1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * kernel/sched/core.c
4 *
5 * Core kernel scheduler code and related syscalls
6 *
7 * Copyright (C) 1991-2002 Linus Torvalds
8 */
9 #include <linux/highmem.h>
10 #include <linux/hrtimer_api.h>
11 #include <linux/ktime_api.h>
12 #include <linux/sched/signal.h>
13 #include <linux/syscalls_api.h>
14 #include <linux/debug_locks.h>
15 #include <linux/prefetch.h>
16 #include <linux/capability.h>
17 #include <linux/pgtable_api.h>
18 #include <linux/wait_bit.h>
19 #include <linux/jiffies.h>
20 #include <linux/spinlock_api.h>
21 #include <linux/cpumask_api.h>
22 #include <linux/lockdep_api.h>
23 #include <linux/hardirq.h>
24 #include <linux/softirq.h>
25 #include <linux/refcount_api.h>
26 #include <linux/topology.h>
27 #include <linux/sched/clock.h>
28 #include <linux/sched/cond_resched.h>
29 #include <linux/sched/cputime.h>
30 #include <linux/sched/debug.h>
31 #include <linux/sched/hotplug.h>
32 #include <linux/sched/init.h>
33 #include <linux/sched/isolation.h>
34 #include <linux/sched/loadavg.h>
35 #include <linux/sched/mm.h>
36 #include <linux/sched/nohz.h>
37 #include <linux/sched/rseq_api.h>
38 #include <linux/sched/rt.h>
39
40 #include <linux/blkdev.h>
41 #include <linux/context_tracking.h>
42 #include <linux/cpuset.h>
43 #include <linux/delayacct.h>
44 #include <linux/init_task.h>
45 #include <linux/interrupt.h>
46 #include <linux/ioprio.h>
47 #include <linux/kallsyms.h>
48 #include <linux/kcov.h>
49 #include <linux/kprobes.h>
50 #include <linux/llist_api.h>
51 #include <linux/mmu_context.h>
52 #include <linux/mmzone.h>
53 #include <linux/mutex_api.h>
54 #include <linux/nmi.h>
55 #include <linux/nospec.h>
56 #include <linux/perf_event_api.h>
57 #include <linux/profile.h>
58 #include <linux/psi.h>
59 #include <linux/rcuwait_api.h>
60 #include <linux/sched/wake_q.h>
61 #include <linux/scs.h>
62 #include <linux/slab.h>
63 #include <linux/syscalls.h>
64 #include <linux/vtime.h>
65 #include <linux/wait_api.h>
66 #include <linux/workqueue_api.h>
67
68 #ifdef CONFIG_PREEMPT_DYNAMIC
69 # ifdef CONFIG_GENERIC_ENTRY
70 # include <linux/entry-common.h>
71 # endif
72 #endif
73
74 #include <uapi/linux/sched/types.h>
75
76 #include <asm/switch_to.h>
77 #include <asm/tlb.h>
78
79 #define CREATE_TRACE_POINTS
80 #include <linux/sched/rseq_api.h>
81 #include <trace/events/sched.h>
82 #undef CREATE_TRACE_POINTS
83
84 #include "sched.h"
85 #include "stats.h"
86 #include "autogroup.h"
87
88 #include "autogroup.h"
89 #include "pelt.h"
90 #include "smp.h"
91 #include "stats.h"
92
93 #include "../workqueue_internal.h"
94 #include "../../io_uring/io-wq.h"
95 #include "../smpboot.h"
96
97 /*
98 * Export tracepoints that act as a bare tracehook (ie: have no trace event
99 * associated with them) to allow external modules to probe them.
100 */
101 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_cfs_tp);
102 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_rt_tp);
103 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_dl_tp);
104 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_irq_tp);
105 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_se_tp);
106 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_thermal_tp);
107 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_cpu_capacity_tp);
108 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_overutilized_tp);
109 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_cfs_tp);
110 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_se_tp);
111 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_update_nr_running_tp);
112
113 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
114
115 #ifdef CONFIG_SCHED_DEBUG
116 /*
117 * Debugging: various feature bits
118 *
119 * If SCHED_DEBUG is disabled, each compilation unit has its own copy of
120 * sysctl_sched_features, defined in sched.h, to allow constants propagation
121 * at compile time and compiler optimization based on features default.
122 */
123 #define SCHED_FEAT(name, enabled) \
124 (1UL << __SCHED_FEAT_##name) * enabled |
125 const_debug unsigned int sysctl_sched_features =
126 #include "features.h"
127 0;
128 #undef SCHED_FEAT
129
130 /*
131 * Print a warning if need_resched is set for the given duration (if
132 * LATENCY_WARN is enabled).
133 *
134 * If sysctl_resched_latency_warn_once is set, only one warning will be shown
135 * per boot.
136 */
137 __read_mostly int sysctl_resched_latency_warn_ms = 100;
138 __read_mostly int sysctl_resched_latency_warn_once = 1;
139 #endif /* CONFIG_SCHED_DEBUG */
140
141 /*
142 * Number of tasks to iterate in a single balance run.
143 * Limited because this is done with IRQs disabled.
144 */
145 #ifdef CONFIG_PREEMPT_RT
146 const_debug unsigned int sysctl_sched_nr_migrate = 8;
147 #else
148 const_debug unsigned int sysctl_sched_nr_migrate = 32;
149 #endif
150
151 __read_mostly int scheduler_running;
152
153 #ifdef CONFIG_SCHED_CORE
154
155 DEFINE_STATIC_KEY_FALSE(__sched_core_enabled);
156
157 /* kernel prio, less is more */
__task_prio(struct task_struct * p)158 static inline int __task_prio(struct task_struct *p)
159 {
160 if (p->sched_class == &stop_sched_class) /* trumps deadline */
161 return -2;
162
163 if (rt_prio(p->prio)) /* includes deadline */
164 return p->prio; /* [-1, 99] */
165
166 if (p->sched_class == &idle_sched_class)
167 return MAX_RT_PRIO + NICE_WIDTH; /* 140 */
168
169 return MAX_RT_PRIO + MAX_NICE; /* 120, squash fair */
170 }
171
172 /*
173 * l(a,b)
174 * le(a,b) := !l(b,a)
175 * g(a,b) := l(b,a)
176 * ge(a,b) := !l(a,b)
177 */
178
179 /* real prio, less is less */
prio_less(struct task_struct * a,struct task_struct * b,bool in_fi)180 static inline bool prio_less(struct task_struct *a, struct task_struct *b, bool in_fi)
181 {
182
183 int pa = __task_prio(a), pb = __task_prio(b);
184
185 if (-pa < -pb)
186 return true;
187
188 if (-pb < -pa)
189 return false;
190
191 if (pa == -1) /* dl_prio() doesn't work because of stop_class above */
192 return !dl_time_before(a->dl.deadline, b->dl.deadline);
193
194 if (pa == MAX_RT_PRIO + MAX_NICE) /* fair */
195 return cfs_prio_less(a, b, in_fi);
196
197 return false;
198 }
199
__sched_core_less(struct task_struct * a,struct task_struct * b)200 static inline bool __sched_core_less(struct task_struct *a, struct task_struct *b)
201 {
202 if (a->core_cookie < b->core_cookie)
203 return true;
204
205 if (a->core_cookie > b->core_cookie)
206 return false;
207
208 /* flip prio, so high prio is leftmost */
209 if (prio_less(b, a, !!task_rq(a)->core->core_forceidle_count))
210 return true;
211
212 return false;
213 }
214
215 #define __node_2_sc(node) rb_entry((node), struct task_struct, core_node)
216
rb_sched_core_less(struct rb_node * a,const struct rb_node * b)217 static inline bool rb_sched_core_less(struct rb_node *a, const struct rb_node *b)
218 {
219 return __sched_core_less(__node_2_sc(a), __node_2_sc(b));
220 }
221
rb_sched_core_cmp(const void * key,const struct rb_node * node)222 static inline int rb_sched_core_cmp(const void *key, const struct rb_node *node)
223 {
224 const struct task_struct *p = __node_2_sc(node);
225 unsigned long cookie = (unsigned long)key;
226
227 if (cookie < p->core_cookie)
228 return -1;
229
230 if (cookie > p->core_cookie)
231 return 1;
232
233 return 0;
234 }
235
sched_core_enqueue(struct rq * rq,struct task_struct * p)236 void sched_core_enqueue(struct rq *rq, struct task_struct *p)
237 {
238 rq->core->core_task_seq++;
239
240 if (!p->core_cookie)
241 return;
242
243 rb_add(&p->core_node, &rq->core_tree, rb_sched_core_less);
244 }
245
sched_core_dequeue(struct rq * rq,struct task_struct * p,int flags)246 void sched_core_dequeue(struct rq *rq, struct task_struct *p, int flags)
247 {
248 rq->core->core_task_seq++;
249
250 if (sched_core_enqueued(p)) {
251 rb_erase(&p->core_node, &rq->core_tree);
252 RB_CLEAR_NODE(&p->core_node);
253 }
254
255 /*
256 * Migrating the last task off the cpu, with the cpu in forced idle
257 * state. Reschedule to create an accounting edge for forced idle,
258 * and re-examine whether the core is still in forced idle state.
259 */
260 if (!(flags & DEQUEUE_SAVE) && rq->nr_running == 1 &&
261 rq->core->core_forceidle_count && rq->curr == rq->idle)
262 resched_curr(rq);
263 }
264
265 /*
266 * Find left-most (aka, highest priority) task matching @cookie.
267 */
sched_core_find(struct rq * rq,unsigned long cookie)268 static struct task_struct *sched_core_find(struct rq *rq, unsigned long cookie)
269 {
270 struct rb_node *node;
271
272 node = rb_find_first((void *)cookie, &rq->core_tree, rb_sched_core_cmp);
273 /*
274 * The idle task always matches any cookie!
275 */
276 if (!node)
277 return idle_sched_class.pick_task(rq);
278
279 return __node_2_sc(node);
280 }
281
sched_core_next(struct task_struct * p,unsigned long cookie)282 static struct task_struct *sched_core_next(struct task_struct *p, unsigned long cookie)
283 {
284 struct rb_node *node = &p->core_node;
285
286 node = rb_next(node);
287 if (!node)
288 return NULL;
289
290 p = container_of(node, struct task_struct, core_node);
291 if (p->core_cookie != cookie)
292 return NULL;
293
294 return p;
295 }
296
297 /*
298 * Magic required such that:
299 *
300 * raw_spin_rq_lock(rq);
301 * ...
302 * raw_spin_rq_unlock(rq);
303 *
304 * ends up locking and unlocking the _same_ lock, and all CPUs
305 * always agree on what rq has what lock.
306 *
307 * XXX entirely possible to selectively enable cores, don't bother for now.
308 */
309
310 static DEFINE_MUTEX(sched_core_mutex);
311 static atomic_t sched_core_count;
312 static struct cpumask sched_core_mask;
313
sched_core_lock(int cpu,unsigned long * flags)314 static void sched_core_lock(int cpu, unsigned long *flags)
315 {
316 const struct cpumask *smt_mask = cpu_smt_mask(cpu);
317 int t, i = 0;
318
319 local_irq_save(*flags);
320 for_each_cpu(t, smt_mask)
321 raw_spin_lock_nested(&cpu_rq(t)->__lock, i++);
322 }
323
sched_core_unlock(int cpu,unsigned long * flags)324 static void sched_core_unlock(int cpu, unsigned long *flags)
325 {
326 const struct cpumask *smt_mask = cpu_smt_mask(cpu);
327 int t;
328
329 for_each_cpu(t, smt_mask)
330 raw_spin_unlock(&cpu_rq(t)->__lock);
331 local_irq_restore(*flags);
332 }
333
__sched_core_flip(bool enabled)334 static void __sched_core_flip(bool enabled)
335 {
336 unsigned long flags;
337 int cpu, t;
338
339 cpus_read_lock();
340
341 /*
342 * Toggle the online cores, one by one.
343 */
344 cpumask_copy(&sched_core_mask, cpu_online_mask);
345 for_each_cpu(cpu, &sched_core_mask) {
346 const struct cpumask *smt_mask = cpu_smt_mask(cpu);
347
348 sched_core_lock(cpu, &flags);
349
350 for_each_cpu(t, smt_mask)
351 cpu_rq(t)->core_enabled = enabled;
352
353 cpu_rq(cpu)->core->core_forceidle_start = 0;
354
355 sched_core_unlock(cpu, &flags);
356
357 cpumask_andnot(&sched_core_mask, &sched_core_mask, smt_mask);
358 }
359
360 /*
361 * Toggle the offline CPUs.
362 */
363 cpumask_copy(&sched_core_mask, cpu_possible_mask);
364 cpumask_andnot(&sched_core_mask, &sched_core_mask, cpu_online_mask);
365
366 for_each_cpu(cpu, &sched_core_mask)
367 cpu_rq(cpu)->core_enabled = enabled;
368
369 cpus_read_unlock();
370 }
371
sched_core_assert_empty(void)372 static void sched_core_assert_empty(void)
373 {
374 int cpu;
375
376 for_each_possible_cpu(cpu)
377 WARN_ON_ONCE(!RB_EMPTY_ROOT(&cpu_rq(cpu)->core_tree));
378 }
379
__sched_core_enable(void)380 static void __sched_core_enable(void)
381 {
382 static_branch_enable(&__sched_core_enabled);
383 /*
384 * Ensure all previous instances of raw_spin_rq_*lock() have finished
385 * and future ones will observe !sched_core_disabled().
386 */
387 synchronize_rcu();
388 __sched_core_flip(true);
389 sched_core_assert_empty();
390 }
391
__sched_core_disable(void)392 static void __sched_core_disable(void)
393 {
394 sched_core_assert_empty();
395 __sched_core_flip(false);
396 static_branch_disable(&__sched_core_enabled);
397 }
398
sched_core_get(void)399 void sched_core_get(void)
400 {
401 if (atomic_inc_not_zero(&sched_core_count))
402 return;
403
404 mutex_lock(&sched_core_mutex);
405 if (!atomic_read(&sched_core_count))
406 __sched_core_enable();
407
408 smp_mb__before_atomic();
409 atomic_inc(&sched_core_count);
410 mutex_unlock(&sched_core_mutex);
411 }
412
__sched_core_put(struct work_struct * work)413 static void __sched_core_put(struct work_struct *work)
414 {
415 if (atomic_dec_and_mutex_lock(&sched_core_count, &sched_core_mutex)) {
416 __sched_core_disable();
417 mutex_unlock(&sched_core_mutex);
418 }
419 }
420
sched_core_put(void)421 void sched_core_put(void)
422 {
423 static DECLARE_WORK(_work, __sched_core_put);
424
425 /*
426 * "There can be only one"
427 *
428 * Either this is the last one, or we don't actually need to do any
429 * 'work'. If it is the last *again*, we rely on
430 * WORK_STRUCT_PENDING_BIT.
431 */
432 if (!atomic_add_unless(&sched_core_count, -1, 1))
433 schedule_work(&_work);
434 }
435
436 #else /* !CONFIG_SCHED_CORE */
437
sched_core_enqueue(struct rq * rq,struct task_struct * p)438 static inline void sched_core_enqueue(struct rq *rq, struct task_struct *p) { }
439 static inline void
sched_core_dequeue(struct rq * rq,struct task_struct * p,int flags)440 sched_core_dequeue(struct rq *rq, struct task_struct *p, int flags) { }
441
442 #endif /* CONFIG_SCHED_CORE */
443
444 /*
445 * Serialization rules:
446 *
447 * Lock order:
448 *
449 * p->pi_lock
450 * rq->lock
451 * hrtimer_cpu_base->lock (hrtimer_start() for bandwidth controls)
452 *
453 * rq1->lock
454 * rq2->lock where: rq1 < rq2
455 *
456 * Regular state:
457 *
458 * Normal scheduling state is serialized by rq->lock. __schedule() takes the
459 * local CPU's rq->lock, it optionally removes the task from the runqueue and
460 * always looks at the local rq data structures to find the most eligible task
461 * to run next.
462 *
463 * Task enqueue is also under rq->lock, possibly taken from another CPU.
464 * Wakeups from another LLC domain might use an IPI to transfer the enqueue to
465 * the local CPU to avoid bouncing the runqueue state around [ see
466 * ttwu_queue_wakelist() ]
467 *
468 * Task wakeup, specifically wakeups that involve migration, are horribly
469 * complicated to avoid having to take two rq->locks.
470 *
471 * Special state:
472 *
473 * System-calls and anything external will use task_rq_lock() which acquires
474 * both p->pi_lock and rq->lock. As a consequence the state they change is
475 * stable while holding either lock:
476 *
477 * - sched_setaffinity()/
478 * set_cpus_allowed_ptr(): p->cpus_ptr, p->nr_cpus_allowed
479 * - set_user_nice(): p->se.load, p->*prio
480 * - __sched_setscheduler(): p->sched_class, p->policy, p->*prio,
481 * p->se.load, p->rt_priority,
482 * p->dl.dl_{runtime, deadline, period, flags, bw, density}
483 * - sched_setnuma(): p->numa_preferred_nid
484 * - sched_move_task()/
485 * cpu_cgroup_fork(): p->sched_task_group
486 * - uclamp_update_active() p->uclamp*
487 *
488 * p->state <- TASK_*:
489 *
490 * is changed locklessly using set_current_state(), __set_current_state() or
491 * set_special_state(), see their respective comments, or by
492 * try_to_wake_up(). This latter uses p->pi_lock to serialize against
493 * concurrent self.
494 *
495 * p->on_rq <- { 0, 1 = TASK_ON_RQ_QUEUED, 2 = TASK_ON_RQ_MIGRATING }:
496 *
497 * is set by activate_task() and cleared by deactivate_task(), under
498 * rq->lock. Non-zero indicates the task is runnable, the special
499 * ON_RQ_MIGRATING state is used for migration without holding both
500 * rq->locks. It indicates task_cpu() is not stable, see task_rq_lock().
501 *
502 * p->on_cpu <- { 0, 1 }:
503 *
504 * is set by prepare_task() and cleared by finish_task() such that it will be
505 * set before p is scheduled-in and cleared after p is scheduled-out, both
506 * under rq->lock. Non-zero indicates the task is running on its CPU.
507 *
508 * [ The astute reader will observe that it is possible for two tasks on one
509 * CPU to have ->on_cpu = 1 at the same time. ]
510 *
511 * task_cpu(p): is changed by set_task_cpu(), the rules are:
512 *
513 * - Don't call set_task_cpu() on a blocked task:
514 *
515 * We don't care what CPU we're not running on, this simplifies hotplug,
516 * the CPU assignment of blocked tasks isn't required to be valid.
517 *
518 * - for try_to_wake_up(), called under p->pi_lock:
519 *
520 * This allows try_to_wake_up() to only take one rq->lock, see its comment.
521 *
522 * - for migration called under rq->lock:
523 * [ see task_on_rq_migrating() in task_rq_lock() ]
524 *
525 * o move_queued_task()
526 * o detach_task()
527 *
528 * - for migration called under double_rq_lock():
529 *
530 * o __migrate_swap_task()
531 * o push_rt_task() / pull_rt_task()
532 * o push_dl_task() / pull_dl_task()
533 * o dl_task_offline_migration()
534 *
535 */
536
raw_spin_rq_lock_nested(struct rq * rq,int subclass)537 void raw_spin_rq_lock_nested(struct rq *rq, int subclass)
538 {
539 raw_spinlock_t *lock;
540
541 /* Matches synchronize_rcu() in __sched_core_enable() */
542 preempt_disable();
543 if (sched_core_disabled()) {
544 raw_spin_lock_nested(&rq->__lock, subclass);
545 /* preempt_count *MUST* be > 1 */
546 preempt_enable_no_resched();
547 return;
548 }
549
550 for (;;) {
551 lock = __rq_lockp(rq);
552 raw_spin_lock_nested(lock, subclass);
553 if (likely(lock == __rq_lockp(rq))) {
554 /* preempt_count *MUST* be > 1 */
555 preempt_enable_no_resched();
556 return;
557 }
558 raw_spin_unlock(lock);
559 }
560 }
561
raw_spin_rq_trylock(struct rq * rq)562 bool raw_spin_rq_trylock(struct rq *rq)
563 {
564 raw_spinlock_t *lock;
565 bool ret;
566
567 /* Matches synchronize_rcu() in __sched_core_enable() */
568 preempt_disable();
569 if (sched_core_disabled()) {
570 ret = raw_spin_trylock(&rq->__lock);
571 preempt_enable();
572 return ret;
573 }
574
575 for (;;) {
576 lock = __rq_lockp(rq);
577 ret = raw_spin_trylock(lock);
578 if (!ret || (likely(lock == __rq_lockp(rq)))) {
579 preempt_enable();
580 return ret;
581 }
582 raw_spin_unlock(lock);
583 }
584 }
585
raw_spin_rq_unlock(struct rq * rq)586 void raw_spin_rq_unlock(struct rq *rq)
587 {
588 raw_spin_unlock(rq_lockp(rq));
589 }
590
591 #ifdef CONFIG_SMP
592 /*
593 * double_rq_lock - safely lock two runqueues
594 */
double_rq_lock(struct rq * rq1,struct rq * rq2)595 void double_rq_lock(struct rq *rq1, struct rq *rq2)
596 {
597 lockdep_assert_irqs_disabled();
598
599 if (rq_order_less(rq2, rq1))
600 swap(rq1, rq2);
601
602 raw_spin_rq_lock(rq1);
603 if (__rq_lockp(rq1) != __rq_lockp(rq2))
604 raw_spin_rq_lock_nested(rq2, SINGLE_DEPTH_NESTING);
605
606 double_rq_clock_clear_update(rq1, rq2);
607 }
608 #endif
609
610 /*
611 * __task_rq_lock - lock the rq @p resides on.
612 */
__task_rq_lock(struct task_struct * p,struct rq_flags * rf)613 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
614 __acquires(rq->lock)
615 {
616 struct rq *rq;
617
618 lockdep_assert_held(&p->pi_lock);
619
620 for (;;) {
621 rq = task_rq(p);
622 raw_spin_rq_lock(rq);
623 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
624 rq_pin_lock(rq, rf);
625 return rq;
626 }
627 raw_spin_rq_unlock(rq);
628
629 while (unlikely(task_on_rq_migrating(p)))
630 cpu_relax();
631 }
632 }
633
634 /*
635 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
636 */
task_rq_lock(struct task_struct * p,struct rq_flags * rf)637 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
638 __acquires(p->pi_lock)
639 __acquires(rq->lock)
640 {
641 struct rq *rq;
642
643 for (;;) {
644 raw_spin_lock_irqsave(&p->pi_lock, rf->flags);
645 rq = task_rq(p);
646 raw_spin_rq_lock(rq);
647 /*
648 * move_queued_task() task_rq_lock()
649 *
650 * ACQUIRE (rq->lock)
651 * [S] ->on_rq = MIGRATING [L] rq = task_rq()
652 * WMB (__set_task_cpu()) ACQUIRE (rq->lock);
653 * [S] ->cpu = new_cpu [L] task_rq()
654 * [L] ->on_rq
655 * RELEASE (rq->lock)
656 *
657 * If we observe the old CPU in task_rq_lock(), the acquire of
658 * the old rq->lock will fully serialize against the stores.
659 *
660 * If we observe the new CPU in task_rq_lock(), the address
661 * dependency headed by '[L] rq = task_rq()' and the acquire
662 * will pair with the WMB to ensure we then also see migrating.
663 */
664 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
665 rq_pin_lock(rq, rf);
666 return rq;
667 }
668 raw_spin_rq_unlock(rq);
669 raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
670
671 while (unlikely(task_on_rq_migrating(p)))
672 cpu_relax();
673 }
674 }
675
676 /*
677 * RQ-clock updating methods:
678 */
679
update_rq_clock_task(struct rq * rq,s64 delta)680 static void update_rq_clock_task(struct rq *rq, s64 delta)
681 {
682 /*
683 * In theory, the compile should just see 0 here, and optimize out the call
684 * to sched_rt_avg_update. But I don't trust it...
685 */
686 s64 __maybe_unused steal = 0, irq_delta = 0;
687
688 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
689 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
690
691 /*
692 * Since irq_time is only updated on {soft,}irq_exit, we might run into
693 * this case when a previous update_rq_clock() happened inside a
694 * {soft,}irq region.
695 *
696 * When this happens, we stop ->clock_task and only update the
697 * prev_irq_time stamp to account for the part that fit, so that a next
698 * update will consume the rest. This ensures ->clock_task is
699 * monotonic.
700 *
701 * It does however cause some slight miss-attribution of {soft,}irq
702 * time, a more accurate solution would be to update the irq_time using
703 * the current rq->clock timestamp, except that would require using
704 * atomic ops.
705 */
706 if (irq_delta > delta)
707 irq_delta = delta;
708
709 rq->prev_irq_time += irq_delta;
710 delta -= irq_delta;
711 #endif
712 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
713 if (static_key_false((¶virt_steal_rq_enabled))) {
714 steal = paravirt_steal_clock(cpu_of(rq));
715 steal -= rq->prev_steal_time_rq;
716
717 if (unlikely(steal > delta))
718 steal = delta;
719
720 rq->prev_steal_time_rq += steal;
721 delta -= steal;
722 }
723 #endif
724
725 rq->clock_task += delta;
726
727 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
728 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
729 update_irq_load_avg(rq, irq_delta + steal);
730 #endif
731 update_rq_clock_pelt(rq, delta);
732 }
733
update_rq_clock(struct rq * rq)734 void update_rq_clock(struct rq *rq)
735 {
736 s64 delta;
737
738 lockdep_assert_rq_held(rq);
739
740 if (rq->clock_update_flags & RQCF_ACT_SKIP)
741 return;
742
743 #ifdef CONFIG_SCHED_DEBUG
744 if (sched_feat(WARN_DOUBLE_CLOCK))
745 SCHED_WARN_ON(rq->clock_update_flags & RQCF_UPDATED);
746 rq->clock_update_flags |= RQCF_UPDATED;
747 #endif
748
749 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
750 if (delta < 0)
751 return;
752 rq->clock += delta;
753 update_rq_clock_task(rq, delta);
754 }
755
756 #ifdef CONFIG_SCHED_HRTICK
757 /*
758 * Use HR-timers to deliver accurate preemption points.
759 */
760
hrtick_clear(struct rq * rq)761 static void hrtick_clear(struct rq *rq)
762 {
763 if (hrtimer_active(&rq->hrtick_timer))
764 hrtimer_cancel(&rq->hrtick_timer);
765 }
766
767 /*
768 * High-resolution timer tick.
769 * Runs from hardirq context with interrupts disabled.
770 */
hrtick(struct hrtimer * timer)771 static enum hrtimer_restart hrtick(struct hrtimer *timer)
772 {
773 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
774 struct rq_flags rf;
775
776 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
777
778 rq_lock(rq, &rf);
779 update_rq_clock(rq);
780 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
781 rq_unlock(rq, &rf);
782
783 return HRTIMER_NORESTART;
784 }
785
786 #ifdef CONFIG_SMP
787
__hrtick_restart(struct rq * rq)788 static void __hrtick_restart(struct rq *rq)
789 {
790 struct hrtimer *timer = &rq->hrtick_timer;
791 ktime_t time = rq->hrtick_time;
792
793 hrtimer_start(timer, time, HRTIMER_MODE_ABS_PINNED_HARD);
794 }
795
796 /*
797 * called from hardirq (IPI) context
798 */
__hrtick_start(void * arg)799 static void __hrtick_start(void *arg)
800 {
801 struct rq *rq = arg;
802 struct rq_flags rf;
803
804 rq_lock(rq, &rf);
805 __hrtick_restart(rq);
806 rq_unlock(rq, &rf);
807 }
808
809 /*
810 * Called to set the hrtick timer state.
811 *
812 * called with rq->lock held and irqs disabled
813 */
hrtick_start(struct rq * rq,u64 delay)814 void hrtick_start(struct rq *rq, u64 delay)
815 {
816 struct hrtimer *timer = &rq->hrtick_timer;
817 s64 delta;
818
819 /*
820 * Don't schedule slices shorter than 10000ns, that just
821 * doesn't make sense and can cause timer DoS.
822 */
823 delta = max_t(s64, delay, 10000LL);
824 rq->hrtick_time = ktime_add_ns(timer->base->get_time(), delta);
825
826 if (rq == this_rq())
827 __hrtick_restart(rq);
828 else
829 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
830 }
831
832 #else
833 /*
834 * Called to set the hrtick timer state.
835 *
836 * called with rq->lock held and irqs disabled
837 */
hrtick_start(struct rq * rq,u64 delay)838 void hrtick_start(struct rq *rq, u64 delay)
839 {
840 /*
841 * Don't schedule slices shorter than 10000ns, that just
842 * doesn't make sense. Rely on vruntime for fairness.
843 */
844 delay = max_t(u64, delay, 10000LL);
845 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
846 HRTIMER_MODE_REL_PINNED_HARD);
847 }
848
849 #endif /* CONFIG_SMP */
850
hrtick_rq_init(struct rq * rq)851 static void hrtick_rq_init(struct rq *rq)
852 {
853 #ifdef CONFIG_SMP
854 INIT_CSD(&rq->hrtick_csd, __hrtick_start, rq);
855 #endif
856 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
857 rq->hrtick_timer.function = hrtick;
858 }
859 #else /* CONFIG_SCHED_HRTICK */
hrtick_clear(struct rq * rq)860 static inline void hrtick_clear(struct rq *rq)
861 {
862 }
863
hrtick_rq_init(struct rq * rq)864 static inline void hrtick_rq_init(struct rq *rq)
865 {
866 }
867 #endif /* CONFIG_SCHED_HRTICK */
868
869 /*
870 * cmpxchg based fetch_or, macro so it works for different integer types
871 */
872 #define fetch_or(ptr, mask) \
873 ({ \
874 typeof(ptr) _ptr = (ptr); \
875 typeof(mask) _mask = (mask); \
876 typeof(*_ptr) _old, _val = *_ptr; \
877 \
878 for (;;) { \
879 _old = cmpxchg(_ptr, _val, _val | _mask); \
880 if (_old == _val) \
881 break; \
882 _val = _old; \
883 } \
884 _old; \
885 })
886
887 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
888 /*
889 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
890 * this avoids any races wrt polling state changes and thereby avoids
891 * spurious IPIs.
892 */
set_nr_and_not_polling(struct task_struct * p)893 static bool set_nr_and_not_polling(struct task_struct *p)
894 {
895 struct thread_info *ti = task_thread_info(p);
896 return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
897 }
898
899 /*
900 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
901 *
902 * If this returns true, then the idle task promises to call
903 * sched_ttwu_pending() and reschedule soon.
904 */
set_nr_if_polling(struct task_struct * p)905 static bool set_nr_if_polling(struct task_struct *p)
906 {
907 struct thread_info *ti = task_thread_info(p);
908 typeof(ti->flags) old, val = READ_ONCE(ti->flags);
909
910 for (;;) {
911 if (!(val & _TIF_POLLING_NRFLAG))
912 return false;
913 if (val & _TIF_NEED_RESCHED)
914 return true;
915 old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
916 if (old == val)
917 break;
918 val = old;
919 }
920 return true;
921 }
922
923 #else
set_nr_and_not_polling(struct task_struct * p)924 static bool set_nr_and_not_polling(struct task_struct *p)
925 {
926 set_tsk_need_resched(p);
927 return true;
928 }
929
930 #ifdef CONFIG_SMP
set_nr_if_polling(struct task_struct * p)931 static bool set_nr_if_polling(struct task_struct *p)
932 {
933 return false;
934 }
935 #endif
936 #endif
937
__wake_q_add(struct wake_q_head * head,struct task_struct * task)938 static bool __wake_q_add(struct wake_q_head *head, struct task_struct *task)
939 {
940 struct wake_q_node *node = &task->wake_q;
941
942 /*
943 * Atomically grab the task, if ->wake_q is !nil already it means
944 * it's already queued (either by us or someone else) and will get the
945 * wakeup due to that.
946 *
947 * In order to ensure that a pending wakeup will observe our pending
948 * state, even in the failed case, an explicit smp_mb() must be used.
949 */
950 smp_mb__before_atomic();
951 if (unlikely(cmpxchg_relaxed(&node->next, NULL, WAKE_Q_TAIL)))
952 return false;
953
954 /*
955 * The head is context local, there can be no concurrency.
956 */
957 *head->lastp = node;
958 head->lastp = &node->next;
959 return true;
960 }
961
962 /**
963 * wake_q_add() - queue a wakeup for 'later' waking.
964 * @head: the wake_q_head to add @task to
965 * @task: the task to queue for 'later' wakeup
966 *
967 * Queue a task for later wakeup, most likely by the wake_up_q() call in the
968 * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
969 * instantly.
970 *
971 * This function must be used as-if it were wake_up_process(); IOW the task
972 * must be ready to be woken at this location.
973 */
wake_q_add(struct wake_q_head * head,struct task_struct * task)974 void wake_q_add(struct wake_q_head *head, struct task_struct *task)
975 {
976 if (__wake_q_add(head, task))
977 get_task_struct(task);
978 }
979
980 /**
981 * wake_q_add_safe() - safely queue a wakeup for 'later' waking.
982 * @head: the wake_q_head to add @task to
983 * @task: the task to queue for 'later' wakeup
984 *
985 * Queue a task for later wakeup, most likely by the wake_up_q() call in the
986 * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
987 * instantly.
988 *
989 * This function must be used as-if it were wake_up_process(); IOW the task
990 * must be ready to be woken at this location.
991 *
992 * This function is essentially a task-safe equivalent to wake_q_add(). Callers
993 * that already hold reference to @task can call the 'safe' version and trust
994 * wake_q to do the right thing depending whether or not the @task is already
995 * queued for wakeup.
996 */
wake_q_add_safe(struct wake_q_head * head,struct task_struct * task)997 void wake_q_add_safe(struct wake_q_head *head, struct task_struct *task)
998 {
999 if (!__wake_q_add(head, task))
1000 put_task_struct(task);
1001 }
1002
wake_up_q(struct wake_q_head * head)1003 void wake_up_q(struct wake_q_head *head)
1004 {
1005 struct wake_q_node *node = head->first;
1006
1007 while (node != WAKE_Q_TAIL) {
1008 struct task_struct *task;
1009
1010 task = container_of(node, struct task_struct, wake_q);
1011 /* Task can safely be re-inserted now: */
1012 node = node->next;
1013 task->wake_q.next = NULL;
1014
1015 /*
1016 * wake_up_process() executes a full barrier, which pairs with
1017 * the queueing in wake_q_add() so as not to miss wakeups.
1018 */
1019 wake_up_process(task);
1020 put_task_struct(task);
1021 }
1022 }
1023
1024 /*
1025 * resched_curr - mark rq's current task 'to be rescheduled now'.
1026 *
1027 * On UP this means the setting of the need_resched flag, on SMP it
1028 * might also involve a cross-CPU call to trigger the scheduler on
1029 * the target CPU.
1030 */
resched_curr(struct rq * rq)1031 void resched_curr(struct rq *rq)
1032 {
1033 struct task_struct *curr = rq->curr;
1034 int cpu;
1035
1036 lockdep_assert_rq_held(rq);
1037
1038 if (test_tsk_need_resched(curr))
1039 return;
1040
1041 cpu = cpu_of(rq);
1042
1043 if (cpu == smp_processor_id()) {
1044 set_tsk_need_resched(curr);
1045 set_preempt_need_resched();
1046 return;
1047 }
1048
1049 if (set_nr_and_not_polling(curr))
1050 smp_send_reschedule(cpu);
1051 else
1052 trace_sched_wake_idle_without_ipi(cpu);
1053 }
1054
resched_cpu(int cpu)1055 void resched_cpu(int cpu)
1056 {
1057 struct rq *rq = cpu_rq(cpu);
1058 unsigned long flags;
1059
1060 raw_spin_rq_lock_irqsave(rq, flags);
1061 if (cpu_online(cpu) || cpu == smp_processor_id())
1062 resched_curr(rq);
1063 raw_spin_rq_unlock_irqrestore(rq, flags);
1064 }
1065
1066 #ifdef CONFIG_SMP
1067 #ifdef CONFIG_NO_HZ_COMMON
1068 /*
1069 * In the semi idle case, use the nearest busy CPU for migrating timers
1070 * from an idle CPU. This is good for power-savings.
1071 *
1072 * We don't do similar optimization for completely idle system, as
1073 * selecting an idle CPU will add more delays to the timers than intended
1074 * (as that CPU's timer base may not be uptodate wrt jiffies etc).
1075 */
get_nohz_timer_target(void)1076 int get_nohz_timer_target(void)
1077 {
1078 int i, cpu = smp_processor_id(), default_cpu = -1;
1079 struct sched_domain *sd;
1080 const struct cpumask *hk_mask;
1081
1082 if (housekeeping_cpu(cpu, HK_TYPE_TIMER)) {
1083 if (!idle_cpu(cpu))
1084 return cpu;
1085 default_cpu = cpu;
1086 }
1087
1088 hk_mask = housekeeping_cpumask(HK_TYPE_TIMER);
1089
1090 rcu_read_lock();
1091 for_each_domain(cpu, sd) {
1092 for_each_cpu_and(i, sched_domain_span(sd), hk_mask) {
1093 if (cpu == i)
1094 continue;
1095
1096 if (!idle_cpu(i)) {
1097 cpu = i;
1098 goto unlock;
1099 }
1100 }
1101 }
1102
1103 if (default_cpu == -1)
1104 default_cpu = housekeeping_any_cpu(HK_TYPE_TIMER);
1105 cpu = default_cpu;
1106 unlock:
1107 rcu_read_unlock();
1108 return cpu;
1109 }
1110
1111 /*
1112 * When add_timer_on() enqueues a timer into the timer wheel of an
1113 * idle CPU then this timer might expire before the next timer event
1114 * which is scheduled to wake up that CPU. In case of a completely
1115 * idle system the next event might even be infinite time into the
1116 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1117 * leaves the inner idle loop so the newly added timer is taken into
1118 * account when the CPU goes back to idle and evaluates the timer
1119 * wheel for the next timer event.
1120 */
wake_up_idle_cpu(int cpu)1121 static void wake_up_idle_cpu(int cpu)
1122 {
1123 struct rq *rq = cpu_rq(cpu);
1124
1125 if (cpu == smp_processor_id())
1126 return;
1127
1128 if (set_nr_and_not_polling(rq->idle))
1129 smp_send_reschedule(cpu);
1130 else
1131 trace_sched_wake_idle_without_ipi(cpu);
1132 }
1133
wake_up_full_nohz_cpu(int cpu)1134 static bool wake_up_full_nohz_cpu(int cpu)
1135 {
1136 /*
1137 * We just need the target to call irq_exit() and re-evaluate
1138 * the next tick. The nohz full kick at least implies that.
1139 * If needed we can still optimize that later with an
1140 * empty IRQ.
1141 */
1142 if (cpu_is_offline(cpu))
1143 return true; /* Don't try to wake offline CPUs. */
1144 if (tick_nohz_full_cpu(cpu)) {
1145 if (cpu != smp_processor_id() ||
1146 tick_nohz_tick_stopped())
1147 tick_nohz_full_kick_cpu(cpu);
1148 return true;
1149 }
1150
1151 return false;
1152 }
1153
1154 /*
1155 * Wake up the specified CPU. If the CPU is going offline, it is the
1156 * caller's responsibility to deal with the lost wakeup, for example,
1157 * by hooking into the CPU_DEAD notifier like timers and hrtimers do.
1158 */
wake_up_nohz_cpu(int cpu)1159 void wake_up_nohz_cpu(int cpu)
1160 {
1161 if (!wake_up_full_nohz_cpu(cpu))
1162 wake_up_idle_cpu(cpu);
1163 }
1164
nohz_csd_func(void * info)1165 static void nohz_csd_func(void *info)
1166 {
1167 struct rq *rq = info;
1168 int cpu = cpu_of(rq);
1169 unsigned int flags;
1170
1171 /*
1172 * Release the rq::nohz_csd.
1173 */
1174 flags = atomic_fetch_andnot(NOHZ_KICK_MASK | NOHZ_NEWILB_KICK, nohz_flags(cpu));
1175 WARN_ON(!(flags & NOHZ_KICK_MASK));
1176
1177 rq->idle_balance = idle_cpu(cpu);
1178 if (rq->idle_balance && !need_resched()) {
1179 rq->nohz_idle_balance = flags;
1180 raise_softirq_irqoff(SCHED_SOFTIRQ);
1181 }
1182 }
1183
1184 #endif /* CONFIG_NO_HZ_COMMON */
1185
1186 #ifdef CONFIG_NO_HZ_FULL
sched_can_stop_tick(struct rq * rq)1187 bool sched_can_stop_tick(struct rq *rq)
1188 {
1189 int fifo_nr_running;
1190
1191 /* Deadline tasks, even if single, need the tick */
1192 if (rq->dl.dl_nr_running)
1193 return false;
1194
1195 /*
1196 * If there are more than one RR tasks, we need the tick to affect the
1197 * actual RR behaviour.
1198 */
1199 if (rq->rt.rr_nr_running) {
1200 if (rq->rt.rr_nr_running == 1)
1201 return true;
1202 else
1203 return false;
1204 }
1205
1206 /*
1207 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no
1208 * forced preemption between FIFO tasks.
1209 */
1210 fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
1211 if (fifo_nr_running)
1212 return true;
1213
1214 /*
1215 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left;
1216 * if there's more than one we need the tick for involuntary
1217 * preemption.
1218 */
1219 if (rq->nr_running > 1)
1220 return false;
1221
1222 return true;
1223 }
1224 #endif /* CONFIG_NO_HZ_FULL */
1225 #endif /* CONFIG_SMP */
1226
1227 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
1228 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
1229 /*
1230 * Iterate task_group tree rooted at *from, calling @down when first entering a
1231 * node and @up when leaving it for the final time.
1232 *
1233 * Caller must hold rcu_lock or sufficient equivalent.
