1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Deadline Scheduling Class (SCHED_DEADLINE)
4 *
5 * Earliest Deadline First (EDF) + Constant Bandwidth Server (CBS).
6 *
7 * Tasks that periodically executes their instances for less than their
8 * runtime won't miss any of their deadlines.
9 * Tasks that are not periodic or sporadic or that tries to execute more
10 * than their reserved bandwidth will be slowed down (and may potentially
11 * miss some of their deadlines), and won't affect any other task.
12 *
13 * Copyright (C) 2012 Dario Faggioli <raistlin@linux.it>,
14 * Juri Lelli <juri.lelli@gmail.com>,
15 * Michael Trimarchi <michael@amarulasolutions.com>,
16 * Fabio Checconi <fchecconi@gmail.com>
17 */
18
19 /*
20 * Default limits for DL period; on the top end we guard against small util
21 * tasks still getting ridiculously long effective runtimes, on the bottom end we
22 * guard against timer DoS.
23 */
24 static unsigned int sysctl_sched_dl_period_max = 1 << 22; /* ~4 seconds */
25 static unsigned int sysctl_sched_dl_period_min = 100; /* 100 us */
26 #ifdef CONFIG_SYSCTL
27 static struct ctl_table sched_dl_sysctls[] = {
28 {
29 .procname = "sched_deadline_period_max_us",
30 .data = &sysctl_sched_dl_period_max,
31 .maxlen = sizeof(unsigned int),
32 .mode = 0644,
33 .proc_handler = proc_dointvec,
34 },
35 {
36 .procname = "sched_deadline_period_min_us",
37 .data = &sysctl_sched_dl_period_min,
38 .maxlen = sizeof(unsigned int),
39 .mode = 0644,
40 .proc_handler = proc_dointvec,
41 },
42 {}
43 };
44
sched_dl_sysctl_init(void)45 static int __init sched_dl_sysctl_init(void)
46 {
47 register_sysctl_init("kernel", sched_dl_sysctls);
48 return 0;
49 }
50 late_initcall(sched_dl_sysctl_init);
51 #endif
52
dl_task_of(struct sched_dl_entity * dl_se)53 static inline struct task_struct *dl_task_of(struct sched_dl_entity *dl_se)
54 {
55 return container_of(dl_se, struct task_struct, dl);
56 }
57
rq_of_dl_rq(struct dl_rq * dl_rq)58 static inline struct rq *rq_of_dl_rq(struct dl_rq *dl_rq)
59 {
60 return container_of(dl_rq, struct rq, dl);
61 }
62
dl_rq_of_se(struct sched_dl_entity * dl_se)63 static inline struct dl_rq *dl_rq_of_se(struct sched_dl_entity *dl_se)
64 {
65 struct task_struct *p = dl_task_of(dl_se);
66 struct rq *rq = task_rq(p);
67
68 return &rq->dl;
69 }
70
on_dl_rq(struct sched_dl_entity * dl_se)71 static inline int on_dl_rq(struct sched_dl_entity *dl_se)
72 {
73 return !RB_EMPTY_NODE(&dl_se->rb_node);
74 }
75
76 #ifdef CONFIG_RT_MUTEXES
pi_of(struct sched_dl_entity * dl_se)77 static inline struct sched_dl_entity *pi_of(struct sched_dl_entity *dl_se)
78 {
79 return dl_se->pi_se;
80 }
81
is_dl_boosted(struct sched_dl_entity * dl_se)82 static inline bool is_dl_boosted(struct sched_dl_entity *dl_se)
83 {
84 return pi_of(dl_se) != dl_se;
85 }
86 #else
pi_of(struct sched_dl_entity * dl_se)87 static inline struct sched_dl_entity *pi_of(struct sched_dl_entity *dl_se)
88 {
89 return dl_se;
90 }
91
is_dl_boosted(struct sched_dl_entity * dl_se)92 static inline bool is_dl_boosted(struct sched_dl_entity *dl_se)
93 {
94 return false;
95 }
96 #endif
97
98 #ifdef CONFIG_SMP
dl_bw_of(int i)99 static inline struct dl_bw *dl_bw_of(int i)
100 {
101 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
102 "sched RCU must be held");
103 return &cpu_rq(i)->rd->dl_bw;
104 }
105
dl_bw_cpus(int i)106 static inline int dl_bw_cpus(int i)
107 {
108 struct root_domain *rd = cpu_rq(i)->rd;
109 int cpus;
110
111 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
112 "sched RCU must be held");
113
114 if (cpumask_subset(rd->span, cpu_active_mask))
115 return cpumask_weight(rd->span);
116
117 cpus = 0;
118
119 for_each_cpu_and(i, rd->span, cpu_active_mask)
120 cpus++;
121
122 return cpus;
123 }
124
__dl_bw_capacity(int i)125 static inline unsigned long __dl_bw_capacity(int i)
126 {
127 struct root_domain *rd = cpu_rq(i)->rd;
128 unsigned long cap = 0;
129
130 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
131 "sched RCU must be held");
132
133 for_each_cpu_and(i, rd->span, cpu_active_mask)
134 cap += capacity_orig_of(i);
135
136 return cap;
137 }
138
139 /*
140 * XXX Fix: If 'rq->rd == def_root_domain' perform AC against capacity
141 * of the CPU the task is running on rather rd's \Sum CPU capacity.
142 */
dl_bw_capacity(int i)143 static inline unsigned long dl_bw_capacity(int i)
144 {
145 if (!static_branch_unlikely(&sched_asym_cpucapacity) &&
146 capacity_orig_of(i) == SCHED_CAPACITY_SCALE) {
147 return dl_bw_cpus(i) << SCHED_CAPACITY_SHIFT;
148 } else {
149 return __dl_bw_capacity(i);
150 }
151 }
152
dl_bw_visited(int cpu,u64 gen)153 static inline bool dl_bw_visited(int cpu, u64 gen)
154 {
155 struct root_domain *rd = cpu_rq(cpu)->rd;
156
157 if (rd->visit_gen == gen)
158 return true;
159
160 rd->visit_gen = gen;
161 return false;
162 }
163
164 static inline
__dl_update(struct dl_bw * dl_b,s64 bw)165 void __dl_update(struct dl_bw *dl_b, s64 bw)
166 {
167 struct root_domain *rd = container_of(dl_b, struct root_domain, dl_bw);
168 int i;
169
170 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
171 "sched RCU must be held");
172 for_each_cpu_and(i, rd->span, cpu_active_mask) {
173 struct rq *rq = cpu_rq(i);
174
175 rq->dl.extra_bw += bw;
176 }
177 }
178 #else
dl_bw_of(int i)179 static inline struct dl_bw *dl_bw_of(int i)
180 {
181 return &cpu_rq(i)->dl.dl_bw;
182 }
183
dl_bw_cpus(int i)184 static inline int dl_bw_cpus(int i)
185 {
186 return 1;
187 }
188
dl_bw_capacity(int i)189 static inline unsigned long dl_bw_capacity(int i)
190 {
191 return SCHED_CAPACITY_SCALE;
192 }
193
dl_bw_visited(int cpu,u64 gen)194 static inline bool dl_bw_visited(int cpu, u64 gen)
195 {
196 return false;
197 }
198
199 static inline
__dl_update(struct dl_bw * dl_b,s64 bw)200 void __dl_update(struct dl_bw *dl_b, s64 bw)
201 {
202 struct dl_rq *dl = container_of(dl_b, struct dl_rq, dl_bw);
203
204 dl->extra_bw += bw;
205 }
206 #endif
207
208 static inline
__dl_sub(struct dl_bw * dl_b,u64 tsk_bw,int cpus)209 void __dl_sub(struct dl_bw *dl_b, u64 tsk_bw, int cpus)
210 {
211 dl_b->total_bw -= tsk_bw;
212 __dl_update(dl_b, (s32)tsk_bw / cpus);
213 }
214
215 static inline
__dl_add(struct dl_bw * dl_b,u64 tsk_bw,int cpus)216 void __dl_add(struct dl_bw *dl_b, u64 tsk_bw, int cpus)
217 {
218 dl_b->total_bw += tsk_bw;
219 __dl_update(dl_b, -((s32)tsk_bw / cpus));
220 }
221
222 static inline bool
__dl_overflow(struct dl_bw * dl_b,unsigned long cap,u64 old_bw,u64 new_bw)223 __dl_overflow(struct dl_bw *dl_b, unsigned long cap, u64 old_bw, u64 new_bw)
224 {
225 return dl_b->bw != -1 &&
226 cap_scale(dl_b->bw, cap) < dl_b->total_bw - old_bw + new_bw;
227 }
228
229 static inline
__add_running_bw(u64 dl_bw,struct dl_rq * dl_rq)230 void __add_running_bw(u64 dl_bw, struct dl_rq *dl_rq)
231 {
232 u64 old = dl_rq->running_bw;
233
234 lockdep_assert_rq_held(rq_of_dl_rq(dl_rq));
235 dl_rq->running_bw += dl_bw;
236 SCHED_WARN_ON(dl_rq->running_bw < old); /* overflow */
237 SCHED_WARN_ON(dl_rq->running_bw > dl_rq->this_bw);
238 /* kick cpufreq (see the comment in kernel/sched/sched.h). */
239 cpufreq_update_util(rq_of_dl_rq(dl_rq), 0);
240 }
241
242 static inline
__sub_running_bw(u64 dl_bw,struct dl_rq * dl_rq)243 void __sub_running_bw(u64 dl_bw, struct dl_rq *dl_rq)
244 {
245 u64 old = dl_rq->running_bw;
246
247 lockdep_assert_rq_held(rq_of_dl_rq(dl_rq));
248 dl_rq->running_bw -= dl_bw;
249 SCHED_WARN_ON(dl_rq->running_bw > old); /* underflow */
250 if (dl_rq->running_bw > old)
251 dl_rq->running_bw = 0;
252 /* kick cpufreq (see the comment in kernel/sched/sched.h). */
253 cpufreq_update_util(rq_of_dl_rq(dl_rq), 0);
254 }
255
256 static inline
__add_rq_bw(u64 dl_bw,struct dl_rq * dl_rq)257 void __add_rq_bw(u64 dl_bw, struct dl_rq *dl_rq)
258 {
259 u64 old = dl_rq->this_bw;
260
261 lockdep_assert_rq_held(rq_of_dl_rq(dl_rq));
262 dl_rq->this_bw += dl_bw;
263 SCHED_WARN_ON(dl_rq->this_bw < old); /* overflow */
264 }
265
266 static inline
__sub_rq_bw(u64 dl_bw,struct dl_rq * dl_rq)267 void __sub_rq_bw(u64 dl_bw, struct dl_rq *dl_rq)
268 {
269 u64 old = dl_rq->this_bw;
270
271 lockdep_assert_rq_held(rq_of_dl_rq(dl_rq));
272 dl_rq->this_bw -= dl_bw;
273 SCHED_WARN_ON(dl_rq->this_bw > old); /* underflow */
274 if (dl_rq->this_bw > old)
275 dl_rq->this_bw = 0;
276 SCHED_WARN_ON(dl_rq->running_bw > dl_rq->this_bw);
277 }
278
279 static inline
add_rq_bw(struct sched_dl_entity * dl_se,struct dl_rq * dl_rq)280 void add_rq_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
281 {
282 if (!dl_entity_is_special(dl_se))
283 __add_rq_bw(dl_se->dl_bw, dl_rq);
284 }
285
286 static inline
sub_rq_bw(struct sched_dl_entity * dl_se,struct dl_rq * dl_rq)287 void sub_rq_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
288 {
289 if (!dl_entity_is_special(dl_se))
290 __sub_rq_bw(dl_se->dl_bw, dl_rq);
291 }
292
293 static inline
add_running_bw(struct sched_dl_entity * dl_se,struct dl_rq * dl_rq)294 void add_running_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
295 {
296 if (!dl_entity_is_special(dl_se))
297 __add_running_bw(dl_se->dl_bw, dl_rq);
298 }
299
300 static inline
sub_running_bw(struct sched_dl_entity * dl_se,struct dl_rq * dl_rq)301 void sub_running_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
302 {
303 if (!dl_entity_is_special(dl_se))
304 __sub_running_bw(dl_se->dl_bw, dl_rq);
305 }
306
dl_change_utilization(struct task_struct * p,u64 new_bw)307 static void dl_change_utilization(struct task_struct *p, u64 new_bw)
308 {
309 struct rq *rq;
310
311 BUG_ON(p->dl.flags & SCHED_FLAG_SUGOV);
312
313 if (task_on_rq_queued(p))
314 return;
315
316 rq = task_rq(p);
317 if (p->dl.dl_non_contending) {
318 sub_running_bw(&p->dl, &rq->dl);
319 p->dl.dl_non_contending = 0;
320 /*
321 * If the timer handler is currently running and the
322 * timer cannot be canceled, inactive_task_timer()
323 * will see that dl_not_contending is not set, and
324 * will not touch the rq's active utilization,
325 * so we are still safe.
326 */
327 if (hrtimer_try_to_cancel(&p->dl.inactive_timer) == 1)
328 put_task_struct(p);
329 }
330 __sub_rq_bw(p->dl.dl_bw, &rq->dl);
331 __add_rq_bw(new_bw, &rq->dl);
332 }
333
334 /*
335 * The utilization of a task cannot be immediately removed from
336 * the rq active utilization (running_bw) when the task blocks.
337 * Instead, we have to wait for the so called "0-lag time".
338 *
339 * If a task blocks before the "0-lag time", a timer (the inactive
340 * timer) is armed, and running_bw is decreased when the timer
341 * fires.
342 *
343 * If the task wakes up again before the inactive timer fires,
344 * the timer is canceled, whereas if the task wakes up after the
345 * inactive timer fired (and running_bw has been decreased) the
346 * task's utilization has to be added to running_bw again.
347 * A flag in the deadline scheduling entity (dl_non_contending)
348 * is used to avoid race conditions between the inactive timer handler
349 * and task wakeups.
350 *
351 * The following diagram shows how running_bw is updated. A task is
352 * "ACTIVE" when its utilization contributes to running_bw; an
353 * "ACTIVE contending" task is in the TASK_RUNNING state, while an
354 * "ACTIVE non contending" task is a blocked task for which the "0-lag time"
355 * has not passed yet. An "INACTIVE" task is a task for which the "0-lag"
356 * time already passed, which does not contribute to running_bw anymore.
357 * +------------------+
358 * wakeup | ACTIVE |
359 * +------------------>+ contending |
360 * | add_running_bw | |
361 * | +----+------+------+
362 * | | ^
363 * | dequeue | |
364 * +--------+-------+ | |
365 * | | t >= 0-lag | | wakeup
366 * | INACTIVE |<---------------+ |
367 * | | sub_running_bw | |
368 * +--------+-------+ | |
369 * ^ | |
370 * | t < 0-lag | |
371 * | | |
372 * | V |
373 * | +----+------+------+
374 * | sub_running_bw | ACTIVE |
375 * +-------------------+ |
376 * inactive timer | non contending |
377 * fired +------------------+
378 *
379 * The task_non_contending() function is invoked when a task
380 * blocks, and checks if the 0-lag time already passed or
381 * not (in the first case, it directly updates running_bw;
382 * in the second case, it arms the inactive timer).
