_ENABLE:
3038 * we're here because the current CPU isn't matching anymore,
3039 * the only way that can happen is because of a concurrent
3040 * set_cpus_allowed_ptr() call, which should then still be
3041 * pending completion.
3042 *
3043 * Either way, we really should have a @pending here.
3044 */
3045 if (WARN_ON_ONCE(!pending)) {
3046 task_rq_unlock(rq, p, rf);
3047 return -EINVAL;
3048 }
3049
3050 if (task_on_cpu(rq, p) || READ_ONCE(p->__state) == TASK_WAKING) {
3051 /*
3052 * MIGRATE_ENABLE gets here because 'p == current', but for
3053 * anything else we cannot do is_migration_disabled(), punt
3054 * and have the stopper function handle it all race-free.
3055 */
3056 stop_pending = pending->stop_pending;
3057 if (!stop_pending)
3058 pending->stop_pending = true;
3059
3060 if (flags & SCA_MIGRATE_ENABLE)
3061 p->migration_flags &= ~MDF_PUSH;
3062
3063 preempt_disable();
3064 task_rq_unlock(rq, p, rf);
3065 if (!stop_pending) {
3066 stop_one_cpu_nowait(cpu_of(rq), migration_cpu_stop,
3067 &pending->arg, &pending->stop_work);
3068 }
3069 preempt_enable();
3070
3071 if (flags & SCA_MIGRATE_ENABLE)
3072 return 0;
3073 } else {
3074
3075 if (!is_migration_disabled(p)) {
3076 if (task_on_rq_queued(p))
3077 rq = move_queued_task(rq, rf, p, dest_cpu);
3078
3079 if (!pending->stop_pending) {
3080 p->migration_pending = NULL;
3081 complete = true;
3082 }
3083 }
3084 task_rq_unlock(rq, p, rf);
3085
3086 if (complete)
3087 complete_all(&pending->done);
3088 }
3089
3090 wait_for_completion(&pending->done);
3091
3092 if (refcount_dec_and_test(&pending->refs))
3093 wake_up_var(&pending->refs); /* No UaF, just an address */
3094
3095 /*
3096 * Block the original owner of &pending until all subsequent callers
3097 * have seen the completion and decremented the refcount
3098 */
3099 wait_var_event(&my_pending.refs, !refcount_read(&my_pending.refs));
3100
3101 /* ARGH */
3102 WARN_ON_ONCE(my_pending.stop_pending);
3103
3104 return 0;
3105 }
3106
3107 /*
3108 * Called with both p->pi_lock and rq->lock held; drops both before returning.
3109 */
__set_cpus_allowed_ptr_locked(struct task_struct * p,struct affinity_context * ctx,struct rq * rq,struct rq_flags * rf)3110 static int __set_cpus_allowed_ptr_locked(struct task_struct *p,
3111 struct affinity_context *ctx,
3112 struct rq *rq,
3113 struct rq_flags *rf)
3114 __releases(rq->lock)
3115 __releases(p->pi_lock)
3116 {
3117 const struct cpumask *cpu_allowed_mask = task_cpu_possible_mask(p);
3118 const struct cpumask *cpu_valid_mask = cpu_active_mask;
3119 bool kthread = p->flags & PF_KTHREAD;
3120 unsigned int dest_cpu;
3121 int ret = 0;
3122
3123 update_rq_clock(rq);
3124
3125 if (kthread || is_migration_disabled(p)) {
3126 /*
3127 * Kernel threads are allowed on online && !active CPUs,
3128 * however, during cpu-hot-unplug, even these might get pushed
3129 * away if not KTHREAD_IS_PER_CPU.
3130 *
3131 * Specifically, migration_disabled() tasks must not fail the
3132 * cpumask_any_and_distribute() pick below, esp. so on
3133 * SCA_MIGRATE_ENABLE, otherwise we'll not call
3134 * set_cpus_allowed_common() and actually reset p->cpus_ptr.
3135 */
3136 cpu_valid_mask = cpu_online_mask;
3137 }
3138
3139 if (!kthread && !cpumask_subset(ctx->new_mask, cpu_allowed_mask)) {
3140 ret = -EINVAL;
3141 goto out;
3142 }
3143
3144 /*
3145 * Must re-check here, to close a race against __kthread_bind(),
3146 * sched_setaffinity() is not guaranteed to observe the flag.
3147 */
3148 if ((ctx->flags & SCA_CHECK) && (p->flags & PF_NO_SETAFFINITY)) {
3149 ret = -EINVAL;
3150 goto out;
3151 }
3152
3153 if (!(ctx->flags & SCA_MIGRATE_ENABLE)) {
3154 if (cpumask_equal(&p->cpus_mask, ctx->new_mask)) {
3155 if (ctx->flags & SCA_USER)
3156 swap(p->user_cpus_ptr, ctx->user_mask);
3157 goto out;
3158 }
3159
3160 if (WARN_ON_ONCE(p == current &&
3161 is_migration_disabled(p) &&
3162 !cpumask_test_cpu(task_cpu(p), ctx->new_mask))) {
3163 ret = -EBUSY;
3164 goto out;
3165 }
3166 }
3167
3168 /*
3169 * Picking a ~random cpu helps in cases where we are changing affinity
3170 * for groups of tasks (ie. cpuset), so that load balancing is not
3171 * immediately required to distribute the tasks within their new mask.
3172 */
3173 dest_cpu = cpumask_any_and_distribute(cpu_valid_mask, ctx->new_mask);
3174 if (dest_cpu >= nr_cpu_ids) {
3175 ret = -EINVAL;
3176 goto out;
3177 }
3178
3179 __do_set_cpus_allowed(p, ctx);
3180
3181 return affine_move_task(rq, p, rf, dest_cpu, ctx->flags);
3182
3183 out:
3184 task_rq_unlock(rq, p, rf);
3185
3186 return ret;
3187 }
3188
3189 /*
3190 * Change a given task's CPU affinity. Migrate the thread to a
3191 * proper CPU and schedule it away if the CPU it's executing on
3192 * is removed from the allowed bitmask.
3193 *
3194 * NOTE: the caller must have a valid reference to the task, the
3195 * task must not exit() & deallocate itself prematurely. The
3196 * call is not atomic; no spinlocks may be held.
3197 */
__set_cpus_allowed_ptr(struct task_struct * p,struct affinity_context * ctx)3198 static int __set_cpus_allowed_ptr(struct task_struct *p,
3199 struct affinity_context *ctx)
3200 {
3201 struct rq_flags rf;
3202 struct rq *rq;
3203
3204 rq = task_rq_lock(p, &rf);
3205 /*
3206 * Masking should be skipped if SCA_USER or any of the SCA_MIGRATE_*
3207 * flags are set.
3208 */
3209 if (p->user_cpus_ptr &&
3210 !(ctx->flags & (SCA_USER | SCA_MIGRATE_ENABLE | SCA_MIGRATE_DISABLE)) &&
3211 cpumask_and(rq->scratch_mask, ctx->new_mask, p->user_cpus_ptr))
3212 ctx->new_mask = rq->scratch_mask;
3213
3214 return __set_cpus_allowed_ptr_locked(p, ctx, rq, &rf);
3215 }
3216
set_cpus_allowed_ptr(struct task_struct * p,const struct cpumask * new_mask)3217 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
3218 {
3219 struct affinity_context ac = {
3220 .new_mask = new_mask,
3221 .flags = 0,
3222 };
3223
3224 return __set_cpus_allowed_ptr(p, &ac);
3225 }
3226 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
3227
3228 /*
3229 * Change a given task's CPU affinity to the intersection of its current
3230 * affinity mask and @subset_mask, writing the resulting mask to @new_mask.
3231 * If user_cpus_ptr is defined, use it as the basis for restricting CPU
3232 * affinity or use cpu_online_mask instead.
3233 *
3234 * If the resulting mask is empty, leave the affinity unchanged and return
3235 * -EINVAL.
3236 */
restrict_cpus_allowed_ptr(struct task_struct * p,struct cpumask * new_mask,const struct cpumask * subset_mask)3237 static int restrict_cpus_allowed_ptr(struct task_struct *p,
3238 struct cpumask *new_mask,
3239 const struct cpumask *subset_mask)
3240 {
3241 struct affinity_context ac = {
3242 .new_mask = new_mask,
3243 .flags = 0,
3244 };
3245 struct rq_flags rf;
3246 struct rq *rq;
3247 int err;
3248
3249 rq = task_rq_lock(p, &rf);
3250
3251 /*
3252 * Forcefully restricting the affinity of a deadline task is
3253 * likely to cause problems, so fail and noisily override the
3254 * mask entirely.
3255 */
3256 if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
3257 err = -EPERM;
3258 goto err_unlock;
3259 }
3260
3261 if (!cpumask_and(new_mask, task_user_cpus(p), subset_mask)) {
3262 err = -EINVAL;
3263 goto err_unlock;
3264 }
3265
3266 return __set_cpus_allowed_ptr_locked(p, &ac, rq, &rf);
3267
3268 err_unlock:
3269 task_rq_unlock(rq, p, &rf);
3270 return err;
3271 }
3272
3273 /*
3274 * Restrict the CPU affinity of task @p so that it is a subset of
3275 * task_cpu_possible_mask() and point @p->user_cpus_ptr to a copy of the
3276 * old affinity mask. If the resulting mask is empty, we warn and walk
3277 * up the cpuset hierarchy until we find a suitable mask.
3278 */
force_compatible_cpus_allowed_ptr(struct task_struct * p)3279 void force_compatible_cpus_allowed_ptr(struct task_struct *p)
3280 {
3281 cpumask_var_t new_mask;
3282 const struct cpumask *override_mask = task_cpu_possible_mask(p);
3283
3284 alloc_cpumask_var(&new_mask, GFP_KERNEL);
3285
3286 /*
3287 * __migrate_task() can fail silently in the face of concurrent
3288 * offlining of the chosen destination CPU, so take the hotplug
3289 * lock to ensure that the migration succeeds.
3290 */
3291 cpus_read_lock();
3292 if (!cpumask_available(new_mask))
3293 goto out_set_mask;
3294
3295 if (!restrict_cpus_allowed_ptr(p, new_mask, override_mask))
3296 goto out_free_mask;
3297
3298 /*
3299 * We failed to find a valid subset of the affinity mask for the
3300 * task, so override it based on its cpuset hierarchy.
3301 */
3302 cpuset_cpus_allowed(p, new_mask);
3303 override_mask = new_mask;
3304
3305 out_set_mask:
3306 if (printk_ratelimit()) {
3307 printk_deferred("Overriding affinity for process %d (%s) to CPUs %*pbl\n",
3308 task_pid_nr(p), p->comm,
3309 cpumask_pr_args(override_mask));
3310 }
3311
3312 WARN_ON(set_cpus_allowed_ptr(p, override_mask));
3313 out_free_mask:
3314 cpus_read_unlock();
3315 free_cpumask_var(new_mask);
3316 }
3317
3318 static int
3319 __sched_setaffinity(struct task_struct *p, struct affinity_context *ctx);
3320
3321 /*
3322 * Restore the affinity of a task @p which was previously restricted by a
3323 * call to force_compatible_cpus_allowed_ptr().
3324 *
3325 * It is the caller's responsibility to serialise this with any calls to
3326 * force_compatible_cpus_allowed_ptr(@p).
3327 */
relax_compatible_cpus_allowed_ptr(struct task_struct * p)3328 void relax_compatible_cpus_allowed_ptr(struct task_struct *p)
3329 {
3330 struct affinity_context ac = {
3331 .new_mask = task_user_cpus(p),
3332 .flags = 0,
3333 };
3334 int ret;
3335
3336 /*
3337 * Try to restore the old affinity mask with __sched_setaffinity().
3338 * Cpuset masking will be done there too.
3339 */
3340 ret = __sched_setaffinity(p, &ac);
3341 WARN_ON_ONCE(ret);
3342 }
3343
set_task_cpu(struct task_struct * p,unsigned int new_cpu)3344 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
3345 {
3346 #ifdef CONFIG_SCHED_DEBUG
3347 unsigned int state = READ_ONCE(p->__state);
3348
3349 /*
3350 * We should never call set_task_cpu() on a blocked task,
3351 * ttwu() will sort out the placement.
3352 */
3353 WARN_ON_ONCE(state != TASK_RUNNING && state != TASK_WAKING && !p->on_rq);
3354
3355 /*
3356 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
3357 * because schedstat_wait_{start,end} rebase migrating task's wait_start
3358 * time relying on p->on_rq.
3359 */
3360 WARN_ON_ONCE(state == TASK_RUNNING &&
3361 p->sched_class == &fair_sched_class &&
3362 (p->on_rq && !task_on_rq_migrating(p)));
3363
3364 #ifdef CONFIG_LOCKDEP
3365 /*
3366 * The caller should hold either p->pi_lock or rq->lock, when changing
3367 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
3368 *
3369 * sched_move_task() holds both and thus holding either pins the cgroup,
3370 * see task_group().
3371 *
3372 * Furthermore, all task_rq users should acquire both locks, see
3373 * task_rq_lock().
3374 */
3375 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
3376 lockdep_is_held(__rq_lockp(task_rq(p)))));
3377 #endif
3378 /*
3379 * Clearly, migrating tasks to offline CPUs is a fairly daft thing.
3380 */
3381 WARN_ON_ONCE(!cpu_online(new_cpu));
3382
3383 WARN_ON_ONCE(is_migration_disabled(p));
3384 #endif
3385
3386 trace_sched_migrate_task(p, new_cpu);
3387
3388 if (task_cpu(p) != new_cpu) {
3389 if (p->sched_class->migrate_task_rq)
3390 p->sched_class->migrate_task_rq(p, new_cpu);
3391 p->se.nr_migrations++;
3392 rseq_migrate(p);
3393 sched_mm_cid_migrate_from(p);
3394 perf_event_task_migrate(p);
3395 }
3396
3397 __set_task_cpu(p, new_cpu);
3398 }
3399
3400 #ifdef CONFIG_NUMA_BALANCING
__migrate_swap_task(struct task_struct * p,int cpu)3401 static void __migrate_swap_task(struct task_struct *p, int cpu)
3402 {
3403 if (task_on_rq_queued(p)) {
3404 struct rq *src_rq, *dst_rq;
3405 struct rq_flags srf, drf;
3406
3407 src_rq = task_rq(p);
3408 dst_rq = cpu_rq(cpu);
3409
3410 rq_pin_lock(src_rq, &srf);
3411 rq_pin_lock(dst_rq, &drf);
3412
3413 deactivate_task(src_rq, p, 0);
3414 set_task_cpu(p, cpu);
3415 activate_task(dst_rq, p, 0);
3416 check_preempt_curr(dst_rq, p, 0);
3417
3418 rq_unpin_lock(dst_rq, &drf);
3419 rq_unpin_lock(src_rq, &srf);
3420
3421 } else {
3422 /*
3423 * Task isn't running anymore; make it appear like we migrated
3424 * it before it went to sleep. This means on wakeup we make the
3425 * previous CPU our target instead of where it really is.
3426 */
3427 p->wake_cpu = cpu;
3428 }
3429 }
3430
3431 struct migration_swap_arg {
3432 struct task_struct *src_task, *dst_task;
3433 int src_cpu, dst_cpu;
3434 };
3435
migrate_swap_stop(void * data)3436 static int migrate_swap_stop(void *data)
3437 {
3438 struct migration_swap_arg *arg = data;
3439 struct rq *src_rq, *dst_rq;
3440
3441 if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
3442 return -EAGAIN;
3443
3444 src_rq = cpu_rq(arg->src_cpu);
3445 dst_rq = cpu_rq(arg->dst_cpu);
3446
3447 guard(double_raw_spinlock)(&arg->src_task->pi_lock, &arg->dst_task->pi_lock);
3448 guard(double_rq_lock)(src_rq, dst_rq);
3449
3450 if (task_cpu(arg->dst_task) != arg->dst_cpu)
3451 return -EAGAIN;
3452
3453 if (task_cpu(arg->src_task) != arg->src_cpu)
3454 return -EAGAIN;
3455
3456 if (!cpumask_test_cpu(arg->dst_cpu, arg->src_task->cpus_ptr))
3457 return -EAGAIN;
3458
3459 if (!cpumask_test_cpu(arg->src_cpu, arg->dst_task->cpus_ptr))
3460 return -EAGAIN;
3461
3462 __migrate_swap_task(arg->src_task, arg->dst_cpu);
3463 __migrate_swap_task(arg->dst_task, arg->src_cpu);
3464
3465 return 0;
3466 }
3467
3468 /*
3469 * Cross migrate two tasks
3470 */
migrate_swap(struct task_struct * cur,struct task_struct * p,int target_cpu,int curr_cpu)3471 int migrate_swap(struct task_struct *cur, struct task_struct *p,
3472 int target_cpu, int curr_cpu)
3473 {
3474 struct migration_swap_arg arg;
3475 int ret = -EINVAL;
3476
3477 arg = (struct migration_swap_arg){
3478 .src_task = cur,
3479 .src_cpu = curr_cpu,
3480 .dst_task = p,
3481 .dst_cpu = target_cpu,
3482 };
3483
3484 if (arg.src_cpu == arg.dst_cpu)
3485 goto out;
3486
3487 /*
3488 * These three tests are all lockless; this is OK since all of them
3489 * will be re-checked with proper locks held further down the line.
3490 */
3491 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
3492 goto out;
3493
3494 if (!cpumask_test_cpu(arg.dst_cpu, arg.src_task->cpus_ptr))
3495 goto out;
3496
3497 if (!cpumask_test_cpu(arg.src_cpu, arg.dst_task->cpus_ptr))
3498 goto out;
3499
3500 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
3501 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
3502
3503 out:
3504 return ret;
3505 }
3506 #endif /* CONFIG_NUMA_BALANCING */
3507
3508 /***
3509 * kick_process - kick a running thread to enter/exit the kernel
3510 * @p: the to-be-kicked thread
3511 *
3512 * Cause a process which is running on another CPU to enter
3513 * kernel-mode, without any delay. (to get signals handled.)
3514 *
3515 * NOTE: this function doesn't have to take the runqueue lock,
3516 * because all it wants to ensure is that the remote task enters
3517 * the kernel. If the IPI races and the task has been migrated
3518 * to another CPU then no harm is done and the purpose has been
3519 * achieved as well.
3520 */
kick_process(struct task_struct * p)3521 void kick_process(struct task_struct *p)
3522 {
3523 int cpu;
3524
3525 preempt_disable();
3526 cpu = task_cpu(p);
3527 if ((cpu != smp_processor_id()) && task_curr(p))
3528 smp_send_reschedule(cpu);
3529 preempt_enable();
3530 }
3531 EXPORT_SYMBOL_GPL(kick_process);
3532
3533 /*
3534 * ->cpus_ptr is protected by both rq->lock and p->pi_lock
3535 *
3536 * A few notes on cpu_active vs cpu_online:
3537 *
3538 * - cpu_active must be a subset of cpu_online
3539 *
3540 * - on CPU-up we allow per-CPU kthreads on the online && !active CPU,
3541 * see __set_cpus_allowed_ptr(). At this point the newly online
3542 * CPU isn't yet part of the sched domains, and balancing will not
3543 * see it.
3544 *
3545 * - on CPU-down we clear cpu_active() to mask the sched domains and
3546 * avoid the load balancer to place new tasks on the to be removed
3547 * CPU. Existing tasks will remain running there and will be taken
3548 * off.
3549 *
3550 * This means that fallback selection must not select !active CPUs.
3551 * And can assume that any active CPU must be online. Conversely
3552 * select_task_rq() below may allow selection of !active CPUs in order
3553 * to satisfy the above rules.
3554 */
select_fallback_rq(int cpu,struct task_struct * p)3555 static int select_fallback_rq(int cpu, struct task_struct *p)
3556 {
3557 int nid = cpu_to_node(cpu);
3558 const struct cpumask *nodemask = NULL;
3559 enum { cpuset, possible, fail } state = cpuset;
3560 int dest_cpu;
3561
3562 /*
3563 * If the node that the CPU is on has been offlined, cpu_to_node()
3564 * will return -1. There is no CPU on the node, and we should
3565 * select the CPU on the other node.
3566 */
3567 if (nid != -1) {
3568 nodemask = cpumask_of_node(nid);
3569
3570 /* Look for allowed, online CPU in same node. */
3571 for_each_cpu(dest_cpu, nodemask) {
3572 if (is_cpu_allowed(p, dest_cpu))
3573 return dest_cpu;
3574 }
3575 }
3576
3577 for (;;) {
3578 /* Any allowed, online CPU? */
3579 for_each_cpu(dest_cpu, p->cpus_ptr) {
3580 if (!is_cpu_allowed(p, dest_cpu))
3581 continue;
3582
3583 goto out;
3584 }
3585
3586 /* No more Mr. Nice Guy. */
3587 switch (state) {
3588 case cpuset:
3589 if (cpuset_cpus_allowed_fallback(p)) {
3590 state = possible;
3591 break;
3592 }
3593 fallthrough;
3594 case possible:
3595 /*
3596 * XXX When called from select_task_rq() we only
3597 * hold p->pi_lock and again violate locking order.
3598 *
3599 * More yuck to audit.
3600 */
3601 do_set_cpus_allowed(p, task_cpu_possible_mask(p));
3602 state = fail;
3603 break;
3604 case fail:
3605 BUG();
3606 break;
3607 }
3608 }
3609
3610 out:
3611 if (state != cpuset) {
3612 /*
3613 * Don't tell them about moving exiting tasks or
3614 * kernel threads (both mm NULL), since they never
3615 * leave kernel.
3616 */
3617 if (p->mm && printk_ratelimit()) {
3618 printk_deferred("process %d (%s) no longer affine to cpu%d\n",
3619 task_pid_nr(p), p->comm, cpu);
3620 }
3621 }
3622
3623 return dest_cpu;
3624 }
3625
3626 /*
3627 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_ptr is stable.
3628 */
3629 static inline
select_task_rq(struct task_struct * p,int cpu,int wake_flags)3630 int select_task_rq(struct task_struct *p, int cpu, int wake_flags)
3631 {
3632 lockdep_assert_held(&p->pi_lock);
3633
3634 if (p->nr_cpus_allowed > 1 && !is_migration_disabled(p))
3635 cpu = p->sched_class->select_task_rq(p, cpu, wake_flags);
3636 else
3637 cpu = cpumask_any(p->cpus_ptr);
3638
3639 /*
3640 * In order not to call set_task_cpu() on a blocking task we need
3641 * to rely on ttwu() to place the task on a valid ->cpus_ptr
3642 * CPU.
3643 *
3644 * Since this is common to all placement strategies, this lives here.
3645 *
3646 * [ this allows ->select_task() to simply return task_cpu(p) and
3647 * not worry about this generic constraint ]
3648 */
3649 if (unlikely(!is_cpu_allowed(p, cpu)))
3650 cpu = select_fallback_rq(task_cpu(p), p);
3651
3652 return cpu;
3653 }
3654
sched_set_stop_task(int cpu,struct task_struct * stop)3655 void sched_set_stop_task(int cpu, struct task_struct *stop)
3656 {
3657 static struct lock_class_key stop_pi_lock;
3658 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
3659 struct task_struct *old_stop = cpu_rq(cpu)->stop;
3660
3661 if (stop) {
3662 /*
3663 * Make it appear like a SCHED_FIFO task, its something
3664 * userspace knows about and won't get confused about.
3665 *
3666 * Also, it will make PI more or less work without too
3667 * much confusion -- but then, stop work should not
3668 * rely on PI working anyway.
3669 */
3670 sched_setscheduler_nocheck(stop, SCHED_FIFO, ¶m);
3671
3672 stop->sched_class = &stop_sched_class;
3673
3674 /*
3675 * The PI code calls rt_mutex_setprio() with ->pi_lock held to
3676 * adjust the effective priority of a task. As a result,
3677 * rt_mutex_setprio() can trigger (RT) balancing operations,
3678 * which can then trigger wakeups of the stop thread to push
3679 * around the current task.
3680 *
3681 * The stop task itself will never be part of the PI-chain, it
3682 * never blocks, therefore that ->pi_lock recursion is safe.
3683 * Tell lockdep about this by placing the stop->pi_lock in its
3684 * own class.
3685 */
3686 lockdep_set_class(&stop->pi_lock, &stop_pi_lock);
3687 }
3688
3689 cpu_rq(cpu)->stop = stop;
3690
3691 if (old_stop) {
3692 /*
3693 * Reset it back to a normal scheduling class so that
3694 * it can die in pieces.
3695 */
3696 old_stop->sched_class = &rt_sched_class;
3697 }
3698 }
3699
3700 #else /* CONFIG_SMP */
3701
__set_cpus_allowed_ptr(struct task_struct * p,struct affinity_context * ctx)3702 static inline int __set_cpus_allowed_ptr(struct task_struct *p,
3703 struct affinity_context *ctx)
3704 {
3705 return set_cpus_allowed_ptr(p, ctx->new_mask);
3706 }
3707
migrate_disable_switch(struct rq * rq,struct task_struct * p)3708 static inline void migrate_disable_switch(struct rq *rq, struct task_struct *p) { }
3709
rq_has_pinned_tasks(struct rq * rq)3710 static inline bool rq_has_pinned_tasks(struct rq *rq)
3711 {
3712 return false;
3713 }
3714
alloc_user_cpus_ptr(int node)3715 static inline cpumask_t *alloc_user_cpus_ptr(int node)
3716 {
3717 return NULL;
3718 }
3719
3720 #endif /* !CONFIG_SMP */
3721
3722 static void
ttwu_stat(struct task_struct * p,int cpu,int wake_flags)3723 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
3724 {
3725 struct rq *rq;
3726
3727 if (!schedstat_enabled())
3728 return;
3729
3730 rq = this_rq();
3731
3732 #ifdef CONFIG_SMP
3733 if (cpu == rq->cpu) {
3734 __schedstat_inc(rq->ttwu_local);
3735 __schedstat_inc(p->stats.nr_wakeups_local);
3736 } else {
3737 struct sched_domain *sd;
3738
3739 __schedstat_inc(p->stats.nr_wakeups_remote);
3740
3741 guard(rcu)();
3742 for_each_domain(rq->cpu, sd) {
3743 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
3744 __schedstat_inc(sd->ttwu_wake_remote);
3745 break;
3746 }
3747 }
3748 }
3749
3750 if (wake_flags & WF_MIGRATED)
3751 __schedstat_inc(p->stats.nr_wakeups_migrate);
3752 #endif /* CONFIG_SMP */
3753
3754 __schedstat_inc(rq->ttwu_count);
3755 __schedstat_inc(p->stats.nr_wakeups);
3756
3757 if (wake_flags & WF_SYNC)
3758 __schedstat_inc(p->stats.nr_wakeups_sync);
3759 }
3760
3761 /*
3762 * Mark the task runnable.
3763 */
ttwu_do_wakeup(struct task_struct * p)3764 static inline void ttwu_do_wakeup(struct task_struct *p)
3765 {
3766 WRITE_ONCE(p->__state, TASK_RUNNING);
3767 trace_sched_wakeup(p);
3768 }
3769
3770 static void
ttwu_do_activate(struct rq * rq,struct task_struct * p,int wake_flags,struct rq_flags * rf)3771 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags,
3772 struct rq_flags *rf)
3773 {
3774 int en_flags = ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK;
3775
3776 lockdep_assert_rq_held(rq);
3777
3778 if (p->sched_contributes_to_load)
3779 rq->nr_uninterruptible--;
3780
3781 #ifdef CONFIG_SMP
3782 if (wake_flags & WF_MIGRATED)
3783 en_flags |= ENQUEUE_MIGRATED;
3784 else
3785 #endif
3786 if (p->in_iowait) {
3787 delayacct_blkio_end(p);
3788 atomic_dec(&task_rq(p)->nr_iowait);
3789 }
3790
3791 activate_task(rq, p, en_flags);
3792 check_preempt_curr(rq, p, wake_flags);
3793
3794 ttwu_do_wakeup(p);
3795
3796 #ifdef CONFIG_SMP
3797 if (p->sched_class->task_woken) {
3798 /*
3799 * Our task @p is fully woken up and running; so it's safe to
3800 * drop the rq->lock, hereafter rq is only used for statistics.
3801 */
3802 rq_unpin_lock(rq, rf);
3803 p->sched_class->task_woken(rq, p);
3804 rq_repin_lock(rq, rf);
3805 }
3806
3807 if (rq->idle_stamp) {
3808 u64 delta = rq_clock(rq) - rq->idle_stamp;
3809 u64 max = 2*rq->max_idle_balance_cost;
3810
3811 update_avg(&rq->avg_idle, delta);
3812
3813 if (rq->avg_idle > max)
3814 rq->avg_idle = max;
3815
3816 rq->wake_stamp = jiffies;
3817 rq->wake_avg_idle = rq->avg_idle / 2;
3818
3819 rq->idle_stamp = 0;
3820 }
3821 #endif
3822 }
3823
3824 /*
3825 * Consider @p being inside a wait loop:
3826 *
3827 * for (;;) {
3828 * set_current_state(TASK_UNINTERRUPTIBLE);
3829 *
3830 * if (CONDITION)
3831 * break;
3832 *
3833 * schedule();
3834 * }
3835 * __set_current_state(TASK_RUNNING);
3836 *
3837 * between set_current_state() and schedule(). In this case @p is still
3838 * runnable, so all that needs doing is change p->state back to TASK_RUNNING in
3839 * an atomic manner.
3840 *
3841 * By taking task_rq(p)->lock we serialize against schedule(), if @p->on_rq
3842 * then schedule() must still happen and p->state can be changed to
3843 * TASK_RUNNING. Otherwise we lost the race, schedule() has happened, and we
3844 * need to do a full wakeup with enqueue.
3845 *
3846 * Returns: %true when the wakeup is done,
3847 * %false otherwise.
3848 */
ttwu_runnable(struct task_struct * p,int wake_flags)3849 static int ttwu_runnable(struct task_struct *p, int wake_flags)
3850 {
3851 struct rq_flags rf;
3852 struct rq *rq;
3853 int ret = 0;
3854
3855 rq = __task_rq_lock(p, &rf);
3856 if (task_on_rq_queued(p)) {
3857 if (!task_on_cpu(rq, p)) {
3858 /*
3859 * When on_rq && !on_cpu the task is preempted, see if
3860 * it should preempt the task that is current now.
3861 */
3862 update_rq_clock(rq);
3863 check_preempt_curr(rq, p, wake_flags);
3864 }
3865 ttwu_do_wakeup(p);
3866 ret = 1;
3867 }
3868 __task_rq_unlock(rq, &rf);
3869
3870 return ret;
3871 }
3872
3873 #ifdef CONFIG_SMP
sched_ttwu_pending(void * arg)3874 void sched_ttwu_pending(void *arg)
3875 {
3876 struct llist_node *llist = arg;
3877 struct rq *rq = this_rq();
3878 struct task_struct *p, *t;
3879 struct rq_flags rf;
3880
3881 if (!llist)
3882 return;
3883
3884 rq_lock_irqsave(rq, &rf);
3885 update_rq_clock(rq);
3886
3887 llist_for_each_entry_safe(p, t, llist, wake_entry.llist) {
3888 if (WARN_ON_ONCE(p->on_cpu))
3889 smp_cond_load_acquire(&p->on_cpu, !VAL);
3890
3891 if (WARN_ON_ONCE(task_cpu(p) != cpu_of(rq)))
3892 set_task_cpu(p, cpu_of(rq));
3893
3894 ttwu_do_activate(rq, p, p->sched_remote_wakeup ? WF_MIGRATED : 0, &rf);
3895 }
3896
3897 /*
3898 * Must be after enqueueing at least once task such that
3899 * idle_cpu() does not observe a false-negative -- if it does,
3900 * it is possible for select_idle_siblings() to stack a number
3901 * of tasks on this CPU during that window.
3902 *
3903 * It is ok to clear ttwu_pending when another task pending.
3904 * We will receive IPI after local irq enabled and then enqueue it.
3905 * Since now nr_running > 0, idle_cpu() will always get correct result.
3906 */
3907 WRITE_ONCE(rq->ttwu_pending, 0);
3908 rq_unlock_irqrestore(rq, &rf);
3909 }
3910
3911 /*
3912 * Prepare the scene for sending an IPI for a remote smp_call
3913 *
3914 * Returns true if the caller can proceed with sending the IPI.
3915 * Returns false otherwise.
3916 */
call_function_single_prep_ipi(int cpu)3917 bool call_function_single_prep_ipi(int cpu)
3918 {
3919 if (set_nr_if_polling(cpu_rq(cpu)->idle)) {
3920 trace_sched_wake_idle_without_ipi(cpu);
3921 return false;
3922 }
3923
3924 return true;
3925 }
3926
3927 /*
3928 * Queue a task on the target CPUs wake_list and wake the CPU via IPI if
3929 * necessary. The wakee CPU on receipt of the IPI will queue the task
3930 * via sched_ttwu_wakeup() for activation so the wakee incurs the cost
3931 * of the wakeup instead of the waker.
3932 */
__ttwu_queue_wakelist(struct task_struct * p,int cpu,int wake_flags)3933 static void __ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
3934 {
3935 struct rq *rq = cpu_rq(cpu);
3936
3937 p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED);
3938
3939 WRITE_ONCE(rq->ttwu_pending, 1);
3940 __smp_call_single_queue(cpu, &p->wake_entry.llist);
3941 }
3942
wake_up_if_idle(int cpu)3943 void wake_up_if_idle(int cpu)
3944 {
3945 struct rq *rq = cpu_rq(cpu);
3946
3947 guard(rcu)();
3948 if (is_idle_task(rcu_dereference(rq->curr))) {
3949 guard(rq_lock_irqsave)(rq);
3950 if (is_idle_task(rq->curr))
3951 resched_curr(rq);
3952 }
3953 }
3954
cpus_share_cache(int this_cpu,int that_cpu)3955 bool cpus_share_cache(int this_cpu, int that_cpu)
3956 {
3957 if (this_cpu == that_cpu)
3958 return true;
3959
3960 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
3961 }
3962
ttwu_queue_cond(struct task_struct * p,int cpu)3963 static inline bool ttwu_queue_cond(struct task_struct *p, int cpu)
3964 {
3965 /*
3966 * Do not complicate things with the async wake_list while the CPU is
3967 * in hotplug state.
3968 */
3969 if (!cpu_active(cpu))
3970 return false;
3971
3972 /* Ensure the task will still be allowed to run on the CPU. */
3973 if (!cpumask_test_cpu(cpu, p->cpus_ptr))
3974 return false;
3975
3976 /*
3977 * If the CPU does not share cache, then queue the task on the
3978 * remote rqs wakelist to avoid accessing remote data.
3979 */
3980 if (!cpus_share_cache(smp_processor_id(), cpu))
3981 return true;
3982
3983 if (cpu == smp_processor_id())
3984 return false;
3985
3986 /*
3987 * If the wakee cpu is idle, or the task is descheduling and the
3988 * only running task on the CPU, then use the wakelist to offload
3989 * the task activation to the idle (or soon-to-be-idle) CPU as
3990 * the current CPU is likely busy. nr_running is checked to
3991 * avoid unnecessary task stacking.
3992 *
3993 * Note that we can only get here with (wakee) p->on_rq=0,
3994 * p->on_cpu can be whatever, we've done the dequeue, so
3995 * the wakee has been accounted out of ->nr_running.
3996 */
3997 if (!cpu_rq(cpu)->nr_running)
3998 return true;
3999
4000 return false;
4001 }
4002
ttwu_queue_wakelist(struct task_struct * p,int cpu,int wake_flags)4003 static bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
4004 {
4005 if (sched_feat(TTWU_QUEUE) && ttwu_queue_cond(p, cpu)) {
4006 sched_clock_cpu(cpu); /* Sync clocks across CPUs */
4007 __ttwu_queue_wakelist(p, cpu, wake_flags);
4008 return true;
4009 }
4010
4011 return false;
4012 }
4013
4014 #else /* !CONFIG_SMP */
4015
ttwu_queue_wakelist(struct task_struct * p,int cpu,int wake_flags)4016 static inline bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
4017 {
4018 return false;
4019 }
4020
4021 #endif /* CONFIG_SMP */
4022
ttwu_queue(struct task_struct * p,int cpu,int wake_flags)4023 static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags)
4024 {
4025 struct rq *rq = cpu_rq(cpu);
4026 struct rq_flags rf;
4027
4028 if (ttwu_queue_wakelist(p, cpu, wake_flags))
4029 return;
4030
4031 rq_lock(rq, &rf);
4032 update_rq_clock(rq);
4033 ttwu_do_activate(rq, p, wake_flags, &rf);
4034 rq_unlock(rq, &rf);
4035 }
4036
4037 /*
4038 * Invoked from try_to_wake_up() to check whether the task can be woken up.
4039 *
4040 * The caller holds p::pi_lock if p != current or has preemption
4041 * disabled when p == current.
4042 *
4043 * The rules of PREEMPT_RT saved_state:
4044 *
4045 * The related locking code always holds p::pi_lock when updating
4046 * p::saved_state, which means the code is fully serialized in both cases.
4047 *
4048 * The lock wait and lock wakeups happen via TASK_RTLOCK_WAIT. No other
4049 * bits set. This allows to distinguish all wakeup scenarios.
4050 */
4051 static __always_inline
ttwu_state_match(struct task_struct * p,unsigned int state,int * success)4052 bool ttwu_state_match(struct task_struct *p, unsigned int state, int *success)
4053 {
4054 int match;
4055
4056 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)) {
4057 WARN_ON_ONCE((state & TASK_RTLOCK_WAIT) &&
4058 state != TASK_RTLOCK_WAIT);
4059 }
4060
4061 *success = !!(match = __task_state_match(p, state));
4062
4063 #ifdef CONFIG_PREEMPT_RT
4064 /*
4065 * Saved state preserves the task state across blocking on
4066 * an RT lock. If the state matches, set p::saved_state to
4067 * TASK_RUNNING, but do not wake the task because it waits
4068 * for a lock wakeup. Also indicate success because from
4069 * the regular waker's point of view this has succeeded.
4070 *
4071 * After acquiring the lock the task will restore p::__state
4072 * from p::saved_state which ensures that the regular
4073 * wakeup is not lost. The restore will also set
4074 * p::saved_state to TASK_RUNNING so any further tests will
4075 * not result in false positives vs. @success
4076 */
4077 if (match < 0)
4078 p->saved_state = TASK_RUNNING;
4079 #endif
4080 return match > 0;
4081 }
4082
4083 /*
4084 * Notes on Program-Order guarantees on SMP systems.
4085 *
4086 * MIGRATION
4087 *
4088 * The basic program-order guarantee on SMP systems is that when a task [t]
4089 * migrates, all its activity on its old CPU [c0] happens-before any subsequent
4090 * execution on its new CPU [c1].
4091 *
4092 * For migration (of runnable tasks) this is provided by the following means:
4093 *
4094 * A) UNLOCK of the rq(c0)->lock scheduling out task t
4095 * B) migration for t is required to synchronize *both* rq(c0)->lock and
4096 * rq(c1)->lock (if not at the same time, then in that order).
4097 * C) LOCK of the rq(c1)->lock scheduling in task
4098 *
4099 * Release/acquire chaining guarantees that B happens after A and C after B.
4100 * Note: the CPU doing B need not be c0 or c1
4101 *
4102 * Example:
4103 *
4104 * CPU0 CPU1 CPU2
4105 *
4106 * LOCK rq(0)->lock
4107 * sched-out X
4108 * sched-in Y
4109 * UNLOCK rq(0)->lock
4110 *
4111 * LOCK rq(0)->lock // orders against CPU0
4112 * dequeue X
4113 * UNLOCK rq(0)->lock
4114 *
4115 * LOCK rq(1)->lock
4116 * enqueue X
4117 * UNLOCK rq(1)->lock
4118 *
4119 * LOCK rq(1)->lock // orders against CPU2
4120 * sched-out Z
4121 * sched-in X
4122 * UNLOCK rq(1)->lock
4123 *
4124 *
4125 * BLOCKING -- aka. SLEEP + WAKEUP
4126 *
4127 * For blocking we (obviously) need to provide the same guarantee as for
4128 * migration. However the means are completely different as there is no lock
4129 * chain to provide order. Instead we do:
4130 *
4131 * 1) smp_store_release(X->on_cpu, 0) -- finish_task()
4132 * 2) smp_cond_load_acquire(!X->on_cpu) -- try_to_wake_up()
4133 *
4134 * Example:
4135 *
4136 * CPU0 (schedule) CPU1 (try_to_wake_up) CPU2 (schedule)
4137 *
4138 * LOCK rq(0)->lock LOCK X->pi_lock
4139 * dequeue X
4140 * sched-out X
4141 * smp_store_release(X->on_cpu, 0);
4142 *
4143 * smp_cond_load_acquire(&X->on_cpu, !VAL);
4144 * X->state = WAKING
4145 * set_task_cpu(X,2)
4146 *
4147 * LOCK rq(2)->lock
4148 * enqueue X
4149 * X->state = RUNNING
4150 * UNLOCK rq(2)->lock
4151 *
4152 * LOCK rq(2)->lock // orders against CPU1
4153 * sched-out Z
4154 * sched-in X
4155 * UNLOCK rq(2)->lock
4156 *
4157 * UNLOCK X->pi_lock
4158 * UNLOCK rq(0)->lock
4159 *
4160 *
4161 * However, for wakeups there is a second guarantee we must provide, namely we
4162 * must ensure that CONDITION=1 done by the caller can not be reordered with
4163 * accesses to the task state; see try_to_wake_up() and set_current_state().