1234 */
walk_tg_tree_from(struct task_group * from,tg_visitor down,tg_visitor up,void * data)1235 int walk_tg_tree_from(struct task_group *from,
1236 tg_visitor down, tg_visitor up, void *data)
1237 {
1238 struct task_group *parent, *child;
1239 int ret;
1240
1241 parent = from;
1242
1243 down:
1244 ret = (*down)(parent, data);
1245 if (ret)
1246 goto out;
1247 list_for_each_entry_rcu(child, &parent->children, siblings) {
1248 parent = child;
1249 goto down;
1250
1251 up:
1252 continue;
1253 }
1254 ret = (*up)(parent, data);
1255 if (ret || parent == from)
1256 goto out;
1257
1258 child = parent;
1259 parent = parent->parent;
1260 if (parent)
1261 goto up;
1262 out:
1263 return ret;
1264 }
1265
tg_nop(struct task_group * tg,void * data)1266 int tg_nop(struct task_group *tg, void *data)
1267 {
1268 return 0;
1269 }
1270 #endif
1271
set_load_weight(struct task_struct * p,bool update_load)1272 static void set_load_weight(struct task_struct *p, bool update_load)
1273 {
1274 int prio = p->static_prio - MAX_RT_PRIO;
1275 struct load_weight *load = &p->se.load;
1276
1277 /*
1278 * SCHED_IDLE tasks get minimal weight:
1279 */
1280 if (task_has_idle_policy(p)) {
1281 load->weight = scale_load(WEIGHT_IDLEPRIO);
1282 load->inv_weight = WMULT_IDLEPRIO;
1283 return;
1284 }
1285
1286 /*
1287 * SCHED_OTHER tasks have to update their load when changing their
1288 * weight
1289 */
1290 if (update_load && p->sched_class == &fair_sched_class) {
1291 reweight_task(p, prio);
1292 } else {
1293 load->weight = scale_load(sched_prio_to_weight[prio]);
1294 load->inv_weight = sched_prio_to_wmult[prio];
1295 }
1296 }
1297
1298 #ifdef CONFIG_UCLAMP_TASK
1299 /*
1300 * Serializes updates of utilization clamp values
1301 *
1302 * The (slow-path) user-space triggers utilization clamp value updates which
1303 * can require updates on (fast-path) scheduler's data structures used to
1304 * support enqueue/dequeue operations.
1305 * While the per-CPU rq lock protects fast-path update operations, user-space
1306 * requests are serialized using a mutex to reduce the risk of conflicting
1307 * updates or API abuses.
1308 */
1309 static DEFINE_MUTEX(uclamp_mutex);
1310
1311 /* Max allowed minimum utilization */
1312 static unsigned int __maybe_unused sysctl_sched_uclamp_util_min = SCHED_CAPACITY_SCALE;
1313
1314 /* Max allowed maximum utilization */
1315 static unsigned int __maybe_unused sysctl_sched_uclamp_util_max = SCHED_CAPACITY_SCALE;
1316
1317 /*
1318 * By default RT tasks run at the maximum performance point/capacity of the
1319 * system. Uclamp enforces this by always setting UCLAMP_MIN of RT tasks to
1320 * SCHED_CAPACITY_SCALE.
1321 *
1322 * This knob allows admins to change the default behavior when uclamp is being
1323 * used. In battery powered devices, particularly, running at the maximum
1324 * capacity and frequency will increase energy consumption and shorten the
1325 * battery life.
1326 *
1327 * This knob only affects RT tasks that their uclamp_se->user_defined == false.
1328 *
1329 * This knob will not override the system default sched_util_clamp_min defined
1330 * above.
1331 */
1332 static unsigned int sysctl_sched_uclamp_util_min_rt_default = SCHED_CAPACITY_SCALE;
1333
1334 /* All clamps are required to be less or equal than these values */
1335 static struct uclamp_se uclamp_default[UCLAMP_CNT];
1336
1337 /*
1338 * This static key is used to reduce the uclamp overhead in the fast path. It
1339 * primarily disables the call to uclamp_rq_{inc, dec}() in
1340 * enqueue/dequeue_task().
1341 *
1342 * This allows users to continue to enable uclamp in their kernel config with
1343 * minimum uclamp overhead in the fast path.
1344 *
1345 * As soon as userspace modifies any of the uclamp knobs, the static key is
1346 * enabled, since we have an actual users that make use of uclamp
1347 * functionality.
1348 *
1349 * The knobs that would enable this static key are:
1350 *
1351 * * A task modifying its uclamp value with sched_setattr().
1352 * * An admin modifying the sysctl_sched_uclamp_{min, max} via procfs.
1353 * * An admin modifying the cgroup cpu.uclamp.{min, max}
1354 */
1355 DEFINE_STATIC_KEY_FALSE(sched_uclamp_used);
1356
1357 /* Integer rounded range for each bucket */
1358 #define UCLAMP_BUCKET_DELTA DIV_ROUND_CLOSEST(SCHED_CAPACITY_SCALE, UCLAMP_BUCKETS)
1359
1360 #define for_each_clamp_id(clamp_id) \
1361 for ((clamp_id) = 0; (clamp_id) < UCLAMP_CNT; (clamp_id)++)
1362
uclamp_bucket_id(unsigned int clamp_value)1363 static inline unsigned int uclamp_bucket_id(unsigned int clamp_value)
1364 {
1365 return min_t(unsigned int, clamp_value / UCLAMP_BUCKET_DELTA, UCLAMP_BUCKETS - 1);
1366 }
1367
uclamp_none(enum uclamp_id clamp_id)1368 static inline unsigned int uclamp_none(enum uclamp_id clamp_id)
1369 {
1370 if (clamp_id == UCLAMP_MIN)
1371 return 0;
1372 return SCHED_CAPACITY_SCALE;
1373 }
1374
uclamp_se_set(struct uclamp_se * uc_se,unsigned int value,bool user_defined)1375 static inline void uclamp_se_set(struct uclamp_se *uc_se,
1376 unsigned int value, bool user_defined)
1377 {
1378 uc_se->value = value;
1379 uc_se->bucket_id = uclamp_bucket_id(value);
1380 uc_se->user_defined = user_defined;
1381 }
1382
1383 static inline unsigned int
uclamp_idle_value(struct rq * rq,enum uclamp_id clamp_id,unsigned int clamp_value)1384 uclamp_idle_value(struct rq *rq, enum uclamp_id clamp_id,
1385 unsigned int clamp_value)
1386 {
1387 /*
1388 * Avoid blocked utilization pushing up the frequency when we go
1389 * idle (which drops the max-clamp) by retaining the last known
1390 * max-clamp.
1391 */
1392 if (clamp_id == UCLAMP_MAX) {
1393 rq->uclamp_flags |= UCLAMP_FLAG_IDLE;
1394 return clamp_value;
1395 }
1396
1397 return uclamp_none(UCLAMP_MIN);
1398 }
1399
uclamp_idle_reset(struct rq * rq,enum uclamp_id clamp_id,unsigned int clamp_value)1400 static inline void uclamp_idle_reset(struct rq *rq, enum uclamp_id clamp_id,
1401 unsigned int clamp_value)
1402 {
1403 /* Reset max-clamp retention only on idle exit */
1404 if (!(rq->uclamp_flags & UCLAMP_FLAG_IDLE))
1405 return;
1406
1407 WRITE_ONCE(rq->uclamp[clamp_id].value, clamp_value);
1408 }
1409
1410 static inline
uclamp_rq_max_value(struct rq * rq,enum uclamp_id clamp_id,unsigned int clamp_value)1411 unsigned int uclamp_rq_max_value(struct rq *rq, enum uclamp_id clamp_id,
1412 unsigned int clamp_value)
1413 {
1414 struct uclamp_bucket *bucket = rq->uclamp[clamp_id].bucket;
1415 int bucket_id = UCLAMP_BUCKETS - 1;
1416
1417 /*
1418 * Since both min and max clamps are max aggregated, find the
1419 * top most bucket with tasks in.
1420 */
1421 for ( ; bucket_id >= 0; bucket_id--) {
1422 if (!bucket[bucket_id].tasks)
1423 continue;
1424 return bucket[bucket_id].value;
1425 }
1426
1427 /* No tasks -- default clamp values */
1428 return uclamp_idle_value(rq, clamp_id, clamp_value);
1429 }
1430
__uclamp_update_util_min_rt_default(struct task_struct * p)1431 static void __uclamp_update_util_min_rt_default(struct task_struct *p)
1432 {
1433 unsigned int default_util_min;
1434 struct uclamp_se *uc_se;
1435
1436 lockdep_assert_held(&p->pi_lock);
1437
1438 uc_se = &p->uclamp_req[UCLAMP_MIN];
1439
1440 /* Only sync if user didn't override the default */
1441 if (uc_se->user_defined)
1442 return;
1443
1444 default_util_min = sysctl_sched_uclamp_util_min_rt_default;
1445 uclamp_se_set(uc_se, default_util_min, false);
1446 }
1447
uclamp_update_util_min_rt_default(struct task_struct * p)1448 static void uclamp_update_util_min_rt_default(struct task_struct *p)
1449 {
1450 struct rq_flags rf;
1451 struct rq *rq;
1452
1453 if (!rt_task(p))
1454 return;
1455
1456 /* Protect updates to p->uclamp_* */
1457 rq = task_rq_lock(p, &rf);
1458 __uclamp_update_util_min_rt_default(p);
1459 task_rq_unlock(rq, p, &rf);
1460 }
1461
1462 static inline struct uclamp_se
uclamp_tg_restrict(struct task_struct * p,enum uclamp_id clamp_id)1463 uclamp_tg_restrict(struct task_struct *p, enum uclamp_id clamp_id)
1464 {
1465 /* Copy by value as we could modify it */
1466 struct uclamp_se uc_req = p->uclamp_req[clamp_id];
1467 #ifdef CONFIG_UCLAMP_TASK_GROUP
1468 unsigned int tg_min, tg_max, value;
1469
1470 /*
1471 * Tasks in autogroups or root task group will be
1472 * restricted by system defaults.
1473 */
1474 if (task_group_is_autogroup(task_group(p)))
1475 return uc_req;
1476 if (task_group(p) == &root_task_group)
1477 return uc_req;
1478
1479 tg_min = task_group(p)->uclamp[UCLAMP_MIN].value;
1480 tg_max = task_group(p)->uclamp[UCLAMP_MAX].value;
1481 value = uc_req.value;
1482 value = clamp(value, tg_min, tg_max);
1483 uclamp_se_set(&uc_req, value, false);
1484 #endif
1485
1486 return uc_req;
1487 }
1488
1489 /*
1490 * The effective clamp bucket index of a task depends on, by increasing
1491 * priority:
1492 * - the task specific clamp value, when explicitly requested from userspace
1493 * - the task group effective clamp value, for tasks not either in the root
1494 * group or in an autogroup
1495 * - the system default clamp value, defined by the sysadmin
1496 */
1497 static inline struct uclamp_se
uclamp_eff_get(struct task_struct * p,enum uclamp_id clamp_id)1498 uclamp_eff_get(struct task_struct *p, enum uclamp_id clamp_id)
1499 {
1500 struct uclamp_se uc_req = uclamp_tg_restrict(p, clamp_id);
1501 struct uclamp_se uc_max = uclamp_default[clamp_id];
1502
1503 /* System default restrictions always apply */
1504 if (unlikely(uc_req.value > uc_max.value))
1505 return uc_max;
1506
1507 return uc_req;
1508 }
1509
uclamp_eff_value(struct task_struct * p,enum uclamp_id clamp_id)1510 unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id)
1511 {
1512 struct uclamp_se uc_eff;
1513
1514 /* Task currently refcounted: use back-annotated (effective) value */
1515 if (p->uclamp[clamp_id].active)
1516 return (unsigned long)p->uclamp[clamp_id].value;
1517
1518 uc_eff = uclamp_eff_get(p, clamp_id);
1519
1520 return (unsigned long)uc_eff.value;
1521 }
1522
1523 /*
1524 * When a task is enqueued on a rq, the clamp bucket currently defined by the
1525 * task's uclamp::bucket_id is refcounted on that rq. This also immediately
1526 * updates the rq's clamp value if required.
1527 *
1528 * Tasks can have a task-specific value requested from user-space, track
1529 * within each bucket the maximum value for tasks refcounted in it.
1530 * This "local max aggregation" allows to track the exact "requested" value
1531 * for each bucket when all its RUNNABLE tasks require the same clamp.
1532 */
uclamp_rq_inc_id(struct rq * rq,struct task_struct * p,enum uclamp_id clamp_id)1533 static inline void uclamp_rq_inc_id(struct rq *rq, struct task_struct *p,
1534 enum uclamp_id clamp_id)
1535 {
1536 struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
1537 struct uclamp_se *uc_se = &p->uclamp[clamp_id];
1538 struct uclamp_bucket *bucket;
1539
1540 lockdep_assert_rq_held(rq);
1541
1542 /* Update task effective clamp */
1543 p->uclamp[clamp_id] = uclamp_eff_get(p, clamp_id);
1544
1545 bucket = &uc_rq->bucket[uc_se->bucket_id];
1546 bucket->tasks++;
1547 uc_se->active = true;
1548
1549 uclamp_idle_reset(rq, clamp_id, uc_se->value);
1550
1551 /*
1552 * Local max aggregation: rq buckets always track the max
1553 * "requested" clamp value of its RUNNABLE tasks.
1554 */
1555 if (bucket->tasks == 1 || uc_se->value > bucket->value)
1556 bucket->value = uc_se->value;
1557
1558 if (uc_se->value > READ_ONCE(uc_rq->value))
1559 WRITE_ONCE(uc_rq->value, uc_se->value);
1560 }
1561
1562 /*
1563 * When a task is dequeued from a rq, the clamp bucket refcounted by the task
1564 * is released. If this is the last task reference counting the rq's max
1565 * active clamp value, then the rq's clamp value is updated.
1566 *
1567 * Both refcounted tasks and rq's cached clamp values are expected to be
1568 * always valid. If it's detected they are not, as defensive programming,
1569 * enforce the expected state and warn.
1570 */
uclamp_rq_dec_id(struct rq * rq,struct task_struct * p,enum uclamp_id clamp_id)1571 static inline void uclamp_rq_dec_id(struct rq *rq, struct task_struct *p,
1572 enum uclamp_id clamp_id)
1573 {
1574 struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
1575 struct uclamp_se *uc_se = &p->uclamp[clamp_id];
1576 struct uclamp_bucket *bucket;
1577 unsigned int bkt_clamp;
1578 unsigned int rq_clamp;
1579
1580 lockdep_assert_rq_held(rq);
1581
1582 /*
1583 * If sched_uclamp_used was enabled after task @p was enqueued,
1584 * we could end up with unbalanced call to uclamp_rq_dec_id().
1585 *
1586 * In this case the uc_se->active flag should be false since no uclamp
1587 * accounting was performed at enqueue time and we can just return
1588 * here.
1589 *
1590 * Need to be careful of the following enqueue/dequeue ordering
1591 * problem too
1592 *
1593 * enqueue(taskA)
1594 * // sched_uclamp_used gets enabled
1595 * enqueue(taskB)
1596 * dequeue(taskA)
1597 * // Must not decrement bucket->tasks here
1598 * dequeue(taskB)
1599 *
1600 * where we could end up with stale data in uc_se and
1601 * bucket[uc_se->bucket_id].
1602 *
1603 * The following check here eliminates the possibility of such race.
1604 */
1605 if (unlikely(!uc_se->active))
1606 return;
1607
1608 bucket = &uc_rq->bucket[uc_se->bucket_id];
1609
1610 SCHED_WARN_ON(!bucket->tasks);
1611 if (likely(bucket->tasks))
1612 bucket->tasks--;
1613
1614 uc_se->active = false;
1615
1616 /*
1617 * Keep "local max aggregation" simple and accept to (possibly)
1618 * overboost some RUNNABLE tasks in the same bucket.
1619 * The rq clamp bucket value is reset to its base value whenever
1620 * there are no more RUNNABLE tasks refcounting it.
1621 */
1622 if (likely(bucket->tasks))
1623 return;
1624
1625 rq_clamp = READ_ONCE(uc_rq->value);
1626 /*
1627 * Defensive programming: this should never happen. If it happens,
1628 * e.g. due to future modification, warn and fixup the expected value.
1629 */
1630 SCHED_WARN_ON(bucket->value > rq_clamp);
1631 if (bucket->value >= rq_clamp) {
1632 bkt_clamp = uclamp_rq_max_value(rq, clamp_id, uc_se->value);
1633 WRITE_ONCE(uc_rq->value, bkt_clamp);
1634 }
1635 }
1636
uclamp_rq_inc(struct rq * rq,struct task_struct * p)1637 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p)
1638 {
1639 enum uclamp_id clamp_id;
1640
1641 /*
1642 * Avoid any overhead until uclamp is actually used by the userspace.
1643 *
1644 * The condition is constructed such that a NOP is generated when
1645 * sched_uclamp_used is disabled.
1646 */
1647 if (!static_branch_unlikely(&sched_uclamp_used))
1648 return;
1649
1650 if (unlikely(!p->sched_class->uclamp_enabled))
1651 return;
1652
1653 for_each_clamp_id(clamp_id)
1654 uclamp_rq_inc_id(rq, p, clamp_id);
1655
1656 /* Reset clamp idle holding when there is one RUNNABLE task */
1657 if (rq->uclamp_flags & UCLAMP_FLAG_IDLE)
1658 rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE;
1659 }
1660
uclamp_rq_dec(struct rq * rq,struct task_struct * p)1661 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p)
1662 {
1663 enum uclamp_id clamp_id;
1664
1665 /*
1666 * Avoid any overhead until uclamp is actually used by the userspace.
1667 *
1668 * The condition is constructed such that a NOP is generated when
1669 * sched_uclamp_used is disabled.
1670 */
1671 if (!static_branch_unlikely(&sched_uclamp_used))
1672 return;
1673
1674 if (unlikely(!p->sched_class->uclamp_enabled))
1675 return;
1676
1677 for_each_clamp_id(clamp_id)
1678 uclamp_rq_dec_id(rq, p, clamp_id);
1679 }
1680
uclamp_rq_reinc_id(struct rq * rq,struct task_struct * p,enum uclamp_id clamp_id)1681 static inline void uclamp_rq_reinc_id(struct rq *rq, struct task_struct *p,
1682 enum uclamp_id clamp_id)
1683 {
1684 if (!p->uclamp[clamp_id].active)
1685 return;
1686
1687 uclamp_rq_dec_id(rq, p, clamp_id);
1688 uclamp_rq_inc_id(rq, p, clamp_id);
1689
1690 /*
1691 * Make sure to clear the idle flag if we've transiently reached 0
1692 * active tasks on rq.
1693 */
1694 if (clamp_id == UCLAMP_MAX && (rq->uclamp_flags & UCLAMP_FLAG_IDLE))
1695 rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE;
1696 }
1697
1698 static inline void
uclamp_update_active(struct task_struct * p)1699 uclamp_update_active(struct task_struct *p)
1700 {
1701 enum uclamp_id clamp_id;
1702 struct rq_flags rf;
1703 struct rq *rq;
1704
1705 /*
1706 * Lock the task and the rq where the task is (or was) queued.
1707 *
1708 * We might lock the (previous) rq of a !RUNNABLE task, but that's the
1709 * price to pay to safely serialize util_{min,max} updates with
1710 * enqueues, dequeues and migration operations.
1711 * This is the same locking schema used by __set_cpus_allowed_ptr().
1712 */
1713 rq = task_rq_lock(p, &rf);
1714
1715 /*
1716 * Setting the clamp bucket is serialized by task_rq_lock().
1717 * If the task is not yet RUNNABLE and its task_struct is not
1718 * affecting a valid clamp bucket, the next time it's enqueued,
1719 * it will already see the updated clamp bucket value.
1720 */
1721 for_each_clamp_id(clamp_id)
1722 uclamp_rq_reinc_id(rq, p, clamp_id);
1723
1724 task_rq_unlock(rq, p, &rf);
1725 }
1726
1727 #ifdef CONFIG_UCLAMP_TASK_GROUP
1728 static inline void
uclamp_update_active_tasks(struct cgroup_subsys_state * css)1729 uclamp_update_active_tasks(struct cgroup_subsys_state *css)
1730 {
1731 struct css_task_iter it;
1732 struct task_struct *p;
1733
1734 css_task_iter_start(css, 0, &it);
1735 while ((p = css_task_iter_next(&it)))
1736 uclamp_update_active(p);
1737 css_task_iter_end(&it);
1738 }
1739
1740 static void cpu_util_update_eff(struct cgroup_subsys_state *css);
1741 #endif
1742
1743 #ifdef CONFIG_SYSCTL
1744 #ifdef CONFIG_UCLAMP_TASK
1745 #ifdef CONFIG_UCLAMP_TASK_GROUP
uclamp_update_root_tg(void)1746 static void uclamp_update_root_tg(void)
1747 {
1748 struct task_group *tg = &root_task_group;
1749
1750 uclamp_se_set(&tg->uclamp_req[UCLAMP_MIN],
1751 sysctl_sched_uclamp_util_min, false);
1752 uclamp_se_set(&tg->uclamp_req[UCLAMP_MAX],
1753 sysctl_sched_uclamp_util_max, false);
1754
1755 rcu_read_lock();
1756 cpu_util_update_eff(&root_task_group.css);
1757 rcu_read_unlock();
1758 }
1759 #else
uclamp_update_root_tg(void)1760 static void uclamp_update_root_tg(void) { }
1761 #endif
1762
uclamp_sync_util_min_rt_default(void)1763 static void uclamp_sync_util_min_rt_default(void)
1764 {
1765 struct task_struct *g, *p;
1766
1767 /*
1768 * copy_process() sysctl_uclamp
1769 * uclamp_min_rt = X;
1770 * write_lock(&tasklist_lock) read_lock(&tasklist_lock)
1771 * // link thread smp_mb__after_spinlock()
1772 * write_unlock(&tasklist_lock) read_unlock(&tasklist_lock);
1773 * sched_post_fork() for_each_process_thread()
1774 * __uclamp_sync_rt() __uclamp_sync_rt()
1775 *
1776 * Ensures that either sched_post_fork() will observe the new
1777 * uclamp_min_rt or for_each_process_thread() will observe the new
1778 * task.
1779 */
1780 read_lock(&tasklist_lock);
1781 smp_mb__after_spinlock();
1782 read_unlock(&tasklist_lock);
1783
1784 rcu_read_lock();
1785 for_each_process_thread(g, p)
1786 uclamp_update_util_min_rt_default(p);
1787 rcu_read_unlock();
1788 }
1789
sysctl_sched_uclamp_handler(struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)1790 static int sysctl_sched_uclamp_handler(struct ctl_table *table, int write,
1791 void *buffer, size_t *lenp, loff_t *ppos)
1792 {
1793 bool update_root_tg = false;
1794 int old_min, old_max, old_min_rt;
1795 int result;
1796
1797 mutex_lock(&uclamp_mutex);
1798 old_min = sysctl_sched_uclamp_util_min;
1799 old_max = sysctl_sched_uclamp_util_max;
1800 old_min_rt = sysctl_sched_uclamp_util_min_rt_default;
1801
1802 result = proc_dointvec(table, write, buffer, lenp, ppos);
1803 if (result)
1804 goto undo;
1805 if (!write)
1806 goto done;
1807
1808 if (sysctl_sched_uclamp_util_min > sysctl_sched_uclamp_util_max ||
1809 sysctl_sched_uclamp_util_max > SCHED_CAPACITY_SCALE ||
1810 sysctl_sched_uclamp_util_min_rt_default > SCHED_CAPACITY_SCALE) {
1811
1812 result = -EINVAL;
1813 goto undo;
1814 }
1815
1816 if (old_min != sysctl_sched_uclamp_util_min) {
1817 uclamp_se_set(&uclamp_default[UCLAMP_MIN],
1818 sysctl_sched_uclamp_util_min, false);
1819 update_root_tg = true;
1820 }
1821 if (old_max != sysctl_sched_uclamp_util_max) {
1822 uclamp_se_set(&uclamp_default[UCLAMP_MAX],
1823 sysctl_sched_uclamp_util_max, false);
1824 update_root_tg = true;
1825 }
1826
1827 if (update_root_tg) {
1828 static_branch_enable(&sched_uclamp_used);
1829 uclamp_update_root_tg();
1830 }
1831
1832 if (old_min_rt != sysctl_sched_uclamp_util_min_rt_default) {
1833 static_branch_enable(&sched_uclamp_used);
1834 uclamp_sync_util_min_rt_default();
1835 }
1836
1837 /*
1838 * We update all RUNNABLE tasks only when task groups are in use.
1839 * Otherwise, keep it simple and do just a lazy update at each next
1840 * task enqueue time.
1841 */
1842
1843 goto done;
1844
1845 undo:
1846 sysctl_sched_uclamp_util_min = old_min;
1847 sysctl_sched_uclamp_util_max = old_max;
1848 sysctl_sched_uclamp_util_min_rt_default = old_min_rt;
1849 done:
1850 mutex_unlock(&uclamp_mutex);
1851
1852 return result;
1853 }
1854 #endif
1855 #endif
1856
uclamp_validate(struct task_struct * p,const struct sched_attr * attr)1857 static int uclamp_validate(struct task_struct *p,
1858 const struct sched_attr *attr)
1859 {
1860 int util_min = p->uclamp_req[UCLAMP_MIN].value;
1861 int util_max = p->uclamp_req[UCLAMP_MAX].value;
1862
1863 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN) {
1864 util_min = attr->sched_util_min;
1865
1866 if (util_min + 1 > SCHED_CAPACITY_SCALE + 1)
1867 return -EINVAL;
1868 }
1869
1870 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX) {
1871 util_max = attr->sched_util_max;
1872
1873 if (util_max + 1 > SCHED_CAPACITY_SCALE + 1)
1874 return -EINVAL;
1875 }
1876
1877 if (util_min != -1 && util_max != -1 && util_min > util_max)
1878 return -EINVAL;
1879
1880 /*
1881 * We have valid uclamp attributes; make sure uclamp is enabled.
1882 *
1883 * We need to do that here, because enabling static branches is a
1884 * blocking operation which obviously cannot be done while holding
1885 * scheduler locks.
1886 */
1887 static_branch_enable(&sched_uclamp_used);
1888
1889 return 0;
1890 }
1891
uclamp_reset(const struct sched_attr * attr,enum uclamp_id clamp_id,struct uclamp_se * uc_se)1892 static bool uclamp_reset(const struct sched_attr *attr,
1893 enum uclamp_id clamp_id,
1894 struct uclamp_se *uc_se)
1895 {
1896 /* Reset on sched class change for a non user-defined clamp value. */
1897 if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)) &&
1898 !uc_se->user_defined)
1899 return true;
1900
1901 /* Reset on sched_util_{min,max} == -1. */
1902 if (clamp_id == UCLAMP_MIN &&
1903 attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN &&
1904 attr->sched_util_min == -1) {
1905 return true;
1906 }
1907
1908 if (clamp_id == UCLAMP_MAX &&
1909 attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX &&
1910 attr->sched_util_max == -1) {
1911 return true;
1912 }
1913
1914 return false;
1915 }
1916
__setscheduler_uclamp(struct task_struct * p,const struct sched_attr * attr)1917 static void __setscheduler_uclamp(struct task_struct *p,
1918 const struct sched_attr *attr)
1919 {
1920 enum uclamp_id clamp_id;
1921
1922 for_each_clamp_id(clamp_id) {
1923 struct uclamp_se *uc_se = &p->uclamp_req[clamp_id];
1924 unsigned int value;
1925
1926 if (!uclamp_reset(attr, clamp_id, uc_se))
1927 continue;
1928
1929 /*
1930 * RT by default have a 100% boost value that could be modified
1931 * at runtime.
1932 */
1933 if (unlikely(rt_task(p) && clamp_id == UCLAMP_MIN))
1934 value = sysctl_sched_uclamp_util_min_rt_default;
1935 else
1936 value = uclamp_none(clamp_id);
1937
1938 uclamp_se_set(uc_se, value, false);
1939
1940 }
1941
1942 if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)))
1943 return;
1944
1945 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN &&
1946 attr->sched_util_min != -1) {
1947 uclamp_se_set(&p->uclamp_req[UCLAMP_MIN],
1948 attr->sched_util_min, true);
1949 }
1950
1951 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX &&
1952 attr->sched_util_max != -1) {
1953 uclamp_se_set(&p->uclamp_req[UCLAMP_MAX],
1954 attr->sched_util_max, true);
1955 }
1956 }
1957
uclamp_fork(struct task_struct * p)1958 static void uclamp_fork(struct task_struct *p)
1959 {
1960 enum uclamp_id clamp_id;
1961
1962 /*
1963 * We don't need to hold task_rq_lock() when updating p->uclamp_* here
1964 * as the task is still at its early fork stages.
1965 */
1966 for_each_clamp_id(clamp_id)
1967 p->uclamp[clamp_id].active = false;
1968
1969 if (likely(!p->sched_reset_on_fork))
1970 return;
1971
1972 for_each_clamp_id(clamp_id) {
1973 uclamp_se_set(&p->uclamp_req[clamp_id],
1974 uclamp_none(clamp_id), false);
1975 }
1976 }
1977
uclamp_post_fork(struct task_struct * p)1978 static void uclamp_post_fork(struct task_struct *p)
1979 {
1980 uclamp_update_util_min_rt_default(p);
1981 }
1982
init_uclamp_rq(struct rq * rq)1983 static void __init init_uclamp_rq(struct rq *rq)
1984 {
1985 enum uclamp_id clamp_id;
1986 struct uclamp_rq *uc_rq = rq->uclamp;
1987
1988 for_each_clamp_id(clamp_id) {
1989 uc_rq[clamp_id] = (struct uclamp_rq) {
1990 .value = uclamp_none(clamp_id)
1991 };
1992 }
1993
1994 rq->uclamp_flags = UCLAMP_FLAG_IDLE;
1995 }
1996
init_uclamp(void)1997 static void __init init_uclamp(void)
1998 {
1999 struct uclamp_se uc_max = {};
2000 enum uclamp_id clamp_id;
2001 int cpu;
2002
2003 for_each_possible_cpu(cpu)
2004 init_uclamp_rq(cpu_rq(cpu));
2005
2006 for_each_clamp_id(clamp_id) {
2007 uclamp_se_set(&init_task.uclamp_req[clamp_id],
2008 uclamp_none(clamp_id), false);
2009 }
2010
2011 /* System defaults allow max clamp values for both indexes */
2012 uclamp_se_set(&uc_max, uclamp_none(UCLAMP_MAX), false);
2013 for_each_clamp_id(clamp_id) {
2014 uclamp_default[clamp_id] = uc_max;
2015 #ifdef CONFIG_UCLAMP_TASK_GROUP
2016 root_task_group.uclamp_req[clamp_id] = uc_max;
2017 root_task_group.uclamp[clamp_id] = uc_max;
2018 #endif
2019 }
2020 }
2021
2022 #else /* CONFIG_UCLAMP_TASK */
uclamp_rq_inc(struct rq * rq,struct task_struct * p)2023 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p) { }
uclamp_rq_dec(struct rq * rq,struct task_struct * p)2024 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p) { }
uclamp_validate(struct task_struct * p,const struct sched_attr * attr)2025 static inline int uclamp_validate(struct task_struct *p,
2026 const struct sched_attr *attr)
2027 {
2028 return -EOPNOTSUPP;
2029 }
__setscheduler_uclamp(struct task_struct * p,const struct sched_attr * attr)2030 static void __setscheduler_uclamp(struct task_struct *p,
2031 const struct sched_attr *attr) { }
uclamp_fork(struct task_struct * p)2032 static inline void uclamp_fork(struct task_struct *p) { }
uclamp_post_fork(struct task_struct * p)2033 static inline void uclamp_post_fork(struct task_struct *p) { }
init_uclamp(void)2034 static inline void init_uclamp(void) { }
2035 #endif /* CONFIG_UCLAMP_TASK */
2036
sched_task_on_rq(struct task_struct * p)2037 bool sched_task_on_rq(struct task_struct *p)
2038 {
2039 return task_on_rq_queued(p);
2040 }
2041
get_wchan(struct task_struct * p)2042 unsigned long get_wchan(struct task_struct *p)
2043 {
2044 unsigned long ip = 0;
2045 unsigned int state;
2046
2047 if (!p || p == current)
2048 return 0;
2049
2050 /* Only get wchan if task is blocked and we can keep it that way. */
2051 raw_spin_lock_irq(&p->pi_lock);
2052 state = READ_ONCE(p->__state);
2053 smp_rmb(); /* see try_to_wake_up() */
2054 if (state != TASK_RUNNING && state != TASK_WAKING && !p->on_rq)
2055 ip = __get_wchan(p);
2056 raw_spin_unlock_irq(&p->pi_lock);
2057
2058 return ip;
2059 }
2060
enqueue_task(struct rq * rq,struct task_struct * p,int flags)2061 static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
2062 {
2063 if (!(flags & ENQUEUE_NOCLOCK))
2064 update_rq_clock(rq);
2065
2066 if (!(flags & ENQUEUE_RESTORE)) {
2067 sched_info_enqueue(rq, p);
2068 psi_enqueue(p, flags & ENQUEUE_WAKEUP);
2069 }
2070
2071 uclamp_rq_inc(rq, p);
2072 p->sched_class->enqueue_task(rq, p, flags);
2073
2074 if (sched_core_enabled(rq))
2075 sched_core_enqueue(rq, p);
2076 }
2077
dequeue_task(struct rq * rq,struct task_struct * p,int flags)2078 static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
2079 {
2080 if (sched_core_enabled(rq))
2081 sched_core_dequeue(rq, p, flags);
2082
2083 if (!(flags & DEQUEUE_NOCLOCK))
2084 update_rq_clock(rq);
2085
2086 if (!(flags & DEQUEUE_SAVE)) {
2087 sched_info_dequeue(rq, p);
2088 psi_dequeue(p, flags & DEQUEUE_SLEEP);
2089 }
2090
2091 uclamp_rq_dec(rq, p);
2092 p->sched_class->dequeue_task(rq, p, flags);
2093 }
2094
activate_task(struct rq * rq,struct task_struct * p,int flags)2095 void activate_task(struct rq *rq, struct task_struct *p, int flags)
2096 {
2097 enqueue_task(rq, p, flags);
2098
2099 p->on_rq = TASK_ON_RQ_QUEUED;
2100 }
2101
deactivate_task(struct rq * rq,struct task_struct * p,int flags)2102 void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
2103 {
2104 p->on_rq = (flags & DEQUEUE_SLEEP) ? 0 : TASK_ON_RQ_MIGRATING;
2105
2106 dequeue_task(rq, p, flags);
2107 }
2108
__normal_prio(int policy,int rt_prio,int nice)2109 static inline int __normal_prio(int policy, int rt_prio, int nice)
2110 {
2111 int prio;
2112
2113 if (dl_policy(policy))
2114 prio = MAX_DL_PRIO - 1;
2115 else if (rt_policy(policy))
2116 prio = MAX_RT_PRIO - 1 - rt_prio;
2117 else
2118 prio = NICE_TO_PRIO(nice);
2119
2120 return prio;
2121 }
2122
2123 /*
2124 * Calculate the expected normal priority: i.e. priority
2125 * without taking RT-inheritance into account. Might be
2126 * boosted by interactivity modifiers. Changes upon fork,
2127 * setprio syscalls, and whenever the interactivity
2128 * estimator recalculates.
2129 */
normal_prio(struct task_struct * p)2130 static inline int normal_prio(struct task_struct *p)
2131 {
2132 return __normal_prio(p->policy, p->rt_priority, PRIO_TO_NICE(p->static_prio));
2133 }
2134
2135 /*
2136 * Calculate the current priority, i.e. the priority
2137 * taken into account by the scheduler. This value might
2138 * be boosted by RT tasks, or might be boosted by
2139 * interactivity modifiers. Will be RT if the task got
2140 * RT-boosted. If not then it returns p->normal_prio.
2141 */
effective_prio(struct task_struct * p)2142 static int effective_prio(struct task_struct *p)
2143 {
2144 p->normal_prio = normal_prio(p);
2145 /*
2146 * If we are RT tasks or we were boosted to RT priority,
2147 * keep the priority unchanged. Otherwise, update priority
2148 * to the normal priority:
2149 */
2150 if (!rt_prio(p->prio))
2151 return p->normal_prio;
2152 return p->prio;
2153 }
2154
2155 /**
2156 * task_curr - is this task currently executing on a CPU?
2157 * @p: the task in question.
2158 *
2159 * Return: 1 if the task is currently executing. 0 otherwise.
2160 */
task_curr(const struct task_struct * p)2161 inline int task_curr(const struct task_struct *p)
2162 {
2163 return cpu_curr(task_cpu(p)) == p;
2164 }
2165
2166 /*
2167 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
2168 * use the balance_callback list if you want balancing.
2169 *
2170 * this means any call to check_class_changed() must be followed by a call to
2171 * balance_callback().
2172 */
check_class_changed(struct rq * rq,struct task_struct * p,const struct sched_class * prev_class,int oldprio)2173 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
2174 const struct sched_class *prev_class,
2175 int oldprio)
2176 {
2177 if (prev_class != p->sched_class) {
2178 if (prev_class->switched_from)
2179 prev_class->switched_from(rq, p);
2180
2181 p->sched_class->switched_to(rq, p);
2182 } else if (oldprio != p->prio || dl_task(p))
2183 p->sched_class->prio_changed(rq, p, oldprio);
2184 }
2185
check_preempt_curr(struct rq * rq,struct task_struct * p,int flags)2186 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
2187 {
2188 if (p->sched_class == rq->curr->sched_class)
2189 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
2190 else if (sched_class_above(p->sched_class, rq->curr->sched_class))
2191 resched_curr(rq);
2192
2193 /*
2194 * A queue event has occurred, and we're going to schedule. In
2195 * this case, we can save a useless back to back clock update.
2196 */
2197 if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
2198 rq_clock_skip_update(rq);
2199 }
2200
2201 #ifdef CONFIG_SMP
2202
2203 static void
2204 __do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask, u32 flags);
2205
2206 static int __set_cpus_allowed_ptr(struct task_struct *p,
2207 const struct cpumask *new_mask,
2208 u32 flags);
2209
migrate_disable_switch(struct rq * rq,struct task_struct * p)2210 static void migrate_disable_switch(struct rq *rq, struct task_struct *p)
2211 {
2212 if (likely(!p->migration_disabled))
2213 return;
2214
2215 if (p->cpus_ptr != &p->cpus_mask)
2216 return;
2217
2218 /*
2219 * Violates locking rules! see comment in __do_set_cpus_allowed().
2220 */
2221 __do_set_cpus_allowed(p, cpumask_of(rq->cpu), SCA_MIGRATE_DISABLE);
2222 }
2223
migrate_disable(void)2224 void migrate_disable(void)
2225 {
2226 struct task_struct *p = current;
2227
2228 if (p->migration_disabled) {
2229 p->migration_disabled++;
2230 return;
2231 }
2232
2233 preempt_disable();
2234 this_rq()->nr_pinned++;
2235 p->migration_disabled = 1;
2236 preempt_enable();
2237 }
2238 EXPORT_SYMBOL_GPL(migrate_disable);
2239
migrate_enable(void)2240 void migrate_enable(void)
2241 {
2242 struct task_struct *p = current;
2243
2244 if (p->migration_disabled > 1) {
2245 p->migration_disabled--;
2246 return;
2247 }
2248
2249 if (WARN_ON_ONCE(!p->migration_disabled))
2250 return;
2251
2252 /*
2253 * Ensure stop_task runs either before or after this, and that
2254 * __set_cpus_allowed_ptr(SCA_MIGRATE_ENABLE) doesn't schedule().
2255 */
2256 preempt_disable();
2257 if (p->cpus_ptr != &p->cpus_mask)
2258 __set_cpus_allowed_ptr(p, &p->cpus_mask, SCA_MIGRATE_ENABLE);
2259 /*
2260 * Mustn't clear migration_disabled() until cpus_ptr points back at the
2261 * regular cpus_mask, otherwise things that race (eg.
2262 * select_fallback_rq) get confused.
2263 */
2264 barrier();
2265 p->migration_disabled = 0;
2266 this_rq()->nr_pinned--;
2267 preempt_enable();
2268 }
2269 EXPORT_SYMBOL_GPL(migrate_enable);
2270
rq_has_pinned_tasks(struct rq * rq)2271 static inline bool rq_has_pinned_tasks(struct rq *rq)
2272 {
2273 return rq->nr_pinned;
2274 }
2275
2276 /*
2277 * Per-CPU kthreads are allowed to run on !active && online CPUs, see
2278 * __set_cpus_allowed_ptr() and select_fallback_rq().
2279 */
is_cpu_allowed(struct task_struct * p,int cpu)2280 static inline bool is_cpu_allowed(struct task_struct *p, int cpu)
2281 {
2282 /* When not in the task's cpumask, no point in looking further. */
2283 if (!cpumask_test_cpu(cpu, p->cpus_ptr))
2284 return false;
2285
2286 /* migrate_disabled() must be allowed to finish. */
2287 if (is_migration_disabled(p))
2288 return cpu_online(cpu);
2289
2290 /* Non kernel threads are not allowed during either online or offline. */
2291 if (!(p->flags & PF_KTHREAD))
2292 return cpu_active(cpu) && task_cpu_possible(cpu, p);
2293
2294 /* KTHREAD_IS_PER_CPU is always allowed. */
2295 if (kthread_is_per_cpu(p))
2296 return cpu_online(cpu);
2297
2298 /* Regular kernel threads don't get to stay during offline. */
2299 if (cpu_dying(cpu))
2300 return false;
2301
2302 /* But are allowed during online. */
2303 return cpu_online(cpu);
2304 }
2305
2306 /*
2307 * This is how migration works:
2308 *
2309 * 1) we invoke migration_cpu_stop() on the target CPU using
2310 * stop_one_cpu().
2311 * 2) stopper starts to run (implicitly forcing the migrated thread
2312 * off the CPU)
2313 * 3) it checks whether the migrated task is still in the wrong runqueue.
2314 * 4) if it's in the wrong runqueue then the migration thread removes
2315 * it and puts it into the right queue.
2316 * 5) stopper completes and stop_one_cpu() returns and the migration
2317 * is done.
2318 */
2319
2320 /*
2321 * move_queued_task - move a queued task to new rq.
2322 *
2323 * Returns (locked) new rq. Old rq's lock is released.