383 *
384 * The task_contending() function is invoked when a task wakes
385 * up, and checks if the task is still in the "ACTIVE non contending"
386 * state or not (in the second case, it updates running_bw).
387 */
task_non_contending(struct task_struct * p)388 static void task_non_contending(struct task_struct *p)
389 {
390 struct sched_dl_entity *dl_se = &p->dl;
391 struct hrtimer *timer = &dl_se->inactive_timer;
392 struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
393 struct rq *rq = rq_of_dl_rq(dl_rq);
394 s64 zerolag_time;
395
396 /*
397 * If this is a non-deadline task that has been boosted,
398 * do nothing
399 */
400 if (dl_se->dl_runtime == 0)
401 return;
402
403 if (dl_entity_is_special(dl_se))
404 return;
405
406 WARN_ON(dl_se->dl_non_contending);
407
408 zerolag_time = dl_se->deadline -
409 div64_long((dl_se->runtime * dl_se->dl_period),
410 dl_se->dl_runtime);
411
412 /*
413 * Using relative times instead of the absolute "0-lag time"
414 * allows to simplify the code
415 */
416 zerolag_time -= rq_clock(rq);
417
418 /*
419 * If the "0-lag time" already passed, decrease the active
420 * utilization now, instead of starting a timer
421 */
422 if ((zerolag_time < 0) || hrtimer_active(&dl_se->inactive_timer)) {
423 if (dl_task(p))
424 sub_running_bw(dl_se, dl_rq);
425 if (!dl_task(p) || READ_ONCE(p->__state) == TASK_DEAD) {
426 struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
427
428 if (READ_ONCE(p->__state) == TASK_DEAD)
429 sub_rq_bw(&p->dl, &rq->dl);
430 raw_spin_lock(&dl_b->lock);
431 __dl_sub(dl_b, p->dl.dl_bw, dl_bw_cpus(task_cpu(p)));
432 __dl_clear_params(p);
433 raw_spin_unlock(&dl_b->lock);
434 }
435
436 return;
437 }
438
439 dl_se->dl_non_contending = 1;
440 get_task_struct(p);
441 hrtimer_start(timer, ns_to_ktime(zerolag_time), HRTIMER_MODE_REL_HARD);
442 }
443
task_contending(struct sched_dl_entity * dl_se,int flags)444 static void task_contending(struct sched_dl_entity *dl_se, int flags)
445 {
446 struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
447
448 /*
449 * If this is a non-deadline task that has been boosted,
450 * do nothing
451 */
452 if (dl_se->dl_runtime == 0)
453 return;
454
455 if (flags & ENQUEUE_MIGRATED)
456 add_rq_bw(dl_se, dl_rq);
457
458 if (dl_se->dl_non_contending) {
459 dl_se->dl_non_contending = 0;
460 /*
461 * If the timer handler is currently running and the
462 * timer cannot be canceled, inactive_task_timer()
463 * will see that dl_not_contending is not set, and
464 * will not touch the rq's active utilization,
465 * so we are still safe.
466 */
467 if (hrtimer_try_to_cancel(&dl_se->inactive_timer) == 1)
468 put_task_struct(dl_task_of(dl_se));
469 } else {
470 /*
471 * Since "dl_non_contending" is not set, the
472 * task's utilization has already been removed from
473 * active utilization (either when the task blocked,
474 * when the "inactive timer" fired).
475 * So, add it back.
476 */
477 add_running_bw(dl_se, dl_rq);
478 }
479 }
480
is_leftmost(struct task_struct * p,struct dl_rq * dl_rq)481 static inline int is_leftmost(struct task_struct *p, struct dl_rq *dl_rq)
482 {
483 struct sched_dl_entity *dl_se = &p->dl;
484
485 return rb_first_cached(&dl_rq->root) == &dl_se->rb_node;
486 }
487
488 static void init_dl_rq_bw_ratio(struct dl_rq *dl_rq);
489
init_dl_bandwidth(struct dl_bandwidth * dl_b,u64 period,u64 runtime)490 void init_dl_bandwidth(struct dl_bandwidth *dl_b, u64 period, u64 runtime)
491 {
492 raw_spin_lock_init(&dl_b->dl_runtime_lock);
493 dl_b->dl_period = period;
494 dl_b->dl_runtime = runtime;
495 }
496
init_dl_bw(struct dl_bw * dl_b)497 void init_dl_bw(struct dl_bw *dl_b)
498 {
499 raw_spin_lock_init(&dl_b->lock);
500 if (global_rt_runtime() == RUNTIME_INF)
501 dl_b->bw = -1;
502 else
503 dl_b->bw = to_ratio(global_rt_period(), global_rt_runtime());
504 dl_b->total_bw = 0;
505 }
506
init_dl_rq(struct dl_rq * dl_rq)507 void init_dl_rq(struct dl_rq *dl_rq)
508 {
509 dl_rq->root = RB_ROOT_CACHED;
510
511 #ifdef CONFIG_SMP
512 /* zero means no -deadline tasks */
513 dl_rq->earliest_dl.curr = dl_rq->earliest_dl.next = 0;
514
515 dl_rq->dl_nr_migratory = 0;
516 dl_rq->overloaded = 0;
517 dl_rq->pushable_dl_tasks_root = RB_ROOT_CACHED;
518 #else
519 init_dl_bw(&dl_rq->dl_bw);
520 #endif
521
522 dl_rq->running_bw = 0;
523 dl_rq->this_bw = 0;
524 init_dl_rq_bw_ratio(dl_rq);
525 }
526
527 #ifdef CONFIG_SMP
528
dl_overloaded(struct rq * rq)529 static inline int dl_overloaded(struct rq *rq)
530 {
531 return atomic_read(&rq->rd->dlo_count);
532 }
533
dl_set_overload(struct rq * rq)534 static inline void dl_set_overload(struct rq *rq)
535 {
536 if (!rq->online)
537 return;
538
539 cpumask_set_cpu(rq->cpu, rq->rd->dlo_mask);
540 /*
541 * Must be visible before the overload count is
542 * set (as in sched_rt.c).
543 *
544 * Matched by the barrier in pull_dl_task().
545 */
546 smp_wmb();
547 atomic_inc(&rq->rd->dlo_count);
548 }
549
dl_clear_overload(struct rq * rq)550 static inline void dl_clear_overload(struct rq *rq)
551 {
552 if (!rq->online)
553 return;
554
555 atomic_dec(&rq->rd->dlo_count);
556 cpumask_clear_cpu(rq->cpu, rq->rd->dlo_mask);
557 }
558
update_dl_migration(struct dl_rq * dl_rq)559 static void update_dl_migration(struct dl_rq *dl_rq)
560 {
561 if (dl_rq->dl_nr_migratory && dl_rq->dl_nr_running > 1) {
562 if (!dl_rq->overloaded) {
563 dl_set_overload(rq_of_dl_rq(dl_rq));
564 dl_rq->overloaded = 1;
565 }
566 } else if (dl_rq->overloaded) {
567 dl_clear_overload(rq_of_dl_rq(dl_rq));
568 dl_rq->overloaded = 0;
569 }
570 }
571
inc_dl_migration(struct sched_dl_entity * dl_se,struct dl_rq * dl_rq)572 static void inc_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
573 {
574 struct task_struct *p = dl_task_of(dl_se);
575
576 if (p->nr_cpus_allowed > 1)
577 dl_rq->dl_nr_migratory++;
578
579 update_dl_migration(dl_rq);
580 }
581
dec_dl_migration(struct sched_dl_entity * dl_se,struct dl_rq * dl_rq)582 static void dec_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
583 {
584 struct task_struct *p = dl_task_of(dl_se);
585
586 if (p->nr_cpus_allowed > 1)
587 dl_rq->dl_nr_migratory--;
588
589 update_dl_migration(dl_rq);
590 }
591
592 #define __node_2_pdl(node) \
593 rb_entry((node), struct task_struct, pushable_dl_tasks)
594
__pushable_less(struct rb_node * a,const struct rb_node * b)595 static inline bool __pushable_less(struct rb_node *a, const struct rb_node *b)
596 {
597 return dl_entity_preempt(&__node_2_pdl(a)->dl, &__node_2_pdl(b)->dl);
598 }
599
600 /*
601 * The list of pushable -deadline task is not a plist, like in
602 * sched_rt.c, it is an rb-tree with tasks ordered by deadline.
603 */
enqueue_pushable_dl_task(struct rq * rq,struct task_struct * p)604 static void enqueue_pushable_dl_task(struct rq *rq, struct task_struct *p)
605 {
606 struct rb_node *leftmost;
607
608 BUG_ON(!RB_EMPTY_NODE(&p->pushable_dl_tasks));
609
610 leftmost = rb_add_cached(&p->pushable_dl_tasks,
611 &rq->dl.pushable_dl_tasks_root,
612 __pushable_less);
613 if (leftmost)
614 rq->dl.earliest_dl.next = p->dl.deadline;
615 }
616
dequeue_pushable_dl_task(struct rq * rq,struct task_struct * p)617 static void dequeue_pushable_dl_task(struct rq *rq, struct task_struct *p)
618 {
619 struct dl_rq *dl_rq = &rq->dl;
620 struct rb_root_cached *root = &dl_rq->pushable_dl_tasks_root;
621 struct rb_node *leftmost;
622
623 if (RB_EMPTY_NODE(&p->pushable_dl_tasks))
624 return;
625
626 leftmost = rb_erase_cached(&p->pushable_dl_tasks, root);
627 if (leftmost)
628 dl_rq->earliest_dl.next = __node_2_pdl(leftmost)->dl.deadline;
629
630 RB_CLEAR_NODE(&p->pushable_dl_tasks);
631 }
632
has_pushable_dl_tasks(struct rq * rq)633 static inline int has_pushable_dl_tasks(struct rq *rq)
634 {
635 return !RB_EMPTY_ROOT(&rq->dl.pushable_dl_tasks_root.rb_root);
636 }
637
638 static int push_dl_task(struct rq *rq);
639
need_pull_dl_task(struct rq * rq,struct task_struct * prev)640 static inline bool need_pull_dl_task(struct rq *rq, struct task_struct *prev)
641 {
642 return rq->online && dl_task(prev);
643 }
644
645 static DEFINE_PER_CPU(struct callback_head, dl_push_head);
646 static DEFINE_PER_CPU(struct callback_head, dl_pull_head);
647
648 static void push_dl_tasks(struct rq *);
649 static void pull_dl_task(struct rq *);
650
deadline_queue_push_tasks(struct rq * rq)651 static inline void deadline_queue_push_tasks(struct rq *rq)
652 {
653 if (!has_pushable_dl_tasks(rq))
654 return;
655
656 queue_balance_callback(rq, &per_cpu(dl_push_head, rq->cpu), push_dl_tasks);
657 }
658
deadline_queue_pull_task(struct rq * rq)659 static inline void deadline_queue_pull_task(struct rq *rq)
660 {
661 queue_balance_callback(rq, &per_cpu(dl_pull_head, rq->cpu), pull_dl_task);
662 }
663
664 static struct rq *find_lock_later_rq(struct task_struct *task, struct rq *rq);
665
dl_task_offline_migration(struct rq * rq,struct task_struct * p)666 static struct rq *dl_task_offline_migration(struct rq *rq, struct task_struct *p)
667 {
668 struct rq *later_rq = NULL;
669 struct dl_bw *dl_b;
670
671 later_rq = find_lock_later_rq(p, rq);
672 if (!later_rq) {
673 int cpu;
674
675 /*
676 * If we cannot preempt any rq, fall back to pick any
677 * online CPU:
678 */
679 cpu = cpumask_any_and(cpu_active_mask, p->cpus_ptr);
680 if (cpu >= nr_cpu_ids) {
681 /*
682 * Failed to find any suitable CPU.
683 * The task will never come back!
684 */
685 BUG_ON(dl_bandwidth_enabled());
686
687 /*
688 * If admission control is disabled we
689 * try a little harder to let the task
690 * run.
691 */
692 cpu = cpumask_any(cpu_active_mask);
693 }
694 later_rq = cpu_rq(cpu);
695 double_lock_balance(rq, later_rq);
696 }
697
698 if (p->dl.dl_non_contending || p->dl.dl_throttled) {
699 /*
700 * Inactive timer is armed (or callback is running, but
701 * waiting for us to release rq locks). In any case, when it
702 * will fire (or continue), it will see running_bw of this
703 * task migrated to later_rq (and correctly handle it).
704 */
705 sub_running_bw(&p->dl, &rq->dl);
706 sub_rq_bw(&p->dl, &rq->dl);
707
708 add_rq_bw(&p->dl, &later_rq->dl);
709 add_running_bw(&p->dl, &later_rq->dl);
710 } else {
711 sub_rq_bw(&p->dl, &rq->dl);
712 add_rq_bw(&p->dl, &later_rq->dl);
713 }
714
715 /*
716 * And we finally need to fixup root_domain(s) bandwidth accounting,
717 * since p is still hanging out in the old (now moved to default) root
718 * domain.
719 */
720 dl_b = &rq->rd->dl_bw;
721 raw_spin_lock(&dl_b->lock);
722 __dl_sub(dl_b, p->dl.dl_bw, cpumask_weight(rq->rd->span));
723 raw_spin_unlock(&dl_b->lock);
724
725 dl_b = &later_rq->rd->dl_bw;
726 raw_spin_lock(&dl_b->lock);
727 __dl_add(dl_b, p->dl.dl_bw, cpumask_weight(later_rq->rd->span));
728 raw_spin_unlock(&dl_b->lock);
729
730 set_task_cpu(p, later_rq->cpu);
731 double_unlock_balance(later_rq, rq);
732
733 return later_rq;
734 }
735
736 #else
737
738 static inline
enqueue_pushable_dl_task(struct rq * rq,struct task_struct * p)739 void enqueue_pushable_dl_task(struct rq *rq, struct task_struct *p)
740 {
741 }
742
743 static inline
dequeue_pushable_dl_task(struct rq * rq,struct task_struct * p)744 void dequeue_pushable_dl_task(struct rq *rq, struct task_struct *p)
745 {
746 }
747
748 static inline
inc_dl_migration(struct sched_dl_entity * dl_se,struct dl_rq * dl_rq)749 void inc_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
750 {
751 }
752
753 static inline
dec_dl_migration(struct sched_dl_entity * dl_se,struct dl_rq * dl_rq)754 void dec_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
755 {
756 }
757
deadline_queue_push_tasks(struct rq * rq)758 static inline void deadline_queue_push_tasks(struct rq *rq)
759 {
760 }
761
deadline_queue_pull_task(struct rq * rq)762 static inline void deadline_queue_pull_task(struct rq *rq)
763 {
764 }
765 #endif /* CONFIG_SMP */
766
767 static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags);
768 static void __dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags);
769 static void check_preempt_curr_dl(struct rq *rq, struct task_struct *p, int flags);
770
771 /*
772 * We are being explicitly informed that a new instance is starting,
773 * and this means that:
774 * - the absolute deadline of the entity has to be placed at
775 * current time + relative deadline;
776 * - the runtime of the entity has to be set to the maximum value.