4164 */
4165
4166 /**
4167 * try_to_wake_up - wake up a thread
4168 * @p: the thread to be awakened
4169 * @state: the mask of task states that can be woken
4170 * @wake_flags: wake modifier flags (WF_*)
4171 *
4172 * Conceptually does:
4173 *
4174 * If (@state & @p->state) @p->state = TASK_RUNNING.
4175 *
4176 * If the task was not queued/runnable, also place it back on a runqueue.
4177 *
4178 * This function is atomic against schedule() which would dequeue the task.
4179 *
4180 * It issues a full memory barrier before accessing @p->state, see the comment
4181 * with set_current_state().
4182 *
4183 * Uses p->pi_lock to serialize against concurrent wake-ups.
4184 *
4185 * Relies on p->pi_lock stabilizing:
4186 * - p->sched_class
4187 * - p->cpus_ptr
4188 * - p->sched_task_group
4189 * in order to do migration, see its use of select_task_rq()/set_task_cpu().
4190 *
4191 * Tries really hard to only take one task_rq(p)->lock for performance.
4192 * Takes rq->lock in:
4193 * - ttwu_runnable() -- old rq, unavoidable, see comment there;
4194 * - ttwu_queue() -- new rq, for enqueue of the task;
4195 * - psi_ttwu_dequeue() -- much sadness :-( accounting will kill us.
4196 *
4197 * As a consequence we race really badly with just about everything. See the
4198 * many memory barriers and their comments for details.
4199 *
4200 * Return: %true if @p->state changes (an actual wakeup was done),
4201 * %false otherwise.
4202 */
try_to_wake_up(struct task_struct * p,unsigned int state,int wake_flags)4203 int try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
4204 {
4205 guard(preempt)();
4206 int cpu, success = 0;
4207
4208 if (p == current) {
4209 /*
4210 * We're waking current, this means 'p->on_rq' and 'task_cpu(p)
4211 * == smp_processor_id()'. Together this means we can special
4212 * case the whole 'p->on_rq && ttwu_runnable()' case below
4213 * without taking any locks.
4214 *
4215 * In particular:
4216 * - we rely on Program-Order guarantees for all the ordering,
4217 * - we're serialized against set_special_state() by virtue of
4218 * it disabling IRQs (this allows not taking ->pi_lock).
4219 */
4220 if (!ttwu_state_match(p, state, &success))
4221 goto out;
4222
4223 trace_sched_waking(p);
4224 ttwu_do_wakeup(p);
4225 goto out;
4226 }
4227
4228 /*
4229 * If we are going to wake up a thread waiting for CONDITION we
4230 * need to ensure that CONDITION=1 done by the caller can not be
4231 * reordered with p->state check below. This pairs with smp_store_mb()
4232 * in set_current_state() that the waiting thread does.
4233 */
4234 scoped_guard (raw_spinlock_irqsave, &p->pi_lock) {
4235 smp_mb__after_spinlock();
4236 if (!ttwu_state_match(p, state, &success))
4237 break;
4238
4239 trace_sched_waking(p);
4240
4241 /*
4242 * Ensure we load p->on_rq _after_ p->state, otherwise it would
4243 * be possible to, falsely, observe p->on_rq == 0 and get stuck
4244 * in smp_cond_load_acquire() below.
4245 *
4246 * sched_ttwu_pending() try_to_wake_up()
4247 * STORE p->on_rq = 1 LOAD p->state
4248 * UNLOCK rq->lock
4249 *
4250 * __schedule() (switch to task 'p')
4251 * LOCK rq->lock smp_rmb();
4252 * smp_mb__after_spinlock();
4253 * UNLOCK rq->lock
4254 *
4255 * [task p]
4256 * STORE p->state = UNINTERRUPTIBLE LOAD p->on_rq
4257 *
4258 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
4259 * __schedule(). See the comment for smp_mb__after_spinlock().
4260 *
4261 * A similar smb_rmb() lives in try_invoke_on_locked_down_task().
4262 */
4263 smp_rmb();
4264 if (READ_ONCE(p->on_rq) && ttwu_runnable(p, wake_flags))
4265 break;
4266
4267 #ifdef CONFIG_SMP
4268 /*
4269 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
4270 * possible to, falsely, observe p->on_cpu == 0.
4271 *
4272 * One must be running (->on_cpu == 1) in order to remove oneself
4273 * from the runqueue.
4274 *
4275 * __schedule() (switch to task 'p') try_to_wake_up()
4276 * STORE p->on_cpu = 1 LOAD p->on_rq
4277 * UNLOCK rq->lock
4278 *
4279 * __schedule() (put 'p' to sleep)
4280 * LOCK rq->lock smp_rmb();
4281 * smp_mb__after_spinlock();
4282 * STORE p->on_rq = 0 LOAD p->on_cpu
4283 *
4284 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
4285 * __schedule(). See the comment for smp_mb__after_spinlock().
4286 *
4287 * Form a control-dep-acquire with p->on_rq == 0 above, to ensure
4288 * schedule()'s deactivate_task() has 'happened' and p will no longer
4289 * care about it's own p->state. See the comment in __schedule().
4290 */
4291 smp_acquire__after_ctrl_dep();
4292
4293 /*
4294 * We're doing the wakeup (@success == 1), they did a dequeue (p->on_rq
4295 * == 0), which means we need to do an enqueue, change p->state to
4296 * TASK_WAKING such that we can unlock p->pi_lock before doing the
4297 * enqueue, such as ttwu_queue_wakelist().
4298 */
4299 WRITE_ONCE(p->__state, TASK_WAKING);
4300
4301 /*
4302 * If the owning (remote) CPU is still in the middle of schedule() with
4303 * this task as prev, considering queueing p on the remote CPUs wake_list
4304 * which potentially sends an IPI instead of spinning on p->on_cpu to
4305 * let the waker make forward progress. This is safe because IRQs are
4306 * disabled and the IPI will deliver after on_cpu is cleared.
4307 *
4308 * Ensure we load task_cpu(p) after p->on_cpu:
4309 *
4310 * set_task_cpu(p, cpu);
4311 * STORE p->cpu = @cpu
4312 * __schedule() (switch to task 'p')
4313 * LOCK rq->lock
4314 * smp_mb__after_spin_lock() smp_cond_load_acquire(&p->on_cpu)
4315 * STORE p->on_cpu = 1 LOAD p->cpu
4316 *
4317 * to ensure we observe the correct CPU on which the task is currently
4318 * scheduling.
4319 */
4320 if (smp_load_acquire(&p->on_cpu) &&
4321 ttwu_queue_wakelist(p, task_cpu(p), wake_flags))
4322 break;
4323
4324 /*
4325 * If the owning (remote) CPU is still in the middle of schedule() with
4326 * this task as prev, wait until it's done referencing the task.
4327 *
4328 * Pairs with the smp_store_release() in finish_task().
4329 *
4330 * This ensures that tasks getting woken will be fully ordered against
4331 * their previous state and preserve Program Order.
4332 */
4333 smp_cond_load_acquire(&p->on_cpu, !VAL);
4334
4335 cpu = select_task_rq(p, p->wake_cpu, wake_flags | WF_TTWU);
4336 if (task_cpu(p) != cpu) {
4337 if (p->in_iowait) {
4338 delayacct_blkio_end(p);
4339 atomic_dec(&task_rq(p)->nr_iowait);
4340 }
4341
4342 wake_flags |= WF_MIGRATED;
4343 psi_ttwu_dequeue(p);
4344 set_task_cpu(p, cpu);
4345 }
4346 #else
4347 cpu = task_cpu(p);
4348 #endif /* CONFIG_SMP */
4349
4350 ttwu_queue(p, cpu, wake_flags);
4351 }
4352 out:
4353 if (success)
4354 ttwu_stat(p, task_cpu(p), wake_flags);
4355
4356 return success;
4357 }
4358
__task_needs_rq_lock(struct task_struct * p)4359 static bool __task_needs_rq_lock(struct task_struct *p)
4360 {
4361 unsigned int state = READ_ONCE(p->__state);
4362
4363 /*
4364 * Since pi->lock blocks try_to_wake_up(), we don't need rq->lock when
4365 * the task is blocked. Make sure to check @state since ttwu() can drop
4366 * locks at the end, see ttwu_queue_wakelist().
4367 */
4368 if (state == TASK_RUNNING || state == TASK_WAKING)
4369 return true;
4370
4371 /*
4372 * Ensure we load p->on_rq after p->__state, otherwise it would be
4373 * possible to, falsely, observe p->on_rq == 0.
4374 *
4375 * See try_to_wake_up() for a longer comment.
4376 */
4377 smp_rmb();
4378 if (p->on_rq)
4379 return true;
4380
4381 #ifdef CONFIG_SMP
4382 /*
4383 * Ensure the task has finished __schedule() and will not be referenced
4384 * anymore. Again, see try_to_wake_up() for a longer comment.
4385 */
4386 smp_rmb();
4387 smp_cond_load_acquire(&p->on_cpu, !VAL);
4388 #endif
4389
4390 return false;
4391 }
4392
4393 /**
4394 * task_call_func - Invoke a function on task in fixed state
4395 * @p: Process for which the function is to be invoked, can be @current.
4396 * @func: Function to invoke.
4397 * @arg: Argument to function.
4398 *
4399 * Fix the task in it's current state by avoiding wakeups and or rq operations
4400 * and call @func(@arg) on it. This function can use ->on_rq and task_curr()
4401 * to work out what the state is, if required. Given that @func can be invoked
4402 * with a runqueue lock held, it had better be quite lightweight.
4403 *
4404 * Returns:
4405 * Whatever @func returns
4406 */
task_call_func(struct task_struct * p,task_call_f func,void * arg)4407 int task_call_func(struct task_struct *p, task_call_f func, void *arg)
4408 {
4409 struct rq *rq = NULL;
4410 struct rq_flags rf;
4411 int ret;
4412
4413 raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
4414
4415 if (__task_needs_rq_lock(p))
4416 rq = __task_rq_lock(p, &rf);
4417
4418 /*
4419 * At this point the task is pinned; either:
4420 * - blocked and we're holding off wakeups (pi->lock)
4421 * - woken, and we're holding off enqueue (rq->lock)
4422 * - queued, and we're holding off schedule (rq->lock)
4423 * - running, and we're holding off de-schedule (rq->lock)
4424 *
4425 * The called function (@func) can use: task_curr(), p->on_rq and
4426 * p->__state to differentiate between these states.
4427 */
4428 ret = func(p, arg);
4429
4430 if (rq)
4431 rq_unlock(rq, &rf);
4432
4433 raw_spin_unlock_irqrestore(&p->pi_lock, rf.flags);
4434 return ret;
4435 }
4436
4437 /**
4438 * cpu_curr_snapshot - Return a snapshot of the currently running task
4439 * @cpu: The CPU on which to snapshot the task.
4440 *
4441 * Returns the task_struct pointer of the task "currently" running on
4442 * the specified CPU. If the same task is running on that CPU throughout,
4443 * the return value will be a pointer to that task's task_struct structure.
4444 * If the CPU did any context switches even vaguely concurrently with the
4445 * execution of this function, the return value will be a pointer to the
4446 * task_struct structure of a randomly chosen task that was running on
4447 * that CPU somewhere around the time that this function was executing.
4448 *
4449 * If the specified CPU was offline, the return value is whatever it
4450 * is, perhaps a pointer to the task_struct structure of that CPU's idle
4451 * task, but there is no guarantee. Callers wishing a useful return
4452 * value must take some action to ensure that the specified CPU remains
4453 * online throughout.
4454 *
4455 * This function executes full memory barriers before and after fetching
4456 * the pointer, which permits the caller to confine this function's fetch
4457 * with respect to the caller's accesses to other shared variables.
4458 */
cpu_curr_snapshot(int cpu)4459 struct task_struct *cpu_curr_snapshot(int cpu)
4460 {
4461 struct task_struct *t;
4462
4463 smp_mb(); /* Pairing determined by caller's synchronization design. */
4464 t = rcu_dereference(cpu_curr(cpu));
4465 smp_mb(); /* Pairing determined by caller's synchronization design. */
4466 return t;
4467 }
4468
4469 /**
4470 * wake_up_process - Wake up a specific process
4471 * @p: The process to be woken up.
4472 *
4473 * Attempt to wake up the nominated process and move it to the set of runnable
4474 * processes.
4475 *
4476 * Return: 1 if the process was woken up, 0 if it was already running.
4477 *
4478 * This function executes a full memory barrier before accessing the task state.
4479 */
wake_up_process(struct task_struct * p)4480 int wake_up_process(struct task_struct *p)
4481 {
4482 return try_to_wake_up(p, TASK_NORMAL, 0);
4483 }
4484 EXPORT_SYMBOL(wake_up_process);
4485
wake_up_state(struct task_struct * p,unsigned int state)4486 int wake_up_state(struct task_struct *p, unsigned int state)
4487 {
4488 return try_to_wake_up(p, state, 0);
4489 }
4490
4491 /*
4492 * Perform scheduler related setup for a newly forked process p.
4493 * p is forked by current.
4494 *
4495 * __sched_fork() is basic setup used by init_idle() too:
4496 */
__sched_fork(unsigned long clone_flags,struct task_struct * p)4497 static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
4498 {
4499 p->on_rq = 0;
4500
4501 p->se.on_rq = 0;
4502 p->se.exec_start = 0;
4503 p->se.sum_exec_runtime = 0;
4504 p->se.prev_sum_exec_runtime = 0;
4505 p->se.nr_migrations = 0;
4506 p->se.vruntime = 0;
4507 p->se.vlag = 0;
4508 p->se.slice = sysctl_sched_base_slice;
4509 INIT_LIST_HEAD(&p->se.group_node);
4510
4511 #ifdef CONFIG_FAIR_GROUP_SCHED
4512 p->se.cfs_rq = NULL;
4513 #endif
4514
4515 #ifdef CONFIG_SCHEDSTATS
4516 /* Even if schedstat is disabled, there should not be garbage */
4517 memset(&p->stats, 0, sizeof(p->stats));
4518 #endif
4519
4520 RB_CLEAR_NODE(&p->dl.rb_node);
4521 init_dl_task_timer(&p->dl);
4522 init_dl_inactive_task_timer(&p->dl);
4523 __dl_clear_params(p);
4524
4525 INIT_LIST_HEAD(&p->rt.run_list);
4526 p->rt.timeout = 0;
4527 p->rt.time_slice = sched_rr_timeslice;
4528 p->rt.on_rq = 0;
4529 p->rt.on_list = 0;
4530
4531 #ifdef CONFIG_PREEMPT_NOTIFIERS
4532 INIT_HLIST_HEAD(&p->preempt_notifiers);
4533 #endif
4534
4535 #ifdef CONFIG_COMPACTION
4536 p->capture_control = NULL;
4537 #endif
4538 init_numa_balancing(clone_flags, p);
4539 #ifdef CONFIG_SMP
4540 p->wake_entry.u_flags = CSD_TYPE_TTWU;
4541 p->migration_pending = NULL;
4542 #endif
4543 init_sched_mm_cid(p);
4544 }
4545
4546 DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
4547
4548 #ifdef CONFIG_NUMA_BALANCING
4549
4550 int sysctl_numa_balancing_mode;
4551
__set_numabalancing_state(bool enabled)4552 static void __set_numabalancing_state(bool enabled)
4553 {
4554 if (enabled)
4555 static_branch_enable(&sched_numa_balancing);
4556 else
4557 static_branch_disable(&sched_numa_balancing);
4558 }
4559
set_numabalancing_state(bool enabled)4560 void set_numabalancing_state(bool enabled)
4561 {
4562 if (enabled)
4563 sysctl_numa_balancing_mode = NUMA_BALANCING_NORMAL;
4564 else
4565 sysctl_numa_balancing_mode = NUMA_BALANCING_DISABLED;
4566 __set_numabalancing_state(enabled);
4567 }
4568
4569 #ifdef CONFIG_PROC_SYSCTL
reset_memory_tiering(void)4570 static void reset_memory_tiering(void)
4571 {
4572 struct pglist_data *pgdat;
4573
4574 for_each_online_pgdat(pgdat) {
4575 pgdat->nbp_threshold = 0;
4576 pgdat->nbp_th_nr_cand = node_page_state(pgdat, PGPROMOTE_CANDIDATE);
4577 pgdat->nbp_th_start = jiffies_to_msecs(jiffies);
4578 }
4579 }
4580
sysctl_numa_balancing(struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)4581 static int sysctl_numa_balancing(struct ctl_table *table, int write,
4582 void *buffer, size_t *lenp, loff_t *ppos)
4583 {
4584 struct ctl_table t;
4585 int err;
4586 int state = sysctl_numa_balancing_mode;
4587
4588 if (write && !capable(CAP_SYS_ADMIN))
4589 return -EPERM;
4590
4591 t = *table;
4592 t.data = &state;
4593 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
4594 if (err < 0)
4595 return err;
4596 if (write) {
4597 if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) &&
4598 (state & NUMA_BALANCING_MEMORY_TIERING))
4599 reset_memory_tiering();
4600 sysctl_numa_balancing_mode = state;
4601 __set_numabalancing_state(state);
4602 }
4603 return err;
4604 }
4605 #endif
4606 #endif
4607
4608 #ifdef CONFIG_SCHEDSTATS
4609
4610 DEFINE_STATIC_KEY_FALSE(sched_schedstats);
4611
set_schedstats(bool enabled)4612 static void set_schedstats(bool enabled)
4613 {
4614 if (enabled)
4615 static_branch_enable(&sched_schedstats);
4616 else
4617 static_branch_disable(&sched_schedstats);
4618 }
4619
force_schedstat_enabled(void)4620 void force_schedstat_enabled(void)
4621 {
4622 if (!schedstat_enabled()) {
4623 pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
4624 static_branch_enable(&sched_schedstats);
4625 }
4626 }
4627
setup_schedstats(char * str)4628 static int __init setup_schedstats(char *str)
4629 {
4630 int ret = 0;
4631 if (!str)
4632 goto out;
4633
4634 if (!strcmp(str, "enable")) {
4635 set_schedstats(true);
4636 ret = 1;
4637 } else if (!strcmp(str, "disable")) {
4638 set_schedstats(false);
4639 ret = 1;
4640 }
4641 out:
4642 if (!ret)
4643 pr_warn("Unable to parse schedstats=\n");
4644
4645 return ret;
4646 }
4647 __setup("schedstats=", setup_schedstats);
4648
4649 #ifdef CONFIG_PROC_SYSCTL
sysctl_schedstats(struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)4650 static int sysctl_schedstats(struct ctl_table *table, int write, void *buffer,
4651 size_t *lenp, loff_t *ppos)
4652 {
4653 struct ctl_table t;
4654 int err;
4655 int state = static_branch_likely(&sched_schedstats);
4656
4657 if (write && !capable(CAP_SYS_ADMIN))
4658 return -EPERM;
4659
4660 t = *table;
4661 t.data = &state;
4662 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
4663 if (err < 0)
4664 return err;
4665 if (write)
4666 set_schedstats(state);
4667 return err;
4668 }
4669 #endif /* CONFIG_PROC_SYSCTL */
4670 #endif /* CONFIG_SCHEDSTATS */
4671
4672 #ifdef CONFIG_SYSCTL
4673 static struct ctl_table sched_core_sysctls[] = {
4674 #ifdef CONFIG_SCHEDSTATS
4675 {
4676 .procname = "sched_schedstats",
4677 .data = NULL,
4678 .maxlen = sizeof(unsigned int),
4679 .mode = 0644,
4680 .proc_handler = sysctl_schedstats,
4681 .extra1 = SYSCTL_ZERO,
4682 .extra2 = SYSCTL_ONE,
4683 },
4684 #endif /* CONFIG_SCHEDSTATS */
4685 #ifdef CONFIG_UCLAMP_TASK
4686 {
4687 .procname = "sched_util_clamp_min",
4688 .data = &sysctl_sched_uclamp_util_min,
4689 .maxlen = sizeof(unsigned int),
4690 .mode = 0644,
4691 .proc_handler = sysctl_sched_uclamp_handler,
4692 },
4693 {
4694 .procname = "sched_util_clamp_max",
4695 .data = &sysctl_sched_uclamp_util_max,
4696 .maxlen = sizeof(unsigned int),
4697 .mode = 0644,
4698 .proc_handler = sysctl_sched_uclamp_handler,
4699 },
4700 {
4701 .procname = "sched_util_clamp_min_rt_default",
4702 .data = &sysctl_sched_uclamp_util_min_rt_default,
4703 .maxlen = sizeof(unsigned int),
4704 .mode = 0644,
4705 .proc_handler = sysctl_sched_uclamp_handler,
4706 },
4707 #endif /* CONFIG_UCLAMP_TASK */
4708 #ifdef CONFIG_NUMA_BALANCING
4709 {
4710 .procname = "numa_balancing",
4711 .data = NULL, /* filled in by handler */
4712 .maxlen = sizeof(unsigned int),
4713 .mode = 0644,
4714 .proc_handler = sysctl_numa_balancing,
4715 .extra1 = SYSCTL_ZERO,
4716 .extra2 = SYSCTL_FOUR,
4717 },
4718 #endif /* CONFIG_NUMA_BALANCING */
4719 {}
4720 };
sched_core_sysctl_init(void)4721 static int __init sched_core_sysctl_init(void)
4722 {
4723 register_sysctl_init("kernel", sched_core_sysctls);
4724 return 0;
4725 }
4726 late_initcall(sched_core_sysctl_init);
4727 #endif /* CONFIG_SYSCTL */
4728
4729 /*
4730 * fork()/clone()-time setup:
4731 */
sched_fork(unsigned long clone_flags,struct task_struct * p)4732 int sched_fork(unsigned long clone_flags, struct task_struct *p)
4733 {
4734 __sched_fork(clone_flags, p);
4735 /*
4736 * We mark the process as NEW here. This guarantees that
4737 * nobody will actually run it, and a signal or other external
4738 * event cannot wake it up and insert it on the runqueue either.
4739 */
4740 p->__state = TASK_NEW;
4741
4742 /*
4743 * Make sure we do not leak PI boosting priority to the child.
4744 */
4745 p->prio = current->normal_prio;
4746
4747 uclamp_fork(p);
4748
4749 /*
4750 * Revert to default priority/policy on fork if requested.
4751 */
4752 if (unlikely(p->sched_reset_on_fork)) {
4753 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
4754 p->policy = SCHED_NORMAL;
4755 p->static_prio = NICE_TO_PRIO(0);
4756 p->rt_priority = 0;
4757 } else if (PRIO_TO_NICE(p->static_prio) < 0)
4758 p->static_prio = NICE_TO_PRIO(0);
4759
4760 p->prio = p->normal_prio = p->static_prio;
4761 set_load_weight(p, false);
4762
4763 /*
4764 * We don't need the reset flag anymore after the fork. It has
4765 * fulfilled its duty:
4766 */
4767 p->sched_reset_on_fork = 0;
4768 }
4769
4770 if (dl_prio(p->prio))
4771 return -EAGAIN;
4772 else if (rt_prio(p->prio))
4773 p->sched_class = &rt_sched_class;
4774 else
4775 p->sched_class = &fair_sched_class;
4776
4777 init_entity_runnable_average(&p->se);
4778
4779
4780 #ifdef CONFIG_SCHED_INFO
4781 if (likely(sched_info_on()))
4782 memset(&p->sched_info, 0, sizeof(p->sched_info));
4783 #endif
4784 #if defined(CONFIG_SMP)
4785 p->on_cpu = 0;
4786 #endif
4787 init_task_preempt_count(p);
4788 #ifdef CONFIG_SMP
4789 plist_node_init(&p->pushable_tasks, MAX_PRIO);
4790 RB_CLEAR_NODE(&p->pushable_dl_tasks);
4791 #endif
4792 return 0;
4793 }
4794
sched_cgroup_fork(struct task_struct * p,struct kernel_clone_args * kargs)4795 void sched_cgroup_fork(struct task_struct *p, struct kernel_clone_args *kargs)
4796 {
4797 unsigned long flags;
4798
4799 /*
4800 * Because we're not yet on the pid-hash, p->pi_lock isn't strictly
4801 * required yet, but lockdep gets upset if rules are violated.
4802 */
4803 raw_spin_lock_irqsave(&p->pi_lock, flags);
4804 #ifdef CONFIG_CGROUP_SCHED
4805 if (1) {
4806 struct task_group *tg;
4807 tg = container_of(kargs->cset->subsys[cpu_cgrp_id],
4808 struct task_group, css);
4809 tg = autogroup_task_group(p, tg);
4810 p->sched_task_group = tg;
4811 }
4812 #endif
4813 rseq_migrate(p);
4814 /*
4815 * We're setting the CPU for the first time, we don't migrate,
4816 * so use __set_task_cpu().
4817 */
4818 __set_task_cpu(p, smp_processor_id());
4819 if (p->sched_class->task_fork)
4820 p->sched_class->task_fork(p);
4821 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4822 }
4823
sched_post_fork(struct task_struct * p)4824 void sched_post_fork(struct task_struct *p)
4825 {
4826 uclamp_post_fork(p);
4827 }
4828
to_ratio(u64 period,u64 runtime)4829 unsigned long to_ratio(u64 period, u64 runtime)
4830 {
4831 if (runtime == RUNTIME_INF)
4832 return BW_UNIT;
4833
4834 /*
4835 * Doing this here saves a lot of checks in all
4836 * the calling paths, and returning zero seems
4837 * safe for them anyway.
4838 */
4839 if (period == 0)
4840 return 0;
4841
4842 return div64_u64(runtime << BW_SHIFT, period);
4843 }
4844
4845 /*
4846 * wake_up_new_task - wake up a newly created task for the first time.
4847 *
4848 * This function will do some initial scheduler statistics housekeeping
4849 * that must be done for every newly created context, then puts the task
4850 * on the runqueue and wakes it.
4851 */
wake_up_new_task(struct task_struct * p)4852 void wake_up_new_task(struct task_struct *p)
4853 {
4854 struct rq_flags rf;
4855 struct rq *rq;
4856
4857 raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
4858 WRITE_ONCE(p->__state, TASK_RUNNING);
4859 #ifdef CONFIG_SMP
4860 /*
4861 * Fork balancing, do it here and not earlier because:
4862 * - cpus_ptr can change in the fork path
4863 * - any previously selected CPU might disappear through hotplug
4864 *
4865 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq,
4866 * as we're not fully set-up yet.
4867 */
4868 p->recent_used_cpu = task_cpu(p);
4869 rseq_migrate(p);
4870 __set_task_cpu(p, select_task_rq(p, task_cpu(p), WF_FORK));
4871 #endif
4872 rq = __task_rq_lock(p, &rf);
4873 update_rq_clock(rq);
4874 post_init_entity_util_avg(p);
4875
4876 activate_task(rq, p, ENQUEUE_NOCLOCK);
4877 trace_sched_wakeup_new(p);
4878 check_preempt_curr(rq, p, WF_FORK);
4879 #ifdef CONFIG_SMP
4880 if (p->sched_class->task_woken) {
4881 /*
4882 * Nothing relies on rq->lock after this, so it's fine to
4883 * drop it.
4884 */
4885 rq_unpin_lock(rq, &rf);
4886 p->sched_class->task_woken(rq, p);
4887 rq_repin_lock(rq, &rf);
4888 }
4889 #endif
4890 task_rq_unlock(rq, p, &rf);
4891 }
4892
4893 #ifdef CONFIG_PREEMPT_NOTIFIERS
4894
4895 static DEFINE_STATIC_KEY_FALSE(preempt_notifier_key);
4896
preempt_notifier_inc(void)4897 void preempt_notifier_inc(void)
4898 {
4899 static_branch_inc(&preempt_notifier_key);
4900 }
4901 EXPORT_SYMBOL_GPL(preempt_notifier_inc);
4902
preempt_notifier_dec(void)4903 void preempt_notifier_dec(void)
4904 {
4905 static_branch_dec(&preempt_notifier_key);
4906 }
4907 EXPORT_SYMBOL_GPL(preempt_notifier_dec);
4908
4909 /**
4910 * preempt_notifier_register - tell me when current is being preempted & rescheduled
4911 * @notifier: notifier struct to register
4912 */
preempt_notifier_register(struct preempt_notifier * notifier)4913 void preempt_notifier_register(struct preempt_notifier *notifier)
4914 {
4915 if (!static_branch_unlikely(&preempt_notifier_key))
4916 WARN(1, "registering preempt_notifier while notifiers disabled\n");
4917
4918 hlist_add_head(¬ifier->link, ¤t->preempt_notifiers);
4919 }
4920 EXPORT_SYMBOL_GPL(preempt_notifier_register);
4921
4922 /**
4923 * preempt_notifier_unregister - no longer interested in preemption notifications
4924 * @notifier: notifier struct to unregister
4925 *
4926 * This is *not* safe to call from within a preemption notifier.
4927 */
preempt_notifier_unregister(struct preempt_notifier * notifier)4928 void preempt_notifier_unregister(struct preempt_notifier *notifier)
4929 {
4930 hlist_del(¬ifier->link);
4931 }
4932 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
4933
__fire_sched_in_preempt_notifiers(struct task_struct * curr)4934 static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
4935 {
4936 struct preempt_notifier *notifier;
4937
4938 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
4939 notifier->ops->sched_in(notifier, raw_smp_processor_id());
4940 }
4941
fire_sched_in_preempt_notifiers(struct task_struct * curr)4942 static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
4943 {
4944 if (static_branch_unlikely(&preempt_notifier_key))
4945 __fire_sched_in_preempt_notifiers(curr);
4946 }
4947
4948 static void
__fire_sched_out_preempt_notifiers(struct task_struct * curr,struct task_struct * next)4949 __fire_sched_out_preempt_notifiers(struct task_struct *curr,
4950 struct task_struct *next)
4951 {
4952 struct preempt_notifier *notifier;
4953
4954 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
4955 notifier->ops->sched_out(notifier, next);
4956 }
4957
4958 static __always_inline void
fire_sched_out_preempt_notifiers(struct task_struct * curr,struct task_struct * next)4959 fire_sched_out_preempt_notifiers(struct task_struct *curr,
4960 struct task_struct *next)
4961 {
4962 if (static_branch_unlikely(&preempt_notifier_key))
4963 __fire_sched_out_preempt_notifiers(curr, next);
4964 }
4965
4966 #else /* !CONFIG_PREEMPT_NOTIFIERS */
4967
fire_sched_in_preempt_notifiers(struct task_struct * curr)4968 static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
4969 {
4970 }
4971
4972 static inline void
fire_sched_out_preempt_notifiers(struct task_struct * curr,struct task_struct * next)4973 fire_sched_out_preempt_notifiers(struct task_struct *curr,
4974 struct task_struct *next)
4975 {
4976 }
4977
4978 #endif /* CONFIG_PREEMPT_NOTIFIERS */
4979
prepare_task(struct task_struct * next)4980 static inline void prepare_task(struct task_struct *next)
4981 {
4982 #ifdef CONFIG_SMP
4983 /*
4984 * Claim the task as running, we do this before switching to it
4985 * such that any running task will have this set.
4986 *
4987 * See the smp_load_acquire(&p->on_cpu) case in ttwu() and
4988 * its ordering comment.
4989 */
4990 WRITE_ONCE(next->on_cpu, 1);
4991 #endif
4992 }
4993
finish_task(struct task_struct * prev)4994 static inline void finish_task(struct task_struct *prev)
4995 {
4996 #ifdef CONFIG_SMP
4997 /*
4998 * This must be the very last reference to @prev from this CPU. After
4999 * p->on_cpu is cleared, the task can be moved to a different CPU. We
5000 * must ensure this doesn't happen until the switch is completely
5001 * finished.
5002 *
5003 * In particular, the load of prev->state in finish_task_switch() must
5004 * happen before this.
5005 *
5006 * Pairs with the smp_cond_load_acquire() in try_to_wake_up().
5007 */
5008 smp_store_release(&prev->on_cpu, 0);
5009 #endif
5010 }
5011
5012 #ifdef CONFIG_SMP
5013
do_balance_callbacks(struct rq * rq,struct balance_callback * head)5014 static void do_balance_callbacks(struct rq *rq, struct balance_callback *head)
5015 {
5016 void (*func)(struct rq *rq);
5017 struct balance_callback *next;
5018
5019 lockdep_assert_rq_held(rq);
5020
5021 while (head) {
5022 func = (void (*)(struct rq *))head->func;
5023 next = head->next;
5024 head->next = NULL;
5025 head = next;
5026
5027 func(rq);
5028 }
5029 }
5030
5031 static void balance_push(struct rq *rq);
5032
5033 /*
5034 * balance_push_callback is a right abuse of the callback interface and plays
5035 * by significantly different rules.
5036 *
5037 * Where the normal balance_callback's purpose is to be ran in the same context
5038 * that queued it (only later, when it's safe to drop rq->lock again),
5039 * balance_push_callback is specifically targeted at __schedule().
5040 *
5041 * This abuse is tolerated because it places all the unlikely/odd cases behind
5042 * a single test, namely: rq->balance_callback == NULL.
5043 */
5044 struct balance_callback balance_push_callback = {
5045 .next = NULL,
5046 .func = balance_push,
5047 };
5048
5049 static inline struct balance_callback *
__splice_balance_callbacks(struct rq * rq,bool split)5050 __splice_balance_callbacks(struct rq *rq, bool split)
5051 {
5052 struct balance_callback *head = rq->balance_callback;
5053
5054 if (likely(!head))
5055 return NULL;
5056
5057 lockdep_assert_rq_held(rq);
5058 /*
5059 * Must not take balance_push_callback off the list when
5060 * splice_balance_callbacks() and balance_callbacks() are not
5061 * in the same rq->lock section.
5062 *
5063 * In that case it would be possible for __schedule() to interleave
5064 * and observe the list empty.
5065 */
5066 if (split && head == &balance_push_callback)
5067 head = NULL;
5068 else
5069 rq->balance_callback = NULL;
5070
5071 return head;
5072 }
5073
splice_balance_callbacks(struct rq * rq)5074 static inline struct balance_callback *splice_balance_callbacks(struct rq *rq)
5075 {
5076 return __splice_balance_callbacks(rq, true);
5077 }
5078
__balance_callbacks(struct rq * rq)5079 static void __balance_callbacks(struct rq *rq)
5080 {
5081 do_balance_callbacks(rq, __splice_balance_callbacks(rq, false));
5082 }
5083
balance_callbacks(struct rq * rq,struct balance_callback * head)5084 static inline void balance_callbacks(struct rq *rq, struct balance_callback *head)
5085 {
5086 unsigned long flags;
5087
5088 if (unlikely(head)) {
5089 raw_spin_rq_lock_irqsave(rq, flags);
5090 do_balance_callbacks(rq, head);
5091 raw_spin_rq_unlock_irqrestore(rq, flags);
5092 }
5093 }
5094
5095 #else
5096
__balance_callbacks(struct rq * rq)5097 static inline void __balance_callbacks(struct rq *rq)
5098 {
5099 }
5100
splice_balance_callbacks(struct rq * rq)5101 static inline struct balance_callback *splice_balance_callbacks(struct rq *rq)
5102 {
5103 return NULL;
5104 }
5105
balance_callbacks(struct rq * rq,struct balance_callback * head)5106 static inline void balance_callbacks(struct rq *rq, struct balance_callback *head)
5107 {
5108 }
5109
5110 #endif
5111
5112 static inline void
prepare_lock_switch(struct rq * rq,struct task_struct * next,struct rq_flags * rf)5113 prepare_lock_switch(struct rq *rq, struct task_struct *next, struct rq_flags *rf)
5114 {
5115 /*
5116 * Since the runqueue lock will be released by the next
5117 * task (which is an invalid locking op but in the case
5118 * of the scheduler it's an obvious special-case), so we
5119 * do an early lockdep release here:
5120 */
5121 rq_unpin_lock(rq, rf);
5122 spin_release(&__rq_lockp(rq)->dep_map, _THIS_IP_);
5123 #ifdef CONFIG_DEBUG_SPINLOCK
5124 /* this is a valid case when another task releases the spinlock */
5125 rq_lockp(rq)->owner = next;
5126 #endif
5127 }
5128
finish_lock_switch(struct rq * rq)5129 static inline void finish_lock_switch(struct rq *rq)
5130 {
5131 /*
5132 * If we are tracking spinlock dependencies then we have to
5133 * fix up the runqueue lock - which gets 'carried over' from
5134 * prev into current:
5135 */
5136 spin_acquire(&__rq_lockp(rq)->dep_map, 0, 0, _THIS_IP_);
5137 __balance_callbacks(rq);
5138 raw_spin_rq_unlock_irq(rq);
5139 }
5140
5141 /*
5142 * NOP if the arch has not defined these:
5143 */
5144
5145 #ifndef prepare_arch_switch
5146 # define prepare_arch_switch(next) do { } while (0)
5147 #endif
5148
5149 #ifndef finish_arch_post_lock_switch
5150 # define finish_arch_post_lock_switch() do { } while (0)
5151 #endif
5152
kmap_local_sched_out(void)5153 static inline void kmap_local_sched_out(void)
5154 {
5155 #ifdef CONFIG_KMAP_LOCAL
5156 if (unlikely(current->kmap_ctrl.idx))
5157 __kmap_local_sched_out();
5158 #endif
5159 }
5160
kmap_local_sched_in(void)5161 static inline void kmap_local_sched_in(void)
5162 {
5163 #ifdef CONFIG_KMAP_LOCAL
5164 if (unlikely(current->kmap_ctrl.idx))
5165 __kmap_local_sched_in();
5166 #endif
5167 }
5168
5169 /**
5170 * prepare_task_switch - prepare to switch tasks
5171 * @rq: the runqueue preparing to switch
5172 * @prev: the current task that is being switched out
5173 * @next: the task we are going to switch to.
5174 *
5175 * This is called with the rq lock held and interrupts off. It must
5176 * be paired with a subsequent finish_task_switch after the context
5177 * switch.
5178 *
5179 * prepare_task_switch sets up locking and calls architecture specific
5180 * hooks.
5181 */
5182 static inline void
prepare_task_switch(struct rq * rq,struct task_struct * prev,struct task_struct * next)5183 prepare_task_switch(struct rq *rq, struct task_struct *prev,
5184 struct task_struct *next)
5185 {
5186 kcov_prepare_switch(prev);
5187 sched_info_switch(rq, prev, next);
5188 perf_event_task_sched_out(prev, next);
5189 rseq_preempt(prev);
5190 fire_sched_out_preempt_notifiers(prev, next);
5191 kmap_local_sched_out();
5192 prepare_task(next);
5193 prepare_arch_switch(next);
5194 }
5195
5196 /**
5197 * finish_task_switch - clean up after a task-switch
5198 * @prev: the thread we just switched away from.
5199 *
5200 * finish_task_switch must be called after the context switch, paired
5201 * with a prepare_task_switch call before the context switch.
5202 * finish_task_switch will reconcile locking set up by prepare_task_switch,
5203 * and do any other architecture-specific cleanup actions.
5204 *
5205 * Note that we may have delayed dropping an mm in context_switch(). If
5206 * so, we finish that here outside of the runqueue lock. (Doing it
5207 * with the lock held can cause deadlocks; see schedule() for
5208 * details.)
5209 *
5210 * The context switch have flipped the stack from under us and restored the
5211 * local variables which were saved when this task called schedule() in the
5212 * past. prev == current is still correct but we need to recalculate this_rq
5213 * because prev may have moved to another CPU.
5214 */
finish_task_switch(struct task_struct * prev)5215 static struct rq *finish_task_switch(struct task_struct *prev)
5216 __releases(rq->lock)
5217 {
5218 struct rq *rq = this_rq();
5219 struct mm_struct *mm = rq->prev_mm;
5220 unsigned int prev_state;
5221
5222 /*
5223 * The previous task will have left us with a preempt_count of 2
5224 * because it left us after:
5225 *
5226 * schedule()
5227 * preempt_disable(); // 1
5228 * __schedule()
5229 * raw_spin_lock_irq(&rq->lock) // 2
5230 *
5231 * Also, see FORK_PREEMPT_COUNT.
5232 */
5233 if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
5234 "corrupted preempt_count: %s/%d/0x%x\n",
5235 current->comm, current->pid, preempt_count()))
5236 preempt_count_set(FORK_PREEMPT_COUNT);
5237
5238 rq->prev_mm = NULL;
5239
5240 /*
5241 * A task struct has one reference for the use as "current".
5242 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
5243 * schedule one last time. The schedule call will never return, and
5244 * the scheduled task must drop that reference.
5245 *
5246 * We must observe prev->state before clearing prev->on_cpu (in
5247 * finish_task), otherwise a concurrent wakeup can get prev
5248 * running on another CPU and we could rave with its RUNNING -> DEAD
5249 * transition, resulting in a double drop.
5250 */
5251 prev_state = READ_ONCE(prev->__state);
5252 vtime_task_switch(prev);
5253 perf_event_task_sched_in(prev, current);
5254 finish_task(prev);
5255 tick_nohz_task_switch();
5256 finish_lock_switch(rq);
5257 finish_arch_post_lock_switch();
5258 kcov_finish_switch(current);
5259 /*
5260 * kmap_local_sched_out() is invoked with rq::lock held and
5261 * interrupts disabled. There is no requirement for that, but the
5262 * sched out code does not have an interrupt enabled section.
5263 * Restoring the maps on sched in does not require interrupts being
5264 * disabled either.