2324 */
move_queued_task(struct rq * rq,struct rq_flags * rf,struct task_struct * p,int new_cpu)2325 static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf,
2326 struct task_struct *p, int new_cpu)
2327 {
2328 lockdep_assert_rq_held(rq);
2329
2330 deactivate_task(rq, p, DEQUEUE_NOCLOCK);
2331 set_task_cpu(p, new_cpu);
2332 rq_unlock(rq, rf);
2333
2334 rq = cpu_rq(new_cpu);
2335
2336 rq_lock(rq, rf);
2337 BUG_ON(task_cpu(p) != new_cpu);
2338 activate_task(rq, p, 0);
2339 check_preempt_curr(rq, p, 0);
2340
2341 return rq;
2342 }
2343
2344 struct migration_arg {
2345 struct task_struct *task;
2346 int dest_cpu;
2347 struct set_affinity_pending *pending;
2348 };
2349
2350 /*
2351 * @refs: number of wait_for_completion()
2352 * @stop_pending: is @stop_work in use
2353 */
2354 struct set_affinity_pending {
2355 refcount_t refs;
2356 unsigned int stop_pending;
2357 struct completion done;
2358 struct cpu_stop_work stop_work;
2359 struct migration_arg arg;
2360 };
2361
2362 /*
2363 * Move (not current) task off this CPU, onto the destination CPU. We're doing
2364 * this because either it can't run here any more (set_cpus_allowed()
2365 * away from this CPU, or CPU going down), or because we're
2366 * attempting to rebalance this task on exec (sched_exec).
2367 *
2368 * So we race with normal scheduler movements, but that's OK, as long
2369 * as the task is no longer on this CPU.
2370 */
__migrate_task(struct rq * rq,struct rq_flags * rf,struct task_struct * p,int dest_cpu)2371 static struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf,
2372 struct task_struct *p, int dest_cpu)
2373 {
2374 /* Affinity changed (again). */
2375 if (!is_cpu_allowed(p, dest_cpu))
2376 return rq;
2377
2378 update_rq_clock(rq);
2379 rq = move_queued_task(rq, rf, p, dest_cpu);
2380
2381 return rq;
2382 }
2383
2384 /*
2385 * migration_cpu_stop - this will be executed by a highprio stopper thread
2386 * and performs thread migration by bumping thread off CPU then
2387 * 'pushing' onto another runqueue.
2388 */
migration_cpu_stop(void * data)2389 static int migration_cpu_stop(void *data)
2390 {
2391 struct migration_arg *arg = data;
2392 struct set_affinity_pending *pending = arg->pending;
2393 struct task_struct *p = arg->task;
2394 struct rq *rq = this_rq();
2395 bool complete = false;
2396 struct rq_flags rf;
2397
2398 /*
2399 * The original target CPU might have gone down and we might
2400 * be on another CPU but it doesn't matter.
2401 */
2402 local_irq_save(rf.flags);
2403 /*
2404 * We need to explicitly wake pending tasks before running
2405 * __migrate_task() such that we will not miss enforcing cpus_ptr
2406 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
2407 */
2408 flush_smp_call_function_queue();
2409
2410 raw_spin_lock(&p->pi_lock);
2411 rq_lock(rq, &rf);
2412
2413 /*
2414 * If we were passed a pending, then ->stop_pending was set, thus
2415 * p->migration_pending must have remained stable.
2416 */
2417 WARN_ON_ONCE(pending && pending != p->migration_pending);
2418
2419 /*
2420 * If task_rq(p) != rq, it cannot be migrated here, because we're
2421 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
2422 * we're holding p->pi_lock.
2423 */
2424 if (task_rq(p) == rq) {
2425 if (is_migration_disabled(p))
2426 goto out;
2427
2428 if (pending) {
2429 p->migration_pending = NULL;
2430 complete = true;
2431
2432 if (cpumask_test_cpu(task_cpu(p), &p->cpus_mask))
2433 goto out;
2434 }
2435
2436 if (task_on_rq_queued(p))
2437 rq = __migrate_task(rq, &rf, p, arg->dest_cpu);
2438 else
2439 p->wake_cpu = arg->dest_cpu;
2440
2441 /*
2442 * XXX __migrate_task() can fail, at which point we might end
2443 * up running on a dodgy CPU, AFAICT this can only happen
2444 * during CPU hotplug, at which point we'll get pushed out
2445 * anyway, so it's probably not a big deal.
2446 */
2447
2448 } else if (pending) {
2449 /*
2450 * This happens when we get migrated between migrate_enable()'s
2451 * preempt_enable() and scheduling the stopper task. At that
2452 * point we're a regular task again and not current anymore.
2453 *
2454 * A !PREEMPT kernel has a giant hole here, which makes it far
2455 * more likely.
2456 */
2457
2458 /*
2459 * The task moved before the stopper got to run. We're holding
2460 * ->pi_lock, so the allowed mask is stable - if it got
2461 * somewhere allowed, we're done.
2462 */
2463 if (cpumask_test_cpu(task_cpu(p), p->cpus_ptr)) {
2464 p->migration_pending = NULL;
2465 complete = true;
2466 goto out;
2467 }
2468
2469 /*
2470 * When migrate_enable() hits a rq mis-match we can't reliably
2471 * determine is_migration_disabled() and so have to chase after
2472 * it.
2473 */
2474 WARN_ON_ONCE(!pending->stop_pending);
2475 task_rq_unlock(rq, p, &rf);
2476 stop_one_cpu_nowait(task_cpu(p), migration_cpu_stop,
2477 &pending->arg, &pending->stop_work);
2478 return 0;
2479 }
2480 out:
2481 if (pending)
2482 pending->stop_pending = false;
2483 task_rq_unlock(rq, p, &rf);
2484
2485 if (complete)
2486 complete_all(&pending->done);
2487
2488 return 0;
2489 }
2490
push_cpu_stop(void * arg)2491 int push_cpu_stop(void *arg)
2492 {
2493 struct rq *lowest_rq = NULL, *rq = this_rq();
2494 struct task_struct *p = arg;
2495
2496 raw_spin_lock_irq(&p->pi_lock);
2497 raw_spin_rq_lock(rq);
2498
2499 if (task_rq(p) != rq)
2500 goto out_unlock;
2501
2502 if (is_migration_disabled(p)) {
2503 p->migration_flags |= MDF_PUSH;
2504 goto out_unlock;
2505 }
2506
2507 p->migration_flags &= ~MDF_PUSH;
2508
2509 if (p->sched_class->find_lock_rq)
2510 lowest_rq = p->sched_class->find_lock_rq(p, rq);
2511
2512 if (!lowest_rq)
2513 goto out_unlock;
2514
2515 // XXX validate p is still the highest prio task
2516 if (task_rq(p) == rq) {
2517 deactivate_task(rq, p, 0);
2518 set_task_cpu(p, lowest_rq->cpu);
2519 activate_task(lowest_rq, p, 0);
2520 resched_curr(lowest_rq);
2521 }
2522
2523 double_unlock_balance(rq, lowest_rq);
2524
2525 out_unlock:
2526 rq->push_busy = false;
2527 raw_spin_rq_unlock(rq);
2528 raw_spin_unlock_irq(&p->pi_lock);
2529
2530 put_task_struct(p);
2531 return 0;
2532 }
2533
2534 /*
2535 * sched_class::set_cpus_allowed must do the below, but is not required to
2536 * actually call this function.
2537 */
set_cpus_allowed_common(struct task_struct * p,const struct cpumask * new_mask,u32 flags)2538 void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask, u32 flags)
2539 {
2540 if (flags & (SCA_MIGRATE_ENABLE | SCA_MIGRATE_DISABLE)) {
2541 p->cpus_ptr = new_mask;
2542 return;
2543 }
2544
2545 cpumask_copy(&p->cpus_mask, new_mask);
2546 p->nr_cpus_allowed = cpumask_weight(new_mask);
2547 }
2548
2549 static void
__do_set_cpus_allowed(struct task_struct * p,const struct cpumask * new_mask,u32 flags)2550 __do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask, u32 flags)
2551 {
2552 struct rq *rq = task_rq(p);
2553 bool queued, running;
2554
2555 /*
2556 * This here violates the locking rules for affinity, since we're only
2557 * supposed to change these variables while holding both rq->lock and
2558 * p->pi_lock.
2559 *
2560 * HOWEVER, it magically works, because ttwu() is the only code that
2561 * accesses these variables under p->pi_lock and only does so after
2562 * smp_cond_load_acquire(&p->on_cpu, !VAL), and we're in __schedule()
2563 * before finish_task().
2564 *
2565 * XXX do further audits, this smells like something putrid.
2566 */
2567 if (flags & SCA_MIGRATE_DISABLE)
2568 SCHED_WARN_ON(!p->on_cpu);
2569 else
2570 lockdep_assert_held(&p->pi_lock);
2571
2572 queued = task_on_rq_queued(p);
2573 running = task_current(rq, p);
2574
2575 if (queued) {
2576 /*
2577 * Because __kthread_bind() calls this on blocked tasks without
2578 * holding rq->lock.
2579 */
2580 lockdep_assert_rq_held(rq);
2581 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
2582 }
2583 if (running)
2584 put_prev_task(rq, p);
2585
2586 p->sched_class->set_cpus_allowed(p, new_mask, flags);
2587
2588 if (queued)
2589 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
2590 if (running)
2591 set_next_task(rq, p);
2592 }
2593
do_set_cpus_allowed(struct task_struct * p,const struct cpumask * new_mask)2594 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
2595 {
2596 __do_set_cpus_allowed(p, new_mask, 0);
2597 }
2598
dup_user_cpus_ptr(struct task_struct * dst,struct task_struct * src,int node)2599 int dup_user_cpus_ptr(struct task_struct *dst, struct task_struct *src,
2600 int node)
2601 {
2602 if (!src->user_cpus_ptr)
2603 return 0;
2604
2605 dst->user_cpus_ptr = kmalloc_node(cpumask_size(), GFP_KERNEL, node);
2606 if (!dst->user_cpus_ptr)
2607 return -ENOMEM;
2608
2609 cpumask_copy(dst->user_cpus_ptr, src->user_cpus_ptr);
2610 return 0;
2611 }
2612
clear_user_cpus_ptr(struct task_struct * p)2613 static inline struct cpumask *clear_user_cpus_ptr(struct task_struct *p)
2614 {
2615 struct cpumask *user_mask = NULL;
2616
2617 swap(p->user_cpus_ptr, user_mask);
2618
2619 return user_mask;
2620 }
2621
release_user_cpus_ptr(struct task_struct * p)2622 void release_user_cpus_ptr(struct task_struct *p)
2623 {
2624 kfree(clear_user_cpus_ptr(p));
2625 }
2626
2627 /*
2628 * This function is wildly self concurrent; here be dragons.
2629 *
2630 *
2631 * When given a valid mask, __set_cpus_allowed_ptr() must block until the
2632 * designated task is enqueued on an allowed CPU. If that task is currently
2633 * running, we have to kick it out using the CPU stopper.
2634 *
2635 * Migrate-Disable comes along and tramples all over our nice sandcastle.
2636 * Consider:
2637 *
2638 * Initial conditions: P0->cpus_mask = [0, 1]
2639 *
2640 * P0@CPU0 P1
2641 *
2642 * migrate_disable();
2643 * <preempted>
2644 * set_cpus_allowed_ptr(P0, [1]);
2645 *
2646 * P1 *cannot* return from this set_cpus_allowed_ptr() call until P0 executes
2647 * its outermost migrate_enable() (i.e. it exits its Migrate-Disable region).
2648 * This means we need the following scheme:
2649 *
2650 * P0@CPU0 P1
2651 *
2652 * migrate_disable();
2653 * <preempted>
2654 * set_cpus_allowed_ptr(P0, [1]);
2655 * <blocks>
2656 * <resumes>
2657 * migrate_enable();
2658 * __set_cpus_allowed_ptr();
2659 * <wakes local stopper>
2660 * `--> <woken on migration completion>
2661 *
2662 * Now the fun stuff: there may be several P1-like tasks, i.e. multiple
2663 * concurrent set_cpus_allowed_ptr(P0, [*]) calls. CPU affinity changes of any
2664 * task p are serialized by p->pi_lock, which we can leverage: the one that
2665 * should come into effect at the end of the Migrate-Disable region is the last
2666 * one. This means we only need to track a single cpumask (i.e. p->cpus_mask),
2667 * but we still need to properly signal those waiting tasks at the appropriate
2668 * moment.
2669 *
2670 * This is implemented using struct set_affinity_pending. The first
2671 * __set_cpus_allowed_ptr() caller within a given Migrate-Disable region will
2672 * setup an instance of that struct and install it on the targeted task_struct.
2673 * Any and all further callers will reuse that instance. Those then wait for
2674 * a completion signaled at the tail of the CPU stopper callback (1), triggered
2675 * on the end of the Migrate-Disable region (i.e. outermost migrate_enable()).
2676 *
2677 *
2678 * (1) In the cases covered above. There is one more where the completion is
2679 * signaled within affine_move_task() itself: when a subsequent affinity request
2680 * occurs after the stopper bailed out due to the targeted task still being
2681 * Migrate-Disable. Consider:
2682 *
2683 * Initial conditions: P0->cpus_mask = [0, 1]
2684 *
2685 * CPU0 P1 P2
2686 * <P0>
2687 * migrate_disable();
2688 * <preempted>
2689 * set_cpus_allowed_ptr(P0, [1]);
2690 * <blocks>
2691 * <migration/0>
2692 * migration_cpu_stop()
2693 * is_migration_disabled()
2694 * <bails>
2695 * set_cpus_allowed_ptr(P0, [0, 1]);
2696 * <signal completion>
2697 * <awakes>
2698 *
2699 * Note that the above is safe vs a concurrent migrate_enable(), as any
2700 * pending affinity completion is preceded by an uninstallation of
2701 * p->migration_pending done with p->pi_lock held.
2702 */
affine_move_task(struct rq * rq,struct task_struct * p,struct rq_flags * rf,int dest_cpu,unsigned int flags)2703 static int affine_move_task(struct rq *rq, struct task_struct *p, struct rq_flags *rf,
2704 int dest_cpu, unsigned int flags)
2705 {
2706 struct set_affinity_pending my_pending = { }, *pending = NULL;
2707 bool stop_pending, complete = false;
2708
2709 /* Can the task run on the task's current CPU? If so, we're done */
2710 if (cpumask_test_cpu(task_cpu(p), &p->cpus_mask)) {
2711 struct task_struct *push_task = NULL;
2712
2713 if ((flags & SCA_MIGRATE_ENABLE) &&
2714 (p->migration_flags & MDF_PUSH) && !rq->push_busy) {
2715 rq->push_busy = true;
2716 push_task = get_task_struct(p);
2717 }
2718
2719 /*
2720 * If there are pending waiters, but no pending stop_work,
2721 * then complete now.
2722 */
2723 pending = p->migration_pending;
2724 if (pending && !pending->stop_pending) {
2725 p->migration_pending = NULL;
2726 complete = true;
2727 }
2728
2729 task_rq_unlock(rq, p, rf);
2730
2731 if (push_task) {
2732 stop_one_cpu_nowait(rq->cpu, push_cpu_stop,
2733 p, &rq->push_work);
2734 }
2735
2736 if (complete)
2737 complete_all(&pending->done);
2738
2739 return 0;
2740 }
2741
2742 if (!(flags & SCA_MIGRATE_ENABLE)) {
2743 /* serialized by p->pi_lock */
2744 if (!p->migration_pending) {
2745 /* Install the request */
2746 refcount_set(&my_pending.refs, 1);
2747 init_completion(&my_pending.done);
2748 my_pending.arg = (struct migration_arg) {
2749 .task = p,
2750 .dest_cpu = dest_cpu,
2751 .pending = &my_pending,
2752 };
2753
2754 p->migration_pending = &my_pending;
2755 } else {
2756 pending = p->migration_pending;
2757 refcount_inc(&pending->refs);
2758 /*
2759 * Affinity has changed, but we've already installed a
2760 * pending. migration_cpu_stop() *must* see this, else
2761 * we risk a completion of the pending despite having a
2762 * task on a disallowed CPU.
2763 *
2764 * Serialized by p->pi_lock, so this is safe.
2765 */
2766 pending->arg.dest_cpu = dest_cpu;
2767 }
2768 }
2769 pending = p->migration_pending;
2770 /*
2771 * - !MIGRATE_ENABLE:
2772 * we'll have installed a pending if there wasn't one already.
2773 *
2774 * - MIGRATE_ENABLE:
2775 * we're here because the current CPU isn't matching anymore,
2776 * the only way that can happen is because of a concurrent
2777 * set_cpus_allowed_ptr() call, which should then still be
2778 * pending completion.
2779 *
2780 * Either way, we really should have a @pending here.
2781 */
2782 if (WARN_ON_ONCE(!pending)) {
2783 task_rq_unlock(rq, p, rf);
2784 return -EINVAL;
2785 }
2786
2787 if (task_running(rq, p) || READ_ONCE(p->__state) == TASK_WAKING) {
2788 /*
2789 * MIGRATE_ENABLE gets here because 'p == current', but for
2790 * anything else we cannot do is_migration_disabled(), punt
2791 * and have the stopper function handle it all race-free.
2792 */
2793 stop_pending = pending->stop_pending;
2794 if (!stop_pending)
2795 pending->stop_pending = true;
2796
2797 if (flags & SCA_MIGRATE_ENABLE)
2798 p->migration_flags &= ~MDF_PUSH;
2799
2800 task_rq_unlock(rq, p, rf);
2801
2802 if (!stop_pending) {
2803 stop_one_cpu_nowait(cpu_of(rq), migration_cpu_stop,
2804 &pending->arg, &pending->stop_work);
2805 }
2806
2807 if (flags & SCA_MIGRATE_ENABLE)
2808 return 0;
2809 } else {
2810
2811 if (!is_migration_disabled(p)) {
2812 if (task_on_rq_queued(p))
2813 rq = move_queued_task(rq, rf, p, dest_cpu);
2814
2815 if (!pending->stop_pending) {
2816 p->migration_pending = NULL;
2817 complete = true;
2818 }
2819 }
2820 task_rq_unlock(rq, p, rf);
2821
2822 if (complete)
2823 complete_all(&pending->done);
2824 }
2825
2826 wait_for_completion(&pending->done);
2827
2828 if (refcount_dec_and_test(&pending->refs))
2829 wake_up_var(&pending->refs); /* No UaF, just an address */
2830
2831 /*
2832 * Block the original owner of &pending until all subsequent callers
2833 * have seen the completion and decremented the refcount
2834 */
2835 wait_var_event(&my_pending.refs, !refcount_read(&my_pending.refs));
2836
2837 /* ARGH */
2838 WARN_ON_ONCE(my_pending.stop_pending);
2839
2840 return 0;
2841 }
2842
2843 /*
2844 * Called with both p->pi_lock and rq->lock held; drops both before returning.
2845 */
__set_cpus_allowed_ptr_locked(struct task_struct * p,const struct cpumask * new_mask,u32 flags,struct rq * rq,struct rq_flags * rf)2846 static int __set_cpus_allowed_ptr_locked(struct task_struct *p,
2847 const struct cpumask *new_mask,
2848 u32 flags,
2849 struct rq *rq,
2850 struct rq_flags *rf)
2851 __releases(rq->lock)
2852 __releases(p->pi_lock)
2853 {
2854 const struct cpumask *cpu_allowed_mask = task_cpu_possible_mask(p);
2855 const struct cpumask *cpu_valid_mask = cpu_active_mask;
2856 bool kthread = p->flags & PF_KTHREAD;
2857 struct cpumask *user_mask = NULL;
2858 unsigned int dest_cpu;
2859 int ret = 0;
2860
2861 update_rq_clock(rq);
2862
2863 if (kthread || is_migration_disabled(p)) {
2864 /*
2865 * Kernel threads are allowed on online && !active CPUs,
2866 * however, during cpu-hot-unplug, even these might get pushed
2867 * away if not KTHREAD_IS_PER_CPU.
2868 *
2869 * Specifically, migration_disabled() tasks must not fail the
2870 * cpumask_any_and_distribute() pick below, esp. so on
2871 * SCA_MIGRATE_ENABLE, otherwise we'll not call
2872 * set_cpus_allowed_common() and actually reset p->cpus_ptr.
2873 */
2874 cpu_valid_mask = cpu_online_mask;
2875 }
2876
2877 if (!kthread && !cpumask_subset(new_mask, cpu_allowed_mask)) {
2878 ret = -EINVAL;
2879 goto out;
2880 }
2881
2882 /*
2883 * Must re-check here, to close a race against __kthread_bind(),
2884 * sched_setaffinity() is not guaranteed to observe the flag.
2885 */
2886 if ((flags & SCA_CHECK) && (p->flags & PF_NO_SETAFFINITY)) {
2887 ret = -EINVAL;
2888 goto out;
2889 }
2890
2891 if (!(flags & SCA_MIGRATE_ENABLE)) {
2892 if (cpumask_equal(&p->cpus_mask, new_mask))
2893 goto out;
2894
2895 if (WARN_ON_ONCE(p == current &&
2896 is_migration_disabled(p) &&
2897 !cpumask_test_cpu(task_cpu(p), new_mask))) {
2898 ret = -EBUSY;
2899 goto out;
2900 }
2901 }
2902
2903 /*
2904 * Picking a ~random cpu helps in cases where we are changing affinity
2905 * for groups of tasks (ie. cpuset), so that load balancing is not
2906 * immediately required to distribute the tasks within their new mask.
2907 */
2908 dest_cpu = cpumask_any_and_distribute(cpu_valid_mask, new_mask);
2909 if (dest_cpu >= nr_cpu_ids) {
2910 ret = -EINVAL;
2911 goto out;
2912 }
2913
2914 __do_set_cpus_allowed(p, new_mask, flags);
2915
2916 if (flags & SCA_USER)
2917 user_mask = clear_user_cpus_ptr(p);
2918
2919 ret = affine_move_task(rq, p, rf, dest_cpu, flags);
2920
2921 kfree(user_mask);
2922
2923 return ret;
2924
2925 out:
2926 task_rq_unlock(rq, p, rf);
2927
2928 return ret;
2929 }
2930
2931 /*
2932 * Change a given task's CPU affinity. Migrate the thread to a
2933 * proper CPU and schedule it away if the CPU it's executing on
2934 * is removed from the allowed bitmask.
2935 *
2936 * NOTE: the caller must have a valid reference to the task, the
2937 * task must not exit() & deallocate itself prematurely. The
2938 * call is not atomic; no spinlocks may be held.
2939 */
__set_cpus_allowed_ptr(struct task_struct * p,const struct cpumask * new_mask,u32 flags)2940 static int __set_cpus_allowed_ptr(struct task_struct *p,
2941 const struct cpumask *new_mask, u32 flags)
2942 {
2943 struct rq_flags rf;
2944 struct rq *rq;
2945
2946 rq = task_rq_lock(p, &rf);
2947 return __set_cpus_allowed_ptr_locked(p, new_mask, flags, rq, &rf);
2948 }
2949
set_cpus_allowed_ptr(struct task_struct * p,const struct cpumask * new_mask)2950 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
2951 {
2952 return __set_cpus_allowed_ptr(p, new_mask, 0);
2953 }
2954 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
2955
2956 /*
2957 * Change a given task's CPU affinity to the intersection of its current
2958 * affinity mask and @subset_mask, writing the resulting mask to @new_mask
2959 * and pointing @p->user_cpus_ptr to a copy of the old mask.
2960 * If the resulting mask is empty, leave the affinity unchanged and return
2961 * -EINVAL.
2962 */
restrict_cpus_allowed_ptr(struct task_struct * p,struct cpumask * new_mask,const struct cpumask * subset_mask)2963 static int restrict_cpus_allowed_ptr(struct task_struct *p,
2964 struct cpumask *new_mask,
2965 const struct cpumask *subset_mask)
2966 {
2967 struct cpumask *user_mask = NULL;
2968 struct rq_flags rf;
2969 struct rq *rq;
2970 int err;
2971
2972 if (!p->user_cpus_ptr) {
2973 user_mask = kmalloc(cpumask_size(), GFP_KERNEL);
2974 if (!user_mask)
2975 return -ENOMEM;
2976 }
2977
2978 rq = task_rq_lock(p, &rf);
2979
2980 /*
2981 * Forcefully restricting the affinity of a deadline task is
2982 * likely to cause problems, so fail and noisily override the
2983 * mask entirely.
2984 */
2985 if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
2986 err = -EPERM;
2987 goto err_unlock;
2988 }
2989
2990 if (!cpumask_and(new_mask, &p->cpus_mask, subset_mask)) {
2991 err = -EINVAL;
2992 goto err_unlock;
2993 }
2994
2995 /*
2996 * We're about to butcher the task affinity, so keep track of what
2997 * the user asked for in case we're able to restore it later on.
2998 */
2999 if (user_mask) {
3000 cpumask_copy(user_mask, p->cpus_ptr);
3001 p->user_cpus_ptr = user_mask;
3002 }
3003
3004 return __set_cpus_allowed_ptr_locked(p, new_mask, 0, rq, &rf);
3005
3006 err_unlock:
3007 task_rq_unlock(rq, p, &rf);
3008 kfree(user_mask);
3009 return err;
3010 }
3011
3012 /*
3013 * Restrict the CPU affinity of task @p so that it is a subset of
3014 * task_cpu_possible_mask() and point @p->user_cpu_ptr to a copy of the
3015 * old affinity mask. If the resulting mask is empty, we warn and walk
3016 * up the cpuset hierarchy until we find a suitable mask.
3017 */
force_compatible_cpus_allowed_ptr(struct task_struct * p)3018 void force_compatible_cpus_allowed_ptr(struct task_struct *p)
3019 {
3020 cpumask_var_t new_mask;
3021 const struct cpumask *override_mask = task_cpu_possible_mask(p);
3022
3023 alloc_cpumask_var(&new_mask, GFP_KERNEL);
3024
3025 /*
3026 * __migrate_task() can fail silently in the face of concurrent
3027 * offlining of the chosen destination CPU, so take the hotplug
3028 * lock to ensure that the migration succeeds.
3029 */
3030 cpus_read_lock();
3031 if (!cpumask_available(new_mask))
3032 goto out_set_mask;
3033
3034 if (!restrict_cpus_allowed_ptr(p, new_mask, override_mask))
3035 goto out_free_mask;
3036
3037 /*
3038 * We failed to find a valid subset of the affinity mask for the
3039 * task, so override it based on its cpuset hierarchy.
3040 */
3041 cpuset_cpus_allowed(p, new_mask);
3042 override_mask = new_mask;
3043
3044 out_set_mask:
3045 if (printk_ratelimit()) {
3046 printk_deferred("Overriding affinity for process %d (%s) to CPUs %*pbl\n",
3047 task_pid_nr(p), p->comm,
3048 cpumask_pr_args(override_mask));
3049 }
3050
3051 WARN_ON(set_cpus_allowed_ptr(p, override_mask));
3052 out_free_mask:
3053 cpus_read_unlock();
3054 free_cpumask_var(new_mask);
3055 }
3056
3057 static int
3058 __sched_setaffinity(struct task_struct *p, const struct cpumask *mask);
3059
3060 /*
3061 * Restore the affinity of a task @p which was previously restricted by a
3062 * call to force_compatible_cpus_allowed_ptr(). This will clear (and free)
3063 * @p->user_cpus_ptr.
3064 *
3065 * It is the caller's responsibility to serialise this with any calls to
3066 * force_compatible_cpus_allowed_ptr(@p).
3067 */
relax_compatible_cpus_allowed_ptr(struct task_struct * p)3068 void relax_compatible_cpus_allowed_ptr(struct task_struct *p)
3069 {
3070 struct cpumask *user_mask = p->user_cpus_ptr;
3071 unsigned long flags;
3072
3073 /*
3074 * Try to restore the old affinity mask. If this fails, then
3075 * we free the mask explicitly to avoid it being inherited across
3076 * a subsequent fork().
3077 */
3078 if (!user_mask || !__sched_setaffinity(p, user_mask))
3079 return;
3080
3081 raw_spin_lock_irqsave(&p->pi_lock, flags);
3082 user_mask = clear_user_cpus_ptr(p);
3083 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3084
3085 kfree(user_mask);
3086 }
3087
set_task_cpu(struct task_struct * p,unsigned int new_cpu)3088 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
3089 {
3090 #ifdef CONFIG_SCHED_DEBUG
3091 unsigned int state = READ_ONCE(p->__state);
3092
3093 /*
3094 * We should never call set_task_cpu() on a blocked task,
3095 * ttwu() will sort out the placement.
3096 */
3097 WARN_ON_ONCE(state != TASK_RUNNING && state != TASK_WAKING && !p->on_rq);
3098
3099 /*
3100 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
3101 * because schedstat_wait_{start,end} rebase migrating task's wait_start
3102 * time relying on p->on_rq.
3103 */
3104 WARN_ON_ONCE(state == TASK_RUNNING &&
3105 p->sched_class == &fair_sched_class &&
3106 (p->on_rq && !task_on_rq_migrating(p)));
3107
3108 #ifdef CONFIG_LOCKDEP
3109 /*
3110 * The caller should hold either p->pi_lock or rq->lock, when changing
3111 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
3112 *
3113 * sched_move_task() holds both and thus holding either pins the cgroup,
3114 * see task_group().
3115 *
3116 * Furthermore, all task_rq users should acquire both locks, see
3117 * task_rq_lock().
3118 */
3119 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
3120 lockdep_is_held(__rq_lockp(task_rq(p)))));
3121 #endif
3122 /*
3123 * Clearly, migrating tasks to offline CPUs is a fairly daft thing.
3124 */
3125 WARN_ON_ONCE(!cpu_online(new_cpu));
3126
3127 WARN_ON_ONCE(is_migration_disabled(p));
3128 #endif
3129
3130 trace_sched_migrate_task(p, new_cpu);
3131
3132 if (task_cpu(p) != new_cpu) {
3133 if (p->sched_class->migrate_task_rq)
3134 p->sched_class->migrate_task_rq(p, new_cpu);
3135 p->se.nr_migrations++;
3136 rseq_migrate(p);
3137 perf_event_task_migrate(p);
3138 }
3139
3140 __set_task_cpu(p, new_cpu);
3141 }
3142
3143 #ifdef CONFIG_NUMA_BALANCING
__migrate_swap_task(struct task_struct * p,int cpu)3144 static void __migrate_swap_task(struct task_struct *p, int cpu)
3145 {
3146 if (task_on_rq_queued(p)) {
3147 struct rq *src_rq, *dst_rq;
3148 struct rq_flags srf, drf;
3149
3150 src_rq = task_rq(p);
3151 dst_rq = cpu_rq(cpu);
3152
3153 rq_pin_lock(src_rq, &srf);
3154 rq_pin_lock(dst_rq, &drf);
3155
3156 deactivate_task(src_rq, p, 0);
3157 set_task_cpu(p, cpu);
3158 activate_task(dst_rq, p, 0);
3159 check_preempt_curr(dst_rq, p, 0);
3160
3161 rq_unpin_lock(dst_rq, &drf);
3162 rq_unpin_lock(src_rq, &srf);
3163
3164 } else {
3165 /*
3166 * Task isn't running anymore; make it appear like we migrated
3167 * it before it went to sleep. This means on wakeup we make the
3168 * previous CPU our target instead of where it really is.
3169 */
3170 p->wake_cpu = cpu;
3171 }
3172 }
3173
3174 struct migration_swap_arg {
3175 struct task_struct *src_task, *dst_task;
3176 int src_cpu, dst_cpu;
3177 };
3178
migrate_swap_stop(void * data)3179 static int migrate_swap_stop(void *data)
3180 {
3181 struct migration_swap_arg *arg = data;
3182 struct rq *src_rq, *dst_rq;
3183 int ret = -EAGAIN;
3184
3185 if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
3186 return -EAGAIN;
3187
3188 src_rq = cpu_rq(arg->src_cpu);
3189 dst_rq = cpu_rq(arg->dst_cpu);
3190
3191 double_raw_lock(&arg->src_task->pi_lock,
3192 &arg->dst_task->pi_lock);
3193 double_rq_lock(src_rq, dst_rq);
3194
3195 if (task_cpu(arg->dst_task) != arg->dst_cpu)
3196 goto unlock;
3197
3198 if (task_cpu(arg->src_task) != arg->src_cpu)
3199 goto unlock;
3200
3201 if (!cpumask_test_cpu(arg->dst_cpu, arg->src_task->cpus_ptr))
3202 goto unlock;
3203
3204 if (!cpumask_test_cpu(arg->src_cpu, arg->dst_task->cpus_ptr))
3205 goto unlock;
3206
3207 __migrate_swap_task(arg->src_task, arg->dst_cpu);
3208 __migrate_swap_task(arg->dst_task, arg->src_cpu);
3209
3210 ret = 0;
3211
3212 unlock:
3213 double_rq_unlock(src_rq, dst_rq);
3214 raw_spin_unlock(&arg->dst_task->pi_lock);
3215 raw_spin_unlock(&arg->src_task->pi_lock);
3216
3217 return ret;
3218 }
3219
3220 /*
3221 * Cross migrate two tasks
3222 */
migrate_swap(struct task_struct * cur,struct task_struct * p,int target_cpu,int curr_cpu)3223 int migrate_swap(struct task_struct *cur, struct task_struct *p,
3224 int target_cpu, int curr_cpu)
3225 {
3226 struct migration_swap_arg arg;
3227 int ret = -EINVAL;
3228
3229 arg = (struct migration_swap_arg){
3230 .src_task = cur,
3231 .src_cpu = curr_cpu,
3232 .dst_task = p,
3233 .dst_cpu = target_cpu,
3234 };
3235
3236 if (arg.src_cpu == arg.dst_cpu)
3237 goto out;
3238
3239 /*
3240 * These three tests are all lockless; this is OK since all of them
3241 * will be re-checked with proper locks held further down the line.
3242 */
3243 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
3244 goto out;
3245
3246 if (!cpumask_test_cpu(arg.dst_cpu, arg.src_task->cpus_ptr))
3247 goto out;
3248
3249 if (!cpumask_test_cpu(arg.src_cpu, arg.dst_task->cpus_ptr))
3250 goto out;
3251
3252 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
3253 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
3254
3255 out:
3256 return ret;
3257 }
3258 #endif /* CONFIG_NUMA_BALANCING */
3259
3260 /*
3261 * wait_task_inactive - wait for a thread to unschedule.
3262 *
3263 * If @match_state is nonzero, it's the @p->state value just checked and
3264 * not expected to change. If it changes, i.e. @p might have woken up,
3265 * then return zero. When we succeed in waiting for @p to be off its CPU,
3266 * we return a positive number (its total switch count). If a second call
3267 * a short while later returns the same number, the caller can be sure that
3268 * @p has remained unscheduled the whole time.
3269 *
3270 * The caller must ensure that the task *will* unschedule sometime soon,
3271 * else this function might spin for a *long* time. This function can't
3272 * be called with interrupts off, or it may introduce deadlock with
3273 * smp_call_function() if an IPI is sent by the same process we are
3274 * waiting to become inactive.
3275 */
wait_task_inactive(struct task_struct * p,unsigned int match_state)3276 unsigned long wait_task_inactive(struct task_struct *p, unsigned int match_state)
3277 {
3278 int running, queued;
3279 struct rq_flags rf;
3280 unsigned long ncsw;
3281 struct rq *rq;
3282
3283 for (;;) {
3284 /*
3285 * We do the initial early heuristics without holding
3286 * any task-queue locks at all. We'll only try to get
3287 * the runqueue lock when things look like they will
3288 * work out!
3289 */
3290 rq = task_rq(p);
3291
3292 /*
3293 * If the task is actively running on another CPU
3294 * still, just relax and busy-wait without holding
3295 * any locks.
3296 *
3297 * NOTE! Since we don't hold any locks, it's not
3298 * even sure that "rq" stays as the right runqueue!
3299 * But we don't care, since "task_running()" will
3300 * return false if the runqueue has changed and p
3301 * is actually now running somewhere else!
3302 */
3303 while (task_running(rq, p)) {
3304 if (match_state && unlikely(READ_ONCE(p->__state) != match_state))
3305 return 0;
3306 cpu_relax();
3307 }
3308
3309 /*
3310 * Ok, time to look more closely! We need the rq
3311 * lock now, to be *sure*. If we're wrong, we'll
3312 * just go back and repeat.
3313 */
3314 rq = task_rq_lock(p, &rf);
3315 trace_sched_wait_task(p);
3316 running = task_running(rq, p);
3317 queued = task_on_rq_queued(p);
3318 ncsw = 0;
3319 if (!match_state || READ_ONCE(p->__state) == match_state)
3320 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
3321 task_rq_unlock(rq, p, &rf);
3322
3323 /*
3324 * If it changed from the expected state, bail out now.
3325 */
3326 if (unlikely(!ncsw))
3327 break;
3328
3329 /*
3330 * Was it really running after all now that we
3331 * checked with the proper locks actually held?
3332 *
3333 * Oops. Go back and try again..
3334 */
3335 if (unlikely(running)) {
3336 cpu_relax();
3337 continue;
3338 }
3339
3340 /*
3341 * It's not enough that it's not actively running,
3342 * it must be off the runqueue _entirely_, and not
3343 * preempted!
3344 *
3345 * So if it was still runnable (but just not actively
3346 * running right now), it's preempted, and we should
3347 * yield - it could be a while.
3348 */
3349 if (unlikely(queued)) {
3350 ktime_t to = NSEC_PER_SEC / HZ;
3351
3352 set_current_state(TASK_UNINTERRUPTIBLE);
3353 schedule_hrtimeout(&to, HRTIMER_MODE_REL_HARD);
3354 continue;
3355 }
3356
3357 /*
3358 * Ahh, all good. It wasn't running, and it wasn't
3359 * runnable, which means that it will never become
3360 * running in the future either. We're all done!
3361 */
3362 break;
3363 }
3364
3365 return ncsw;
3366 }
3367
3368 /***
3369 * kick_process - kick a running thread to enter/exit the kernel
3370 * @p: the to-be-kicked thread
3371 *
3372 * Cause a process which is running on another CPU to enter
3373 * kernel-mode, without any delay. (to get signals handled.)
3374 *
3375 * NOTE: this function doesn't have to take the runqueue lock,
3376 * because all it wants to ensure is that the remote task enters
3377 * the kernel. If the IPI races and the task has been migrated
3378 * to another CPU then no harm is done and the purpose has been
3379 * achieved as well.
3380 */
kick_process(struct task_struct * p)3381 void kick_process(struct task_struct *p)
3382 {
3383 int cpu;
3384
3385 preempt_disable();
3386 cpu = task_cpu(p);
3387 if ((cpu != smp_processor_id()) && task_curr(p))
3388 smp_send_reschedule(cpu);
3389 preempt_enable();
3390 }
3391 EXPORT_SYMBOL_GPL(kick_process);
3392
3393 /*
3394 * ->cpus_ptr is protected by both rq->lock and p->pi_lock
3395 *
3396 * A few notes on cpu_active vs cpu_online:
3397 *
3398 * - cpu_active must be a subset of cpu_online
3399 *
3400 * - on CPU-up we allow per-CPU kthreads on the online && !active CPU,
3401 * see __set_cpus_allowed_ptr(). At this point the newly online
3402 * CPU isn't yet part of the sched domains, and balancing will not
3403 * see it.
3404 *
3405 * - on CPU-down we clear cpu_active() to mask the sched domains and
3406 * avoid the load balancer to place new tasks on the to be removed
3407 * CPU. Existing tasks will remain running there and will be taken
3408 * off.
3409 *
3410 * This means that fallback selection must not select !active CPUs.
3411 * And can assume that any active CPU must be online. Conversely
3412 * select_task_rq() below may allow selection of !active CPUs in order
3413 * to satisfy the above rules.
3414 */
select_fallback_rq(int cpu,struct task_struct * p)3415 static int select_fallback_rq(int cpu, struct task_struct *p)
3416 {
3417 int nid = cpu_to_node(cpu);
3418 const struct cpumask *nodemask = NULL;
3419 enum { cpuset, possible, fail } state = cpuset;
3420 int dest_cpu;
3421
3422 /*
3423 * If the node that the CPU is on has been offlined, cpu_to_node()
3424 * will return -1. There is no CPU on the node, and we should
3425 * select the CPU on the other node.
3426 */
3427 if (nid != -1) {
3428 nodemask = cpumask_of_node(nid);
3429
3430 /* Look for allowed, online CPU in same node. */
3431 for_each_cpu(dest_cpu, nodemask) {
3432 if (is_cpu_allowed(p, dest_cpu))
3433 return dest_cpu;
3434 }
3435 }
3436
3437 for (;;) {
3438 /* Any allowed, online CPU? */
3439 for_each_cpu(dest_cpu, p->cpus_ptr) {
3440 if (!is_cpu_allowed(p, dest_cpu))
3441 continue;
3442
3443 goto out;
3444 }
3445
3446 /* No more Mr. Nice Guy. */
3447 switch (state) {
3448 case cpuset:
3449 if (cpuset_cpus_allowed_fallback(p)) {
3450 state = possible;
3451 break;
3452 }
3453 fallthrough;
3454 case possible:
3455 /*
3456 * XXX When called from select_task_rq() we only
3457 * hold p->pi_lock and again violate locking order.
3458 *
3459 * More yuck to audit.
3460 */
3461 do_set_cpus_allowed(p, task_cpu_possible_mask(p));
3462 state = fail;
3463 break;
3464 case fail:
3465 BUG();
3466 break;
3467 }
3468 }
3469
3470 out:
3471 if (state != cpuset) {
3472 /*
3473 * Don't tell them about moving exiting tasks or
3474 * kernel threads (both mm NULL), since they never
3475 * leave kernel.
3476 */
3477 if (p->mm && printk_ratelimit()) {
3478 printk_deferred("process %d (%s) no longer affine to cpu%d\n",
3479 task_pid_nr(p), p->comm, cpu);
3480 }
3481 }
3482
3483 return dest_cpu;
3484 }
3485
3486 /*
3487 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_ptr is stable.
3488 */
3489 static inline
select_task_rq(struct task_struct * p,int cpu,int wake_flags)3490 int select_task_rq(struct task_struct *p, int cpu, int wake_flags)
3491 {
3492 lockdep_assert_held(&p->pi_lock);
3493
3494 if (p->nr_cpus_allowed > 1 && !is_migration_disabled(p))
3495 cpu = p->sched_class->select_task_rq(p, cpu, wake_flags);
3496 else
3497 cpu = cpumask_any(p->cpus_ptr);
3498
3499 /*
3500 * In order not to call set_task_cpu() on a blocking task we need
3501 * to rely on ttwu() to place the task on a valid ->cpus_ptr
3502 * CPU.
3503 *
3504 * Since this is common to all placement strategies, this lives here.