777 *
778 * The capability of specifying such event is useful whenever a -deadline
779 * entity wants to (try to!) synchronize its behaviour with the scheduler's
780 * one, and to (try to!) reconcile itself with its own scheduling
781 * parameters.
782 */
setup_new_dl_entity(struct sched_dl_entity * dl_se)783 static inline void setup_new_dl_entity(struct sched_dl_entity *dl_se)
784 {
785 struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
786 struct rq *rq = rq_of_dl_rq(dl_rq);
787
788 WARN_ON(is_dl_boosted(dl_se));
789 WARN_ON(dl_time_before(rq_clock(rq), dl_se->deadline));
790
791 /*
792 * We are racing with the deadline timer. So, do nothing because
793 * the deadline timer handler will take care of properly recharging
794 * the runtime and postponing the deadline
795 */
796 if (dl_se->dl_throttled)
797 return;
798
799 /*
800 * We use the regular wall clock time to set deadlines in the
801 * future; in fact, we must consider execution overheads (time
802 * spent on hardirq context, etc.).
803 */
804 dl_se->deadline = rq_clock(rq) + dl_se->dl_deadline;
805 dl_se->runtime = dl_se->dl_runtime;
806 }
807
808 /*
809 * Pure Earliest Deadline First (EDF) scheduling does not deal with the
810 * possibility of a entity lasting more than what it declared, and thus
811 * exhausting its runtime.
812 *
813 * Here we are interested in making runtime overrun possible, but we do
814 * not want a entity which is misbehaving to affect the scheduling of all
815 * other entities.
816 * Therefore, a budgeting strategy called Constant Bandwidth Server (CBS)
817 * is used, in order to confine each entity within its own bandwidth.
818 *
819 * This function deals exactly with that, and ensures that when the runtime
820 * of a entity is replenished, its deadline is also postponed. That ensures
821 * the overrunning entity can't interfere with other entity in the system and
822 * can't make them miss their deadlines. Reasons why this kind of overruns
823 * could happen are, typically, a entity voluntarily trying to overcome its
824 * runtime, or it just underestimated it during sched_setattr().
825 */
replenish_dl_entity(struct sched_dl_entity * dl_se)826 static void replenish_dl_entity(struct sched_dl_entity *dl_se)
827 {
828 struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
829 struct rq *rq = rq_of_dl_rq(dl_rq);
830
831 BUG_ON(pi_of(dl_se)->dl_runtime <= 0);
832
833 /*
834 * This could be the case for a !-dl task that is boosted.
835 * Just go with full inherited parameters.
836 */
837 if (dl_se->dl_deadline == 0) {
838 dl_se->deadline = rq_clock(rq) + pi_of(dl_se)->dl_deadline;
839 dl_se->runtime = pi_of(dl_se)->dl_runtime;
840 }
841
842 if (dl_se->dl_yielded && dl_se->runtime > 0)
843 dl_se->runtime = 0;
844
845 /*
846 * We keep moving the deadline away until we get some
847 * available runtime for the entity. This ensures correct
848 * handling of situations where the runtime overrun is
849 * arbitrary large.
850 */
851 while (dl_se->runtime <= 0) {
852 dl_se->deadline += pi_of(dl_se)->dl_period;
853 dl_se->runtime += pi_of(dl_se)->dl_runtime;
854 }
855
856 /*
857 * At this point, the deadline really should be "in
858 * the future" with respect to rq->clock. If it's
859 * not, we are, for some reason, lagging too much!
860 * Anyway, after having warn userspace abut that,
861 * we still try to keep the things running by
862 * resetting the deadline and the budget of the
863 * entity.
864 */
865 if (dl_time_before(dl_se->deadline, rq_clock(rq))) {
866 printk_deferred_once("sched: DL replenish lagged too much\n");
867 dl_se->deadline = rq_clock(rq) + pi_of(dl_se)->dl_deadline;
868 dl_se->runtime = pi_of(dl_se)->dl_runtime;
869 }
870
871 if (dl_se->dl_yielded)
872 dl_se->dl_yielded = 0;
873 if (dl_se->dl_throttled)
874 dl_se->dl_throttled = 0;
875 }
876
877 /*
878 * Here we check if --at time t-- an entity (which is probably being
879 * [re]activated or, in general, enqueued) can use its remaining runtime
880 * and its current deadline _without_ exceeding the bandwidth it is
881 * assigned (function returns true if it can't). We are in fact applying
882 * one of the CBS rules: when a task wakes up, if the residual runtime
883 * over residual deadline fits within the allocated bandwidth, then we
884 * can keep the current (absolute) deadline and residual budget without
885 * disrupting the schedulability of the system. Otherwise, we should
886 * refill the runtime and set the deadline a period in the future,
887 * because keeping the current (absolute) deadline of the task would
888 * result in breaking guarantees promised to other tasks (refer to
889 * Documentation/scheduler/sched-deadline.rst for more information).
890 *
891 * This function returns true if:
892 *
893 * runtime / (deadline - t) > dl_runtime / dl_deadline ,
894 *
895 * IOW we can't recycle current parameters.
896 *
897 * Notice that the bandwidth check is done against the deadline. For
898 * task with deadline equal to period this is the same of using
899 * dl_period instead of dl_deadline in the equation above.
900 */
dl_entity_overflow(struct sched_dl_entity * dl_se,u64 t)901 static bool dl_entity_overflow(struct sched_dl_entity *dl_se, u64 t)
902 {
903 u64 left, right;
904
905 /*
906 * left and right are the two sides of the equation above,
907 * after a bit of shuffling to use multiplications instead
908 * of divisions.
909 *
910 * Note that none of the time values involved in the two
911 * multiplications are absolute: dl_deadline and dl_runtime
912 * are the relative deadline and the maximum runtime of each
913 * instance, runtime is the runtime left for the last instance
914 * and (deadline - t), since t is rq->clock, is the time left
915 * to the (absolute) deadline. Even if overflowing the u64 type
916 * is very unlikely to occur in both cases, here we scale down
917 * as we want to avoid that risk at all. Scaling down by 10
918 * means that we reduce granularity to 1us. We are fine with it,
919 * since this is only a true/false check and, anyway, thinking
920 * of anything below microseconds resolution is actually fiction
921 * (but still we want to give the user that illusion >;).
922 */
923 left = (pi_of(dl_se)->dl_deadline >> DL_SCALE) * (dl_se->runtime >> DL_SCALE);
924 right = ((dl_se->deadline - t) >> DL_SCALE) *
925 (pi_of(dl_se)->dl_runtime >> DL_SCALE);
926
927 return dl_time_before(right, left);
928 }
929
930 /*
931 * Revised wakeup rule [1]: For self-suspending tasks, rather then
932 * re-initializing task's runtime and deadline, the revised wakeup
933 * rule adjusts the task's runtime to avoid the task to overrun its
934 * density.
935 *
936 * Reasoning: a task may overrun the density if:
937 * runtime / (deadline - t) > dl_runtime / dl_deadline
938 *
939 * Therefore, runtime can be adjusted to:
940 * runtime = (dl_runtime / dl_deadline) * (deadline - t)
941 *
942 * In such way that runtime will be equal to the maximum density
943 * the task can use without breaking any rule.
944 *
945 * [1] Luca Abeni, Giuseppe Lipari, and Juri Lelli. 2015. Constant
946 * bandwidth server revisited. SIGBED Rev. 11, 4 (January 2015), 19-24.
947 */
948 static void
update_dl_revised_wakeup(struct sched_dl_entity * dl_se,struct rq * rq)949 update_dl_revised_wakeup(struct sched_dl_entity *dl_se, struct rq *rq)
950 {
951 u64 laxity = dl_se->deadline - rq_clock(rq);
952
953 /*
954 * If the task has deadline < period, and the deadline is in the past,
955 * it should already be throttled before this check.
956 *
957 * See update_dl_entity() comments for further details.
958 */
959 WARN_ON(dl_time_before(dl_se->deadline, rq_clock(rq)));
960
961 dl_se->runtime = (dl_se->dl_density * laxity) >> BW_SHIFT;
962 }
963
964 /*
965 * Regarding the deadline, a task with implicit deadline has a relative
966 * deadline == relative period. A task with constrained deadline has a
967 * relative deadline <= relative period.
968 *
969 * We support constrained deadline tasks. However, there are some restrictions
970 * applied only for tasks which do not have an implicit deadline. See
971 * update_dl_entity() to know more about such restrictions.
972 *
973 * The dl_is_implicit() returns true if the task has an implicit deadline.
974 */
dl_is_implicit(struct sched_dl_entity * dl_se)975 static inline bool dl_is_implicit(struct sched_dl_entity *dl_se)
976 {
977 return dl_se->dl_deadline == dl_se->dl_period;
978 }
979
980 /*
981 * When a deadline entity is placed in the runqueue, its runtime and deadline
982 * might need to be updated. This is done by a CBS wake up rule. There are two
983 * different rules: 1) the original CBS; and 2) the Revisited CBS.
984 *
985 * When the task is starting a new period, the Original CBS is used. In this
986 * case, the runtime is replenished and a new absolute deadline is set.
987 *
988 * When a task is queued before the begin of the next period, using the
989 * remaining runtime and deadline could make the entity to overflow, see
990 * dl_entity_overflow() to find more about runtime overflow. When such case
991 * is detected, the runtime and deadline need to be updated.
992 *
993 * If the task has an implicit deadline, i.e., deadline == period, the Original
994 * CBS is applied. the runtime is replenished and a new absolute deadline is
995 * set, as in the previous cases.
996 *
997 * However, the Original CBS does not work properly for tasks with
998 * deadline < period, which are said to have a constrained deadline. By
999 * applying the Original CBS, a constrained deadline task would be able to run
1000 * runtime/deadline in a period. With deadline < period, the task would
1001 * overrun the runtime/period allowed bandwidth, breaking the admission test.
1002 *
1003 * In order to prevent this misbehave, the Revisited CBS is used for
1004 * constrained deadline tasks when a runtime overflow is detected. In the
1005 * Revisited CBS, rather than replenishing & setting a new absolute deadline,
1006 * the remaining runtime of the task is reduced to avoid runtime overflow.
1007 * Please refer to the comments update_dl_revised_wakeup() function to find
1008 * more about the Revised CBS rule.
1009 */
update_dl_entity(struct sched_dl_entity * dl_se)1010 static void update_dl_entity(struct sched_dl_entity *dl_se)
1011 {
1012 struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
1013 struct rq *rq = rq_of_dl_rq(dl_rq);
1014
1015 if (dl_time_before(dl_se->deadline, rq_clock(rq)) ||
1016 dl_entity_overflow(dl_se, rq_clock(rq))) {
1017
1018 if (unlikely(!dl_is_implicit(dl_se) &&
1019 !dl_time_before(dl_se->deadline, rq_clock(rq)) &&
1020 !is_dl_boosted(dl_se))) {
1021 update_dl_revised_wakeup(dl_se, rq);
1022 return;
1023 }
1024
1025 dl_se->deadline = rq_clock(rq) + pi_of(dl_se)->dl_deadline;
1026 dl_se->runtime = pi_of(dl_se)->dl_runtime;
1027 }
1028 }
1029
dl_next_period(struct sched_dl_entity * dl_se)1030 static inline u64 dl_next_period(struct sched_dl_entity *dl_se)
1031 {
1032 return dl_se->deadline - dl_se->dl_deadline + dl_se->dl_period;
1033 }
1034
1035 /*
1036 * If the entity depleted all its runtime, and if we want it to sleep
1037 * while waiting for some new execution time to become available, we
1038 * set the bandwidth replenishment timer to the replenishment instant
1039 * and try to activate it.
1040 *
1041 * Notice that it is important for the caller to know if the timer
1042 * actually started or not (i.e., the replenishment instant is in
1043 * the future or in the past).
1044 */
start_dl_timer(struct task_struct * p)1045 static int start_dl_timer(struct task_struct *p)
1046 {
1047 struct sched_dl_entity *dl_se = &p->dl;
1048 struct hrtimer *timer = &dl_se->dl_timer;
1049 struct rq *rq = task_rq(p);
1050 ktime_t now, act;
1051 s64 delta;
1052
1053 lockdep_assert_rq_held(rq);
1054
1055 /*
1056 * We want the timer to fire at the deadline, but considering
1057 * that it is actually coming from rq->clock and not from
1058 * hrtimer's time base reading.
1059 */
1060 act = ns_to_ktime(dl_next_period(dl_se));
1061 now = hrtimer_cb_get_time(timer);
1062 delta = ktime_to_ns(now) - rq_clock(rq);
1063 act = ktime_add_ns(act, delta);
1064
1065 /*
1066 * If the expiry time already passed, e.g., because the value
1067 * chosen as the deadline is too small, don't even try to
1068 * start the timer in the past!
1069 */
1070 if (ktime_us_delta(act, now) < 0)
1071 return 0;
1072
1073 /*
1074 * !enqueued will guarantee another callback; even if one is already in
1075 * progress. This ensures a balanced {get,put}_task_struct().
1076 *
1077 * The race against __run_timer() clearing the enqueued state is
1078 * harmless because we're holding task_rq()->lock, therefore the timer
1079 * expiring after we've done the check will wait on its task_rq_lock()
1080 * and observe our state.
1081 */
1082 if (!hrtimer_is_queued(timer)) {
1083 get_task_struct(p);
1084 hrtimer_start(timer, act, HRTIMER_MODE_ABS_HARD);
1085 }
1086
1087 return 1;
1088 }
1089
1090 /*
1091 * This is the bandwidth enforcement timer callback. If here, we know
1092 * a task is not on its dl_rq, since the fact that the timer was running
1093 * means the task is throttled and needs a runtime replenishment.
1094 *
1095 * However, what we actually do depends on the fact the task is active,
1096 * (it is on its rq) or has been removed from there by a call to
1097 * dequeue_task_dl(). In the former case we must issue the runtime
1098 * replenishment and add the task back to the dl_rq; in the latter, we just
1099 * do nothing but clearing dl_throttled, so that runtime and deadline
1100 * updating (and the queueing back to dl_rq) will be done by the
1101 * next call to enqueue_task_dl().
1102 */
dl_task_timer(struct hrtimer * timer)1103 static enum hrtimer_restart dl_task_timer(struct hrtimer *timer)
1104 {
1105 struct sched_dl_entity *dl_se = container_of(timer,
1106 struct sched_dl_entity,
1107 dl_timer);
1108 struct task_struct *p = dl_task_of(dl_se);
1109 struct rq_flags rf;
1110 struct rq *rq;
1111
1112 rq = task_rq_lock(p, &rf);
1113
1114 /*
1115 * The task might have changed its scheduling policy to something
1116 * different than SCHED_DEADLINE (through switched_from_dl()).
1117 */
1118 if (!dl_task(p))
1119 goto unlock;
1120
1121 /*
1122 * The task might have been boosted by someone else and might be in the
1123 * boosting/deboosting path, its not throttled.
1124 */
1125 if (is_dl_boosted(dl_se))
1126 goto unlock;
1127
1128 /*
1129 * Spurious timer due to start_dl_timer() race; or we already received
1130 * a replenishment from rt_mutex_setprio().