5265 */
5266 kmap_local_sched_in();
5267
5268 fire_sched_in_preempt_notifiers(current);
5269 /*
5270 * When switching through a kernel thread, the loop in
5271 * membarrier_{private,global}_expedited() may have observed that
5272 * kernel thread and not issued an IPI. It is therefore possible to
5273 * schedule between user->kernel->user threads without passing though
5274 * switch_mm(). Membarrier requires a barrier after storing to
5275 * rq->curr, before returning to userspace, so provide them here:
5276 *
5277 * - a full memory barrier for {PRIVATE,GLOBAL}_EXPEDITED, implicitly
5278 * provided by mmdrop_lazy_tlb(),
5279 * - a sync_core for SYNC_CORE.
5280 */
5281 if (mm) {
5282 membarrier_mm_sync_core_before_usermode(mm);
5283 mmdrop_lazy_tlb_sched(mm);
5284 }
5285
5286 if (unlikely(prev_state == TASK_DEAD)) {
5287 if (prev->sched_class->task_dead)
5288 prev->sched_class->task_dead(prev);
5289
5290 /* Task is done with its stack. */
5291 put_task_stack(prev);
5292
5293 put_task_struct_rcu_user(prev);
5294 }
5295
5296 return rq;
5297 }
5298
5299 /**
5300 * schedule_tail - first thing a freshly forked thread must call.
5301 * @prev: the thread we just switched away from.
5302 */
schedule_tail(struct task_struct * prev)5303 asmlinkage __visible void schedule_tail(struct task_struct *prev)
5304 __releases(rq->lock)
5305 {
5306 /*
5307 * New tasks start with FORK_PREEMPT_COUNT, see there and
5308 * finish_task_switch() for details.
5309 *
5310 * finish_task_switch() will drop rq->lock() and lower preempt_count
5311 * and the preempt_enable() will end up enabling preemption (on
5312 * PREEMPT_COUNT kernels).
5313 */
5314
5315 finish_task_switch(prev);
5316 preempt_enable();
5317
5318 if (current->set_child_tid)
5319 put_user(task_pid_vnr(current), current->set_child_tid);
5320
5321 calculate_sigpending();
5322 }
5323
5324 /*
5325 * context_switch - switch to the new MM and the new thread's register state.
5326 */
5327 static __always_inline struct rq *
context_switch(struct rq * rq,struct task_struct * prev,struct task_struct * next,struct rq_flags * rf)5328 context_switch(struct rq *rq, struct task_struct *prev,
5329 struct task_struct *next, struct rq_flags *rf)
5330 {
5331 prepare_task_switch(rq, prev, next);
5332
5333 /*
5334 * For paravirt, this is coupled with an exit in switch_to to
5335 * combine the page table reload and the switch backend into
5336 * one hypercall.
5337 */
5338 arch_start_context_switch(prev);
5339
5340 /*
5341 * kernel -> kernel lazy + transfer active
5342 * user -> kernel lazy + mmgrab_lazy_tlb() active
5343 *
5344 * kernel -> user switch + mmdrop_lazy_tlb() active
5345 * user -> user switch
5346 *
5347 * switch_mm_cid() needs to be updated if the barriers provided
5348 * by context_switch() are modified.
5349 */
5350 if (!next->mm) { // to kernel
5351 enter_lazy_tlb(prev->active_mm, next);
5352
5353 next->active_mm = prev->active_mm;
5354 if (prev->mm) // from user
5355 mmgrab_lazy_tlb(prev->active_mm);
5356 else
5357 prev->active_mm = NULL;
5358 } else { // to user
5359 membarrier_switch_mm(rq, prev->active_mm, next->mm);
5360 /*
5361 * sys_membarrier() requires an smp_mb() between setting
5362 * rq->curr / membarrier_switch_mm() and returning to userspace.
5363 *
5364 * The below provides this either through switch_mm(), or in
5365 * case 'prev->active_mm == next->mm' through
5366 * finish_task_switch()'s mmdrop().
5367 */
5368 switch_mm_irqs_off(prev->active_mm, next->mm, next);
5369 lru_gen_use_mm(next->mm);
5370
5371 if (!prev->mm) { // from kernel
5372 /* will mmdrop_lazy_tlb() in finish_task_switch(). */
5373 rq->prev_mm = prev->active_mm;
5374 prev->active_mm = NULL;
5375 }
5376 }
5377
5378 /* switch_mm_cid() requires the memory barriers above. */
5379 switch_mm_cid(rq, prev, next);
5380
5381 prepare_lock_switch(rq, next, rf);
5382
5383 /* Here we just switch the register state and the stack. */
5384 switch_to(prev, next, prev);
5385 barrier();
5386
5387 return finish_task_switch(prev);
5388 }
5389
5390 /*
5391 * nr_running and nr_context_switches:
5392 *
5393 * externally visible scheduler statistics: current number of runnable
5394 * threads, total number of context switches performed since bootup.
5395 */
nr_running(void)5396 unsigned int nr_running(void)
5397 {
5398 unsigned int i, sum = 0;
5399
5400 for_each_online_cpu(i)
5401 sum += cpu_rq(i)->nr_running;
5402
5403 return sum;
5404 }
5405
5406 /*
5407 * Check if only the current task is running on the CPU.
5408 *
5409 * Caution: this function does not check that the caller has disabled
5410 * preemption, thus the result might have a time-of-check-to-time-of-use
5411 * race. The caller is responsible to use it correctly, for example:
5412 *
5413 * - from a non-preemptible section (of course)
5414 *
5415 * - from a thread that is bound to a single CPU
5416 *
5417 * - in a loop with very short iterations (e.g. a polling loop)
5418 */
single_task_running(void)5419 bool single_task_running(void)
5420 {
5421 return raw_rq()->nr_running == 1;
5422 }
5423 EXPORT_SYMBOL(single_task_running);
5424
nr_context_switches_cpu(int cpu)5425 unsigned long long nr_context_switches_cpu(int cpu)
5426 {
5427 return cpu_rq(cpu)->nr_switches;
5428 }
5429
nr_context_switches(void)5430 unsigned long long nr_context_switches(void)
5431 {
5432 int i;
5433 unsigned long long sum = 0;
5434
5435 for_each_possible_cpu(i)
5436 sum += cpu_rq(i)->nr_switches;
5437
5438 return sum;
5439 }
5440
5441 /*
5442 * Consumers of these two interfaces, like for example the cpuidle menu
5443 * governor, are using nonsensical data. Preferring shallow idle state selection
5444 * for a CPU that has IO-wait which might not even end up running the task when
5445 * it does become runnable.
5446 */
5447
nr_iowait_cpu(int cpu)5448 unsigned int nr_iowait_cpu(int cpu)
5449 {
5450 return atomic_read(&cpu_rq(cpu)->nr_iowait);
5451 }
5452
5453 /*
5454 * IO-wait accounting, and how it's mostly bollocks (on SMP).
5455 *
5456 * The idea behind IO-wait account is to account the idle time that we could
5457 * have spend running if it were not for IO. That is, if we were to improve the
5458 * storage performance, we'd have a proportional reduction in IO-wait time.
5459 *
5460 * This all works nicely on UP, where, when a task blocks on IO, we account
5461 * idle time as IO-wait, because if the storage were faster, it could've been
5462 * running and we'd not be idle.
5463 *
5464 * This has been extended to SMP, by doing the same for each CPU. This however
5465 * is broken.
5466 *
5467 * Imagine for instance the case where two tasks block on one CPU, only the one
5468 * CPU will have IO-wait accounted, while the other has regular idle. Even
5469 * though, if the storage were faster, both could've ran at the same time,
5470 * utilising both CPUs.
5471 *
5472 * This means, that when looking globally, the current IO-wait accounting on
5473 * SMP is a lower bound, by reason of under accounting.
5474 *
5475 * Worse, since the numbers are provided per CPU, they are sometimes
5476 * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly
5477 * associated with any one particular CPU, it can wake to another CPU than it
5478 * blocked on. This means the per CPU IO-wait number is meaningless.
5479 *
5480 * Task CPU affinities can make all that even more 'interesting'.
5481 */
5482
nr_iowait(void)5483 unsigned int nr_iowait(void)
5484 {
5485 unsigned int i, sum = 0;
5486
5487 for_each_possible_cpu(i)
5488 sum += nr_iowait_cpu(i);
5489
5490 return sum;
5491 }
5492
5493 #ifdef CONFIG_SMP
5494
5495 /*
5496 * sched_exec - execve() is a valuable balancing opportunity, because at
5497 * this point the task has the smallest effective memory and cache footprint.
5498 */
sched_exec(void)5499 void sched_exec(void)
5500 {
5501 struct task_struct *p = current;
5502 struct migration_arg arg;
5503 int dest_cpu;
5504
5505 scoped_guard (raw_spinlock_irqsave, &p->pi_lock) {
5506 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), WF_EXEC);
5507 if (dest_cpu == smp_processor_id())
5508 return;
5509
5510 if (unlikely(!cpu_active(dest_cpu)))
5511 return;
5512
5513 arg = (struct migration_arg){ p, dest_cpu };
5514 }
5515 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
5516 }
5517
5518 #endif
5519
5520 DEFINE_PER_CPU(struct kernel_stat, kstat);
5521 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
5522
5523 EXPORT_PER_CPU_SYMBOL(kstat);
5524 EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
5525
5526 /*
5527 * The function fair_sched_class.update_curr accesses the struct curr
5528 * and its field curr->exec_start; when called from task_sched_runtime(),
5529 * we observe a high rate of cache misses in practice.
5530 * Prefetching this data results in improved performance.
5531 */
prefetch_curr_exec_start(struct task_struct * p)5532 static inline void prefetch_curr_exec_start(struct task_struct *p)
5533 {
5534 #ifdef CONFIG_FAIR_GROUP_SCHED
5535 struct sched_entity *curr = (&p->se)->cfs_rq->curr;
5536 #else
5537 struct sched_entity *curr = (&task_rq(p)->cfs)->curr;
5538 #endif
5539 prefetch(curr);
5540 prefetch(&curr->exec_start);
5541 }
5542
5543 /*
5544 * Return accounted runtime for the task.
5545 * In case the task is currently running, return the runtime plus current's
5546 * pending runtime that have not been accounted yet.
5547 */
task_sched_runtime(struct task_struct * p)5548 unsigned long long task_sched_runtime(struct task_struct *p)
5549 {
5550 struct rq_flags rf;
5551 struct rq *rq;
5552 u64 ns;
5553
5554 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
5555 /*
5556 * 64-bit doesn't need locks to atomically read a 64-bit value.
5557 * So we have a optimization chance when the task's delta_exec is 0.
5558 * Reading ->on_cpu is racy, but this is ok.
5559 *
5560 * If we race with it leaving CPU, we'll take a lock. So we're correct.
5561 * If we race with it entering CPU, unaccounted time is 0. This is
5562 * indistinguishable from the read occurring a few cycles earlier.
5563 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
5564 * been accounted, so we're correct here as well.
5565 */
5566 if (!p->on_cpu || !task_on_rq_queued(p))
5567 return p->se.sum_exec_runtime;
5568 #endif
5569
5570 rq = task_rq_lock(p, &rf);
5571 /*
5572 * Must be ->curr _and_ ->on_rq. If dequeued, we would
5573 * project cycles that may never be accounted to this
5574 * thread, breaking clock_gettime().
5575 */
5576 if (task_current(rq, p) && task_on_rq_queued(p)) {
5577 prefetch_curr_exec_start(p);
5578 update_rq_clock(rq);
5579 p->sched_class->update_curr(rq);
5580 }
5581 ns = p->se.sum_exec_runtime;
5582 task_rq_unlock(rq, p, &rf);
5583
5584 return ns;
5585 }
5586
5587 #ifdef CONFIG_SCHED_DEBUG
cpu_resched_latency(struct rq * rq)5588 static u64 cpu_resched_latency(struct rq *rq)
5589 {
5590 int latency_warn_ms = READ_ONCE(sysctl_resched_latency_warn_ms);
5591 u64 resched_latency, now = rq_clock(rq);
5592 static bool warned_once;
5593
5594 if (sysctl_resched_latency_warn_once && warned_once)
5595 return 0;
5596
5597 if (!need_resched() || !latency_warn_ms)
5598 return 0;
5599
5600 if (system_state == SYSTEM_BOOTING)
5601 return 0;
5602
5603 if (!rq->last_seen_need_resched_ns) {
5604 rq->last_seen_need_resched_ns = now;
5605 rq->ticks_without_resched = 0;
5606 return 0;
5607 }
5608
5609 rq->ticks_without_resched++;
5610 resched_latency = now - rq->last_seen_need_resched_ns;
5611 if (resched_latency <= latency_warn_ms * NSEC_PER_MSEC)
5612 return 0;
5613
5614 warned_once = true;
5615
5616 return resched_latency;
5617 }
5618
setup_resched_latency_warn_ms(char * str)5619 static int __init setup_resched_latency_warn_ms(char *str)
5620 {
5621 long val;
5622
5623 if ((kstrtol(str, 0, &val))) {
5624 pr_warn("Unable to set resched_latency_warn_ms\n");
5625 return 1;
5626 }
5627
5628 sysctl_resched_latency_warn_ms = val;
5629 return 1;
5630 }
5631 __setup("resched_latency_warn_ms=", setup_resched_latency_warn_ms);
5632 #else
cpu_resched_latency(struct rq * rq)5633 static inline u64 cpu_resched_latency(struct rq *rq) { return 0; }
5634 #endif /* CONFIG_SCHED_DEBUG */
5635
5636 /*
5637 * This function gets called by the timer code, with HZ frequency.
5638 * We call it with interrupts disabled.
5639 */
scheduler_tick(void)5640 void scheduler_tick(void)
5641 {
5642 int cpu = smp_processor_id();
5643 struct rq *rq = cpu_rq(cpu);
5644 struct task_struct *curr = rq->curr;
5645 struct rq_flags rf;
5646 unsigned long thermal_pressure;
5647 u64 resched_latency;
5648
5649 if (housekeeping_cpu(cpu, HK_TYPE_TICK))
5650 arch_scale_freq_tick();
5651
5652 sched_clock_tick();
5653
5654 rq_lock(rq, &rf);
5655
5656 update_rq_clock(rq);
5657 thermal_pressure = arch_scale_thermal_pressure(cpu_of(rq));
5658 update_thermal_load_avg(rq_clock_thermal(rq), rq, thermal_pressure);
5659 curr->sched_class->task_tick(rq, curr, 0);
5660 if (sched_feat(LATENCY_WARN))
5661 resched_latency = cpu_resched_latency(rq);
5662 calc_global_load_tick(rq);
5663 sched_core_tick(rq);
5664 task_tick_mm_cid(rq, curr);
5665
5666 rq_unlock(rq, &rf);
5667
5668 if (sched_feat(LATENCY_WARN) && resched_latency)
5669 resched_latency_warn(cpu, resched_latency);
5670
5671 perf_event_task_tick();
5672
5673 if (curr->flags & PF_WQ_WORKER)
5674 wq_worker_tick(curr);
5675
5676 #ifdef CONFIG_SMP
5677 rq->idle_balance = idle_cpu(cpu);
5678 trigger_load_balance(rq);
5679 #endif
5680 }
5681
5682 #ifdef CONFIG_NO_HZ_FULL
5683
5684 struct tick_work {
5685 int cpu;
5686 atomic_t state;
5687 struct delayed_work work;
5688 };
5689 /* Values for ->state, see diagram below. */
5690 #define TICK_SCHED_REMOTE_OFFLINE 0
5691 #define TICK_SCHED_REMOTE_OFFLINING 1
5692 #define TICK_SCHED_REMOTE_RUNNING 2
5693
5694 /*
5695 * State diagram for ->state:
5696 *
5697 *
5698 * TICK_SCHED_REMOTE_OFFLINE
5699 * | ^
5700 * | |
5701 * | | sched_tick_remote()
5702 * | |
5703 * | |
5704 * +--TICK_SCHED_REMOTE_OFFLINING
5705 * | ^
5706 * | |
5707 * sched_tick_start() | | sched_tick_stop()
5708 * | |
5709 * V |
5710 * TICK_SCHED_REMOTE_RUNNING
5711 *
5712 *
5713 * Other transitions get WARN_ON_ONCE(), except that sched_tick_remote()
5714 * and sched_tick_start() are happy to leave the state in RUNNING.
5715 */
5716
5717 static struct tick_work __percpu *tick_work_cpu;
5718
sched_tick_remote(struct work_struct * work)5719 static void sched_tick_remote(struct work_struct *work)
5720 {
5721 struct delayed_work *dwork = to_delayed_work(work);
5722 struct tick_work *twork = container_of(dwork, struct tick_work, work);
5723 int cpu = twork->cpu;
5724 struct rq *rq = cpu_rq(cpu);
5725 int os;
5726
5727 /*
5728 * Handle the tick only if it appears the remote CPU is running in full
5729 * dynticks mode. The check is racy by nature, but missing a tick or
5730 * having one too much is no big deal because the scheduler tick updates
5731 * statistics and checks timeslices in a time-independent way, regardless
5732 * of when exactly it is running.
5733 */
5734 if (tick_nohz_tick_stopped_cpu(cpu)) {
5735 guard(rq_lock_irq)(rq);
5736 struct task_struct *curr = rq->curr;
5737
5738 if (cpu_online(cpu)) {
5739 update_rq_clock(rq);
5740
5741 if (!is_idle_task(curr)) {
5742 /*
5743 * Make sure the next tick runs within a
5744 * reasonable amount of time.
5745 */
5746 u64 delta = rq_clock_task(rq) - curr->se.exec_start;
5747 WARN_ON_ONCE(delta > (u64)NSEC_PER_SEC * 3);
5748 }
5749 curr->sched_class->task_tick(rq, curr, 0);
5750
5751 calc_load_nohz_remote(rq);
5752 }
5753 }
5754
5755 /*
5756 * Run the remote tick once per second (1Hz). This arbitrary
5757 * frequency is large enough to avoid overload but short enough
5758 * to keep scheduler internal stats reasonably up to date. But
5759 * first update state to reflect hotplug activity if required.
5760 */
5761 os = atomic_fetch_add_unless(&twork->state, -1, TICK_SCHED_REMOTE_RUNNING);
5762 WARN_ON_ONCE(os == TICK_SCHED_REMOTE_OFFLINE);
5763 if (os == TICK_SCHED_REMOTE_RUNNING)
5764 queue_delayed_work(system_unbound_wq, dwork, HZ);
5765 }
5766
sched_tick_start(int cpu)5767 static void sched_tick_start(int cpu)
5768 {
5769 int os;
5770 struct tick_work *twork;
5771
5772 if (housekeeping_cpu(cpu, HK_TYPE_TICK))
5773 return;
5774
5775 WARN_ON_ONCE(!tick_work_cpu);
5776
5777 twork = per_cpu_ptr(tick_work_cpu, cpu);
5778 os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_RUNNING);
5779 WARN_ON_ONCE(os == TICK_SCHED_REMOTE_RUNNING);
5780 if (os == TICK_SCHED_REMOTE_OFFLINE) {
5781 twork->cpu = cpu;
5782 INIT_DELAYED_WORK(&twork->work, sched_tick_remote);
5783 queue_delayed_work(system_unbound_wq, &twork->work, HZ);
5784 }
5785 }
5786
5787 #ifdef CONFIG_HOTPLUG_CPU
sched_tick_stop(int cpu)5788 static void sched_tick_stop(int cpu)
5789 {
5790 struct tick_work *twork;
5791 int os;
5792
5793 if (housekeeping_cpu(cpu, HK_TYPE_TICK))
5794 return;
5795
5796 WARN_ON_ONCE(!tick_work_cpu);
5797
5798 twork = per_cpu_ptr(tick_work_cpu, cpu);
5799 /* There cannot be competing actions, but don't rely on stop-machine. */
5800 os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_OFFLINING);
5801 WARN_ON_ONCE(os != TICK_SCHED_REMOTE_RUNNING);
5802 /* Don't cancel, as this would mess up the state machine. */
5803 }
5804 #endif /* CONFIG_HOTPLUG_CPU */
5805
sched_tick_offload_init(void)5806 int __init sched_tick_offload_init(void)
5807 {
5808 tick_work_cpu = alloc_percpu(struct tick_work);
5809 BUG_ON(!tick_work_cpu);
5810 return 0;
5811 }
5812
5813 #else /* !CONFIG_NO_HZ_FULL */
sched_tick_start(int cpu)5814 static inline void sched_tick_start(int cpu) { }
sched_tick_stop(int cpu)5815 static inline void sched_tick_stop(int cpu) { }
5816 #endif
5817
5818 #if defined(CONFIG_PREEMPTION) && (defined(CONFIG_DEBUG_PREEMPT) || \
5819 defined(CONFIG_TRACE_PREEMPT_TOGGLE))
5820 /*
5821 * If the value passed in is equal to the current preempt count
5822 * then we just disabled preemption. Start timing the latency.
5823 */
preempt_latency_start(int val)5824 static inline void preempt_latency_start(int val)
5825 {
5826 if (preempt_count() == val) {
5827 unsigned long ip = get_lock_parent_ip();
5828 #ifdef CONFIG_DEBUG_PREEMPT
5829 current->preempt_disable_ip = ip;
5830 #endif
5831 trace_preempt_off(CALLER_ADDR0, ip);
5832 }
5833 }
5834
preempt_count_add(int val)5835 void preempt_count_add(int val)
5836 {
5837 #ifdef CONFIG_DEBUG_PREEMPT
5838 /*
5839 * Underflow?
5840 */
5841 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
5842 return;
5843 #endif
5844 __preempt_count_add(val);
5845 #ifdef CONFIG_DEBUG_PREEMPT
5846 /*
5847 * Spinlock count overflowing soon?
5848 */
5849 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
5850 PREEMPT_MASK - 10);
5851 #endif
5852 preempt_latency_start(val);
5853 }
5854 EXPORT_SYMBOL(preempt_count_add);
5855 NOKPROBE_SYMBOL(preempt_count_add);
5856
5857 /*
5858 * If the value passed in equals to the current preempt count
5859 * then we just enabled preemption. Stop timing the latency.
5860 */
preempt_latency_stop(int val)5861 static inline void preempt_latency_stop(int val)
5862 {
5863 if (preempt_count() == val)
5864 trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
5865 }
5866
preempt_count_sub(int val)5867 void preempt_count_sub(int val)
5868 {
5869 #ifdef CONFIG_DEBUG_PREEMPT
5870 /*
5871 * Underflow?
5872 */
5873 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
5874 return;
5875 /*
5876 * Is the spinlock portion underflowing?
5877 */
5878 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
5879 !(preempt_count() & PREEMPT_MASK)))
5880 return;
5881 #endif
5882
5883 preempt_latency_stop(val);
5884 __preempt_count_sub(val);
5885 }
5886 EXPORT_SYMBOL(preempt_count_sub);
5887 NOKPROBE_SYMBOL(preempt_count_sub);
5888
5889 #else
preempt_latency_start(int val)5890 static inline void preempt_latency_start(int val) { }
preempt_latency_stop(int val)5891 static inline void preempt_latency_stop(int val) { }
5892 #endif
5893
get_preempt_disable_ip(struct task_struct * p)5894 static inline unsigned long get_preempt_disable_ip(struct task_struct *p)
5895 {
5896 #ifdef CONFIG_DEBUG_PREEMPT
5897 return p->preempt_disable_ip;
5898 #else
5899 return 0;
5900 #endif
5901 }
5902
5903 /*
5904 * Print scheduling while atomic bug:
5905 */
__schedule_bug(struct task_struct * prev)5906 static noinline void __schedule_bug(struct task_struct *prev)
5907 {
5908 /* Save this before calling printk(), since that will clobber it */
5909 unsigned long preempt_disable_ip = get_preempt_disable_ip(current);
5910
5911 if (oops_in_progress)
5912 return;
5913
5914 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
5915 prev->comm, prev->pid, preempt_count());
5916
5917 debug_show_held_locks(prev);
5918 print_modules();
5919 if (irqs_disabled())
5920 print_irqtrace_events(prev);
5921 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
5922 && in_atomic_preempt_off()) {
5923 pr_err("Preemption disabled at:");
5924 print_ip_sym(KERN_ERR, preempt_disable_ip);
5925 }
5926 check_panic_on_warn("scheduling while atomic");
5927
5928 dump_stack();
5929 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
5930 }
5931
5932 /*
5933 * Various schedule()-time debugging checks and statistics:
5934 */
schedule_debug(struct task_struct * prev,bool preempt)5935 static inline void schedule_debug(struct task_struct *prev, bool preempt)
5936 {
5937 #ifdef CONFIG_SCHED_STACK_END_CHECK
5938 if (task_stack_end_corrupted(prev))
5939 panic("corrupted stack end detected inside scheduler\n");
5940
5941 if (task_scs_end_corrupted(prev))
5942 panic("corrupted shadow stack detected inside scheduler\n");
5943 #endif
5944
5945 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
5946 if (!preempt && READ_ONCE(prev->__state) && prev->non_block_count) {
5947 printk(KERN_ERR "BUG: scheduling in a non-blocking section: %s/%d/%i\n",
5948 prev->comm, prev->pid, prev->non_block_count);
5949 dump_stack();
5950 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
5951 }
5952 #endif
5953
5954 if (unlikely(in_atomic_preempt_off())) {
5955 __schedule_bug(prev);
5956 preempt_count_set(PREEMPT_DISABLED);
5957 }
5958 rcu_sleep_check();
5959 SCHED_WARN_ON(ct_state() == CONTEXT_USER);
5960
5961 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
5962
5963 schedstat_inc(this_rq()->sched_count);
5964 }
5965
put_prev_task_balance(struct rq * rq,struct task_struct * prev,struct rq_flags * rf)5966 static void put_prev_task_balance(struct rq *rq, struct task_struct *prev,
5967 struct rq_flags *rf)
5968 {
5969 #ifdef CONFIG_SMP
5970 const struct sched_class *class;
5971 /*
5972 * We must do the balancing pass before put_prev_task(), such
5973 * that when we release the rq->lock the task is in the same
5974 * state as before we took rq->lock.
5975 *
5976 * We can terminate the balance pass as soon as we know there is
5977 * a runnable task of @class priority or higher.
5978 */
5979 for_class_range(class, prev->sched_class, &idle_sched_class) {
5980 if (class->balance(rq, prev, rf))
5981 break;
5982 }
5983 #endif
5984
5985 put_prev_task(rq, prev);
5986 }
5987
5988 /*
5989 * Pick up the highest-prio task:
5990 */
5991 static inline struct task_struct *
__pick_next_task(struct rq * rq,struct task_struct * prev,struct rq_flags * rf)5992 __pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
5993 {
5994 const struct sched_class *class;
5995 struct task_struct *p;
5996
5997 /*
5998 * Optimization: we know that if all tasks are in the fair class we can
5999 * call that function directly, but only if the @prev task wasn't of a
6000 * higher scheduling class, because otherwise those lose the
6001 * opportunity to pull in more work from other CPUs.
6002 */
6003 if (likely(!sched_class_above(prev->sched_class, &fair_sched_class) &&
6004 rq->nr_running == rq->cfs.h_nr_running)) {
6005
6006 p = pick_next_task_fair(rq, prev, rf);
6007 if (unlikely(p == RETRY_TASK))
6008 goto restart;
6009
6010 /* Assume the next prioritized class is idle_sched_class */
6011 if (!p) {
6012 put_prev_task(rq, prev);
6013 p = pick_next_task_idle(rq);
6014 }
6015
6016 return p;
6017 }
6018
6019 restart:
6020 put_prev_task_balance(rq, prev, rf);
6021
6022 for_each_class(class) {
6023 p = class->pick_next_task(rq);
6024 if (p)
6025 return p;
6026 }
6027
6028 BUG(); /* The idle class should always have a runnable task. */
6029 }
6030
6031 #ifdef CONFIG_SCHED_CORE
is_task_rq_idle(struct task_struct * t)6032 static inline bool is_task_rq_idle(struct task_struct *t)
6033 {
6034 return (task_rq(t)->idle == t);
6035 }
6036
cookie_equals(struct task_struct * a,unsigned long cookie)6037 static inline bool cookie_equals(struct task_struct *a, unsigned long cookie)
6038 {
6039 return is_task_rq_idle(a) || (a->core_cookie == cookie);
6040 }
6041
cookie_match(struct task_struct * a,struct task_struct * b)6042 static inline bool cookie_match(struct task_struct *a, struct task_struct *b)
6043 {
6044 if (is_task_rq_idle(a) || is_task_rq_idle(b))
6045 return true;
6046
6047 return a->core_cookie == b->core_cookie;
6048 }
6049
pick_task(struct rq * rq)6050 static inline struct task_struct *pick_task(struct rq *rq)
6051 {
6052 const struct sched_class *class;
6053 struct task_struct *p;
6054
6055 for_each_class(class) {
6056 p = class->pick_task(rq);
6057 if (p)
6058 return p;
6059 }
6060
6061 BUG(); /* The idle class should always have a runnable task. */
6062 }
6063
6064 extern void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi);
6065
6066 static void queue_core_balance(struct rq *rq);
6067
6068 static struct task_struct *
pick_next_task(struct rq * rq,struct task_struct * prev,struct rq_flags * rf)6069 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
6070 {
6071 struct task_struct *next, *p, *max = NULL;
6072 const struct cpumask *smt_mask;
6073 bool fi_before = false;
6074 bool core_clock_updated = (rq == rq->core);
6075 unsigned long cookie;
6076 int i, cpu, occ = 0;
6077 struct rq *rq_i;
6078 bool need_sync;
6079
6080 if (!sched_core_enabled(rq))
6081 return __pick_next_task(rq, prev, rf);
6082
6083 cpu = cpu_of(rq);
6084
6085 /* Stopper task is switching into idle, no need core-wide selection. */
6086 if (cpu_is_offline(cpu)) {
6087 /*
6088 * Reset core_pick so that we don't enter the fastpath when
6089 * coming online. core_pick would already be migrated to
6090 * another cpu during offline.
6091 */
6092 rq->core_pick = NULL;
6093 return __pick_next_task(rq, prev, rf);
6094 }
6095
6096 /*
6097 * If there were no {en,de}queues since we picked (IOW, the task
6098 * pointers are all still valid), and we haven't scheduled the last
6099 * pick yet, do so now.
6100 *
6101 * rq->core_pick can be NULL if no selection was made for a CPU because
6102 * it was either offline or went offline during a sibling's core-wide
6103 * selection. In this case, do a core-wide selection.
6104 */
6105 if (rq->core->core_pick_seq == rq->core->core_task_seq &&
6106 rq->core->core_pick_seq != rq->core_sched_seq &&
6107 rq->core_pick) {
6108 WRITE_ONCE(rq->core_sched_seq, rq->core->core_pick_seq);
6109
6110 next = rq->core_pick;
6111 if (next != prev) {
6112 put_prev_task(rq, prev);
6113 set_next_task(rq, next);
6114 }
6115
6116 rq->core_pick = NULL;
6117 goto out;
6118 }
6119
6120 put_prev_task_balance(rq, prev, rf);
6121
6122 smt_mask = cpu_smt_mask(cpu);
6123 need_sync = !!rq->core->core_cookie;
6124
6125 /* reset state */
6126 rq->core->core_cookie = 0UL;
6127 if (rq->core->core_forceidle_count) {
6128 if (!core_clock_updated) {
6129 update_rq_clock(rq->core);
6130 core_clock_updated = true;
6131 }
6132 sched_core_account_forceidle(rq);
6133 /* reset after accounting force idle */
6134 rq->core->core_forceidle_start = 0;
6135 rq->core->core_forceidle_count = 0;
6136 rq->core->core_forceidle_occupation = 0;
6137 need_sync = true;
6138 fi_before = true;
6139 }
6140
6141 /*
6142 * core->core_task_seq, core->core_pick_seq, rq->core_sched_seq
6143 *
6144 * @task_seq guards the task state ({en,de}queues)
6145 * @pick_seq is the @task_seq we did a selection on
6146 * @sched_seq is the @pick_seq we scheduled
6147 *
6148 * However, preemptions can cause multiple picks on the same task set.
6149 * 'Fix' this by also increasing @task_seq for every pick.
6150 */
6151 rq->core->core_task_seq++;
6152
6153 /*
6154 * Optimize for common case where this CPU has no cookies
6155 * and there are no cookied tasks running on siblings.
6156 */
6157 if (!need_sync) {
6158 next = pick_task(rq);
6159 if (!next->core_cookie) {
6160 rq->core_pick = NULL;
6161 /*
6162 * For robustness, update the min_vruntime_fi for
6163 * unconstrained picks as well.
6164 */
6165 WARN_ON_ONCE(fi_before);
6166 task_vruntime_update(rq, next, false);
6167 goto out_set_next;
6168 }
6169 }
6170
6171 /*
6172 * For each thread: do the regular task pick and find the max prio task
6173 * amongst them.
6174 *
6175 * Tie-break prio towards the current CPU
6176 */
6177 for_each_cpu_wrap(i, smt_mask, cpu) {
6178 rq_i = cpu_rq(i);
6179
6180 /*
6181 * Current cpu always has its clock updated on entrance to
6182 * pick_next_task(). If the current cpu is not the core,
6183 * the core may also have been updated above.
6184 */
6185 if (i != cpu && (rq_i != rq->core || !core_clock_updated))
6186 update_rq_clock(rq_i);
6187
6188 p = rq_i->core_pick = pick_task(rq_i);
6189 if (!max || prio_less(max, p, fi_before))
6190 max = p;
6191 }
6192
6193 cookie = rq->core->core_cookie = max->core_cookie;
6194
6195 /*
6196 * For each thread: try and find a runnable task that matches @max or
6197 * force idle.
6198 */
6199 for_each_cpu(i, smt_mask) {
6200 rq_i = cpu_rq(i);
6201 p = rq_i->core_pick;
6202
6203 if (!cookie_equals(p, cookie)) {
6204 p = NULL;
6205 if (cookie)
6206 p = sched_core_find(rq_i, cookie);
6207 if (!p)
6208 p = idle_sched_class.pick_task(rq_i);
6209 }
6210
6211 rq_i->core_pick = p;
6212
6213 if (p == rq_i->idle) {
6214 if (rq_i->nr_running) {
6215 rq->core->core_forceidle_count++;
6216 if (!fi_before)
6217 rq->core->core_forceidle_seq++;
6218 }
6219 } else {
6220 occ++;
6221 }
6222 }
6223
6224 if (schedstat_enabled() && rq->core->core_forceidle_count) {
6225 rq->core->core_forceidle_start = rq_clock(rq->core);
6226 rq->core->core_forceidle_occupation = occ;
6227 }
6228
6229 rq->core->core_pick_seq = rq->core->core_task_seq;
6230 next = rq->core_pick;
6231 rq->core_sched_seq = rq->core->core_pick_seq;
6232
6233 /* Something should have been selected for current CPU */
6234 WARN_ON_ONCE(!next);
6235
6236 /*
6237 * Reschedule siblings
6238 *
6239 * NOTE: L1TF -- at this point we're no longer running the old task and
6240 * sending an IPI (below) ensures the sibling will no longer be running
6241 * their task. This ensures there is no inter-sibling overlap between
6242 * non-matching user state.
6243 */
6244 for_each_cpu(i, smt_mask) {
6245 rq_i = cpu_rq(i);
6246
6247 /*
6248 * An online sibling might have gone offline before a task
6249 * could be picked for it, or it might be offline but later
6250 * happen to come online, but its too late and nothing was
6251 * picked for it. That's Ok - it will pick tasks for itself,
6252 * so ignore it.
6253 */
6254 if (!rq_i->core_pick)
6255 continue;
6256
6257 /*
6258 * Update for new !FI->FI transitions, or if continuing to be in !FI:
6259 * fi_before fi update?
6260 * 0 0 1
6261 * 0 1 1
6262 * 1 0 1
6263 * 1 1 0
6264 */
6265 if (!(fi_before && rq->core->core_forceidle_count))
6266 task_vruntime_update(rq_i, rq_i->core_pick, !!rq->core->core_forceidle_count);
6267
6268 rq_i->core_pick->core_occupation = occ;
6269
6270 if (i == cpu) {
6271 rq_i->core_pick = NULL;
6272 continue;
6273 }
6274
6275 /* Did we break L1TF mitigation requirements? */
6276 WARN_ON_ONCE(!cookie_match(next, rq_i->core_pick));
6277
6278 if (rq_i->curr == rq_i->core_pick) {
6279 rq_i->core_pick = NULL;
6280 continue;
6281 }
6282
6283 resched_curr(rq_i);
6284 }
6285
6286 out_set_next:
6287 set_next_task(rq, next);
6288 out:
6289 if (rq->core->core_forceidle_count && next == rq->idle)
6290 queue_core_balance(rq);
6291
6292 return next;
6293 }
6294
try_steal_cookie(int this,int that)6295 static bool try_steal_cookie(int this, int that)
6296 {
6297 struct rq *dst = cpu_rq(this), *src = cpu_rq(that);
6298 struct task_struct *p;
6299 unsigned long cookie;
6300 bool success = false;
6301
6302 guard(irq)();
6303 guard(double_rq_lock)(dst, src);
6304
6305 cookie = dst->core->core_cookie;
6306 if (!cookie)
6307 return false;
6308
6309 if (dst->curr != dst->idle)
6310 return false;
6311
6312 p = sched_core_find(src, cookie);
6313 if (!p)
6314 return false;
6315
6316 do {
6317 if (p == src->core_pick || p == src->curr)
6318 goto next;
6319
6320 if (!is_cpu_allowed(p, this))
6321 goto next;
6322
6323 if (p->core_occupation > dst->idle->core_occupation)
6324 goto next;
6325 /*
6326 * sched_core_find() and sched_core_next() will ensure
6327 * that task @p is not throttled now, we also need to
6328 * check whether the runqueue of the destination CPU is
6329 * being throttled.
6330 */
6331 if (sched_task_is_throttled(p, this))
6332 goto next;
6333
6334 deactivate_task(src, p, 0);
6335 set_task_cpu(p, this);
6336 activate_task(dst, p, 0);
6337
6338 resched_curr(dst);
6339
6340 success = true;
6341 break;
6342
6343 next:
6344 p = sched_core_next(p, cookie);
6345 } while (p);
6346
6347 return success;
6348 }
6349
steal_cookie_task(int cpu,struct sched_domain * sd)6350 static bool steal_cookie_task(int cpu, struct sched_domain *sd)
6351 {
6352 int i;
6353
6354 for_each_cpu_wrap(i, sched_domain_span(sd), cpu + 1) {
6355 if (i == cpu)
6356 continue;
6357
6358 if (need_resched())
6359 break;
6360
6361 if (try_steal_cookie(cpu, i))
6362 return true;
6363 }
6364
6365 return false;
6366 }
6367
sched_core_balance(struct rq * rq)6368 static void sched_core_balance(struct rq *rq)
6369 {
6370 struct sched_domain *sd;
6371 int cpu = cpu_of(rq);
6372
6373 preempt_disable();
6374 rcu_read_lock();
6375 raw_spin_rq_unlock_irq(rq);
6376 for_each_domain(cpu, sd) {
6377 if (need_resched())
6378 break;
6379
6380 if (steal_cookie_task(cpu, sd))
6381 break;
6382 }
6383 raw_spin_rq_lock_irq(rq);
6384 rcu_read_unlock();
6385 preempt_enable();
6386 }
6387
6388 static DEFINE_PER_CPU(struct balance_callback, core_balance_head);
6389
queue_core_balance(struct rq * rq)6390 static void queue_core_balance(struct rq *rq)
6391 {
6392 if (!sched_core_enabled(rq))
6393 return;
6394
6395 if (!rq->core->core_cookie)
6396 return;
6397
6398 if (!rq->nr_running) /* not forced idle */
6399 return;
6400
6401 queue_balance_callback(rq, &per_cpu(core_balance_head, rq->cpu), sched_core_balance);
6402 }
6403
6404 DEFINE_LOCK_GUARD_1(core_lock, int,
6405 sched_core_lock(*_T->lock, &_T->flags),
6406 sched_core_unlock(*_T->lock, &_T->flags),
6407 unsigned long flags)
6408
sched_core_cpu_starting(unsigned int cpu)6409 static void sched_core_cpu_starting(unsigned int cpu)
6410 {
6411 const struct cpumask *smt_mask = cpu_smt_mask(cpu);
6412 struct rq *rq = cpu_rq(cpu), *core_rq = NULL;
6413 int t;
6414
6415 guard(core_lock)(&cpu);
6416
6417 WARN_ON_ONCE(rq->core != rq);
6418
6419 /* if we're the first, we'll be our own leader */
6420 if (cpumask_weight(smt_mask) == 1)
6421 return;
6422
6423 /* find the leader */
6424 for_each_cpu(t, smt_mask) {
6425 if (t == cpu)
6426 continue;
6427 rq = cpu_rq(t);
6428 if (rq->core == rq) {
6429 core_rq = rq;
6430 break;
6431 }
6432 }
6433
6434 if (WARN_ON_ONCE(!core_rq)) /* whoopsie */
6435 return;
6436
6437 /* install and validate core_rq */
6438 for_each_cpu(t, smt_mask) {
6439 rq = cpu_rq(t);
6440
6441 if (t == cpu)
6442 rq->core = core_rq;
6443
6444 WARN_ON_ONCE(rq->core != core_rq);
6445 }
6446 }
6447
sched_core_cpu_deactivate(unsigned int cpu)6448 static void sched_core_cpu_deactivate(unsigned int cpu)
6449 {
6450 const struct cpumask *smt_mask = cpu_smt_mask(cpu);
6451 struct rq *rq = cpu_rq(cpu), *core_rq = NULL;
6452 int t;
6453
6454 guard(core_lock)(&cpu);
6455
6456 /* if we're the last man standing, nothing to do */
6457 if (cpumask_weight(smt_mask) == 1) {
6458 WARN_ON_ONCE(rq->core != rq);
6459 return;
6460 }
6461
6462 /* if we're not the leader, nothing to do */
6463 if (rq->core != rq)
6464 return;
6465
6466 /* find a new leader */
6467 for_each_cpu(t, smt_mask) {
6468 if (t == cpu)
6469 continue;
6470 core_rq = cpu_rq(t);
6471 break;
6472 }
6473
6474 if (WARN_ON_ONCE(!core_rq)) /* impossible */
6475 return;
6476
6477 /* copy the shared state to the new leader */
6478 core_rq->core_task_seq = rq->core_task_seq;
6479 core_rq->core_pick_seq = rq->core_pick_seq;
6480 core_rq->core_cookie = rq->core_cookie;
6481 core_rq->core_forceidle_count = rq->core_forceidle_count;
6482 core_rq->core_forceidle_seq = rq->core_forceidle_seq;
6483 core_rq->core_forceidle_occupation = rq->core_forceidle_occupation;
6484
6485 /*
6486 * Accounting edge for forced idle is handled in pick_next_task().