3505 *
3506 * [ this allows ->select_task() to simply return task_cpu(p) and
3507 * not worry about this generic constraint ]
3508 */
3509 if (unlikely(!is_cpu_allowed(p, cpu)))
3510 cpu = select_fallback_rq(task_cpu(p), p);
3511
3512 return cpu;
3513 }
3514
sched_set_stop_task(int cpu,struct task_struct * stop)3515 void sched_set_stop_task(int cpu, struct task_struct *stop)
3516 {
3517 static struct lock_class_key stop_pi_lock;
3518 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
3519 struct task_struct *old_stop = cpu_rq(cpu)->stop;
3520
3521 if (stop) {
3522 /*
3523 * Make it appear like a SCHED_FIFO task, its something
3524 * userspace knows about and won't get confused about.
3525 *
3526 * Also, it will make PI more or less work without too
3527 * much confusion -- but then, stop work should not
3528 * rely on PI working anyway.
3529 */
3530 sched_setscheduler_nocheck(stop, SCHED_FIFO, ¶m);
3531
3532 stop->sched_class = &stop_sched_class;
3533
3534 /*
3535 * The PI code calls rt_mutex_setprio() with ->pi_lock held to
3536 * adjust the effective priority of a task. As a result,
3537 * rt_mutex_setprio() can trigger (RT) balancing operations,
3538 * which can then trigger wakeups of the stop thread to push
3539 * around the current task.
3540 *
3541 * The stop task itself will never be part of the PI-chain, it
3542 * never blocks, therefore that ->pi_lock recursion is safe.
3543 * Tell lockdep about this by placing the stop->pi_lock in its
3544 * own class.
3545 */
3546 lockdep_set_class(&stop->pi_lock, &stop_pi_lock);
3547 }
3548
3549 cpu_rq(cpu)->stop = stop;
3550
3551 if (old_stop) {
3552 /*
3553 * Reset it back to a normal scheduling class so that
3554 * it can die in pieces.
3555 */
3556 old_stop->sched_class = &rt_sched_class;
3557 }
3558 }
3559
3560 #else /* CONFIG_SMP */
3561
__set_cpus_allowed_ptr(struct task_struct * p,const struct cpumask * new_mask,u32 flags)3562 static inline int __set_cpus_allowed_ptr(struct task_struct *p,
3563 const struct cpumask *new_mask,
3564 u32 flags)
3565 {
3566 return set_cpus_allowed_ptr(p, new_mask);
3567 }
3568
migrate_disable_switch(struct rq * rq,struct task_struct * p)3569 static inline void migrate_disable_switch(struct rq *rq, struct task_struct *p) { }
3570
rq_has_pinned_tasks(struct rq * rq)3571 static inline bool rq_has_pinned_tasks(struct rq *rq)
3572 {
3573 return false;
3574 }
3575
3576 #endif /* !CONFIG_SMP */
3577
3578 static void
ttwu_stat(struct task_struct * p,int cpu,int wake_flags)3579 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
3580 {
3581 struct rq *rq;
3582
3583 if (!schedstat_enabled())
3584 return;
3585
3586 rq = this_rq();
3587
3588 #ifdef CONFIG_SMP
3589 if (cpu == rq->cpu) {
3590 __schedstat_inc(rq->ttwu_local);
3591 __schedstat_inc(p->stats.nr_wakeups_local);
3592 } else {
3593 struct sched_domain *sd;
3594
3595 __schedstat_inc(p->stats.nr_wakeups_remote);
3596 rcu_read_lock();
3597 for_each_domain(rq->cpu, sd) {
3598 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
3599 __schedstat_inc(sd->ttwu_wake_remote);
3600 break;
3601 }
3602 }
3603 rcu_read_unlock();
3604 }
3605
3606 if (wake_flags & WF_MIGRATED)
3607 __schedstat_inc(p->stats.nr_wakeups_migrate);
3608 #endif /* CONFIG_SMP */
3609
3610 __schedstat_inc(rq->ttwu_count);
3611 __schedstat_inc(p->stats.nr_wakeups);
3612
3613 if (wake_flags & WF_SYNC)
3614 __schedstat_inc(p->stats.nr_wakeups_sync);
3615 }
3616
3617 /*
3618 * Mark the task runnable and perform wakeup-preemption.
3619 */
ttwu_do_wakeup(struct rq * rq,struct task_struct * p,int wake_flags,struct rq_flags * rf)3620 static void ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags,
3621 struct rq_flags *rf)
3622 {
3623 check_preempt_curr(rq, p, wake_flags);
3624 WRITE_ONCE(p->__state, TASK_RUNNING);
3625 trace_sched_wakeup(p);
3626
3627 #ifdef CONFIG_SMP
3628 if (p->sched_class->task_woken) {
3629 /*
3630 * Our task @p is fully woken up and running; so it's safe to
3631 * drop the rq->lock, hereafter rq is only used for statistics.
3632 */
3633 rq_unpin_lock(rq, rf);
3634 p->sched_class->task_woken(rq, p);
3635 rq_repin_lock(rq, rf);
3636 }
3637
3638 if (rq->idle_stamp) {
3639 u64 delta = rq_clock(rq) - rq->idle_stamp;
3640 u64 max = 2*rq->max_idle_balance_cost;
3641
3642 update_avg(&rq->avg_idle, delta);
3643
3644 if (rq->avg_idle > max)
3645 rq->avg_idle = max;
3646
3647 rq->wake_stamp = jiffies;
3648 rq->wake_avg_idle = rq->avg_idle / 2;
3649
3650 rq->idle_stamp = 0;
3651 }
3652 #endif
3653 }
3654
3655 static void
ttwu_do_activate(struct rq * rq,struct task_struct * p,int wake_flags,struct rq_flags * rf)3656 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags,
3657 struct rq_flags *rf)
3658 {
3659 int en_flags = ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK;
3660
3661 lockdep_assert_rq_held(rq);
3662
3663 if (p->sched_contributes_to_load)
3664 rq->nr_uninterruptible--;
3665
3666 #ifdef CONFIG_SMP
3667 if (wake_flags & WF_MIGRATED)
3668 en_flags |= ENQUEUE_MIGRATED;
3669 else
3670 #endif
3671 if (p->in_iowait) {
3672 delayacct_blkio_end(p);
3673 atomic_dec(&task_rq(p)->nr_iowait);
3674 }
3675
3676 activate_task(rq, p, en_flags);
3677 ttwu_do_wakeup(rq, p, wake_flags, rf);
3678 }
3679
3680 /*
3681 * Consider @p being inside a wait loop:
3682 *
3683 * for (;;) {
3684 * set_current_state(TASK_UNINTERRUPTIBLE);
3685 *
3686 * if (CONDITION)
3687 * break;
3688 *
3689 * schedule();
3690 * }
3691 * __set_current_state(TASK_RUNNING);
3692 *
3693 * between set_current_state() and schedule(). In this case @p is still
3694 * runnable, so all that needs doing is change p->state back to TASK_RUNNING in
3695 * an atomic manner.
3696 *
3697 * By taking task_rq(p)->lock we serialize against schedule(), if @p->on_rq
3698 * then schedule() must still happen and p->state can be changed to
3699 * TASK_RUNNING. Otherwise we lost the race, schedule() has happened, and we
3700 * need to do a full wakeup with enqueue.
3701 *
3702 * Returns: %true when the wakeup is done,
3703 * %false otherwise.
3704 */
ttwu_runnable(struct task_struct * p,int wake_flags)3705 static int ttwu_runnable(struct task_struct *p, int wake_flags)
3706 {
3707 struct rq_flags rf;
3708 struct rq *rq;
3709 int ret = 0;
3710
3711 rq = __task_rq_lock(p, &rf);
3712 if (task_on_rq_queued(p)) {
3713 /* check_preempt_curr() may use rq clock */
3714 update_rq_clock(rq);
3715 ttwu_do_wakeup(rq, p, wake_flags, &rf);
3716 ret = 1;
3717 }
3718 __task_rq_unlock(rq, &rf);
3719
3720 return ret;
3721 }
3722
3723 #ifdef CONFIG_SMP
sched_ttwu_pending(void * arg)3724 void sched_ttwu_pending(void *arg)
3725 {
3726 struct llist_node *llist = arg;
3727 struct rq *rq = this_rq();
3728 struct task_struct *p, *t;
3729 struct rq_flags rf;
3730
3731 if (!llist)
3732 return;
3733
3734 /*
3735 * rq::ttwu_pending racy indication of out-standing wakeups.
3736 * Races such that false-negatives are possible, since they
3737 * are shorter lived that false-positives would be.
3738 */
3739 WRITE_ONCE(rq->ttwu_pending, 0);
3740
3741 rq_lock_irqsave(rq, &rf);
3742 update_rq_clock(rq);
3743
3744 llist_for_each_entry_safe(p, t, llist, wake_entry.llist) {
3745 if (WARN_ON_ONCE(p->on_cpu))
3746 smp_cond_load_acquire(&p->on_cpu, !VAL);
3747
3748 if (WARN_ON_ONCE(task_cpu(p) != cpu_of(rq)))
3749 set_task_cpu(p, cpu_of(rq));
3750
3751 ttwu_do_activate(rq, p, p->sched_remote_wakeup ? WF_MIGRATED : 0, &rf);
3752 }
3753
3754 rq_unlock_irqrestore(rq, &rf);
3755 }
3756
send_call_function_single_ipi(int cpu)3757 void send_call_function_single_ipi(int cpu)
3758 {
3759 struct rq *rq = cpu_rq(cpu);
3760
3761 if (!set_nr_if_polling(rq->idle))
3762 arch_send_call_function_single_ipi(cpu);
3763 else
3764 trace_sched_wake_idle_without_ipi(cpu);
3765 }
3766
3767 /*
3768 * Queue a task on the target CPUs wake_list and wake the CPU via IPI if
3769 * necessary. The wakee CPU on receipt of the IPI will queue the task
3770 * via sched_ttwu_wakeup() for activation so the wakee incurs the cost
3771 * of the wakeup instead of the waker.
3772 */
__ttwu_queue_wakelist(struct task_struct * p,int cpu,int wake_flags)3773 static void __ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
3774 {
3775 struct rq *rq = cpu_rq(cpu);
3776
3777 p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED);
3778
3779 WRITE_ONCE(rq->ttwu_pending, 1);
3780 __smp_call_single_queue(cpu, &p->wake_entry.llist);
3781 }
3782
wake_up_if_idle(int cpu)3783 void wake_up_if_idle(int cpu)
3784 {
3785 struct rq *rq = cpu_rq(cpu);
3786 struct rq_flags rf;
3787
3788 rcu_read_lock();
3789
3790 if (!is_idle_task(rcu_dereference(rq->curr)))
3791 goto out;
3792
3793 rq_lock_irqsave(rq, &rf);
3794 if (is_idle_task(rq->curr))
3795 resched_curr(rq);
3796 /* Else CPU is not idle, do nothing here: */
3797 rq_unlock_irqrestore(rq, &rf);
3798
3799 out:
3800 rcu_read_unlock();
3801 }
3802
cpus_share_cache(int this_cpu,int that_cpu)3803 bool cpus_share_cache(int this_cpu, int that_cpu)
3804 {
3805 if (this_cpu == that_cpu)
3806 return true;
3807
3808 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
3809 }
3810
ttwu_queue_cond(struct task_struct * p,int cpu)3811 static inline bool ttwu_queue_cond(struct task_struct *p, int cpu)
3812 {
3813 /*
3814 * Do not complicate things with the async wake_list while the CPU is
3815 * in hotplug state.
3816 */
3817 if (!cpu_active(cpu))
3818 return false;
3819
3820 /* Ensure the task will still be allowed to run on the CPU. */
3821 if (!cpumask_test_cpu(cpu, p->cpus_ptr))
3822 return false;
3823
3824 /*
3825 * If the CPU does not share cache, then queue the task on the
3826 * remote rqs wakelist to avoid accessing remote data.
3827 */
3828 if (!cpus_share_cache(smp_processor_id(), cpu))
3829 return true;
3830
3831 if (cpu == smp_processor_id())
3832 return false;
3833
3834 /*
3835 * If the wakee cpu is idle, or the task is descheduling and the
3836 * only running task on the CPU, then use the wakelist to offload
3837 * the task activation to the idle (or soon-to-be-idle) CPU as
3838 * the current CPU is likely busy. nr_running is checked to
3839 * avoid unnecessary task stacking.
3840 *
3841 * Note that we can only get here with (wakee) p->on_rq=0,
3842 * p->on_cpu can be whatever, we've done the dequeue, so
3843 * the wakee has been accounted out of ->nr_running.
3844 */
3845 if (!cpu_rq(cpu)->nr_running)
3846 return true;
3847
3848 return false;
3849 }
3850
ttwu_queue_wakelist(struct task_struct * p,int cpu,int wake_flags)3851 static bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
3852 {
3853 if (sched_feat(TTWU_QUEUE) && ttwu_queue_cond(p, cpu)) {
3854 sched_clock_cpu(cpu); /* Sync clocks across CPUs */
3855 __ttwu_queue_wakelist(p, cpu, wake_flags);
3856 return true;
3857 }
3858
3859 return false;
3860 }
3861
3862 #else /* !CONFIG_SMP */
3863
ttwu_queue_wakelist(struct task_struct * p,int cpu,int wake_flags)3864 static inline bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
3865 {
3866 return false;
3867 }
3868
3869 #endif /* CONFIG_SMP */
3870
ttwu_queue(struct task_struct * p,int cpu,int wake_flags)3871 static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags)
3872 {
3873 struct rq *rq = cpu_rq(cpu);
3874 struct rq_flags rf;
3875
3876 if (ttwu_queue_wakelist(p, cpu, wake_flags))
3877 return;
3878
3879 rq_lock(rq, &rf);
3880 update_rq_clock(rq);
3881 ttwu_do_activate(rq, p, wake_flags, &rf);
3882 rq_unlock(rq, &rf);
3883 }
3884
3885 /*
3886 * Invoked from try_to_wake_up() to check whether the task can be woken up.
3887 *
3888 * The caller holds p::pi_lock if p != current or has preemption
3889 * disabled when p == current.
3890 *
3891 * The rules of PREEMPT_RT saved_state:
3892 *
3893 * The related locking code always holds p::pi_lock when updating
3894 * p::saved_state, which means the code is fully serialized in both cases.
3895 *
3896 * The lock wait and lock wakeups happen via TASK_RTLOCK_WAIT. No other
3897 * bits set. This allows to distinguish all wakeup scenarios.
3898 */
3899 static __always_inline
ttwu_state_match(struct task_struct * p,unsigned int state,int * success)3900 bool ttwu_state_match(struct task_struct *p, unsigned int state, int *success)
3901 {
3902 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)) {
3903 WARN_ON_ONCE((state & TASK_RTLOCK_WAIT) &&
3904 state != TASK_RTLOCK_WAIT);
3905 }
3906
3907 if (READ_ONCE(p->__state) & state) {
3908 *success = 1;
3909 return true;
3910 }
3911
3912 #ifdef CONFIG_PREEMPT_RT
3913 /*
3914 * Saved state preserves the task state across blocking on
3915 * an RT lock. If the state matches, set p::saved_state to
3916 * TASK_RUNNING, but do not wake the task because it waits
3917 * for a lock wakeup. Also indicate success because from
3918 * the regular waker's point of view this has succeeded.
3919 *
3920 * After acquiring the lock the task will restore p::__state
3921 * from p::saved_state which ensures that the regular
3922 * wakeup is not lost. The restore will also set
3923 * p::saved_state to TASK_RUNNING so any further tests will
3924 * not result in false positives vs. @success
3925 */
3926 if (p->saved_state & state) {
3927 p->saved_state = TASK_RUNNING;
3928 *success = 1;
3929 }
3930 #endif
3931 return false;
3932 }
3933
3934 /*
3935 * Notes on Program-Order guarantees on SMP systems.
3936 *
3937 * MIGRATION
3938 *
3939 * The basic program-order guarantee on SMP systems is that when a task [t]
3940 * migrates, all its activity on its old CPU [c0] happens-before any subsequent
3941 * execution on its new CPU [c1].
3942 *
3943 * For migration (of runnable tasks) this is provided by the following means:
3944 *
3945 * A) UNLOCK of the rq(c0)->lock scheduling out task t
3946 * B) migration for t is required to synchronize *both* rq(c0)->lock and
3947 * rq(c1)->lock (if not at the same time, then in that order).
3948 * C) LOCK of the rq(c1)->lock scheduling in task
3949 *
3950 * Release/acquire chaining guarantees that B happens after A and C after B.
3951 * Note: the CPU doing B need not be c0 or c1
3952 *
3953 * Example:
3954 *
3955 * CPU0 CPU1 CPU2
3956 *
3957 * LOCK rq(0)->lock
3958 * sched-out X
3959 * sched-in Y
3960 * UNLOCK rq(0)->lock
3961 *
3962 * LOCK rq(0)->lock // orders against CPU0
3963 * dequeue X
3964 * UNLOCK rq(0)->lock
3965 *
3966 * LOCK rq(1)->lock
3967 * enqueue X
3968 * UNLOCK rq(1)->lock
3969 *
3970 * LOCK rq(1)->lock // orders against CPU2
3971 * sched-out Z
3972 * sched-in X
3973 * UNLOCK rq(1)->lock
3974 *
3975 *
3976 * BLOCKING -- aka. SLEEP + WAKEUP
3977 *
3978 * For blocking we (obviously) need to provide the same guarantee as for
3979 * migration. However the means are completely different as there is no lock
3980 * chain to provide order. Instead we do:
3981 *
3982 * 1) smp_store_release(X->on_cpu, 0) -- finish_task()
3983 * 2) smp_cond_load_acquire(!X->on_cpu) -- try_to_wake_up()
3984 *
3985 * Example:
3986 *
3987 * CPU0 (schedule) CPU1 (try_to_wake_up) CPU2 (schedule)
3988 *
3989 * LOCK rq(0)->lock LOCK X->pi_lock
3990 * dequeue X
3991 * sched-out X
3992 * smp_store_release(X->on_cpu, 0);
3993 *
3994 * smp_cond_load_acquire(&X->on_cpu, !VAL);
3995 * X->state = WAKING
3996 * set_task_cpu(X,2)
3997 *
3998 * LOCK rq(2)->lock
3999 * enqueue X
4000 * X->state = RUNNING
4001 * UNLOCK rq(2)->lock
4002 *
4003 * LOCK rq(2)->lock // orders against CPU1
4004 * sched-out Z
4005 * sched-in X
4006 * UNLOCK rq(2)->lock
4007 *
4008 * UNLOCK X->pi_lock
4009 * UNLOCK rq(0)->lock
4010 *
4011 *
4012 * However, for wakeups there is a second guarantee we must provide, namely we
4013 * must ensure that CONDITION=1 done by the caller can not be reordered with
4014 * accesses to the task state; see try_to_wake_up() and set_current_state().
4015 */
4016
4017 /**
4018 * try_to_wake_up - wake up a thread
4019 * @p: the thread to be awakened
4020 * @state: the mask of task states that can be woken
4021 * @wake_flags: wake modifier flags (WF_*)
4022 *
4023 * Conceptually does:
4024 *
4025 * If (@state & @p->state) @p->state = TASK_RUNNING.
4026 *
4027 * If the task was not queued/runnable, also place it back on a runqueue.
4028 *
4029 * This function is atomic against schedule() which would dequeue the task.
4030 *
4031 * It issues a full memory barrier before accessing @p->state, see the comment
4032 * with set_current_state().
4033 *
4034 * Uses p->pi_lock to serialize against concurrent wake-ups.
4035 *
4036 * Relies on p->pi_lock stabilizing:
4037 * - p->sched_class
4038 * - p->cpus_ptr
4039 * - p->sched_task_group
4040 * in order to do migration, see its use of select_task_rq()/set_task_cpu().
4041 *
4042 * Tries really hard to only take one task_rq(p)->lock for performance.
4043 * Takes rq->lock in:
4044 * - ttwu_runnable() -- old rq, unavoidable, see comment there;
4045 * - ttwu_queue() -- new rq, for enqueue of the task;
4046 * - psi_ttwu_dequeue() -- much sadness :-( accounting will kill us.
4047 *
4048 * As a consequence we race really badly with just about everything. See the
4049 * many memory barriers and their comments for details.
4050 *
4051 * Return: %true if @p->state changes (an actual wakeup was done),
4052 * %false otherwise.
4053 */
4054 static int
try_to_wake_up(struct task_struct * p,unsigned int state,int wake_flags)4055 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
4056 {
4057 unsigned long flags;
4058 int cpu, success = 0;
4059
4060 preempt_disable();
4061 if (p == current) {
4062 /*
4063 * We're waking current, this means 'p->on_rq' and 'task_cpu(p)
4064 * == smp_processor_id()'. Together this means we can special
4065 * case the whole 'p->on_rq && ttwu_runnable()' case below
4066 * without taking any locks.
4067 *
4068 * In particular:
4069 * - we rely on Program-Order guarantees for all the ordering,
4070 * - we're serialized against set_special_state() by virtue of
4071 * it disabling IRQs (this allows not taking ->pi_lock).
4072 */
4073 if (!ttwu_state_match(p, state, &success))
4074 goto out;
4075
4076 trace_sched_waking(p);
4077 WRITE_ONCE(p->__state, TASK_RUNNING);
4078 trace_sched_wakeup(p);
4079 goto out;
4080 }
4081
4082 /*
4083 * If we are going to wake up a thread waiting for CONDITION we
4084 * need to ensure that CONDITION=1 done by the caller can not be
4085 * reordered with p->state check below. This pairs with smp_store_mb()
4086 * in set_current_state() that the waiting thread does.
4087 */
4088 raw_spin_lock_irqsave(&p->pi_lock, flags);
4089 smp_mb__after_spinlock();
4090 if (!ttwu_state_match(p, state, &success))
4091 goto unlock;
4092
4093 trace_sched_waking(p);
4094
4095 /*
4096 * Ensure we load p->on_rq _after_ p->state, otherwise it would
4097 * be possible to, falsely, observe p->on_rq == 0 and get stuck
4098 * in smp_cond_load_acquire() below.
4099 *
4100 * sched_ttwu_pending() try_to_wake_up()
4101 * STORE p->on_rq = 1 LOAD p->state
4102 * UNLOCK rq->lock
4103 *
4104 * __schedule() (switch to task 'p')
4105 * LOCK rq->lock smp_rmb();
4106 * smp_mb__after_spinlock();
4107 * UNLOCK rq->lock
4108 *
4109 * [task p]
4110 * STORE p->state = UNINTERRUPTIBLE LOAD p->on_rq
4111 *
4112 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
4113 * __schedule(). See the comment for smp_mb__after_spinlock().
4114 *
4115 * A similar smb_rmb() lives in try_invoke_on_locked_down_task().
4116 */
4117 smp_rmb();
4118 if (READ_ONCE(p->on_rq) && ttwu_runnable(p, wake_flags))
4119 goto unlock;
4120
4121 #ifdef CONFIG_SMP
4122 /*
4123 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
4124 * possible to, falsely, observe p->on_cpu == 0.
4125 *
4126 * One must be running (->on_cpu == 1) in order to remove oneself
4127 * from the runqueue.
4128 *
4129 * __schedule() (switch to task 'p') try_to_wake_up()
4130 * STORE p->on_cpu = 1 LOAD p->on_rq
4131 * UNLOCK rq->lock
4132 *
4133 * __schedule() (put 'p' to sleep)
4134 * LOCK rq->lock smp_rmb();
4135 * smp_mb__after_spinlock();
4136 * STORE p->on_rq = 0 LOAD p->on_cpu
4137 *
4138 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
4139 * __schedule(). See the comment for smp_mb__after_spinlock().
4140 *
4141 * Form a control-dep-acquire with p->on_rq == 0 above, to ensure
4142 * schedule()'s deactivate_task() has 'happened' and p will no longer
4143 * care about it's own p->state. See the comment in __schedule().
4144 */
4145 smp_acquire__after_ctrl_dep();
4146
4147 /*
4148 * We're doing the wakeup (@success == 1), they did a dequeue (p->on_rq
4149 * == 0), which means we need to do an enqueue, change p->state to
4150 * TASK_WAKING such that we can unlock p->pi_lock before doing the
4151 * enqueue, such as ttwu_queue_wakelist().
4152 */
4153 WRITE_ONCE(p->__state, TASK_WAKING);
4154
4155 /*
4156 * If the owning (remote) CPU is still in the middle of schedule() with
4157 * this task as prev, considering queueing p on the remote CPUs wake_list
4158 * which potentially sends an IPI instead of spinning on p->on_cpu to
4159 * let the waker make forward progress. This is safe because IRQs are
4160 * disabled and the IPI will deliver after on_cpu is cleared.
4161 *
4162 * Ensure we load task_cpu(p) after p->on_cpu:
4163 *
4164 * set_task_cpu(p, cpu);
4165 * STORE p->cpu = @cpu
4166 * __schedule() (switch to task 'p')
4167 * LOCK rq->lock
4168 * smp_mb__after_spin_lock() smp_cond_load_acquire(&p->on_cpu)
4169 * STORE p->on_cpu = 1 LOAD p->cpu
4170 *
4171 * to ensure we observe the correct CPU on which the task is currently
4172 * scheduling.
4173 */
4174 if (smp_load_acquire(&p->on_cpu) &&
4175 ttwu_queue_wakelist(p, task_cpu(p), wake_flags))
4176 goto unlock;
4177
4178 /*
4179 * If the owning (remote) CPU is still in the middle of schedule() with
4180 * this task as prev, wait until it's done referencing the task.
4181 *
4182 * Pairs with the smp_store_release() in finish_task().
4183 *
4184 * This ensures that tasks getting woken will be fully ordered against
4185 * their previous state and preserve Program Order.
4186 */
4187 smp_cond_load_acquire(&p->on_cpu, !VAL);
4188
4189 cpu = select_task_rq(p, p->wake_cpu, wake_flags | WF_TTWU);
4190 if (task_cpu(p) != cpu) {
4191 if (p->in_iowait) {
4192 delayacct_blkio_end(p);
4193 atomic_dec(&task_rq(p)->nr_iowait);
4194 }
4195
4196 wake_flags |= WF_MIGRATED;
4197 psi_ttwu_dequeue(p);
4198 set_task_cpu(p, cpu);
4199 }
4200 #else
4201 cpu = task_cpu(p);
4202 #endif /* CONFIG_SMP */
4203
4204 ttwu_queue(p, cpu, wake_flags);
4205 unlock:
4206 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4207 out:
4208 if (success)
4209 ttwu_stat(p, task_cpu(p), wake_flags);
4210 preempt_enable();
4211
4212 return success;
4213 }
4214
4215 /**
4216 * task_call_func - Invoke a function on task in fixed state
4217 * @p: Process for which the function is to be invoked, can be @current.
4218 * @func: Function to invoke.
4219 * @arg: Argument to function.
4220 *
4221 * Fix the task in it's current state by avoiding wakeups and or rq operations
4222 * and call @func(@arg) on it. This function can use ->on_rq and task_curr()
4223 * to work out what the state is, if required. Given that @func can be invoked
4224 * with a runqueue lock held, it had better be quite lightweight.
4225 *
4226 * Returns:
4227 * Whatever @func returns
4228 */
task_call_func(struct task_struct * p,task_call_f func,void * arg)4229 int task_call_func(struct task_struct *p, task_call_f func, void *arg)
4230 {
4231 struct rq *rq = NULL;
4232 unsigned int state;
4233 struct rq_flags rf;
4234 int ret;
4235
4236 raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
4237
4238 state = READ_ONCE(p->__state);
4239
4240 /*
4241 * Ensure we load p->on_rq after p->__state, otherwise it would be
4242 * possible to, falsely, observe p->on_rq == 0.
4243 *
4244 * See try_to_wake_up() for a longer comment.
4245 */
4246 smp_rmb();
4247
4248 /*
4249 * Since pi->lock blocks try_to_wake_up(), we don't need rq->lock when
4250 * the task is blocked. Make sure to check @state since ttwu() can drop
4251 * locks at the end, see ttwu_queue_wakelist().
4252 */
4253 if (state == TASK_RUNNING || state == TASK_WAKING || p->on_rq)
4254 rq = __task_rq_lock(p, &rf);
4255
4256 /*
4257 * At this point the task is pinned; either:
4258 * - blocked and we're holding off wakeups (pi->lock)
4259 * - woken, and we're holding off enqueue (rq->lock)
4260 * - queued, and we're holding off schedule (rq->lock)
4261 * - running, and we're holding off de-schedule (rq->lock)
4262 *
4263 * The called function (@func) can use: task_curr(), p->on_rq and
4264 * p->__state to differentiate between these states.
4265 */
4266 ret = func(p, arg);
4267
4268 if (rq)
4269 rq_unlock(rq, &rf);
4270
4271 raw_spin_unlock_irqrestore(&p->pi_lock, rf.flags);
4272 return ret;
4273 }
4274
4275 /**
4276 * wake_up_process - Wake up a specific process
4277 * @p: The process to be woken up.
4278 *
4279 * Attempt to wake up the nominated process and move it to the set of runnable
4280 * processes.
4281 *
4282 * Return: 1 if the process was woken up, 0 if it was already running.
4283 *
4284 * This function executes a full memory barrier before accessing the task state.
4285 */
wake_up_process(struct task_struct * p)4286 int wake_up_process(struct task_struct *p)
4287 {
4288 return try_to_wake_up(p, TASK_NORMAL, 0);
4289 }
4290 EXPORT_SYMBOL(wake_up_process);
4291
wake_up_state(struct task_struct * p,unsigned int state)4292 int wake_up_state(struct task_struct *p, unsigned int state)
4293 {
4294 return try_to_wake_up(p, state, 0);
4295 }
4296
4297 /*
4298 * Perform scheduler related setup for a newly forked process p.
4299 * p is forked by current.
4300 *
4301 * __sched_fork() is basic setup used by init_idle() too:
4302 */
__sched_fork(unsigned long clone_flags,struct task_struct * p)4303 static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
4304 {
4305 p->on_rq = 0;
4306
4307 p->se.on_rq = 0;
4308 p->se.exec_start = 0;
4309 p->se.sum_exec_runtime = 0;
4310 p->se.prev_sum_exec_runtime = 0;
4311 p->se.nr_migrations = 0;
4312 p->se.vruntime = 0;
4313 INIT_LIST_HEAD(&p->se.group_node);
4314
4315 #ifdef CONFIG_FAIR_GROUP_SCHED
4316 p->se.cfs_rq = NULL;
4317 #endif
4318
4319 #ifdef CONFIG_SCHEDSTATS
4320 /* Even if schedstat is disabled, there should not be garbage */
4321 memset(&p->stats, 0, sizeof(p->stats));
4322 #endif
4323
4324 RB_CLEAR_NODE(&p->dl.rb_node);
4325 init_dl_task_timer(&p->dl);
4326 init_dl_inactive_task_timer(&p->dl);
4327 __dl_clear_params(p);
4328
4329 INIT_LIST_HEAD(&p->rt.run_list);
4330 p->rt.timeout = 0;
4331 p->rt.time_slice = sched_rr_timeslice;
4332 p->rt.on_rq = 0;
4333 p->rt.on_list = 0;
4334
4335 #ifdef CONFIG_PREEMPT_NOTIFIERS
4336 INIT_HLIST_HEAD(&p->preempt_notifiers);
4337 #endif
4338
4339 #ifdef CONFIG_COMPACTION
4340 p->capture_control = NULL;
4341 #endif
4342 init_numa_balancing(clone_flags, p);
4343 #ifdef CONFIG_SMP
4344 p->wake_entry.u_flags = CSD_TYPE_TTWU;
4345 p->migration_pending = NULL;
4346 #endif
4347 }
4348
4349 DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
4350
4351 #ifdef CONFIG_NUMA_BALANCING
4352
4353 int sysctl_numa_balancing_mode;
4354
__set_numabalancing_state(bool enabled)4355 static void __set_numabalancing_state(bool enabled)
4356 {
4357 if (enabled)
4358 static_branch_enable(&sched_numa_balancing);
4359 else
4360 static_branch_disable(&sched_numa_balancing);
4361 }
4362
set_numabalancing_state(bool enabled)4363 void set_numabalancing_state(bool enabled)
4364 {
4365 if (enabled)
4366 sysctl_numa_balancing_mode = NUMA_BALANCING_NORMAL;
4367 else
4368 sysctl_numa_balancing_mode = NUMA_BALANCING_DISABLED;
4369 __set_numabalancing_state(enabled);
4370 }
4371
4372 #ifdef CONFIG_PROC_SYSCTL
sysctl_numa_balancing(struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)4373 int sysctl_numa_balancing(struct ctl_table *table, int write,
4374 void *buffer, size_t *lenp, loff_t *ppos)
4375 {
4376 struct ctl_table t;
4377 int err;
4378 int state = sysctl_numa_balancing_mode;
4379
4380 if (write && !capable(CAP_SYS_ADMIN))
4381 return -EPERM;
4382
4383 t = *table;
4384 t.data = &state;
4385 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
4386 if (err < 0)
4387 return err;
4388 if (write) {
4389 sysctl_numa_balancing_mode = state;
4390 __set_numabalancing_state(state);
4391 }
4392 return err;
4393 }
4394 #endif
4395 #endif
4396
4397 #ifdef CONFIG_SCHEDSTATS
4398
4399 DEFINE_STATIC_KEY_FALSE(sched_schedstats);
4400
set_schedstats(bool enabled)4401 static void set_schedstats(bool enabled)
4402 {
4403 if (enabled)
4404 static_branch_enable(&sched_schedstats);
4405 else
4406 static_branch_disable(&sched_schedstats);
4407 }
4408
force_schedstat_enabled(void)4409 void force_schedstat_enabled(void)
4410 {
4411 if (!schedstat_enabled()) {
4412 pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
4413 static_branch_enable(&sched_schedstats);
4414 }
4415 }
4416
setup_schedstats(char * str)4417 static int __init setup_schedstats(char *str)
4418 {
4419 int ret = 0;
4420 if (!str)
4421 goto out;
4422
4423 if (!strcmp(str, "enable")) {
4424 set_schedstats(true);
4425 ret = 1;
4426 } else if (!strcmp(str, "disable")) {
4427 set_schedstats(false);
4428 ret = 1;
4429 }
4430 out:
4431 if (!ret)
4432 pr_warn("Unable to parse schedstats=\n");
4433
4434 return ret;
4435 }
4436 __setup("schedstats=", setup_schedstats);
4437
4438 #ifdef CONFIG_PROC_SYSCTL
sysctl_schedstats(struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)4439 static int sysctl_schedstats(struct ctl_table *table, int write, void *buffer,
4440 size_t *lenp, loff_t *ppos)
4441 {
4442 struct ctl_table t;
4443 int err;
4444 int state = static_branch_likely(&sched_schedstats);
4445
4446 if (write && !capable(CAP_SYS_ADMIN))
4447 return -EPERM;
4448
4449 t = *table;
4450 t.data = &state;
4451 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
4452 if (err < 0)
4453 return err;
4454 if (write)
4455 set_schedstats(state);
4456 return err;
4457 }
4458 #endif /* CONFIG_PROC_SYSCTL */
4459 #endif /* CONFIG_SCHEDSTATS */
4460
4461 #ifdef CONFIG_SYSCTL
4462 static struct ctl_table sched_core_sysctls[] = {
4463 #ifdef CONFIG_SCHEDSTATS
4464 {
4465 .procname = "sched_schedstats",
4466 .data = NULL,
4467 .maxlen = sizeof(unsigned int),
4468 .mode = 0644,
4469 .proc_handler = sysctl_schedstats,
4470 .extra1 = SYSCTL_ZERO,
4471 .extra2 = SYSCTL_ONE,
4472 },
4473 #endif /* CONFIG_SCHEDSTATS */
4474 #ifdef CONFIG_UCLAMP_TASK
4475 {
4476 .procname = "sched_util_clamp_min",
4477 .data = &sysctl_sched_uclamp_util_min,
4478 .maxlen = sizeof(unsigned int),
4479 .mode = 0644,
4480 .proc_handler = sysctl_sched_uclamp_handler,
4481 },
4482 {
4483 .procname = "sched_util_clamp_max",
4484 .data = &sysctl_sched_uclamp_util_max,
4485 .maxlen = sizeof(unsigned int),
4486 .mode = 0644,
4487 .proc_handler = sysctl_sched_uclamp_handler,
4488 },
4489 {
4490 .procname = "sched_util_clamp_min_rt_default",
4491 .data = &sysctl_sched_uclamp_util_min_rt_default,
4492 .maxlen = sizeof(unsigned int),
4493 .mode = 0644,
4494 .proc_handler = sysctl_sched_uclamp_handler,
4495 },
4496 #endif /* CONFIG_UCLAMP_TASK */
4497 {}
4498 };
sched_core_sysctl_init(void)4499 static int __init sched_core_sysctl_init(void)
4500 {
4501 register_sysctl_init("kernel", sched_core_sysctls);
4502 return 0;
4503 }
4504 late_initcall(sched_core_sysctl_init);
4505 #endif /* CONFIG_SYSCTL */
4506
4507 /*
4508 * fork()/clone()-time setup:
4509 */
sched_fork(unsigned long clone_flags,struct task_struct * p)4510 int sched_fork(unsigned long clone_flags, struct task_struct *p)
4511 {
4512 __sched_fork(clone_flags, p);
4513 /*
4514 * We mark the process as NEW here. This guarantees that
4515 * nobody will actually run it, and a signal or other external
4516 * event cannot wake it up and insert it on the runqueue either.
4517 */
4518 p->__state = TASK_NEW;
4519
4520 /*
4521 * Make sure we do not leak PI boosting priority to the child.
4522 */
4523 p->prio = current->normal_prio;
4524
4525 uclamp_fork(p);
4526
4527 /*
4528 * Revert to default priority/policy on fork if requested.
4529 */
4530 if (unlikely(p->sched_reset_on_fork)) {
4531 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
4532 p->policy = SCHED_NORMAL;
4533 p->static_prio = NICE_TO_PRIO(0);
4534 p->rt_priority = 0;
4535 } else if (PRIO_TO_NICE(p->static_prio) < 0)
4536 p->static_prio = NICE_TO_PRIO(0);
4537
4538 p->prio = p->normal_prio = p->static_prio;
4539 set_load_weight(p, false);
4540
4541 /*
4542 * We don't need the reset flag anymore after the fork. It has
4543 * fulfilled its duty:
4544 */
4545 p->sched_reset_on_fork = 0;
4546 }
4547
4548 if (dl_prio(p->prio))
4549 return -EAGAIN;
4550 else if (rt_prio(p->prio))
4551 p->sched_class = &rt_sched_class;
4552 else
4553 p->sched_class = &fair_sched_class;
4554
4555 init_entity_runnable_average(&p->se);
4556
4557
4558 #ifdef CONFIG_SCHED_INFO
4559 if (likely(sched_info_on()))
4560 memset(&p->sched_info, 0, sizeof(p->sched_info));
4561 #endif
4562 #if defined(CONFIG_SMP)
4563 p->on_cpu = 0;
4564 #endif
4565 init_task_preempt_count(p);
4566 #ifdef CONFIG_SMP
4567 plist_node_init(&p->pushable_tasks, MAX_PRIO);
4568 RB_CLEAR_NODE(&p->pushable_dl_tasks);
4569 #endif
4570 return 0;
4571 }
4572
sched_cgroup_fork(struct task_struct * p,struct kernel_clone_args * kargs)4573 void sched_cgroup_fork(struct task_struct *p, struct kernel_clone_args *kargs)
4574 {
4575 unsigned long flags;
4576
4577 /*
4578 * Because we're not yet on the pid-hash, p->pi_lock isn't strictly
4579 * required yet, but lockdep gets upset if rules are violated.
4580 */
4581 raw_spin_lock_irqsave(&p->pi_lock, flags);
4582 #ifdef CONFIG_CGROUP_SCHED
4583 if (1) {
4584 struct task_group *tg;
4585 tg = container_of(kargs->cset->subsys[cpu_cgrp_id],
4586 struct task_group, css);
4587 tg = autogroup_task_group(p, tg);
4588 p->sched_task_group = tg;
4589 }
4590 #endif
4591 rseq_migrate(p);
4592 /*
4593 * We're setting the CPU for the first time, we don't migrate,
4594 * so use __set_task_cpu().
4595 */
4596 __set_task_cpu(p, smp_processor_id());
4597 if (p->sched_class->task_fork)
4598 p->sched_class->task_fork(p);
4599 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4600 }
4601
sched_post_fork(struct task_struct * p)4602 void sched_post_fork(struct task_struct *p)
4603 {
4604 uclamp_post_fork(p);
4605 }
4606
to_ratio(u64 period,u64 runtime)4607 unsigned long to_ratio(u64 period, u64 runtime)
4608 {
4609 if (runtime == RUNTIME_INF)
4610 return BW_UNIT;
4611
4612 /*
4613 * Doing this here saves a lot of checks in all
4614 * the calling paths, and returning zero seems
4615 * safe for them anyway.
4616 */
4617 if (period == 0)
4618 return 0;
4619
4620 return div64_u64(runtime << BW_SHIFT, period);
4621 }
4622
4623 /*
4624 * wake_up_new_task - wake up a newly created task for the first time.
4625 *
4626 * This function will do some initial scheduler statistics housekeeping
4627 * that must be done for every newly created context, then puts the task
4628 * on the runqueue and wakes it.
4629 */
wake_up_new_task(struct task_struct * p)4630 void wake_up_new_task(struct task_struct *p)
4631 {
4632 struct rq_flags rf;
4633 struct rq *rq;
4634
4635 raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
4636 WRITE_ONCE(p->__state, TASK_RUNNING);
4637 #ifdef CONFIG_SMP
4638 /*
4639 * Fork balancing, do it here and not earlier because:
4640 * - cpus_ptr can change in the fork path
4641 * - any previously selected CPU might disappear through hotplug
4642 *
4643 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq,
4644 * as we're not fully set-up yet.
4645 */
4646 p->recent_used_cpu = task_cpu(p);
4647 rseq_migrate(p);
4648 __set_task_cpu(p, select_task_rq(p, task_cpu(p), WF_FORK));
4649 #endif
4650 rq = __task_rq_lock(p, &rf);
4651 update_rq_clock(rq);
4652 post_init_entity_util_avg(p);
4653
4654 activate_task(rq, p, ENQUEUE_NOCLOCK);
4655 trace_sched_wakeup_new(p);
4656 check_preempt_curr(rq, p, WF_FORK);
4657 #ifdef CONFIG_SMP
4658 if (p->sched_class->task_woken) {
4659 /*
4660 * Nothing relies on rq->lock after this, so it's fine to
4661 * drop it.