1131 */
1132 if (!dl_se->dl_throttled)
1133 goto unlock;
1134
1135 sched_clock_tick();
1136 update_rq_clock(rq);
1137
1138 /*
1139 * If the throttle happened during sched-out; like:
1140 *
1141 * schedule()
1142 * deactivate_task()
1143 * dequeue_task_dl()
1144 * update_curr_dl()
1145 * start_dl_timer()
1146 * __dequeue_task_dl()
1147 * prev->on_rq = 0;
1148 *
1149 * We can be both throttled and !queued. Replenish the counter
1150 * but do not enqueue -- wait for our wakeup to do that.
1151 */
1152 if (!task_on_rq_queued(p)) {
1153 replenish_dl_entity(dl_se);
1154 goto unlock;
1155 }
1156
1157 #ifdef CONFIG_SMP
1158 if (unlikely(!rq->online)) {
1159 /*
1160 * If the runqueue is no longer available, migrate the
1161 * task elsewhere. This necessarily changes rq.
1162 */
1163 lockdep_unpin_lock(__rq_lockp(rq), rf.cookie);
1164 rq = dl_task_offline_migration(rq, p);
1165 rf.cookie = lockdep_pin_lock(__rq_lockp(rq));
1166 update_rq_clock(rq);
1167
1168 /*
1169 * Now that the task has been migrated to the new RQ and we
1170 * have that locked, proceed as normal and enqueue the task
1171 * there.
1172 */
1173 }
1174 #endif
1175
1176 enqueue_task_dl(rq, p, ENQUEUE_REPLENISH);
1177 if (dl_task(rq->curr))
1178 check_preempt_curr_dl(rq, p, 0);
1179 else
1180 resched_curr(rq);
1181
1182 #ifdef CONFIG_SMP
1183 /*
1184 * Queueing this task back might have overloaded rq, check if we need
1185 * to kick someone away.
1186 */
1187 if (has_pushable_dl_tasks(rq)) {
1188 /*
1189 * Nothing relies on rq->lock after this, so its safe to drop
1190 * rq->lock.
1191 */
1192 rq_unpin_lock(rq, &rf);
1193 push_dl_task(rq);
1194 rq_repin_lock(rq, &rf);
1195 }
1196 #endif
1197
1198 unlock:
1199 task_rq_unlock(rq, p, &rf);
1200
1201 /*
1202 * This can free the task_struct, including this hrtimer, do not touch
1203 * anything related to that after this.
1204 */
1205 put_task_struct(p);
1206
1207 return HRTIMER_NORESTART;
1208 }
1209
init_dl_task_timer(struct sched_dl_entity * dl_se)1210 void init_dl_task_timer(struct sched_dl_entity *dl_se)
1211 {
1212 struct hrtimer *timer = &dl_se->dl_timer;
1213
1214 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
1215 timer->function = dl_task_timer;
1216 }
1217
1218 /*
1219 * During the activation, CBS checks if it can reuse the current task's
1220 * runtime and period. If the deadline of the task is in the past, CBS
1221 * cannot use the runtime, and so it replenishes the task. This rule
1222 * works fine for implicit deadline tasks (deadline == period), and the
1223 * CBS was designed for implicit deadline tasks. However, a task with
1224 * constrained deadline (deadline < period) might be awakened after the
1225 * deadline, but before the next period. In this case, replenishing the
1226 * task would allow it to run for runtime / deadline. As in this case
1227 * deadline < period, CBS enables a task to run for more than the
1228 * runtime / period. In a very loaded system, this can cause a domino
1229 * effect, making other tasks miss their deadlines.
1230 *
1231 * To avoid this problem, in the activation of a constrained deadline
1232 * task after the deadline but before the next period, throttle the
1233 * task and set the replenishing timer to the begin of the next period,
1234 * unless it is boosted.
1235 */
dl_check_constrained_dl(struct sched_dl_entity * dl_se)1236 static inline void dl_check_constrained_dl(struct sched_dl_entity *dl_se)
1237 {
1238 struct task_struct *p = dl_task_of(dl_se);
1239 struct rq *rq = rq_of_dl_rq(dl_rq_of_se(dl_se));
1240
1241 if (dl_time_before(dl_se->deadline, rq_clock(rq)) &&
1242 dl_time_before(rq_clock(rq), dl_next_period(dl_se))) {
1243 if (unlikely(is_dl_boosted(dl_se) || !start_dl_timer(p)))
1244 return;
1245 dl_se->dl_throttled = 1;
1246 if (dl_se->runtime > 0)
1247 dl_se->runtime = 0;
1248 }
1249 }
1250
1251 static
dl_runtime_exceeded(struct sched_dl_entity * dl_se)1252 int dl_runtime_exceeded(struct sched_dl_entity *dl_se)
1253 {
1254 return (dl_se->runtime <= 0);
1255 }
1256
1257 /*
1258 * This function implements the GRUB accounting rule:
1259 * according to the GRUB reclaiming algorithm, the runtime is
1260 * not decreased as "dq = -dt", but as
1261 * "dq = -max{u / Umax, (1 - Uinact - Uextra)} dt",
1262 * where u is the utilization of the task, Umax is the maximum reclaimable
1263 * utilization, Uinact is the (per-runqueue) inactive utilization, computed
1264 * as the difference between the "total runqueue utilization" and the
1265 * runqueue active utilization, and Uextra is the (per runqueue) extra
1266 * reclaimable utilization.
1267 * Since rq->dl.running_bw and rq->dl.this_bw contain utilizations
1268 * multiplied by 2^BW_SHIFT, the result has to be shifted right by
1269 * BW_SHIFT.
1270 * Since rq->dl.bw_ratio contains 1 / Umax multiplied by 2^RATIO_SHIFT,
1271 * dl_bw is multiped by rq->dl.bw_ratio and shifted right by RATIO_SHIFT.
1272 * Since delta is a 64 bit variable, to have an overflow its value
1273 * should be larger than 2^(64 - 20 - 8), which is more than 64 seconds.
1274 * So, overflow is not an issue here.
1275 */
grub_reclaim(u64 delta,struct rq * rq,struct sched_dl_entity * dl_se)1276 static u64 grub_reclaim(u64 delta, struct rq *rq, struct sched_dl_entity *dl_se)
1277 {
1278 u64 u_inact = rq->dl.this_bw - rq->dl.running_bw; /* Utot - Uact */
1279 u64 u_act;
1280 u64 u_act_min = (dl_se->dl_bw * rq->dl.bw_ratio) >> RATIO_SHIFT;
1281
1282 /*
1283 * Instead of computing max{u * bw_ratio, (1 - u_inact - u_extra)},
1284 * we compare u_inact + rq->dl.extra_bw with
1285 * 1 - (u * rq->dl.bw_ratio >> RATIO_SHIFT), because
1286 * u_inact + rq->dl.extra_bw can be larger than
1287 * 1 * (so, 1 - u_inact - rq->dl.extra_bw would be negative
1288 * leading to wrong results)
1289 */
1290 if (u_inact + rq->dl.extra_bw > BW_UNIT - u_act_min)
1291 u_act = u_act_min;
1292 else
1293 u_act = BW_UNIT - u_inact - rq->dl.extra_bw;
1294
1295 return (delta * u_act) >> BW_SHIFT;
1296 }
1297
1298 /*
1299 * Update the current task's runtime statistics (provided it is still
1300 * a -deadline task and has not been removed from the dl_rq).
1301 */
update_curr_dl(struct rq * rq)1302 static void update_curr_dl(struct rq *rq)
1303 {
1304 struct task_struct *curr = rq->curr;
1305 struct sched_dl_entity *dl_se = &curr->dl;
1306 u64 delta_exec, scaled_delta_exec;
1307 int cpu = cpu_of(rq);
1308 u64 now;
1309
1310 if (!dl_task(curr) || !on_dl_rq(dl_se))
1311 return;
1312
1313 /*
1314 * Consumed budget is computed considering the time as
1315 * observed by schedulable tasks (excluding time spent
1316 * in hardirq context, etc.). Deadlines are instead
1317 * computed using hard walltime. This seems to be the more
1318 * natural solution, but the full ramifications of this
1319 * approach need further study.
1320 */
1321 now = rq_clock_task(rq);
1322 delta_exec = now - curr->se.exec_start;
1323 if (unlikely((s64)delta_exec <= 0)) {
1324 if (unlikely(dl_se->dl_yielded))
1325 goto throttle;
1326 return;
1327 }
1328
1329 schedstat_set(curr->stats.exec_max,
1330 max(curr->stats.exec_max, delta_exec));
1331
1332 trace_sched_stat_runtime(curr, delta_exec, 0);
1333
1334 curr->se.sum_exec_runtime += delta_exec;
1335 account_group_exec_runtime(curr, delta_exec);
1336
1337 curr->se.exec_start = now;
1338 cgroup_account_cputime(curr, delta_exec);
1339
1340 if (dl_entity_is_special(dl_se))
1341 return;
1342
1343 /*
1344 * For tasks that participate in GRUB, we implement GRUB-PA: the
1345 * spare reclaimed bandwidth is used to clock down frequency.
1346 *
1347 * For the others, we still need to scale reservation parameters
1348 * according to current frequency and CPU maximum capacity.
1349 */
1350 if (unlikely(dl_se->flags & SCHED_FLAG_RECLAIM)) {
1351 scaled_delta_exec = grub_reclaim(delta_exec,
1352 rq,
1353 &curr->dl);
1354 } else {
1355 unsigned long scale_freq = arch_scale_freq_capacity(cpu);
1356 unsigned long scale_cpu = arch_scale_cpu_capacity(cpu);
1357
1358 scaled_delta_exec = cap_scale(delta_exec, scale_freq);
1359 scaled_delta_exec = cap_scale(scaled_delta_exec, scale_cpu);
1360 }
1361
1362 dl_se->runtime -= scaled_delta_exec;
1363
1364 throttle:
1365 if (dl_runtime_exceeded(dl_se) || dl_se->dl_yielded) {
1366 dl_se->dl_throttled = 1;
1367
1368 /* If requested, inform the user about runtime overruns. */
1369 if (dl_runtime_exceeded(dl_se) &&
1370 (dl_se->flags & SCHED_FLAG_DL_OVERRUN))
1371 dl_se->dl_overrun = 1;
1372
1373 __dequeue_task_dl(rq, curr, 0);
1374 if (unlikely(is_dl_boosted(dl_se) || !start_dl_timer(curr)))
1375 enqueue_task_dl(rq, curr, ENQUEUE_REPLENISH);
1376
1377 if (!is_leftmost(curr, &rq->dl))
1378 resched_curr(rq);
1379 }
1380
1381 /*
1382 * Because -- for now -- we share the rt bandwidth, we need to
1383 * account our runtime there too, otherwise actual rt tasks
1384 * would be able to exceed the shared quota.
1385 *
1386 * Account to the root rt group for now.
1387 *
1388 * The solution we're working towards is having the RT groups scheduled
1389 * using deadline servers -- however there's a few nasties to figure
1390 * out before that can happen.
1391 */
1392 if (rt_bandwidth_enabled()) {
1393 struct rt_rq *rt_rq = &rq->rt;
1394
1395 raw_spin_lock(&rt_rq->rt_runtime_lock);
1396 /*
1397 * We'll let actual RT tasks worry about the overflow here, we
1398 * have our own CBS to keep us inline; only account when RT
1399 * bandwidth is relevant.
1400 */
1401 if (sched_rt_bandwidth_account(rt_rq))
1402 rt_rq->rt_time += delta_exec;
1403 raw_spin_unlock(&rt_rq->rt_runtime_lock);
1404 }
1405 }
1406
inactive_task_timer(struct hrtimer * timer)1407 static enum hrtimer_restart inactive_task_timer(struct hrtimer *timer)
1408 {
1409 struct sched_dl_entity *dl_se = container_of(timer,
1410 struct sched_dl_entity,
1411 inactive_timer);
1412 struct task_struct *p = dl_task_of(dl_se);
1413 struct rq_flags rf;
1414 struct rq *rq;
1415
1416 rq = task_rq_lock(p, &rf);
1417
1418 sched_clock_tick();
1419 update_rq_clock(rq);
1420
1421 if (!dl_task(p) || READ_ONCE(p->__state) == TASK_DEAD) {
1422 struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
1423
1424 if (READ_ONCE(p->__state) == TASK_DEAD && dl_se->dl_non_contending) {
1425 sub_running_bw(&p->dl, dl_rq_of_se(&p->dl));
1426 sub_rq_bw(&p->dl, dl_rq_of_se(&p->dl));
1427 dl_se->dl_non_contending = 0;
1428 }
1429
1430 raw_spin_lock(&dl_b->lock);
1431 __dl_sub(dl_b, p->dl.dl_bw, dl_bw_cpus(task_cpu(p)));
1432 raw_spin_unlock(&dl_b->lock);
1433 __dl_clear_params(p);
1434
1435 goto unlock;
1436 }
1437 if (dl_se->dl_non_contending == 0)
1438 goto unlock;
1439
1440 sub_running_bw(dl_se, &rq->dl);
1441 dl_se->dl_non_contending = 0;
1442 unlock:
1443 task_rq_unlock(rq, p, &rf);
1444 put_task_struct(p);
1445
1446 return HRTIMER_NORESTART;
1447 }
1448
init_dl_inactive_task_timer(struct sched_dl_entity * dl_se)1449 void init_dl_inactive_task_timer(struct sched_dl_entity *dl_se)
1450 {
1451 struct hrtimer *timer = &dl_se->inactive_timer;
1452
1453 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
1454 timer->function = inactive_task_timer;
1455 }
1456
1457 #define __node_2_dle(node) \
1458 rb_entry((node), struct sched_dl_entity, rb_node)
1459
1460 #ifdef CONFIG_SMP
1461
inc_dl_deadline(struct dl_rq * dl_rq,u64 deadline)1462 static void inc_dl_deadline(struct dl_rq *dl_rq, u64 deadline)
1463 {
1464 struct rq *rq = rq_of_dl_rq(dl_rq);
1465
1466 if (dl_rq->earliest_dl.curr == 0 ||
1467 dl_time_before(deadline, dl_rq->earliest_dl.curr)) {
1468 if (dl_rq->earliest_dl.curr == 0)
1469 cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_HIGHER);
1470 dl_rq->earliest_dl.curr = deadline;
1471 cpudl_set(&rq->rd->cpudl, rq->cpu, deadline);
1472 }
1473 }
1474
dec_dl_deadline(struct dl_rq * dl_rq,u64 deadline)1475 static void dec_dl_deadline(struct dl_rq *dl_rq, u64 deadline)
1476 {
1477 struct rq *rq = rq_of_dl_rq(dl_rq);
1478
1479 /*
1480 * Since we may have removed our earliest (and/or next earliest)
1481 * task we must recompute them.