6487 * Don't need another one here, since the hotplug thread shouldn't
6488 * have a cookie.
6489 */
6490 core_rq->core_forceidle_start = 0;
6491
6492 /* install new leader */
6493 for_each_cpu(t, smt_mask) {
6494 rq = cpu_rq(t);
6495 rq->core = core_rq;
6496 }
6497 }
6498
sched_core_cpu_dying(unsigned int cpu)6499 static inline void sched_core_cpu_dying(unsigned int cpu)
6500 {
6501 struct rq *rq = cpu_rq(cpu);
6502
6503 if (rq->core != rq)
6504 rq->core = rq;
6505 }
6506
6507 #else /* !CONFIG_SCHED_CORE */
6508
sched_core_cpu_starting(unsigned int cpu)6509 static inline void sched_core_cpu_starting(unsigned int cpu) {}
sched_core_cpu_deactivate(unsigned int cpu)6510 static inline void sched_core_cpu_deactivate(unsigned int cpu) {}
sched_core_cpu_dying(unsigned int cpu)6511 static inline void sched_core_cpu_dying(unsigned int cpu) {}
6512
6513 static struct task_struct *
pick_next_task(struct rq * rq,struct task_struct * prev,struct rq_flags * rf)6514 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
6515 {
6516 return __pick_next_task(rq, prev, rf);
6517 }
6518
6519 #endif /* CONFIG_SCHED_CORE */
6520
6521 /*
6522 * Constants for the sched_mode argument of __schedule().
6523 *
6524 * The mode argument allows RT enabled kernels to differentiate a
6525 * preemption from blocking on an 'sleeping' spin/rwlock. Note that
6526 * SM_MASK_PREEMPT for !RT has all bits set, which allows the compiler to
6527 * optimize the AND operation out and just check for zero.
6528 */
6529 #define SM_NONE 0x0
6530 #define SM_PREEMPT 0x1
6531 #define SM_RTLOCK_WAIT 0x2
6532
6533 #ifndef CONFIG_PREEMPT_RT
6534 # define SM_MASK_PREEMPT (~0U)
6535 #else
6536 # define SM_MASK_PREEMPT SM_PREEMPT
6537 #endif
6538
6539 /*
6540 * __schedule() is the main scheduler function.
6541 *
6542 * The main means of driving the scheduler and thus entering this function are:
6543 *
6544 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
6545 *
6546 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
6547 * paths. For example, see arch/x86/entry_64.S.
6548 *
6549 * To drive preemption between tasks, the scheduler sets the flag in timer
6550 * interrupt handler scheduler_tick().
6551 *
6552 * 3. Wakeups don't really cause entry into schedule(). They add a
6553 * task to the run-queue and that's it.
6554 *
6555 * Now, if the new task added to the run-queue preempts the current
6556 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
6557 * called on the nearest possible occasion:
6558 *
6559 * - If the kernel is preemptible (CONFIG_PREEMPTION=y):
6560 *
6561 * - in syscall or exception context, at the next outmost
6562 * preempt_enable(). (this might be as soon as the wake_up()'s
6563 * spin_unlock()!)
6564 *
6565 * - in IRQ context, return from interrupt-handler to
6566 * preemptible context
6567 *
6568 * - If the kernel is not preemptible (CONFIG_PREEMPTION is not set)
6569 * then at the next:
6570 *
6571 * - cond_resched() call
6572 * - explicit schedule() call
6573 * - return from syscall or exception to user-space
6574 * - return from interrupt-handler to user-space
6575 *
6576 * WARNING: must be called with preemption disabled!
6577 */
__schedule(unsigned int sched_mode)6578 static void __sched notrace __schedule(unsigned int sched_mode)
6579 {
6580 struct task_struct *prev, *next;
6581 unsigned long *switch_count;
6582 unsigned long prev_state;
6583 struct rq_flags rf;
6584 struct rq *rq;
6585 int cpu;
6586
6587 cpu = smp_processor_id();
6588 rq = cpu_rq(cpu);
6589 prev = rq->curr;
6590
6591 schedule_debug(prev, !!sched_mode);
6592
6593 if (sched_feat(HRTICK) || sched_feat(HRTICK_DL))
6594 hrtick_clear(rq);
6595
6596 local_irq_disable();
6597 rcu_note_context_switch(!!sched_mode);
6598
6599 /*
6600 * Make sure that signal_pending_state()->signal_pending() below
6601 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
6602 * done by the caller to avoid the race with signal_wake_up():
6603 *
6604 * __set_current_state(@state) signal_wake_up()
6605 * schedule() set_tsk_thread_flag(p, TIF_SIGPENDING)
6606 * wake_up_state(p, state)
6607 * LOCK rq->lock LOCK p->pi_state
6608 * smp_mb__after_spinlock() smp_mb__after_spinlock()
6609 * if (signal_pending_state()) if (p->state & @state)
6610 *
6611 * Also, the membarrier system call requires a full memory barrier
6612 * after coming from user-space, before storing to rq->curr.
6613 */
6614 rq_lock(rq, &rf);
6615 smp_mb__after_spinlock();
6616
6617 /* Promote REQ to ACT */
6618 rq->clock_update_flags <<= 1;
6619 update_rq_clock(rq);
6620 rq->clock_update_flags = RQCF_UPDATED;
6621
6622 switch_count = &prev->nivcsw;
6623
6624 /*
6625 * We must load prev->state once (task_struct::state is volatile), such
6626 * that we form a control dependency vs deactivate_task() below.
6627 */
6628 prev_state = READ_ONCE(prev->__state);
6629 if (!(sched_mode & SM_MASK_PREEMPT) && prev_state) {
6630 if (signal_pending_state(prev_state, prev)) {
6631 WRITE_ONCE(prev->__state, TASK_RUNNING);
6632 } else {
6633 prev->sched_contributes_to_load =
6634 (prev_state & TASK_UNINTERRUPTIBLE) &&
6635 !(prev_state & TASK_NOLOAD) &&
6636 !(prev_state & TASK_FROZEN);
6637
6638 if (prev->sched_contributes_to_load)
6639 rq->nr_uninterruptible++;
6640
6641 /*
6642 * __schedule() ttwu()
6643 * prev_state = prev->state; if (p->on_rq && ...)
6644 * if (prev_state) goto out;
6645 * p->on_rq = 0; smp_acquire__after_ctrl_dep();
6646 * p->state = TASK_WAKING
6647 *
6648 * Where __schedule() and ttwu() have matching control dependencies.
6649 *
6650 * After this, schedule() must not care about p->state any more.
6651 */
6652 deactivate_task(rq, prev, DEQUEUE_SLEEP | DEQUEUE_NOCLOCK);
6653
6654 if (prev->in_iowait) {
6655 atomic_inc(&rq->nr_iowait);
6656 delayacct_blkio_start();
6657 }
6658 }
6659 switch_count = &prev->nvcsw;
6660 }
6661
6662 next = pick_next_task(rq, prev, &rf);
6663 clear_tsk_need_resched(prev);
6664 clear_preempt_need_resched();
6665 #ifdef CONFIG_SCHED_DEBUG
6666 rq->last_seen_need_resched_ns = 0;
6667 #endif
6668
6669 if (likely(prev != next)) {
6670 rq->nr_switches++;
6671 /*
6672 * RCU users of rcu_dereference(rq->curr) may not see
6673 * changes to task_struct made by pick_next_task().
6674 */
6675 RCU_INIT_POINTER(rq->curr, next);
6676 /*
6677 * The membarrier system call requires each architecture
6678 * to have a full memory barrier after updating
6679 * rq->curr, before returning to user-space.
6680 *
6681 * Here are the schemes providing that barrier on the
6682 * various architectures:
6683 * - mm ? switch_mm() : mmdrop() for x86, s390, sparc, PowerPC.
6684 * switch_mm() rely on membarrier_arch_switch_mm() on PowerPC.
6685 * - finish_lock_switch() for weakly-ordered
6686 * architectures where spin_unlock is a full barrier,
6687 * - switch_to() for arm64 (weakly-ordered, spin_unlock
6688 * is a RELEASE barrier),
6689 */
6690 ++*switch_count;
6691
6692 migrate_disable_switch(rq, prev);
6693 psi_sched_switch(prev, next, !task_on_rq_queued(prev));
6694
6695 trace_sched_switch(sched_mode & SM_MASK_PREEMPT, prev, next, prev_state);
6696
6697 /* Also unlocks the rq: */
6698 rq = context_switch(rq, prev, next, &rf);
6699 } else {
6700 rq_unpin_lock(rq, &rf);
6701 __balance_callbacks(rq);
6702 raw_spin_rq_unlock_irq(rq);
6703 }
6704 }
6705
do_task_dead(void)6706 void __noreturn do_task_dead(void)
6707 {
6708 /* Causes final put_task_struct in finish_task_switch(): */
6709 set_special_state(TASK_DEAD);
6710
6711 /* Tell freezer to ignore us: */
6712 current->flags |= PF_NOFREEZE;
6713
6714 __schedule(SM_NONE);
6715 BUG();
6716
6717 /* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */
6718 for (;;)
6719 cpu_relax();
6720 }
6721
sched_submit_work(struct task_struct * tsk)6722 static inline void sched_submit_work(struct task_struct *tsk)
6723 {
6724 unsigned int task_flags;
6725
6726 if (task_is_running(tsk))
6727 return;
6728
6729 task_flags = tsk->flags;
6730 /*
6731 * If a worker goes to sleep, notify and ask workqueue whether it
6732 * wants to wake up a task to maintain concurrency.
6733 */
6734 if (task_flags & (PF_WQ_WORKER | PF_IO_WORKER)) {
6735 if (task_flags & PF_WQ_WORKER)
6736 wq_worker_sleeping(tsk);
6737 else
6738 io_wq_worker_sleeping(tsk);
6739 }
6740
6741 /*
6742 * spinlock and rwlock must not flush block requests. This will
6743 * deadlock if the callback attempts to acquire a lock which is
6744 * already acquired.
6745 */
6746 SCHED_WARN_ON(current->__state & TASK_RTLOCK_WAIT);
6747
6748 /*
6749 * If we are going to sleep and we have plugged IO queued,
6750 * make sure to submit it to avoid deadlocks.
6751 */
6752 blk_flush_plug(tsk->plug, true);
6753 }
6754
sched_update_worker(struct task_struct * tsk)6755 static void sched_update_worker(struct task_struct *tsk)
6756 {
6757 if (tsk->flags & (PF_WQ_WORKER | PF_IO_WORKER)) {
6758 if (tsk->flags & PF_WQ_WORKER)
6759 wq_worker_running(tsk);
6760 else
6761 io_wq_worker_running(tsk);
6762 }
6763 }
6764
schedule(void)6765 asmlinkage __visible void __sched schedule(void)
6766 {
6767 struct task_struct *tsk = current;
6768
6769 sched_submit_work(tsk);
6770 do {
6771 preempt_disable();
6772 __schedule(SM_NONE);
6773 sched_preempt_enable_no_resched();
6774 } while (need_resched());
6775 sched_update_worker(tsk);
6776 }
6777 EXPORT_SYMBOL(schedule);
6778
6779 /*
6780 * synchronize_rcu_tasks() makes sure that no task is stuck in preempted
6781 * state (have scheduled out non-voluntarily) by making sure that all
6782 * tasks have either left the run queue or have gone into user space.
6783 * As idle tasks do not do either, they must not ever be preempted
6784 * (schedule out non-voluntarily).
6785 *
6786 * schedule_idle() is similar to schedule_preempt_disable() except that it
6787 * never enables preemption because it does not call sched_submit_work().
6788 */
schedule_idle(void)6789 void __sched schedule_idle(void)
6790 {
6791 /*
6792 * As this skips calling sched_submit_work(), which the idle task does
6793 * regardless because that function is a nop when the task is in a
6794 * TASK_RUNNING state, make sure this isn't used someplace that the
6795 * current task can be in any other state. Note, idle is always in the
6796 * TASK_RUNNING state.
6797 */
6798 WARN_ON_ONCE(current->__state);
6799 do {
6800 __schedule(SM_NONE);
6801 } while (need_resched());
6802 }
6803
6804 #if defined(CONFIG_CONTEXT_TRACKING_USER) && !defined(CONFIG_HAVE_CONTEXT_TRACKING_USER_OFFSTACK)
schedule_user(void)6805 asmlinkage __visible void __sched schedule_user(void)
6806 {
6807 /*
6808 * If we come here after a random call to set_need_resched(),
6809 * or we have been woken up remotely but the IPI has not yet arrived,
6810 * we haven't yet exited the RCU idle mode. Do it here manually until
6811 * we find a better solution.
6812 *
6813 * NB: There are buggy callers of this function. Ideally we
6814 * should warn if prev_state != CONTEXT_USER, but that will trigger
6815 * too frequently to make sense yet.
6816 */
6817 enum ctx_state prev_state = exception_enter();
6818 schedule();
6819 exception_exit(prev_state);
6820 }
6821 #endif
6822
6823 /**
6824 * schedule_preempt_disabled - called with preemption disabled
6825 *
6826 * Returns with preemption disabled. Note: preempt_count must be 1
6827 */
schedule_preempt_disabled(void)6828 void __sched schedule_preempt_disabled(void)
6829 {
6830 sched_preempt_enable_no_resched();
6831 schedule();
6832 preempt_disable();
6833 }
6834
6835 #ifdef CONFIG_PREEMPT_RT
schedule_rtlock(void)6836 void __sched notrace schedule_rtlock(void)
6837 {
6838 do {
6839 preempt_disable();
6840 __schedule(SM_RTLOCK_WAIT);
6841 sched_preempt_enable_no_resched();
6842 } while (need_resched());
6843 }
6844 NOKPROBE_SYMBOL(schedule_rtlock);
6845 #endif
6846
preempt_schedule_common(void)6847 static void __sched notrace preempt_schedule_common(void)
6848 {
6849 do {
6850 /*
6851 * Because the function tracer can trace preempt_count_sub()
6852 * and it also uses preempt_enable/disable_notrace(), if
6853 * NEED_RESCHED is set, the preempt_enable_notrace() called
6854 * by the function tracer will call this function again and
6855 * cause infinite recursion.
6856 *
6857 * Preemption must be disabled here before the function
6858 * tracer can trace. Break up preempt_disable() into two
6859 * calls. One to disable preemption without fear of being
6860 * traced. The other to still record the preemption latency,
6861 * which can also be traced by the function tracer.
6862 */
6863 preempt_disable_notrace();
6864 preempt_latency_start(1);
6865 __schedule(SM_PREEMPT);
6866 preempt_latency_stop(1);
6867 preempt_enable_no_resched_notrace();
6868
6869 /*
6870 * Check again in case we missed a preemption opportunity
6871 * between schedule and now.
6872 */
6873 } while (need_resched());
6874 }
6875
6876 #ifdef CONFIG_PREEMPTION
6877 /*
6878 * This is the entry point to schedule() from in-kernel preemption
6879 * off of preempt_enable.
6880 */
preempt_schedule(void)6881 asmlinkage __visible void __sched notrace preempt_schedule(void)
6882 {
6883 /*
6884 * If there is a non-zero preempt_count or interrupts are disabled,
6885 * we do not want to preempt the current task. Just return..
6886 */
6887 if (likely(!preemptible()))
6888 return;
6889 preempt_schedule_common();
6890 }
6891 NOKPROBE_SYMBOL(preempt_schedule);
6892 EXPORT_SYMBOL(preempt_schedule);
6893
6894 #ifdef CONFIG_PREEMPT_DYNAMIC
6895 #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
6896 #ifndef preempt_schedule_dynamic_enabled
6897 #define preempt_schedule_dynamic_enabled preempt_schedule
6898 #define preempt_schedule_dynamic_disabled NULL
6899 #endif
6900 DEFINE_STATIC_CALL(preempt_schedule, preempt_schedule_dynamic_enabled);
6901 EXPORT_STATIC_CALL_TRAMP(preempt_schedule);
6902 #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
6903 static DEFINE_STATIC_KEY_TRUE(sk_dynamic_preempt_schedule);
dynamic_preempt_schedule(void)6904 void __sched notrace dynamic_preempt_schedule(void)
6905 {
6906 if (!static_branch_unlikely(&sk_dynamic_preempt_schedule))
6907 return;
6908 preempt_schedule();
6909 }
6910 NOKPROBE_SYMBOL(dynamic_preempt_schedule);
6911 EXPORT_SYMBOL(dynamic_preempt_schedule);
6912 #endif
6913 #endif
6914
6915 /**
6916 * preempt_schedule_notrace - preempt_schedule called by tracing
6917 *
6918 * The tracing infrastructure uses preempt_enable_notrace to prevent
6919 * recursion and tracing preempt enabling caused by the tracing
6920 * infrastructure itself. But as tracing can happen in areas coming
6921 * from userspace or just about to enter userspace, a preempt enable
6922 * can occur before user_exit() is called. This will cause the scheduler
6923 * to be called when the system is still in usermode.
6924 *
6925 * To prevent this, the preempt_enable_notrace will use this function
6926 * instead of preempt_schedule() to exit user context if needed before
6927 * calling the scheduler.
6928 */
preempt_schedule_notrace(void)6929 asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
6930 {
6931 enum ctx_state prev_ctx;
6932
6933 if (likely(!preemptible()))
6934 return;
6935
6936 do {
6937 /*
6938 * Because the function tracer can trace preempt_count_sub()
6939 * and it also uses preempt_enable/disable_notrace(), if
6940 * NEED_RESCHED is set, the preempt_enable_notrace() called
6941 * by the function tracer will call this function again and
6942 * cause infinite recursion.
6943 *
6944 * Preemption must be disabled here before the function
6945 * tracer can trace. Break up preempt_disable() into two
6946 * calls. One to disable preemption without fear of being
6947 * traced. The other to still record the preemption latency,
6948 * which can also be traced by the function tracer.
6949 */
6950 preempt_disable_notrace();
6951 preempt_latency_start(1);
6952 /*
6953 * Needs preempt disabled in case user_exit() is traced
6954 * and the tracer calls preempt_enable_notrace() causing
6955 * an infinite recursion.
6956 */
6957 prev_ctx = exception_enter();
6958 __schedule(SM_PREEMPT);
6959 exception_exit(prev_ctx);
6960
6961 preempt_latency_stop(1);
6962 preempt_enable_no_resched_notrace();
6963 } while (need_resched());
6964 }
6965 EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
6966
6967 #ifdef CONFIG_PREEMPT_DYNAMIC
6968 #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
6969 #ifndef preempt_schedule_notrace_dynamic_enabled
6970 #define preempt_schedule_notrace_dynamic_enabled preempt_schedule_notrace
6971 #define preempt_schedule_notrace_dynamic_disabled NULL
6972 #endif
6973 DEFINE_STATIC_CALL(preempt_schedule_notrace, preempt_schedule_notrace_dynamic_enabled);
6974 EXPORT_STATIC_CALL_TRAMP(preempt_schedule_notrace);
6975 #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
6976 static DEFINE_STATIC_KEY_TRUE(sk_dynamic_preempt_schedule_notrace);
dynamic_preempt_schedule_notrace(void)6977 void __sched notrace dynamic_preempt_schedule_notrace(void)
6978 {
6979 if (!static_branch_unlikely(&sk_dynamic_preempt_schedule_notrace))
6980 return;
6981 preempt_schedule_notrace();
6982 }
6983 NOKPROBE_SYMBOL(dynamic_preempt_schedule_notrace);
6984 EXPORT_SYMBOL(dynamic_preempt_schedule_notrace);
6985 #endif
6986 #endif
6987
6988 #endif /* CONFIG_PREEMPTION */
6989
6990 /*
6991 * This is the entry point to schedule() from kernel preemption
6992 * off of irq context.
6993 * Note, that this is called and return with irqs disabled. This will
6994 * protect us against recursive calling from irq.
6995 */
preempt_schedule_irq(void)6996 asmlinkage __visible void __sched preempt_schedule_irq(void)
6997 {
6998 enum ctx_state prev_state;
6999
7000 /* Catch callers which need to be fixed */
7001 BUG_ON(preempt_count() || !irqs_disabled());
7002
7003 prev_state = exception_enter();
7004
7005 do {
7006 preempt_disable();
7007 local_irq_enable();
7008 __schedule(SM_PREEMPT);
7009 local_irq_disable();
7010 sched_preempt_enable_no_resched();
7011 } while (need_resched());
7012
7013 exception_exit(prev_state);
7014 }
7015
default_wake_function(wait_queue_entry_t * curr,unsigned mode,int wake_flags,void * key)7016 int default_wake_function(wait_queue_entry_t *curr, unsigned mode, int wake_flags,
7017 void *key)
7018 {
7019 WARN_ON_ONCE(IS_ENABLED(CONFIG_SCHED_DEBUG) && wake_flags & ~(WF_SYNC|WF_CURRENT_CPU));
7020 return try_to_wake_up(curr->private, mode, wake_flags);
7021 }
7022 EXPORT_SYMBOL(default_wake_function);
7023
__setscheduler_prio(struct task_struct * p,int prio)7024 static void __setscheduler_prio(struct task_struct *p, int prio)
7025 {
7026 if (dl_prio(prio))
7027 p->sched_class = &dl_sched_class;
7028 else if (rt_prio(prio))
7029 p->sched_class = &rt_sched_class;
7030 else
7031 p->sched_class = &fair_sched_class;
7032
7033 p->prio = prio;
7034 }
7035
7036 #ifdef CONFIG_RT_MUTEXES
7037
__rt_effective_prio(struct task_struct * pi_task,int prio)7038 static inline int __rt_effective_prio(struct task_struct *pi_task, int prio)
7039 {
7040 if (pi_task)
7041 prio = min(prio, pi_task->prio);
7042
7043 return prio;
7044 }
7045
rt_effective_prio(struct task_struct * p,int prio)7046 static inline int rt_effective_prio(struct task_struct *p, int prio)
7047 {
7048 struct task_struct *pi_task = rt_mutex_get_top_task(p);
7049
7050 return __rt_effective_prio(pi_task, prio);
7051 }
7052
7053 /*
7054 * rt_mutex_setprio - set the current priority of a task
7055 * @p: task to boost
7056 * @pi_task: donor task
7057 *
7058 * This function changes the 'effective' priority of a task. It does
7059 * not touch ->normal_prio like __setscheduler().
7060 *
7061 * Used by the rt_mutex code to implement priority inheritance
7062 * logic. Call site only calls if the priority of the task changed.
7063 */
rt_mutex_setprio(struct task_struct * p,struct task_struct * pi_task)7064 void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task)
7065 {
7066 int prio, oldprio, queued, running, queue_flag =
7067 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
7068 const struct sched_class *prev_class;
7069 struct rq_flags rf;
7070 struct rq *rq;
7071
7072 /* XXX used to be waiter->prio, not waiter->task->prio */
7073 prio = __rt_effective_prio(pi_task, p->normal_prio);
7074
7075 /*
7076 * If nothing changed; bail early.
7077 */
7078 if (p->pi_top_task == pi_task && prio == p->prio && !dl_prio(prio))
7079 return;
7080
7081 rq = __task_rq_lock(p, &rf);
7082 update_rq_clock(rq);
7083 /*
7084 * Set under pi_lock && rq->lock, such that the value can be used under
7085 * either lock.
7086 *
7087 * Note that there is loads of tricky to make this pointer cache work
7088 * right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to
7089 * ensure a task is de-boosted (pi_task is set to NULL) before the
7090 * task is allowed to run again (and can exit). This ensures the pointer
7091 * points to a blocked task -- which guarantees the task is present.
7092 */
7093 p->pi_top_task = pi_task;
7094
7095 /*
7096 * For FIFO/RR we only need to set prio, if that matches we're done.
7097 */
7098 if (prio == p->prio && !dl_prio(prio))
7099 goto out_unlock;
7100
7101 /*
7102 * Idle task boosting is a nono in general. There is one
7103 * exception, when PREEMPT_RT and NOHZ is active:
7104 *
7105 * The idle task calls get_next_timer_interrupt() and holds
7106 * the timer wheel base->lock on the CPU and another CPU wants
7107 * to access the timer (probably to cancel it). We can safely
7108 * ignore the boosting request, as the idle CPU runs this code
7109 * with interrupts disabled and will complete the lock
7110 * protected section without being interrupted. So there is no
7111 * real need to boost.
7112 */
7113 if (unlikely(p == rq->idle)) {
7114 WARN_ON(p != rq->curr);
7115 WARN_ON(p->pi_blocked_on);
7116 goto out_unlock;
7117 }
7118
7119 trace_sched_pi_setprio(p, pi_task);
7120 oldprio = p->prio;
7121
7122 if (oldprio == prio)
7123 queue_flag &= ~DEQUEUE_MOVE;
7124
7125 prev_class = p->sched_class;
7126 queued = task_on_rq_queued(p);
7127 running = task_current(rq, p);
7128 if (queued)
7129 dequeue_task(rq, p, queue_flag);
7130 if (running)
7131 put_prev_task(rq, p);
7132
7133 /*
7134 * Boosting condition are:
7135 * 1. -rt task is running and holds mutex A
7136 * --> -dl task blocks on mutex A
7137 *
7138 * 2. -dl task is running and holds mutex A
7139 * --> -dl task blocks on mutex A and could preempt the
7140 * running task
7141 */
7142 if (dl_prio(prio)) {
7143 if (!dl_prio(p->normal_prio) ||
7144 (pi_task && dl_prio(pi_task->prio) &&
7145 dl_entity_preempt(&pi_task->dl, &p->dl))) {
7146 p->dl.pi_se = pi_task->dl.pi_se;
7147 queue_flag |= ENQUEUE_REPLENISH;
7148 } else {
7149 p->dl.pi_se = &p->dl;
7150 }
7151 } else if (rt_prio(prio)) {
7152 if (dl_prio(oldprio))
7153 p->dl.pi_se = &p->dl;
7154 if (oldprio < prio)
7155 queue_flag |= ENQUEUE_HEAD;
7156 } else {
7157 if (dl_prio(oldprio))
7158 p->dl.pi_se = &p->dl;
7159 if (rt_prio(oldprio))
7160 p->rt.timeout = 0;
7161 }
7162
7163 __setscheduler_prio(p, prio);
7164
7165 if (queued)
7166 enqueue_task(rq, p, queue_flag);
7167 if (running)
7168 set_next_task(rq, p);
7169
7170 check_class_changed(rq, p, prev_class, oldprio);
7171 out_unlock:
7172 /* Avoid rq from going away on us: */
7173 preempt_disable();
7174
7175 rq_unpin_lock(rq, &rf);
7176 __balance_callbacks(rq);
7177 raw_spin_rq_unlock(rq);
7178
7179 preempt_enable();
7180 }
7181 #else
rt_effective_prio(struct task_struct * p,int prio)7182 static inline int rt_effective_prio(struct task_struct *p, int prio)
7183 {
7184 return prio;
7185 }
7186 #endif
7187
set_user_nice(struct task_struct * p,long nice)7188 void set_user_nice(struct task_struct *p, long nice)
7189 {
7190 bool queued, running;
7191 int old_prio;
7192 struct rq_flags rf;
7193 struct rq *rq;
7194
7195 if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
7196 return;
7197 /*
7198 * We have to be careful, if called from sys_setpriority(),
7199 * the task might be in the middle of scheduling on another CPU.
7200 */
7201 rq = task_rq_lock(p, &rf);
7202 update_rq_clock(rq);
7203
7204 /*
7205 * The RT priorities are set via sched_setscheduler(), but we still
7206 * allow the 'normal' nice value to be set - but as expected
7207 * it won't have any effect on scheduling until the task is
7208 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
7209 */
7210 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
7211 p->static_prio = NICE_TO_PRIO(nice);
7212 goto out_unlock;
7213 }
7214 queued = task_on_rq_queued(p);
7215 running = task_current(rq, p);
7216 if (queued)
7217 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
7218 if (running)
7219 put_prev_task(rq, p);
7220
7221 p->static_prio = NICE_TO_PRIO(nice);
7222 set_load_weight(p, true);
7223 old_prio = p->prio;
7224 p->prio = effective_prio(p);
7225
7226 if (queued)
7227 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
7228 if (running)
7229 set_next_task(rq, p);
7230
7231 /*
7232 * If the task increased its priority or is running and
7233 * lowered its priority, then reschedule its CPU:
7234 */
7235 p->sched_class->prio_changed(rq, p, old_prio);
7236
7237 out_unlock:
7238 task_rq_unlock(rq, p, &rf);
7239 }
7240 EXPORT_SYMBOL(set_user_nice);
7241
7242 /*
7243 * is_nice_reduction - check if nice value is an actual reduction
7244 *
7245 * Similar to can_nice() but does not perform a capability check.
7246 *
7247 * @p: task
7248 * @nice: nice value
7249 */
is_nice_reduction(const struct task_struct * p,const int nice)7250 static bool is_nice_reduction(const struct task_struct *p, const int nice)
7251 {
7252 /* Convert nice value [19,-20] to rlimit style value [1,40]: */
7253 int nice_rlim = nice_to_rlimit(nice);
7254
7255 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE));
7256 }
7257
7258 /*
7259 * can_nice - check if a task can reduce its nice value
7260 * @p: task
7261 * @nice: nice value
7262 */
can_nice(const struct task_struct * p,const int nice)7263 int can_nice(const struct task_struct *p, const int nice)
7264 {
7265 return is_nice_reduction(p, nice) || capable(CAP_SYS_NICE);
7266 }
7267
7268 #ifdef __ARCH_WANT_SYS_NICE
7269
7270 /*
7271 * sys_nice - change the priority of the current process.
7272 * @increment: priority increment
7273 *
7274 * sys_setpriority is a more generic, but much slower function that
7275 * does similar things.
7276 */
SYSCALL_DEFINE1(nice,int,increment)7277 SYSCALL_DEFINE1(nice, int, increment)
7278 {
7279 long nice, retval;
7280
7281 /*
7282 * Setpriority might change our priority at the same moment.
7283 * We don't have to worry. Conceptually one call occurs first
7284 * and we have a single winner.
7285 */
7286 increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
7287 nice = task_nice(current) + increment;
7288
7289 nice = clamp_val(nice, MIN_NICE, MAX_NICE);
7290 if (increment < 0 && !can_nice(current, nice))
7291 return -EPERM;
7292
7293 retval = security_task_setnice(current, nice);
7294 if (retval)
7295 return retval;
7296
7297 set_user_nice(current, nice);
7298 return 0;
7299 }
7300
7301 #endif
7302
7303 /**
7304 * task_prio - return the priority value of a given task.
7305 * @p: the task in question.
7306 *
7307 * Return: The priority value as seen by users in /proc.
7308 *
7309 * sched policy return value kernel prio user prio/nice
7310 *
7311 * normal, batch, idle [0 ... 39] [100 ... 139] 0/[-20 ... 19]
7312 * fifo, rr [-2 ... -100] [98 ... 0] [1 ... 99]
7313 * deadline -101 -1 0
7314 */
task_prio(const struct task_struct * p)7315 int task_prio(const struct task_struct *p)
7316 {
7317 return p->prio - MAX_RT_PRIO;
7318 }
7319
7320 /**
7321 * idle_cpu - is a given CPU idle currently?
7322 * @cpu: the processor in question.
7323 *
7324 * Return: 1 if the CPU is currently idle. 0 otherwise.
7325 */
idle_cpu(int cpu)7326 int idle_cpu(int cpu)
7327 {
7328 struct rq *rq = cpu_rq(cpu);
7329
7330 if (rq->curr != rq->idle)
7331 return 0;
7332
7333 if (rq->nr_running)
7334 return 0;
7335
7336 #ifdef CONFIG_SMP
7337 if (rq->ttwu_pending)
7338 return 0;
7339 #endif
7340
7341 return 1;
7342 }
7343
7344 /**
7345 * available_idle_cpu - is a given CPU idle for enqueuing work.
7346 * @cpu: the CPU in question.
7347 *
7348 * Return: 1 if the CPU is currently idle. 0 otherwise.
7349 */
available_idle_cpu(int cpu)7350 int available_idle_cpu(int cpu)
7351 {
7352 if (!idle_cpu(cpu))
7353 return 0;
7354
7355 if (vcpu_is_preempted(cpu))
7356 return 0;
7357
7358 return 1;
7359 }
7360
7361 /**
7362 * idle_task - return the idle task for a given CPU.
7363 * @cpu: the processor in question.
7364 *
7365 * Return: The idle task for the CPU @cpu.
7366 */
idle_task(int cpu)7367 struct task_struct *idle_task(int cpu)
7368 {
7369 return cpu_rq(cpu)->idle;
7370 }
7371
7372 #ifdef CONFIG_SCHED_CORE
sched_core_idle_cpu(int cpu)7373 int sched_core_idle_cpu(int cpu)
7374 {
7375 struct rq *rq = cpu_rq(cpu);
7376
7377 if (sched_core_enabled(rq) && rq->curr == rq->idle)
7378 return 1;
7379
7380 return idle_cpu(cpu);
7381 }
7382
7383 #endif
7384
7385 #ifdef CONFIG_SMP
7386 /*
7387 * This function computes an effective utilization for the given CPU, to be
7388 * used for frequency selection given the linear relation: f = u * f_max.
7389 *
7390 * The scheduler tracks the following metrics:
7391 *
7392 * cpu_util_{cfs,rt,dl,irq}()
7393 * cpu_bw_dl()
7394 *
7395 * Where the cfs,rt and dl util numbers are tracked with the same metric and
7396 * synchronized windows and are thus directly comparable.
7397 *
7398 * The cfs,rt,dl utilization are the running times measured with rq->clock_task
7399 * which excludes things like IRQ and steal-time. These latter are then accrued
7400 * in the irq utilization.
7401 *
7402 * The DL bandwidth number otoh is not a measured metric but a value computed
7403 * based on the task model parameters and gives the minimal utilization
7404 * required to meet deadlines.
7405 */
effective_cpu_util(int cpu,unsigned long util_cfs,enum cpu_util_type type,struct task_struct * p)7406 unsigned long effective_cpu_util(int cpu, unsigned long util_cfs,
7407 enum cpu_util_type type,
7408 struct task_struct *p)
7409 {
7410 unsigned long dl_util, util, irq, max;
7411 struct rq *rq = cpu_rq(cpu);
7412
7413 max = arch_scale_cpu_capacity(cpu);
7414
7415 if (!uclamp_is_used() &&
7416 type == FREQUENCY_UTIL && rt_rq_is_runnable(&rq->rt)) {
7417 return max;
7418 }
7419
7420 /*
7421 * Early check to see if IRQ/steal time saturates the CPU, can be
7422 * because of inaccuracies in how we track these -- see
7423 * update_irq_load_avg().
7424 */
7425 irq = cpu_util_irq(rq);
7426 if (unlikely(irq >= max))
7427 return max;
7428
7429 /*
7430 * Because the time spend on RT/DL tasks is visible as 'lost' time to
7431 * CFS tasks and we use the same metric to track the effective
7432 * utilization (PELT windows are synchronized) we can directly add them
7433 * to obtain the CPU's actual utilization.
7434 *
7435 * CFS and RT utilization can be boosted or capped, depending on
7436 * utilization clamp constraints requested by currently RUNNABLE
7437 * tasks.
7438 * When there are no CFS RUNNABLE tasks, clamps are released and
7439 * frequency will be gracefully reduced with the utilization decay.
7440 */
7441 util = util_cfs + cpu_util_rt(rq);
7442 if (type == FREQUENCY_UTIL)
7443 util = uclamp_rq_util_with(rq, util, p);
7444
7445 dl_util = cpu_util_dl(rq);
7446
7447 /*
7448 * For frequency selection we do not make cpu_util_dl() a permanent part
7449 * of this sum because we want to use cpu_bw_dl() later on, but we need
7450 * to check if the CFS+RT+DL sum is saturated (ie. no idle time) such
7451 * that we select f_max when there is no idle time.
7452 *
7453 * NOTE: numerical errors or stop class might cause us to not quite hit
7454 * saturation when we should -- something for later.
7455 */
7456 if (util + dl_util >= max)
7457 return max;
7458
7459 /*
7460 * OTOH, for energy computation we need the estimated running time, so
7461 * include util_dl and ignore dl_bw.
7462 */
7463 if (type == ENERGY_UTIL)
7464 util += dl_util;
7465
7466 /*
7467 * There is still idle time; further improve the number by using the
7468 * irq metric. Because IRQ/steal time is hidden from the task clock we
7469 * need to scale the task numbers:
7470 *
7471 * max - irq
7472 * U' = irq + --------- * U
7473 * max
7474 */
7475 util = scale_irq_capacity(util, irq, max);
7476 util += irq;
7477
7478 /*
7479 * Bandwidth required by DEADLINE must always be granted while, for
7480 * FAIR and RT, we use blocked utilization of IDLE CPUs as a mechanism
7481 * to gracefully reduce the frequency when no tasks show up for longer
7482 * periods of time.
7483 *
7484 * Ideally we would like to set bw_dl as min/guaranteed freq and util +
7485 * bw_dl as requested freq. However, cpufreq is not yet ready for such
7486 * an interface. So, we only do the latter for now.
7487 */
7488 if (type == FREQUENCY_UTIL)
7489 util += cpu_bw_dl(rq);
7490
7491 return min(max, util);
7492 }
7493
sched_cpu_util(int cpu)7494 unsigned long sched_cpu_util(int cpu)
7495 {
7496 return effective_cpu_util(cpu, cpu_util_cfs(cpu), ENERGY_UTIL, NULL);
7497 }
7498 #endif /* CONFIG_SMP */
7499
7500 /**
7501 * find_process_by_pid - find a process with a matching PID value.
7502 * @pid: the pid in question.
7503 *
7504 * The task of @pid, if found. %NULL otherwise.
7505 */
find_process_by_pid(pid_t pid)7506 static struct task_struct *find_process_by_pid(pid_t pid)
7507 {
7508 return pid ? find_task_by_vpid(pid) : current;
7509 }
7510
7511 /*
7512 * sched_setparam() passes in -1 for its policy, to let the functions
7513 * it calls know not to change it.
7514 */
7515 #define SETPARAM_POLICY -1
7516
__setscheduler_params(struct task_struct * p,const struct sched_attr * attr)7517 static void __setscheduler_params(struct task_struct *p,
7518 const struct sched_attr *attr)
7519 {
7520 int policy = attr->sched_policy;
7521
7522 if (policy == SETPARAM_POLICY)
7523 policy = p->policy;
7524
7525 p->policy = policy;
7526
7527 if (dl_policy(policy))
7528 __setparam_dl(p, attr);
7529 else if (fair_policy(policy))
7530 p->static_prio = NICE_TO_PRIO(attr->sched_nice);
7531
7532 /*
7533 * __sched_setscheduler() ensures attr->sched_priority == 0 when
7534 * !rt_policy. Always setting this ensures that things like
7535 * getparam()/getattr() don't report silly values for !rt tasks.
7536 */
7537 p->rt_priority = attr->sched_priority;
7538 p->normal_prio = normal_prio(p);
7539 set_load_weight(p, true);
7540 }
7541
7542 /*
7543 * Check the target process has a UID that matches the current process's:
7544 */
check_same_owner(struct task_struct * p)7545 static bool check_same_owner(struct task_struct *p)
7546 {
7547 const struct cred *cred = current_cred(), *pcred;
7548 bool match;
7549
7550 rcu_read_lock();
7551 pcred = __task_cred(p);
7552 match = (uid_eq(cred->euid, pcred->euid) ||
7553 uid_eq(cred->euid, pcred->uid));
7554 rcu_read_unlock();
7555 return match;
7556 }
7557
7558 /*
7559 * Allow unprivileged RT tasks to decrease priority.