4662 */
4663 rq_unpin_lock(rq, &rf);
4664 p->sched_class->task_woken(rq, p);
4665 rq_repin_lock(rq, &rf);
4666 }
4667 #endif
4668 task_rq_unlock(rq, p, &rf);
4669 }
4670
4671 #ifdef CONFIG_PREEMPT_NOTIFIERS
4672
4673 static DEFINE_STATIC_KEY_FALSE(preempt_notifier_key);
4674
preempt_notifier_inc(void)4675 void preempt_notifier_inc(void)
4676 {
4677 static_branch_inc(&preempt_notifier_key);
4678 }
4679 EXPORT_SYMBOL_GPL(preempt_notifier_inc);
4680
preempt_notifier_dec(void)4681 void preempt_notifier_dec(void)
4682 {
4683 static_branch_dec(&preempt_notifier_key);
4684 }
4685 EXPORT_SYMBOL_GPL(preempt_notifier_dec);
4686
4687 /**
4688 * preempt_notifier_register - tell me when current is being preempted & rescheduled
4689 * @notifier: notifier struct to register
4690 */
preempt_notifier_register(struct preempt_notifier * notifier)4691 void preempt_notifier_register(struct preempt_notifier *notifier)
4692 {
4693 if (!static_branch_unlikely(&preempt_notifier_key))
4694 WARN(1, "registering preempt_notifier while notifiers disabled\n");
4695
4696 hlist_add_head(¬ifier->link, ¤t->preempt_notifiers);
4697 }
4698 EXPORT_SYMBOL_GPL(preempt_notifier_register);
4699
4700 /**
4701 * preempt_notifier_unregister - no longer interested in preemption notifications
4702 * @notifier: notifier struct to unregister
4703 *
4704 * This is *not* safe to call from within a preemption notifier.
4705 */
preempt_notifier_unregister(struct preempt_notifier * notifier)4706 void preempt_notifier_unregister(struct preempt_notifier *notifier)
4707 {
4708 hlist_del(¬ifier->link);
4709 }
4710 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
4711
__fire_sched_in_preempt_notifiers(struct task_struct * curr)4712 static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
4713 {
4714 struct preempt_notifier *notifier;
4715
4716 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
4717 notifier->ops->sched_in(notifier, raw_smp_processor_id());
4718 }
4719
fire_sched_in_preempt_notifiers(struct task_struct * curr)4720 static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
4721 {
4722 if (static_branch_unlikely(&preempt_notifier_key))
4723 __fire_sched_in_preempt_notifiers(curr);
4724 }
4725
4726 static void
__fire_sched_out_preempt_notifiers(struct task_struct * curr,struct task_struct * next)4727 __fire_sched_out_preempt_notifiers(struct task_struct *curr,
4728 struct task_struct *next)
4729 {
4730 struct preempt_notifier *notifier;
4731
4732 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
4733 notifier->ops->sched_out(notifier, next);
4734 }
4735
4736 static __always_inline void
fire_sched_out_preempt_notifiers(struct task_struct * curr,struct task_struct * next)4737 fire_sched_out_preempt_notifiers(struct task_struct *curr,
4738 struct task_struct *next)
4739 {
4740 if (static_branch_unlikely(&preempt_notifier_key))
4741 __fire_sched_out_preempt_notifiers(curr, next);
4742 }
4743
4744 #else /* !CONFIG_PREEMPT_NOTIFIERS */
4745
fire_sched_in_preempt_notifiers(struct task_struct * curr)4746 static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
4747 {
4748 }
4749
4750 static inline void
fire_sched_out_preempt_notifiers(struct task_struct * curr,struct task_struct * next)4751 fire_sched_out_preempt_notifiers(struct task_struct *curr,
4752 struct task_struct *next)
4753 {
4754 }
4755
4756 #endif /* CONFIG_PREEMPT_NOTIFIERS */
4757
prepare_task(struct task_struct * next)4758 static inline void prepare_task(struct task_struct *next)
4759 {
4760 #ifdef CONFIG_SMP
4761 /*
4762 * Claim the task as running, we do this before switching to it
4763 * such that any running task will have this set.
4764 *
4765 * See the smp_load_acquire(&p->on_cpu) case in ttwu() and
4766 * its ordering comment.
4767 */
4768 WRITE_ONCE(next->on_cpu, 1);
4769 #endif
4770 }
4771
finish_task(struct task_struct * prev)4772 static inline void finish_task(struct task_struct *prev)
4773 {
4774 #ifdef CONFIG_SMP
4775 /*
4776 * This must be the very last reference to @prev from this CPU. After
4777 * p->on_cpu is cleared, the task can be moved to a different CPU. We
4778 * must ensure this doesn't happen until the switch is completely
4779 * finished.
4780 *
4781 * In particular, the load of prev->state in finish_task_switch() must
4782 * happen before this.
4783 *
4784 * Pairs with the smp_cond_load_acquire() in try_to_wake_up().
4785 */
4786 smp_store_release(&prev->on_cpu, 0);
4787 #endif
4788 }
4789
4790 #ifdef CONFIG_SMP
4791
do_balance_callbacks(struct rq * rq,struct callback_head * head)4792 static void do_balance_callbacks(struct rq *rq, struct callback_head *head)
4793 {
4794 void (*func)(struct rq *rq);
4795 struct callback_head *next;
4796
4797 lockdep_assert_rq_held(rq);
4798
4799 while (head) {
4800 func = (void (*)(struct rq *))head->func;
4801 next = head->next;
4802 head->next = NULL;
4803 head = next;
4804
4805 func(rq);
4806 }
4807 }
4808
4809 static void balance_push(struct rq *rq);
4810
4811 /*
4812 * balance_push_callback is a right abuse of the callback interface and plays
4813 * by significantly different rules.
4814 *
4815 * Where the normal balance_callback's purpose is to be ran in the same context
4816 * that queued it (only later, when it's safe to drop rq->lock again),
4817 * balance_push_callback is specifically targeted at __schedule().
4818 *
4819 * This abuse is tolerated because it places all the unlikely/odd cases behind
4820 * a single test, namely: rq->balance_callback == NULL.
4821 */
4822 struct callback_head balance_push_callback = {
4823 .next = NULL,
4824 .func = (void (*)(struct callback_head *))balance_push,
4825 };
4826
4827 static inline struct callback_head *
__splice_balance_callbacks(struct rq * rq,bool split)4828 __splice_balance_callbacks(struct rq *rq, bool split)
4829 {
4830 struct callback_head *head = rq->balance_callback;
4831
4832 if (likely(!head))
4833 return NULL;
4834
4835 lockdep_assert_rq_held(rq);
4836 /*
4837 * Must not take balance_push_callback off the list when
4838 * splice_balance_callbacks() and balance_callbacks() are not
4839 * in the same rq->lock section.
4840 *
4841 * In that case it would be possible for __schedule() to interleave
4842 * and observe the list empty.
4843 */
4844 if (split && head == &balance_push_callback)
4845 head = NULL;
4846 else
4847 rq->balance_callback = NULL;
4848
4849 return head;
4850 }
4851
splice_balance_callbacks(struct rq * rq)4852 static inline struct callback_head *splice_balance_callbacks(struct rq *rq)
4853 {
4854 return __splice_balance_callbacks(rq, true);
4855 }
4856
__balance_callbacks(struct rq * rq)4857 static void __balance_callbacks(struct rq *rq)
4858 {
4859 do_balance_callbacks(rq, __splice_balance_callbacks(rq, false));
4860 }
4861
balance_callbacks(struct rq * rq,struct callback_head * head)4862 static inline void balance_callbacks(struct rq *rq, struct callback_head *head)
4863 {
4864 unsigned long flags;
4865
4866 if (unlikely(head)) {
4867 raw_spin_rq_lock_irqsave(rq, flags);
4868 do_balance_callbacks(rq, head);
4869 raw_spin_rq_unlock_irqrestore(rq, flags);
4870 }
4871 }
4872
4873 #else
4874
__balance_callbacks(struct rq * rq)4875 static inline void __balance_callbacks(struct rq *rq)
4876 {
4877 }
4878
splice_balance_callbacks(struct rq * rq)4879 static inline struct callback_head *splice_balance_callbacks(struct rq *rq)
4880 {
4881 return NULL;
4882 }
4883
balance_callbacks(struct rq * rq,struct callback_head * head)4884 static inline void balance_callbacks(struct rq *rq, struct callback_head *head)
4885 {
4886 }
4887
4888 #endif
4889
4890 static inline void
prepare_lock_switch(struct rq * rq,struct task_struct * next,struct rq_flags * rf)4891 prepare_lock_switch(struct rq *rq, struct task_struct *next, struct rq_flags *rf)
4892 {
4893 /*
4894 * Since the runqueue lock will be released by the next
4895 * task (which is an invalid locking op but in the case
4896 * of the scheduler it's an obvious special-case), so we
4897 * do an early lockdep release here:
4898 */
4899 rq_unpin_lock(rq, rf);
4900 spin_release(&__rq_lockp(rq)->dep_map, _THIS_IP_);
4901 #ifdef CONFIG_DEBUG_SPINLOCK
4902 /* this is a valid case when another task releases the spinlock */
4903 rq_lockp(rq)->owner = next;
4904 #endif
4905 }
4906
finish_lock_switch(struct rq * rq)4907 static inline void finish_lock_switch(struct rq *rq)
4908 {
4909 /*
4910 * If we are tracking spinlock dependencies then we have to
4911 * fix up the runqueue lock - which gets 'carried over' from
4912 * prev into current:
4913 */
4914 spin_acquire(&__rq_lockp(rq)->dep_map, 0, 0, _THIS_IP_);
4915 __balance_callbacks(rq);
4916 raw_spin_rq_unlock_irq(rq);
4917 }
4918
4919 /*
4920 * NOP if the arch has not defined these:
4921 */
4922
4923 #ifndef prepare_arch_switch
4924 # define prepare_arch_switch(next) do { } while (0)
4925 #endif
4926
4927 #ifndef finish_arch_post_lock_switch
4928 # define finish_arch_post_lock_switch() do { } while (0)
4929 #endif
4930
kmap_local_sched_out(void)4931 static inline void kmap_local_sched_out(void)
4932 {
4933 #ifdef CONFIG_KMAP_LOCAL
4934 if (unlikely(current->kmap_ctrl.idx))
4935 __kmap_local_sched_out();
4936 #endif
4937 }
4938
kmap_local_sched_in(void)4939 static inline void kmap_local_sched_in(void)
4940 {
4941 #ifdef CONFIG_KMAP_LOCAL
4942 if (unlikely(current->kmap_ctrl.idx))
4943 __kmap_local_sched_in();
4944 #endif
4945 }
4946
4947 /**
4948 * prepare_task_switch - prepare to switch tasks
4949 * @rq: the runqueue preparing to switch
4950 * @prev: the current task that is being switched out
4951 * @next: the task we are going to switch to.
4952 *
4953 * This is called with the rq lock held and interrupts off. It must
4954 * be paired with a subsequent finish_task_switch after the context
4955 * switch.
4956 *
4957 * prepare_task_switch sets up locking and calls architecture specific
4958 * hooks.
4959 */
4960 static inline void
prepare_task_switch(struct rq * rq,struct task_struct * prev,struct task_struct * next)4961 prepare_task_switch(struct rq *rq, struct task_struct *prev,
4962 struct task_struct *next)
4963 {
4964 kcov_prepare_switch(prev);
4965 sched_info_switch(rq, prev, next);
4966 perf_event_task_sched_out(prev, next);
4967 rseq_preempt(prev);
4968 fire_sched_out_preempt_notifiers(prev, next);
4969 kmap_local_sched_out();
4970 prepare_task(next);
4971 prepare_arch_switch(next);
4972 }
4973
4974 /**
4975 * finish_task_switch - clean up after a task-switch
4976 * @prev: the thread we just switched away from.
4977 *
4978 * finish_task_switch must be called after the context switch, paired
4979 * with a prepare_task_switch call before the context switch.
4980 * finish_task_switch will reconcile locking set up by prepare_task_switch,
4981 * and do any other architecture-specific cleanup actions.
4982 *
4983 * Note that we may have delayed dropping an mm in context_switch(). If
4984 * so, we finish that here outside of the runqueue lock. (Doing it
4985 * with the lock held can cause deadlocks; see schedule() for
4986 * details.)
4987 *
4988 * The context switch have flipped the stack from under us and restored the
4989 * local variables which were saved when this task called schedule() in the
4990 * past. prev == current is still correct but we need to recalculate this_rq
4991 * because prev may have moved to another CPU.
4992 */
finish_task_switch(struct task_struct * prev)4993 static struct rq *finish_task_switch(struct task_struct *prev)
4994 __releases(rq->lock)
4995 {
4996 struct rq *rq = this_rq();
4997 struct mm_struct *mm = rq->prev_mm;
4998 unsigned int prev_state;
4999
5000 /*
5001 * The previous task will have left us with a preempt_count of 2
5002 * because it left us after:
5003 *
5004 * schedule()
5005 * preempt_disable(); // 1
5006 * __schedule()
5007 * raw_spin_lock_irq(&rq->lock) // 2
5008 *
5009 * Also, see FORK_PREEMPT_COUNT.
5010 */
5011 if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
5012 "corrupted preempt_count: %s/%d/0x%x\n",
5013 current->comm, current->pid, preempt_count()))
5014 preempt_count_set(FORK_PREEMPT_COUNT);
5015
5016 rq->prev_mm = NULL;
5017
5018 /*
5019 * A task struct has one reference for the use as "current".
5020 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
5021 * schedule one last time. The schedule call will never return, and
5022 * the scheduled task must drop that reference.
5023 *
5024 * We must observe prev->state before clearing prev->on_cpu (in
5025 * finish_task), otherwise a concurrent wakeup can get prev
5026 * running on another CPU and we could rave with its RUNNING -> DEAD
5027 * transition, resulting in a double drop.
5028 */
5029 prev_state = READ_ONCE(prev->__state);
5030 vtime_task_switch(prev);
5031 perf_event_task_sched_in(prev, current);
5032 finish_task(prev);
5033 tick_nohz_task_switch();
5034 finish_lock_switch(rq);
5035 finish_arch_post_lock_switch();
5036 kcov_finish_switch(current);
5037 /*
5038 * kmap_local_sched_out() is invoked with rq::lock held and
5039 * interrupts disabled. There is no requirement for that, but the
5040 * sched out code does not have an interrupt enabled section.
5041 * Restoring the maps on sched in does not require interrupts being
5042 * disabled either.
5043 */
5044 kmap_local_sched_in();
5045
5046 fire_sched_in_preempt_notifiers(current);
5047 /*
5048 * When switching through a kernel thread, the loop in
5049 * membarrier_{private,global}_expedited() may have observed that
5050 * kernel thread and not issued an IPI. It is therefore possible to
5051 * schedule between user->kernel->user threads without passing though
5052 * switch_mm(). Membarrier requires a barrier after storing to
5053 * rq->curr, before returning to userspace, so provide them here:
5054 *
5055 * - a full memory barrier for {PRIVATE,GLOBAL}_EXPEDITED, implicitly
5056 * provided by mmdrop(),
5057 * - a sync_core for SYNC_CORE.
5058 */
5059 if (mm) {
5060 membarrier_mm_sync_core_before_usermode(mm);
5061 mmdrop_sched(mm);
5062 }
5063 if (unlikely(prev_state == TASK_DEAD)) {
5064 if (prev->sched_class->task_dead)
5065 prev->sched_class->task_dead(prev);
5066
5067 /* Task is done with its stack. */
5068 put_task_stack(prev);
5069
5070 put_task_struct_rcu_user(prev);
5071 }
5072
5073 return rq;
5074 }
5075
5076 /**
5077 * schedule_tail - first thing a freshly forked thread must call.
5078 * @prev: the thread we just switched away from.
5079 */
schedule_tail(struct task_struct * prev)5080 asmlinkage __visible void schedule_tail(struct task_struct *prev)
5081 __releases(rq->lock)
5082 {
5083 /*
5084 * New tasks start with FORK_PREEMPT_COUNT, see there and
5085 * finish_task_switch() for details.
5086 *
5087 * finish_task_switch() will drop rq->lock() and lower preempt_count
5088 * and the preempt_enable() will end up enabling preemption (on
5089 * PREEMPT_COUNT kernels).
5090 */
5091
5092 finish_task_switch(prev);
5093 preempt_enable();
5094
5095 if (current->set_child_tid)
5096 put_user(task_pid_vnr(current), current->set_child_tid);
5097
5098 calculate_sigpending();
5099 }
5100
5101 /*
5102 * context_switch - switch to the new MM and the new thread's register state.
5103 */
5104 static __always_inline struct rq *
context_switch(struct rq * rq,struct task_struct * prev,struct task_struct * next,struct rq_flags * rf)5105 context_switch(struct rq *rq, struct task_struct *prev,
5106 struct task_struct *next, struct rq_flags *rf)
5107 {
5108 prepare_task_switch(rq, prev, next);
5109
5110 /*
5111 * For paravirt, this is coupled with an exit in switch_to to
5112 * combine the page table reload and the switch backend into
5113 * one hypercall.
5114 */
5115 arch_start_context_switch(prev);
5116
5117 /*
5118 * kernel -> kernel lazy + transfer active
5119 * user -> kernel lazy + mmgrab() active
5120 *
5121 * kernel -> user switch + mmdrop() active
5122 * user -> user switch
5123 */
5124 if (!next->mm) { // to kernel
5125 enter_lazy_tlb(prev->active_mm, next);
5126
5127 next->active_mm = prev->active_mm;
5128 if (prev->mm) // from user
5129 mmgrab(prev->active_mm);
5130 else
5131 prev->active_mm = NULL;
5132 } else { // to user
5133 membarrier_switch_mm(rq, prev->active_mm, next->mm);
5134 /*
5135 * sys_membarrier() requires an smp_mb() between setting
5136 * rq->curr / membarrier_switch_mm() and returning to userspace.
5137 *
5138 * The below provides this either through switch_mm(), or in
5139 * case 'prev->active_mm == next->mm' through
5140 * finish_task_switch()'s mmdrop().
5141 */
5142 switch_mm_irqs_off(prev->active_mm, next->mm, next);
5143
5144 if (!prev->mm) { // from kernel
5145 /* will mmdrop() in finish_task_switch(). */
5146 rq->prev_mm = prev->active_mm;
5147 prev->active_mm = NULL;
5148 }
5149 }
5150
5151 rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
5152
5153 prepare_lock_switch(rq, next, rf);
5154
5155 /* Here we just switch the register state and the stack. */
5156 switch_to(prev, next, prev);
5157 barrier();
5158
5159 return finish_task_switch(prev);
5160 }
5161
5162 /*
5163 * nr_running and nr_context_switches:
5164 *
5165 * externally visible scheduler statistics: current number of runnable
5166 * threads, total number of context switches performed since bootup.
5167 */
nr_running(void)5168 unsigned int nr_running(void)
5169 {
5170 unsigned int i, sum = 0;
5171
5172 for_each_online_cpu(i)
5173 sum += cpu_rq(i)->nr_running;
5174
5175 return sum;
5176 }
5177
5178 /*
5179 * Check if only the current task is running on the CPU.
5180 *
5181 * Caution: this function does not check that the caller has disabled
5182 * preemption, thus the result might have a time-of-check-to-time-of-use
5183 * race. The caller is responsible to use it correctly, for example:
5184 *
5185 * - from a non-preemptible section (of course)
5186 *
5187 * - from a thread that is bound to a single CPU
5188 *
5189 * - in a loop with very short iterations (e.g. a polling loop)
5190 */
single_task_running(void)5191 bool single_task_running(void)
5192 {
5193 return raw_rq()->nr_running == 1;
5194 }
5195 EXPORT_SYMBOL(single_task_running);
5196
nr_context_switches(void)5197 unsigned long long nr_context_switches(void)
5198 {
5199 int i;
5200 unsigned long long sum = 0;
5201
5202 for_each_possible_cpu(i)
5203 sum += cpu_rq(i)->nr_switches;
5204
5205 return sum;
5206 }
5207
5208 /*
5209 * Consumers of these two interfaces, like for example the cpuidle menu
5210 * governor, are using nonsensical data. Preferring shallow idle state selection
5211 * for a CPU that has IO-wait which might not even end up running the task when
5212 * it does become runnable.
5213 */
5214
nr_iowait_cpu(int cpu)5215 unsigned int nr_iowait_cpu(int cpu)
5216 {
5217 return atomic_read(&cpu_rq(cpu)->nr_iowait);
5218 }
5219
5220 /*
5221 * IO-wait accounting, and how it's mostly bollocks (on SMP).
5222 *
5223 * The idea behind IO-wait account is to account the idle time that we could
5224 * have spend running if it were not for IO. That is, if we were to improve the
5225 * storage performance, we'd have a proportional reduction in IO-wait time.
5226 *
5227 * This all works nicely on UP, where, when a task blocks on IO, we account
5228 * idle time as IO-wait, because if the storage were faster, it could've been
5229 * running and we'd not be idle.
5230 *
5231 * This has been extended to SMP, by doing the same for each CPU. This however
5232 * is broken.
5233 *
5234 * Imagine for instance the case where two tasks block on one CPU, only the one
5235 * CPU will have IO-wait accounted, while the other has regular idle. Even
5236 * though, if the storage were faster, both could've ran at the same time,
5237 * utilising both CPUs.
5238 *
5239 * This means, that when looking globally, the current IO-wait accounting on
5240 * SMP is a lower bound, by reason of under accounting.
5241 *
5242 * Worse, since the numbers are provided per CPU, they are sometimes
5243 * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly
5244 * associated with any one particular CPU, it can wake to another CPU than it
5245 * blocked on. This means the per CPU IO-wait number is meaningless.
5246 *
5247 * Task CPU affinities can make all that even more 'interesting'.
5248 */
5249
nr_iowait(void)5250 unsigned int nr_iowait(void)
5251 {
5252 unsigned int i, sum = 0;
5253
5254 for_each_possible_cpu(i)
5255 sum += nr_iowait_cpu(i);
5256
5257 return sum;
5258 }
5259
5260 #ifdef CONFIG_SMP
5261
5262 /*
5263 * sched_exec - execve() is a valuable balancing opportunity, because at
5264 * this point the task has the smallest effective memory and cache footprint.
5265 */
sched_exec(void)5266 void sched_exec(void)
5267 {
5268 struct task_struct *p = current;
5269 unsigned long flags;
5270 int dest_cpu;
5271
5272 raw_spin_lock_irqsave(&p->pi_lock, flags);
5273 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), WF_EXEC);
5274 if (dest_cpu == smp_processor_id())
5275 goto unlock;
5276
5277 if (likely(cpu_active(dest_cpu))) {
5278 struct migration_arg arg = { p, dest_cpu };
5279
5280 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5281 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
5282 return;
5283 }
5284 unlock:
5285 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5286 }
5287
5288 #endif
5289
5290 DEFINE_PER_CPU(struct kernel_stat, kstat);
5291 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
5292
5293 EXPORT_PER_CPU_SYMBOL(kstat);
5294 EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
5295
5296 /*
5297 * The function fair_sched_class.update_curr accesses the struct curr
5298 * and its field curr->exec_start; when called from task_sched_runtime(),
5299 * we observe a high rate of cache misses in practice.
5300 * Prefetching this data results in improved performance.
5301 */
prefetch_curr_exec_start(struct task_struct * p)5302 static inline void prefetch_curr_exec_start(struct task_struct *p)
5303 {
5304 #ifdef CONFIG_FAIR_GROUP_SCHED
5305 struct sched_entity *curr = (&p->se)->cfs_rq->curr;
5306 #else
5307 struct sched_entity *curr = (&task_rq(p)->cfs)->curr;
5308 #endif
5309 prefetch(curr);
5310 prefetch(&curr->exec_start);
5311 }
5312
5313 /*
5314 * Return accounted runtime for the task.
5315 * In case the task is currently running, return the runtime plus current's
5316 * pending runtime that have not been accounted yet.
5317 */
task_sched_runtime(struct task_struct * p)5318 unsigned long long task_sched_runtime(struct task_struct *p)
5319 {
5320 struct rq_flags rf;
5321 struct rq *rq;
5322 u64 ns;
5323
5324 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
5325 /*
5326 * 64-bit doesn't need locks to atomically read a 64-bit value.
5327 * So we have a optimization chance when the task's delta_exec is 0.
5328 * Reading ->on_cpu is racy, but this is ok.
5329 *
5330 * If we race with it leaving CPU, we'll take a lock. So we're correct.
5331 * If we race with it entering CPU, unaccounted time is 0. This is
5332 * indistinguishable from the read occurring a few cycles earlier.
5333 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
5334 * been accounted, so we're correct here as well.
5335 */
5336 if (!p->on_cpu || !task_on_rq_queued(p))
5337 return p->se.sum_exec_runtime;
5338 #endif
5339
5340 rq = task_rq_lock(p, &rf);
5341 /*
5342 * Must be ->curr _and_ ->on_rq. If dequeued, we would
5343 * project cycles that may never be accounted to this
5344 * thread, breaking clock_gettime().
5345 */
5346 if (task_current(rq, p) && task_on_rq_queued(p)) {
5347 prefetch_curr_exec_start(p);
5348 update_rq_clock(rq);
5349 p->sched_class->update_curr(rq);
5350 }
5351 ns = p->se.sum_exec_runtime;
5352 task_rq_unlock(rq, p, &rf);
5353
5354 return ns;
5355 }
5356
5357 #ifdef CONFIG_SCHED_DEBUG
cpu_resched_latency(struct rq * rq)5358 static u64 cpu_resched_latency(struct rq *rq)
5359 {
5360 int latency_warn_ms = READ_ONCE(sysctl_resched_latency_warn_ms);
5361 u64 resched_latency, now = rq_clock(rq);
5362 static bool warned_once;
5363
5364 if (sysctl_resched_latency_warn_once && warned_once)
5365 return 0;
5366
5367 if (!need_resched() || !latency_warn_ms)
5368 return 0;
5369
5370 if (system_state == SYSTEM_BOOTING)
5371 return 0;
5372
5373 if (!rq->last_seen_need_resched_ns) {
5374 rq->last_seen_need_resched_ns = now;
5375 rq->ticks_without_resched = 0;
5376 return 0;
5377 }
5378
5379 rq->ticks_without_resched++;
5380 resched_latency = now - rq->last_seen_need_resched_ns;
5381 if (resched_latency <= latency_warn_ms * NSEC_PER_MSEC)
5382 return 0;
5383
5384 warned_once = true;
5385
5386 return resched_latency;
5387 }
5388
setup_resched_latency_warn_ms(char * str)5389 static int __init setup_resched_latency_warn_ms(char *str)
5390 {
5391 long val;
5392
5393 if ((kstrtol(str, 0, &val))) {
5394 pr_warn("Unable to set resched_latency_warn_ms\n");
5395 return 1;
5396 }
5397
5398 sysctl_resched_latency_warn_ms = val;
5399 return 1;
5400 }
5401 __setup("resched_latency_warn_ms=", setup_resched_latency_warn_ms);
5402 #else
cpu_resched_latency(struct rq * rq)5403 static inline u64 cpu_resched_latency(struct rq *rq) { return 0; }
5404 #endif /* CONFIG_SCHED_DEBUG */
5405
5406 /*
5407 * This function gets called by the timer code, with HZ frequency.
5408 * We call it with interrupts disabled.
5409 */
scheduler_tick(void)5410 void scheduler_tick(void)
5411 {
5412 int cpu = smp_processor_id();
5413 struct rq *rq = cpu_rq(cpu);
5414 struct task_struct *curr = rq->curr;
5415 struct rq_flags rf;
5416 unsigned long thermal_pressure;
5417 u64 resched_latency;
5418
5419 arch_scale_freq_tick();
5420 sched_clock_tick();
5421
5422 rq_lock(rq, &rf);
5423
5424 update_rq_clock(rq);
5425 thermal_pressure = arch_scale_thermal_pressure(cpu_of(rq));
5426 update_thermal_load_avg(rq_clock_thermal(rq), rq, thermal_pressure);
5427 curr->sched_class->task_tick(rq, curr, 0);
5428 if (sched_feat(LATENCY_WARN))
5429 resched_latency = cpu_resched_latency(rq);
5430 calc_global_load_tick(rq);
5431 sched_core_tick(rq);
5432
5433 rq_unlock(rq, &rf);
5434
5435 if (sched_feat(LATENCY_WARN) && resched_latency)
5436 resched_latency_warn(cpu, resched_latency);
5437
5438 perf_event_task_tick();
5439
5440 #ifdef CONFIG_SMP
5441 rq->idle_balance = idle_cpu(cpu);
5442 trigger_load_balance(rq);
5443 #endif
5444 }
5445
5446 #ifdef CONFIG_NO_HZ_FULL
5447
5448 struct tick_work {
5449 int cpu;
5450 atomic_t state;
5451 struct delayed_work work;
5452 };
5453 /* Values for ->state, see diagram below. */
5454 #define TICK_SCHED_REMOTE_OFFLINE 0
5455 #define TICK_SCHED_REMOTE_OFFLINING 1
5456 #define TICK_SCHED_REMOTE_RUNNING 2
5457
5458 /*
5459 * State diagram for ->state:
5460 *
5461 *
5462 * TICK_SCHED_REMOTE_OFFLINE
5463 * | ^
5464 * | |
5465 * | | sched_tick_remote()
5466 * | |
5467 * | |
5468 * +--TICK_SCHED_REMOTE_OFFLINING
5469 * | ^
5470 * | |
5471 * sched_tick_start() | | sched_tick_stop()
5472 * | |
5473 * V |
5474 * TICK_SCHED_REMOTE_RUNNING
5475 *
5476 *
5477 * Other transitions get WARN_ON_ONCE(), except that sched_tick_remote()
5478 * and sched_tick_start() are happy to leave the state in RUNNING.
5479 */
5480
5481 static struct tick_work __percpu *tick_work_cpu;
5482
sched_tick_remote(struct work_struct * work)5483 static void sched_tick_remote(struct work_struct *work)
5484 {
5485 struct delayed_work *dwork = to_delayed_work(work);
5486 struct tick_work *twork = container_of(dwork, struct tick_work, work);
5487 int cpu = twork->cpu;
5488 struct rq *rq = cpu_rq(cpu);
5489 struct task_struct *curr;
5490 struct rq_flags rf;
5491 u64 delta;
5492 int os;
5493
5494 /*
5495 * Handle the tick only if it appears the remote CPU is running in full
5496 * dynticks mode. The check is racy by nature, but missing a tick or
5497 * having one too much is no big deal because the scheduler tick updates
5498 * statistics and checks timeslices in a time-independent way, regardless
5499 * of when exactly it is running.
5500 */
5501 if (!tick_nohz_tick_stopped_cpu(cpu))
5502 goto out_requeue;
5503
5504 rq_lock_irq(rq, &rf);
5505 curr = rq->curr;
5506 if (cpu_is_offline(cpu))
5507 goto out_unlock;
5508
5509 update_rq_clock(rq);
5510
5511 if (!is_idle_task(curr)) {
5512 /*
5513 * Make sure the next tick runs within a reasonable
5514 * amount of time.
5515 */
5516 delta = rq_clock_task(rq) - curr->se.exec_start;
5517 WARN_ON_ONCE(delta > (u64)NSEC_PER_SEC * 3);
5518 }
5519 curr->sched_class->task_tick(rq, curr, 0);
5520
5521 calc_load_nohz_remote(rq);
5522 out_unlock:
5523 rq_unlock_irq(rq, &rf);
5524 out_requeue:
5525
5526 /*
5527 * Run the remote tick once per second (1Hz). This arbitrary
5528 * frequency is large enough to avoid overload but short enough
5529 * to keep scheduler internal stats reasonably up to date. But
5530 * first update state to reflect hotplug activity if required.
5531 */
5532 os = atomic_fetch_add_unless(&twork->state, -1, TICK_SCHED_REMOTE_RUNNING);
5533 WARN_ON_ONCE(os == TICK_SCHED_REMOTE_OFFLINE);
5534 if (os == TICK_SCHED_REMOTE_RUNNING)
5535 queue_delayed_work(system_unbound_wq, dwork, HZ);
5536 }
5537
sched_tick_start(int cpu)5538 static void sched_tick_start(int cpu)
5539 {
5540 int os;
5541 struct tick_work *twork;
5542
5543 if (housekeeping_cpu(cpu, HK_TYPE_TICK))
5544 return;
5545
5546 WARN_ON_ONCE(!tick_work_cpu);
5547
5548 twork = per_cpu_ptr(tick_work_cpu, cpu);
5549 os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_RUNNING);
5550 WARN_ON_ONCE(os == TICK_SCHED_REMOTE_RUNNING);
5551 if (os == TICK_SCHED_REMOTE_OFFLINE) {
5552 twork->cpu = cpu;
5553 INIT_DELAYED_WORK(&twork->work, sched_tick_remote);
5554 queue_delayed_work(system_unbound_wq, &twork->work, HZ);
5555 }
5556 }
5557
5558 #ifdef CONFIG_HOTPLUG_CPU
sched_tick_stop(int cpu)5559 static void sched_tick_stop(int cpu)
5560 {
5561 struct tick_work *twork;
5562 int os;
5563
5564 if (housekeeping_cpu(cpu, HK_TYPE_TICK))
5565 return;
5566
5567 WARN_ON_ONCE(!tick_work_cpu);
5568
5569 twork = per_cpu_ptr(tick_work_cpu, cpu);
5570 /* There cannot be competing actions, but don't rely on stop-machine. */
5571 os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_OFFLINING);
5572 WARN_ON_ONCE(os != TICK_SCHED_REMOTE_RUNNING);
5573 /* Don't cancel, as this would mess up the state machine. */
5574 }
5575 #endif /* CONFIG_HOTPLUG_CPU */
5576
sched_tick_offload_init(void)5577 int __init sched_tick_offload_init(void)
5578 {
5579 tick_work_cpu = alloc_percpu(struct tick_work);
5580 BUG_ON(!tick_work_cpu);
5581 return 0;
5582 }
5583
5584 #else /* !CONFIG_NO_HZ_FULL */
sched_tick_start(int cpu)5585 static inline void sched_tick_start(int cpu) { }
sched_tick_stop(int cpu)5586 static inline void sched_tick_stop(int cpu) { }
5587 #endif
5588
5589 #if defined(CONFIG_PREEMPTION) && (defined(CONFIG_DEBUG_PREEMPT) || \
5590 defined(CONFIG_TRACE_PREEMPT_TOGGLE))
5591 /*
5592 * If the value passed in is equal to the current preempt count
5593 * then we just disabled preemption. Start timing the latency.
5594 */
preempt_latency_start(int val)5595 static inline void preempt_latency_start(int val)
5596 {
5597 if (preempt_count() == val) {
5598 unsigned long ip = get_lock_parent_ip();
5599 #ifdef CONFIG_DEBUG_PREEMPT
5600 current->preempt_disable_ip = ip;
5601 #endif
5602 trace_preempt_off(CALLER_ADDR0, ip);
5603 }
5604 }
5605
preempt_count_add(int val)5606 void preempt_count_add(int val)
5607 {
5608 #ifdef CONFIG_DEBUG_PREEMPT
5609 /*
5610 * Underflow?
5611 */
5612 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
5613 return;
5614 #endif
5615 __preempt_count_add(val);
5616 #ifdef CONFIG_DEBUG_PREEMPT
5617 /*
5618 * Spinlock count overflowing soon?
5619 */
5620 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
5621 PREEMPT_MASK - 10);
5622 #endif
5623 preempt_latency_start(val);
5624 }
5625 EXPORT_SYMBOL(preempt_count_add);
5626 NOKPROBE_SYMBOL(preempt_count_add);
5627
5628 /*
5629 * If the value passed in equals to the current preempt count
5630 * then we just enabled preemption. Stop timing the latency.
5631 */
preempt_latency_stop(int val)5632 static inline void preempt_latency_stop(int val)
5633 {
5634 if (preempt_count() == val)
5635 trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
5636 }
5637
preempt_count_sub(int val)5638 void preempt_count_sub(int val)
5639 {
5640 #ifdef CONFIG_DEBUG_PREEMPT
5641 /*
5642 * Underflow?
5643 */
5644 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
5645 return;
5646 /*
5647 * Is the spinlock portion underflowing?
5648 */
5649 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
5650 !(preempt_count() & PREEMPT_MASK)))
5651 return;
5652 #endif
5653
5654 preempt_latency_stop(val);
5655 __preempt_count_sub(val);
5656 }
5657 EXPORT_SYMBOL(preempt_count_sub);
5658 NOKPROBE_SYMBOL(preempt_count_sub);
5659
5660 #else
preempt_latency_start(int val)5661 static inline void preempt_latency_start(int val) { }
preempt_latency_stop(int val)5662 static inline void preempt_latency_stop(int val) { }
5663 #endif
5664
get_preempt_disable_ip(struct task_struct * p)5665 static inline unsigned long get_preempt_disable_ip(struct task_struct *p)
5666 {
5667 #ifdef CONFIG_DEBUG_PREEMPT
5668 return p->preempt_disable_ip;
5669 #else
5670 return 0;
5671 #endif
5672 }
5673
5674 /*
5675 * Print scheduling while atomic bug:
5676 */
__schedule_bug(struct task_struct * prev)5677 static noinline void __schedule_bug(struct task_struct *prev)
5678 {
5679 /* Save this before calling printk(), since that will clobber it */
5680 unsigned long preempt_disable_ip = get_preempt_disable_ip(current);
5681
5682 if (oops_in_progress)
5683 return;
5684
5685 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
5686 prev->comm, prev->pid, preempt_count());
5687
5688 debug_show_held_locks(prev);
5689 print_modules();
5690 if (irqs_disabled())
5691 print_irqtrace_events(prev);
5692 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
5693 && in_atomic_preempt_off()) {
5694 pr_err("Preemption disabled at:");
5695 print_ip_sym(KERN_ERR, preempt_disable_ip);
5696 }
5697 if (panic_on_warn)
5698 panic("scheduling while atomic\n");
5699
5700 dump_stack();
5701 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
5702 }
5703
5704 /*
5705 * Various schedule()-time debugging checks and statistics:
5706 */
schedule_debug(struct task_struct * prev,bool preempt)5707 static inline void schedule_debug(struct task_struct *prev, bool preempt)
5708 {
5709 #ifdef CONFIG_SCHED_STACK_END_CHECK
5710 if (task_stack_end_corrupted(prev))
5711 panic("corrupted stack end detected inside scheduler\n");
5712
5713 if (task_scs_end_corrupted(prev))
5714 panic("corrupted shadow stack detected inside scheduler\n");
5715 #endif
5716
5717 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
5718 if (!preempt && READ_ONCE(prev->__state) && prev->non_block_count) {
5719 printk(KERN_ERR "BUG: scheduling in a non-blocking section: %s/%d/%i\n",
5720 prev->comm, prev->pid, prev->non_block_count);
5721 dump_stack();
5722 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
5723 }
5724 #endif
5725
5726 if (unlikely(in_atomic_preempt_off())) {
5727 __schedule_bug(prev);
5728 preempt_count_set(PREEMPT_DISABLED);
5729 }
5730 rcu_sleep_check();
5731 SCHED_WARN_ON(ct_state() == CONTEXT_USER);
5732
5733 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
5734
5735 schedstat_inc(this_rq()->sched_count);
5736 }
5737
put_prev_task_balance(struct rq * rq,struct task_struct * prev,struct rq_flags * rf)5738 static void put_prev_task_balance(struct rq *rq, struct task_struct *prev,
5739 struct rq_flags *rf)
5740 {
5741 #ifdef CONFIG_SMP
5742 const struct sched_class *class;
5743 /*
5744 * We must do the balancing pass before put_prev_task(), such
5745 * that when we release the rq->lock the task is in the same
5746 * state as before we took rq->lock.
5747 *
5748 * We can terminate the balance pass as soon as we know there is
5749 * a runnable task of @class priority or higher.
5750 */
5751 for_class_range(class, prev->sched_class, &idle_sched_class) {
5752 if (class->balance(rq, prev, rf))
5753 break;
5754 }
5755 #endif
5756
5757 put_prev_task(rq, prev);
5758 }
5759
5760 /*
5761 * Pick up the highest-prio task:
5762 */
5763 static inline struct task_struct *
__pick_next_task(struct rq * rq,struct task_struct * prev,struct rq_flags * rf)5764 __pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
5765 {
5766 const struct sched_class *class;
5767 struct task_struct *p;
5768
5769 /*
5770 * Optimization: we know that if all tasks are in the fair class we can
5771 * call that function directly, but only if the @prev task wasn't of a
5772 * higher scheduling class, because otherwise those lose the
5773 * opportunity to pull in more work from other CPUs.