1482 */
1483 if (!dl_rq->dl_nr_running) {
1484 dl_rq->earliest_dl.curr = 0;
1485 dl_rq->earliest_dl.next = 0;
1486 cpudl_clear(&rq->rd->cpudl, rq->cpu);
1487 cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr);
1488 } else {
1489 struct rb_node *leftmost = rb_first_cached(&dl_rq->root);
1490 struct sched_dl_entity *entry = __node_2_dle(leftmost);
1491
1492 dl_rq->earliest_dl.curr = entry->deadline;
1493 cpudl_set(&rq->rd->cpudl, rq->cpu, entry->deadline);
1494 }
1495 }
1496
1497 #else
1498
inc_dl_deadline(struct dl_rq * dl_rq,u64 deadline)1499 static inline void inc_dl_deadline(struct dl_rq *dl_rq, u64 deadline) {}
dec_dl_deadline(struct dl_rq * dl_rq,u64 deadline)1500 static inline void dec_dl_deadline(struct dl_rq *dl_rq, u64 deadline) {}
1501
1502 #endif /* CONFIG_SMP */
1503
1504 static inline
inc_dl_tasks(struct sched_dl_entity * dl_se,struct dl_rq * dl_rq)1505 void inc_dl_tasks(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
1506 {
1507 int prio = dl_task_of(dl_se)->prio;
1508 u64 deadline = dl_se->deadline;
1509
1510 WARN_ON(!dl_prio(prio));
1511 dl_rq->dl_nr_running++;
1512 add_nr_running(rq_of_dl_rq(dl_rq), 1);
1513
1514 inc_dl_deadline(dl_rq, deadline);
1515 inc_dl_migration(dl_se, dl_rq);
1516 }
1517
1518 static inline
dec_dl_tasks(struct sched_dl_entity * dl_se,struct dl_rq * dl_rq)1519 void dec_dl_tasks(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
1520 {
1521 int prio = dl_task_of(dl_se)->prio;
1522
1523 WARN_ON(!dl_prio(prio));
1524 WARN_ON(!dl_rq->dl_nr_running);
1525 dl_rq->dl_nr_running--;
1526 sub_nr_running(rq_of_dl_rq(dl_rq), 1);
1527
1528 dec_dl_deadline(dl_rq, dl_se->deadline);
1529 dec_dl_migration(dl_se, dl_rq);
1530 }
1531
__dl_less(struct rb_node * a,const struct rb_node * b)1532 static inline bool __dl_less(struct rb_node *a, const struct rb_node *b)
1533 {
1534 return dl_time_before(__node_2_dle(a)->deadline, __node_2_dle(b)->deadline);
1535 }
1536
1537 static inline struct sched_statistics *
__schedstats_from_dl_se(struct sched_dl_entity * dl_se)1538 __schedstats_from_dl_se(struct sched_dl_entity *dl_se)
1539 {
1540 return &dl_task_of(dl_se)->stats;
1541 }
1542
1543 static inline void
update_stats_wait_start_dl(struct dl_rq * dl_rq,struct sched_dl_entity * dl_se)1544 update_stats_wait_start_dl(struct dl_rq *dl_rq, struct sched_dl_entity *dl_se)
1545 {
1546 struct sched_statistics *stats;
1547
1548 if (!schedstat_enabled())
1549 return;
1550
1551 stats = __schedstats_from_dl_se(dl_se);
1552 __update_stats_wait_start(rq_of_dl_rq(dl_rq), dl_task_of(dl_se), stats);
1553 }
1554
1555 static inline void
update_stats_wait_end_dl(struct dl_rq * dl_rq,struct sched_dl_entity * dl_se)1556 update_stats_wait_end_dl(struct dl_rq *dl_rq, struct sched_dl_entity *dl_se)
1557 {
1558 struct sched_statistics *stats;
1559
1560 if (!schedstat_enabled())
1561 return;
1562
1563 stats = __schedstats_from_dl_se(dl_se);
1564 __update_stats_wait_end(rq_of_dl_rq(dl_rq), dl_task_of(dl_se), stats);
1565 }
1566
1567 static inline void
update_stats_enqueue_sleeper_dl(struct dl_rq * dl_rq,struct sched_dl_entity * dl_se)1568 update_stats_enqueue_sleeper_dl(struct dl_rq *dl_rq, struct sched_dl_entity *dl_se)
1569 {
1570 struct sched_statistics *stats;
1571
1572 if (!schedstat_enabled())
1573 return;
1574
1575 stats = __schedstats_from_dl_se(dl_se);
1576 __update_stats_enqueue_sleeper(rq_of_dl_rq(dl_rq), dl_task_of(dl_se), stats);
1577 }
1578
1579 static inline void
update_stats_enqueue_dl(struct dl_rq * dl_rq,struct sched_dl_entity * dl_se,int flags)1580 update_stats_enqueue_dl(struct dl_rq *dl_rq, struct sched_dl_entity *dl_se,
1581 int flags)
1582 {
1583 if (!schedstat_enabled())
1584 return;
1585
1586 if (flags & ENQUEUE_WAKEUP)
1587 update_stats_enqueue_sleeper_dl(dl_rq, dl_se);
1588 }
1589
1590 static inline void
update_stats_dequeue_dl(struct dl_rq * dl_rq,struct sched_dl_entity * dl_se,int flags)1591 update_stats_dequeue_dl(struct dl_rq *dl_rq, struct sched_dl_entity *dl_se,
1592 int flags)
1593 {
1594 struct task_struct *p = dl_task_of(dl_se);
1595
1596 if (!schedstat_enabled())
1597 return;
1598
1599 if ((flags & DEQUEUE_SLEEP)) {
1600 unsigned int state;
1601
1602 state = READ_ONCE(p->__state);
1603 if (state & TASK_INTERRUPTIBLE)
1604 __schedstat_set(p->stats.sleep_start,
1605 rq_clock(rq_of_dl_rq(dl_rq)));
1606
1607 if (state & TASK_UNINTERRUPTIBLE)
1608 __schedstat_set(p->stats.block_start,
1609 rq_clock(rq_of_dl_rq(dl_rq)));
1610 }
1611 }
1612
__enqueue_dl_entity(struct sched_dl_entity * dl_se)1613 static void __enqueue_dl_entity(struct sched_dl_entity *dl_se)
1614 {
1615 struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
1616
1617 BUG_ON(!RB_EMPTY_NODE(&dl_se->rb_node));
1618
1619 rb_add_cached(&dl_se->rb_node, &dl_rq->root, __dl_less);
1620
1621 inc_dl_tasks(dl_se, dl_rq);
1622 }
1623
__dequeue_dl_entity(struct sched_dl_entity * dl_se)1624 static void __dequeue_dl_entity(struct sched_dl_entity *dl_se)
1625 {
1626 struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
1627
1628 if (RB_EMPTY_NODE(&dl_se->rb_node))
1629 return;
1630
1631 rb_erase_cached(&dl_se->rb_node, &dl_rq->root);
1632
1633 RB_CLEAR_NODE(&dl_se->rb_node);
1634
1635 dec_dl_tasks(dl_se, dl_rq);
1636 }
1637
1638 static void
enqueue_dl_entity(struct sched_dl_entity * dl_se,int flags)1639 enqueue_dl_entity(struct sched_dl_entity *dl_se, int flags)
1640 {
1641 BUG_ON(on_dl_rq(dl_se));
1642
1643 update_stats_enqueue_dl(dl_rq_of_se(dl_se), dl_se, flags);
1644
1645 /*
1646 * If this is a wakeup or a new instance, the scheduling
1647 * parameters of the task might need updating. Otherwise,
1648 * we want a replenishment of its runtime.
1649 */
1650 if (flags & ENQUEUE_WAKEUP) {
1651 task_contending(dl_se, flags);
1652 update_dl_entity(dl_se);
1653 } else if (flags & ENQUEUE_REPLENISH) {
1654 replenish_dl_entity(dl_se);
1655 } else if ((flags & ENQUEUE_RESTORE) &&
1656 dl_time_before(dl_se->deadline,
1657 rq_clock(rq_of_dl_rq(dl_rq_of_se(dl_se))))) {
1658 setup_new_dl_entity(dl_se);
1659 }
1660
1661 __enqueue_dl_entity(dl_se);
1662 }
1663
dequeue_dl_entity(struct sched_dl_entity * dl_se)1664 static void dequeue_dl_entity(struct sched_dl_entity *dl_se)
1665 {
1666 __dequeue_dl_entity(dl_se);
1667 }
1668
enqueue_task_dl(struct rq * rq,struct task_struct * p,int flags)1669 static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags)
1670 {
1671 if (is_dl_boosted(&p->dl)) {
1672 /*
1673 * Because of delays in the detection of the overrun of a
1674 * thread's runtime, it might be the case that a thread
1675 * goes to sleep in a rt mutex with negative runtime. As
1676 * a consequence, the thread will be throttled.
1677 *
1678 * While waiting for the mutex, this thread can also be
1679 * boosted via PI, resulting in a thread that is throttled
1680 * and boosted at the same time.
1681 *
1682 * In this case, the boost overrides the throttle.
1683 */
1684 if (p->dl.dl_throttled) {
1685 /*
1686 * The replenish timer needs to be canceled. No
1687 * problem if it fires concurrently: boosted threads
1688 * are ignored in dl_task_timer().
1689 */
1690 hrtimer_try_to_cancel(&p->dl.dl_timer);
1691 p->dl.dl_throttled = 0;
1692 }
1693 } else if (!dl_prio(p->normal_prio)) {
1694 /*
1695 * Special case in which we have a !SCHED_DEADLINE task that is going
1696 * to be deboosted, but exceeds its runtime while doing so. No point in
1697 * replenishing it, as it's going to return back to its original
1698 * scheduling class after this. If it has been throttled, we need to
1699 * clear the flag, otherwise the task may wake up as throttled after
1700 * being boosted again with no means to replenish the runtime and clear
1701 * the throttle.
1702 */
1703 p->dl.dl_throttled = 0;
1704 if (!(flags & ENQUEUE_REPLENISH))
1705 printk_deferred_once("sched: DL de-boosted task PID %d: REPLENISH flag missing\n",
1706 task_pid_nr(p));
1707
1708 return;
1709 }
1710
1711 /*
1712 * Check if a constrained deadline task was activated
1713 * after the deadline but before the next period.
1714 * If that is the case, the task will be throttled and
1715 * the replenishment timer will be set to the next period.
1716 */
1717 if (!p->dl.dl_throttled && !dl_is_implicit(&p->dl))
1718 dl_check_constrained_dl(&p->dl);
1719
1720 if (p->on_rq == TASK_ON_RQ_MIGRATING || flags & ENQUEUE_RESTORE) {
1721 add_rq_bw(&p->dl, &rq->dl);
1722 add_running_bw(&p->dl, &rq->dl);
1723 }
1724
1725 /*
1726 * If p is throttled, we do not enqueue it. In fact, if it exhausted
1727 * its budget it needs a replenishment and, since it now is on
1728 * its rq, the bandwidth timer callback (which clearly has not
1729 * run yet) will take care of this.
1730 * However, the active utilization does not depend on the fact
1731 * that the task is on the runqueue or not (but depends on the
1732 * task's state - in GRUB parlance, "inactive" vs "active contending").
1733 * In other words, even if a task is throttled its utilization must
1734 * be counted in the active utilization; hence, we need to call
1735 * add_running_bw().
1736 */
1737 if (p->dl.dl_throttled && !(flags & ENQUEUE_REPLENISH)) {
1738 if (flags & ENQUEUE_WAKEUP)
1739 task_contending(&p->dl, flags);
1740
1741 return;
1742 }
1743
1744 check_schedstat_required();
1745 update_stats_wait_start_dl(dl_rq_of_se(&p->dl), &p->dl);
1746
1747 enqueue_dl_entity(&p->dl, flags);
1748
1749 if (!task_current(rq, p) && p->nr_cpus_allowed > 1)
1750 enqueue_pushable_dl_task(rq, p);
1751 }
1752
__dequeue_task_dl(struct rq * rq,struct task_struct * p,int flags)1753 static void __dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags)
1754 {
1755 update_stats_dequeue_dl(&rq->dl, &p->dl, flags);
1756 dequeue_dl_entity(&p->dl);
1757 dequeue_pushable_dl_task(rq, p);
1758 }
1759
dequeue_task_dl(struct rq * rq,struct task_struct * p,int flags)1760 static void dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags)
1761 {
1762 update_curr_dl(rq);
1763 __dequeue_task_dl(rq, p, flags);
1764
1765 if (p->on_rq == TASK_ON_RQ_MIGRATING || flags & DEQUEUE_SAVE) {
1766 sub_running_bw(&p->dl, &rq->dl);
1767 sub_rq_bw(&p->dl, &rq->dl);
1768 }
1769
1770 /*
1771 * This check allows to start the inactive timer (or to immediately
1772 * decrease the active utilization, if needed) in two cases:
1773 * when the task blocks and when it is terminating
1774 * (p->state == TASK_DEAD). We can handle the two cases in the same
1775 * way, because from GRUB's point of view the same thing is happening
1776 * (the task moves from "active contending" to "active non contending"
1777 * or "inactive")
1778 */
1779 if (flags & DEQUEUE_SLEEP)
1780 task_non_contending(p);
1781 }
1782
1783 /*
1784 * Yield task semantic for -deadline tasks is:
1785 *
1786 * get off from the CPU until our next instance, with
1787 * a new runtime. This is of little use now, since we
1788 * don't have a bandwidth reclaiming mechanism. Anyway,
1789 * bandwidth reclaiming is planned for the future, and
1790 * yield_task_dl will indicate that some spare budget
1791 * is available for other task instances to use it.
1792 */
yield_task_dl(struct rq * rq)1793 static void yield_task_dl(struct rq *rq)
1794 {
1795 /*
1796 * We make the task go to sleep until its current deadline by
1797 * forcing its runtime to zero. This way, update_curr_dl() stops
1798 * it and the bandwidth timer will wake it up and will give it
1799 * new scheduling parameters (thanks to dl_yielded=1).
1800 */
1801 rq->curr->dl.dl_yielded = 1;
1802
1803 update_rq_clock(rq);
1804 update_curr_dl(rq);
1805 /*
1806 * Tell update_rq_clock() that we've just updated,
1807 * so we don't do microscopic update in schedule()
1808 * and double the fastpath cost.
1809 */
1810 rq_clock_skip_update(rq);
1811 }
1812
1813 #ifdef CONFIG_SMP
1814
1815 static int find_later_rq(struct task_struct *task);
1816
1817 static int
select_task_rq_dl(struct task_struct * p,int cpu,int flags)1818 select_task_rq_dl(struct task_struct *p, int cpu, int flags)
1819 {
1820 struct task_struct *curr;
1821 bool select_rq;
1822 struct rq *rq;
1823
1824 if (!(flags & WF_TTWU))
1825 goto out;
1826
1827 rq = cpu_rq(cpu);
1828
1829 rcu_read_lock();
1830 curr = READ_ONCE(rq->curr); /* unlocked access */
1831
1832 /*
1833 * If we are dealing with a -deadline task, we must
1834 * decide where to wake it up.
1835 * If it has a later deadline and the current task
1836 * on this rq can't move (provided the waking task
1837 * can!) we prefer to send it somewhere else. On the
1838 * other hand, if it has a shorter deadline, we
1839 * try to make it stay here, it might be important.
1840 */
1841 select_rq = unlikely(dl_task(curr)) &&
1842 (curr->nr_cpus_allowed < 2 ||
1843 !dl_entity_preempt(&p->dl, &curr->dl)) &&
1844 p->nr_cpus_allowed > 1;
1845
1846 /*
1847 * Take the capacity of the CPU into account to
1848 * ensure it fits the requirement of the task.