7560 * Only issue a capable test if needed and only once to avoid an audit
7561 * event on permitted non-privileged operations:
7562 */
user_check_sched_setscheduler(struct task_struct * p,const struct sched_attr * attr,int policy,int reset_on_fork)7563 static int user_check_sched_setscheduler(struct task_struct *p,
7564 const struct sched_attr *attr,
7565 int policy, int reset_on_fork)
7566 {
7567 if (fair_policy(policy)) {
7568 if (attr->sched_nice < task_nice(p) &&
7569 !is_nice_reduction(p, attr->sched_nice))
7570 goto req_priv;
7571 }
7572
7573 if (rt_policy(policy)) {
7574 unsigned long rlim_rtprio = task_rlimit(p, RLIMIT_RTPRIO);
7575
7576 /* Can't set/change the rt policy: */
7577 if (policy != p->policy && !rlim_rtprio)
7578 goto req_priv;
7579
7580 /* Can't increase priority: */
7581 if (attr->sched_priority > p->rt_priority &&
7582 attr->sched_priority > rlim_rtprio)
7583 goto req_priv;
7584 }
7585
7586 /*
7587 * Can't set/change SCHED_DEADLINE policy at all for now
7588 * (safest behavior); in the future we would like to allow
7589 * unprivileged DL tasks to increase their relative deadline
7590 * or reduce their runtime (both ways reducing utilization)
7591 */
7592 if (dl_policy(policy))
7593 goto req_priv;
7594
7595 /*
7596 * Treat SCHED_IDLE as nice 20. Only allow a switch to
7597 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
7598 */
7599 if (task_has_idle_policy(p) && !idle_policy(policy)) {
7600 if (!is_nice_reduction(p, task_nice(p)))
7601 goto req_priv;
7602 }
7603
7604 /* Can't change other user's priorities: */
7605 if (!check_same_owner(p))
7606 goto req_priv;
7607
7608 /* Normal users shall not reset the sched_reset_on_fork flag: */
7609 if (p->sched_reset_on_fork && !reset_on_fork)
7610 goto req_priv;
7611
7612 return 0;
7613
7614 req_priv:
7615 if (!capable(CAP_SYS_NICE))
7616 return -EPERM;
7617
7618 return 0;
7619 }
7620
__sched_setscheduler(struct task_struct * p,const struct sched_attr * attr,bool user,bool pi)7621 static int __sched_setscheduler(struct task_struct *p,
7622 const struct sched_attr *attr,
7623 bool user, bool pi)
7624 {
7625 int oldpolicy = -1, policy = attr->sched_policy;
7626 int retval, oldprio, newprio, queued, running;
7627 const struct sched_class *prev_class;
7628 struct balance_callback *head;
7629 struct rq_flags rf;
7630 int reset_on_fork;
7631 int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
7632 struct rq *rq;
7633 bool cpuset_locked = false;
7634
7635 /* The pi code expects interrupts enabled */
7636 BUG_ON(pi && in_interrupt());
7637 recheck:
7638 /* Double check policy once rq lock held: */
7639 if (policy < 0) {
7640 reset_on_fork = p->sched_reset_on_fork;
7641 policy = oldpolicy = p->policy;
7642 } else {
7643 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
7644
7645 if (!valid_policy(policy))
7646 return -EINVAL;
7647 }
7648
7649 if (attr->sched_flags & ~(SCHED_FLAG_ALL | SCHED_FLAG_SUGOV))
7650 return -EINVAL;
7651
7652 /*
7653 * Valid priorities for SCHED_FIFO and SCHED_RR are
7654 * 1..MAX_RT_PRIO-1, valid priority for SCHED_NORMAL,
7655 * SCHED_BATCH and SCHED_IDLE is 0.
7656 */
7657 if (attr->sched_priority > MAX_RT_PRIO-1)
7658 return -EINVAL;
7659 if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
7660 (rt_policy(policy) != (attr->sched_priority != 0)))
7661 return -EINVAL;
7662
7663 if (user) {
7664 retval = user_check_sched_setscheduler(p, attr, policy, reset_on_fork);
7665 if (retval)
7666 return retval;
7667
7668 if (attr->sched_flags & SCHED_FLAG_SUGOV)
7669 return -EINVAL;
7670
7671 retval = security_task_setscheduler(p);
7672 if (retval)
7673 return retval;
7674 }
7675
7676 /* Update task specific "requested" clamps */
7677 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) {
7678 retval = uclamp_validate(p, attr);
7679 if (retval)
7680 return retval;
7681 }
7682
7683 /*
7684 * SCHED_DEADLINE bandwidth accounting relies on stable cpusets
7685 * information.
7686 */
7687 if (dl_policy(policy) || dl_policy(p->policy)) {
7688 cpuset_locked = true;
7689 cpuset_lock();
7690 }
7691
7692 /*
7693 * Make sure no PI-waiters arrive (or leave) while we are
7694 * changing the priority of the task:
7695 *
7696 * To be able to change p->policy safely, the appropriate
7697 * runqueue lock must be held.
7698 */
7699 rq = task_rq_lock(p, &rf);
7700 update_rq_clock(rq);
7701
7702 /*
7703 * Changing the policy of the stop threads its a very bad idea:
7704 */
7705 if (p == rq->stop) {
7706 retval = -EINVAL;
7707 goto unlock;
7708 }
7709
7710 /*
7711 * If not changing anything there's no need to proceed further,
7712 * but store a possible modification of reset_on_fork.
7713 */
7714 if (unlikely(policy == p->policy)) {
7715 if (fair_policy(policy) && attr->sched_nice != task_nice(p))
7716 goto change;
7717 if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
7718 goto change;
7719 if (dl_policy(policy) && dl_param_changed(p, attr))
7720 goto change;
7721 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)
7722 goto change;
7723
7724 p->sched_reset_on_fork = reset_on_fork;
7725 retval = 0;
7726 goto unlock;
7727 }
7728 change:
7729
7730 if (user) {
7731 #ifdef CONFIG_RT_GROUP_SCHED
7732 /*
7733 * Do not allow realtime tasks into groups that have no runtime
7734 * assigned.
7735 */
7736 if (rt_bandwidth_enabled() && rt_policy(policy) &&
7737 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
7738 !task_group_is_autogroup(task_group(p))) {
7739 retval = -EPERM;
7740 goto unlock;
7741 }
7742 #endif
7743 #ifdef CONFIG_SMP
7744 if (dl_bandwidth_enabled() && dl_policy(policy) &&
7745 !(attr->sched_flags & SCHED_FLAG_SUGOV)) {
7746 cpumask_t *span = rq->rd->span;
7747
7748 /*
7749 * Don't allow tasks with an affinity mask smaller than
7750 * the entire root_domain to become SCHED_DEADLINE. We
7751 * will also fail if there's no bandwidth available.
7752 */
7753 if (!cpumask_subset(span, p->cpus_ptr) ||
7754 rq->rd->dl_bw.bw == 0) {
7755 retval = -EPERM;
7756 goto unlock;
7757 }
7758 }
7759 #endif
7760 }
7761
7762 /* Re-check policy now with rq lock held: */
7763 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
7764 policy = oldpolicy = -1;
7765 task_rq_unlock(rq, p, &rf);
7766 if (cpuset_locked)
7767 cpuset_unlock();
7768 goto recheck;
7769 }
7770
7771 /*
7772 * If setscheduling to SCHED_DEADLINE (or changing the parameters
7773 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
7774 * is available.
7775 */
7776 if ((dl_policy(policy) || dl_task(p)) && sched_dl_overflow(p, policy, attr)) {
7777 retval = -EBUSY;
7778 goto unlock;
7779 }
7780
7781 p->sched_reset_on_fork = reset_on_fork;
7782 oldprio = p->prio;
7783
7784 newprio = __normal_prio(policy, attr->sched_priority, attr->sched_nice);
7785 if (pi) {
7786 /*
7787 * Take priority boosted tasks into account. If the new
7788 * effective priority is unchanged, we just store the new
7789 * normal parameters and do not touch the scheduler class and
7790 * the runqueue. This will be done when the task deboost
7791 * itself.
7792 */
7793 newprio = rt_effective_prio(p, newprio);
7794 if (newprio == oldprio)
7795 queue_flags &= ~DEQUEUE_MOVE;
7796 }
7797
7798 queued = task_on_rq_queued(p);
7799 running = task_current(rq, p);
7800 if (queued)
7801 dequeue_task(rq, p, queue_flags);
7802 if (running)
7803 put_prev_task(rq, p);
7804
7805 prev_class = p->sched_class;
7806
7807 if (!(attr->sched_flags & SCHED_FLAG_KEEP_PARAMS)) {
7808 __setscheduler_params(p, attr);
7809 __setscheduler_prio(p, newprio);
7810 }
7811 __setscheduler_uclamp(p, attr);
7812
7813 if (queued) {
7814 /*
7815 * We enqueue to tail when the priority of a task is
7816 * increased (user space view).
7817 */
7818 if (oldprio < p->prio)
7819 queue_flags |= ENQUEUE_HEAD;
7820
7821 enqueue_task(rq, p, queue_flags);
7822 }
7823 if (running)
7824 set_next_task(rq, p);
7825
7826 check_class_changed(rq, p, prev_class, oldprio);
7827
7828 /* Avoid rq from going away on us: */
7829 preempt_disable();
7830 head = splice_balance_callbacks(rq);
7831 task_rq_unlock(rq, p, &rf);
7832
7833 if (pi) {
7834 if (cpuset_locked)
7835 cpuset_unlock();
7836 rt_mutex_adjust_pi(p);
7837 }
7838
7839 /* Run balance callbacks after we've adjusted the PI chain: */
7840 balance_callbacks(rq, head);
7841 preempt_enable();
7842
7843 return 0;
7844
7845 unlock:
7846 task_rq_unlock(rq, p, &rf);
7847 if (cpuset_locked)
7848 cpuset_unlock();
7849 return retval;
7850 }
7851
_sched_setscheduler(struct task_struct * p,int policy,const struct sched_param * param,bool check)7852 static int _sched_setscheduler(struct task_struct *p, int policy,
7853 const struct sched_param *param, bool check)
7854 {
7855 struct sched_attr attr = {
7856 .sched_policy = policy,
7857 .sched_priority = param->sched_priority,
7858 .sched_nice = PRIO_TO_NICE(p->static_prio),
7859 };
7860
7861 /* Fixup the legacy SCHED_RESET_ON_FORK hack. */
7862 if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
7863 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
7864 policy &= ~SCHED_RESET_ON_FORK;
7865 attr.sched_policy = policy;
7866 }
7867
7868 return __sched_setscheduler(p, &attr, check, true);
7869 }
7870 /**
7871 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
7872 * @p: the task in question.
7873 * @policy: new policy.
7874 * @param: structure containing the new RT priority.
7875 *
7876 * Use sched_set_fifo(), read its comment.
7877 *
7878 * Return: 0 on success. An error code otherwise.
7879 *
7880 * NOTE that the task may be already dead.
7881 */
sched_setscheduler(struct task_struct * p,int policy,const struct sched_param * param)7882 int sched_setscheduler(struct task_struct *p, int policy,
7883 const struct sched_param *param)
7884 {
7885 return _sched_setscheduler(p, policy, param, true);
7886 }
7887
sched_setattr(struct task_struct * p,const struct sched_attr * attr)7888 int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
7889 {
7890 return __sched_setscheduler(p, attr, true, true);
7891 }
7892
sched_setattr_nocheck(struct task_struct * p,const struct sched_attr * attr)7893 int sched_setattr_nocheck(struct task_struct *p, const struct sched_attr *attr)
7894 {
7895 return __sched_setscheduler(p, attr, false, true);
7896 }
7897 EXPORT_SYMBOL_GPL(sched_setattr_nocheck);
7898
7899 /**
7900 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
7901 * @p: the task in question.
7902 * @policy: new policy.
7903 * @param: structure containing the new RT priority.
7904 *
7905 * Just like sched_setscheduler, only don't bother checking if the
7906 * current context has permission. For example, this is needed in
7907 * stop_machine(): we create temporary high priority worker threads,
7908 * but our caller might not have that capability.
7909 *
7910 * Return: 0 on success. An error code otherwise.
7911 */
sched_setscheduler_nocheck(struct task_struct * p,int policy,const struct sched_param * param)7912 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
7913 const struct sched_param *param)
7914 {
7915 return _sched_setscheduler(p, policy, param, false);
7916 }
7917
7918 /*
7919 * SCHED_FIFO is a broken scheduler model; that is, it is fundamentally
7920 * incapable of resource management, which is the one thing an OS really should
7921 * be doing.
7922 *
7923 * This is of course the reason it is limited to privileged users only.
7924 *
7925 * Worse still; it is fundamentally impossible to compose static priority
7926 * workloads. You cannot take two correctly working static prio workloads
7927 * and smash them together and still expect them to work.
7928 *
7929 * For this reason 'all' FIFO tasks the kernel creates are basically at:
7930 *
7931 * MAX_RT_PRIO / 2
7932 *
7933 * The administrator _MUST_ configure the system, the kernel simply doesn't
7934 * know enough information to make a sensible choice.
7935 */
sched_set_fifo(struct task_struct * p)7936 void sched_set_fifo(struct task_struct *p)
7937 {
7938 struct sched_param sp = { .sched_priority = MAX_RT_PRIO / 2 };
7939 WARN_ON_ONCE(sched_setscheduler_nocheck(p, SCHED_FIFO, &sp) != 0);
7940 }
7941 EXPORT_SYMBOL_GPL(sched_set_fifo);
7942
7943 /*
7944 * For when you don't much care about FIFO, but want to be above SCHED_NORMAL.
7945 */
sched_set_fifo_low(struct task_struct * p)7946 void sched_set_fifo_low(struct task_struct *p)
7947 {
7948 struct sched_param sp = { .sched_priority = 1 };
7949 WARN_ON_ONCE(sched_setscheduler_nocheck(p, SCHED_FIFO, &sp) != 0);
7950 }
7951 EXPORT_SYMBOL_GPL(sched_set_fifo_low);
7952
sched_set_normal(struct task_struct * p,int nice)7953 void sched_set_normal(struct task_struct *p, int nice)
7954 {
7955 struct sched_attr attr = {
7956 .sched_policy = SCHED_NORMAL,
7957 .sched_nice = nice,
7958 };
7959 WARN_ON_ONCE(sched_setattr_nocheck(p, &attr) != 0);
7960 }
7961 EXPORT_SYMBOL_GPL(sched_set_normal);
7962
7963 static int
do_sched_setscheduler(pid_t pid,int policy,struct sched_param __user * param)7964 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
7965 {
7966 struct sched_param lparam;
7967 struct task_struct *p;
7968 int retval;
7969
7970 if (!param || pid < 0)
7971 return -EINVAL;
7972 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
7973 return -EFAULT;
7974
7975 rcu_read_lock();
7976 retval = -ESRCH;
7977 p = find_process_by_pid(pid);
7978 if (likely(p))
7979 get_task_struct(p);
7980 rcu_read_unlock();
7981
7982 if (likely(p)) {
7983 retval = sched_setscheduler(p, policy, &lparam);
7984 put_task_struct(p);
7985 }
7986
7987 return retval;
7988 }
7989
7990 /*
7991 * Mimics kernel/events/core.c perf_copy_attr().
7992 */
sched_copy_attr(struct sched_attr __user * uattr,struct sched_attr * attr)7993 static int sched_copy_attr(struct sched_attr __user *uattr, struct sched_attr *attr)
7994 {
7995 u32 size;
7996 int ret;
7997
7998 /* Zero the full structure, so that a short copy will be nice: */
7999 memset(attr, 0, sizeof(*attr));
8000
8001 ret = get_user(size, &uattr->size);
8002 if (ret)
8003 return ret;
8004
8005 /* ABI compatibility quirk: */
8006 if (!size)
8007 size = SCHED_ATTR_SIZE_VER0;
8008 if (size < SCHED_ATTR_SIZE_VER0 || size > PAGE_SIZE)
8009 goto err_size;
8010
8011 ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size);
8012 if (ret) {
8013 if (ret == -E2BIG)
8014 goto err_size;
8015 return ret;
8016 }
8017
8018 if ((attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) &&
8019 size < SCHED_ATTR_SIZE_VER1)
8020 return -EINVAL;
8021
8022 /*
8023 * XXX: Do we want to be lenient like existing syscalls; or do we want
8024 * to be strict and return an error on out-of-bounds values?
8025 */
8026 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
8027
8028 return 0;
8029
8030 err_size:
8031 put_user(sizeof(*attr), &uattr->size);
8032 return -E2BIG;
8033 }
8034
get_params(struct task_struct * p,struct sched_attr * attr)8035 static void get_params(struct task_struct *p, struct sched_attr *attr)
8036 {
8037 if (task_has_dl_policy(p))
8038 __getparam_dl(p, attr);
8039 else if (task_has_rt_policy(p))
8040 attr->sched_priority = p->rt_priority;
8041 else
8042 attr->sched_nice = task_nice(p);
8043 }
8044
8045 /**
8046 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
8047 * @pid: the pid in question.
8048 * @policy: new policy.
8049 * @param: structure containing the new RT priority.
8050 *
8051 * Return: 0 on success. An error code otherwise.
8052 */
SYSCALL_DEFINE3(sched_setscheduler,pid_t,pid,int,policy,struct sched_param __user *,param)8053 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, struct sched_param __user *, param)
8054 {
8055 if (policy < 0)
8056 return -EINVAL;
8057
8058 return do_sched_setscheduler(pid, policy, param);
8059 }
8060
8061 /**
8062 * sys_sched_setparam - set/change the RT priority of a thread
8063 * @pid: the pid in question.
8064 * @param: structure containing the new RT priority.
8065 *
8066 * Return: 0 on success. An error code otherwise.
8067 */
SYSCALL_DEFINE2(sched_setparam,pid_t,pid,struct sched_param __user *,param)8068 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
8069 {
8070 return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
8071 }
8072
8073 /**
8074 * sys_sched_setattr - same as above, but with extended sched_attr
8075 * @pid: the pid in question.
8076 * @uattr: structure containing the extended parameters.
8077 * @flags: for future extension.
8078 */
SYSCALL_DEFINE3(sched_setattr,pid_t,pid,struct sched_attr __user *,uattr,unsigned int,flags)8079 SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
8080 unsigned int, flags)
8081 {
8082 struct sched_attr attr;
8083 struct task_struct *p;
8084 int retval;
8085
8086 if (!uattr || pid < 0 || flags)
8087 return -EINVAL;
8088
8089 retval = sched_copy_attr(uattr, &attr);
8090 if (retval)
8091 return retval;
8092
8093 if ((int)attr.sched_policy < 0)
8094 return -EINVAL;
8095 if (attr.sched_flags & SCHED_FLAG_KEEP_POLICY)
8096 attr.sched_policy = SETPARAM_POLICY;
8097
8098 rcu_read_lock();
8099 retval = -ESRCH;
8100 p = find_process_by_pid(pid);
8101 if (likely(p))
8102 get_task_struct(p);
8103 rcu_read_unlock();
8104
8105 if (likely(p)) {
8106 if (attr.sched_flags & SCHED_FLAG_KEEP_PARAMS)
8107 get_params(p, &attr);
8108 retval = sched_setattr(p, &attr);
8109 put_task_struct(p);
8110 }
8111
8112 return retval;
8113 }
8114
8115 /**
8116 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
8117 * @pid: the pid in question.
8118 *
8119 * Return: On success, the policy of the thread. Otherwise, a negative error
8120 * code.
8121 */
SYSCALL_DEFINE1(sched_getscheduler,pid_t,pid)8122 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
8123 {
8124 struct task_struct *p;
8125 int retval;
8126
8127 if (pid < 0)
8128 return -EINVAL;
8129
8130 retval = -ESRCH;
8131 rcu_read_lock();
8132 p = find_process_by_pid(pid);
8133 if (p) {
8134 retval = security_task_getscheduler(p);
8135 if (!retval)
8136 retval = p->policy
8137 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
8138 }
8139 rcu_read_unlock();
8140 return retval;
8141 }
8142
8143 /**
8144 * sys_sched_getparam - get the RT priority of a thread
8145 * @pid: the pid in question.
8146 * @param: structure containing the RT priority.
8147 *
8148 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
8149 * code.
8150 */
SYSCALL_DEFINE2(sched_getparam,pid_t,pid,struct sched_param __user *,param)8151 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
8152 {
8153 struct sched_param lp = { .sched_priority = 0 };
8154 struct task_struct *p;
8155 int retval;
8156
8157 if (!param || pid < 0)
8158 return -EINVAL;
8159
8160 rcu_read_lock();
8161 p = find_process_by_pid(pid);
8162 retval = -ESRCH;
8163 if (!p)
8164 goto out_unlock;
8165
8166 retval = security_task_getscheduler(p);
8167 if (retval)
8168 goto out_unlock;
8169
8170 if (task_has_rt_policy(p))
8171 lp.sched_priority = p->rt_priority;
8172 rcu_read_unlock();
8173
8174 /*
8175 * This one might sleep, we cannot do it with a spinlock held ...
8176 */
8177 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
8178
8179 return retval;
8180
8181 out_unlock:
8182 rcu_read_unlock();
8183 return retval;
8184 }
8185
8186 /*
8187 * Copy the kernel size attribute structure (which might be larger
8188 * than what user-space knows about) to user-space.
8189 *
8190 * Note that all cases are valid: user-space buffer can be larger or
8191 * smaller than the kernel-space buffer. The usual case is that both
8192 * have the same size.
8193 */
8194 static int
sched_attr_copy_to_user(struct sched_attr __user * uattr,struct sched_attr * kattr,unsigned int usize)8195 sched_attr_copy_to_user(struct sched_attr __user *uattr,
8196 struct sched_attr *kattr,
8197 unsigned int usize)
8198 {
8199 unsigned int ksize = sizeof(*kattr);
8200
8201 if (!access_ok(uattr, usize))
8202 return -EFAULT;
8203
8204 /*
8205 * sched_getattr() ABI forwards and backwards compatibility:
8206 *
8207 * If usize == ksize then we just copy everything to user-space and all is good.
8208 *
8209 * If usize < ksize then we only copy as much as user-space has space for,
8210 * this keeps ABI compatibility as well. We skip the rest.
8211 *
8212 * If usize > ksize then user-space is using a newer version of the ABI,
8213 * which part the kernel doesn't know about. Just ignore it - tooling can
8214 * detect the kernel's knowledge of attributes from the attr->size value
8215 * which is set to ksize in this case.
8216 */
8217 kattr->size = min(usize, ksize);
8218
8219 if (copy_to_user(uattr, kattr, kattr->size))
8220 return -EFAULT;
8221
8222 return 0;
8223 }
8224
8225 /**
8226 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
8227 * @pid: the pid in question.
8228 * @uattr: structure containing the extended parameters.
8229 * @usize: sizeof(attr) for fwd/bwd comp.
8230 * @flags: for future extension.
8231 */
SYSCALL_DEFINE4(sched_getattr,pid_t,pid,struct sched_attr __user *,uattr,unsigned int,usize,unsigned int,flags)8232 SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
8233 unsigned int, usize, unsigned int, flags)
8234 {
8235 struct sched_attr kattr = { };
8236 struct task_struct *p;
8237 int retval;
8238
8239 if (!uattr || pid < 0 || usize > PAGE_SIZE ||
8240 usize < SCHED_ATTR_SIZE_VER0 || flags)
8241 return -EINVAL;
8242
8243 rcu_read_lock();
8244 p = find_process_by_pid(pid);
8245 retval = -ESRCH;
8246 if (!p)
8247 goto out_unlock;
8248
8249 retval = security_task_getscheduler(p);
8250 if (retval)
8251 goto out_unlock;
8252
8253 kattr.sched_policy = p->policy;
8254 if (p->sched_reset_on_fork)
8255 kattr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
8256 get_params(p, &kattr);
8257 kattr.sched_flags &= SCHED_FLAG_ALL;
8258
8259 #ifdef CONFIG_UCLAMP_TASK
8260 /*
8261 * This could race with another potential updater, but this is fine
8262 * because it'll correctly read the old or the new value. We don't need
8263 * to guarantee who wins the race as long as it doesn't return garbage.
8264 */
8265 kattr.sched_util_min = p->uclamp_req[UCLAMP_MIN].value;
8266 kattr.sched_util_max = p->uclamp_req[UCLAMP_MAX].value;
8267 #endif
8268
8269 rcu_read_unlock();
8270
8271 return sched_attr_copy_to_user(uattr, &kattr, usize);
8272
8273 out_unlock:
8274 rcu_read_unlock();
8275 return retval;
8276 }
8277
8278 #ifdef CONFIG_SMP
dl_task_check_affinity(struct task_struct * p,const struct cpumask * mask)8279 int dl_task_check_affinity(struct task_struct *p, const struct cpumask *mask)
8280 {
8281 int ret = 0;
8282
8283 /*
8284 * If the task isn't a deadline task or admission control is
8285 * disabled then we don't care about affinity changes.
8286 */
8287 if (!task_has_dl_policy(p) || !dl_bandwidth_enabled())
8288 return 0;
8289
8290 /*
8291 * Since bandwidth control happens on root_domain basis,
8292 * if admission test is enabled, we only admit -deadline
8293 * tasks allowed to run on all the CPUs in the task's
8294 * root_domain.
8295 */
8296 rcu_read_lock();
8297 if (!cpumask_subset(task_rq(p)->rd->span, mask))
8298 ret = -EBUSY;
8299 rcu_read_unlock();
8300 return ret;
8301 }
8302 #endif
8303
8304 static int
__sched_setaffinity(struct task_struct * p,struct affinity_context * ctx)8305 __sched_setaffinity(struct task_struct *p, struct affinity_context *ctx)
8306 {
8307 int retval;
8308 cpumask_var_t cpus_allowed, new_mask;
8309
8310 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL))
8311 return -ENOMEM;
8312
8313 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
8314 retval = -ENOMEM;
8315 goto out_free_cpus_allowed;
8316 }
8317
8318 cpuset_cpus_allowed(p, cpus_allowed);
8319 cpumask_and(new_mask, ctx->new_mask, cpus_allowed);
8320
8321 ctx->new_mask = new_mask;
8322 ctx->flags |= SCA_CHECK;
8323
8324 retval = dl_task_check_affinity(p, new_mask);
8325 if (retval)
8326 goto out_free_new_mask;
8327
8328 retval = __set_cpus_allowed_ptr(p, ctx);
8329 if (retval)
8330 goto out_free_new_mask;
8331
8332 cpuset_cpus_allowed(p, cpus_allowed);
8333 if (!cpumask_subset(new_mask, cpus_allowed)) {
8334 /*
8335 * We must have raced with a concurrent cpuset update.
8336 * Just reset the cpumask to the cpuset's cpus_allowed.
8337 */
8338 cpumask_copy(new_mask, cpus_allowed);
8339
8340 /*
8341 * If SCA_USER is set, a 2nd call to __set_cpus_allowed_ptr()
8342 * will restore the previous user_cpus_ptr value.
8343 *
8344 * In the unlikely event a previous user_cpus_ptr exists,
8345 * we need to further restrict the mask to what is allowed
8346 * by that old user_cpus_ptr.
8347 */
8348 if (unlikely((ctx->flags & SCA_USER) && ctx->user_mask)) {
8349 bool empty = !cpumask_and(new_mask, new_mask,
8350 ctx->user_mask);
8351
8352 if (WARN_ON_ONCE(empty))
8353 cpumask_copy(new_mask, cpus_allowed);
8354 }
8355 __set_cpus_allowed_ptr(p, ctx);
8356 retval = -EINVAL;
8357 }
8358
8359 out_free_new_mask:
8360 free_cpumask_var(new_mask);
8361 out_free_cpus_allowed:
8362 free_cpumask_var(cpus_allowed);
8363 return retval;
8364 }
8365
sched_setaffinity(pid_t pid,const struct cpumask * in_mask)8366 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
8367 {
8368 struct affinity_context ac;
8369 struct cpumask *user_mask;
8370 struct task_struct *p;
8371 int retval;
8372
8373 rcu_read_lock();
8374
8375 p = find_process_by_pid(pid);
8376 if (!p) {
8377 rcu_read_unlock();
8378 return -ESRCH;
8379 }
8380
8381 /* Prevent p going away */
8382 get_task_struct(p);
8383 rcu_read_unlock();
8384
8385 if (p->flags & PF_NO_SETAFFINITY) {
8386 retval = -EINVAL;
8387 goto out_put_task;
8388 }
8389
8390 if (!check_same_owner(p)) {
8391 rcu_read_lock();
8392 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
8393 rcu_read_unlock();
8394 retval = -EPERM;
8395 goto out_put_task;
8396 }
8397 rcu_read_unlock();
8398 }
8399
8400 retval = security_task_setscheduler(p);
8401 if (retval)
8402 goto out_put_task;
8403
8404 /*
8405 * With non-SMP configs, user_cpus_ptr/user_mask isn't used and
8406 * alloc_user_cpus_ptr() returns NULL.
8407 */
8408 user_mask = alloc_user_cpus_ptr(NUMA_NO_NODE);
8409 if (user_mask) {
8410 cpumask_copy(user_mask, in_mask);
8411 } else if (IS_ENABLED(CONFIG_SMP)) {
8412 retval = -ENOMEM;
8413 goto out_put_task;
8414 }
8415
8416 ac = (struct affinity_context){
8417 .new_mask = in_mask,
8418 .user_mask = user_mask,
8419 .flags = SCA_USER,
8420 };
8421
8422 retval = __sched_setaffinity(p, &ac);
8423 kfree(ac.user_mask);
8424
8425 out_put_task:
8426 put_task_struct(p);
8427 return retval;
8428 }
8429
get_user_cpu_mask(unsigned long __user * user_mask_ptr,unsigned len,struct cpumask * new_mask)8430 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
8431 struct cpumask *new_mask)
8432 {
8433 if (len < cpumask_size())
8434 cpumask_clear(new_mask);
8435 else if (len > cpumask_size())
8436 len = cpumask_size();
8437
8438 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
8439 }
8440
8441 /**
8442 * sys_sched_setaffinity - set the CPU affinity of a process
8443 * @pid: pid of the process
8444 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
8445 * @user_mask_ptr: user-space pointer to the new CPU mask
8446 *
8447 * Return: 0 on success. An error code otherwise.
8448 */
SYSCALL_DEFINE3(sched_setaffinity,pid_t,pid,unsigned int,len,unsigned long __user *,user_mask_ptr)8449 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
8450 unsigned long __user *, user_mask_ptr)
8451 {
8452 cpumask_var_t new_mask;
8453 int retval;
8454
8455 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
8456 return -ENOMEM;
8457
8458 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
8459 if (retval == 0)
8460 retval = sched_setaffinity(pid, new_mask);
8461 free_cpumask_var(new_mask);
8462 return retval;
8463 }
8464
sched_getaffinity(pid_t pid,struct cpumask * mask)8465 long sched_getaffinity(pid_t pid, struct cpumask *mask)
8466 {
8467 struct task_struct *p;
8468 unsigned long flags;
8469 int retval;
8470
8471 rcu_read_lock();
8472
8473 retval = -ESRCH;
8474 p = find_process_by_pid(pid);
8475 if (!p)
8476 goto out_unlock;
8477
8478 retval = security_task_getscheduler(p);
8479 if (retval)
8480 goto out_unlock;
8481
8482 raw_spin_lock_irqsave(&p->pi_lock, flags);
8483 cpumask_and(mask, &p->cpus_mask, cpu_active_mask);
8484 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
8485
8486 out_unlock:
8487 rcu_read_unlock();
8488
8489 return retval;
8490 }
8491
8492 /**
8493 * sys_sched_getaffinity - get the CPU affinity of a process
8494 * @pid: pid of the process
8495 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
8496 * @user_mask_ptr: user-space pointer to hold the current CPU mask
8497 *
8498 * Return: size of CPU mask copied to user_mask_ptr on success. An
8499 * error code otherwise.
8500 */
SYSCALL_DEFINE3(sched_getaffinity,pid_t,pid,unsigned int,len,unsigned long __user *,user_mask_ptr)8501 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
8502 unsigned long __user *, user_mask_ptr)
8503 {
8504 int ret;
8505 cpumask_var_t mask;
8506
8507 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
8508 return -EINVAL;
8509 if (len & (sizeof(unsigned long)-1))
8510 return -EINVAL;
8511
8512 if (!zalloc_cpumask_var(&mask, GFP_KERNEL))
8513 return -ENOMEM;
8514
8515 ret = sched_getaffinity(pid, mask);
8516 if (ret == 0) {
8517 unsigned int retlen = min(len, cpumask_size());
8518
8519 if (copy_to_user(user_mask_ptr, cpumask_bits(mask), retlen))
8520 ret = -EFAULT;
8521 else
8522 ret = retlen;
8523 }
8524 free_cpumask_var(mask);
8525
8526 return ret;
8527 }
8528
do_sched_yield(void)8529 static void do_sched_yield(void)
8530 {
8531 struct rq_flags rf;
8532 struct rq *rq;
8533
8534 rq = this_rq_lock_irq(&rf);
8535
8536 schedstat_inc(rq->yld_count);
8537 current->sched_class->yield_task(rq);
8538
8539 preempt_disable();
8540 rq_unlock_irq(rq, &rf);
8541 sched_preempt_enable_no_resched();
8542
8543 schedule();
8544 }
8545
8546 /**
8547 * sys_sched_yield - yield the current processor to other threads.
8548 *
8549 * This function yields the current CPU to other tasks. If there are no
8550 * other threads running on this CPU then this function will return.
8551 *
8552 * Return: 0.
8553 */
SYSCALL_DEFINE0(sched_yield)8554 SYSCALL_DEFINE0(sched_yield)
8555 {
8556 do_sched_yield();
8557 return 0;
8558 }
8559
8560 #if !defined(CONFIG_PREEMPTION) || defined(CONFIG_PREEMPT_DYNAMIC)
__cond_resched(void)8561 int __sched __cond_resched(void)
8562 {
8563 if (should_resched(0)) {
8564 preempt_schedule_common();
8565 return 1;
8566 }
8567 /*
8568 * In preemptible kernels, ->rcu_read_lock_nesting tells the tick
8569 * whether the current CPU is in an RCU read-side critical section,
8570 * so the tick can report quiescent states even for CPUs looping
8571 * in kernel context. In contrast, in non-preemptible kernels,
8572 * RCU readers leave no in-memory hints, which means that CPU-bound
8573 * processes executing in kernel context might never report an
8574 * RCU quiescent state. Therefore, the following code causes
8575 * cond_resched() to report a quiescent state, but only when RCU
8576 * is in urgent need of one.
8577 */
8578 #ifndef CONFIG_PREEMPT_RCU
8579 rcu_all_qs();
8580 #endif
8581 return 0;
8582 }
8583 EXPORT_SYMBOL(__cond_resched);
8584 #endif
8585
8586 #ifdef CONFIG_PREEMPT_DYNAMIC
8587 #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
8588 #define cond_resched_dynamic_enabled __cond_resched
8589 #define cond_resched_dynamic_disabled ((void *)&__static_call_return0)
8590 DEFINE_STATIC_CALL_RET0(cond_resched, __cond_resched);
8591 EXPORT_STATIC_CALL_TRAMP(cond_resched);
8592
8593 #define might_resched_dynamic_enabled __cond_resched
8594 #define might_resched_dynamic_disabled ((void *)&__static_call_return0)
8595 DEFINE_STATIC_CALL_RET0(might_resched, __cond_resched);
8596 EXPORT_STATIC_CALL_TRAMP(might_resched);
8597 #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
8598 static DEFINE_STATIC_KEY_FALSE(sk_dynamic_cond_resched);
dynamic_cond_resched(void)8599 int __sched dynamic_cond_resched(void)
8600 {
8601 klp_sched_try_switch();
8602 if (!static_branch_unlikely(&sk_dynamic_cond_resched))
8603 return 0;
8604 return __cond_resched();
8605 }
8606 EXPORT_SYMBOL(dynamic_cond_resched);
8607
8608 static DEFINE_STATIC_KEY_FALSE(sk_dynamic_might_resched);
dynamic_might_resched(void)8609 int __sched dynamic_might_resched(void)
8610 {
8611 if (!static_branch_unlikely(&sk_dynamic_might_resched))
8612 return 0;
8613 return __cond_resched();
8614 }
8615 EXPORT_SYMBOL(dynamic_might_resched);
8616 #endif
8617 #endif
8618
8619 /*
8620 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
8621 * call schedule, and on return reacquire the lock.
8622 *
8623 * This works OK both with and without CONFIG_PREEMPTION. We do strange low-level
8624 * operations here to prevent schedule() from being called twice (once via
8625 * spin_unlock(), once by hand).
8626 */
__cond_resched_lock(spinlock_t * lock)8627 int __cond_resched_lock(spinlock_t *lock)
8628 {
8629 int resched = should_resched(PREEMPT_LOCK_OFFSET);
8630 int ret = 0;
8631
8632 lockdep_assert_held(lock);
8633
8634 if (spin_needbreak(lock) || resched) {
8635 spin_unlock(lock);
8636 if (!_cond_resched())
8637 cpu_relax();
8638 ret = 1;
8639 spin_lock(lock);
8640 }
8641 return ret;
8642 }
8643 EXPORT_SYMBOL(__cond_resched_lock);
8644
__cond_resched_rwlock_read(rwlock_t * lock)8645 int __cond_resched_rwlock_read(rwlock_t *lock)
8646 {
8647 int resched = should_resched(PREEMPT_LOCK_OFFSET);
8648 int ret = 0;
8649
8650 lockdep_assert_held_read(lock);
8651
8652 if (rwlock_needbreak(lock) || resched) {
8653 read_unlock(lock);
8654 if (!_cond_resched())
8655 cpu_relax();
8656 ret = 1;
8657 read_lock(lock);
8658 }
8659 return ret;
8660 }
8661 EXPORT_SYMBOL(__cond_resched_rwlock_read);
8662
__cond_resched_rwlock_write(rwlock_t * lock)8663 int __cond_resched_rwlock_write(rwlock_t *lock)
8664 {
8665 int resched = should_resched(PREEMPT_LOCK_OFFSET);
8666 int ret = 0;
8667
8668 lockdep_assert_held_write(lock);
8669
8670 if (rwlock_needbreak(lock) || resched) {
8671 write_unlock(lock);
8672 if (!_cond_resched())
8673 cpu_relax();
8674 ret = 1;
8675 write_lock(lock);
8676 }
8677 return ret;
8678 }
8679 EXPORT_SYMBOL(__cond_resched_rwlock_write);
8680
8681 #ifdef CONFIG_PREEMPT_DYNAMIC
8682
8683 #ifdef CONFIG_GENERIC_ENTRY
8684 #include <linux/entry-common.h>
8685 #endif
8686
8687 /*
8688 * SC:cond_resched
8689 * SC:might_resched
8690 * SC:preempt_schedule
8691 * SC:preempt_schedule_notrace
8692 * SC:irqentry_exit_cond_resched
8693 *
8694 *
8695 * NONE:
8696 * cond_resched <- __cond_resched
8697 * might_resched <- RET0
8698 * preempt_schedule <- NOP
8699 * preempt_schedule_notrace <- NOP
8700 * irqentry_exit_cond_resched <- NOP
8701 *
8702 * VOLUNTARY:
8703 * cond_resched <- __cond_resched
8704 * might_resched <- __cond_resched
8705 * preempt_schedule <- NOP
8706 * preempt_schedule_notrace <- NOP
8707 * irqentry_exit_cond_resched <- NOP
8708 *
8709 * FULL:
8710 * cond_resched <- RET0
8711 * might_resched <- RET0
8712 * preempt_schedule <- preempt_schedule
8713 * preempt_schedule_notrace <- preempt_schedule_notrace
8714 * irqentry_exit_cond_resched <- irqentry_exit_cond_resched
8715 */
8716
8717 enum {
8718 preempt_dynamic_undefined = -1,
8719 preempt_dynamic_none,
8720 preempt_dynamic_voluntary,
8721 preempt_dynamic_full,
8722 };
8723
8724 int preempt_dynamic_mode = preempt_dynamic_undefined;
8725
sched_dynamic_mode(const char * str)8726 int sched_dynamic_mode(const char *str)
8727 {
8728 if (!strcmp(str, "none"))
8729 return preempt_dynamic_none;
8730
8731 if (!strcmp(str, "voluntary"))
8732 return preempt_dynamic_voluntary;
8733
8734 if (!strcmp(str, "full"))
8735 return preempt_dynamic_full;
8736
8737 return -EINVAL;
8738 }
8739
8740 #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
8741 #define preempt_dynamic_enable(f) static_call_update(f, f##_dynamic_enabled)
8742 #define preempt_dynamic_disable(f) static_call_update(f, f##_dynamic_disabled)
8743 #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
8744 #define preempt_dynamic_enable(f) static_key_enable(&sk_dynamic_##f.key)
8745 #define preempt_dynamic_disable(f) static_key_disable(&sk_dynamic_##f.key)
8746 #else
8747 #error "Unsupported PREEMPT_DYNAMIC mechanism"
8748 #endif
8749
8750 static DEFINE_MUTEX(sched_dynamic_mutex);
8751 static bool klp_override;
8752
__sched_dynamic_update(int mode)8753 static void __sched_dynamic_update(int mode)
8754 {
8755 /*
8756 * Avoid {NONE,VOLUNTARY} -> FULL transitions from ever ending up in
8757 * the ZERO state, which is invalid.