5774 */
5775 if (likely(!sched_class_above(prev->sched_class, &fair_sched_class) &&
5776 rq->nr_running == rq->cfs.h_nr_running)) {
5777
5778 p = pick_next_task_fair(rq, prev, rf);
5779 if (unlikely(p == RETRY_TASK))
5780 goto restart;
5781
5782 /* Assume the next prioritized class is idle_sched_class */
5783 if (!p) {
5784 put_prev_task(rq, prev);
5785 p = pick_next_task_idle(rq);
5786 }
5787
5788 return p;
5789 }
5790
5791 restart:
5792 put_prev_task_balance(rq, prev, rf);
5793
5794 for_each_class(class) {
5795 p = class->pick_next_task(rq);
5796 if (p)
5797 return p;
5798 }
5799
5800 BUG(); /* The idle class should always have a runnable task. */
5801 }
5802
5803 #ifdef CONFIG_SCHED_CORE
is_task_rq_idle(struct task_struct * t)5804 static inline bool is_task_rq_idle(struct task_struct *t)
5805 {
5806 return (task_rq(t)->idle == t);
5807 }
5808
cookie_equals(struct task_struct * a,unsigned long cookie)5809 static inline bool cookie_equals(struct task_struct *a, unsigned long cookie)
5810 {
5811 return is_task_rq_idle(a) || (a->core_cookie == cookie);
5812 }
5813
cookie_match(struct task_struct * a,struct task_struct * b)5814 static inline bool cookie_match(struct task_struct *a, struct task_struct *b)
5815 {
5816 if (is_task_rq_idle(a) || is_task_rq_idle(b))
5817 return true;
5818
5819 return a->core_cookie == b->core_cookie;
5820 }
5821
pick_task(struct rq * rq)5822 static inline struct task_struct *pick_task(struct rq *rq)
5823 {
5824 const struct sched_class *class;
5825 struct task_struct *p;
5826
5827 for_each_class(class) {
5828 p = class->pick_task(rq);
5829 if (p)
5830 return p;
5831 }
5832
5833 BUG(); /* The idle class should always have a runnable task. */
5834 }
5835
5836 extern void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi);
5837
5838 static void queue_core_balance(struct rq *rq);
5839
5840 static struct task_struct *
pick_next_task(struct rq * rq,struct task_struct * prev,struct rq_flags * rf)5841 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
5842 {
5843 struct task_struct *next, *p, *max = NULL;
5844 const struct cpumask *smt_mask;
5845 bool fi_before = false;
5846 bool core_clock_updated = (rq == rq->core);
5847 unsigned long cookie;
5848 int i, cpu, occ = 0;
5849 struct rq *rq_i;
5850 bool need_sync;
5851
5852 if (!sched_core_enabled(rq))
5853 return __pick_next_task(rq, prev, rf);
5854
5855 cpu = cpu_of(rq);
5856
5857 /* Stopper task is switching into idle, no need core-wide selection. */
5858 if (cpu_is_offline(cpu)) {
5859 /*
5860 * Reset core_pick so that we don't enter the fastpath when
5861 * coming online. core_pick would already be migrated to
5862 * another cpu during offline.
5863 */
5864 rq->core_pick = NULL;
5865 return __pick_next_task(rq, prev, rf);
5866 }
5867
5868 /*
5869 * If there were no {en,de}queues since we picked (IOW, the task
5870 * pointers are all still valid), and we haven't scheduled the last
5871 * pick yet, do so now.
5872 *
5873 * rq->core_pick can be NULL if no selection was made for a CPU because
5874 * it was either offline or went offline during a sibling's core-wide
5875 * selection. In this case, do a core-wide selection.
5876 */
5877 if (rq->core->core_pick_seq == rq->core->core_task_seq &&
5878 rq->core->core_pick_seq != rq->core_sched_seq &&
5879 rq->core_pick) {
5880 WRITE_ONCE(rq->core_sched_seq, rq->core->core_pick_seq);
5881
5882 next = rq->core_pick;
5883 if (next != prev) {
5884 put_prev_task(rq, prev);
5885 set_next_task(rq, next);
5886 }
5887
5888 rq->core_pick = NULL;
5889 goto out;
5890 }
5891
5892 put_prev_task_balance(rq, prev, rf);
5893
5894 smt_mask = cpu_smt_mask(cpu);
5895 need_sync = !!rq->core->core_cookie;
5896
5897 /* reset state */
5898 rq->core->core_cookie = 0UL;
5899 if (rq->core->core_forceidle_count) {
5900 if (!core_clock_updated) {
5901 update_rq_clock(rq->core);
5902 core_clock_updated = true;
5903 }
5904 sched_core_account_forceidle(rq);
5905 /* reset after accounting force idle */
5906 rq->core->core_forceidle_start = 0;
5907 rq->core->core_forceidle_count = 0;
5908 rq->core->core_forceidle_occupation = 0;
5909 need_sync = true;
5910 fi_before = true;
5911 }
5912
5913 /*
5914 * core->core_task_seq, core->core_pick_seq, rq->core_sched_seq
5915 *
5916 * @task_seq guards the task state ({en,de}queues)
5917 * @pick_seq is the @task_seq we did a selection on
5918 * @sched_seq is the @pick_seq we scheduled
5919 *
5920 * However, preemptions can cause multiple picks on the same task set.
5921 * 'Fix' this by also increasing @task_seq for every pick.
5922 */
5923 rq->core->core_task_seq++;
5924
5925 /*
5926 * Optimize for common case where this CPU has no cookies
5927 * and there are no cookied tasks running on siblings.
5928 */
5929 if (!need_sync) {
5930 next = pick_task(rq);
5931 if (!next->core_cookie) {
5932 rq->core_pick = NULL;
5933 /*
5934 * For robustness, update the min_vruntime_fi for
5935 * unconstrained picks as well.
5936 */
5937 WARN_ON_ONCE(fi_before);
5938 task_vruntime_update(rq, next, false);
5939 goto out_set_next;
5940 }
5941 }
5942
5943 /*
5944 * For each thread: do the regular task pick and find the max prio task
5945 * amongst them.
5946 *
5947 * Tie-break prio towards the current CPU
5948 */
5949 for_each_cpu_wrap(i, smt_mask, cpu) {
5950 rq_i = cpu_rq(i);
5951
5952 /*
5953 * Current cpu always has its clock updated on entrance to
5954 * pick_next_task(). If the current cpu is not the core,
5955 * the core may also have been updated above.
5956 */
5957 if (i != cpu && (rq_i != rq->core || !core_clock_updated))
5958 update_rq_clock(rq_i);
5959
5960 p = rq_i->core_pick = pick_task(rq_i);
5961 if (!max || prio_less(max, p, fi_before))
5962 max = p;
5963 }
5964
5965 cookie = rq->core->core_cookie = max->core_cookie;
5966
5967 /*
5968 * For each thread: try and find a runnable task that matches @max or
5969 * force idle.
5970 */
5971 for_each_cpu(i, smt_mask) {
5972 rq_i = cpu_rq(i);
5973 p = rq_i->core_pick;
5974
5975 if (!cookie_equals(p, cookie)) {
5976 p = NULL;
5977 if (cookie)
5978 p = sched_core_find(rq_i, cookie);
5979 if (!p)
5980 p = idle_sched_class.pick_task(rq_i);
5981 }
5982
5983 rq_i->core_pick = p;
5984
5985 if (p == rq_i->idle) {
5986 if (rq_i->nr_running) {
5987 rq->core->core_forceidle_count++;
5988 if (!fi_before)
5989 rq->core->core_forceidle_seq++;
5990 }
5991 } else {
5992 occ++;
5993 }
5994 }
5995
5996 if (schedstat_enabled() && rq->core->core_forceidle_count) {
5997 rq->core->core_forceidle_start = rq_clock(rq->core);
5998 rq->core->core_forceidle_occupation = occ;
5999 }
6000
6001 rq->core->core_pick_seq = rq->core->core_task_seq;
6002 next = rq->core_pick;
6003 rq->core_sched_seq = rq->core->core_pick_seq;
6004
6005 /* Something should have been selected for current CPU */
6006 WARN_ON_ONCE(!next);
6007
6008 /*
6009 * Reschedule siblings
6010 *
6011 * NOTE: L1TF -- at this point we're no longer running the old task and
6012 * sending an IPI (below) ensures the sibling will no longer be running
6013 * their task. This ensures there is no inter-sibling overlap between
6014 * non-matching user state.
6015 */
6016 for_each_cpu(i, smt_mask) {
6017 rq_i = cpu_rq(i);
6018
6019 /*
6020 * An online sibling might have gone offline before a task
6021 * could be picked for it, or it might be offline but later
6022 * happen to come online, but its too late and nothing was
6023 * picked for it. That's Ok - it will pick tasks for itself,
6024 * so ignore it.
6025 */
6026 if (!rq_i->core_pick)
6027 continue;
6028
6029 /*
6030 * Update for new !FI->FI transitions, or if continuing to be in !FI:
6031 * fi_before fi update?
6032 * 0 0 1
6033 * 0 1 1
6034 * 1 0 1
6035 * 1 1 0
6036 */
6037 if (!(fi_before && rq->core->core_forceidle_count))
6038 task_vruntime_update(rq_i, rq_i->core_pick, !!rq->core->core_forceidle_count);
6039
6040 rq_i->core_pick->core_occupation = occ;
6041
6042 if (i == cpu) {
6043 rq_i->core_pick = NULL;
6044 continue;
6045 }
6046
6047 /* Did we break L1TF mitigation requirements? */
6048 WARN_ON_ONCE(!cookie_match(next, rq_i->core_pick));
6049
6050 if (rq_i->curr == rq_i->core_pick) {
6051 rq_i->core_pick = NULL;
6052 continue;
6053 }
6054
6055 resched_curr(rq_i);
6056 }
6057
6058 out_set_next:
6059 set_next_task(rq, next);
6060 out:
6061 if (rq->core->core_forceidle_count && next == rq->idle)
6062 queue_core_balance(rq);
6063
6064 return next;
6065 }
6066
try_steal_cookie(int this,int that)6067 static bool try_steal_cookie(int this, int that)
6068 {
6069 struct rq *dst = cpu_rq(this), *src = cpu_rq(that);
6070 struct task_struct *p;
6071 unsigned long cookie;
6072 bool success = false;
6073
6074 local_irq_disable();
6075 double_rq_lock(dst, src);
6076
6077 cookie = dst->core->core_cookie;
6078 if (!cookie)
6079 goto unlock;
6080
6081 if (dst->curr != dst->idle)
6082 goto unlock;
6083
6084 p = sched_core_find(src, cookie);
6085 if (p == src->idle)
6086 goto unlock;
6087
6088 do {
6089 if (p == src->core_pick || p == src->curr)
6090 goto next;
6091
6092 if (!is_cpu_allowed(p, this))
6093 goto next;
6094
6095 if (p->core_occupation > dst->idle->core_occupation)
6096 goto next;
6097
6098 deactivate_task(src, p, 0);
6099 set_task_cpu(p, this);
6100 activate_task(dst, p, 0);
6101
6102 resched_curr(dst);
6103
6104 success = true;
6105 break;
6106
6107 next:
6108 p = sched_core_next(p, cookie);
6109 } while (p);
6110
6111 unlock:
6112 double_rq_unlock(dst, src);
6113 local_irq_enable();
6114
6115 return success;
6116 }
6117
steal_cookie_task(int cpu,struct sched_domain * sd)6118 static bool steal_cookie_task(int cpu, struct sched_domain *sd)
6119 {
6120 int i;
6121
6122 for_each_cpu_wrap(i, sched_domain_span(sd), cpu) {
6123 if (i == cpu)
6124 continue;
6125
6126 if (need_resched())
6127 break;
6128
6129 if (try_steal_cookie(cpu, i))
6130 return true;
6131 }
6132
6133 return false;
6134 }
6135
sched_core_balance(struct rq * rq)6136 static void sched_core_balance(struct rq *rq)
6137 {
6138 struct sched_domain *sd;
6139 int cpu = cpu_of(rq);
6140
6141 preempt_disable();
6142 rcu_read_lock();
6143 raw_spin_rq_unlock_irq(rq);
6144 for_each_domain(cpu, sd) {
6145 if (need_resched())
6146 break;
6147
6148 if (steal_cookie_task(cpu, sd))
6149 break;
6150 }
6151 raw_spin_rq_lock_irq(rq);
6152 rcu_read_unlock();
6153 preempt_enable();
6154 }
6155
6156 static DEFINE_PER_CPU(struct callback_head, core_balance_head);
6157
queue_core_balance(struct rq * rq)6158 static void queue_core_balance(struct rq *rq)
6159 {
6160 if (!sched_core_enabled(rq))
6161 return;
6162
6163 if (!rq->core->core_cookie)
6164 return;
6165
6166 if (!rq->nr_running) /* not forced idle */
6167 return;
6168
6169 queue_balance_callback(rq, &per_cpu(core_balance_head, rq->cpu), sched_core_balance);
6170 }
6171
sched_core_cpu_starting(unsigned int cpu)6172 static void sched_core_cpu_starting(unsigned int cpu)
6173 {
6174 const struct cpumask *smt_mask = cpu_smt_mask(cpu);
6175 struct rq *rq = cpu_rq(cpu), *core_rq = NULL;
6176 unsigned long flags;
6177 int t;
6178
6179 sched_core_lock(cpu, &flags);
6180
6181 WARN_ON_ONCE(rq->core != rq);
6182
6183 /* if we're the first, we'll be our own leader */
6184 if (cpumask_weight(smt_mask) == 1)
6185 goto unlock;
6186
6187 /* find the leader */
6188 for_each_cpu(t, smt_mask) {
6189 if (t == cpu)
6190 continue;
6191 rq = cpu_rq(t);
6192 if (rq->core == rq) {
6193 core_rq = rq;
6194 break;
6195 }
6196 }
6197
6198 if (WARN_ON_ONCE(!core_rq)) /* whoopsie */
6199 goto unlock;
6200
6201 /* install and validate core_rq */
6202 for_each_cpu(t, smt_mask) {
6203 rq = cpu_rq(t);
6204
6205 if (t == cpu)
6206 rq->core = core_rq;
6207
6208 WARN_ON_ONCE(rq->core != core_rq);
6209 }
6210
6211 unlock:
6212 sched_core_unlock(cpu, &flags);
6213 }
6214
sched_core_cpu_deactivate(unsigned int cpu)6215 static void sched_core_cpu_deactivate(unsigned int cpu)
6216 {
6217 const struct cpumask *smt_mask = cpu_smt_mask(cpu);
6218 struct rq *rq = cpu_rq(cpu), *core_rq = NULL;
6219 unsigned long flags;
6220 int t;
6221
6222 sched_core_lock(cpu, &flags);
6223
6224 /* if we're the last man standing, nothing to do */
6225 if (cpumask_weight(smt_mask) == 1) {
6226 WARN_ON_ONCE(rq->core != rq);
6227 goto unlock;
6228 }
6229
6230 /* if we're not the leader, nothing to do */
6231 if (rq->core != rq)
6232 goto unlock;
6233
6234 /* find a new leader */
6235 for_each_cpu(t, smt_mask) {
6236 if (t == cpu)
6237 continue;
6238 core_rq = cpu_rq(t);
6239 break;
6240 }
6241
6242 if (WARN_ON_ONCE(!core_rq)) /* impossible */
6243 goto unlock;
6244
6245 /* copy the shared state to the new leader */
6246 core_rq->core_task_seq = rq->core_task_seq;
6247 core_rq->core_pick_seq = rq->core_pick_seq;
6248 core_rq->core_cookie = rq->core_cookie;
6249 core_rq->core_forceidle_count = rq->core_forceidle_count;
6250 core_rq->core_forceidle_seq = rq->core_forceidle_seq;
6251 core_rq->core_forceidle_occupation = rq->core_forceidle_occupation;
6252
6253 /*
6254 * Accounting edge for forced idle is handled in pick_next_task().
6255 * Don't need another one here, since the hotplug thread shouldn't
6256 * have a cookie.
6257 */
6258 core_rq->core_forceidle_start = 0;
6259
6260 /* install new leader */
6261 for_each_cpu(t, smt_mask) {
6262 rq = cpu_rq(t);
6263 rq->core = core_rq;
6264 }
6265
6266 unlock:
6267 sched_core_unlock(cpu, &flags);
6268 }
6269
sched_core_cpu_dying(unsigned int cpu)6270 static inline void sched_core_cpu_dying(unsigned int cpu)
6271 {
6272 struct rq *rq = cpu_rq(cpu);
6273
6274 if (rq->core != rq)
6275 rq->core = rq;
6276 }
6277
6278 #else /* !CONFIG_SCHED_CORE */
6279
sched_core_cpu_starting(unsigned int cpu)6280 static inline void sched_core_cpu_starting(unsigned int cpu) {}
sched_core_cpu_deactivate(unsigned int cpu)6281 static inline void sched_core_cpu_deactivate(unsigned int cpu) {}
sched_core_cpu_dying(unsigned int cpu)6282 static inline void sched_core_cpu_dying(unsigned int cpu) {}
6283
6284 static struct task_struct *
pick_next_task(struct rq * rq,struct task_struct * prev,struct rq_flags * rf)6285 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
6286 {
6287 return __pick_next_task(rq, prev, rf);
6288 }
6289
6290 #endif /* CONFIG_SCHED_CORE */
6291
6292 /*
6293 * Constants for the sched_mode argument of __schedule().
6294 *
6295 * The mode argument allows RT enabled kernels to differentiate a
6296 * preemption from blocking on an 'sleeping' spin/rwlock. Note that
6297 * SM_MASK_PREEMPT for !RT has all bits set, which allows the compiler to
6298 * optimize the AND operation out and just check for zero.
6299 */
6300 #define SM_NONE 0x0
6301 #define SM_PREEMPT 0x1
6302 #define SM_RTLOCK_WAIT 0x2
6303
6304 #ifndef CONFIG_PREEMPT_RT
6305 # define SM_MASK_PREEMPT (~0U)
6306 #else
6307 # define SM_MASK_PREEMPT SM_PREEMPT
6308 #endif
6309
6310 /*
6311 * __schedule() is the main scheduler function.
6312 *
6313 * The main means of driving the scheduler and thus entering this function are:
6314 *
6315 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
6316 *
6317 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
6318 * paths. For example, see arch/x86/entry_64.S.
6319 *
6320 * To drive preemption between tasks, the scheduler sets the flag in timer
6321 * interrupt handler scheduler_tick().
6322 *
6323 * 3. Wakeups don't really cause entry into schedule(). They add a
6324 * task to the run-queue and that's it.
6325 *
6326 * Now, if the new task added to the run-queue preempts the current
6327 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
6328 * called on the nearest possible occasion:
6329 *
6330 * - If the kernel is preemptible (CONFIG_PREEMPTION=y):
6331 *
6332 * - in syscall or exception context, at the next outmost
6333 * preempt_enable(). (this might be as soon as the wake_up()'s
6334 * spin_unlock()!)
6335 *
6336 * - in IRQ context, return from interrupt-handler to
6337 * preemptible context
6338 *
6339 * - If the kernel is not preemptible (CONFIG_PREEMPTION is not set)
6340 * then at the next:
6341 *
6342 * - cond_resched() call
6343 * - explicit schedule() call
6344 * - return from syscall or exception to user-space
6345 * - return from interrupt-handler to user-space
6346 *
6347 * WARNING: must be called with preemption disabled!
6348 */
__schedule(unsigned int sched_mode)6349 static void __sched notrace __schedule(unsigned int sched_mode)
6350 {
6351 struct task_struct *prev, *next;
6352 unsigned long *switch_count;
6353 unsigned long prev_state;
6354 struct rq_flags rf;
6355 struct rq *rq;
6356 int cpu;
6357
6358 cpu = smp_processor_id();
6359 rq = cpu_rq(cpu);
6360 prev = rq->curr;
6361
6362 schedule_debug(prev, !!sched_mode);
6363
6364 if (sched_feat(HRTICK) || sched_feat(HRTICK_DL))
6365 hrtick_clear(rq);
6366
6367 local_irq_disable();
6368 rcu_note_context_switch(!!sched_mode);
6369
6370 /*
6371 * Make sure that signal_pending_state()->signal_pending() below
6372 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
6373 * done by the caller to avoid the race with signal_wake_up():
6374 *
6375 * __set_current_state(@state) signal_wake_up()
6376 * schedule() set_tsk_thread_flag(p, TIF_SIGPENDING)
6377 * wake_up_state(p, state)
6378 * LOCK rq->lock LOCK p->pi_state
6379 * smp_mb__after_spinlock() smp_mb__after_spinlock()
6380 * if (signal_pending_state()) if (p->state & @state)
6381 *
6382 * Also, the membarrier system call requires a full memory barrier
6383 * after coming from user-space, before storing to rq->curr.
6384 */
6385 rq_lock(rq, &rf);
6386 smp_mb__after_spinlock();
6387
6388 /* Promote REQ to ACT */
6389 rq->clock_update_flags <<= 1;
6390 update_rq_clock(rq);
6391
6392 switch_count = &prev->nivcsw;
6393
6394 /*
6395 * We must load prev->state once (task_struct::state is volatile), such
6396 * that we form a control dependency vs deactivate_task() below.
6397 */
6398 prev_state = READ_ONCE(prev->__state);
6399 if (!(sched_mode & SM_MASK_PREEMPT) && prev_state) {
6400 if (signal_pending_state(prev_state, prev)) {
6401 WRITE_ONCE(prev->__state, TASK_RUNNING);
6402 } else {
6403 prev->sched_contributes_to_load =
6404 (prev_state & TASK_UNINTERRUPTIBLE) &&
6405 !(prev_state & TASK_NOLOAD) &&
6406 !(prev->flags & PF_FROZEN);
6407
6408 if (prev->sched_contributes_to_load)
6409 rq->nr_uninterruptible++;
6410
6411 /*
6412 * __schedule() ttwu()
6413 * prev_state = prev->state; if (p->on_rq && ...)
6414 * if (prev_state) goto out;
6415 * p->on_rq = 0; smp_acquire__after_ctrl_dep();
6416 * p->state = TASK_WAKING
6417 *
6418 * Where __schedule() and ttwu() have matching control dependencies.
6419 *
6420 * After this, schedule() must not care about p->state any more.
6421 */
6422 deactivate_task(rq, prev, DEQUEUE_SLEEP | DEQUEUE_NOCLOCK);
6423
6424 if (prev->in_iowait) {
6425 atomic_inc(&rq->nr_iowait);
6426 delayacct_blkio_start();
6427 }
6428 }
6429 switch_count = &prev->nvcsw;
6430 }
6431
6432 next = pick_next_task(rq, prev, &rf);
6433 clear_tsk_need_resched(prev);
6434 clear_preempt_need_resched();
6435 #ifdef CONFIG_SCHED_DEBUG
6436 rq->last_seen_need_resched_ns = 0;
6437 #endif
6438
6439 if (likely(prev != next)) {
6440 rq->nr_switches++;
6441 /*
6442 * RCU users of rcu_dereference(rq->curr) may not see
6443 * changes to task_struct made by pick_next_task().
6444 */
6445 RCU_INIT_POINTER(rq->curr, next);
6446 /*
6447 * The membarrier system call requires each architecture
6448 * to have a full memory barrier after updating
6449 * rq->curr, before returning to user-space.
6450 *
6451 * Here are the schemes providing that barrier on the
6452 * various architectures:
6453 * - mm ? switch_mm() : mmdrop() for x86, s390, sparc, PowerPC.
6454 * switch_mm() rely on membarrier_arch_switch_mm() on PowerPC.
6455 * - finish_lock_switch() for weakly-ordered
6456 * architectures where spin_unlock is a full barrier,
6457 * - switch_to() for arm64 (weakly-ordered, spin_unlock
6458 * is a RELEASE barrier),
6459 */
6460 ++*switch_count;
6461
6462 migrate_disable_switch(rq, prev);
6463 psi_sched_switch(prev, next, !task_on_rq_queued(prev));
6464
6465 trace_sched_switch(sched_mode & SM_MASK_PREEMPT, prev, next, prev_state);
6466
6467 /* Also unlocks the rq: */
6468 rq = context_switch(rq, prev, next, &rf);
6469 } else {
6470 rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
6471
6472 rq_unpin_lock(rq, &rf);
6473 __balance_callbacks(rq);
6474 raw_spin_rq_unlock_irq(rq);
6475 }
6476 }
6477
do_task_dead(void)6478 void __noreturn do_task_dead(void)
6479 {
6480 /* Causes final put_task_struct in finish_task_switch(): */
6481 set_special_state(TASK_DEAD);
6482
6483 /* Tell freezer to ignore us: */
6484 current->flags |= PF_NOFREEZE;
6485
6486 __schedule(SM_NONE);
6487 BUG();
6488
6489 /* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */
6490 for (;;)
6491 cpu_relax();
6492 }
6493
sched_submit_work(struct task_struct * tsk)6494 static inline void sched_submit_work(struct task_struct *tsk)
6495 {
6496 unsigned int task_flags;
6497
6498 if (task_is_running(tsk))
6499 return;
6500
6501 task_flags = tsk->flags;
6502 /*
6503 * If a worker goes to sleep, notify and ask workqueue whether it
6504 * wants to wake up a task to maintain concurrency.
6505 */
6506 if (task_flags & (PF_WQ_WORKER | PF_IO_WORKER)) {
6507 if (task_flags & PF_WQ_WORKER)
6508 wq_worker_sleeping(tsk);
6509 else
6510 io_wq_worker_sleeping(tsk);
6511 }
6512
6513 /*
6514 * spinlock and rwlock must not flush block requests. This will
6515 * deadlock if the callback attempts to acquire a lock which is
6516 * already acquired.
6517 */
6518 SCHED_WARN_ON(current->__state & TASK_RTLOCK_WAIT);
6519
6520 /*
6521 * If we are going to sleep and we have plugged IO queued,
6522 * make sure to submit it to avoid deadlocks.
6523 */
6524 blk_flush_plug(tsk->plug, true);
6525 }
6526
sched_update_worker(struct task_struct * tsk)6527 static void sched_update_worker(struct task_struct *tsk)
6528 {
6529 if (tsk->flags & (PF_WQ_WORKER | PF_IO_WORKER)) {
6530 if (tsk->flags & PF_WQ_WORKER)
6531 wq_worker_running(tsk);
6532 else
6533 io_wq_worker_running(tsk);
6534 }
6535 }
6536
schedule(void)6537 asmlinkage __visible void __sched schedule(void)
6538 {
6539 struct task_struct *tsk = current;
6540
6541 sched_submit_work(tsk);
6542 do {
6543 preempt_disable();
6544 __schedule(SM_NONE);
6545 sched_preempt_enable_no_resched();
6546 } while (need_resched());
6547 sched_update_worker(tsk);
6548 }
6549 EXPORT_SYMBOL(schedule);
6550
6551 /*
6552 * synchronize_rcu_tasks() makes sure that no task is stuck in preempted
6553 * state (have scheduled out non-voluntarily) by making sure that all
6554 * tasks have either left the run queue or have gone into user space.
6555 * As idle tasks do not do either, they must not ever be preempted
6556 * (schedule out non-voluntarily).
6557 *
6558 * schedule_idle() is similar to schedule_preempt_disable() except that it
6559 * never enables preemption because it does not call sched_submit_work().
6560 */
schedule_idle(void)6561 void __sched schedule_idle(void)
6562 {
6563 /*
6564 * As this skips calling sched_submit_work(), which the idle task does
6565 * regardless because that function is a nop when the task is in a
6566 * TASK_RUNNING state, make sure this isn't used someplace that the
6567 * current task can be in any other state. Note, idle is always in the
6568 * TASK_RUNNING state.
6569 */
6570 WARN_ON_ONCE(current->__state);
6571 do {
6572 __schedule(SM_NONE);
6573 } while (need_resched());
6574 }
6575
6576 #if defined(CONFIG_CONTEXT_TRACKING) && !defined(CONFIG_HAVE_CONTEXT_TRACKING_OFFSTACK)
schedule_user(void)6577 asmlinkage __visible void __sched schedule_user(void)
6578 {
6579 /*
6580 * If we come here after a random call to set_need_resched(),
6581 * or we have been woken up remotely but the IPI has not yet arrived,
6582 * we haven't yet exited the RCU idle mode. Do it here manually until
6583 * we find a better solution.
6584 *
6585 * NB: There are buggy callers of this function. Ideally we
6586 * should warn if prev_state != CONTEXT_USER, but that will trigger
6587 * too frequently to make sense yet.
6588 */
6589 enum ctx_state prev_state = exception_enter();
6590 schedule();
6591 exception_exit(prev_state);
6592 }
6593 #endif
6594
6595 /**
6596 * schedule_preempt_disabled - called with preemption disabled
6597 *
6598 * Returns with preemption disabled. Note: preempt_count must be 1
6599 */
schedule_preempt_disabled(void)6600 void __sched schedule_preempt_disabled(void)
6601 {
6602 sched_preempt_enable_no_resched();
6603 schedule();
6604 preempt_disable();
6605 }
6606
6607 #ifdef CONFIG_PREEMPT_RT
schedule_rtlock(void)6608 void __sched notrace schedule_rtlock(void)
6609 {
6610 do {
6611 preempt_disable();
6612 __schedule(SM_RTLOCK_WAIT);
6613 sched_preempt_enable_no_resched();
6614 } while (need_resched());
6615 }
6616 NOKPROBE_SYMBOL(schedule_rtlock);
6617 #endif
6618
preempt_schedule_common(void)6619 static void __sched notrace preempt_schedule_common(void)
6620 {
6621 do {
6622 /*
6623 * Because the function tracer can trace preempt_count_sub()
6624 * and it also uses preempt_enable/disable_notrace(), if
6625 * NEED_RESCHED is set, the preempt_enable_notrace() called
6626 * by the function tracer will call this function again and
6627 * cause infinite recursion.
6628 *
6629 * Preemption must be disabled here before the function
6630 * tracer can trace. Break up preempt_disable() into two
6631 * calls. One to disable preemption without fear of being
6632 * traced. The other to still record the preemption latency,
6633 * which can also be traced by the function tracer.
6634 */
6635 preempt_disable_notrace();
6636 preempt_latency_start(1);
6637 __schedule(SM_PREEMPT);
6638 preempt_latency_stop(1);
6639 preempt_enable_no_resched_notrace();
6640
6641 /*
6642 * Check again in case we missed a preemption opportunity
6643 * between schedule and now.
6644 */
6645 } while (need_resched());
6646 }
6647
6648 #ifdef CONFIG_PREEMPTION
6649 /*
6650 * This is the entry point to schedule() from in-kernel preemption
6651 * off of preempt_enable.
6652 */
preempt_schedule(void)6653 asmlinkage __visible void __sched notrace preempt_schedule(void)
6654 {
6655 /*
6656 * If there is a non-zero preempt_count or interrupts are disabled,
6657 * we do not want to preempt the current task. Just return..
6658 */
6659 if (likely(!preemptible()))
6660 return;
6661 preempt_schedule_common();
6662 }
6663 NOKPROBE_SYMBOL(preempt_schedule);
6664 EXPORT_SYMBOL(preempt_schedule);
6665
6666 #ifdef CONFIG_PREEMPT_DYNAMIC
6667 #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
6668 #ifndef preempt_schedule_dynamic_enabled
6669 #define preempt_schedule_dynamic_enabled preempt_schedule
6670 #define preempt_schedule_dynamic_disabled NULL
6671 #endif
6672 DEFINE_STATIC_CALL(preempt_schedule, preempt_schedule_dynamic_enabled);
6673 EXPORT_STATIC_CALL_TRAMP(preempt_schedule);
6674 #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
6675 static DEFINE_STATIC_KEY_TRUE(sk_dynamic_preempt_schedule);
dynamic_preempt_schedule(void)6676 void __sched notrace dynamic_preempt_schedule(void)
6677 {
6678 if (!static_branch_unlikely(&sk_dynamic_preempt_schedule))
6679 return;
6680 preempt_schedule();
6681 }
6682 NOKPROBE_SYMBOL(dynamic_preempt_schedule);
6683 EXPORT_SYMBOL(dynamic_preempt_schedule);
6684 #endif
6685 #endif
6686
6687 /**
6688 * preempt_schedule_notrace - preempt_schedule called by tracing
6689 *
6690 * The tracing infrastructure uses preempt_enable_notrace to prevent
6691 * recursion and tracing preempt enabling caused by the tracing
6692 * infrastructure itself. But as tracing can happen in areas coming
6693 * from userspace or just about to enter userspace, a preempt enable
6694 * can occur before user_exit() is called. This will cause the scheduler
6695 * to be called when the system is still in usermode.
6696 *
6697 * To prevent this, the preempt_enable_notrace will use this function
6698 * instead of preempt_schedule() to exit user context if needed before
6699 * calling the scheduler.
6700 */
preempt_schedule_notrace(void)6701 asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
6702 {
6703 enum ctx_state prev_ctx;
6704
6705 if (likely(!preemptible()))
6706 return;
6707
6708 do {
6709 /*
6710 * Because the function tracer can trace preempt_count_sub()
6711 * and it also uses preempt_enable/disable_notrace(), if
6712 * NEED_RESCHED is set, the preempt_enable_notrace() called
6713 * by the function tracer will call this function again and
6714 * cause infinite recursion.
6715 *
6716 * Preemption must be disabled here before the function
6717 * tracer can trace. Break up preempt_disable() into two
6718 * calls. One to disable preemption without fear of being
6719 * traced. The other to still record the preemption latency,
6720 * which can also be traced by the function tracer.
6721 */
6722 preempt_disable_notrace();
6723 preempt_latency_start(1);
6724 /*
6725 * Needs preempt disabled in case user_exit() is traced
6726 * and the tracer calls preempt_enable_notrace() causing
6727 * an infinite recursion.
6728 */
6729 prev_ctx = exception_enter();
6730 __schedule(SM_PREEMPT);
6731 exception_exit(prev_ctx);
6732
6733 preempt_latency_stop(1);
6734 preempt_enable_no_resched_notrace();
6735 } while (need_resched());
6736 }
6737 EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
6738
6739 #ifdef CONFIG_PREEMPT_DYNAMIC
6740 #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
6741 #ifndef preempt_schedule_notrace_dynamic_enabled
6742 #define preempt_schedule_notrace_dynamic_enabled preempt_schedule_notrace
6743 #define preempt_schedule_notrace_dynamic_disabled NULL
6744 #endif
6745 DEFINE_STATIC_CALL(preempt_schedule_notrace, preempt_schedule_notrace_dynamic_enabled);
6746 EXPORT_STATIC_CALL_TRAMP(preempt_schedule_notrace);
6747 #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
6748 static DEFINE_STATIC_KEY_TRUE(sk_dynamic_preempt_schedule_notrace);
dynamic_preempt_schedule_notrace(void)6749 void __sched notrace dynamic_preempt_schedule_notrace(void)
6750 {
6751 if (!static_branch_unlikely(&sk_dynamic_preempt_schedule_notrace))
6752 return;
6753 preempt_schedule_notrace();
6754 }
6755 NOKPROBE_SYMBOL(dynamic_preempt_schedule_notrace);
6756 EXPORT_SYMBOL(dynamic_preempt_schedule_notrace);
6757 #endif
6758 #endif
6759
6760 #endif /* CONFIG_PREEMPTION */
6761
6762 /*
6763 * This is the entry point to schedule() from kernel preemption
6764 * off of irq context.
6765 * Note, that this is called and return with irqs disabled. This will
6766 * protect us against recursive calling from irq.
6767 */
preempt_schedule_irq(void)6768 asmlinkage __visible void __sched preempt_schedule_irq(void)
6769 {
6770 enum ctx_state prev_state;
6771
6772 /* Catch callers which need to be fixed */
6773 BUG_ON(preempt_count() || !irqs_disabled());
6774
6775 prev_state = exception_enter();
6776
6777 do {
6778 preempt_disable();
6779 local_irq_enable();
6780 __schedule(SM_PREEMPT);
6781 local_irq_disable();
6782 sched_preempt_enable_no_resched();
6783 } while (need_resched());
6784
6785 exception_exit(prev_state);
6786 }
6787
default_wake_function(wait_queue_entry_t * curr,unsigned mode,int wake_flags,void * key)6788 int default_wake_function(wait_queue_entry_t *curr, unsigned mode, int wake_flags,
6789 void *key)
6790 {
6791 WARN_ON_ONCE(IS_ENABLED(CONFIG_SCHED_DEBUG) && wake_flags & ~WF_SYNC);
6792 return try_to_wake_up(curr->private, mode, wake_flags);
6793 }
6794 EXPORT_SYMBOL(default_wake_function);
6795
__setscheduler_prio(struct task_struct * p,int prio)6796 static void __setscheduler_prio(struct task_struct *p, int prio)
6797 {
6798 if (dl_prio(prio))
6799 p->sched_class = &dl_sched_class;
6800 else if (rt_prio(prio))
6801 p->sched_class = &rt_sched_class;
6802 else
6803 p->sched_class = &fair_sched_class;
6804
6805 p->prio = prio;
6806 }
6807
6808 #ifdef CONFIG_RT_MUTEXES
6809
__rt_effective_prio(struct task_struct * pi_task,int prio)6810 static inline int __rt_effective_prio(struct task_struct *pi_task, int prio)
6811 {
6812 if (pi_task)
6813 prio = min(prio, pi_task->prio);
6814
6815 return prio;
6816 }
6817
rt_effective_prio(struct task_struct * p,int prio)6818 static inline int rt_effective_prio(struct task_struct *p, int prio)
6819 {
6820 struct task_struct *pi_task = rt_mutex_get_top_task(p);
6821
6822 return __rt_effective_prio(pi_task, prio);
6823 }
6824
6825 /*
6826 * rt_mutex_setprio - set the current priority of a task
6827 * @p: task to boost
6828 * @pi_task: donor task
6829 *
6830 * This function changes the 'effective' priority of a task. It does
6831 * not touch ->normal_prio like __setscheduler().
6832 *
6833 * Used by the rt_mutex code to implement priority inheritance
6834 * logic. Call site only calls if the priority of the task changed.
6835 */
rt_mutex_setprio(struct task_struct * p,struct task_struct * pi_task)6836 void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task)
6837 {
6838 int prio, oldprio, queued, running, queue_flag =
6839 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
6840 const struct sched_class *prev_class;
6841 struct rq_flags rf;
6842 struct rq *rq;
6843
6844 /* XXX used to be waiter->prio, not waiter->task->prio */
6845 prio = __rt_effective_prio(pi_task, p->normal_prio);
6846
6847 /*
6848 * If nothing changed; bail early.
6849 */
6850 if (p->pi_top_task == pi_task && prio == p->prio && !dl_prio(prio))
6851 return;
6852
6853 rq = __task_rq_lock(p, &rf);
6854 update_rq_clock(rq);
6855 /*
6856 * Set under pi_lock && rq->lock, such that the value can be used under
6857 * either lock.
6858 *
6859 * Note that there is loads of tricky to make this pointer cache work
6860 * right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to
6861 * ensure a task is de-boosted (pi_task is set to NULL) before the
6862 * task is allowed to run again (and can exit). This ensures the pointer
6863 * points to a blocked task -- which guarantees the task is present.
6864 */
6865 p->pi_top_task = pi_task;
6866
6867 /*
6868 * For FIFO/RR we only need to set prio, if that matches we're done.
6869 */
6870 if (prio == p->prio && !dl_prio(prio))
6871 goto out_unlock;
6872
6873 /*
6874 * Idle task boosting is a nono in general. There is one
6875 * exception, when PREEMPT_RT and NOHZ is active:
6876 *
6877 * The idle task calls get_next_timer_interrupt() and holds
6878 * the timer wheel base->lock on the CPU and another CPU wants
6879 * to access the timer (probably to cancel it). We can safely
6880 * ignore the boosting request, as the idle CPU runs this code
6881 * with interrupts disabled and will complete the lock
6882 * protected section without being interrupted. So there is no
6883 * real need to boost.
6884 */
6885 if (unlikely(p == rq->idle)) {
6886 WARN_ON(p != rq->curr);
6887 WARN_ON(p->pi_blocked_on);
6888 goto out_unlock;
6889 }
6890
6891 trace_sched_pi_setprio(p, pi_task);
6892 oldprio = p->prio;
6893
6894 if (oldprio == prio)
6895 queue_flag &= ~DEQUEUE_MOVE;
6896
6897 prev_class = p->sched_class;
6898 queued = task_on_rq_queued(p);
6899 running = task_current(rq, p);
6900 if (queued)
6901 dequeue_task(rq, p, queue_flag);
6902 if (running)
6903 put_prev_task(rq, p);
6904
6905 /*
6906 * Boosting condition are:
6907 * 1. -rt task is running and holds mutex A
6908 * --> -dl task blocks on mutex A
6909 *
6910 * 2. -dl task is running and holds mutex A
6911 * --> -dl task blocks on mutex A and could preempt the
6912 * running task
6913 */
6914 if (dl_prio(prio)) {
6915 if (!dl_prio(p->normal_prio) ||
6916 (pi_task && dl_prio(pi_task->prio) &&
6917 dl_entity_preempt(&pi_task->dl, &p->dl))) {
6918 p->dl.pi_se = pi_task->dl.pi_se;
6919 queue_flag |= ENQUEUE_REPLENISH;
6920 } else {
6921 p->dl.pi_se = &p->dl;
6922 }
6923 } else if (rt_prio(prio)) {
6924 if (dl_prio(oldprio))
6925 p->dl.pi_se = &p->dl;
6926 if (oldprio < prio)
6927 queue_flag |= ENQUEUE_HEAD;
6928 } else {
6929 if (dl_prio(oldprio))
6930 p->dl.pi_se = &p->dl;
6931 if (rt_prio(oldprio))
6932 p->rt.timeout = 0;
6933 }
6934
6935 __setscheduler_prio(p, prio);
6936
6937 if (queued)
6938 enqueue_task(rq, p, queue_flag);
6939 if (running)
6940 set_next_task(rq, p);
6941
6942 check_class_changed(rq, p, prev_class, oldprio);
6943 out_unlock:
6944 /* Avoid rq from going away on us: */
6945 preempt_disable();
6946
6947 rq_unpin_lock(rq, &rf);
6948 __balance_callbacks(rq);
6949 raw_spin_rq_unlock(rq);
6950
6951 preempt_enable();
6952 }
6953 #else
rt_effective_prio(struct task_struct * p,int prio)6954 static inline int rt_effective_prio(struct task_struct *p, int prio)
6955 {
6956 return prio;
6957 }
6958 #endif
6959
set_user_nice(struct task_struct * p,long nice)6960 void set_user_nice(struct task_struct *p, long nice)
6961 {
6962 bool queued, running;
6963 int old_prio;
6964 struct rq_flags rf;
6965 struct rq *rq;
6966
6967 if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
6968 return;
6969 /*
6970 * We have to be careful, if called from sys_setpriority(),
6971 * the task might be in the middle of scheduling on another CPU.
6972 */
6973 rq = task_rq_lock(p, &rf);
6974 update_rq_clock(rq);
6975
6976 /*
6977 * The RT priorities are set via sched_setscheduler(), but we still
6978 * allow the 'normal' nice value to be set - but as expected
6979 * it won't have any effect on scheduling until the task is
6980 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
6981 */
6982 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
6983 p->static_prio = NICE_TO_PRIO(nice);
6984 goto out_unlock;
6985 }
6986 queued = task_on_rq_queued(p);
6987 running = task_current(rq, p);
6988 if (queued)
6989 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
6990 if (running)
6991 put_prev_task(rq, p);
6992
6993 p->static_prio = NICE_TO_PRIO(nice);
6994 set_load_weight(p, true);
6995 old_prio = p->prio;
6996 p->prio = effective_prio(p);
6997
6998 if (queued)
6999 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
7000 if (running)
7001 set_next_task(rq, p);
7002
7003 /*
7004 * If the task increased its priority or is running and
7005 * lowered its priority, then reschedule its CPU:
7006 */
7007 p->sched_class->prio_changed(rq, p, old_prio);
7008
7009 out_unlock:
7010 task_rq_unlock(rq, p, &rf);
7011 }
7012 EXPORT_SYMBOL(set_user_nice);
7013
7014 /*
7015 * is_nice_reduction - check if nice value is an actual reduction
7016 *
7017 * Similar to can_nice() but does not perform a capability check.