1849 */
1850 if (static_branch_unlikely(&sched_asym_cpucapacity))
1851 select_rq |= !dl_task_fits_capacity(p, cpu);
1852
1853 if (select_rq) {
1854 int target = find_later_rq(p);
1855
1856 if (target != -1 &&
1857 (dl_time_before(p->dl.deadline,
1858 cpu_rq(target)->dl.earliest_dl.curr) ||
1859 (cpu_rq(target)->dl.dl_nr_running == 0)))
1860 cpu = target;
1861 }
1862 rcu_read_unlock();
1863
1864 out:
1865 return cpu;
1866 }
1867
migrate_task_rq_dl(struct task_struct * p,int new_cpu __maybe_unused)1868 static void migrate_task_rq_dl(struct task_struct *p, int new_cpu __maybe_unused)
1869 {
1870 struct rq_flags rf;
1871 struct rq *rq;
1872
1873 if (READ_ONCE(p->__state) != TASK_WAKING)
1874 return;
1875
1876 rq = task_rq(p);
1877 /*
1878 * Since p->state == TASK_WAKING, set_task_cpu() has been called
1879 * from try_to_wake_up(). Hence, p->pi_lock is locked, but
1880 * rq->lock is not... So, lock it
1881 */
1882 rq_lock(rq, &rf);
1883 if (p->dl.dl_non_contending) {
1884 update_rq_clock(rq);
1885 sub_running_bw(&p->dl, &rq->dl);
1886 p->dl.dl_non_contending = 0;
1887 /*
1888 * If the timer handler is currently running and the
1889 * timer cannot be canceled, inactive_task_timer()
1890 * will see that dl_not_contending is not set, and
1891 * will not touch the rq's active utilization,
1892 * so we are still safe.
1893 */
1894 if (hrtimer_try_to_cancel(&p->dl.inactive_timer) == 1)
1895 put_task_struct(p);
1896 }
1897 sub_rq_bw(&p->dl, &rq->dl);
1898 rq_unlock(rq, &rf);
1899 }
1900
check_preempt_equal_dl(struct rq * rq,struct task_struct * p)1901 static void check_preempt_equal_dl(struct rq *rq, struct task_struct *p)
1902 {
1903 /*
1904 * Current can't be migrated, useless to reschedule,
1905 * let's hope p can move out.
1906 */
1907 if (rq->curr->nr_cpus_allowed == 1 ||
1908 !cpudl_find(&rq->rd->cpudl, rq->curr, NULL))
1909 return;
1910
1911 /*
1912 * p is migratable, so let's not schedule it and
1913 * see if it is pushed or pulled somewhere else.
1914 */
1915 if (p->nr_cpus_allowed != 1 &&
1916 cpudl_find(&rq->rd->cpudl, p, NULL))
1917 return;
1918
1919 resched_curr(rq);
1920 }
1921
balance_dl(struct rq * rq,struct task_struct * p,struct rq_flags * rf)1922 static int balance_dl(struct rq *rq, struct task_struct *p, struct rq_flags *rf)
1923 {
1924 if (!on_dl_rq(&p->dl) && need_pull_dl_task(rq, p)) {
1925 /*
1926 * This is OK, because current is on_cpu, which avoids it being
1927 * picked for load-balance and preemption/IRQs are still
1928 * disabled avoiding further scheduler activity on it and we've
1929 * not yet started the picking loop.
1930 */
1931 rq_unpin_lock(rq, rf);
1932 pull_dl_task(rq);
1933 rq_repin_lock(rq, rf);
1934 }
1935
1936 return sched_stop_runnable(rq) || sched_dl_runnable(rq);
1937 }
1938 #endif /* CONFIG_SMP */
1939
1940 /*
1941 * Only called when both the current and waking task are -deadline
1942 * tasks.
1943 */
check_preempt_curr_dl(struct rq * rq,struct task_struct * p,int flags)1944 static void check_preempt_curr_dl(struct rq *rq, struct task_struct *p,
1945 int flags)
1946 {
1947 if (dl_entity_preempt(&p->dl, &rq->curr->dl)) {
1948 resched_curr(rq);
1949 return;
1950 }
1951
1952 #ifdef CONFIG_SMP
1953 /*
1954 * In the unlikely case current and p have the same deadline
1955 * let us try to decide what's the best thing to do...
1956 */
1957 if ((p->dl.deadline == rq->curr->dl.deadline) &&
1958 !test_tsk_need_resched(rq->curr))
1959 check_preempt_equal_dl(rq, p);
1960 #endif /* CONFIG_SMP */
1961 }
1962
1963 #ifdef CONFIG_SCHED_HRTICK
start_hrtick_dl(struct rq * rq,struct task_struct * p)1964 static void start_hrtick_dl(struct rq *rq, struct task_struct *p)
1965 {
1966 hrtick_start(rq, p->dl.runtime);
1967 }
1968 #else /* !CONFIG_SCHED_HRTICK */
start_hrtick_dl(struct rq * rq,struct task_struct * p)1969 static void start_hrtick_dl(struct rq *rq, struct task_struct *p)
1970 {
1971 }
1972 #endif
1973
set_next_task_dl(struct rq * rq,struct task_struct * p,bool first)1974 static void set_next_task_dl(struct rq *rq, struct task_struct *p, bool first)
1975 {
1976 struct sched_dl_entity *dl_se = &p->dl;
1977 struct dl_rq *dl_rq = &rq->dl;
1978
1979 p->se.exec_start = rq_clock_task(rq);
1980 if (on_dl_rq(&p->dl))
1981 update_stats_wait_end_dl(dl_rq, dl_se);
1982
1983 /* You can't push away the running task */
1984 dequeue_pushable_dl_task(rq, p);
1985
1986 if (!first)
1987 return;
1988
1989 if (hrtick_enabled_dl(rq))
1990 start_hrtick_dl(rq, p);
1991
1992 if (rq->curr->sched_class != &dl_sched_class)
1993 update_dl_rq_load_avg(rq_clock_pelt(rq), rq, 0);
1994
1995 deadline_queue_push_tasks(rq);
1996 }
1997
pick_next_dl_entity(struct dl_rq * dl_rq)1998 static struct sched_dl_entity *pick_next_dl_entity(struct dl_rq *dl_rq)
1999 {
2000 struct rb_node *left = rb_first_cached(&dl_rq->root);
2001
2002 if (!left)
2003 return NULL;
2004
2005 return __node_2_dle(left);
2006 }
2007
pick_task_dl(struct rq * rq)2008 static struct task_struct *pick_task_dl(struct rq *rq)
2009 {
2010 struct sched_dl_entity *dl_se;
2011 struct dl_rq *dl_rq = &rq->dl;
2012 struct task_struct *p;
2013
2014 if (!sched_dl_runnable(rq))
2015 return NULL;
2016
2017 dl_se = pick_next_dl_entity(dl_rq);
2018 BUG_ON(!dl_se);
2019 p = dl_task_of(dl_se);
2020
2021 return p;
2022 }
2023
pick_next_task_dl(struct rq * rq)2024 static struct task_struct *pick_next_task_dl(struct rq *rq)
2025 {
2026 struct task_struct *p;
2027
2028 p = pick_task_dl(rq);
2029 if (p)
2030 set_next_task_dl(rq, p, true);
2031
2032 return p;
2033 }
2034
put_prev_task_dl(struct rq * rq,struct task_struct * p)2035 static void put_prev_task_dl(struct rq *rq, struct task_struct *p)
2036 {
2037 struct sched_dl_entity *dl_se = &p->dl;
2038 struct dl_rq *dl_rq = &rq->dl;
2039
2040 if (on_dl_rq(&p->dl))
2041 update_stats_wait_start_dl(dl_rq, dl_se);
2042
2043 update_curr_dl(rq);
2044
2045 update_dl_rq_load_avg(rq_clock_pelt(rq), rq, 1);
2046 if (on_dl_rq(&p->dl) && p->nr_cpus_allowed > 1)
2047 enqueue_pushable_dl_task(rq, p);
2048 }
2049
2050 /*
2051 * scheduler tick hitting a task of our scheduling class.
2052 *
2053 * NOTE: This function can be called remotely by the tick offload that
2054 * goes along full dynticks. Therefore no local assumption can be made
2055 * and everything must be accessed through the @rq and @curr passed in
2056 * parameters.
2057 */
task_tick_dl(struct rq * rq,struct task_struct * p,int queued)2058 static void task_tick_dl(struct rq *rq, struct task_struct *p, int queued)
2059 {
2060 update_curr_dl(rq);
2061
2062 update_dl_rq_load_avg(rq_clock_pelt(rq), rq, 1);
2063 /*
2064 * Even when we have runtime, update_curr_dl() might have resulted in us
2065 * not being the leftmost task anymore. In that case NEED_RESCHED will
2066 * be set and schedule() will start a new hrtick for the next task.
2067 */
2068 if (hrtick_enabled_dl(rq) && queued && p->dl.runtime > 0 &&
2069 is_leftmost(p, &rq->dl))
2070 start_hrtick_dl(rq, p);
2071 }
2072
task_fork_dl(struct task_struct * p)2073 static void task_fork_dl(struct task_struct *p)
2074 {
2075 /*
2076 * SCHED_DEADLINE tasks cannot fork and this is achieved through
2077 * sched_fork()
2078 */
2079 }
2080
2081 #ifdef CONFIG_SMP
2082
2083 /* Only try algorithms three times */
2084 #define DL_MAX_TRIES 3
2085
pick_dl_task(struct rq * rq,struct task_struct * p,int cpu)2086 static int pick_dl_task(struct rq *rq, struct task_struct *p, int cpu)
2087 {
2088 if (!task_running(rq, p) &&
2089 cpumask_test_cpu(cpu, &p->cpus_mask))
2090 return 1;
2091 return 0;
2092 }
2093
2094 /*
2095 * Return the earliest pushable rq's task, which is suitable to be executed
2096 * on the CPU, NULL otherwise:
2097 */
pick_earliest_pushable_dl_task(struct rq * rq,int cpu)2098 static struct task_struct *pick_earliest_pushable_dl_task(struct rq *rq, int cpu)
2099 {
2100 struct task_struct *p = NULL;
2101 struct rb_node *next_node;
2102
2103 if (!has_pushable_dl_tasks(rq))
2104 return NULL;
2105
2106 next_node = rb_first_cached(&rq->dl.pushable_dl_tasks_root);
2107
2108 next_node:
2109 if (next_node) {
2110 p = __node_2_pdl(next_node);
2111
2112 if (pick_dl_task(rq, p, cpu))
2113 return p;
2114
2115 next_node = rb_next(next_node);
2116 goto next_node;
2117 }
2118
2119 return NULL;
2120 }
2121
2122 static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask_dl);
2123
find_later_rq(struct task_struct * task)2124 static int find_later_rq(struct task_struct *task)
2125 {
2126 struct sched_domain *sd;
2127 struct cpumask *later_mask = this_cpu_cpumask_var_ptr(local_cpu_mask_dl);
2128 int this_cpu = smp_processor_id();
2129 int cpu = task_cpu(task);
2130
2131 /* Make sure the mask is initialized first */
2132 if (unlikely(!later_mask))
2133 return -1;
2134
2135 if (task->nr_cpus_allowed == 1)
2136 return -1;
2137
2138 /*
2139 * We have to consider system topology and task affinity
2140 * first, then we can look for a suitable CPU.
2141 */
2142 if (!cpudl_find(&task_rq(task)->rd->cpudl, task, later_mask))
2143 return -1;
2144
2145 /*
2146 * If we are here, some targets have been found, including
2147 * the most suitable which is, among the runqueues where the
2148 * current tasks have later deadlines than the task's one, the
2149 * rq with the latest possible one.
2150 *
2151 * Now we check how well this matches with task's
2152 * affinity and system topology.
2153 *
2154 * The last CPU where the task run is our first
2155 * guess, since it is most likely cache-hot there.
2156 */
2157 if (cpumask_test_cpu(cpu, later_mask))
2158 return cpu;
2159 /*
2160 * Check if this_cpu is to be skipped (i.e., it is
2161 * not in the mask) or not.
2162 */
2163 if (!cpumask_test_cpu(this_cpu, later_mask))
2164 this_cpu = -1;
2165
2166 rcu_read_lock();
2167 for_each_domain(cpu, sd) {
2168 if (sd->flags & SD_WAKE_AFFINE) {
2169 int best_cpu;
2170
2171 /*
2172 * If possible, preempting this_cpu is
2173 * cheaper than migrating.
2174 */
2175 if (this_cpu != -1 &&
2176 cpumask_test_cpu(this_cpu, sched_domain_span(sd))) {
2177 rcu_read_unlock();
2178 return this_cpu;
2179 }
2180
2181 best_cpu = cpumask_any_and_distribute(later_mask,
2182 sched_domain_span(sd));
2183 /*
2184 * Last chance: if a CPU being in both later_mask
2185 * and current sd span is valid, that becomes our
2186 * choice. Of course, the latest possible CPU is
2187 * already under consideration through later_mask.
2188 */
2189 if (best_cpu < nr_cpu_ids) {
2190 rcu_read_unlock();
2191 return best_cpu;
2192 }
2193 }
2194 }
2195 rcu_read_unlock();
2196
2197 /*
2198 * At this point, all our guesses failed, we just return
2199 * 'something', and let the caller sort the things out.
2200 */
2201 if (this_cpu != -1)
2202 return this_cpu;
2203
2204 cpu = cpumask_any_distribute(later_mask);
2205 if (cpu < nr_cpu_ids)
2206 return cpu;
2207
2208 return -1;
2209 }
2210
2211 /* Locks the rq it finds */
find_lock_later_rq(struct task_struct * task,struct rq * rq)2212 static struct rq *find_lock_later_rq(struct task_struct *task, struct rq *rq)
2213 {
2214 struct rq *later_rq = NULL;
2215 int tries;
2216 int cpu;
2217
2218 for (tries = 0; tries < DL_MAX_TRIES; tries++) {
2219 cpu = find_later_rq(task);
2220
2221 if ((cpu == -1) || (cpu == rq->cpu))
2222 break;
2223
2224 later_rq = cpu_rq(cpu);
2225
2226 if (later_rq->dl.dl_nr_running &&
2227 !dl_time_before(task->dl.deadline,
2228 later_rq->dl.earliest_dl.curr)) {
2229 /*
2230 * Target rq has tasks of equal or earlier deadline,
2231 * retrying does not release any lock and is unlikely
2232 * to yield a different result.
2233 */
2234 later_rq = NULL;
2235 break;
2236 }
2237
2238 /* Retry if something changed. */
2239 if (double_lock_balance(rq, later_rq)) {
2240 if (unlikely(task_rq(task) != rq ||
2241 !cpumask_test_cpu(later_rq->cpu, &task->cpus_mask) ||
2242 task_running(rq, task) ||
2243 !dl_task(task) ||
2244 !task_on_rq_queued(task))) {
2245 double_unlock_balance(rq, later_rq);
2246 later_rq = NULL;
2247 break;
2248 }
2249 }
2250
2251 /*
2252 * If the rq we found has no -deadline task, or
2253 * its earliest one has a later deadline than our
2254 * task, the rq is a good one.