8758 */
8759 if (!klp_override)
8760 preempt_dynamic_enable(cond_resched);
8761 preempt_dynamic_enable(might_resched);
8762 preempt_dynamic_enable(preempt_schedule);
8763 preempt_dynamic_enable(preempt_schedule_notrace);
8764 preempt_dynamic_enable(irqentry_exit_cond_resched);
8765
8766 switch (mode) {
8767 case preempt_dynamic_none:
8768 if (!klp_override)
8769 preempt_dynamic_enable(cond_resched);
8770 preempt_dynamic_disable(might_resched);
8771 preempt_dynamic_disable(preempt_schedule);
8772 preempt_dynamic_disable(preempt_schedule_notrace);
8773 preempt_dynamic_disable(irqentry_exit_cond_resched);
8774 if (mode != preempt_dynamic_mode)
8775 pr_info("Dynamic Preempt: none\n");
8776 break;
8777
8778 case preempt_dynamic_voluntary:
8779 if (!klp_override)
8780 preempt_dynamic_enable(cond_resched);
8781 preempt_dynamic_enable(might_resched);
8782 preempt_dynamic_disable(preempt_schedule);
8783 preempt_dynamic_disable(preempt_schedule_notrace);
8784 preempt_dynamic_disable(irqentry_exit_cond_resched);
8785 if (mode != preempt_dynamic_mode)
8786 pr_info("Dynamic Preempt: voluntary\n");
8787 break;
8788
8789 case preempt_dynamic_full:
8790 if (!klp_override)
8791 preempt_dynamic_disable(cond_resched);
8792 preempt_dynamic_disable(might_resched);
8793 preempt_dynamic_enable(preempt_schedule);
8794 preempt_dynamic_enable(preempt_schedule_notrace);
8795 preempt_dynamic_enable(irqentry_exit_cond_resched);
8796 if (mode != preempt_dynamic_mode)
8797 pr_info("Dynamic Preempt: full\n");
8798 break;
8799 }
8800
8801 preempt_dynamic_mode = mode;
8802 }
8803
sched_dynamic_update(int mode)8804 void sched_dynamic_update(int mode)
8805 {
8806 mutex_lock(&sched_dynamic_mutex);
8807 __sched_dynamic_update(mode);
8808 mutex_unlock(&sched_dynamic_mutex);
8809 }
8810
8811 #ifdef CONFIG_HAVE_PREEMPT_DYNAMIC_CALL
8812
klp_cond_resched(void)8813 static int klp_cond_resched(void)
8814 {
8815 __klp_sched_try_switch();
8816 return __cond_resched();
8817 }
8818
sched_dynamic_klp_enable(void)8819 void sched_dynamic_klp_enable(void)
8820 {
8821 mutex_lock(&sched_dynamic_mutex);
8822
8823 klp_override = true;
8824 static_call_update(cond_resched, klp_cond_resched);
8825
8826 mutex_unlock(&sched_dynamic_mutex);
8827 }
8828
sched_dynamic_klp_disable(void)8829 void sched_dynamic_klp_disable(void)
8830 {
8831 mutex_lock(&sched_dynamic_mutex);
8832
8833 klp_override = false;
8834 __sched_dynamic_update(preempt_dynamic_mode);
8835
8836 mutex_unlock(&sched_dynamic_mutex);
8837 }
8838
8839 #endif /* CONFIG_HAVE_PREEMPT_DYNAMIC_CALL */
8840
setup_preempt_mode(char * str)8841 static int __init setup_preempt_mode(char *str)
8842 {
8843 int mode = sched_dynamic_mode(str);
8844 if (mode < 0) {
8845 pr_warn("Dynamic Preempt: unsupported mode: %s\n", str);
8846 return 0;
8847 }
8848
8849 sched_dynamic_update(mode);
8850 return 1;
8851 }
8852 __setup("preempt=", setup_preempt_mode);
8853
preempt_dynamic_init(void)8854 static void __init preempt_dynamic_init(void)
8855 {
8856 if (preempt_dynamic_mode == preempt_dynamic_undefined) {
8857 if (IS_ENABLED(CONFIG_PREEMPT_NONE)) {
8858 sched_dynamic_update(preempt_dynamic_none);
8859 } else if (IS_ENABLED(CONFIG_PREEMPT_VOLUNTARY)) {
8860 sched_dynamic_update(preempt_dynamic_voluntary);
8861 } else {
8862 /* Default static call setting, nothing to do */
8863 WARN_ON_ONCE(!IS_ENABLED(CONFIG_PREEMPT));
8864 preempt_dynamic_mode = preempt_dynamic_full;
8865 pr_info("Dynamic Preempt: full\n");
8866 }
8867 }
8868 }
8869
8870 #define PREEMPT_MODEL_ACCESSOR(mode) \
8871 bool preempt_model_##mode(void) \
8872 { \
8873 WARN_ON_ONCE(preempt_dynamic_mode == preempt_dynamic_undefined); \
8874 return preempt_dynamic_mode == preempt_dynamic_##mode; \
8875 } \
8876 EXPORT_SYMBOL_GPL(preempt_model_##mode)
8877
8878 PREEMPT_MODEL_ACCESSOR(none);
8879 PREEMPT_MODEL_ACCESSOR(voluntary);
8880 PREEMPT_MODEL_ACCESSOR(full);
8881
8882 #else /* !CONFIG_PREEMPT_DYNAMIC */
8883
preempt_dynamic_init(void)8884 static inline void preempt_dynamic_init(void) { }
8885
8886 #endif /* #ifdef CONFIG_PREEMPT_DYNAMIC */
8887
8888 /**
8889 * yield - yield the current processor to other threads.
8890 *
8891 * Do not ever use this function, there's a 99% chance you're doing it wrong.
8892 *
8893 * The scheduler is at all times free to pick the calling task as the most
8894 * eligible task to run, if removing the yield() call from your code breaks
8895 * it, it's already broken.
8896 *
8897 * Typical broken usage is:
8898 *
8899 * while (!event)
8900 * yield();
8901 *
8902 * where one assumes that yield() will let 'the other' process run that will
8903 * make event true. If the current task is a SCHED_FIFO task that will never
8904 * happen. Never use yield() as a progress guarantee!!
8905 *
8906 * If you want to use yield() to wait for something, use wait_event().
8907 * If you want to use yield() to be 'nice' for others, use cond_resched().
8908 * If you still want to use yield(), do not!
8909 */
yield(void)8910 void __sched yield(void)
8911 {
8912 set_current_state(TASK_RUNNING);
8913 do_sched_yield();
8914 }
8915 EXPORT_SYMBOL(yield);
8916
8917 /**
8918 * yield_to - yield the current processor to another thread in
8919 * your thread group, or accelerate that thread toward the
8920 * processor it's on.
8921 * @p: target task
8922 * @preempt: whether task preemption is allowed or not
8923 *
8924 * It's the caller's job to ensure that the target task struct
8925 * can't go away on us before we can do any checks.
8926 *
8927 * Return:
8928 * true (>0) if we indeed boosted the target task.
8929 * false (0) if we failed to boost the target.
8930 * -ESRCH if there's no task to yield to.
8931 */
yield_to(struct task_struct * p,bool preempt)8932 int __sched yield_to(struct task_struct *p, bool preempt)
8933 {
8934 struct task_struct *curr = current;
8935 struct rq *rq, *p_rq;
8936 unsigned long flags;
8937 int yielded = 0;
8938
8939 local_irq_save(flags);
8940 rq = this_rq();
8941
8942 again:
8943 p_rq = task_rq(p);
8944 /*
8945 * If we're the only runnable task on the rq and target rq also
8946 * has only one task, there's absolutely no point in yielding.
8947 */
8948 if (rq->nr_running == 1 && p_rq->nr_running == 1) {
8949 yielded = -ESRCH;
8950 goto out_irq;
8951 }
8952
8953 double_rq_lock(rq, p_rq);
8954 if (task_rq(p) != p_rq) {
8955 double_rq_unlock(rq, p_rq);
8956 goto again;
8957 }
8958
8959 if (!curr->sched_class->yield_to_task)
8960 goto out_unlock;
8961
8962 if (curr->sched_class != p->sched_class)
8963 goto out_unlock;
8964
8965 if (task_on_cpu(p_rq, p) || !task_is_running(p))
8966 goto out_unlock;
8967
8968 yielded = curr->sched_class->yield_to_task(rq, p);
8969 if (yielded) {
8970 schedstat_inc(rq->yld_count);
8971 /*
8972 * Make p's CPU reschedule; pick_next_entity takes care of
8973 * fairness.
8974 */
8975 if (preempt && rq != p_rq)
8976 resched_curr(p_rq);
8977 }
8978
8979 out_unlock:
8980 double_rq_unlock(rq, p_rq);
8981 out_irq:
8982 local_irq_restore(flags);
8983
8984 if (yielded > 0)
8985 schedule();
8986
8987 return yielded;
8988 }
8989 EXPORT_SYMBOL_GPL(yield_to);
8990
io_schedule_prepare(void)8991 int io_schedule_prepare(void)
8992 {
8993 int old_iowait = current->in_iowait;
8994
8995 current->in_iowait = 1;
8996 blk_flush_plug(current->plug, true);
8997 return old_iowait;
8998 }
8999
io_schedule_finish(int token)9000 void io_schedule_finish(int token)
9001 {
9002 current->in_iowait = token;
9003 }
9004
9005 /*
9006 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
9007 * that process accounting knows that this is a task in IO wait state.
9008 */
io_schedule_timeout(long timeout)9009 long __sched io_schedule_timeout(long timeout)
9010 {
9011 int token;
9012 long ret;
9013
9014 token = io_schedule_prepare();
9015 ret = schedule_timeout(timeout);
9016 io_schedule_finish(token);
9017
9018 return ret;
9019 }
9020 EXPORT_SYMBOL(io_schedule_timeout);
9021
io_schedule(void)9022 void __sched io_schedule(void)
9023 {
9024 int token;
9025
9026 token = io_schedule_prepare();
9027 schedule();
9028 io_schedule_finish(token);
9029 }
9030 EXPORT_SYMBOL(io_schedule);
9031
9032 /**
9033 * sys_sched_get_priority_max - return maximum RT priority.
9034 * @policy: scheduling class.
9035 *
9036 * Return: On success, this syscall returns the maximum
9037 * rt_priority that can be used by a given scheduling class.
9038 * On failure, a negative error code is returned.
9039 */
SYSCALL_DEFINE1(sched_get_priority_max,int,policy)9040 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
9041 {
9042 int ret = -EINVAL;
9043
9044 switch (policy) {
9045 case SCHED_FIFO:
9046 case SCHED_RR:
9047 ret = MAX_RT_PRIO-1;
9048 break;
9049 case SCHED_DEADLINE:
9050 case SCHED_NORMAL:
9051 case SCHED_BATCH:
9052 case SCHED_IDLE:
9053 ret = 0;
9054 break;
9055 }
9056 return ret;
9057 }
9058
9059 /**
9060 * sys_sched_get_priority_min - return minimum RT priority.
9061 * @policy: scheduling class.
9062 *
9063 * Return: On success, this syscall returns the minimum
9064 * rt_priority that can be used by a given scheduling class.
9065 * On failure, a negative error code is returned.
9066 */
SYSCALL_DEFINE1(sched_get_priority_min,int,policy)9067 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
9068 {
9069 int ret = -EINVAL;
9070
9071 switch (policy) {
9072 case SCHED_FIFO:
9073 case SCHED_RR:
9074 ret = 1;
9075 break;
9076 case SCHED_DEADLINE:
9077 case SCHED_NORMAL:
9078 case SCHED_BATCH:
9079 case SCHED_IDLE:
9080 ret = 0;
9081 }
9082 return ret;
9083 }
9084
sched_rr_get_interval(pid_t pid,struct timespec64 * t)9085 static int sched_rr_get_interval(pid_t pid, struct timespec64 *t)
9086 {
9087 struct task_struct *p;
9088 unsigned int time_slice;
9089 struct rq_flags rf;
9090 struct rq *rq;
9091 int retval;
9092
9093 if (pid < 0)
9094 return -EINVAL;
9095
9096 retval = -ESRCH;
9097 rcu_read_lock();
9098 p = find_process_by_pid(pid);
9099 if (!p)
9100 goto out_unlock;
9101
9102 retval = security_task_getscheduler(p);
9103 if (retval)
9104 goto out_unlock;
9105
9106 rq = task_rq_lock(p, &rf);
9107 time_slice = 0;
9108 if (p->sched_class->get_rr_interval)
9109 time_slice = p->sched_class->get_rr_interval(rq, p);
9110 task_rq_unlock(rq, p, &rf);
9111
9112 rcu_read_unlock();
9113 jiffies_to_timespec64(time_slice, t);
9114 return 0;
9115
9116 out_unlock:
9117 rcu_read_unlock();
9118 return retval;
9119 }
9120
9121 /**
9122 * sys_sched_rr_get_interval - return the default timeslice of a process.
9123 * @pid: pid of the process.
9124 * @interval: userspace pointer to the timeslice value.
9125 *
9126 * this syscall writes the default timeslice value of a given process
9127 * into the user-space timespec buffer. A value of '0' means infinity.
9128 *
9129 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
9130 * an error code.
9131 */
SYSCALL_DEFINE2(sched_rr_get_interval,pid_t,pid,struct __kernel_timespec __user *,interval)9132 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
9133 struct __kernel_timespec __user *, interval)
9134 {
9135 struct timespec64 t;
9136 int retval = sched_rr_get_interval(pid, &t);
9137
9138 if (retval == 0)
9139 retval = put_timespec64(&t, interval);
9140
9141 return retval;
9142 }
9143
9144 #ifdef CONFIG_COMPAT_32BIT_TIME
SYSCALL_DEFINE2(sched_rr_get_interval_time32,pid_t,pid,struct old_timespec32 __user *,interval)9145 SYSCALL_DEFINE2(sched_rr_get_interval_time32, pid_t, pid,
9146 struct old_timespec32 __user *, interval)
9147 {
9148 struct timespec64 t;
9149 int retval = sched_rr_get_interval(pid, &t);
9150
9151 if (retval == 0)
9152 retval = put_old_timespec32(&t, interval);
9153 return retval;
9154 }
9155 #endif
9156
sched_show_task(struct task_struct * p)9157 void sched_show_task(struct task_struct *p)
9158 {
9159 unsigned long free = 0;
9160 int ppid;
9161
9162 if (!try_get_task_stack(p))
9163 return;
9164
9165 pr_info("task:%-15.15s state:%c", p->comm, task_state_to_char(p));
9166
9167 if (task_is_running(p))
9168 pr_cont(" running task ");
9169 #ifdef CONFIG_DEBUG_STACK_USAGE
9170 free = stack_not_used(p);
9171 #endif
9172 ppid = 0;
9173 rcu_read_lock();
9174 if (pid_alive(p))
9175 ppid = task_pid_nr(rcu_dereference(p->real_parent));
9176 rcu_read_unlock();
9177 pr_cont(" stack:%-5lu pid:%-5d ppid:%-6d flags:0x%08lx\n",
9178 free, task_pid_nr(p), ppid,
9179 read_task_thread_flags(p));
9180
9181 print_worker_info(KERN_INFO, p);
9182 print_stop_info(KERN_INFO, p);
9183 show_stack(p, NULL, KERN_INFO);
9184 put_task_stack(p);
9185 }
9186 EXPORT_SYMBOL_GPL(sched_show_task);
9187
9188 static inline bool
state_filter_match(unsigned long state_filter,struct task_struct * p)9189 state_filter_match(unsigned long state_filter, struct task_struct *p)
9190 {
9191 unsigned int state = READ_ONCE(p->__state);
9192
9193 /* no filter, everything matches */
9194 if (!state_filter)
9195 return true;
9196
9197 /* filter, but doesn't match */
9198 if (!(state & state_filter))
9199 return false;
9200
9201 /*
9202 * When looking for TASK_UNINTERRUPTIBLE skip TASK_IDLE (allows
9203 * TASK_KILLABLE).
9204 */
9205 if (state_filter == TASK_UNINTERRUPTIBLE && (state & TASK_NOLOAD))
9206 return false;
9207
9208 return true;
9209 }
9210
9211
show_state_filter(unsigned int state_filter)9212 void show_state_filter(unsigned int state_filter)
9213 {
9214 struct task_struct *g, *p;
9215
9216 rcu_read_lock();
9217 for_each_process_thread(g, p) {
9218 /*
9219 * reset the NMI-timeout, listing all files on a slow
9220 * console might take a lot of time:
9221 * Also, reset softlockup watchdogs on all CPUs, because
9222 * another CPU might be blocked waiting for us to process
9223 * an IPI.
9224 */
9225 touch_nmi_watchdog();
9226 touch_all_softlockup_watchdogs();
9227 if (state_filter_match(state_filter, p))
9228 sched_show_task(p);
9229 }
9230
9231 #ifdef CONFIG_SCHED_DEBUG
9232 if (!state_filter)
9233 sysrq_sched_debug_show();
9234 #endif
9235 rcu_read_unlock();
9236 /*
9237 * Only show locks if all tasks are dumped:
9238 */
9239 if (!state_filter)
9240 debug_show_all_locks();
9241 }
9242
9243 /**
9244 * init_idle - set up an idle thread for a given CPU
9245 * @idle: task in question
9246 * @cpu: CPU the idle task belongs to
9247 *
9248 * NOTE: this function does not set the idle thread's NEED_RESCHED
9249 * flag, to make booting more robust.
9250 */
init_idle(struct task_struct * idle,int cpu)9251 void __init init_idle(struct task_struct *idle, int cpu)
9252 {
9253 #ifdef CONFIG_SMP
9254 struct affinity_context ac = (struct affinity_context) {
9255 .new_mask = cpumask_of(cpu),
9256 .flags = 0,
9257 };
9258 #endif
9259 struct rq *rq = cpu_rq(cpu);
9260 unsigned long flags;
9261
9262 __sched_fork(0, idle);
9263
9264 raw_spin_lock_irqsave(&idle->pi_lock, flags);
9265 raw_spin_rq_lock(rq);
9266
9267 idle->__state = TASK_RUNNING;
9268 idle->se.exec_start = sched_clock();
9269 /*
9270 * PF_KTHREAD should already be set at this point; regardless, make it
9271 * look like a proper per-CPU kthread.
9272 */
9273 idle->flags |= PF_KTHREAD | PF_NO_SETAFFINITY;
9274 kthread_set_per_cpu(idle, cpu);
9275
9276 #ifdef CONFIG_SMP
9277 /*
9278 * It's possible that init_idle() gets called multiple times on a task,
9279 * in that case do_set_cpus_allowed() will not do the right thing.
9280 *
9281 * And since this is boot we can forgo the serialization.
9282 */
9283 set_cpus_allowed_common(idle, &ac);
9284 #endif
9285 /*
9286 * We're having a chicken and egg problem, even though we are
9287 * holding rq->lock, the CPU isn't yet set to this CPU so the
9288 * lockdep check in task_group() will fail.
9289 *
9290 * Similar case to sched_fork(). / Alternatively we could
9291 * use task_rq_lock() here and obtain the other rq->lock.
9292 *
9293 * Silence PROVE_RCU
9294 */
9295 rcu_read_lock();
9296 __set_task_cpu(idle, cpu);
9297 rcu_read_unlock();
9298
9299 rq->idle = idle;
9300 rcu_assign_pointer(rq->curr, idle);
9301 idle->on_rq = TASK_ON_RQ_QUEUED;
9302 #ifdef CONFIG_SMP
9303 idle->on_cpu = 1;
9304 #endif
9305 raw_spin_rq_unlock(rq);
9306 raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
9307
9308 /* Set the preempt count _outside_ the spinlocks! */
9309 init_idle_preempt_count(idle, cpu);
9310
9311 /*
9312 * The idle tasks have their own, simple scheduling class:
9313 */
9314 idle->sched_class = &idle_sched_class;
9315 ftrace_graph_init_idle_task(idle, cpu);
9316 vtime_init_idle(idle, cpu);
9317 #ifdef CONFIG_SMP
9318 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
9319 #endif
9320 }
9321
9322 #ifdef CONFIG_SMP
9323
cpuset_cpumask_can_shrink(const struct cpumask * cur,const struct cpumask * trial)9324 int cpuset_cpumask_can_shrink(const struct cpumask *cur,
9325 const struct cpumask *trial)
9326 {
9327 int ret = 1;
9328
9329 if (cpumask_empty(cur))
9330 return ret;
9331
9332 ret = dl_cpuset_cpumask_can_shrink(cur, trial);
9333
9334 return ret;
9335 }
9336
task_can_attach(struct task_struct * p)9337 int task_can_attach(struct task_struct *p)
9338 {
9339 int ret = 0;
9340
9341 /*
9342 * Kthreads which disallow setaffinity shouldn't be moved
9343 * to a new cpuset; we don't want to change their CPU
9344 * affinity and isolating such threads by their set of
9345 * allowed nodes is unnecessary. Thus, cpusets are not
9346 * applicable for such threads. This prevents checking for
9347 * success of set_cpus_allowed_ptr() on all attached tasks
9348 * before cpus_mask may be changed.
9349 */
9350 if (p->flags & PF_NO_SETAFFINITY)
9351 ret = -EINVAL;
9352
9353 return ret;
9354 }
9355
9356 bool sched_smp_initialized __read_mostly;
9357
9358 #ifdef CONFIG_NUMA_BALANCING
9359 /* Migrate current task p to target_cpu */
migrate_task_to(struct task_struct * p,int target_cpu)9360 int migrate_task_to(struct task_struct *p, int target_cpu)
9361 {
9362 struct migration_arg arg = { p, target_cpu };
9363 int curr_cpu = task_cpu(p);
9364
9365 if (curr_cpu == target_cpu)
9366 return 0;
9367
9368 if (!cpumask_test_cpu(target_cpu, p->cpus_ptr))
9369 return -EINVAL;
9370
9371 /* TODO: This is not properly updating schedstats */
9372
9373 trace_sched_move_numa(p, curr_cpu, target_cpu);
9374 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
9375 }
9376
9377 /*
9378 * Requeue a task on a given node and accurately track the number of NUMA
9379 * tasks on the runqueues
9380 */
sched_setnuma(struct task_struct * p,int nid)9381 void sched_setnuma(struct task_struct *p, int nid)
9382 {
9383 bool queued, running;
9384 struct rq_flags rf;
9385 struct rq *rq;
9386
9387 rq = task_rq_lock(p, &rf);
9388 queued = task_on_rq_queued(p);
9389 running = task_current(rq, p);
9390
9391 if (queued)
9392 dequeue_task(rq, p, DEQUEUE_SAVE);
9393 if (running)
9394 put_prev_task(rq, p);
9395
9396 p->numa_preferred_nid = nid;
9397
9398 if (queued)
9399 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
9400 if (running)
9401 set_next_task(rq, p);
9402 task_rq_unlock(rq, p, &rf);
9403 }
9404 #endif /* CONFIG_NUMA_BALANCING */
9405
9406 #ifdef CONFIG_HOTPLUG_CPU
9407 /*
9408 * Ensure that the idle task is using init_mm right before its CPU goes
9409 * offline.
9410 */
idle_task_exit(void)9411 void idle_task_exit(void)
9412 {
9413 struct mm_struct *mm = current->active_mm;
9414
9415 BUG_ON(cpu_online(smp_processor_id()));
9416 BUG_ON(current != this_rq()->idle);
9417
9418 if (mm != &init_mm) {
9419 switch_mm(mm, &init_mm, current);
9420 finish_arch_post_lock_switch();
9421 }
9422
9423 /* finish_cpu(), as ran on the BP, will clean up the active_mm state */
9424 }
9425
__balance_push_cpu_stop(void * arg)9426 static int __balance_push_cpu_stop(void *arg)
9427 {
9428 struct task_struct *p = arg;
9429 struct rq *rq = this_rq();
9430 struct rq_flags rf;
9431 int cpu;
9432
9433 raw_spin_lock_irq(&p->pi_lock);
9434 rq_lock(rq, &rf);
9435
9436 update_rq_clock(rq);
9437
9438 if (task_rq(p) == rq && task_on_rq_queued(p)) {
9439 cpu = select_fallback_rq(rq->cpu, p);
9440 rq = __migrate_task(rq, &rf, p, cpu);
9441 }
9442
9443 rq_unlock(rq, &rf);
9444 raw_spin_unlock_irq(&p->pi_lock);
9445
9446 put_task_struct(p);
9447
9448 return 0;
9449 }
9450
9451 static DEFINE_PER_CPU(struct cpu_stop_work, push_work);
9452
9453 /*
9454 * Ensure we only run per-cpu kthreads once the CPU goes !active.
9455 *
9456 * This is enabled below SCHED_AP_ACTIVE; when !cpu_active(), but only
9457 * effective when the hotplug motion is down.
9458 */
balance_push(struct rq * rq)9459 static void balance_push(struct rq *rq)
9460 {
9461 struct task_struct *push_task = rq->curr;
9462
9463 lockdep_assert_rq_held(rq);
9464
9465 /*
9466 * Ensure the thing is persistent until balance_push_set(.on = false);
9467 */
9468 rq->balance_callback = &balance_push_callback;
9469
9470 /*
9471 * Only active while going offline and when invoked on the outgoing
9472 * CPU.
9473 */
9474 if (!cpu_dying(rq->cpu) || rq != this_rq())
9475 return;
9476
9477 /*
9478 * Both the cpu-hotplug and stop task are in this case and are
9479 * required to complete the hotplug process.
9480 */
9481 if (kthread_is_per_cpu(push_task) ||
9482 is_migration_disabled(push_task)) {
9483
9484 /*
9485 * If this is the idle task on the outgoing CPU try to wake
9486 * up the hotplug control thread which might wait for the
9487 * last task to vanish. The rcuwait_active() check is
9488 * accurate here because the waiter is pinned on this CPU
9489 * and can't obviously be running in parallel.
9490 *
9491 * On RT kernels this also has to check whether there are
9492 * pinned and scheduled out tasks on the runqueue. They
9493 * need to leave the migrate disabled section first.
9494 */
9495 if (!rq->nr_running && !rq_has_pinned_tasks(rq) &&
9496 rcuwait_active(&rq->hotplug_wait)) {
9497 raw_spin_rq_unlock(rq);
9498 rcuwait_wake_up(&rq->hotplug_wait);
9499 raw_spin_rq_lock(rq);
9500 }
9501 return;
9502 }
9503
9504 get_task_struct(push_task);
9505 /*
9506 * Temporarily drop rq->lock such that we can wake-up the stop task.
9507 * Both preemption and IRQs are still disabled.
9508 */
9509 preempt_disable();
9510 raw_spin_rq_unlock(rq);
9511 stop_one_cpu_nowait(rq->cpu, __balance_push_cpu_stop, push_task,
9512 this_cpu_ptr(&push_work));
9513 preempt_enable();
9514 /*
9515 * At this point need_resched() is true and we'll take the loop in
9516 * schedule(). The next pick is obviously going to be the stop task
9517 * which kthread_is_per_cpu() and will push this task away.
9518 */
9519 raw_spin_rq_lock(rq);
9520 }
9521
balance_push_set(int cpu,bool on)9522 static void balance_push_set(int cpu, bool on)
9523 {
9524 struct rq *rq = cpu_rq(cpu);
9525 struct rq_flags rf;
9526
9527 rq_lock_irqsave(rq, &rf);
9528 if (on) {
9529 WARN_ON_ONCE(rq->balance_callback);
9530 rq->balance_callback = &balance_push_callback;
9531 } else if (rq->balance_callback == &balance_push_callback) {
9532 rq->balance_callback = NULL;
9533 }
9534 rq_unlock_irqrestore(rq, &rf);
9535 }
9536
9537 /*
9538 * Invoked from a CPUs hotplug control thread after the CPU has been marked
9539 * inactive. All tasks which are not per CPU kernel threads are either
9540 * pushed off this CPU now via balance_push() or placed on a different CPU
9541 * during wakeup. Wait until the CPU is quiescent.
9542 */
balance_hotplug_wait(void)9543 static void balance_hotplug_wait(void)
9544 {
9545 struct rq *rq = this_rq();
9546
9547 rcuwait_wait_event(&rq->hotplug_wait,
9548 rq->nr_running == 1 && !rq_has_pinned_tasks(rq),
9549 TASK_UNINTERRUPTIBLE);
9550 }
9551
9552 #else
9553
balance_push(struct rq * rq)9554 static inline void balance_push(struct rq *rq)
9555 {
9556 }
9557
balance_push_set(int cpu,bool on)9558 static inline void balance_push_set(int cpu, bool on)
9559 {
9560 }
9561
balance_hotplug_wait(void)9562 static inline void balance_hotplug_wait(void)
9563 {
9564 }
9565
9566 #endif /* CONFIG_HOTPLUG_CPU */
9567
set_rq_online(struct rq * rq)9568 void set_rq_online(struct rq *rq)
9569 {
9570 if (!rq->online) {
9571 const struct sched_class *class;
9572
9573 cpumask_set_cpu(rq->cpu, rq->rd->online);
9574 rq->online = 1;
9575
9576 for_each_class(class) {
9577 if (class->rq_online)
9578 class->rq_online(rq);
9579 }
9580 }
9581 }
9582
set_rq_offline(struct rq * rq)9583 void set_rq_offline(struct rq *rq)
9584 {
9585 if (rq->online) {
9586 const struct sched_class *class;
9587
9588 update_rq_clock(rq);
9589 for_each_class(class) {
9590 if (class->rq_offline)
9591 class->rq_offline(rq);
9592 }
9593
9594 cpumask_clear_cpu(rq->cpu, rq->rd->online);
9595 rq->online = 0;
9596 }
9597 }
9598
9599 /*
9600 * used to mark begin/end of suspend/resume:
9601 */
9602 static int num_cpus_frozen;
9603
9604 /*
9605 * Update cpusets according to cpu_active mask. If cpusets are
9606 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
9607 * around partition_sched_domains().
9608 *
9609 * If we come here as part of a suspend/resume, don't touch cpusets because we
9610 * want to restore it back to its original state upon resume anyway.
9611 */
cpuset_cpu_active(void)9612 static void cpuset_cpu_active(void)
9613 {
9614 if (cpuhp_tasks_frozen) {
9615 /*
9616 * num_cpus_frozen tracks how many CPUs are involved in suspend
9617 * resume sequence. As long as this is not the last online
9618 * operation in the resume sequence, just build a single sched
9619 * domain, ignoring cpusets.
9620 */
9621 partition_sched_domains(1, NULL, NULL);
9622 if (--num_cpus_frozen)
9623 return;
9624 /*
9625 * This is the last CPU online operation. So fall through and
9626 * restore the original sched domains by considering the
9627 * cpuset configurations.
9628 */
9629 cpuset_force_rebuild();
9630 }
9631 cpuset_update_active_cpus();
9632 }
9633
cpuset_cpu_inactive(unsigned int cpu)9634 static int cpuset_cpu_inactive(unsigned int cpu)
9635 {
9636 if (!cpuhp_tasks_frozen) {
9637 int ret = dl_bw_check_overflow(cpu);
9638
9639 if (ret)
9640 return ret;
9641 cpuset_update_active_cpus();
9642 } else {
9643 num_cpus_frozen++;
9644 partition_sched_domains(1, NULL, NULL);
9645 }
9646 return 0;
9647 }
9648
sched_cpu_activate(unsigned int cpu)9649 int sched_cpu_activate(unsigned int cpu)
9650 {
9651 struct rq *rq = cpu_rq(cpu);
9652 struct rq_flags rf;
9653
9654 /*
9655 * Clear the balance_push callback and prepare to schedule
9656 * regular tasks.
9657 */
9658 balance_push_set(cpu, false);
9659
9660 #ifdef CONFIG_SCHED_SMT
9661 /*
9662 * When going up, increment the number of cores with SMT present.
9663 */
9664 if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
9665 static_branch_inc_cpuslocked(&sched_smt_present);
9666 #endif
9667 set_cpu_active(cpu, true);
9668
9669 if (sched_smp_initialized) {
9670 sched_update_numa(cpu, true);
9671 sched_domains_numa_masks_set(cpu);
9672 cpuset_cpu_active();
9673 }
9674
9675 /*
9676 * Put the rq online, if not already. This happens:
9677 *
9678 * 1) In the early boot process, because we build the real domains
9679 * after all CPUs have been brought up.
9680 *
9681 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the
9682 * domains.
9683 */
9684 rq_lock_irqsave(rq, &rf);
9685 if (rq->rd) {
9686 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
9687 set_rq_online(rq);
9688 }
9689 rq_unlock_irqrestore(rq, &rf);
9690
9691 return 0;
9692 }
9693
sched_cpu_deactivate(unsigned int cpu)9694 int sched_cpu_deactivate(unsigned int cpu)
9695 {
9696 struct rq *rq = cpu_rq(cpu);
9697 struct rq_flags rf;
9698 int ret;
9699
9700 /*
9701 * Remove CPU from nohz.idle_cpus_mask to prevent participating in
9702 * load balancing when not active
9703 */
9704 nohz_balance_exit_idle(rq);
9705
9706 set_cpu_active(cpu, false);
9707
9708 /*
9709 * From this point forward, this CPU will refuse to run any task that
9710 * is not: migrate_disable() or KTHREAD_IS_PER_CPU, and will actively
9711 * push those tasks away until this gets cleared, see
9712 * sched_cpu_dying().
9713 */
9714 balance_push_set(cpu, true);
9715
9716 /*
9717 * We've cleared cpu_active_mask / set balance_push, wait for all
9718 * preempt-disabled and RCU users of this state to go away such that
9719 * all new such users will observe it.
9720 *
9721 * Specifically, we rely on ttwu to no longer target this CPU, see
9722 * ttwu_queue_cond() and is_cpu_allowed().
9723 *
9724 * Do sync before park smpboot threads to take care the rcu boost case.
9725 */
9726 synchronize_rcu();
9727
9728 rq_lock_irqsave(rq, &rf);
9729 if (rq->rd) {
9730 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
9731 set_rq_offline(rq);
9732 }
9733 rq_unlock_irqrestore(rq, &rf);
9734
9735 #ifdef CONFIG_SCHED_SMT
9736 /*
9737 * When going down, decrement the number of cores with SMT present.
9738 */
9739 if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
9740 static_branch_dec_cpuslocked(&sched_smt_present);
9741
9742 sched_core_cpu_deactivate(cpu);
9743 #endif
9744
9745 if (!sched_smp_initialized)
9746 return 0;
9747
9748 sched_update_numa(cpu, false);
9749 ret = cpuset_cpu_inactive(cpu);
9750 if (ret) {
9751 balance_push_set(cpu, false);
9752 set_cpu_active(cpu, true);
9753 sched_update_numa(cpu, true);
9754 return ret;
9755 }
9756 sched_domains_numa_masks_clear(cpu);
9757 return 0;
9758 }
9759
sched_rq_cpu_starting(unsigned int cpu)9760 static void sched_rq_cpu_starting(unsigned int cpu)
9761 {
9762 struct rq *rq = cpu_rq(cpu);
9763
9764 rq->calc_load_update = calc_load_update;
9765 update_max_interval();
9766 }
9767
sched_cpu_starting(unsigned int cpu)9768 int sched_cpu_starting(unsigned int cpu)
9769 {
9770 sched_core_cpu_starting(cpu);
9771 sched_rq_cpu_starting(cpu);
9772 sched_tick_start(cpu);
9773 return 0;
9774 }
9775
9776 #ifdef CONFIG_HOTPLUG_CPU
9777
9778 /*
9779 * Invoked immediately before the stopper thread is invoked to bring the
9780 * CPU down completely. At this point all per CPU kthreads except the
9781 * hotplug thread (current) and the stopper thread (inactive) have been
9782 * either parked or have been unbound from the outgoing CPU. Ensure that
9783 * any of those which might be on the way out are gone.
9784 *
9785 * If after this point a bound task is being woken on this CPU then the
9786 * responsible hotplug callback has failed to do it's job.
9787 * sched_cpu_dying() will catch it with the appropriate fireworks.
9788 */
sched_cpu_wait_empty(unsigned int cpu)9789 int sched_cpu_wait_empty(unsigned int cpu)
9790 {
9791 balance_hotplug_wait();
9792 return 0;
9793 }
9794
9795 /*
9796 * Since this CPU is going 'away' for a while, fold any nr_active delta we
9797 * might have. Called from the CPU stopper task after ensuring that the
9798 * stopper is the last running task on the CPU, so nr_active count is
9799 * stable. We need to take the teardown thread which is calling this into
9800 * account, so we hand in adjust = 1 to the load calculation.
9801 *
9802 * Also see the comment "Global load-average calculations".
9803 */
calc_load_migrate(struct rq * rq)9804 static void calc_load_migrate(struct rq *rq)
9805 {
9806 long delta = calc_load_fold_active(rq, 1);
9807
9808 if (delta)
9809 atomic_long_add(delta, &calc_load_tasks);
9810 }
9811
dump_rq_tasks(struct rq * rq,const char * loglvl)9812 static void dump_rq_tasks(struct rq *rq, const char *loglvl)
9813 {
9814 struct task_struct *g, *p;
9815 int cpu = cpu_of(rq);
9816
9817 lockdep_assert_rq_held(rq);
9818
9819 printk("%sCPU%d enqueued tasks (%u total):\n", loglvl, cpu, rq->nr_running);
9820 for_each_process_thread(g, p) {
9821 if (task_cpu(p) != cpu)
9822 continue;
9823
9824 if (!task_on_rq_queued(p))
9825 continue;
9826
9827 printk("%s\tpid: %d, name: %s\n", loglvl, p->pid, p->comm);
9828 }
9829 }
9830
sched_cpu_dying(unsigned int cpu)9831 int sched_cpu_dying(unsigned int cpu)
9832 {
9833 struct rq *rq = cpu_rq(cpu);
9834 struct rq_flags rf;
9835
9836 /* Handle pending wakeups and then migrate everything off */
9837 sched_tick_stop(cpu);
9838
9839 rq_lock_irqsave(rq, &rf);
9840 if (rq->nr_running != 1 || rq_has_pinned_tasks(rq)) {
9841 WARN(true, "Dying CPU not properly vacated!");
9842 dump_rq_tasks(rq, KERN_WARNING);
9843 }
9844 rq_unlock_irqrestore(rq, &rf);
9845
9846 calc_load_migrate(rq);
9847 update_max_interval();
9848 hrtick_clear(rq);
9849 sched_core_cpu_dying(cpu);
9850 return 0;
9851 }
9852 #endif
9853
sched_init_smp(void)9854 void __init sched_init_smp(void)
9855 {
9856 sched_init_numa(NUMA_NO_NODE);
9857
9858 /*
9859 * There's no userspace yet to cause hotplug operations; hence all the
9860 * CPU masks are stable and all blatant races in the below code cannot
9861 * happen.
9862 */
9863 mutex_lock(&sched_domains_mutex);
9864 sched_init_domains(cpu_active_mask);
9865 mutex_unlock(&sched_domains_mutex);
9866
9867 /* Move init over to a non-isolated CPU */
9868 if (set_cpus_allowed_ptr(current, housekeeping_cpumask(HK_TYPE_DOMAIN)) < 0)
9869 BUG();
9870 current->flags &= ~PF_NO_SETAFFINITY;
9871 sched_init_granularity();
9872
9873 init_sched_rt_class();
9874 init_sched_dl_class();
9875
9876 sched_smp_initialized = true;
9877 }
9878
migration_init(void)9879 static int __init migration_init(void)
9880 {
9881 sched_cpu_starting(smp_processor_id());
9882 return 0;
9883 }
9884 early_initcall(migration_init);
9885
9886 #else
sched_init_smp(void)9887 void __init sched_init_smp(void)
9888 {
9889 sched_init_granularity();
9890 }
9891 #endif /* CONFIG_SMP */
9892
in_sched_functions(unsigned long addr)9893 int in_sched_functions(unsigned long addr)
9894 {
9895 return in_lock_functions(addr) ||
9896 (addr >= (unsigned long)__sched_text_start
9897 && addr < (unsigned long)__sched_text_end);
9898 }
9899
9900 #ifdef CONFIG_CGROUP_SCHED
9901 /*
9902 * Default task group.
9903 * Every task in system belongs to this group at bootup.
9904 */
9905 struct task_group root_task_group;
9906 LIST_HEAD(task_groups);
9907
9908 /* Cacheline aligned slab cache for task_group */
9909 static struct kmem_cache *task_group_cache __read_mostly;
9910 #endif
9911
sched_init(void)9912 void __init sched_init(void)
9913 {
9914 unsigned long ptr = 0;
9915 int i;
9916
9917 /* Make sure the linker didn't screw up */
9918 BUG_ON(&idle_sched_class != &fair_sched_class + 1 ||
9919 &fair_sched_class != &rt_sched_class + 1 ||
9920 &rt_sched_class != &dl_sched_class + 1);
9921 #ifdef CONFIG_SMP
9922 BUG_ON(&dl_sched_class != &stop_sched_class + 1);
9923 #endif
9924
9925 wait_bit_init();
9926
9927 #ifdef CONFIG_FAIR_GROUP_SCHED
9928 ptr += 2 * nr_cpu_ids * sizeof(void **);
9929 #endif
9930 #ifdef CONFIG_RT_GROUP_SCHED
9931 ptr += 2 * nr_cpu_ids * sizeof(void **);
9932 #endif
9933 if (ptr) {
9934 ptr = (unsigned long)kzalloc(ptr, GFP_NOWAIT);
9935
9936 #ifdef CONFIG_FAIR_GROUP_SCHED
9937 root_task_group.se = (struct sched_entity **)ptr;
9938 ptr += nr_cpu_ids * sizeof(void **);
9939
9940 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
9941 ptr += nr_cpu_ids * sizeof(void **);
9942
9943 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
9944 init_cfs_bandwidth(&root_task_group.cfs_bandwidth, NULL);
9945 #endif /* CONFIG_FAIR_GROUP_SCHED */
9946 #ifdef CONFIG_RT_GROUP_SCHED
9947 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
9948 ptr += nr_cpu_ids * sizeof(void **);
9949
9950 root_task_group.rt_rq = (struct rt_rq **)ptr;
9951 ptr += nr_cpu_ids * sizeof(void **);
9952
9953 #endif /* CONFIG_RT_GROUP_SCHED */
9954 }
9955
9956 init_rt_bandwidth(&def_rt_bandwidth, global_rt_period(), global_rt_runtime());
9957
9958 #ifdef CONFIG_SMP
9959 init_defrootdomain();
9960 #endif
9961
9962 #ifdef CONFIG_RT_GROUP_SCHED
9963 init_rt_bandwidth(&root_task_group.rt_bandwidth,
9964 global_rt_period(), global_rt_runtime());
9965 #endif /* CONFIG_RT_GROUP_SCHED */
9966
9967 #ifdef CONFIG_CGROUP_SCHED
9968 task_group_cache = KMEM_CACHE(task_group, 0);
9969
9970 list_add(&root_task_group.list, &task_groups);
9971 INIT_LIST_HEAD(&root_task_group.children);
9972 INIT_LIST_HEAD(&root_task_group.siblings);
9973 autogroup_init(&init_task);
9974 #endif /* CONFIG_CGROUP_SCHED */
9975
9976 for_each_possible_cpu(i) {
9977 struct rq *rq;
9978
9979 rq = cpu_rq(i);
9980 raw_spin_lock_init(&rq->__lock);
9981 rq->nr_running = 0;
9982 rq->calc_load_active = 0;
9983 rq->calc_load_update = jiffies + LOAD_FREQ;
9984 init_cfs_rq(&rq->cfs);
9985 init_rt_rq(&rq->rt);
9986 init_dl_rq(&rq->dl);
9987 #ifdef CONFIG_FAIR_GROUP_SCHED
9988 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
9989 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
9990 /*
9991 * How much CPU bandwidth does root_task_group get?