7018 *
7019 * @p: task
7020 * @nice: nice value
7021 */
is_nice_reduction(const struct task_struct * p,const int nice)7022 static bool is_nice_reduction(const struct task_struct *p, const int nice)
7023 {
7024 /* Convert nice value [19,-20] to rlimit style value [1,40]: */
7025 int nice_rlim = nice_to_rlimit(nice);
7026
7027 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE));
7028 }
7029
7030 /*
7031 * can_nice - check if a task can reduce its nice value
7032 * @p: task
7033 * @nice: nice value
7034 */
can_nice(const struct task_struct * p,const int nice)7035 int can_nice(const struct task_struct *p, const int nice)
7036 {
7037 return is_nice_reduction(p, nice) || capable(CAP_SYS_NICE);
7038 }
7039
7040 #ifdef __ARCH_WANT_SYS_NICE
7041
7042 /*
7043 * sys_nice - change the priority of the current process.
7044 * @increment: priority increment
7045 *
7046 * sys_setpriority is a more generic, but much slower function that
7047 * does similar things.
7048 */
SYSCALL_DEFINE1(nice,int,increment)7049 SYSCALL_DEFINE1(nice, int, increment)
7050 {
7051 long nice, retval;
7052
7053 /*
7054 * Setpriority might change our priority at the same moment.
7055 * We don't have to worry. Conceptually one call occurs first
7056 * and we have a single winner.
7057 */
7058 increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
7059 nice = task_nice(current) + increment;
7060
7061 nice = clamp_val(nice, MIN_NICE, MAX_NICE);
7062 if (increment < 0 && !can_nice(current, nice))
7063 return -EPERM;
7064
7065 retval = security_task_setnice(current, nice);
7066 if (retval)
7067 return retval;
7068
7069 set_user_nice(current, nice);
7070 return 0;
7071 }
7072
7073 #endif
7074
7075 /**
7076 * task_prio - return the priority value of a given task.
7077 * @p: the task in question.
7078 *
7079 * Return: The priority value as seen by users in /proc.
7080 *
7081 * sched policy return value kernel prio user prio/nice
7082 *
7083 * normal, batch, idle [0 ... 39] [100 ... 139] 0/[-20 ... 19]
7084 * fifo, rr [-2 ... -100] [98 ... 0] [1 ... 99]
7085 * deadline -101 -1 0
7086 */
task_prio(const struct task_struct * p)7087 int task_prio(const struct task_struct *p)
7088 {
7089 return p->prio - MAX_RT_PRIO;
7090 }
7091
7092 /**
7093 * idle_cpu - is a given CPU idle currently?
7094 * @cpu: the processor in question.
7095 *
7096 * Return: 1 if the CPU is currently idle. 0 otherwise.
7097 */
idle_cpu(int cpu)7098 int idle_cpu(int cpu)
7099 {
7100 struct rq *rq = cpu_rq(cpu);
7101
7102 if (rq->curr != rq->idle)
7103 return 0;
7104
7105 if (rq->nr_running)
7106 return 0;
7107
7108 #ifdef CONFIG_SMP
7109 if (rq->ttwu_pending)
7110 return 0;
7111 #endif
7112
7113 return 1;
7114 }
7115
7116 /**
7117 * available_idle_cpu - is a given CPU idle for enqueuing work.
7118 * @cpu: the CPU in question.
7119 *
7120 * Return: 1 if the CPU is currently idle. 0 otherwise.
7121 */
available_idle_cpu(int cpu)7122 int available_idle_cpu(int cpu)
7123 {
7124 if (!idle_cpu(cpu))
7125 return 0;
7126
7127 if (vcpu_is_preempted(cpu))
7128 return 0;
7129
7130 return 1;
7131 }
7132
7133 /**
7134 * idle_task - return the idle task for a given CPU.
7135 * @cpu: the processor in question.
7136 *
7137 * Return: The idle task for the CPU @cpu.
7138 */
idle_task(int cpu)7139 struct task_struct *idle_task(int cpu)
7140 {
7141 return cpu_rq(cpu)->idle;
7142 }
7143
7144 #ifdef CONFIG_SMP
7145 /*
7146 * This function computes an effective utilization for the given CPU, to be
7147 * used for frequency selection given the linear relation: f = u * f_max.
7148 *
7149 * The scheduler tracks the following metrics:
7150 *
7151 * cpu_util_{cfs,rt,dl,irq}()
7152 * cpu_bw_dl()
7153 *
7154 * Where the cfs,rt and dl util numbers are tracked with the same metric and
7155 * synchronized windows and are thus directly comparable.
7156 *
7157 * The cfs,rt,dl utilization are the running times measured with rq->clock_task
7158 * which excludes things like IRQ and steal-time. These latter are then accrued
7159 * in the irq utilization.
7160 *
7161 * The DL bandwidth number otoh is not a measured metric but a value computed
7162 * based on the task model parameters and gives the minimal utilization
7163 * required to meet deadlines.
7164 */
effective_cpu_util(int cpu,unsigned long util_cfs,unsigned long max,enum cpu_util_type type,struct task_struct * p)7165 unsigned long effective_cpu_util(int cpu, unsigned long util_cfs,
7166 unsigned long max, enum cpu_util_type type,
7167 struct task_struct *p)
7168 {
7169 unsigned long dl_util, util, irq;
7170 struct rq *rq = cpu_rq(cpu);
7171
7172 if (!uclamp_is_used() &&
7173 type == FREQUENCY_UTIL && rt_rq_is_runnable(&rq->rt)) {
7174 return max;
7175 }
7176
7177 /*
7178 * Early check to see if IRQ/steal time saturates the CPU, can be
7179 * because of inaccuracies in how we track these -- see
7180 * update_irq_load_avg().
7181 */
7182 irq = cpu_util_irq(rq);
7183 if (unlikely(irq >= max))
7184 return max;
7185
7186 /*
7187 * Because the time spend on RT/DL tasks is visible as 'lost' time to
7188 * CFS tasks and we use the same metric to track the effective
7189 * utilization (PELT windows are synchronized) we can directly add them
7190 * to obtain the CPU's actual utilization.
7191 *
7192 * CFS and RT utilization can be boosted or capped, depending on
7193 * utilization clamp constraints requested by currently RUNNABLE
7194 * tasks.
7195 * When there are no CFS RUNNABLE tasks, clamps are released and
7196 * frequency will be gracefully reduced with the utilization decay.
7197 */
7198 util = util_cfs + cpu_util_rt(rq);
7199 if (type == FREQUENCY_UTIL)
7200 util = uclamp_rq_util_with(rq, util, p);
7201
7202 dl_util = cpu_util_dl(rq);
7203
7204 /*
7205 * For frequency selection we do not make cpu_util_dl() a permanent part
7206 * of this sum because we want to use cpu_bw_dl() later on, but we need
7207 * to check if the CFS+RT+DL sum is saturated (ie. no idle time) such
7208 * that we select f_max when there is no idle time.
7209 *
7210 * NOTE: numerical errors or stop class might cause us to not quite hit
7211 * saturation when we should -- something for later.
7212 */
7213 if (util + dl_util >= max)
7214 return max;
7215
7216 /*
7217 * OTOH, for energy computation we need the estimated running time, so
7218 * include util_dl and ignore dl_bw.
7219 */
7220 if (type == ENERGY_UTIL)
7221 util += dl_util;
7222
7223 /*
7224 * There is still idle time; further improve the number by using the
7225 * irq metric. Because IRQ/steal time is hidden from the task clock we
7226 * need to scale the task numbers:
7227 *
7228 * max - irq
7229 * U' = irq + --------- * U
7230 * max
7231 */
7232 util = scale_irq_capacity(util, irq, max);
7233 util += irq;
7234
7235 /*
7236 * Bandwidth required by DEADLINE must always be granted while, for
7237 * FAIR and RT, we use blocked utilization of IDLE CPUs as a mechanism
7238 * to gracefully reduce the frequency when no tasks show up for longer
7239 * periods of time.
7240 *
7241 * Ideally we would like to set bw_dl as min/guaranteed freq and util +
7242 * bw_dl as requested freq. However, cpufreq is not yet ready for such
7243 * an interface. So, we only do the latter for now.
7244 */
7245 if (type == FREQUENCY_UTIL)
7246 util += cpu_bw_dl(rq);
7247
7248 return min(max, util);
7249 }
7250
sched_cpu_util(int cpu,unsigned long max)7251 unsigned long sched_cpu_util(int cpu, unsigned long max)
7252 {
7253 return effective_cpu_util(cpu, cpu_util_cfs(cpu), max,
7254 ENERGY_UTIL, NULL);
7255 }
7256 #endif /* CONFIG_SMP */
7257
7258 /**
7259 * find_process_by_pid - find a process with a matching PID value.
7260 * @pid: the pid in question.
7261 *
7262 * The task of @pid, if found. %NULL otherwise.
7263 */
find_process_by_pid(pid_t pid)7264 static struct task_struct *find_process_by_pid(pid_t pid)
7265 {
7266 return pid ? find_task_by_vpid(pid) : current;
7267 }
7268
7269 /*
7270 * sched_setparam() passes in -1 for its policy, to let the functions
7271 * it calls know not to change it.
7272 */
7273 #define SETPARAM_POLICY -1
7274
__setscheduler_params(struct task_struct * p,const struct sched_attr * attr)7275 static void __setscheduler_params(struct task_struct *p,
7276 const struct sched_attr *attr)
7277 {
7278 int policy = attr->sched_policy;
7279
7280 if (policy == SETPARAM_POLICY)
7281 policy = p->policy;
7282
7283 p->policy = policy;
7284
7285 if (dl_policy(policy))
7286 __setparam_dl(p, attr);
7287 else if (fair_policy(policy))
7288 p->static_prio = NICE_TO_PRIO(attr->sched_nice);
7289
7290 /*
7291 * __sched_setscheduler() ensures attr->sched_priority == 0 when
7292 * !rt_policy. Always setting this ensures that things like
7293 * getparam()/getattr() don't report silly values for !rt tasks.
7294 */
7295 p->rt_priority = attr->sched_priority;
7296 p->normal_prio = normal_prio(p);
7297 set_load_weight(p, true);
7298 }
7299
7300 /*
7301 * Check the target process has a UID that matches the current process's:
7302 */
check_same_owner(struct task_struct * p)7303 static bool check_same_owner(struct task_struct *p)
7304 {
7305 const struct cred *cred = current_cred(), *pcred;
7306 bool match;
7307
7308 rcu_read_lock();
7309 pcred = __task_cred(p);
7310 match = (uid_eq(cred->euid, pcred->euid) ||
7311 uid_eq(cred->euid, pcred->uid));
7312 rcu_read_unlock();
7313 return match;
7314 }
7315
7316 /*
7317 * Allow unprivileged RT tasks to decrease priority.
7318 * Only issue a capable test if needed and only once to avoid an audit
7319 * event on permitted non-privileged operations:
7320 */
user_check_sched_setscheduler(struct task_struct * p,const struct sched_attr * attr,int policy,int reset_on_fork)7321 static int user_check_sched_setscheduler(struct task_struct *p,
7322 const struct sched_attr *attr,
7323 int policy, int reset_on_fork)
7324 {
7325 if (fair_policy(policy)) {
7326 if (attr->sched_nice < task_nice(p) &&
7327 !is_nice_reduction(p, attr->sched_nice))
7328 goto req_priv;
7329 }
7330
7331 if (rt_policy(policy)) {
7332 unsigned long rlim_rtprio = task_rlimit(p, RLIMIT_RTPRIO);
7333
7334 /* Can't set/change the rt policy: */
7335 if (policy != p->policy && !rlim_rtprio)
7336 goto req_priv;
7337
7338 /* Can't increase priority: */
7339 if (attr->sched_priority > p->rt_priority &&
7340 attr->sched_priority > rlim_rtprio)
7341 goto req_priv;
7342 }
7343
7344 /*
7345 * Can't set/change SCHED_DEADLINE policy at all for now
7346 * (safest behavior); in the future we would like to allow
7347 * unprivileged DL tasks to increase their relative deadline
7348 * or reduce their runtime (both ways reducing utilization)
7349 */
7350 if (dl_policy(policy))
7351 goto req_priv;
7352
7353 /*
7354 * Treat SCHED_IDLE as nice 20. Only allow a switch to
7355 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
7356 */
7357 if (task_has_idle_policy(p) && !idle_policy(policy)) {
7358 if (!is_nice_reduction(p, task_nice(p)))
7359 goto req_priv;
7360 }
7361
7362 /* Can't change other user's priorities: */
7363 if (!check_same_owner(p))
7364 goto req_priv;
7365
7366 /* Normal users shall not reset the sched_reset_on_fork flag: */
7367 if (p->sched_reset_on_fork && !reset_on_fork)
7368 goto req_priv;
7369
7370 return 0;
7371
7372 req_priv:
7373 if (!capable(CAP_SYS_NICE))
7374 return -EPERM;
7375
7376 return 0;
7377 }
7378
__sched_setscheduler(struct task_struct * p,const struct sched_attr * attr,bool user,bool pi)7379 static int __sched_setscheduler(struct task_struct *p,
7380 const struct sched_attr *attr,
7381 bool user, bool pi)
7382 {
7383 int oldpolicy = -1, policy = attr->sched_policy;
7384 int retval, oldprio, newprio, queued, running;
7385 const struct sched_class *prev_class;
7386 struct callback_head *head;
7387 struct rq_flags rf;
7388 int reset_on_fork;
7389 int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
7390 struct rq *rq;
7391
7392 /* The pi code expects interrupts enabled */
7393 BUG_ON(pi && in_interrupt());
7394 recheck:
7395 /* Double check policy once rq lock held: */
7396 if (policy < 0) {
7397 reset_on_fork = p->sched_reset_on_fork;
7398 policy = oldpolicy = p->policy;
7399 } else {
7400 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
7401
7402 if (!valid_policy(policy))
7403 return -EINVAL;
7404 }
7405
7406 if (attr->sched_flags & ~(SCHED_FLAG_ALL | SCHED_FLAG_SUGOV))
7407 return -EINVAL;
7408
7409 /*
7410 * Valid priorities for SCHED_FIFO and SCHED_RR are
7411 * 1..MAX_RT_PRIO-1, valid priority for SCHED_NORMAL,
7412 * SCHED_BATCH and SCHED_IDLE is 0.
7413 */
7414 if (attr->sched_priority > MAX_RT_PRIO-1)
7415 return -EINVAL;
7416 if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
7417 (rt_policy(policy) != (attr->sched_priority != 0)))
7418 return -EINVAL;
7419
7420 if (user) {
7421 retval = user_check_sched_setscheduler(p, attr, policy, reset_on_fork);
7422 if (retval)
7423 return retval;
7424
7425 if (attr->sched_flags & SCHED_FLAG_SUGOV)
7426 return -EINVAL;
7427
7428 retval = security_task_setscheduler(p);
7429 if (retval)
7430 return retval;
7431 }
7432
7433 /* Update task specific "requested" clamps */
7434 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) {
7435 retval = uclamp_validate(p, attr);
7436 if (retval)
7437 return retval;
7438 }
7439
7440 if (pi)
7441 cpuset_read_lock();
7442
7443 /*
7444 * Make sure no PI-waiters arrive (or leave) while we are
7445 * changing the priority of the task:
7446 *
7447 * To be able to change p->policy safely, the appropriate
7448 * runqueue lock must be held.
7449 */
7450 rq = task_rq_lock(p, &rf);
7451 update_rq_clock(rq);
7452
7453 /*
7454 * Changing the policy of the stop threads its a very bad idea:
7455 */
7456 if (p == rq->stop) {
7457 retval = -EINVAL;
7458 goto unlock;
7459 }
7460
7461 /*
7462 * If not changing anything there's no need to proceed further,
7463 * but store a possible modification of reset_on_fork.
7464 */
7465 if (unlikely(policy == p->policy)) {
7466 if (fair_policy(policy) && attr->sched_nice != task_nice(p))
7467 goto change;
7468 if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
7469 goto change;
7470 if (dl_policy(policy) && dl_param_changed(p, attr))
7471 goto change;
7472 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)
7473 goto change;
7474
7475 p->sched_reset_on_fork = reset_on_fork;
7476 retval = 0;
7477 goto unlock;
7478 }
7479 change:
7480
7481 if (user) {
7482 #ifdef CONFIG_RT_GROUP_SCHED
7483 /*
7484 * Do not allow realtime tasks into groups that have no runtime
7485 * assigned.
7486 */
7487 if (rt_bandwidth_enabled() && rt_policy(policy) &&
7488 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
7489 !task_group_is_autogroup(task_group(p))) {
7490 retval = -EPERM;
7491 goto unlock;
7492 }
7493 #endif
7494 #ifdef CONFIG_SMP
7495 if (dl_bandwidth_enabled() && dl_policy(policy) &&
7496 !(attr->sched_flags & SCHED_FLAG_SUGOV)) {
7497 cpumask_t *span = rq->rd->span;
7498
7499 /*
7500 * Don't allow tasks with an affinity mask smaller than
7501 * the entire root_domain to become SCHED_DEADLINE. We
7502 * will also fail if there's no bandwidth available.
7503 */
7504 if (!cpumask_subset(span, p->cpus_ptr) ||
7505 rq->rd->dl_bw.bw == 0) {
7506 retval = -EPERM;
7507 goto unlock;
7508 }
7509 }
7510 #endif
7511 }
7512
7513 /* Re-check policy now with rq lock held: */
7514 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
7515 policy = oldpolicy = -1;
7516 task_rq_unlock(rq, p, &rf);
7517 if (pi)
7518 cpuset_read_unlock();
7519 goto recheck;
7520 }
7521
7522 /*
7523 * If setscheduling to SCHED_DEADLINE (or changing the parameters
7524 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
7525 * is available.
7526 */
7527 if ((dl_policy(policy) || dl_task(p)) && sched_dl_overflow(p, policy, attr)) {
7528 retval = -EBUSY;
7529 goto unlock;
7530 }
7531
7532 p->sched_reset_on_fork = reset_on_fork;
7533 oldprio = p->prio;
7534
7535 newprio = __normal_prio(policy, attr->sched_priority, attr->sched_nice);
7536 if (pi) {
7537 /*
7538 * Take priority boosted tasks into account. If the new
7539 * effective priority is unchanged, we just store the new
7540 * normal parameters and do not touch the scheduler class and
7541 * the runqueue. This will be done when the task deboost
7542 * itself.
7543 */
7544 newprio = rt_effective_prio(p, newprio);
7545 if (newprio == oldprio)
7546 queue_flags &= ~DEQUEUE_MOVE;
7547 }
7548
7549 queued = task_on_rq_queued(p);
7550 running = task_current(rq, p);
7551 if (queued)
7552 dequeue_task(rq, p, queue_flags);
7553 if (running)
7554 put_prev_task(rq, p);
7555
7556 prev_class = p->sched_class;
7557
7558 if (!(attr->sched_flags & SCHED_FLAG_KEEP_PARAMS)) {
7559 __setscheduler_params(p, attr);
7560 __setscheduler_prio(p, newprio);
7561 }
7562 __setscheduler_uclamp(p, attr);
7563
7564 if (queued) {
7565 /*
7566 * We enqueue to tail when the priority of a task is
7567 * increased (user space view).
7568 */
7569 if (oldprio < p->prio)
7570 queue_flags |= ENQUEUE_HEAD;
7571
7572 enqueue_task(rq, p, queue_flags);
7573 }
7574 if (running)
7575 set_next_task(rq, p);
7576
7577 check_class_changed(rq, p, prev_class, oldprio);
7578
7579 /* Avoid rq from going away on us: */
7580 preempt_disable();
7581 head = splice_balance_callbacks(rq);
7582 task_rq_unlock(rq, p, &rf);
7583
7584 if (pi) {
7585 cpuset_read_unlock();
7586 rt_mutex_adjust_pi(p);
7587 }
7588
7589 /* Run balance callbacks after we've adjusted the PI chain: */
7590 balance_callbacks(rq, head);
7591 preempt_enable();
7592
7593 return 0;
7594
7595 unlock:
7596 task_rq_unlock(rq, p, &rf);
7597 if (pi)
7598 cpuset_read_unlock();
7599 return retval;
7600 }
7601
_sched_setscheduler(struct task_struct * p,int policy,const struct sched_param * param,bool check)7602 static int _sched_setscheduler(struct task_struct *p, int policy,
7603 const struct sched_param *param, bool check)
7604 {
7605 struct sched_attr attr = {
7606 .sched_policy = policy,
7607 .sched_priority = param->sched_priority,
7608 .sched_nice = PRIO_TO_NICE(p->static_prio),
7609 };
7610
7611 /* Fixup the legacy SCHED_RESET_ON_FORK hack. */
7612 if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
7613 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
7614 policy &= ~SCHED_RESET_ON_FORK;
7615 attr.sched_policy = policy;
7616 }
7617
7618 return __sched_setscheduler(p, &attr, check, true);
7619 }
7620 /**
7621 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
7622 * @p: the task in question.
7623 * @policy: new policy.
7624 * @param: structure containing the new RT priority.
7625 *
7626 * Use sched_set_fifo(), read its comment.
7627 *
7628 * Return: 0 on success. An error code otherwise.
7629 *
7630 * NOTE that the task may be already dead.
7631 */
sched_setscheduler(struct task_struct * p,int policy,const struct sched_param * param)7632 int sched_setscheduler(struct task_struct *p, int policy,
7633 const struct sched_param *param)
7634 {
7635 return _sched_setscheduler(p, policy, param, true);
7636 }
7637
sched_setattr(struct task_struct * p,const struct sched_attr * attr)7638 int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
7639 {
7640 return __sched_setscheduler(p, attr, true, true);
7641 }
7642
sched_setattr_nocheck(struct task_struct * p,const struct sched_attr * attr)7643 int sched_setattr_nocheck(struct task_struct *p, const struct sched_attr *attr)
7644 {
7645 return __sched_setscheduler(p, attr, false, true);
7646 }
7647 EXPORT_SYMBOL_GPL(sched_setattr_nocheck);
7648
7649 /**
7650 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
7651 * @p: the task in question.
7652 * @policy: new policy.
7653 * @param: structure containing the new RT priority.
7654 *
7655 * Just like sched_setscheduler, only don't bother checking if the
7656 * current context has permission. For example, this is needed in
7657 * stop_machine(): we create temporary high priority worker threads,
7658 * but our caller might not have that capability.
7659 *
7660 * Return: 0 on success. An error code otherwise.
7661 */
sched_setscheduler_nocheck(struct task_struct * p,int policy,const struct sched_param * param)7662 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
7663 const struct sched_param *param)
7664 {
7665 return _sched_setscheduler(p, policy, param, false);
7666 }
7667
7668 /*
7669 * SCHED_FIFO is a broken scheduler model; that is, it is fundamentally
7670 * incapable of resource management, which is the one thing an OS really should
7671 * be doing.
7672 *
7673 * This is of course the reason it is limited to privileged users only.
7674 *
7675 * Worse still; it is fundamentally impossible to compose static priority
7676 * workloads. You cannot take two correctly working static prio workloads
7677 * and smash them together and still expect them to work.
7678 *
7679 * For this reason 'all' FIFO tasks the kernel creates are basically at:
7680 *
7681 * MAX_RT_PRIO / 2
7682 *
7683 * The administrator _MUST_ configure the system, the kernel simply doesn't
7684 * know enough information to make a sensible choice.
7685 */
sched_set_fifo(struct task_struct * p)7686 void sched_set_fifo(struct task_struct *p)
7687 {
7688 struct sched_param sp = { .sched_priority = MAX_RT_PRIO / 2 };
7689 WARN_ON_ONCE(sched_setscheduler_nocheck(p, SCHED_FIFO, &sp) != 0);
7690 }
7691 EXPORT_SYMBOL_GPL(sched_set_fifo);
7692
7693 /*
7694 * For when you don't much care about FIFO, but want to be above SCHED_NORMAL.
7695 */
sched_set_fifo_low(struct task_struct * p)7696 void sched_set_fifo_low(struct task_struct *p)
7697 {
7698 struct sched_param sp = { .sched_priority = 1 };
7699 WARN_ON_ONCE(sched_setscheduler_nocheck(p, SCHED_FIFO, &sp) != 0);
7700 }
7701 EXPORT_SYMBOL_GPL(sched_set_fifo_low);
7702
sched_set_normal(struct task_struct * p,int nice)7703 void sched_set_normal(struct task_struct *p, int nice)
7704 {
7705 struct sched_attr attr = {
7706 .sched_policy = SCHED_NORMAL,
7707 .sched_nice = nice,
7708 };
7709 WARN_ON_ONCE(sched_setattr_nocheck(p, &attr) != 0);
7710 }
7711 EXPORT_SYMBOL_GPL(sched_set_normal);
7712
7713 static int
do_sched_setscheduler(pid_t pid,int policy,struct sched_param __user * param)7714 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
7715 {
7716 struct sched_param lparam;
7717 struct task_struct *p;
7718 int retval;
7719
7720 if (!param || pid < 0)
7721 return -EINVAL;
7722 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
7723 return -EFAULT;
7724
7725 rcu_read_lock();
7726 retval = -ESRCH;
7727 p = find_process_by_pid(pid);
7728 if (likely(p))
7729 get_task_struct(p);
7730 rcu_read_unlock();
7731
7732 if (likely(p)) {
7733 retval = sched_setscheduler(p, policy, &lparam);
7734 put_task_struct(p);
7735 }
7736
7737 return retval;
7738 }
7739
7740 /*
7741 * Mimics kernel/events/core.c perf_copy_attr().
7742 */
sched_copy_attr(struct sched_attr __user * uattr,struct sched_attr * attr)7743 static int sched_copy_attr(struct sched_attr __user *uattr, struct sched_attr *attr)
7744 {
7745 u32 size;
7746 int ret;
7747
7748 /* Zero the full structure, so that a short copy will be nice: */
7749 memset(attr, 0, sizeof(*attr));
7750
7751 ret = get_user(size, &uattr->size);
7752 if (ret)
7753 return ret;
7754
7755 /* ABI compatibility quirk: */
7756 if (!size)
7757 size = SCHED_ATTR_SIZE_VER0;
7758 if (size < SCHED_ATTR_SIZE_VER0 || size > PAGE_SIZE)
7759 goto err_size;
7760
7761 ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size);
7762 if (ret) {
7763 if (ret == -E2BIG)
7764 goto err_size;
7765 return ret;
7766 }
7767
7768 if ((attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) &&
7769 size < SCHED_ATTR_SIZE_VER1)
7770 return -EINVAL;
7771
7772 /*
7773 * XXX: Do we want to be lenient like existing syscalls; or do we want
7774 * to be strict and return an error on out-of-bounds values?
7775 */
7776 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
7777
7778 return 0;
7779
7780 err_size:
7781 put_user(sizeof(*attr), &uattr->size);
7782 return -E2BIG;
7783 }
7784
get_params(struct task_struct * p,struct sched_attr * attr)7785 static void get_params(struct task_struct *p, struct sched_attr *attr)
7786 {
7787 if (task_has_dl_policy(p))
7788 __getparam_dl(p, attr);
7789 else if (task_has_rt_policy(p))
7790 attr->sched_priority = p->rt_priority;
7791 else
7792 attr->sched_nice = task_nice(p);
7793 }
7794
7795 /**
7796 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
7797 * @pid: the pid in question.
7798 * @policy: new policy.
7799 * @param: structure containing the new RT priority.
7800 *
7801 * Return: 0 on success. An error code otherwise.
7802 */
SYSCALL_DEFINE3(sched_setscheduler,pid_t,pid,int,policy,struct sched_param __user *,param)7803 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, struct sched_param __user *, param)
7804 {
7805 if (policy < 0)
7806 return -EINVAL;
7807
7808 return do_sched_setscheduler(pid, policy, param);
7809 }
7810
7811 /**
7812 * sys_sched_setparam - set/change the RT priority of a thread
7813 * @pid: the pid in question.
7814 * @param: structure containing the new RT priority.
7815 *
7816 * Return: 0 on success. An error code otherwise.
7817 */
SYSCALL_DEFINE2(sched_setparam,pid_t,pid,struct sched_param __user *,param)7818 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
7819 {
7820 return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
7821 }
7822
7823 /**
7824 * sys_sched_setattr - same as above, but with extended sched_attr
7825 * @pid: the pid in question.
7826 * @uattr: structure containing the extended parameters.
7827 * @flags: for future extension.
7828 */
SYSCALL_DEFINE3(sched_setattr,pid_t,pid,struct sched_attr __user *,uattr,unsigned int,flags)7829 SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
7830 unsigned int, flags)
7831 {
7832 struct sched_attr attr;
7833 struct task_struct *p;
7834 int retval;
7835
7836 if (!uattr || pid < 0 || flags)
7837 return -EINVAL;
7838
7839 retval = sched_copy_attr(uattr, &attr);
7840 if (retval)
7841 return retval;
7842
7843 if ((int)attr.sched_policy < 0)
7844 return -EINVAL;
7845 if (attr.sched_flags & SCHED_FLAG_KEEP_POLICY)
7846 attr.sched_policy = SETPARAM_POLICY;
7847
7848 rcu_read_lock();
7849 retval = -ESRCH;
7850 p = find_process_by_pid(pid);
7851 if (likely(p))
7852 get_task_struct(p);
7853 rcu_read_unlock();
7854
7855 if (likely(p)) {
7856 if (attr.sched_flags & SCHED_FLAG_KEEP_PARAMS)
7857 get_params(p, &attr);
7858 retval = sched_setattr(p, &attr);
7859 put_task_struct(p);
7860 }
7861
7862 return retval;
7863 }
7864
7865 /**
7866 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
7867 * @pid: the pid in question.
7868 *
7869 * Return: On success, the policy of the thread. Otherwise, a negative error
7870 * code.
7871 */
SYSCALL_DEFINE1(sched_getscheduler,pid_t,pid)7872 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
7873 {
7874 struct task_struct *p;
7875 int retval;
7876
7877 if (pid < 0)
7878 return -EINVAL;
7879
7880 retval = -ESRCH;
7881 rcu_read_lock();
7882 p = find_process_by_pid(pid);
7883 if (p) {
7884 retval = security_task_getscheduler(p);
7885 if (!retval)
7886 retval = p->policy
7887 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
7888 }
7889 rcu_read_unlock();
7890 return retval;
7891 }
7892
7893 /**
7894 * sys_sched_getparam - get the RT priority of a thread
7895 * @pid: the pid in question.
7896 * @param: structure containing the RT priority.
7897 *
7898 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
7899 * code.
7900 */
SYSCALL_DEFINE2(sched_getparam,pid_t,pid,struct sched_param __user *,param)7901 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
7902 {
7903 struct sched_param lp = { .sched_priority = 0 };
7904 struct task_struct *p;
7905 int retval;
7906
7907 if (!param || pid < 0)
7908 return -EINVAL;
7909
7910 rcu_read_lock();
7911 p = find_process_by_pid(pid);
7912 retval = -ESRCH;
7913 if (!p)
7914 goto out_unlock;
7915
7916 retval = security_task_getscheduler(p);
7917 if (retval)
7918 goto out_unlock;
7919
7920 if (task_has_rt_policy(p))
7921 lp.sched_priority = p->rt_priority;
7922 rcu_read_unlock();
7923
7924 /*
7925 * This one might sleep, we cannot do it with a spinlock held ...
7926 */
7927 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
7928
7929 return retval;
7930
7931 out_unlock:
7932 rcu_read_unlock();
7933 return retval;
7934 }
7935
7936 /*
7937 * Copy the kernel size attribute structure (which might be larger
7938 * than what user-space knows about) to user-space.
7939 *
7940 * Note that all cases are valid: user-space buffer can be larger or
7941 * smaller than the kernel-space buffer. The usual case is that both
7942 * have the same size.
7943 */
7944 static int
sched_attr_copy_to_user(struct sched_attr __user * uattr,struct sched_attr * kattr,unsigned int usize)7945 sched_attr_copy_to_user(struct sched_attr __user *uattr,
7946 struct sched_attr *kattr,
7947 unsigned int usize)
7948 {
7949 unsigned int ksize = sizeof(*kattr);
7950
7951 if (!access_ok(uattr, usize))
7952 return -EFAULT;
7953
7954 /*
7955 * sched_getattr() ABI forwards and backwards compatibility:
7956 *
7957 * If usize == ksize then we just copy everything to user-space and all is good.
7958 *
7959 * If usize < ksize then we only copy as much as user-space has space for,
7960 * this keeps ABI compatibility as well. We skip the rest.
7961 *
7962 * If usize > ksize then user-space is using a newer version of the ABI,
7963 * which part the kernel doesn't know about. Just ignore it - tooling can
7964 * detect the kernel's knowledge of attributes from the attr->size value
7965 * which is set to ksize in this case.
7966 */
7967 kattr->size = min(usize, ksize);
7968
7969 if (copy_to_user(uattr, kattr, kattr->size))
7970 return -EFAULT;
7971
7972 return 0;
7973 }
7974
7975 /**
7976 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
7977 * @pid: the pid in question.
7978 * @uattr: structure containing the extended parameters.
7979 * @usize: sizeof(attr) for fwd/bwd comp.
7980 * @flags: for future extension.
7981 */
SYSCALL_DEFINE4(sched_getattr,pid_t,pid,struct sched_attr __user *,uattr,unsigned int,usize,unsigned int,flags)7982 SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
7983 unsigned int, usize, unsigned int, flags)
7984 {
7985 struct sched_attr kattr = { };
7986 struct task_struct *p;
7987 int retval;
7988
7989 if (!uattr || pid < 0 || usize > PAGE_SIZE ||
7990 usize < SCHED_ATTR_SIZE_VER0 || flags)
7991 return -EINVAL;
7992
7993 rcu_read_lock();
7994 p = find_process_by_pid(pid);
7995 retval = -ESRCH;
7996 if (!p)
7997 goto out_unlock;
7998
7999 retval = security_task_getscheduler(p);
8000 if (retval)
8001 goto out_unlock;
8002
8003 kattr.sched_policy = p->policy;
8004 if (p->sched_reset_on_fork)
8005 kattr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
8006 get_params(p, &kattr);
8007 kattr.sched_flags &= SCHED_FLAG_ALL;
8008
8009 #ifdef CONFIG_UCLAMP_TASK
8010 /*
8011 * This could race with another potential updater, but this is fine
8012 * because it'll correctly read the old or the new value. We don't need
8013 * to guarantee who wins the race as long as it doesn't return garbage.
8014 */
8015 kattr.sched_util_min = p->uclamp_req[UCLAMP_MIN].value;
8016 kattr.sched_util_max = p->uclamp_req[UCLAMP_MAX].value;
8017 #endif
8018
8019 rcu_read_unlock();
8020
8021 return sched_attr_copy_to_user(uattr, &kattr, usize);
8022
8023 out_unlock:
8024 rcu_read_unlock();
8025 return retval;
8026 }
8027
8028 #ifdef CONFIG_SMP
dl_task_check_affinity(struct task_struct * p,const struct cpumask * mask)8029 int dl_task_check_affinity(struct task_struct *p, const struct cpumask *mask)
8030 {
8031 int ret = 0;
8032
8033 /*
8034 * If the task isn't a deadline task or admission control is
8035 * disabled then we don't care about affinity changes.
8036 */
8037 if (!task_has_dl_policy(p) || !dl_bandwidth_enabled())
8038 return 0;
8039
8040 /*
8041 * Since bandwidth control happens on root_domain basis,
8042 * if admission test is enabled, we only admit -deadline
8043 * tasks allowed to run on all the CPUs in the task's
8044 * root_domain.
8045 */
8046 rcu_read_lock();
8047 if (!cpumask_subset(task_rq(p)->rd->span, mask))
8048 ret = -EBUSY;
8049 rcu_read_unlock();
8050 return ret;
8051 }
8052 #endif
8053
8054 static int
__sched_setaffinity(struct task_struct * p,const struct cpumask * mask)8055 __sched_setaffinity(struct task_struct *p, const struct cpumask *mask)
8056 {
8057 int retval;
8058 cpumask_var_t cpus_allowed, new_mask;
8059
8060 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL))
8061 return -ENOMEM;
8062
8063 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
8064 retval = -ENOMEM;
8065 goto out_free_cpus_allowed;
8066 }
8067
8068 cpuset_cpus_allowed(p, cpus_allowed);
8069 cpumask_and(new_mask, mask, cpus_allowed);
8070
8071 retval = dl_task_check_affinity(p, new_mask);
8072 if (retval)
8073 goto out_free_new_mask;
8074 again:
8075 retval = __set_cpus_allowed_ptr(p, new_mask, SCA_CHECK | SCA_USER);
8076 if (retval)
8077 goto out_free_new_mask;
8078
8079 cpuset_cpus_allowed(p, cpus_allowed);
8080 if (!cpumask_subset(new_mask, cpus_allowed)) {
8081 /*
8082 * We must have raced with a concurrent cpuset update.
8083 * Just reset the cpumask to the cpuset's cpus_allowed.
8084 */
8085 cpumask_copy(new_mask, cpus_allowed);
8086 goto again;
8087 }
8088
8089 out_free_new_mask:
8090 free_cpumask_var(new_mask);
8091 out_free_cpus_allowed:
8092 free_cpumask_var(cpus_allowed);
8093 return retval;
8094 }
8095
sched_setaffinity(pid_t pid,const struct cpumask * in_mask)8096 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
8097 {
8098 struct task_struct *p;
8099 int retval;
8100
8101 rcu_read_lock();
8102
8103 p = find_process_by_pid(pid);
8104 if (!p) {
8105 rcu_read_unlock();
8106 return -ESRCH;
8107 }
8108
8109 /* Prevent p going away */
8110 get_task_struct(p);
8111 rcu_read_unlock();
8112
8113 if (p->flags & PF_NO_SETAFFINITY) {
8114 retval = -EINVAL;
8115 goto out_put_task;
8116 }
8117
8118 if (!check_same_owner(p)) {
8119 rcu_read_lock();
8120 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
8121 rcu_read_unlock();
8122 retval = -EPERM;
8123 goto out_put_task;
8124 }
8125 rcu_read_unlock();
8126 }
8127
8128 retval = security_task_setscheduler(p);
8129 if (retval)
8130 goto out_put_task;
8131
8132 retval = __sched_setaffinity(p, in_mask);
8133 out_put_task:
8134 put_task_struct(p);
8135 return retval;
8136 }
8137
get_user_cpu_mask(unsigned long __user * user_mask_ptr,unsigned len,struct cpumask * new_mask)8138 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
8139 struct cpumask *new_mask)
8140 {
8141 if (len < cpumask_size())
8142 cpumask_clear(new_mask);
8143 else if (len > cpumask_size())
8144 len = cpumask_size();
8145
8146 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
8147 }
8148
8149 /**
8150 * sys_sched_setaffinity - set the CPU affinity of a process
8151 * @pid: pid of the process
8152 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
8153 * @user_mask_ptr: user-space pointer to the new CPU mask
8154 *
8155 * Return: 0 on success. An error code otherwise.
8156 */
SYSCALL_DEFINE3(sched_setaffinity,pid_t,pid,unsigned int,len,unsigned long __user *,user_mask_ptr)8157 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
8158 unsigned long __user *, user_mask_ptr)
8159 {
8160 cpumask_var_t new_mask;
8161 int retval;
8162
8163 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
8164 return -ENOMEM;
8165
8166 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
8167 if (retval == 0)
8168 retval = sched_setaffinity(pid, new_mask);
8169 free_cpumask_var(new_mask);
8170 return retval;
8171 }
8172
sched_getaffinity(pid_t pid,struct cpumask * mask)8173 long sched_getaffinity(pid_t pid, struct cpumask *mask)
8174 {
8175 struct task_struct *p;
8176 unsigned long flags;
8177 int retval;
8178
8179 rcu_read_lock();
8180
8181 retval = -ESRCH;
8182 p = find_process_by_pid(pid);
8183 if (!p)
8184 goto out_unlock;
8185
8186 retval = security_task_getscheduler(p);
8187 if (retval)
8188 goto out_unlock;
8189
8190 raw_spin_lock_irqsave(&p->pi_lock, flags);
8191 cpumask_and(mask, &p->cpus_mask, cpu_active_mask);
8192 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
8193
8194 out_unlock:
8195 rcu_read_unlock();
8196
8197 return retval;
8198 }
8199
8200 /**
8201 * sys_sched_getaffinity - get the CPU affinity of a process
8202 * @pid: pid of the process
8203 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
8204 * @user_mask_ptr: user-space pointer to hold the current CPU mask
8205 *
8206 * Return: size of CPU mask copied to user_mask_ptr on success. An
8207 * error code otherwise.
8208 */
SYSCALL_DEFINE3(sched_getaffinity,pid_t,pid,unsigned int,len,unsigned long __user *,user_mask_ptr)8209 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
8210 unsigned long __user *, user_mask_ptr)
8211 {
8212 int ret;
8213 cpumask_var_t mask;
8214
8215 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
8216 return -EINVAL;
8217 if (len & (sizeof(unsigned long)-1))
8218 return -EINVAL;
8219
8220 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
8221 return -ENOMEM;
8222
8223 ret = sched_getaffinity(pid, mask);
8224 if (ret == 0) {
8225 unsigned int retlen = min(len, cpumask_size());
8226
8227 if (copy_to_user(user_mask_ptr, mask, retlen))
8228 ret = -EFAULT;
8229 else
8230 ret = retlen;
8231 }
8232 free_cpumask_var(mask);
8233
8234 return ret;
8235 }
8236
do_sched_yield(void)8237 static void do_sched_yield(void)
8238 {
8239 struct rq_flags rf;
8240 struct rq *rq;
8241
8242 rq = this_rq_lock_irq(&rf);
8243
8244 schedstat_inc(rq->yld_count);
8245 current->sched_class->yield_task(rq);
8246
8247 preempt_disable();
8248 rq_unlock_irq(rq, &rf);
8249 sched_preempt_enable_no_resched();
8250
8251 schedule();
8252 }
8253
8254 /**
8255 * sys_sched_yield - yield the current processor to other threads.