2255 */
2256 if (!later_rq->dl.dl_nr_running ||
2257 dl_time_before(task->dl.deadline,
2258 later_rq->dl.earliest_dl.curr))
2259 break;
2260
2261 /* Otherwise we try again. */
2262 double_unlock_balance(rq, later_rq);
2263 later_rq = NULL;
2264 }
2265
2266 return later_rq;
2267 }
2268
pick_next_pushable_dl_task(struct rq * rq)2269 static struct task_struct *pick_next_pushable_dl_task(struct rq *rq)
2270 {
2271 struct task_struct *p;
2272
2273 if (!has_pushable_dl_tasks(rq))
2274 return NULL;
2275
2276 p = __node_2_pdl(rb_first_cached(&rq->dl.pushable_dl_tasks_root));
2277
2278 BUG_ON(rq->cpu != task_cpu(p));
2279 BUG_ON(task_current(rq, p));
2280 BUG_ON(p->nr_cpus_allowed <= 1);
2281
2282 BUG_ON(!task_on_rq_queued(p));
2283 BUG_ON(!dl_task(p));
2284
2285 return p;
2286 }
2287
2288 /*
2289 * See if the non running -deadline tasks on this rq
2290 * can be sent to some other CPU where they can preempt
2291 * and start executing.
2292 */
push_dl_task(struct rq * rq)2293 static int push_dl_task(struct rq *rq)
2294 {
2295 struct task_struct *next_task;
2296 struct rq *later_rq;
2297 int ret = 0;
2298
2299 if (!rq->dl.overloaded)
2300 return 0;
2301
2302 next_task = pick_next_pushable_dl_task(rq);
2303 if (!next_task)
2304 return 0;
2305
2306 retry:
2307 /*
2308 * If next_task preempts rq->curr, and rq->curr
2309 * can move away, it makes sense to just reschedule
2310 * without going further in pushing next_task.
2311 */
2312 if (dl_task(rq->curr) &&
2313 dl_time_before(next_task->dl.deadline, rq->curr->dl.deadline) &&
2314 rq->curr->nr_cpus_allowed > 1) {
2315 resched_curr(rq);
2316 return 0;
2317 }
2318
2319 if (is_migration_disabled(next_task))
2320 return 0;
2321
2322 if (WARN_ON(next_task == rq->curr))
2323 return 0;
2324
2325 /* We might release rq lock */
2326 get_task_struct(next_task);
2327
2328 /* Will lock the rq it'll find */
2329 later_rq = find_lock_later_rq(next_task, rq);
2330 if (!later_rq) {
2331 struct task_struct *task;
2332
2333 /*
2334 * We must check all this again, since
2335 * find_lock_later_rq releases rq->lock and it is
2336 * then possible that next_task has migrated.
2337 */
2338 task = pick_next_pushable_dl_task(rq);
2339 if (task == next_task) {
2340 /*
2341 * The task is still there. We don't try
2342 * again, some other CPU will pull it when ready.
2343 */
2344 goto out;
2345 }
2346
2347 if (!task)
2348 /* No more tasks */
2349 goto out;
2350
2351 put_task_struct(next_task);
2352 next_task = task;
2353 goto retry;
2354 }
2355
2356 deactivate_task(rq, next_task, 0);
2357 set_task_cpu(next_task, later_rq->cpu);
2358 activate_task(later_rq, next_task, 0);
2359 ret = 1;
2360
2361 resched_curr(later_rq);
2362
2363 double_unlock_balance(rq, later_rq);
2364
2365 out:
2366 put_task_struct(next_task);
2367
2368 return ret;
2369 }
2370
push_dl_tasks(struct rq * rq)2371 static void push_dl_tasks(struct rq *rq)
2372 {
2373 /* push_dl_task() will return true if it moved a -deadline task */
2374 while (push_dl_task(rq))
2375 ;
2376 }
2377
pull_dl_task(struct rq * this_rq)2378 static void pull_dl_task(struct rq *this_rq)
2379 {
2380 int this_cpu = this_rq->cpu, cpu;
2381 struct task_struct *p, *push_task;
2382 bool resched = false;
2383 struct rq *src_rq;
2384 u64 dmin = LONG_MAX;
2385
2386 if (likely(!dl_overloaded(this_rq)))
2387 return;
2388
2389 /*
2390 * Match the barrier from dl_set_overloaded; this guarantees that if we
2391 * see overloaded we must also see the dlo_mask bit.
2392 */
2393 smp_rmb();
2394
2395 for_each_cpu(cpu, this_rq->rd->dlo_mask) {
2396 if (this_cpu == cpu)
2397 continue;
2398
2399 src_rq = cpu_rq(cpu);
2400
2401 /*
2402 * It looks racy, abd it is! However, as in sched_rt.c,
2403 * we are fine with this.
2404 */
2405 if (this_rq->dl.dl_nr_running &&
2406 dl_time_before(this_rq->dl.earliest_dl.curr,
2407 src_rq->dl.earliest_dl.next))
2408 continue;
2409
2410 /* Might drop this_rq->lock */
2411 push_task = NULL;
2412 double_lock_balance(this_rq, src_rq);
2413
2414 /*
2415 * If there are no more pullable tasks on the
2416 * rq, we're done with it.
2417 */
2418 if (src_rq->dl.dl_nr_running <= 1)
2419 goto skip;
2420
2421 p = pick_earliest_pushable_dl_task(src_rq, this_cpu);
2422
2423 /*
2424 * We found a task to be pulled if:
2425 * - it preempts our current (if there's one),
2426 * - it will preempt the last one we pulled (if any).
2427 */
2428 if (p && dl_time_before(p->dl.deadline, dmin) &&
2429 (!this_rq->dl.dl_nr_running ||
2430 dl_time_before(p->dl.deadline,
2431 this_rq->dl.earliest_dl.curr))) {
2432 WARN_ON(p == src_rq->curr);
2433 WARN_ON(!task_on_rq_queued(p));
2434
2435 /*
2436 * Then we pull iff p has actually an earlier
2437 * deadline than the current task of its runqueue.
2438 */
2439 if (dl_time_before(p->dl.deadline,
2440 src_rq->curr->dl.deadline))
2441 goto skip;
2442
2443 if (is_migration_disabled(p)) {
2444 push_task = get_push_task(src_rq);
2445 } else {
2446 deactivate_task(src_rq, p, 0);
2447 set_task_cpu(p, this_cpu);
2448 activate_task(this_rq, p, 0);
2449 dmin = p->dl.deadline;
2450 resched = true;
2451 }
2452
2453 /* Is there any other task even earlier? */
2454 }
2455 skip:
2456 double_unlock_balance(this_rq, src_rq);
2457
2458 if (push_task) {
2459 raw_spin_rq_unlock(this_rq);
2460 stop_one_cpu_nowait(src_rq->cpu, push_cpu_stop,
2461 push_task, &src_rq->push_work);
2462 raw_spin_rq_lock(this_rq);
2463 }
2464 }
2465
2466 if (resched)
2467 resched_curr(this_rq);
2468 }
2469
2470 /*
2471 * Since the task is not running and a reschedule is not going to happen
2472 * anytime soon on its runqueue, we try pushing it away now.
2473 */
task_woken_dl(struct rq * rq,struct task_struct * p)2474 static void task_woken_dl(struct rq *rq, struct task_struct *p)
2475 {
2476 if (!task_running(rq, p) &&
2477 !test_tsk_need_resched(rq->curr) &&
2478 p->nr_cpus_allowed > 1 &&
2479 dl_task(rq->curr) &&
2480 (rq->curr->nr_cpus_allowed < 2 ||
2481 !dl_entity_preempt(&p->dl, &rq->curr->dl))) {
2482 push_dl_tasks(rq);
2483 }
2484 }
2485
set_cpus_allowed_dl(struct task_struct * p,const struct cpumask * new_mask,u32 flags)2486 static void set_cpus_allowed_dl(struct task_struct *p,
2487 const struct cpumask *new_mask,
2488 u32 flags)
2489 {
2490 struct root_domain *src_rd;
2491 struct rq *rq;
2492
2493 BUG_ON(!dl_task(p));
2494
2495 rq = task_rq(p);
2496 src_rd = rq->rd;
2497 /*
2498 * Migrating a SCHED_DEADLINE task between exclusive
2499 * cpusets (different root_domains) entails a bandwidth
2500 * update. We already made space for us in the destination
2501 * domain (see cpuset_can_attach()).
2502 */
2503 if (!cpumask_intersects(src_rd->span, new_mask)) {
2504 struct dl_bw *src_dl_b;
2505
2506 src_dl_b = dl_bw_of(cpu_of(rq));
2507 /*
2508 * We now free resources of the root_domain we are migrating
2509 * off. In the worst case, sched_setattr() may temporary fail
2510 * until we complete the update.
2511 */
2512 raw_spin_lock(&src_dl_b->lock);
2513 __dl_sub(src_dl_b, p->dl.dl_bw, dl_bw_cpus(task_cpu(p)));
2514 raw_spin_unlock(&src_dl_b->lock);
2515 }
2516
2517 set_cpus_allowed_common(p, new_mask, flags);
2518 }
2519
2520 /* Assumes rq->lock is held */
rq_online_dl(struct rq * rq)2521 static void rq_online_dl(struct rq *rq)
2522 {
2523 if (rq->dl.overloaded)
2524 dl_set_overload(rq);
2525
2526 cpudl_set_freecpu(&rq->rd->cpudl, rq->cpu);
2527 if (rq->dl.dl_nr_running > 0)
2528 cpudl_set(&rq->rd->cpudl, rq->cpu, rq->dl.earliest_dl.curr);
2529 }
2530
2531 /* Assumes rq->lock is held */
rq_offline_dl(struct rq * rq)2532 static void rq_offline_dl(struct rq *rq)
2533 {
2534 if (rq->dl.overloaded)
2535 dl_clear_overload(rq);
2536
2537 cpudl_clear(&rq->rd->cpudl, rq->cpu);
2538 cpudl_clear_freecpu(&rq->rd->cpudl, rq->cpu);
2539 }
2540
init_sched_dl_class(void)2541 void __init init_sched_dl_class(void)
2542 {
2543 unsigned int i;
2544
2545 for_each_possible_cpu(i)
2546 zalloc_cpumask_var_node(&per_cpu(local_cpu_mask_dl, i),
2547 GFP_KERNEL, cpu_to_node(i));
2548 }
2549
dl_add_task_root_domain(struct task_struct * p)2550 void dl_add_task_root_domain(struct task_struct *p)
2551 {
2552 struct rq_flags rf;
2553 struct rq *rq;
2554 struct dl_bw *dl_b;
2555
2556 raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
2557 if (!dl_task(p)) {
2558 raw_spin_unlock_irqrestore(&p->pi_lock, rf.flags);
2559 return;
2560 }
2561
2562 rq = __task_rq_lock(p, &rf);
2563
2564 dl_b = &rq->rd->dl_bw;
2565 raw_spin_lock(&dl_b->lock);
2566
2567 __dl_add(dl_b, p->dl.dl_bw, cpumask_weight(rq->rd->span));
2568
2569 raw_spin_unlock(&dl_b->lock);
2570
2571 task_rq_unlock(rq, p, &rf);
2572 }
2573
dl_clear_root_domain(struct root_domain * rd)2574 void dl_clear_root_domain(struct root_domain *rd)
2575 {
2576 unsigned long flags;
2577
2578 raw_spin_lock_irqsave(&rd->dl_bw.lock, flags);
2579 rd->dl_bw.total_bw = 0;
2580 raw_spin_unlock_irqrestore(&rd->dl_bw.lock, flags);
2581 }
2582
2583 #endif /* CONFIG_SMP */
2584
switched_from_dl(struct rq * rq,struct task_struct * p)2585 static void switched_from_dl(struct rq *rq, struct task_struct *p)
2586 {
2587 /*
2588 * task_non_contending() can start the "inactive timer" (if the 0-lag
2589 * time is in the future). If the task switches back to dl before
2590 * the "inactive timer" fires, it can continue to consume its current
2591 * runtime using its current deadline. If it stays outside of
2592 * SCHED_DEADLINE until the 0-lag time passes, inactive_task_timer()
2593 * will reset the task parameters.
2594 */
2595 if (task_on_rq_queued(p) && p->dl.dl_runtime)
2596 task_non_contending(p);
2597
2598 if (!task_on_rq_queued(p)) {
2599 /*
2600 * Inactive timer is armed. However, p is leaving DEADLINE and
2601 * might migrate away from this rq while continuing to run on
2602 * some other class. We need to remove its contribution from
2603 * this rq running_bw now, or sub_rq_bw (below) will complain.
2604 */
2605 if (p->dl.dl_non_contending)
2606 sub_running_bw(&p->dl, &rq->dl);
2607 sub_rq_bw(&p->dl, &rq->dl);
2608 }
2609
2610 /*
2611 * We cannot use inactive_task_timer() to invoke sub_running_bw()
2612 * at the 0-lag time, because the task could have been migrated
2613 * while SCHED_OTHER in the meanwhile.
2614 */
2615 if (p->dl.dl_non_contending)
2616 p->dl.dl_non_contending = 0;
2617
2618 /*
2619 * Since this might be the only -deadline task on the rq,
2620 * this is the right place to try to pull some other one
2621 * from an overloaded CPU, if any.
2622 */
2623 if (!task_on_rq_queued(p) || rq->dl.dl_nr_running)
2624 return;
2625
2626 deadline_queue_pull_task(rq);
2627 }
2628
2629 /*
2630 * When switching to -deadline, we may overload the rq, then
2631 * we try to push someone off, if possible.
2632 */
switched_to_dl(struct rq * rq,struct task_struct * p)2633 static void switched_to_dl(struct rq *rq, struct task_struct *p)
2634 {
2635 if (hrtimer_try_to_cancel(&p->dl.inactive_timer) == 1)
2636 put_task_struct(p);
2637
2638 /* If p is not queued we will update its parameters at next wakeup. */
2639 if (!task_on_rq_queued(p)) {
2640 add_rq_bw(&p->dl, &rq->dl);
2641
2642 return;
2643 }
2644
2645 if (rq->curr != p) {
2646 #ifdef CONFIG_SMP
2647 if (p->nr_cpus_allowed > 1 && rq->dl.overloaded)
2648 deadline_queue_push_tasks(rq);
2649 #endif
2650 if (dl_task(rq->curr))
2651 check_preempt_curr_dl(rq, p, 0);
2652 else
2653 resched_curr(rq);
2654 } else {
2655 update_dl_rq_load_avg(rq_clock_pelt(rq), rq, 0);
2656 }
2657 }
2658
2659 /*
2660 * If the scheduling parameters of a -deadline task changed,
2661 * a push or pull operation might be needed.
2662 */
prio_changed_dl(struct rq * rq,struct task_struct * p,int oldprio)2663 static void prio_changed_dl(struct rq *rq, struct task_struct *p,
2664 int oldprio)
2665 {
2666 if (task_on_rq_queued(p) || task_current(rq, p)) {
2667 #ifdef CONFIG_SMP
2668 /*
2669 * This might be too much, but unfortunately
2670 * we don't have the old deadline value, and
2671 * we can't argue if the task is increasing
2672 * or lowering its prio, so...