9992 *
9993 * In case of task-groups formed thr' the cgroup filesystem, it
9994 * gets 100% of the CPU resources in the system. This overall
9995 * system CPU resource is divided among the tasks of
9996 * root_task_group and its child task-groups in a fair manner,
9997 * based on each entity's (task or task-group's) weight
9998 * (se->load.weight).
9999 *
10000 * In other words, if root_task_group has 10 tasks of weight
10001 * 1024) and two child groups A0 and A1 (of weight 1024 each),
10002 * then A0's share of the CPU resource is:
10003 *
10004 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
10005 *
10006 * We achieve this by letting root_task_group's tasks sit
10007 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
10008 */
10009 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
10010 #endif /* CONFIG_FAIR_GROUP_SCHED */
10011
10012 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
10013 #ifdef CONFIG_RT_GROUP_SCHED
10014 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
10015 #endif
10016 #ifdef CONFIG_SMP
10017 rq->sd = NULL;
10018 rq->rd = NULL;
10019 rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
10020 rq->balance_callback = &balance_push_callback;
10021 rq->active_balance = 0;
10022 rq->next_balance = jiffies;
10023 rq->push_cpu = 0;
10024 rq->cpu = i;
10025 rq->online = 0;
10026 rq->idle_stamp = 0;
10027 rq->avg_idle = 2*sysctl_sched_migration_cost;
10028 rq->wake_stamp = jiffies;
10029 rq->wake_avg_idle = rq->avg_idle;
10030 rq->max_idle_balance_cost = sysctl_sched_migration_cost;
10031
10032 INIT_LIST_HEAD(&rq->cfs_tasks);
10033
10034 rq_attach_root(rq, &def_root_domain);
10035 #ifdef CONFIG_NO_HZ_COMMON
10036 rq->last_blocked_load_update_tick = jiffies;
10037 atomic_set(&rq->nohz_flags, 0);
10038
10039 INIT_CSD(&rq->nohz_csd, nohz_csd_func, rq);
10040 #endif
10041 #ifdef CONFIG_HOTPLUG_CPU
10042 rcuwait_init(&rq->hotplug_wait);
10043 #endif
10044 #endif /* CONFIG_SMP */
10045 hrtick_rq_init(rq);
10046 atomic_set(&rq->nr_iowait, 0);
10047
10048 #ifdef CONFIG_SCHED_CORE
10049 rq->core = rq;
10050 rq->core_pick = NULL;
10051 rq->core_enabled = 0;
10052 rq->core_tree = RB_ROOT;
10053 rq->core_forceidle_count = 0;
10054 rq->core_forceidle_occupation = 0;
10055 rq->core_forceidle_start = 0;
10056
10057 rq->core_cookie = 0UL;
10058 #endif
10059 zalloc_cpumask_var_node(&rq->scratch_mask, GFP_KERNEL, cpu_to_node(i));
10060 }
10061
10062 set_load_weight(&init_task, false);
10063
10064 /*
10065 * The boot idle thread does lazy MMU switching as well:
10066 */
10067 mmgrab_lazy_tlb(&init_mm);
10068 enter_lazy_tlb(&init_mm, current);
10069
10070 /*
10071 * The idle task doesn't need the kthread struct to function, but it
10072 * is dressed up as a per-CPU kthread and thus needs to play the part
10073 * if we want to avoid special-casing it in code that deals with per-CPU
10074 * kthreads.
10075 */
10076 WARN_ON(!set_kthread_struct(current));
10077
10078 /*
10079 * Make us the idle thread. Technically, schedule() should not be
10080 * called from this thread, however somewhere below it might be,
10081 * but because we are the idle thread, we just pick up running again
10082 * when this runqueue becomes "idle".
10083 */
10084 init_idle(current, smp_processor_id());
10085
10086 calc_load_update = jiffies + LOAD_FREQ;
10087
10088 #ifdef CONFIG_SMP
10089 idle_thread_set_boot_cpu();
10090 balance_push_set(smp_processor_id(), false);
10091 #endif
10092 init_sched_fair_class();
10093
10094 psi_init();
10095
10096 init_uclamp();
10097
10098 preempt_dynamic_init();
10099
10100 scheduler_running = 1;
10101 }
10102
10103 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
10104
__might_sleep(const char * file,int line)10105 void __might_sleep(const char *file, int line)
10106 {
10107 unsigned int state = get_current_state();
10108 /*
10109 * Blocking primitives will set (and therefore destroy) current->state,
10110 * since we will exit with TASK_RUNNING make sure we enter with it,
10111 * otherwise we will destroy state.
10112 */
10113 WARN_ONCE(state != TASK_RUNNING && current->task_state_change,
10114 "do not call blocking ops when !TASK_RUNNING; "
10115 "state=%x set at [<%p>] %pS\n", state,
10116 (void *)current->task_state_change,
10117 (void *)current->task_state_change);
10118
10119 __might_resched(file, line, 0);
10120 }
10121 EXPORT_SYMBOL(__might_sleep);
10122
print_preempt_disable_ip(int preempt_offset,unsigned long ip)10123 static void print_preempt_disable_ip(int preempt_offset, unsigned long ip)
10124 {
10125 if (!IS_ENABLED(CONFIG_DEBUG_PREEMPT))
10126 return;
10127
10128 if (preempt_count() == preempt_offset)
10129 return;
10130
10131 pr_err("Preemption disabled at:");
10132 print_ip_sym(KERN_ERR, ip);
10133 }
10134
resched_offsets_ok(unsigned int offsets)10135 static inline bool resched_offsets_ok(unsigned int offsets)
10136 {
10137 unsigned int nested = preempt_count();
10138
10139 nested += rcu_preempt_depth() << MIGHT_RESCHED_RCU_SHIFT;
10140
10141 return nested == offsets;
10142 }
10143
__might_resched(const char * file,int line,unsigned int offsets)10144 void __might_resched(const char *file, int line, unsigned int offsets)
10145 {
10146 /* Ratelimiting timestamp: */
10147 static unsigned long prev_jiffy;
10148
10149 unsigned long preempt_disable_ip;
10150
10151 /* WARN_ON_ONCE() by default, no rate limit required: */
10152 rcu_sleep_check();
10153
10154 if ((resched_offsets_ok(offsets) && !irqs_disabled() &&
10155 !is_idle_task(current) && !current->non_block_count) ||
10156 system_state == SYSTEM_BOOTING || system_state > SYSTEM_RUNNING ||
10157 oops_in_progress)
10158 return;
10159
10160 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
10161 return;
10162 prev_jiffy = jiffies;
10163
10164 /* Save this before calling printk(), since that will clobber it: */
10165 preempt_disable_ip = get_preempt_disable_ip(current);
10166
10167 pr_err("BUG: sleeping function called from invalid context at %s:%d\n",
10168 file, line);
10169 pr_err("in_atomic(): %d, irqs_disabled(): %d, non_block: %d, pid: %d, name: %s\n",
10170 in_atomic(), irqs_disabled(), current->non_block_count,
10171 current->pid, current->comm);
10172 pr_err("preempt_count: %x, expected: %x\n", preempt_count(),
10173 offsets & MIGHT_RESCHED_PREEMPT_MASK);
10174
10175 if (IS_ENABLED(CONFIG_PREEMPT_RCU)) {
10176 pr_err("RCU nest depth: %d, expected: %u\n",
10177 rcu_preempt_depth(), offsets >> MIGHT_RESCHED_RCU_SHIFT);
10178 }
10179
10180 if (task_stack_end_corrupted(current))
10181 pr_emerg("Thread overran stack, or stack corrupted\n");
10182
10183 debug_show_held_locks(current);
10184 if (irqs_disabled())
10185 print_irqtrace_events(current);
10186
10187 print_preempt_disable_ip(offsets & MIGHT_RESCHED_PREEMPT_MASK,
10188 preempt_disable_ip);
10189
10190 dump_stack();
10191 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
10192 }
10193 EXPORT_SYMBOL(__might_resched);
10194
__cant_sleep(const char * file,int line,int preempt_offset)10195 void __cant_sleep(const char *file, int line, int preempt_offset)
10196 {
10197 static unsigned long prev_jiffy;
10198
10199 if (irqs_disabled())
10200 return;
10201
10202 if (!IS_ENABLED(CONFIG_PREEMPT_COUNT))
10203 return;
10204
10205 if (preempt_count() > preempt_offset)
10206 return;
10207
10208 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
10209 return;
10210 prev_jiffy = jiffies;
10211
10212 printk(KERN_ERR "BUG: assuming atomic context at %s:%d\n", file, line);
10213 printk(KERN_ERR "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
10214 in_atomic(), irqs_disabled(),
10215 current->pid, current->comm);
10216
10217 debug_show_held_locks(current);
10218 dump_stack();
10219 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
10220 }
10221 EXPORT_SYMBOL_GPL(__cant_sleep);
10222
10223 #ifdef CONFIG_SMP
__cant_migrate(const char * file,int line)10224 void __cant_migrate(const char *file, int line)
10225 {
10226 static unsigned long prev_jiffy;
10227
10228 if (irqs_disabled())
10229 return;
10230
10231 if (is_migration_disabled(current))
10232 return;
10233
10234 if (!IS_ENABLED(CONFIG_PREEMPT_COUNT))
10235 return;
10236
10237 if (preempt_count() > 0)
10238 return;
10239
10240 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
10241 return;
10242 prev_jiffy = jiffies;
10243
10244 pr_err("BUG: assuming non migratable context at %s:%d\n", file, line);
10245 pr_err("in_atomic(): %d, irqs_disabled(): %d, migration_disabled() %u pid: %d, name: %s\n",
10246 in_atomic(), irqs_disabled(), is_migration_disabled(current),
10247 current->pid, current->comm);
10248
10249 debug_show_held_locks(current);
10250 dump_stack();
10251 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
10252 }
10253 EXPORT_SYMBOL_GPL(__cant_migrate);
10254 #endif
10255 #endif
10256
10257 #ifdef CONFIG_MAGIC_SYSRQ
normalize_rt_tasks(void)10258 void normalize_rt_tasks(void)
10259 {
10260 struct task_struct *g, *p;
10261 struct sched_attr attr = {
10262 .sched_policy = SCHED_NORMAL,
10263 };
10264
10265 read_lock(&tasklist_lock);
10266 for_each_process_thread(g, p) {
10267 /*
10268 * Only normalize user tasks:
10269 */
10270 if (p->flags & PF_KTHREAD)
10271 continue;
10272
10273 p->se.exec_start = 0;
10274 schedstat_set(p->stats.wait_start, 0);
10275 schedstat_set(p->stats.sleep_start, 0);
10276 schedstat_set(p->stats.block_start, 0);
10277
10278 if (!dl_task(p) && !rt_task(p)) {
10279 /*
10280 * Renice negative nice level userspace
10281 * tasks back to 0:
10282 */
10283 if (task_nice(p) < 0)
10284 set_user_nice(p, 0);
10285 continue;
10286 }
10287
10288 __sched_setscheduler(p, &attr, false, false);
10289 }
10290 read_unlock(&tasklist_lock);
10291 }
10292
10293 #endif /* CONFIG_MAGIC_SYSRQ */
10294
10295 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
10296 /*
10297 * These functions are only useful for the IA64 MCA handling, or kdb.
10298 *
10299 * They can only be called when the whole system has been
10300 * stopped - every CPU needs to be quiescent, and no scheduling
10301 * activity can take place. Using them for anything else would
10302 * be a serious bug, and as a result, they aren't even visible
10303 * under any other configuration.
10304 */
10305
10306 /**
10307 * curr_task - return the current task for a given CPU.
10308 * @cpu: the processor in question.
10309 *
10310 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
10311 *
10312 * Return: The current task for @cpu.
10313 */
curr_task(int cpu)10314 struct task_struct *curr_task(int cpu)
10315 {
10316 return cpu_curr(cpu);
10317 }
10318
10319 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
10320
10321 #ifdef CONFIG_IA64
10322 /**
10323 * ia64_set_curr_task - set the current task for a given CPU.
10324 * @cpu: the processor in question.
10325 * @p: the task pointer to set.
10326 *
10327 * Description: This function must only be used when non-maskable interrupts
10328 * are serviced on a separate stack. It allows the architecture to switch the
10329 * notion of the current task on a CPU in a non-blocking manner. This function
10330 * must be called with all CPU's synchronized, and interrupts disabled, the
10331 * and caller must save the original value of the current task (see
10332 * curr_task() above) and restore that value before reenabling interrupts and
10333 * re-starting the system.
10334 *
10335 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
10336 */
ia64_set_curr_task(int cpu,struct task_struct * p)10337 void ia64_set_curr_task(int cpu, struct task_struct *p)
10338 {
10339 cpu_curr(cpu) = p;
10340 }
10341
10342 #endif
10343
10344 #ifdef CONFIG_CGROUP_SCHED
10345 /* task_group_lock serializes the addition/removal of task groups */
10346 static DEFINE_SPINLOCK(task_group_lock);
10347
alloc_uclamp_sched_group(struct task_group * tg,struct task_group * parent)10348 static inline void alloc_uclamp_sched_group(struct task_group *tg,
10349 struct task_group *parent)
10350 {
10351 #ifdef CONFIG_UCLAMP_TASK_GROUP
10352 enum uclamp_id clamp_id;
10353
10354 for_each_clamp_id(clamp_id) {
10355 uclamp_se_set(&tg->uclamp_req[clamp_id],
10356 uclamp_none(clamp_id), false);
10357 tg->uclamp[clamp_id] = parent->uclamp[clamp_id];
10358 }
10359 #endif
10360 }
10361
sched_free_group(struct task_group * tg)10362 static void sched_free_group(struct task_group *tg)
10363 {
10364 free_fair_sched_group(tg);
10365 free_rt_sched_group(tg);
10366 autogroup_free(tg);
10367 kmem_cache_free(task_group_cache, tg);
10368 }
10369
sched_free_group_rcu(struct rcu_head * rcu)10370 static void sched_free_group_rcu(struct rcu_head *rcu)
10371 {
10372 sched_free_group(container_of(rcu, struct task_group, rcu));
10373 }
10374
sched_unregister_group(struct task_group * tg)10375 static void sched_unregister_group(struct task_group *tg)
10376 {
10377 unregister_fair_sched_group(tg);
10378 unregister_rt_sched_group(tg);
10379 /*
10380 * We have to wait for yet another RCU grace period to expire, as
10381 * print_cfs_stats() might run concurrently.
10382 */
10383 call_rcu(&tg->rcu, sched_free_group_rcu);
10384 }
10385
10386 /* allocate runqueue etc for a new task group */
sched_create_group(struct task_group * parent)10387 struct task_group *sched_create_group(struct task_group *parent)
10388 {
10389 struct task_group *tg;
10390
10391 tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
10392 if (!tg)
10393 return ERR_PTR(-ENOMEM);
10394
10395 if (!alloc_fair_sched_group(tg, parent))
10396 goto err;
10397
10398 if (!alloc_rt_sched_group(tg, parent))
10399 goto err;
10400
10401 alloc_uclamp_sched_group(tg, parent);
10402
10403 return tg;
10404
10405 err:
10406 sched_free_group(tg);
10407 return ERR_PTR(-ENOMEM);
10408 }
10409
sched_online_group(struct task_group * tg,struct task_group * parent)10410 void sched_online_group(struct task_group *tg, struct task_group *parent)
10411 {
10412 unsigned long flags;
10413
10414 spin_lock_irqsave(&task_group_lock, flags);
10415 list_add_rcu(&tg->list, &task_groups);
10416
10417 /* Root should already exist: */
10418 WARN_ON(!parent);
10419
10420 tg->parent = parent;
10421 INIT_LIST_HEAD(&tg->children);
10422 list_add_rcu(&tg->siblings, &parent->children);
10423 spin_unlock_irqrestore(&task_group_lock, flags);
10424
10425 online_fair_sched_group(tg);
10426 }
10427
10428 /* rcu callback to free various structures associated with a task group */
sched_unregister_group_rcu(struct rcu_head * rhp)10429 static void sched_unregister_group_rcu(struct rcu_head *rhp)
10430 {
10431 /* Now it should be safe to free those cfs_rqs: */
10432 sched_unregister_group(container_of(rhp, struct task_group, rcu));
10433 }
10434
sched_destroy_group(struct task_group * tg)10435 void sched_destroy_group(struct task_group *tg)
10436 {
10437 /* Wait for possible concurrent references to cfs_rqs complete: */
10438 call_rcu(&tg->rcu, sched_unregister_group_rcu);
10439 }
10440
sched_release_group(struct task_group * tg)10441 void sched_release_group(struct task_group *tg)
10442 {
10443 unsigned long flags;
10444
10445 /*
10446 * Unlink first, to avoid walk_tg_tree_from() from finding us (via
10447 * sched_cfs_period_timer()).
10448 *
10449 * For this to be effective, we have to wait for all pending users of
10450 * this task group to leave their RCU critical section to ensure no new
10451 * user will see our dying task group any more. Specifically ensure
10452 * that tg_unthrottle_up() won't add decayed cfs_rq's to it.
10453 *
10454 * We therefore defer calling unregister_fair_sched_group() to
10455 * sched_unregister_group() which is guarantied to get called only after the
10456 * current RCU grace period has expired.
10457 */
10458 spin_lock_irqsave(&task_group_lock, flags);
10459 list_del_rcu(&tg->list);
10460 list_del_rcu(&tg->siblings);
10461 spin_unlock_irqrestore(&task_group_lock, flags);
10462 }
10463
sched_get_task_group(struct task_struct * tsk)10464 static struct task_group *sched_get_task_group(struct task_struct *tsk)
10465 {
10466 struct task_group *tg;
10467
10468 /*
10469 * All callers are synchronized by task_rq_lock(); we do not use RCU
10470 * which is pointless here. Thus, we pass "true" to task_css_check()
10471 * to prevent lockdep warnings.
10472 */
10473 tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
10474 struct task_group, css);
10475 tg = autogroup_task_group(tsk, tg);
10476
10477 return tg;
10478 }
10479
sched_change_group(struct task_struct * tsk,struct task_group * group)10480 static void sched_change_group(struct task_struct *tsk, struct task_group *group)
10481 {
10482 tsk->sched_task_group = group;
10483
10484 #ifdef CONFIG_FAIR_GROUP_SCHED
10485 if (tsk->sched_class->task_change_group)
10486 tsk->sched_class->task_change_group(tsk);
10487 else
10488 #endif
10489 set_task_rq(tsk, task_cpu(tsk));
10490 }
10491
10492 /*
10493 * Change task's runqueue when it moves between groups.
10494 *
10495 * The caller of this function should have put the task in its new group by
10496 * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect
10497 * its new group.
10498 */
sched_move_task(struct task_struct * tsk)10499 void sched_move_task(struct task_struct *tsk)
10500 {
10501 int queued, running, queue_flags =
10502 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
10503 struct task_group *group;
10504 struct rq_flags rf;
10505 struct rq *rq;
10506
10507 rq = task_rq_lock(tsk, &rf);
10508 /*
10509 * Esp. with SCHED_AUTOGROUP enabled it is possible to get superfluous
10510 * group changes.
10511 */
10512 group = sched_get_task_group(tsk);
10513 if (group == tsk->sched_task_group)
10514 goto unlock;
10515
10516 update_rq_clock(rq);
10517
10518 running = task_current(rq, tsk);
10519 queued = task_on_rq_queued(tsk);
10520
10521 if (queued)
10522 dequeue_task(rq, tsk, queue_flags);
10523 if (running)
10524 put_prev_task(rq, tsk);
10525
10526 sched_change_group(tsk, group);
10527
10528 if (queued)
10529 enqueue_task(rq, tsk, queue_flags);
10530 if (running) {
10531 set_next_task(rq, tsk);
10532 /*
10533 * After changing group, the running task may have joined a
10534 * throttled one but it's still the running task. Trigger a
10535 * resched to make sure that task can still run.
10536 */
10537 resched_curr(rq);
10538 }
10539
10540 unlock:
10541 task_rq_unlock(rq, tsk, &rf);
10542 }
10543
css_tg(struct cgroup_subsys_state * css)10544 static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
10545 {
10546 return css ? container_of(css, struct task_group, css) : NULL;
10547 }
10548
10549 static struct cgroup_subsys_state *
cpu_cgroup_css_alloc(struct cgroup_subsys_state * parent_css)10550 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
10551 {
10552 struct task_group *parent = css_tg(parent_css);
10553 struct task_group *tg;
10554
10555 if (!parent) {
10556 /* This is early initialization for the top cgroup */
10557 return &root_task_group.css;
10558 }
10559
10560 tg = sched_create_group(parent);
10561 if (IS_ERR(tg))
10562 return ERR_PTR(-ENOMEM);
10563
10564 return &tg->css;
10565 }
10566
10567 /* Expose task group only after completing cgroup initialization */
cpu_cgroup_css_online(struct cgroup_subsys_state * css)10568 static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
10569 {
10570 struct task_group *tg = css_tg(css);
10571 struct task_group *parent = css_tg(css->parent);
10572
10573 if (parent)
10574 sched_online_group(tg, parent);
10575
10576 #ifdef CONFIG_UCLAMP_TASK_GROUP
10577 /* Propagate the effective uclamp value for the new group */
10578 mutex_lock(&uclamp_mutex);
10579 rcu_read_lock();
10580 cpu_util_update_eff(css);
10581 rcu_read_unlock();
10582 mutex_unlock(&uclamp_mutex);
10583 #endif
10584
10585 return 0;
10586 }
10587
cpu_cgroup_css_released(struct cgroup_subsys_state * css)10588 static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
10589 {
10590 struct task_group *tg = css_tg(css);
10591
10592 sched_release_group(tg);
10593 }
10594
cpu_cgroup_css_free(struct cgroup_subsys_state * css)10595 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
10596 {
10597 struct task_group *tg = css_tg(css);
10598
10599 /*
10600 * Relies on the RCU grace period between css_released() and this.
10601 */
10602 sched_unregister_group(tg);
10603 }
10604
10605 #ifdef CONFIG_RT_GROUP_SCHED
cpu_cgroup_can_attach(struct cgroup_taskset * tset)10606 static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
10607 {
10608 struct task_struct *task;
10609 struct cgroup_subsys_state *css;
10610
10611 cgroup_taskset_for_each(task, css, tset) {
10612 if (!sched_rt_can_attach(css_tg(css), task))
10613 return -EINVAL;
10614 }
10615 return 0;
10616 }
10617 #endif
10618
cpu_cgroup_attach(struct cgroup_taskset * tset)10619 static void cpu_cgroup_attach(struct cgroup_taskset *tset)
10620 {
10621 struct task_struct *task;
10622 struct cgroup_subsys_state *css;
10623
10624 cgroup_taskset_for_each(task, css, tset)
10625 sched_move_task(task);
10626 }
10627
10628 #ifdef CONFIG_UCLAMP_TASK_GROUP
cpu_util_update_eff(struct cgroup_subsys_state * css)10629 static void cpu_util_update_eff(struct cgroup_subsys_state *css)
10630 {
10631 struct cgroup_subsys_state *top_css = css;
10632 struct uclamp_se *uc_parent = NULL;
10633 struct uclamp_se *uc_se = NULL;
10634 unsigned int eff[UCLAMP_CNT];
10635 enum uclamp_id clamp_id;
10636 unsigned int clamps;
10637
10638 lockdep_assert_held(&uclamp_mutex);
10639 SCHED_WARN_ON(!rcu_read_lock_held());
10640
10641 css_for_each_descendant_pre(css, top_css) {
10642 uc_parent = css_tg(css)->parent
10643 ? css_tg(css)->parent->uclamp : NULL;
10644
10645 for_each_clamp_id(clamp_id) {
10646 /* Assume effective clamps matches requested clamps */
10647 eff[clamp_id] = css_tg(css)->uclamp_req[clamp_id].value;
10648 /* Cap effective clamps with parent's effective clamps */
10649 if (uc_parent &&
10650 eff[clamp_id] > uc_parent[clamp_id].value) {
10651 eff[clamp_id] = uc_parent[clamp_id].value;
10652 }
10653 }
10654 /* Ensure protection is always capped by limit */
10655 eff[UCLAMP_MIN] = min(eff[UCLAMP_MIN], eff[UCLAMP_MAX]);
10656
10657 /* Propagate most restrictive effective clamps */
10658 clamps = 0x0;
10659 uc_se = css_tg(css)->uclamp;
10660 for_each_clamp_id(clamp_id) {
10661 if (eff[clamp_id] == uc_se[clamp_id].value)
10662 continue;
10663 uc_se[clamp_id].value = eff[clamp_id];
10664 uc_se[clamp_id].bucket_id = uclamp_bucket_id(eff[clamp_id]);
10665 clamps |= (0x1 << clamp_id);
10666 }
10667 if (!clamps) {
10668 css = css_rightmost_descendant(css);
10669 continue;
10670 }
10671
10672 /* Immediately update descendants RUNNABLE tasks */
10673 uclamp_update_active_tasks(css);
10674 }
10675 }
10676
10677 /*
10678 * Integer 10^N with a given N exponent by casting to integer the literal "1eN"
10679 * C expression. Since there is no way to convert a macro argument (N) into a
10680 * character constant, use two levels of macros.
10681 */
10682 #define _POW10(exp) ((unsigned int)1e##exp)
10683 #define POW10(exp) _POW10(exp)
10684
10685 struct uclamp_request {
10686 #define UCLAMP_PERCENT_SHIFT 2
10687 #define UCLAMP_PERCENT_SCALE (100 * POW10(UCLAMP_PERCENT_SHIFT))
10688 s64 percent;
10689 u64 util;
10690 int ret;
10691 };
10692
10693 static inline struct uclamp_request
capacity_from_percent(char * buf)10694 capacity_from_percent(char *buf)
10695 {
10696 struct uclamp_request req = {
10697 .percent = UCLAMP_PERCENT_SCALE,
10698 .util = SCHED_CAPACITY_SCALE,
10699 .ret = 0,
10700 };
10701
10702 buf = strim(buf);
10703 if (strcmp(buf, "max")) {
10704 req.ret = cgroup_parse_float(buf, UCLAMP_PERCENT_SHIFT,
10705 &req.percent);
10706 if (req.ret)
10707 return req;
10708 if ((u64)req.percent > UCLAMP_PERCENT_SCALE) {
10709 req.ret = -ERANGE;
10710 return req;
10711 }
10712
10713 req.util = req.percent << SCHED_CAPACITY_SHIFT;
10714 req.util = DIV_ROUND_CLOSEST_ULL(req.util, UCLAMP_PERCENT_SCALE);
10715 }
10716
10717 return req;
10718 }
10719
cpu_uclamp_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off,enum uclamp_id clamp_id)10720 static ssize_t cpu_uclamp_write(struct kernfs_open_file *of, char *buf,
10721 size_t nbytes, loff_t off,
10722 enum uclamp_id clamp_id)
10723 {
10724 struct uclamp_request req;
10725 struct task_group *tg;
10726
10727 req = capacity_from_percent(buf);
10728 if (req.ret)
10729 return req.ret;
10730
10731 static_branch_enable(&sched_uclamp_used);
10732
10733 mutex_lock(&uclamp_mutex);
10734 rcu_read_lock();
10735
10736 tg = css_tg(of_css(of));
10737 if (tg->uclamp_req[clamp_id].value != req.util)
10738 uclamp_se_set(&tg->uclamp_req[clamp_id], req.util, false);
10739
10740 /*
10741 * Because of not recoverable conversion rounding we keep track of the
10742 * exact requested value
10743 */
10744 tg->uclamp_pct[clamp_id] = req.percent;
10745
10746 /* Update effective clamps to track the most restrictive value */
10747 cpu_util_update_eff(of_css(of));
10748
10749 rcu_read_unlock();
10750 mutex_unlock(&uclamp_mutex);
10751
10752 return nbytes;
10753 }
10754
cpu_uclamp_min_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)10755 static ssize_t cpu_uclamp_min_write(struct kernfs_open_file *of,
10756 char *buf, size_t nbytes,
10757 loff_t off)
10758 {
10759 return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MIN);
10760 }
10761
cpu_uclamp_max_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)10762 static ssize_t cpu_uclamp_max_write(struct kernfs_open_file *of,
10763 char *buf, size_t nbytes,
10764 loff_t off)
10765 {
10766 return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MAX);
10767 }
10768
cpu_uclamp_print(struct seq_file * sf,enum uclamp_id clamp_id)10769 static inline void cpu_uclamp_print(struct seq_file *sf,
10770 enum uclamp_id clamp_id)
10771 {
10772 struct task_group *tg;
10773 u64 util_clamp;
10774 u64 percent;
10775 u32 rem;
10776
10777 rcu_read_lock();
10778 tg = css_tg(seq_css(sf));
10779 util_clamp = tg->uclamp_req[clamp_id].value;
10780 rcu_read_unlock();
10781
10782 if (util_clamp == SCHED_CAPACITY_SCALE) {
10783 seq_puts(sf, "max\n");
10784 return;
10785 }
10786
10787 percent = tg->uclamp_pct[clamp_id];
10788 percent = div_u64_rem(percent, POW10(UCLAMP_PERCENT_SHIFT), &rem);
10789 seq_printf(sf, "%llu.%0*u\n", percent, UCLAMP_PERCENT_SHIFT, rem);
10790 }
10791
cpu_uclamp_min_show(struct seq_file * sf,void * v)10792 static int cpu_uclamp_min_show(struct seq_file *sf, void *v)
10793 {
10794 cpu_uclamp_print(sf, UCLAMP_MIN);
10795 return 0;
10796 }
10797
cpu_uclamp_max_show(struct seq_file * sf,void * v)10798 static int cpu_uclamp_max_show(struct seq_file *sf, void *v)
10799 {
10800 cpu_uclamp_print(sf, UCLAMP_MAX);
10801 return 0;
10802 }
10803 #endif /* CONFIG_UCLAMP_TASK_GROUP */
10804
10805 #ifdef CONFIG_FAIR_GROUP_SCHED
cpu_shares_write_u64(struct cgroup_subsys_state * css,struct cftype * cftype,u64 shareval)10806 static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
10807 struct cftype *cftype, u64 shareval)
10808 {
10809 if (shareval > scale_load_down(ULONG_MAX))
10810 shareval = MAX_SHARES;
10811 return sched_group_set_shares(css_tg(css), scale_load(shareval));
10812 }
10813
cpu_shares_read_u64(struct cgroup_subsys_state * css,struct cftype * cft)10814 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
10815 struct cftype *cft)
10816 {
10817 struct task_group *tg = css_tg(css);
10818
10819 return (u64) scale_load_down(tg->shares);
10820 }
10821
10822 #ifdef CONFIG_CFS_BANDWIDTH
10823 static DEFINE_MUTEX(cfs_constraints_mutex);
10824
10825 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
10826 static const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
10827 /* More than 203 days if BW_SHIFT equals 20. */
10828 static const u64 max_cfs_runtime = MAX_BW * NSEC_PER_USEC;
10829
10830 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
10831
tg_set_cfs_bandwidth(struct task_group * tg,u64 period,u64 quota,u64 burst)10832 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota,
10833 u64 burst)
10834 {
10835 int i, ret = 0, runtime_enabled, runtime_was_enabled;
10836 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
10837
10838 if (tg == &root_task_group)
10839 return -EINVAL;
10840
10841 /*
10842 * Ensure we have at some amount of bandwidth every period. This is
10843 * to prevent reaching a state of large arrears when throttled via
10844 * entity_tick() resulting in prolonged exit starvation.
10845 */
10846 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
10847 return -EINVAL;
10848
10849 /*
10850 * Likewise, bound things on the other side by preventing insane quota
10851 * periods. This also allows us to normalize in computing quota
10852 * feasibility.
10853 */
10854 if (period > max_cfs_quota_period)
10855 return -EINVAL;
10856
10857 /*
10858 * Bound quota to defend quota against overflow during bandwidth shift.
10859 */
10860 if (quota != RUNTIME_INF && quota > max_cfs_runtime)
10861 return -EINVAL;
10862
10863 if (quota != RUNTIME_INF && (burst > quota ||
10864 burst + quota > max_cfs_runtime))
10865 return -EINVAL;
10866
10867 /*
10868 * Prevent race between setting of cfs_rq->runtime_enabled and
10869 * unthrottle_offline_cfs_rqs().
10870 */
10871 cpus_read_lock();
10872 mutex_lock(&cfs_constraints_mutex);
10873 ret = __cfs_schedulable(tg, period, quota);
10874 if (ret)
10875 goto out_unlock;
10876
10877 runtime_enabled = quota != RUNTIME_INF;
10878 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
10879 /*
10880 * If we need to toggle cfs_bandwidth_used, off->on must occur
10881 * before making related changes, and on->off must occur afterwards
10882 */
10883 if (runtime_enabled && !runtime_was_enabled)
10884 cfs_bandwidth_usage_inc();
10885 raw_spin_lock_irq(&cfs_b->lock);
10886 cfs_b->period = ns_to_ktime(period);
10887 cfs_b->quota = quota;
10888 cfs_b->burst = burst;
10889
10890 __refill_cfs_bandwidth_runtime(cfs_b);
10891
10892 /* Restart the period timer (if active) to handle new period expiry: */
10893 if (runtime_enabled)
10894 start_cfs_bandwidth(cfs_b);
10895
10896 raw_spin_unlock_irq(&cfs_b->lock);
10897
10898 for_each_online_cpu(i) {
10899 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
10900 struct rq *rq = cfs_rq->rq;
10901 struct rq_flags rf;
10902
10903 rq_lock_irq(rq, &rf);
10904 cfs_rq->runtime_enabled = runtime_enabled;
10905 cfs_rq->runtime_remaining = 0;
10906
10907 if (cfs_rq->throttled)
10908 unthrottle_cfs_rq(cfs_rq);
10909 rq_unlock_irq(rq, &rf);
10910 }
10911 if (runtime_was_enabled && !runtime_enabled)
10912 cfs_bandwidth_usage_dec();
10913 out_unlock:
10914 mutex_unlock(&cfs_constraints_mutex);
10915 cpus_read_unlock();
10916
10917 return ret;
10918 }
10919
tg_set_cfs_quota(struct task_group * tg,long cfs_quota_us)10920 static int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
10921 {
10922 u64 quota, period, burst;
10923
10924 period = ktime_to_ns(tg->cfs_bandwidth.period);
10925 burst = tg->cfs_bandwidth.burst;
10926 if (cfs_quota_us < 0)
10927 quota = RUNTIME_INF;
10928 else if ((u64)cfs_quota_us <= U64_MAX / NSEC_PER_USEC)
10929 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
10930 else
10931 return -EINVAL;
10932
10933 return tg_set_cfs_bandwidth(tg, period, quota, burst);
10934 }
10935
tg_get_cfs_quota(struct task_group * tg)10936 static long tg_get_cfs_quota(struct task_group *tg)
10937 {
10938 u64 quota_us;
10939
10940 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
10941 return -1;
10942
10943 quota_us = tg->cfs_bandwidth.quota;
10944 do_div(quota_us, NSEC_PER_USEC);
10945
10946 return quota_us;
10947 }
10948
tg_set_cfs_period(struct task_group * tg,long cfs_period_us)10949 static int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
10950 {
10951 u64 quota, period, burst;
10952
10953 if ((u64)cfs_period_us > U64_MAX / NSEC_PER_USEC)
10954 return -EINVAL;
10955
10956 period = (u64)cfs_period_us * NSEC_PER_USEC;
10957 quota = tg->cfs_bandwidth.quota;
10958 burst = tg->cfs_bandwidth.burst;
10959
10960 return tg_set_cfs_bandwidth(tg, period, quota, burst);
10961 }
10962
tg_get_cfs_period(struct task_group * tg)10963 static long tg_get_cfs_period(struct task_group *tg)
10964 {
10965 u64 cfs_period_us;
10966
10967 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
10968 do_div(cfs_period_us, NSEC_PER_USEC);
10969
10970 return cfs_period_us;
10971 }
10972
tg_set_cfs_burst(struct task_group * tg,long cfs_burst_us)10973 static int tg_set_cfs_burst(struct task_group *tg, long cfs_burst_us)
10974 {
10975 u64 quota, period, burst;
10976
10977 if ((u64)cfs_burst_us > U64_MAX / NSEC_PER_USEC)
10978 return -EINVAL;
10979
10980 burst = (u64)cfs_burst_us * NSEC_PER_USEC;
10981 period = ktime_to_ns(tg->cfs_bandwidth.period);
10982 quota = tg->cfs_bandwidth.quota;
10983
10984 return tg_set_cfs_bandwidth(tg, period, quota, burst);
10985 }
10986
tg_get_cfs_burst(struct task_group * tg)10987 static long tg_get_cfs_burst(struct task_group *tg)
10988 {
10989 u64 burst_us;
10990
10991 burst_us = tg->cfs_bandwidth.burst;
10992 do_div(burst_us, NSEC_PER_USEC);
10993
10994 return burst_us;
10995 }
10996
cpu_cfs_quota_read_s64(struct cgroup_subsys_state * css,struct cftype * cft)10997 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
10998 struct cftype *cft)
10999 {
11000 return tg_get_cfs_quota(css_tg(css));
11001 }
11002
cpu_cfs_quota_write_s64(struct cgroup_subsys_state * css,struct cftype * cftype,s64 cfs_quota_us)11003 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
11004 struct cftype *cftype, s64 cfs_quota_us)
11005 {
11006 return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
11007 }
11008
cpu_cfs_period_read_u64(struct cgroup_subsys_state * css,struct cftype * cft)11009 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
11010 struct cftype *cft)
11011 {
11012 return tg_get_cfs_period(css_tg(css));
11013 }
11014
cpu_cfs_period_write_u64(struct cgroup_subsys_state * css,struct cftype * cftype,u64 cfs_period_us)11015 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
11016 struct cftype *cftype, u64 cfs_period_us)
11017 {
11018 return tg_set_cfs_period(css_tg(css), cfs_period_us);
11019 }
11020
cpu_cfs_burst_read_u64(struct cgroup_subsys_state * css,struct cftype * cft)11021 static u64 cpu_cfs_burst_read_u64(struct cgroup_subsys_state *css,
11022 struct cftype *cft)
11023 {
11024 return tg_get_cfs_burst(css_tg(css));
11025 }
11026
cpu_cfs_burst_write_u64(struct cgroup_subsys_state * css,struct cftype * cftype,u64 cfs_burst_us)11027 static int cpu_cfs_burst_write_u64(struct cgroup_subsys_state *css,
11028 struct cftype *cftype, u64 cfs_burst_us)
11029 {
11030 return tg_set_cfs_burst(css_tg(css), cfs_burst_us);
11031 }
11032
11033 struct cfs_schedulable_data {
11034 struct task_group *tg;
11035 u64 period, quota;
11036 };
11037
11038 /*
11039 * normalize group quota/period to be quota/max_period
11040 * note: units are usecs
11041 */
normalize_cfs_quota(struct task_group * tg,struct cfs_schedulable_data * d)11042 static u64 normalize_cfs_quota(struct task_group *tg,
11043 struct cfs_schedulable_data *d)
11044 {
11045 u64 quota, period;
11046
11047 if (tg == d->tg) {
11048 period = d->period;
11049 quota = d->quota;
11050 } else {
11051 period = tg_get_cfs_period(tg);
11052 quota = tg_get_cfs_quota(tg);
11053 }
11054
11055 /* note: these should typically be equivalent */
11056 if (quota == RUNTIME_INF || quota == -1)
11057 return RUNTIME_INF;
11058
11059 return to_ratio(period, quota);
11060 }
11061
tg_cfs_schedulable_down(struct task_group * tg,void * data)11062 static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
11063 {
11064 struct cfs_schedulable_data *d = data;
11065 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
11066 s64 quota = 0, parent_quota = -1;
11067
11068 if (!tg->parent) {
11069 quota = RUNTIME_INF;
11070 } else {
11071 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
11072
11073 quota = normalize_cfs_quota(tg, d);
11074 parent_quota = parent_b->hierarchical_quota;
11075
11076 /*
11077 * Ensure max(child_quota) <= parent_quota. On cgroup2,
11078 * always take the non-RUNTIME_INF min. On cgroup1, only
11079 * inherit when no limit is set. In both cases this is used
11080 * by the scheduler to determine if a given CFS task has a
11081 * bandwidth constraint at some higher level.