2673 */
2674 if (!rq->dl.overloaded)
2675 deadline_queue_pull_task(rq);
2676
2677 /*
2678 * If we now have a earlier deadline task than p,
2679 * then reschedule, provided p is still on this
2680 * runqueue.
2681 */
2682 if (dl_time_before(rq->dl.earliest_dl.curr, p->dl.deadline))
2683 resched_curr(rq);
2684 #else
2685 /*
2686 * Again, we don't know if p has a earlier
2687 * or later deadline, so let's blindly set a
2688 * (maybe not needed) rescheduling point.
2689 */
2690 resched_curr(rq);
2691 #endif /* CONFIG_SMP */
2692 }
2693 }
2694
2695 DEFINE_SCHED_CLASS(dl) = {
2696
2697 .enqueue_task = enqueue_task_dl,
2698 .dequeue_task = dequeue_task_dl,
2699 .yield_task = yield_task_dl,
2700
2701 .check_preempt_curr = check_preempt_curr_dl,
2702
2703 .pick_next_task = pick_next_task_dl,
2704 .put_prev_task = put_prev_task_dl,
2705 .set_next_task = set_next_task_dl,
2706
2707 #ifdef CONFIG_SMP
2708 .balance = balance_dl,
2709 .pick_task = pick_task_dl,
2710 .select_task_rq = select_task_rq_dl,
2711 .migrate_task_rq = migrate_task_rq_dl,
2712 .set_cpus_allowed = set_cpus_allowed_dl,
2713 .rq_online = rq_online_dl,
2714 .rq_offline = rq_offline_dl,
2715 .task_woken = task_woken_dl,
2716 .find_lock_rq = find_lock_later_rq,
2717 #endif
2718
2719 .task_tick = task_tick_dl,
2720 .task_fork = task_fork_dl,
2721
2722 .prio_changed = prio_changed_dl,
2723 .switched_from = switched_from_dl,
2724 .switched_to = switched_to_dl,
2725
2726 .update_curr = update_curr_dl,
2727 };
2728
2729 /* Used for dl_bw check and update, used under sched_rt_handler()::mutex */
2730 static u64 dl_generation;
2731
sched_dl_global_validate(void)2732 int sched_dl_global_validate(void)
2733 {
2734 u64 runtime = global_rt_runtime();
2735 u64 period = global_rt_period();
2736 u64 new_bw = to_ratio(period, runtime);
2737 u64 gen = ++dl_generation;
2738 struct dl_bw *dl_b;
2739 int cpu, cpus, ret = 0;
2740 unsigned long flags;
2741
2742 /*
2743 * Here we want to check the bandwidth not being set to some
2744 * value smaller than the currently allocated bandwidth in
2745 * any of the root_domains.
2746 */
2747 for_each_possible_cpu(cpu) {
2748 rcu_read_lock_sched();
2749
2750 if (dl_bw_visited(cpu, gen))
2751 goto next;
2752
2753 dl_b = dl_bw_of(cpu);
2754 cpus = dl_bw_cpus(cpu);
2755
2756 raw_spin_lock_irqsave(&dl_b->lock, flags);
2757 if (new_bw * cpus < dl_b->total_bw)
2758 ret = -EBUSY;
2759 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
2760
2761 next:
2762 rcu_read_unlock_sched();
2763
2764 if (ret)
2765 break;
2766 }
2767
2768 return ret;
2769 }
2770
init_dl_rq_bw_ratio(struct dl_rq * dl_rq)2771 static void init_dl_rq_bw_ratio(struct dl_rq *dl_rq)
2772 {
2773 if (global_rt_runtime() == RUNTIME_INF) {
2774 dl_rq->bw_ratio = 1 << RATIO_SHIFT;
2775 dl_rq->extra_bw = 1 << BW_SHIFT;
2776 } else {
2777 dl_rq->bw_ratio = to_ratio(global_rt_runtime(),
2778 global_rt_period()) >> (BW_SHIFT - RATIO_SHIFT);
2779 dl_rq->extra_bw = to_ratio(global_rt_period(),
2780 global_rt_runtime());
2781 }
2782 }
2783
sched_dl_do_global(void)2784 void sched_dl_do_global(void)
2785 {
2786 u64 new_bw = -1;
2787 u64 gen = ++dl_generation;
2788 struct dl_bw *dl_b;
2789 int cpu;
2790 unsigned long flags;
2791
2792 if (global_rt_runtime() != RUNTIME_INF)
2793 new_bw = to_ratio(global_rt_period(), global_rt_runtime());
2794
2795 for_each_possible_cpu(cpu) {
2796 rcu_read_lock_sched();
2797
2798 if (dl_bw_visited(cpu, gen)) {
2799 rcu_read_unlock_sched();
2800 continue;
2801 }
2802
2803 dl_b = dl_bw_of(cpu);
2804
2805 raw_spin_lock_irqsave(&dl_b->lock, flags);
2806 dl_b->bw = new_bw;
2807 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
2808
2809 rcu_read_unlock_sched();
2810 init_dl_rq_bw_ratio(&cpu_rq(cpu)->dl);
2811 }
2812 }
2813
2814 /*
2815 * We must be sure that accepting a new task (or allowing changing the
2816 * parameters of an existing one) is consistent with the bandwidth
2817 * constraints. If yes, this function also accordingly updates the currently
2818 * allocated bandwidth to reflect the new situation.
2819 *
2820 * This function is called while holding p's rq->lock.
2821 */
sched_dl_overflow(struct task_struct * p,int policy,const struct sched_attr * attr)2822 int sched_dl_overflow(struct task_struct *p, int policy,
2823 const struct sched_attr *attr)
2824 {
2825 u64 period = attr->sched_period ?: attr->sched_deadline;
2826 u64 runtime = attr->sched_runtime;
2827 u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
2828 int cpus, err = -1, cpu = task_cpu(p);
2829 struct dl_bw *dl_b = dl_bw_of(cpu);
2830 unsigned long cap;
2831
2832 if (attr->sched_flags & SCHED_FLAG_SUGOV)
2833 return 0;
2834
2835 /* !deadline task may carry old deadline bandwidth */
2836 if (new_bw == p->dl.dl_bw && task_has_dl_policy(p))
2837 return 0;
2838
2839 /*
2840 * Either if a task, enters, leave, or stays -deadline but changes
2841 * its parameters, we may need to update accordingly the total
2842 * allocated bandwidth of the container.
2843 */
2844 raw_spin_lock(&dl_b->lock);
2845 cpus = dl_bw_cpus(cpu);
2846 cap = dl_bw_capacity(cpu);
2847
2848 if (dl_policy(policy) && !task_has_dl_policy(p) &&
2849 !__dl_overflow(dl_b, cap, 0, new_bw)) {
2850 if (hrtimer_active(&p->dl.inactive_timer))
2851 __dl_sub(dl_b, p->dl.dl_bw, cpus);
2852 __dl_add(dl_b, new_bw, cpus);
2853 err = 0;
2854 } else if (dl_policy(policy) && task_has_dl_policy(p) &&
2855 !__dl_overflow(dl_b, cap, p->dl.dl_bw, new_bw)) {
2856 /*
2857 * XXX this is slightly incorrect: when the task
2858 * utilization decreases, we should delay the total
2859 * utilization change until the task's 0-lag point.
2860 * But this would require to set the task's "inactive
2861 * timer" when the task is not inactive.
2862 */
2863 __dl_sub(dl_b, p->dl.dl_bw, cpus);
2864 __dl_add(dl_b, new_bw, cpus);
2865 dl_change_utilization(p, new_bw);
2866 err = 0;
2867 } else if (!dl_policy(policy) && task_has_dl_policy(p)) {
2868 /*
2869 * Do not decrease the total deadline utilization here,
2870 * switched_from_dl() will take care to do it at the correct
2871 * (0-lag) time.
2872 */
2873 err = 0;
2874 }
2875 raw_spin_unlock(&dl_b->lock);
2876
2877 return err;
2878 }
2879
2880 /*
2881 * This function initializes the sched_dl_entity of a newly becoming
2882 * SCHED_DEADLINE task.
2883 *
2884 * Only the static values are considered here, the actual runtime and the
2885 * absolute deadline will be properly calculated when the task is enqueued
2886 * for the first time with its new policy.
2887 */
__setparam_dl(struct task_struct * p,const struct sched_attr * attr)2888 void __setparam_dl(struct task_struct *p, const struct sched_attr *attr)
2889 {
2890 struct sched_dl_entity *dl_se = &p->dl;
2891
2892 dl_se->dl_runtime = attr->sched_runtime;
2893 dl_se->dl_deadline = attr->sched_deadline;
2894 dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
2895 dl_se->flags = attr->sched_flags & SCHED_DL_FLAGS;
2896 dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
2897 dl_se->dl_density = to_ratio(dl_se->dl_deadline, dl_se->dl_runtime);
2898 }
2899
__getparam_dl(struct task_struct * p,struct sched_attr * attr)2900 void __getparam_dl(struct task_struct *p, struct sched_attr *attr)
2901 {
2902 struct sched_dl_entity *dl_se = &p->dl;
2903
2904 attr->sched_priority = p->rt_priority;
2905 attr->sched_runtime = dl_se->dl_runtime;
2906 attr->sched_deadline = dl_se->dl_deadline;
2907 attr->sched_period = dl_se->dl_period;
2908 attr->sched_flags &= ~SCHED_DL_FLAGS;
2909 attr->sched_flags |= dl_se->flags;
2910 }
2911
2912 /*
2913 * This function validates the new parameters of a -deadline task.
2914 * We ask for the deadline not being zero, and greater or equal
2915 * than the runtime, as well as the period of being zero or
2916 * greater than deadline. Furthermore, we have to be sure that
2917 * user parameters are above the internal resolution of 1us (we
2918 * check sched_runtime only since it is always the smaller one) and
2919 * below 2^63 ns (we have to check both sched_deadline and
2920 * sched_period, as the latter can be zero).
2921 */
__checkparam_dl(const struct sched_attr * attr)2922 bool __checkparam_dl(const struct sched_attr *attr)
2923 {
2924 u64 period, max, min;
2925
2926 /* special dl tasks don't actually use any parameter */
2927 if (attr->sched_flags & SCHED_FLAG_SUGOV)
2928 return true;
2929
2930 /* deadline != 0 */
2931 if (attr->sched_deadline == 0)
2932 return false;
2933
2934 /*
2935 * Since we truncate DL_SCALE bits, make sure we're at least
2936 * that big.
2937 */
2938 if (attr->sched_runtime < (1ULL << DL_SCALE))
2939 return false;
2940
2941 /*
2942 * Since we use the MSB for wrap-around and sign issues, make
2943 * sure it's not set (mind that period can be equal to zero).
2944 */
2945 if (attr->sched_deadline & (1ULL << 63) ||
2946 attr->sched_period & (1ULL << 63))
2947 return false;
2948
2949 period = attr->sched_period;
2950 if (!period)
2951 period = attr->sched_deadline;
2952
2953 /* runtime <= deadline <= period (if period != 0) */
2954 if (period < attr->sched_deadline ||
2955 attr->sched_deadline < attr->sched_runtime)
2956 return false;
2957
2958 max = (u64)READ_ONCE(sysctl_sched_dl_period_max) * NSEC_PER_USEC;
2959 min = (u64)READ_ONCE(sysctl_sched_dl_period_min) * NSEC_PER_USEC;
2960
2961 if (period < min || period > max)
2962 return false;
2963
2964 return true;
2965 }
2966
2967 /*
2968 * This function clears the sched_dl_entity static params.
2969 */
__dl_clear_params(struct task_struct * p)2970 void __dl_clear_params(struct task_struct *p)
2971 {
2972 struct sched_dl_entity *dl_se = &p->dl;
2973
2974 dl_se->dl_runtime = 0;
2975 dl_se->dl_deadline = 0;
2976 dl_se->dl_period = 0;
2977 dl_se->flags = 0;
2978 dl_se->dl_bw = 0;
2979 dl_se->dl_density = 0;
2980
2981 dl_se->dl_throttled = 0;
2982 dl_se->dl_yielded = 0;
2983 dl_se->dl_non_contending = 0;
2984 dl_se->dl_overrun = 0;
2985
2986 #ifdef CONFIG_RT_MUTEXES
2987 dl_se->pi_se = dl_se;
2988 #endif
2989 }
2990
dl_param_changed(struct task_struct * p,const struct sched_attr * attr)2991 bool dl_param_changed(struct task_struct *p, const struct sched_attr *attr)
2992 {
2993 struct sched_dl_entity *dl_se = &p->dl;
2994
2995 if (dl_se->dl_runtime != attr->sched_runtime ||
2996 dl_se->dl_deadline != attr->sched_deadline ||
2997 dl_se->dl_period != attr->sched_period ||
2998 dl_se->flags != (attr->sched_flags & SCHED_DL_FLAGS))
2999 return true;
3000
3001 return false;
3002 }
3003
3004 #ifdef CONFIG_SMP
dl_cpuset_cpumask_can_shrink(const struct cpumask * cur,const struct cpumask * trial)3005 int dl_cpuset_cpumask_can_shrink(const struct cpumask *cur,
3006 const struct cpumask *trial)
3007 {
3008 int ret = 1, trial_cpus;
3009 struct dl_bw *cur_dl_b;
3010 unsigned long flags;
3011
3012 rcu_read_lock_sched();
3013 cur_dl_b = dl_bw_of(cpumask_any(cur));
3014 trial_cpus = cpumask_weight(trial);
3015
3016 raw_spin_lock_irqsave(&cur_dl_b->lock, flags);
3017 if (cur_dl_b->bw != -1 &&
3018 cur_dl_b->bw * trial_cpus < cur_dl_b->total_bw)
3019 ret = 0;
3020 raw_spin_unlock_irqrestore(&cur_dl_b->lock, flags);
3021 rcu_read_unlock_sched();
3022
3023 return ret;
3024 }
3025
dl_cpu_busy(int cpu,struct task_struct * p)3026 int dl_cpu_busy(int cpu, struct task_struct *p)
3027 {
3028 unsigned long flags, cap;
3029 struct dl_bw *dl_b;
3030 bool overflow;
3031
3032 rcu_read_lock_sched();
3033 dl_b = dl_bw_of(cpu);
3034 raw_spin_lock_irqsave(&dl_b->lock, flags);
3035 cap = dl_bw_capacity(cpu);
3036 overflow = __dl_overflow(dl_b, cap, 0, p ? p->dl.dl_bw : 0);
3037
3038 if (!overflow && p) {
3039 /*
3040 * We reserve space for this task in the destination
3041 * root_domain, as we can't fail after this point.
3042 * We will free resources in the source root_domain
3043 * later on (see set_cpus_allowed_dl()).
3044 */
3045 __dl_add(dl_b, p->dl.dl_bw, dl_bw_cpus(cpu));
3046 }
3047
3048 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
3049 rcu_read_unlock_sched();
3050
3051 return overflow ? -EBUSY : 0;
3052 }
3053 #endif
3054
3055 #ifdef CONFIG_SCHED_DEBUG
print_dl_stats(struct seq_file * m,int cpu)3056 void print_dl_stats(struct seq_file *m, int cpu)
3057 {
3058 print_dl_rq(m, cpu, &cpu_rq(cpu)->dl);
3059 }
3060 #endif /* CONFIG_SCHED_DEBUG */
3061