11082 */
11083 if (cgroup_subsys_on_dfl(cpu_cgrp_subsys)) {
11084 if (quota == RUNTIME_INF)
11085 quota = parent_quota;
11086 else if (parent_quota != RUNTIME_INF)
11087 quota = min(quota, parent_quota);
11088 } else {
11089 if (quota == RUNTIME_INF)
11090 quota = parent_quota;
11091 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
11092 return -EINVAL;
11093 }
11094 }
11095 cfs_b->hierarchical_quota = quota;
11096
11097 return 0;
11098 }
11099
__cfs_schedulable(struct task_group * tg,u64 period,u64 quota)11100 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
11101 {
11102 int ret;
11103 struct cfs_schedulable_data data = {
11104 .tg = tg,
11105 .period = period,
11106 .quota = quota,
11107 };
11108
11109 if (quota != RUNTIME_INF) {
11110 do_div(data.period, NSEC_PER_USEC);
11111 do_div(data.quota, NSEC_PER_USEC);
11112 }
11113
11114 rcu_read_lock();
11115 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
11116 rcu_read_unlock();
11117
11118 return ret;
11119 }
11120
cpu_cfs_stat_show(struct seq_file * sf,void * v)11121 static int cpu_cfs_stat_show(struct seq_file *sf, void *v)
11122 {
11123 struct task_group *tg = css_tg(seq_css(sf));
11124 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
11125
11126 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
11127 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
11128 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
11129
11130 if (schedstat_enabled() && tg != &root_task_group) {
11131 struct sched_statistics *stats;
11132 u64 ws = 0;
11133 int i;
11134
11135 for_each_possible_cpu(i) {
11136 stats = __schedstats_from_se(tg->se[i]);
11137 ws += schedstat_val(stats->wait_sum);
11138 }
11139
11140 seq_printf(sf, "wait_sum %llu\n", ws);
11141 }
11142
11143 seq_printf(sf, "nr_bursts %d\n", cfs_b->nr_burst);
11144 seq_printf(sf, "burst_time %llu\n", cfs_b->burst_time);
11145
11146 return 0;
11147 }
11148
throttled_time_self(struct task_group * tg)11149 static u64 throttled_time_self(struct task_group *tg)
11150 {
11151 int i;
11152 u64 total = 0;
11153
11154 for_each_possible_cpu(i) {
11155 total += READ_ONCE(tg->cfs_rq[i]->throttled_clock_self_time);
11156 }
11157
11158 return total;
11159 }
11160
cpu_cfs_local_stat_show(struct seq_file * sf,void * v)11161 static int cpu_cfs_local_stat_show(struct seq_file *sf, void *v)
11162 {
11163 struct task_group *tg = css_tg(seq_css(sf));
11164
11165 seq_printf(sf, "throttled_time %llu\n", throttled_time_self(tg));
11166
11167 return 0;
11168 }
11169 #endif /* CONFIG_CFS_BANDWIDTH */
11170 #endif /* CONFIG_FAIR_GROUP_SCHED */
11171
11172 #ifdef CONFIG_RT_GROUP_SCHED
cpu_rt_runtime_write(struct cgroup_subsys_state * css,struct cftype * cft,s64 val)11173 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
11174 struct cftype *cft, s64 val)
11175 {
11176 return sched_group_set_rt_runtime(css_tg(css), val);
11177 }
11178
cpu_rt_runtime_read(struct cgroup_subsys_state * css,struct cftype * cft)11179 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
11180 struct cftype *cft)
11181 {
11182 return sched_group_rt_runtime(css_tg(css));
11183 }
11184
cpu_rt_period_write_uint(struct cgroup_subsys_state * css,struct cftype * cftype,u64 rt_period_us)11185 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
11186 struct cftype *cftype, u64 rt_period_us)
11187 {
11188 return sched_group_set_rt_period(css_tg(css), rt_period_us);
11189 }
11190
cpu_rt_period_read_uint(struct cgroup_subsys_state * css,struct cftype * cft)11191 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
11192 struct cftype *cft)
11193 {
11194 return sched_group_rt_period(css_tg(css));
11195 }
11196 #endif /* CONFIG_RT_GROUP_SCHED */
11197
11198 #ifdef CONFIG_FAIR_GROUP_SCHED
cpu_idle_read_s64(struct cgroup_subsys_state * css,struct cftype * cft)11199 static s64 cpu_idle_read_s64(struct cgroup_subsys_state *css,
11200 struct cftype *cft)
11201 {
11202 return css_tg(css)->idle;
11203 }
11204
cpu_idle_write_s64(struct cgroup_subsys_state * css,struct cftype * cft,s64 idle)11205 static int cpu_idle_write_s64(struct cgroup_subsys_state *css,
11206 struct cftype *cft, s64 idle)
11207 {
11208 return sched_group_set_idle(css_tg(css), idle);
11209 }
11210 #endif
11211
11212 static struct cftype cpu_legacy_files[] = {
11213 #ifdef CONFIG_FAIR_GROUP_SCHED
11214 {
11215 .name = "shares",
11216 .read_u64 = cpu_shares_read_u64,
11217 .write_u64 = cpu_shares_write_u64,
11218 },
11219 {
11220 .name = "idle",
11221 .read_s64 = cpu_idle_read_s64,
11222 .write_s64 = cpu_idle_write_s64,
11223 },
11224 #endif
11225 #ifdef CONFIG_CFS_BANDWIDTH
11226 {
11227 .name = "cfs_quota_us",
11228 .read_s64 = cpu_cfs_quota_read_s64,
11229 .write_s64 = cpu_cfs_quota_write_s64,
11230 },
11231 {
11232 .name = "cfs_period_us",
11233 .read_u64 = cpu_cfs_period_read_u64,
11234 .write_u64 = cpu_cfs_period_write_u64,
11235 },
11236 {
11237 .name = "cfs_burst_us",
11238 .read_u64 = cpu_cfs_burst_read_u64,
11239 .write_u64 = cpu_cfs_burst_write_u64,
11240 },
11241 {
11242 .name = "stat",
11243 .seq_show = cpu_cfs_stat_show,
11244 },
11245 {
11246 .name = "stat.local",
11247 .seq_show = cpu_cfs_local_stat_show,
11248 },
11249 #endif
11250 #ifdef CONFIG_RT_GROUP_SCHED
11251 {
11252 .name = "rt_runtime_us",
11253 .read_s64 = cpu_rt_runtime_read,
11254 .write_s64 = cpu_rt_runtime_write,
11255 },
11256 {
11257 .name = "rt_period_us",
11258 .read_u64 = cpu_rt_period_read_uint,
11259 .write_u64 = cpu_rt_period_write_uint,
11260 },
11261 #endif
11262 #ifdef CONFIG_UCLAMP_TASK_GROUP
11263 {
11264 .name = "uclamp.min",
11265 .flags = CFTYPE_NOT_ON_ROOT,
11266 .seq_show = cpu_uclamp_min_show,
11267 .write = cpu_uclamp_min_write,
11268 },
11269 {
11270 .name = "uclamp.max",
11271 .flags = CFTYPE_NOT_ON_ROOT,
11272 .seq_show = cpu_uclamp_max_show,
11273 .write = cpu_uclamp_max_write,
11274 },
11275 #endif
11276 { } /* Terminate */
11277 };
11278
cpu_extra_stat_show(struct seq_file * sf,struct cgroup_subsys_state * css)11279 static int cpu_extra_stat_show(struct seq_file *sf,
11280 struct cgroup_subsys_state *css)
11281 {
11282 #ifdef CONFIG_CFS_BANDWIDTH
11283 {
11284 struct task_group *tg = css_tg(css);
11285 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
11286 u64 throttled_usec, burst_usec;
11287
11288 throttled_usec = cfs_b->throttled_time;
11289 do_div(throttled_usec, NSEC_PER_USEC);
11290 burst_usec = cfs_b->burst_time;
11291 do_div(burst_usec, NSEC_PER_USEC);
11292
11293 seq_printf(sf, "nr_periods %d\n"
11294 "nr_throttled %d\n"
11295 "throttled_usec %llu\n"
11296 "nr_bursts %d\n"
11297 "burst_usec %llu\n",
11298 cfs_b->nr_periods, cfs_b->nr_throttled,
11299 throttled_usec, cfs_b->nr_burst, burst_usec);
11300 }
11301 #endif
11302 return 0;
11303 }
11304
cpu_local_stat_show(struct seq_file * sf,struct cgroup_subsys_state * css)11305 static int cpu_local_stat_show(struct seq_file *sf,
11306 struct cgroup_subsys_state *css)
11307 {
11308 #ifdef CONFIG_CFS_BANDWIDTH
11309 {
11310 struct task_group *tg = css_tg(css);
11311 u64 throttled_self_usec;
11312
11313 throttled_self_usec = throttled_time_self(tg);
11314 do_div(throttled_self_usec, NSEC_PER_USEC);
11315
11316 seq_printf(sf, "throttled_usec %llu\n",
11317 throttled_self_usec);
11318 }
11319 #endif
11320 return 0;
11321 }
11322
11323 #ifdef CONFIG_FAIR_GROUP_SCHED
cpu_weight_read_u64(struct cgroup_subsys_state * css,struct cftype * cft)11324 static u64 cpu_weight_read_u64(struct cgroup_subsys_state *css,
11325 struct cftype *cft)
11326 {
11327 struct task_group *tg = css_tg(css);
11328 u64 weight = scale_load_down(tg->shares);
11329
11330 return DIV_ROUND_CLOSEST_ULL(weight * CGROUP_WEIGHT_DFL, 1024);
11331 }
11332
cpu_weight_write_u64(struct cgroup_subsys_state * css,struct cftype * cft,u64 weight)11333 static int cpu_weight_write_u64(struct cgroup_subsys_state *css,
11334 struct cftype *cft, u64 weight)
11335 {
11336 /*
11337 * cgroup weight knobs should use the common MIN, DFL and MAX
11338 * values which are 1, 100 and 10000 respectively. While it loses
11339 * a bit of range on both ends, it maps pretty well onto the shares
11340 * value used by scheduler and the round-trip conversions preserve
11341 * the original value over the entire range.
11342 */
11343 if (weight < CGROUP_WEIGHT_MIN || weight > CGROUP_WEIGHT_MAX)
11344 return -ERANGE;
11345
11346 weight = DIV_ROUND_CLOSEST_ULL(weight * 1024, CGROUP_WEIGHT_DFL);
11347
11348 return sched_group_set_shares(css_tg(css), scale_load(weight));
11349 }
11350
cpu_weight_nice_read_s64(struct cgroup_subsys_state * css,struct cftype * cft)11351 static s64 cpu_weight_nice_read_s64(struct cgroup_subsys_state *css,
11352 struct cftype *cft)
11353 {
11354 unsigned long weight = scale_load_down(css_tg(css)->shares);
11355 int last_delta = INT_MAX;
11356 int prio, delta;
11357
11358 /* find the closest nice value to the current weight */
11359 for (prio = 0; prio < ARRAY_SIZE(sched_prio_to_weight); prio++) {
11360 delta = abs(sched_prio_to_weight[prio] - weight);
11361 if (delta >= last_delta)
11362 break;
11363 last_delta = delta;
11364 }
11365
11366 return PRIO_TO_NICE(prio - 1 + MAX_RT_PRIO);
11367 }
11368
cpu_weight_nice_write_s64(struct cgroup_subsys_state * css,struct cftype * cft,s64 nice)11369 static int cpu_weight_nice_write_s64(struct cgroup_subsys_state *css,
11370 struct cftype *cft, s64 nice)
11371 {
11372 unsigned long weight;
11373 int idx;
11374
11375 if (nice < MIN_NICE || nice > MAX_NICE)
11376 return -ERANGE;
11377
11378 idx = NICE_TO_PRIO(nice) - MAX_RT_PRIO;
11379 idx = array_index_nospec(idx, 40);
11380 weight = sched_prio_to_weight[idx];
11381
11382 return sched_group_set_shares(css_tg(css), scale_load(weight));
11383 }
11384 #endif
11385
cpu_period_quota_print(struct seq_file * sf,long period,long quota)11386 static void __maybe_unused cpu_period_quota_print(struct seq_file *sf,
11387 long period, long quota)
11388 {
11389 if (quota < 0)
11390 seq_puts(sf, "max");
11391 else
11392 seq_printf(sf, "%ld", quota);
11393
11394 seq_printf(sf, " %ld\n", period);
11395 }
11396
11397 /* caller should put the current value in *@periodp before calling */
cpu_period_quota_parse(char * buf,u64 * periodp,u64 * quotap)11398 static int __maybe_unused cpu_period_quota_parse(char *buf,
11399 u64 *periodp, u64 *quotap)
11400 {
11401 char tok[21]; /* U64_MAX */
11402
11403 if (sscanf(buf, "%20s %llu", tok, periodp) < 1)
11404 return -EINVAL;
11405
11406 *periodp *= NSEC_PER_USEC;
11407
11408 if (sscanf(tok, "%llu", quotap))
11409 *quotap *= NSEC_PER_USEC;
11410 else if (!strcmp(tok, "max"))
11411 *quotap = RUNTIME_INF;
11412 else
11413 return -EINVAL;
11414
11415 return 0;
11416 }
11417
11418 #ifdef CONFIG_CFS_BANDWIDTH
cpu_max_show(struct seq_file * sf,void * v)11419 static int cpu_max_show(struct seq_file *sf, void *v)
11420 {
11421 struct task_group *tg = css_tg(seq_css(sf));
11422
11423 cpu_period_quota_print(sf, tg_get_cfs_period(tg), tg_get_cfs_quota(tg));
11424 return 0;
11425 }
11426
cpu_max_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)11427 static ssize_t cpu_max_write(struct kernfs_open_file *of,
11428 char *buf, size_t nbytes, loff_t off)
11429 {
11430 struct task_group *tg = css_tg(of_css(of));
11431 u64 period = tg_get_cfs_period(tg);
11432 u64 burst = tg_get_cfs_burst(tg);
11433 u64 quota;
11434 int ret;
11435
11436 ret = cpu_period_quota_parse(buf, &period, "a);
11437 if (!ret)
11438 ret = tg_set_cfs_bandwidth(tg, period, quota, burst);
11439 return ret ?: nbytes;
11440 }
11441 #endif
11442
11443 static struct cftype cpu_files[] = {
11444 #ifdef CONFIG_FAIR_GROUP_SCHED
11445 {
11446 .name = "weight",
11447 .flags = CFTYPE_NOT_ON_ROOT,
11448 .read_u64 = cpu_weight_read_u64,
11449 .write_u64 = cpu_weight_write_u64,
11450 },
11451 {
11452 .name = "weight.nice",
11453 .flags = CFTYPE_NOT_ON_ROOT,
11454 .read_s64 = cpu_weight_nice_read_s64,
11455 .write_s64 = cpu_weight_nice_write_s64,
11456 },
11457 {
11458 .name = "idle",
11459 .flags = CFTYPE_NOT_ON_ROOT,
11460 .read_s64 = cpu_idle_read_s64,
11461 .write_s64 = cpu_idle_write_s64,
11462 },
11463 #endif
11464 #ifdef CONFIG_CFS_BANDWIDTH
11465 {
11466 .name = "max",
11467 .flags = CFTYPE_NOT_ON_ROOT,
11468 .seq_show = cpu_max_show,
11469 .write = cpu_max_write,
11470 },
11471 {
11472 .name = "max.burst",
11473 .flags = CFTYPE_NOT_ON_ROOT,
11474 .read_u64 = cpu_cfs_burst_read_u64,
11475 .write_u64 = cpu_cfs_burst_write_u64,
11476 },
11477 #endif
11478 #ifdef CONFIG_UCLAMP_TASK_GROUP
11479 {
11480 .name = "uclamp.min",
11481 .flags = CFTYPE_NOT_ON_ROOT,
11482 .seq_show = cpu_uclamp_min_show,
11483 .write = cpu_uclamp_min_write,
11484 },
11485 {
11486 .name = "uclamp.max",
11487 .flags = CFTYPE_NOT_ON_ROOT,
11488 .seq_show = cpu_uclamp_max_show,
11489 .write = cpu_uclamp_max_write,
11490 },
11491 #endif
11492 { } /* terminate */
11493 };
11494
11495 struct cgroup_subsys cpu_cgrp_subsys = {
11496 .css_alloc = cpu_cgroup_css_alloc,
11497 .css_online = cpu_cgroup_css_online,
11498 .css_released = cpu_cgroup_css_released,
11499 .css_free = cpu_cgroup_css_free,
11500 .css_extra_stat_show = cpu_extra_stat_show,
11501 .css_local_stat_show = cpu_local_stat_show,
11502 #ifdef CONFIG_RT_GROUP_SCHED
11503 .can_attach = cpu_cgroup_can_attach,
11504 #endif
11505 .attach = cpu_cgroup_attach,
11506 .legacy_cftypes = cpu_legacy_files,
11507 .dfl_cftypes = cpu_files,
11508 .early_init = true,
11509 .threaded = true,
11510 };
11511
11512 #endif /* CONFIG_CGROUP_SCHED */
11513
dump_cpu_task(int cpu)11514 void dump_cpu_task(int cpu)
11515 {
11516 if (cpu == smp_processor_id() && in_hardirq()) {
11517 struct pt_regs *regs;
11518
11519 regs = get_irq_regs();
11520 if (regs) {
11521 show_regs(regs);
11522 return;
11523 }
11524 }
11525
11526 if (trigger_single_cpu_backtrace(cpu))
11527 return;
11528
11529 pr_info("Task dump for CPU %d:\n", cpu);
11530 sched_show_task(cpu_curr(cpu));
11531 }
11532
11533 /*
11534 * Nice levels are multiplicative, with a gentle 10% change for every
11535 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
11536 * nice 1, it will get ~10% less CPU time than another CPU-bound task
11537 * that remained on nice 0.
11538 *
11539 * The "10% effect" is relative and cumulative: from _any_ nice level,
11540 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
11541 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
11542 * If a task goes up by ~10% and another task goes down by ~10% then
11543 * the relative distance between them is ~25%.)
11544 */
11545 const int sched_prio_to_weight[40] = {
11546 /* -20 */ 88761, 71755, 56483, 46273, 36291,
11547 /* -15 */ 29154, 23254, 18705, 14949, 11916,
11548 /* -10 */ 9548, 7620, 6100, 4904, 3906,
11549 /* -5 */ 3121, 2501, 1991, 1586, 1277,
11550 /* 0 */ 1024, 820, 655, 526, 423,
11551 /* 5 */ 335, 272, 215, 172, 137,
11552 /* 10 */ 110, 87, 70, 56, 45,
11553 /* 15 */ 36, 29, 23, 18, 15,
11554 };
11555
11556 /*
11557 * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated.
11558 *
11559 * In cases where the weight does not change often, we can use the
11560 * precalculated inverse to speed up arithmetics by turning divisions
11561 * into multiplications:
11562 */
11563 const u32 sched_prio_to_wmult[40] = {
11564 /* -20 */ 48388, 59856, 76040, 92818, 118348,
11565 /* -15 */ 147320, 184698, 229616, 287308, 360437,
11566 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
11567 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
11568 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
11569 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
11570 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
11571 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
11572 };
11573
call_trace_sched_update_nr_running(struct rq * rq,int count)11574 void call_trace_sched_update_nr_running(struct rq *rq, int count)
11575 {
11576 trace_sched_update_nr_running_tp(rq, count);
11577 }
11578
11579 #ifdef CONFIG_SCHED_MM_CID
11580
11581 /*
11582 * @cid_lock: Guarantee forward-progress of cid allocation.
11583 *
11584 * Concurrency ID allocation within a bitmap is mostly lock-free. The cid_lock
11585 * is only used when contention is detected by the lock-free allocation so
11586 * forward progress can be guaranteed.
11587 */
11588 DEFINE_RAW_SPINLOCK(cid_lock);
11589
11590 /*
11591 * @use_cid_lock: Select cid allocation behavior: lock-free vs spinlock.
11592 *
11593 * When @use_cid_lock is 0, the cid allocation is lock-free. When contention is
11594 * detected, it is set to 1 to ensure that all newly coming allocations are
11595 * serialized by @cid_lock until the allocation which detected contention
11596 * completes and sets @use_cid_lock back to 0. This guarantees forward progress
11597 * of a cid allocation.
11598 */
11599 int use_cid_lock;
11600
11601 /*
11602 * mm_cid remote-clear implements a lock-free algorithm to clear per-mm/cpu cid
11603 * concurrently with respect to the execution of the source runqueue context
11604 * switch.
11605 *
11606 * There is one basic properties we want to guarantee here:
11607 *
11608 * (1) Remote-clear should _never_ mark a per-cpu cid UNSET when it is actively
11609 * used by a task. That would lead to concurrent allocation of the cid and
11610 * userspace corruption.
11611 *
11612 * Provide this guarantee by introducing a Dekker memory ordering to guarantee
11613 * that a pair of loads observe at least one of a pair of stores, which can be
11614 * shown as:
11615 *
11616 * X = Y = 0
11617 *
11618 * w[X]=1 w[Y]=1
11619 * MB MB
11620 * r[Y]=y r[X]=x
11621 *
11622 * Which guarantees that x==0 && y==0 is impossible. But rather than using
11623 * values 0 and 1, this algorithm cares about specific state transitions of the
11624 * runqueue current task (as updated by the scheduler context switch), and the
11625 * per-mm/cpu cid value.
11626 *
11627 * Let's introduce task (Y) which has task->mm == mm and task (N) which has
11628 * task->mm != mm for the rest of the discussion. There are two scheduler state
11629 * transitions on context switch we care about:
11630 *
11631 * (TSA) Store to rq->curr with transition from (N) to (Y)
11632 *
11633 * (TSB) Store to rq->curr with transition from (Y) to (N)
11634 *
11635 * On the remote-clear side, there is one transition we care about:
11636 *
11637 * (TMA) cmpxchg to *pcpu_cid to set the LAZY flag
11638 *
11639 * There is also a transition to UNSET state which can be performed from all
11640 * sides (scheduler, remote-clear). It is always performed with a cmpxchg which
11641 * guarantees that only a single thread will succeed:
11642 *
11643 * (TMB) cmpxchg to *pcpu_cid to mark UNSET
11644 *
11645 * Just to be clear, what we do _not_ want to happen is a transition to UNSET
11646 * when a thread is actively using the cid (property (1)).
11647 *
11648 * Let's looks at the relevant combinations of TSA/TSB, and TMA transitions.
11649 *
11650 * Scenario A) (TSA)+(TMA) (from next task perspective)
11651 *
11652 * CPU0 CPU1
11653 *
11654 * Context switch CS-1 Remote-clear
11655 * - store to rq->curr: (N)->(Y) (TSA) - cmpxchg to *pcpu_id to LAZY (TMA)
11656 * (implied barrier after cmpxchg)
11657 * - switch_mm_cid()
11658 * - memory barrier (see switch_mm_cid()
11659 * comment explaining how this barrier
11660 * is combined with other scheduler
11661 * barriers)
11662 * - mm_cid_get (next)
11663 * - READ_ONCE(*pcpu_cid) - rcu_dereference(src_rq->curr)
11664 *
11665 * This Dekker ensures that either task (Y) is observed by the
11666 * rcu_dereference() or the LAZY flag is observed by READ_ONCE(), or both are
11667 * observed.
11668 *
11669 * If task (Y) store is observed by rcu_dereference(), it means that there is
11670 * still an active task on the cpu. Remote-clear will therefore not transition
11671 * to UNSET, which fulfills property (1).
11672 *
11673 * If task (Y) is not observed, but the lazy flag is observed by READ_ONCE(),
11674 * it will move its state to UNSET, which clears the percpu cid perhaps
11675 * uselessly (which is not an issue for correctness). Because task (Y) is not
11676 * observed, CPU1 can move ahead to set the state to UNSET. Because moving
11677 * state to UNSET is done with a cmpxchg expecting that the old state has the
11678 * LAZY flag set, only one thread will successfully UNSET.
11679 *
11680 * If both states (LAZY flag and task (Y)) are observed, the thread on CPU0
11681 * will observe the LAZY flag and transition to UNSET (perhaps uselessly), and
11682 * CPU1 will observe task (Y) and do nothing more, which is fine.
11683 *
11684 * What we are effectively preventing with this Dekker is a scenario where
11685 * neither LAZY flag nor store (Y) are observed, which would fail property (1)
11686 * because this would UNSET a cid which is actively used.
11687 */
11688
sched_mm_cid_migrate_from(struct task_struct * t)11689 void sched_mm_cid_migrate_from(struct task_struct *t)
11690 {
11691 t->migrate_from_cpu = task_cpu(t);
11692 }
11693
11694 static
__sched_mm_cid_migrate_from_fetch_cid(struct rq * src_rq,struct task_struct * t,struct mm_cid * src_pcpu_cid)11695 int __sched_mm_cid_migrate_from_fetch_cid(struct rq *src_rq,
11696 struct task_struct *t,
11697 struct mm_cid *src_pcpu_cid)
11698 {
11699 struct mm_struct *mm = t->mm;
11700 struct task_struct *src_task;
11701 int src_cid, last_mm_cid;
11702
11703 if (!mm)
11704 return -1;
11705
11706 last_mm_cid = t->last_mm_cid;
11707 /*
11708 * If the migrated task has no last cid, or if the current
11709 * task on src rq uses the cid, it means the source cid does not need
11710 * to be moved to the destination cpu.
11711 */
11712 if (last_mm_cid == -1)
11713 return -1;
11714 src_cid = READ_ONCE(src_pcpu_cid->cid);
11715 if (!mm_cid_is_valid(src_cid) || last_mm_cid != src_cid)
11716 return -1;
11717
11718 /*
11719 * If we observe an active task using the mm on this rq, it means we
11720 * are not the last task to be migrated from this cpu for this mm, so
11721 * there is no need to move src_cid to the destination cpu.
11722 */
11723 rcu_read_lock();
11724 src_task = rcu_dereference(src_rq->curr);
11725 if (READ_ONCE(src_task->mm_cid_active) && src_task->mm == mm) {
11726 rcu_read_unlock();
11727 t->last_mm_cid = -1;
11728 return -1;
11729 }
11730 rcu_read_unlock();
11731
11732 return src_cid;
11733 }
11734
11735 static
__sched_mm_cid_migrate_from_try_steal_cid(struct rq * src_rq,struct task_struct * t,struct mm_cid * src_pcpu_cid,int src_cid)11736 int __sched_mm_cid_migrate_from_try_steal_cid(struct rq *src_rq,
11737 struct task_struct *t,
11738 struct mm_cid *src_pcpu_cid,
11739 int src_cid)
11740 {
11741 struct task_struct *src_task;
11742 struct mm_struct *mm = t->mm;
11743 int lazy_cid;
11744
11745 if (src_cid == -1)
11746 return -1;
11747
11748 /*
11749 * Attempt to clear the source cpu cid to move it to the destination
11750 * cpu.
11751 */
11752 lazy_cid = mm_cid_set_lazy_put(src_cid);
11753 if (!try_cmpxchg(&src_pcpu_cid->cid, &src_cid, lazy_cid))
11754 return -1;
11755
11756 /*
11757 * The implicit barrier after cmpxchg per-mm/cpu cid before loading
11758 * rq->curr->mm matches the scheduler barrier in context_switch()
11759 * between store to rq->curr and load of prev and next task's
11760 * per-mm/cpu cid.
11761 *
11762 * The implicit barrier after cmpxchg per-mm/cpu cid before loading
11763 * rq->curr->mm_cid_active matches the barrier in
11764 * sched_mm_cid_exit_signals(), sched_mm_cid_before_execve(), and
11765 * sched_mm_cid_after_execve() between store to t->mm_cid_active and
11766 * load of per-mm/cpu cid.
11767 */
11768
11769 /*
11770 * If we observe an active task using the mm on this rq after setting
11771 * the lazy-put flag, this task will be responsible for transitioning
11772 * from lazy-put flag set to MM_CID_UNSET.
11773 */
11774 rcu_read_lock();
11775 src_task = rcu_dereference(src_rq->curr);
11776 if (READ_ONCE(src_task->mm_cid_active) && src_task->mm == mm) {
11777 rcu_read_unlock();
11778 /*
11779 * We observed an active task for this mm, there is therefore
11780 * no point in moving this cid to the destination cpu.
11781 */
11782 t->last_mm_cid = -1;
11783 return -1;
11784 }
11785 rcu_read_unlock();
11786
11787 /*
11788 * The src_cid is unused, so it can be unset.
11789 */
11790 if (!try_cmpxchg(&src_pcpu_cid->cid, &lazy_cid, MM_CID_UNSET))
11791 return -1;
11792 return src_cid;
11793 }
11794
11795 /*
11796 * Migration to dst cpu. Called with dst_rq lock held.
11797 * Interrupts are disabled, which keeps the window of cid ownership without the
11798 * source rq lock held small.
11799 */
sched_mm_cid_migrate_to(struct rq * dst_rq,struct task_struct * t)11800 void sched_mm_cid_migrate_to(struct rq *dst_rq, struct task_struct *t)
11801 {
11802 struct mm_cid *src_pcpu_cid, *dst_pcpu_cid;
11803 struct mm_struct *mm = t->mm;
11804 int src_cid, dst_cid, src_cpu;
11805 struct rq *src_rq;
11806
11807 lockdep_assert_rq_held(dst_rq);
11808
11809 if (!mm)
11810 return;
11811 src_cpu = t->migrate_from_cpu;
11812 if (src_cpu == -1) {
11813 t->last_mm_cid = -1;
11814 return;
11815 }
11816 /*
11817 * Move the src cid if the dst cid is unset. This keeps id
11818 * allocation closest to 0 in cases where few threads migrate around
11819 * many cpus.
11820 *
11821 * If destination cid is already set, we may have to just clear
11822 * the src cid to ensure compactness in frequent migrations
11823 * scenarios.
11824 *
11825 * It is not useful to clear the src cid when the number of threads is
11826 * greater or equal to the number of allowed cpus, because user-space
11827 * can expect that the number of allowed cids can reach the number of
11828 * allowed cpus.
11829 */
11830 dst_pcpu_cid = per_cpu_ptr(mm->pcpu_cid, cpu_of(dst_rq));
11831 dst_cid = READ_ONCE(dst_pcpu_cid->cid);
11832 if (!mm_cid_is_unset(dst_cid) &&
11833 atomic_read(&mm->mm_users) >= t->nr_cpus_allowed)
11834 return;
11835 src_pcpu_cid = per_cpu_ptr(mm->pcpu_cid, src_cpu);
11836 src_rq = cpu_rq(src_cpu);
11837 src_cid = __sched_mm_cid_migrate_from_fetch_cid(src_rq, t, src_pcpu_cid);
11838 if (src_cid == -1)
11839 return;
11840 src_cid = __sched_mm_cid_migrate_from_try_steal_cid(src_rq, t, src_pcpu_cid,
11841 src_cid);
11842 if (src_cid == -1)
11843 return;
11844 if (!mm_cid_is_unset(dst_cid)) {
11845 __mm_cid_put(mm, src_cid);
11846 return;
11847 }
11848 /* Move src_cid to dst cpu. */
11849 mm_cid_snapshot_time(dst_rq, mm);
11850 WRITE_ONCE(dst_pcpu_cid->cid, src_cid);
11851 }
11852
sched_mm_cid_remote_clear(struct mm_struct * mm,struct mm_cid * pcpu_cid,int cpu)11853 static void sched_mm_cid_remote_clear(struct mm_struct *mm, struct mm_cid *pcpu_cid,
11854 int cpu)
11855 {
11856 struct rq *rq = cpu_rq(cpu);
11857 struct task_struct *t;
11858 unsigned long flags;
11859 int cid, lazy_cid;
11860
11861 cid = READ_ONCE(pcpu_cid->cid);
11862 if (!mm_cid_is_valid(cid))
11863 return;
11864
11865 /*
11866 * Clear the cpu cid if it is set to keep cid allocation compact. If
11867 * there happens to be other tasks left on the source cpu using this
11868 * mm, the next task using this mm will reallocate its cid on context
11869 * switch.
11870 */
11871 lazy_cid = mm_cid_set_lazy_put(cid);
11872 if (!try_cmpxchg(&pcpu_cid->cid, &cid, lazy_cid))
11873 return;
11874
11875 /*
11876 * The implicit barrier after cmpxchg per-mm/cpu cid before loading
11877 * rq->curr->mm matches the scheduler barrier in context_switch()
11878 * between store to rq->curr and load of prev and next task's
11879 * per-mm/cpu cid.
11880 *
11881 * The implicit barrier after cmpxchg per-mm/cpu cid before loading
11882 * rq->curr->mm_cid_active matches the barrier in
11883 * sched_mm_cid_exit_signals(), sched_mm_cid_before_execve(), and
11884 * sched_mm_cid_after_execve() between store to t->mm_cid_active and
11885 * load of per-mm/cpu cid.
11886 */
11887
11888 /*
11889 * If we observe an active task using the mm on this rq after setting
11890 * the lazy-put flag, that task will be responsible for transitioning
11891 * from lazy-put flag set to MM_CID_UNSET.
11892 */
11893 rcu_read_lock();
11894 t = rcu_dereference(rq->curr);
11895 if (READ_ONCE(t->mm_cid_active) && t->mm == mm) {
11896 rcu_read_unlock();
11897 return;
11898 }
11899 rcu_read_unlock();
11900
11901 /*
11902 * The cid is unused, so it can be unset.
11903 * Disable interrupts to keep the window of cid ownership without rq
11904 * lock small.
11905 */
11906 local_irq_save(flags);
11907 if (try_cmpxchg(&pcpu_cid->cid, &lazy_cid, MM_CID_UNSET))
11908 __mm_cid_put(mm, cid);
11909 local_irq_restore(flags);
11910 }
11911
sched_mm_cid_remote_clear_old(struct mm_struct * mm,int cpu)11912 static void sched_mm_cid_remote_clear_old(struct mm_struct *mm, int cpu)
11913 {
11914 struct rq *rq = cpu_rq(cpu);
11915 struct mm_cid *pcpu_cid;
11916 struct task_struct *curr;
11917 u64 rq_clock;
11918
11919 /*
11920 * rq->clock load is racy on 32-bit but one spurious clear once in a
11921 * while is irrelevant.
11922 */
11923 rq_clock = READ_ONCE(rq->clock);
11924 pcpu_cid = per_cpu_ptr(mm->pcpu_cid, cpu);
11925
11926 /*
11927 * In order to take care of infrequently scheduled tasks, bump the time
11928 * snapshot associated with this cid if an active task using the mm is
11929 * observed on this rq.
11930 */
11931 rcu_read_lock();
11932 curr = rcu_dereference(rq->curr);
11933 if (READ_ONCE(curr->mm_cid_active) && curr->mm == mm) {
11934 WRITE_ONCE(pcpu_cid->time, rq_clock);
11935 rcu_read_unlock();
11936 return;
11937 }
11938 rcu_read_unlock();
11939
11940 if (rq_clock < pcpu_cid->time + SCHED_MM_CID_PERIOD_NS)
11941 return;
11942 sched_mm_cid_remote_clear(mm, pcpu_cid, cpu);
11943 }
11944
sched_mm_cid_remote_clear_weight(struct mm_struct * mm,int cpu,int weight)11945 static void sched_mm_cid_remote_clear_weight(struct mm_struct *mm, int cpu,
11946 int weight)
11947 {
11948 struct mm_cid *pcpu_cid;
11949 int cid;
11950
11951 pcpu_cid = per_cpu_ptr(mm->pcpu_cid, cpu);
11952 cid = READ_ONCE(pcpu_cid->cid);
11953 if (!mm_cid_is_valid(cid) || cid < weight)
11954 return;
11955 sched_mm_cid_remote_clear(mm, pcpu_cid, cpu);
11956 }
11957
task_mm_cid_work(struct callback_head * work)11958 static void task_mm_cid_work(struct callback_head *work)
11959 {
11960 unsigned long now = jiffies, old_scan, next_scan;
11961 struct task_struct *t = current;
11962 struct cpumask *cidmask;
11963 struct mm_struct *mm;
11964 int weight, cpu;
11965
11966 SCHED_WARN_ON(t != container_of(work, struct task_struct, cid_work));
11967
11968 work->next = work; /* Prevent double-add */
11969 if (t->flags & PF_EXITING)
11970 return;
11971 mm = t->mm;
11972 if (!mm)
11973 return;
11974 old_scan = READ_ONCE(mm->mm_cid_next_scan);
11975 next_scan = now + msecs_to_jiffies(MM_CID_SCAN_DELAY);
11976 if (!old_scan) {
11977 unsigned long res;
11978
11979 res = cmpxchg(&mm->mm_cid_next_scan, old_scan, next_scan);
11980 if (res != old_scan)
11981 old_scan = res;
11982 else
11983 old_scan = next_scan;
11984 }
11985 if (time_before(now, old_scan))
11986 return;
11987 if (!try_cmpxchg(&mm->mm_cid_next_scan, &old_scan, next_scan))
11988 return;
11989 cidmask = mm_cidmask(mm);
11990 /* Clear cids that were not recently used. */
11991 for_each_possible_cpu(cpu)
11992 sched_mm_cid_remote_clear_old(mm, cpu);
11993 weight = cpumask_weight(cidmask);
11994 /*
11995 * Clear cids that are greater or equal to the cidmask weight to
11996 * recompact it.
11997 */
11998 for_each_possible_cpu(cpu)
11999 sched_mm_cid_remote_clear_weight(mm, cpu, weight);
12000 }
12001
init_sched_mm_cid(struct task_struct * t)12002 void init_sched_mm_cid(struct task_struct *t)
12003 {
12004 struct mm_struct *mm = t->mm;
12005 int mm_users = 0;
12006
12007 if (mm) {
12008 mm_users = atomic_read(&mm->mm_users);
12009 if (mm_users == 1)
12010 mm->mm_cid_next_scan = jiffies + msecs_to_jiffies(MM_CID_SCAN_DELAY);
12011 }
12012 t->cid_work.next = &t->cid_work; /* Protect against double add */
12013 init_task_work(&t->cid_work, task_mm_cid_work);
12014 }
12015
task_tick_mm_cid(struct rq * rq,struct task_struct * curr)12016 void task_tick_mm_cid(struct rq *rq, struct task_struct *curr)
12017 {
12018 struct callback_head *work = &curr->cid_work;
12019 unsigned long now = jiffies;
12020
12021 if (!curr->mm || (curr->flags & (PF_EXITING | PF_KTHREAD)) ||
12022 work->next != work)
12023 return;
12024 if (time_before(now, READ_ONCE(curr->mm->mm_cid_next_scan)))
12025 return;
12026 task_work_add(curr, work, TWA_RESUME);
12027 }
12028
sched_mm_cid_exit_signals(struct task_struct * t)12029 void sched_mm_cid_exit_signals(struct task_struct *t)
12030 {
12031 struct mm_struct *mm = t->mm;
12032 struct rq_flags rf;
12033 struct rq *rq;
12034
12035 if (!mm)
12036 return;
12037
12038 preempt_disable();
12039 rq = this_rq();
12040 rq_lock_irqsave(rq, &rf);
12041 preempt_enable_no_resched(); /* holding spinlock */
12042 WRITE_ONCE(t->mm_cid_active, 0);
12043 /*
12044 * Store t->mm_cid_active before loading per-mm/cpu cid.
12045 * Matches barrier in sched_mm_cid_remote_clear_old().
12046 */
12047 smp_mb();
12048 mm_cid_put(mm);
12049 t->last_mm_cid = t->mm_cid = -1;
12050 rq_unlock_irqrestore(rq, &rf);
12051 }
12052
sched_mm_cid_before_execve(struct task_struct * t)12053 void sched_mm_cid_before_execve(struct task_struct *t)
12054 {
12055 struct mm_struct *mm = t->mm;
12056 struct rq_flags rf;
12057 struct rq *rq;
12058
12059 if (!mm)
12060 return;
12061
12062 preempt_disable();
12063 rq = this_rq();
12064 rq_lock_irqsave(rq, &rf);
12065 preempt_enable_no_resched(); /* holding spinlock */
12066 WRITE_ONCE(t->mm_cid_active, 0);
12067 /*
12068 * Store t->mm_cid_active before loading per-mm/cpu cid.
12069 * Matches barrier in sched_mm_cid_remote_clear_old().
12070 */
12071 smp_mb();
12072 mm_cid_put(mm);
12073 t->last_mm_cid = t->mm_cid = -1;
12074 rq_unlock_irqrestore(rq, &rf);
12075 }
12076
sched_mm_cid_after_execve(struct task_struct * t)12077 void sched_mm_cid_after_execve(struct task_struct *t)
12078 {
12079 struct mm_struct *mm = t->mm;
12080 struct rq_flags rf;
12081 struct rq *rq;
12082
12083 if (!mm)
12084 return;
12085
12086 preempt_disable();
12087 rq = this_rq();
12088 rq_lock_irqsave(rq, &rf);
12089 preempt_enable_no_resched(); /* holding spinlock */
12090 WRITE_ONCE(t->mm_cid_active, 1);
12091 /*
12092 * Store t->mm_cid_active before loading per-mm/cpu cid.
12093 * Matches barrier in sched_mm_cid_remote_clear_old().
12094 */
12095 smp_mb();
12096 t->last_mm_cid = t->mm_cid = mm_cid_get(rq, mm);
12097 rq_unlock_irqrestore(rq, &rf);
12098 rseq_set_notify_resume(t);
12099 }
12100
sched_mm_cid_fork(struct task_struct * t)12101 void sched_mm_cid_fork(struct task_struct *t)
12102 {
12103 WARN_ON_ONCE(!t->mm || t->mm_cid != -1);
12104 t->mm_cid_active = 1;
12105 }
12106 #endif
12107