8256 *
8257 * This function yields the current CPU to other tasks. If there are no
8258 * other threads running on this CPU then this function will return.
8259 *
8260 * Return: 0.
8261 */
SYSCALL_DEFINE0(sched_yield)8262 SYSCALL_DEFINE0(sched_yield)
8263 {
8264 do_sched_yield();
8265 return 0;
8266 }
8267
8268 #if !defined(CONFIG_PREEMPTION) || defined(CONFIG_PREEMPT_DYNAMIC)
__cond_resched(void)8269 int __sched __cond_resched(void)
8270 {
8271 if (should_resched(0)) {
8272 preempt_schedule_common();
8273 return 1;
8274 }
8275 /*
8276 * In preemptible kernels, ->rcu_read_lock_nesting tells the tick
8277 * whether the current CPU is in an RCU read-side critical section,
8278 * so the tick can report quiescent states even for CPUs looping
8279 * in kernel context. In contrast, in non-preemptible kernels,
8280 * RCU readers leave no in-memory hints, which means that CPU-bound
8281 * processes executing in kernel context might never report an
8282 * RCU quiescent state. Therefore, the following code causes
8283 * cond_resched() to report a quiescent state, but only when RCU
8284 * is in urgent need of one.
8285 */
8286 #ifndef CONFIG_PREEMPT_RCU
8287 rcu_all_qs();
8288 #endif
8289 return 0;
8290 }
8291 EXPORT_SYMBOL(__cond_resched);
8292 #endif
8293
8294 #ifdef CONFIG_PREEMPT_DYNAMIC
8295 #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
8296 #define cond_resched_dynamic_enabled __cond_resched
8297 #define cond_resched_dynamic_disabled ((void *)&__static_call_return0)
8298 DEFINE_STATIC_CALL_RET0(cond_resched, __cond_resched);
8299 EXPORT_STATIC_CALL_TRAMP(cond_resched);
8300
8301 #define might_resched_dynamic_enabled __cond_resched
8302 #define might_resched_dynamic_disabled ((void *)&__static_call_return0)
8303 DEFINE_STATIC_CALL_RET0(might_resched, __cond_resched);
8304 EXPORT_STATIC_CALL_TRAMP(might_resched);
8305 #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
8306 static DEFINE_STATIC_KEY_FALSE(sk_dynamic_cond_resched);
dynamic_cond_resched(void)8307 int __sched dynamic_cond_resched(void)
8308 {
8309 if (!static_branch_unlikely(&sk_dynamic_cond_resched))
8310 return 0;
8311 return __cond_resched();
8312 }
8313 EXPORT_SYMBOL(dynamic_cond_resched);
8314
8315 static DEFINE_STATIC_KEY_FALSE(sk_dynamic_might_resched);
dynamic_might_resched(void)8316 int __sched dynamic_might_resched(void)
8317 {
8318 if (!static_branch_unlikely(&sk_dynamic_might_resched))
8319 return 0;
8320 return __cond_resched();
8321 }
8322 EXPORT_SYMBOL(dynamic_might_resched);
8323 #endif
8324 #endif
8325
8326 /*
8327 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
8328 * call schedule, and on return reacquire the lock.
8329 *
8330 * This works OK both with and without CONFIG_PREEMPTION. We do strange low-level
8331 * operations here to prevent schedule() from being called twice (once via
8332 * spin_unlock(), once by hand).
8333 */
__cond_resched_lock(spinlock_t * lock)8334 int __cond_resched_lock(spinlock_t *lock)
8335 {
8336 int resched = should_resched(PREEMPT_LOCK_OFFSET);
8337 int ret = 0;
8338
8339 lockdep_assert_held(lock);
8340
8341 if (spin_needbreak(lock) || resched) {
8342 spin_unlock(lock);
8343 if (!_cond_resched())
8344 cpu_relax();
8345 ret = 1;
8346 spin_lock(lock);
8347 }
8348 return ret;
8349 }
8350 EXPORT_SYMBOL(__cond_resched_lock);
8351
__cond_resched_rwlock_read(rwlock_t * lock)8352 int __cond_resched_rwlock_read(rwlock_t *lock)
8353 {
8354 int resched = should_resched(PREEMPT_LOCK_OFFSET);
8355 int ret = 0;
8356
8357 lockdep_assert_held_read(lock);
8358
8359 if (rwlock_needbreak(lock) || resched) {
8360 read_unlock(lock);
8361 if (!_cond_resched())
8362 cpu_relax();
8363 ret = 1;
8364 read_lock(lock);
8365 }
8366 return ret;
8367 }
8368 EXPORT_SYMBOL(__cond_resched_rwlock_read);
8369
__cond_resched_rwlock_write(rwlock_t * lock)8370 int __cond_resched_rwlock_write(rwlock_t *lock)
8371 {
8372 int resched = should_resched(PREEMPT_LOCK_OFFSET);
8373 int ret = 0;
8374
8375 lockdep_assert_held_write(lock);
8376
8377 if (rwlock_needbreak(lock) || resched) {
8378 write_unlock(lock);
8379 if (!_cond_resched())
8380 cpu_relax();
8381 ret = 1;
8382 write_lock(lock);
8383 }
8384 return ret;
8385 }
8386 EXPORT_SYMBOL(__cond_resched_rwlock_write);
8387
8388 #ifdef CONFIG_PREEMPT_DYNAMIC
8389
8390 #ifdef CONFIG_GENERIC_ENTRY
8391 #include <linux/entry-common.h>
8392 #endif
8393
8394 /*
8395 * SC:cond_resched
8396 * SC:might_resched
8397 * SC:preempt_schedule
8398 * SC:preempt_schedule_notrace
8399 * SC:irqentry_exit_cond_resched
8400 *
8401 *
8402 * NONE:
8403 * cond_resched <- __cond_resched
8404 * might_resched <- RET0
8405 * preempt_schedule <- NOP
8406 * preempt_schedule_notrace <- NOP
8407 * irqentry_exit_cond_resched <- NOP
8408 *
8409 * VOLUNTARY:
8410 * cond_resched <- __cond_resched
8411 * might_resched <- __cond_resched
8412 * preempt_schedule <- NOP
8413 * preempt_schedule_notrace <- NOP
8414 * irqentry_exit_cond_resched <- NOP
8415 *
8416 * FULL:
8417 * cond_resched <- RET0
8418 * might_resched <- RET0
8419 * preempt_schedule <- preempt_schedule
8420 * preempt_schedule_notrace <- preempt_schedule_notrace
8421 * irqentry_exit_cond_resched <- irqentry_exit_cond_resched
8422 */
8423
8424 enum {
8425 preempt_dynamic_undefined = -1,
8426 preempt_dynamic_none,
8427 preempt_dynamic_voluntary,
8428 preempt_dynamic_full,
8429 };
8430
8431 int preempt_dynamic_mode = preempt_dynamic_undefined;
8432
sched_dynamic_mode(const char * str)8433 int sched_dynamic_mode(const char *str)
8434 {
8435 if (!strcmp(str, "none"))
8436 return preempt_dynamic_none;
8437
8438 if (!strcmp(str, "voluntary"))
8439 return preempt_dynamic_voluntary;
8440
8441 if (!strcmp(str, "full"))
8442 return preempt_dynamic_full;
8443
8444 return -EINVAL;
8445 }
8446
8447 #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
8448 #define preempt_dynamic_enable(f) static_call_update(f, f##_dynamic_enabled)
8449 #define preempt_dynamic_disable(f) static_call_update(f, f##_dynamic_disabled)
8450 #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
8451 #define preempt_dynamic_enable(f) static_key_enable(&sk_dynamic_##f.key)
8452 #define preempt_dynamic_disable(f) static_key_disable(&sk_dynamic_##f.key)
8453 #else
8454 #error "Unsupported PREEMPT_DYNAMIC mechanism"
8455 #endif
8456
sched_dynamic_update(int mode)8457 void sched_dynamic_update(int mode)
8458 {
8459 /*
8460 * Avoid {NONE,VOLUNTARY} -> FULL transitions from ever ending up in
8461 * the ZERO state, which is invalid.
8462 */
8463 preempt_dynamic_enable(cond_resched);
8464 preempt_dynamic_enable(might_resched);
8465 preempt_dynamic_enable(preempt_schedule);
8466 preempt_dynamic_enable(preempt_schedule_notrace);
8467 preempt_dynamic_enable(irqentry_exit_cond_resched);
8468
8469 switch (mode) {
8470 case preempt_dynamic_none:
8471 preempt_dynamic_enable(cond_resched);
8472 preempt_dynamic_disable(might_resched);
8473 preempt_dynamic_disable(preempt_schedule);
8474 preempt_dynamic_disable(preempt_schedule_notrace);
8475 preempt_dynamic_disable(irqentry_exit_cond_resched);
8476 pr_info("Dynamic Preempt: none\n");
8477 break;
8478
8479 case preempt_dynamic_voluntary:
8480 preempt_dynamic_enable(cond_resched);
8481 preempt_dynamic_enable(might_resched);
8482 preempt_dynamic_disable(preempt_schedule);
8483 preempt_dynamic_disable(preempt_schedule_notrace);
8484 preempt_dynamic_disable(irqentry_exit_cond_resched);
8485 pr_info("Dynamic Preempt: voluntary\n");
8486 break;
8487
8488 case preempt_dynamic_full:
8489 preempt_dynamic_disable(cond_resched);
8490 preempt_dynamic_disable(might_resched);
8491 preempt_dynamic_enable(preempt_schedule);
8492 preempt_dynamic_enable(preempt_schedule_notrace);
8493 preempt_dynamic_enable(irqentry_exit_cond_resched);
8494 pr_info("Dynamic Preempt: full\n");
8495 break;
8496 }
8497
8498 preempt_dynamic_mode = mode;
8499 }
8500
setup_preempt_mode(char * str)8501 static int __init setup_preempt_mode(char *str)
8502 {
8503 int mode = sched_dynamic_mode(str);
8504 if (mode < 0) {
8505 pr_warn("Dynamic Preempt: unsupported mode: %s\n", str);
8506 return 0;
8507 }
8508
8509 sched_dynamic_update(mode);
8510 return 1;
8511 }
8512 __setup("preempt=", setup_preempt_mode);
8513
preempt_dynamic_init(void)8514 static void __init preempt_dynamic_init(void)
8515 {
8516 if (preempt_dynamic_mode == preempt_dynamic_undefined) {
8517 if (IS_ENABLED(CONFIG_PREEMPT_NONE)) {
8518 sched_dynamic_update(preempt_dynamic_none);
8519 } else if (IS_ENABLED(CONFIG_PREEMPT_VOLUNTARY)) {
8520 sched_dynamic_update(preempt_dynamic_voluntary);
8521 } else {
8522 /* Default static call setting, nothing to do */
8523 WARN_ON_ONCE(!IS_ENABLED(CONFIG_PREEMPT));
8524 preempt_dynamic_mode = preempt_dynamic_full;
8525 pr_info("Dynamic Preempt: full\n");
8526 }
8527 }
8528 }
8529
8530 #define PREEMPT_MODEL_ACCESSOR(mode) \
8531 bool preempt_model_##mode(void) \
8532 { \
8533 WARN_ON_ONCE(preempt_dynamic_mode == preempt_dynamic_undefined); \
8534 return preempt_dynamic_mode == preempt_dynamic_##mode; \
8535 } \
8536 EXPORT_SYMBOL_GPL(preempt_model_##mode)
8537
8538 PREEMPT_MODEL_ACCESSOR(none);
8539 PREEMPT_MODEL_ACCESSOR(voluntary);
8540 PREEMPT_MODEL_ACCESSOR(full);
8541
8542 #else /* !CONFIG_PREEMPT_DYNAMIC */
8543
preempt_dynamic_init(void)8544 static inline void preempt_dynamic_init(void) { }
8545
8546 #endif /* #ifdef CONFIG_PREEMPT_DYNAMIC */
8547
8548 /**
8549 * yield - yield the current processor to other threads.
8550 *
8551 * Do not ever use this function, there's a 99% chance you're doing it wrong.
8552 *
8553 * The scheduler is at all times free to pick the calling task as the most
8554 * eligible task to run, if removing the yield() call from your code breaks
8555 * it, it's already broken.
8556 *
8557 * Typical broken usage is:
8558 *
8559 * while (!event)
8560 * yield();
8561 *
8562 * where one assumes that yield() will let 'the other' process run that will
8563 * make event true. If the current task is a SCHED_FIFO task that will never
8564 * happen. Never use yield() as a progress guarantee!!
8565 *
8566 * If you want to use yield() to wait for something, use wait_event().
8567 * If you want to use yield() to be 'nice' for others, use cond_resched().
8568 * If you still want to use yield(), do not!
8569 */
yield(void)8570 void __sched yield(void)
8571 {
8572 set_current_state(TASK_RUNNING);
8573 do_sched_yield();
8574 }
8575 EXPORT_SYMBOL(yield);
8576
8577 /**
8578 * yield_to - yield the current processor to another thread in
8579 * your thread group, or accelerate that thread toward the
8580 * processor it's on.
8581 * @p: target task
8582 * @preempt: whether task preemption is allowed or not
8583 *
8584 * It's the caller's job to ensure that the target task struct
8585 * can't go away on us before we can do any checks.
8586 *
8587 * Return:
8588 * true (>0) if we indeed boosted the target task.
8589 * false (0) if we failed to boost the target.
8590 * -ESRCH if there's no task to yield to.
8591 */
yield_to(struct task_struct * p,bool preempt)8592 int __sched yield_to(struct task_struct *p, bool preempt)
8593 {
8594 struct task_struct *curr = current;
8595 struct rq *rq, *p_rq;
8596 unsigned long flags;
8597 int yielded = 0;
8598
8599 local_irq_save(flags);
8600 rq = this_rq();
8601
8602 again:
8603 p_rq = task_rq(p);
8604 /*
8605 * If we're the only runnable task on the rq and target rq also
8606 * has only one task, there's absolutely no point in yielding.
8607 */
8608 if (rq->nr_running == 1 && p_rq->nr_running == 1) {
8609 yielded = -ESRCH;
8610 goto out_irq;
8611 }
8612
8613 double_rq_lock(rq, p_rq);
8614 if (task_rq(p) != p_rq) {
8615 double_rq_unlock(rq, p_rq);
8616 goto again;
8617 }
8618
8619 if (!curr->sched_class->yield_to_task)
8620 goto out_unlock;
8621
8622 if (curr->sched_class != p->sched_class)
8623 goto out_unlock;
8624
8625 if (task_running(p_rq, p) || !task_is_running(p))
8626 goto out_unlock;
8627
8628 yielded = curr->sched_class->yield_to_task(rq, p);
8629 if (yielded) {
8630 schedstat_inc(rq->yld_count);
8631 /*
8632 * Make p's CPU reschedule; pick_next_entity takes care of
8633 * fairness.
8634 */
8635 if (preempt && rq != p_rq)
8636 resched_curr(p_rq);
8637 }
8638
8639 out_unlock:
8640 double_rq_unlock(rq, p_rq);
8641 out_irq:
8642 local_irq_restore(flags);
8643
8644 if (yielded > 0)
8645 schedule();
8646
8647 return yielded;
8648 }
8649 EXPORT_SYMBOL_GPL(yield_to);
8650
io_schedule_prepare(void)8651 int io_schedule_prepare(void)
8652 {
8653 int old_iowait = current->in_iowait;
8654
8655 current->in_iowait = 1;
8656 blk_flush_plug(current->plug, true);
8657 return old_iowait;
8658 }
8659
io_schedule_finish(int token)8660 void io_schedule_finish(int token)
8661 {
8662 current->in_iowait = token;
8663 }
8664
8665 /*
8666 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
8667 * that process accounting knows that this is a task in IO wait state.
8668 */
io_schedule_timeout(long timeout)8669 long __sched io_schedule_timeout(long timeout)
8670 {
8671 int token;
8672 long ret;
8673
8674 token = io_schedule_prepare();
8675 ret = schedule_timeout(timeout);
8676 io_schedule_finish(token);
8677
8678 return ret;
8679 }
8680 EXPORT_SYMBOL(io_schedule_timeout);
8681
io_schedule(void)8682 void __sched io_schedule(void)
8683 {
8684 int token;
8685
8686 token = io_schedule_prepare();
8687 schedule();
8688 io_schedule_finish(token);
8689 }
8690 EXPORT_SYMBOL(io_schedule);
8691
8692 /**
8693 * sys_sched_get_priority_max - return maximum RT priority.
8694 * @policy: scheduling class.
8695 *
8696 * Return: On success, this syscall returns the maximum
8697 * rt_priority that can be used by a given scheduling class.
8698 * On failure, a negative error code is returned.
8699 */
SYSCALL_DEFINE1(sched_get_priority_max,int,policy)8700 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
8701 {
8702 int ret = -EINVAL;
8703
8704 switch (policy) {
8705 case SCHED_FIFO:
8706 case SCHED_RR:
8707 ret = MAX_RT_PRIO-1;
8708 break;
8709 case SCHED_DEADLINE:
8710 case SCHED_NORMAL:
8711 case SCHED_BATCH:
8712 case SCHED_IDLE:
8713 ret = 0;
8714 break;
8715 }
8716 return ret;
8717 }
8718
8719 /**
8720 * sys_sched_get_priority_min - return minimum RT priority.
8721 * @policy: scheduling class.
8722 *
8723 * Return: On success, this syscall returns the minimum
8724 * rt_priority that can be used by a given scheduling class.
8725 * On failure, a negative error code is returned.
8726 */
SYSCALL_DEFINE1(sched_get_priority_min,int,policy)8727 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
8728 {
8729 int ret = -EINVAL;
8730
8731 switch (policy) {
8732 case SCHED_FIFO:
8733 case SCHED_RR:
8734 ret = 1;
8735 break;
8736 case SCHED_DEADLINE:
8737 case SCHED_NORMAL:
8738 case SCHED_BATCH:
8739 case SCHED_IDLE:
8740 ret = 0;
8741 }
8742 return ret;
8743 }
8744
sched_rr_get_interval(pid_t pid,struct timespec64 * t)8745 static int sched_rr_get_interval(pid_t pid, struct timespec64 *t)
8746 {
8747 struct task_struct *p;
8748 unsigned int time_slice;
8749 struct rq_flags rf;
8750 struct rq *rq;
8751 int retval;
8752
8753 if (pid < 0)
8754 return -EINVAL;
8755
8756 retval = -ESRCH;
8757 rcu_read_lock();
8758 p = find_process_by_pid(pid);
8759 if (!p)
8760 goto out_unlock;
8761
8762 retval = security_task_getscheduler(p);
8763 if (retval)
8764 goto out_unlock;
8765
8766 rq = task_rq_lock(p, &rf);
8767 time_slice = 0;
8768 if (p->sched_class->get_rr_interval)
8769 time_slice = p->sched_class->get_rr_interval(rq, p);
8770 task_rq_unlock(rq, p, &rf);
8771
8772 rcu_read_unlock();
8773 jiffies_to_timespec64(time_slice, t);
8774 return 0;
8775
8776 out_unlock:
8777 rcu_read_unlock();
8778 return retval;
8779 }
8780
8781 /**
8782 * sys_sched_rr_get_interval - return the default timeslice of a process.
8783 * @pid: pid of the process.
8784 * @interval: userspace pointer to the timeslice value.
8785 *
8786 * this syscall writes the default timeslice value of a given process
8787 * into the user-space timespec buffer. A value of '0' means infinity.
8788 *
8789 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
8790 * an error code.
8791 */
SYSCALL_DEFINE2(sched_rr_get_interval,pid_t,pid,struct __kernel_timespec __user *,interval)8792 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
8793 struct __kernel_timespec __user *, interval)
8794 {
8795 struct timespec64 t;
8796 int retval = sched_rr_get_interval(pid, &t);
8797
8798 if (retval == 0)
8799 retval = put_timespec64(&t, interval);
8800
8801 return retval;
8802 }
8803
8804 #ifdef CONFIG_COMPAT_32BIT_TIME
SYSCALL_DEFINE2(sched_rr_get_interval_time32,pid_t,pid,struct old_timespec32 __user *,interval)8805 SYSCALL_DEFINE2(sched_rr_get_interval_time32, pid_t, pid,
8806 struct old_timespec32 __user *, interval)
8807 {
8808 struct timespec64 t;
8809 int retval = sched_rr_get_interval(pid, &t);
8810
8811 if (retval == 0)
8812 retval = put_old_timespec32(&t, interval);
8813 return retval;
8814 }
8815 #endif
8816
sched_show_task(struct task_struct * p)8817 void sched_show_task(struct task_struct *p)
8818 {
8819 unsigned long free = 0;
8820 int ppid;
8821
8822 if (!try_get_task_stack(p))
8823 return;
8824
8825 pr_info("task:%-15.15s state:%c", p->comm, task_state_to_char(p));
8826
8827 if (task_is_running(p))
8828 pr_cont(" running task ");
8829 #ifdef CONFIG_DEBUG_STACK_USAGE
8830 free = stack_not_used(p);
8831 #endif
8832 ppid = 0;
8833 rcu_read_lock();
8834 if (pid_alive(p))
8835 ppid = task_pid_nr(rcu_dereference(p->real_parent));
8836 rcu_read_unlock();
8837 pr_cont(" stack:%5lu pid:%5d ppid:%6d flags:0x%08lx\n",
8838 free, task_pid_nr(p), ppid,
8839 read_task_thread_flags(p));
8840
8841 print_worker_info(KERN_INFO, p);
8842 print_stop_info(KERN_INFO, p);
8843 show_stack(p, NULL, KERN_INFO);
8844 put_task_stack(p);
8845 }
8846 EXPORT_SYMBOL_GPL(sched_show_task);
8847
8848 static inline bool
state_filter_match(unsigned long state_filter,struct task_struct * p)8849 state_filter_match(unsigned long state_filter, struct task_struct *p)
8850 {
8851 unsigned int state = READ_ONCE(p->__state);
8852
8853 /* no filter, everything matches */
8854 if (!state_filter)
8855 return true;
8856
8857 /* filter, but doesn't match */
8858 if (!(state & state_filter))
8859 return false;
8860
8861 /*
8862 * When looking for TASK_UNINTERRUPTIBLE skip TASK_IDLE (allows
8863 * TASK_KILLABLE).
8864 */
8865 if (state_filter == TASK_UNINTERRUPTIBLE && state == TASK_IDLE)
8866 return false;
8867
8868 return true;
8869 }
8870
8871
show_state_filter(unsigned int state_filter)8872 void show_state_filter(unsigned int state_filter)
8873 {
8874 struct task_struct *g, *p;
8875
8876 rcu_read_lock();
8877 for_each_process_thread(g, p) {
8878 /*
8879 * reset the NMI-timeout, listing all files on a slow
8880 * console might take a lot of time:
8881 * Also, reset softlockup watchdogs on all CPUs, because
8882 * another CPU might be blocked waiting for us to process
8883 * an IPI.
8884 */
8885 touch_nmi_watchdog();
8886 touch_all_softlockup_watchdogs();
8887 if (state_filter_match(state_filter, p))
8888 sched_show_task(p);
8889 }
8890
8891 #ifdef CONFIG_SCHED_DEBUG
8892 if (!state_filter)
8893 sysrq_sched_debug_show();
8894 #endif
8895 rcu_read_unlock();
8896 /*
8897 * Only show locks if all tasks are dumped:
8898 */
8899 if (!state_filter)
8900 debug_show_all_locks();
8901 }
8902
8903 /**
8904 * init_idle - set up an idle thread for a given CPU
8905 * @idle: task in question
8906 * @cpu: CPU the idle task belongs to
8907 *
8908 * NOTE: this function does not set the idle thread's NEED_RESCHED
8909 * flag, to make booting more robust.
8910 */
init_idle(struct task_struct * idle,int cpu)8911 void __init init_idle(struct task_struct *idle, int cpu)
8912 {
8913 struct rq *rq = cpu_rq(cpu);
8914 unsigned long flags;
8915
8916 __sched_fork(0, idle);
8917
8918 raw_spin_lock_irqsave(&idle->pi_lock, flags);
8919 raw_spin_rq_lock(rq);
8920
8921 idle->__state = TASK_RUNNING;
8922 idle->se.exec_start = sched_clock();
8923 /*
8924 * PF_KTHREAD should already be set at this point; regardless, make it
8925 * look like a proper per-CPU kthread.
8926 */
8927 idle->flags |= PF_IDLE | PF_KTHREAD | PF_NO_SETAFFINITY;
8928 kthread_set_per_cpu(idle, cpu);
8929
8930 #ifdef CONFIG_SMP
8931 /*
8932 * It's possible that init_idle() gets called multiple times on a task,
8933 * in that case do_set_cpus_allowed() will not do the right thing.
8934 *
8935 * And since this is boot we can forgo the serialization.
8936 */
8937 set_cpus_allowed_common(idle, cpumask_of(cpu), 0);
8938 #endif
8939 /*
8940 * We're having a chicken and egg problem, even though we are
8941 * holding rq->lock, the CPU isn't yet set to this CPU so the
8942 * lockdep check in task_group() will fail.
8943 *
8944 * Similar case to sched_fork(). / Alternatively we could
8945 * use task_rq_lock() here and obtain the other rq->lock.
8946 *
8947 * Silence PROVE_RCU
8948 */
8949 rcu_read_lock();
8950 __set_task_cpu(idle, cpu);
8951 rcu_read_unlock();
8952
8953 rq->idle = idle;
8954 rcu_assign_pointer(rq->curr, idle);
8955 idle->on_rq = TASK_ON_RQ_QUEUED;
8956 #ifdef CONFIG_SMP
8957 idle->on_cpu = 1;
8958 #endif
8959 raw_spin_rq_unlock(rq);
8960 raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
8961
8962 /* Set the preempt count _outside_ the spinlocks! */
8963 init_idle_preempt_count(idle, cpu);
8964
8965 /*
8966 * The idle tasks have their own, simple scheduling class:
8967 */
8968 idle->sched_class = &idle_sched_class;
8969 ftrace_graph_init_idle_task(idle, cpu);
8970 vtime_init_idle(idle, cpu);
8971 #ifdef CONFIG_SMP
8972 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
8973 #endif
8974 }
8975
8976 #ifdef CONFIG_SMP
8977
cpuset_cpumask_can_shrink(const struct cpumask * cur,const struct cpumask * trial)8978 int cpuset_cpumask_can_shrink(const struct cpumask *cur,
8979 const struct cpumask *trial)
8980 {
8981 int ret = 1;
8982
8983 if (cpumask_empty(cur))
8984 return ret;
8985
8986 ret = dl_cpuset_cpumask_can_shrink(cur, trial);
8987
8988 return ret;
8989 }
8990
task_can_attach(struct task_struct * p,const struct cpumask * cs_effective_cpus)8991 int task_can_attach(struct task_struct *p,
8992 const struct cpumask *cs_effective_cpus)
8993 {
8994 int ret = 0;
8995
8996 /*
8997 * Kthreads which disallow setaffinity shouldn't be moved
8998 * to a new cpuset; we don't want to change their CPU
8999 * affinity and isolating such threads by their set of
9000 * allowed nodes is unnecessary. Thus, cpusets are not
9001 * applicable for such threads. This prevents checking for
9002 * success of set_cpus_allowed_ptr() on all attached tasks
9003 * before cpus_mask may be changed.
9004 */
9005 if (p->flags & PF_NO_SETAFFINITY) {
9006 ret = -EINVAL;
9007 goto out;
9008 }
9009
9010 if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
9011 cs_effective_cpus)) {
9012 int cpu = cpumask_any_and(cpu_active_mask, cs_effective_cpus);
9013
9014 if (unlikely(cpu >= nr_cpu_ids))
9015 return -EINVAL;
9016 ret = dl_cpu_busy(cpu, p);
9017 }
9018
9019 out:
9020 return ret;
9021 }
9022
9023 bool sched_smp_initialized __read_mostly;
9024
9025 #ifdef CONFIG_NUMA_BALANCING
9026 /* Migrate current task p to target_cpu */
migrate_task_to(struct task_struct * p,int target_cpu)9027 int migrate_task_to(struct task_struct *p, int target_cpu)
9028 {
9029 struct migration_arg arg = { p, target_cpu };
9030 int curr_cpu = task_cpu(p);
9031
9032 if (curr_cpu == target_cpu)
9033 return 0;
9034
9035 if (!cpumask_test_cpu(target_cpu, p->cpus_ptr))
9036 return -EINVAL;
9037
9038 /* TODO: This is not properly updating schedstats */
9039
9040 trace_sched_move_numa(p, curr_cpu, target_cpu);
9041 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
9042 }
9043
9044 /*
9045 * Requeue a task on a given node and accurately track the number of NUMA
9046 * tasks on the runqueues
9047 */
sched_setnuma(struct task_struct * p,int nid)9048 void sched_setnuma(struct task_struct *p, int nid)
9049 {
9050 bool queued, running;
9051 struct rq_flags rf;
9052 struct rq *rq;
9053
9054 rq = task_rq_lock(p, &rf);
9055 queued = task_on_rq_queued(p);
9056 running = task_current(rq, p);
9057
9058 if (queued)
9059 dequeue_task(rq, p, DEQUEUE_SAVE);
9060 if (running)
9061 put_prev_task(rq, p);
9062
9063 p->numa_preferred_nid = nid;
9064
9065 if (queued)
9066 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
9067 if (running)
9068 set_next_task(rq, p);
9069 task_rq_unlock(rq, p, &rf);
9070 }
9071 #endif /* CONFIG_NUMA_BALANCING */
9072
9073 #ifdef CONFIG_HOTPLUG_CPU
9074 /*
9075 * Ensure that the idle task is using init_mm right before its CPU goes
9076 * offline.
9077 */
idle_task_exit(void)9078 void idle_task_exit(void)
9079 {
9080 struct mm_struct *mm = current->active_mm;
9081
9082 BUG_ON(cpu_online(smp_processor_id()));
9083 BUG_ON(current != this_rq()->idle);
9084
9085 if (mm != &init_mm) {
9086 switch_mm(mm, &init_mm, current);
9087 finish_arch_post_lock_switch();
9088 }
9089
9090 /* finish_cpu(), as ran on the BP, will clean up the active_mm state */
9091 }
9092
__balance_push_cpu_stop(void * arg)9093 static int __balance_push_cpu_stop(void *arg)
9094 {
9095 struct task_struct *p = arg;
9096 struct rq *rq = this_rq();
9097 struct rq_flags rf;
9098 int cpu;
9099
9100 raw_spin_lock_irq(&p->pi_lock);
9101 rq_lock(rq, &rf);
9102
9103 update_rq_clock(rq);
9104
9105 if (task_rq(p) == rq && task_on_rq_queued(p)) {
9106 cpu = select_fallback_rq(rq->cpu, p);
9107 rq = __migrate_task(rq, &rf, p, cpu);
9108 }
9109
9110 rq_unlock(rq, &rf);
9111 raw_spin_unlock_irq(&p->pi_lock);
9112
9113 put_task_struct(p);
9114
9115 return 0;
9116 }
9117
9118 static DEFINE_PER_CPU(struct cpu_stop_work, push_work);
9119
9120 /*
9121 * Ensure we only run per-cpu kthreads once the CPU goes !active.
9122 *
9123 * This is enabled below SCHED_AP_ACTIVE; when !cpu_active(), but only
9124 * effective when the hotplug motion is down.
9125 */
balance_push(struct rq * rq)9126 static void balance_push(struct rq *rq)
9127 {
9128 struct task_struct *push_task = rq->curr;
9129
9130 lockdep_assert_rq_held(rq);
9131
9132 /*
9133 * Ensure the thing is persistent until balance_push_set(.on = false);
9134 */
9135 rq->balance_callback = &balance_push_callback;
9136
9137 /*
9138 * Only active while going offline and when invoked on the outgoing
9139 * CPU.
9140 */
9141 if (!cpu_dying(rq->cpu) || rq != this_rq())
9142 return;
9143
9144 /*
9145 * Both the cpu-hotplug and stop task are in this case and are
9146 * required to complete the hotplug process.
9147 */
9148 if (kthread_is_per_cpu(push_task) ||
9149 is_migration_disabled(push_task)) {
9150
9151 /*
9152 * If this is the idle task on the outgoing CPU try to wake
9153 * up the hotplug control thread which might wait for the
9154 * last task to vanish. The rcuwait_active() check is
9155 * accurate here because the waiter is pinned on this CPU
9156 * and can't obviously be running in parallel.
9157 *
9158 * On RT kernels this also has to check whether there are
9159 * pinned and scheduled out tasks on the runqueue. They
9160 * need to leave the migrate disabled section first.
9161 */
9162 if (!rq->nr_running && !rq_has_pinned_tasks(rq) &&
9163 rcuwait_active(&rq->hotplug_wait)) {
9164 raw_spin_rq_unlock(rq);
9165 rcuwait_wake_up(&rq->hotplug_wait);
9166 raw_spin_rq_lock(rq);
9167 }
9168 return;
9169 }
9170
9171 get_task_struct(push_task);
9172 /*
9173 * Temporarily drop rq->lock such that we can wake-up the stop task.
9174 * Both preemption and IRQs are still disabled.
9175 */
9176 raw_spin_rq_unlock(rq);
9177 stop_one_cpu_nowait(rq->cpu, __balance_push_cpu_stop, push_task,
9178 this_cpu_ptr(&push_work));
9179 /*
9180 * At this point need_resched() is true and we'll take the loop in
9181 * schedule(). The next pick is obviously going to be the stop task
9182 * which kthread_is_per_cpu() and will push this task away.
9183 */
9184 raw_spin_rq_lock(rq);
9185 }
9186
balance_push_set(int cpu,bool on)9187 static void balance_push_set(int cpu, bool on)
9188 {
9189 struct rq *rq = cpu_rq(cpu);
9190 struct rq_flags rf;
9191
9192 rq_lock_irqsave(rq, &rf);
9193 if (on) {
9194 WARN_ON_ONCE(rq->balance_callback);
9195 rq->balance_callback = &balance_push_callback;
9196 } else if (rq->balance_callback == &balance_push_callback) {
9197 rq->balance_callback = NULL;
9198 }
9199 rq_unlock_irqrestore(rq, &rf);
9200 }
9201
9202 /*
9203 * Invoked from a CPUs hotplug control thread after the CPU has been marked
9204 * inactive. All tasks which are not per CPU kernel threads are either
9205 * pushed off this CPU now via balance_push() or placed on a different CPU
9206 * during wakeup. Wait until the CPU is quiescent.
9207 */
balance_hotplug_wait(void)9208 static void balance_hotplug_wait(void)
9209 {
9210 struct rq *rq = this_rq();
9211
9212 rcuwait_wait_event(&rq->hotplug_wait,
9213 rq->nr_running == 1 && !rq_has_pinned_tasks(rq),
9214 TASK_UNINTERRUPTIBLE);
9215 }
9216
9217 #else
9218
balance_push(struct rq * rq)9219 static inline void balance_push(struct rq *rq)
9220 {
9221 }
9222
balance_push_set(int cpu,bool on)9223 static inline void balance_push_set(int cpu, bool on)
9224 {
9225 }
9226
balance_hotplug_wait(void)9227 static inline void balance_hotplug_wait(void)
9228 {
9229 }
9230
9231 #endif /* CONFIG_HOTPLUG_CPU */
9232
set_rq_online(struct rq * rq)9233 void set_rq_online(struct rq *rq)
9234 {
9235 if (!rq->online) {
9236 const struct sched_class *class;
9237
9238 cpumask_set_cpu(rq->cpu, rq->rd->online);
9239 rq->online = 1;
9240
9241 for_each_class(class) {
9242 if (class->rq_online)
9243 class->rq_online(rq);
9244 }
9245 }
9246 }
9247
set_rq_offline(struct rq * rq)9248 void set_rq_offline(struct rq *rq)
9249 {
9250 if (rq->online) {
9251 const struct sched_class *class;
9252
9253 for_each_class(class) {
9254 if (class->rq_offline)
9255 class->rq_offline(rq);
9256 }
9257
9258 cpumask_clear_cpu(rq->cpu, rq->rd->online);
9259 rq->online = 0;
9260 }
9261 }
9262
9263 /*
9264 * used to mark begin/end of suspend/resume:
9265 */
9266 static int num_cpus_frozen;
9267
9268 /*
9269 * Update cpusets according to cpu_active mask. If cpusets are
9270 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
9271 * around partition_sched_domains().
9272 *
9273 * If we come here as part of a suspend/resume, don't touch cpusets because we
9274 * want to restore it back to its original state upon resume anyway.
9275 */
cpuset_cpu_active(void)9276 static void cpuset_cpu_active(void)
9277 {
9278 if (cpuhp_tasks_frozen) {
9279 /*
9280 * num_cpus_frozen tracks how many CPUs are involved in suspend
9281 * resume sequence. As long as this is not the last online
9282 * operation in the resume sequence, just build a single sched
9283 * domain, ignoring cpusets.
9284 */
9285 partition_sched_domains(1, NULL, NULL);
9286 if (--num_cpus_frozen)
9287 return;
9288 /*
9289 * This is the last CPU online operation. So fall through and
9290 * restore the original sched domains by considering the
9291 * cpuset configurations.
9292 */
9293 cpuset_force_rebuild();
9294 }
9295 cpuset_update_active_cpus();
9296 }
9297
cpuset_cpu_inactive(unsigned int cpu)9298 static int cpuset_cpu_inactive(unsigned int cpu)
9299 {
9300 if (!cpuhp_tasks_frozen) {
9301 int ret = dl_cpu_busy(cpu, NULL);
9302
9303 if (ret)
9304 return ret;
9305 cpuset_update_active_cpus();
9306 } else {
9307 num_cpus_frozen++;
9308 partition_sched_domains(1, NULL, NULL);
9309 }
9310 return 0;
9311 }
9312
sched_cpu_activate(unsigned int cpu)9313 int sched_cpu_activate(unsigned int cpu)
9314 {
9315 struct rq *rq = cpu_rq(cpu);
9316 struct rq_flags rf;
9317
9318 /*
9319 * Clear the balance_push callback and prepare to schedule
9320 * regular tasks.
9321 */
9322 balance_push_set(cpu, false);
9323
9324 #ifdef CONFIG_SCHED_SMT
9325 /*
9326 * When going up, increment the number of cores with SMT present.
9327 */
9328 if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
9329 static_branch_inc_cpuslocked(&sched_smt_present);
9330 #endif
9331 set_cpu_active(cpu, true);
9332
9333 if (sched_smp_initialized) {
9334 sched_update_numa(cpu, true);
9335 sched_domains_numa_masks_set(cpu);
9336 cpuset_cpu_active();
9337 }
9338
9339 /*
9340 * Put the rq online, if not already. This happens:
9341 *
9342 * 1) In the early boot process, because we build the real domains
9343 * after all CPUs have been brought up.
9344 *
9345 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the
9346 * domains.
9347 */
9348 rq_lock_irqsave(rq, &rf);
9349 if (rq->rd) {
9350 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
9351 set_rq_online(rq);
9352 }
9353 rq_unlock_irqrestore(rq, &rf);
9354
9355 return 0;
9356 }
9357
sched_cpu_deactivate(unsigned int cpu)9358 int sched_cpu_deactivate(unsigned int cpu)
9359 {
9360 struct rq *rq = cpu_rq(cpu);
9361 struct rq_flags rf;
9362 int ret;
9363
9364 /*
9365 * Remove CPU from nohz.idle_cpus_mask to prevent participating in
9366 * load balancing when not active
9367 */
9368 nohz_balance_exit_idle(rq);
9369
9370 set_cpu_active(cpu, false);
9371
9372 /*
9373 * From this point forward, this CPU will refuse to run any task that
9374 * is not: migrate_disable() or KTHREAD_IS_PER_CPU, and will actively
9375 * push those tasks away until this gets cleared, see
9376 * sched_cpu_dying().
9377 */
9378 balance_push_set(cpu, true);
9379
9380 /*
9381 * We've cleared cpu_active_mask / set balance_push, wait for all
9382 * preempt-disabled and RCU users of this state to go away such that
9383 * all new such users will observe it.
9384 *
9385 * Specifically, we rely on ttwu to no longer target this CPU, see
9386 * ttwu_queue_cond() and is_cpu_allowed().
9387 *
9388 * Do sync before park smpboot threads to take care the rcu boost case.
9389 */
9390 synchronize_rcu();
9391
9392 rq_lock_irqsave(rq, &rf);
9393 if (rq->rd) {
9394 update_rq_clock(rq);
9395 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
9396 set_rq_offline(rq);
9397 }
9398 rq_unlock_irqrestore(rq, &rf);
9399
9400 #ifdef CONFIG_SCHED_SMT
9401 /*
9402 * When going down, decrement the number of cores with SMT present.
9403 */
9404 if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
9405 static_branch_dec_cpuslocked(&sched_smt_present);
9406
9407 sched_core_cpu_deactivate(cpu);
9408 #endif
9409
9410 if (!sched_smp_initialized)
9411 return 0;
9412
9413 sched_update_numa(cpu, false);
9414 ret = cpuset_cpu_inactive(cpu);
9415 if (ret) {
9416 balance_push_set(cpu, false);
9417 set_cpu_active(cpu, true);
9418 sched_update_numa(cpu, true);
9419 return ret;
9420 }
9421 sched_domains_numa_masks_clear(cpu);
9422 return 0;
9423 }
9424
sched_rq_cpu_starting(unsigned int cpu)9425 static void sched_rq_cpu_starting(unsigned int cpu)
9426 {
9427 struct rq *rq = cpu_rq(cpu);
9428
9429 rq->calc_load_update = calc_load_update;
9430 update_max_interval();
9431 }
9432
sched_cpu_starting(unsigned int cpu)9433 int sched_cpu_starting(unsigned int cpu)
9434 {
9435 sched_core_cpu_starting(cpu);
9436 sched_rq_cpu_starting(cpu);
9437 sched_tick_start(cpu);
9438 return 0;
9439 }
9440
9441 #ifdef CONFIG_HOTPLUG_CPU
9442
9443 /*
9444 * Invoked immediately before the stopper thread is invoked to bring the
9445 * CPU down completely. At this point all per CPU kthreads except the
9446 * hotplug thread (current) and the stopper thread (inactive) have been
9447 * either parked or have been unbound from the outgoing CPU. Ensure that
9448 * any of those which might be on the way out are gone.
9449 *
9450 * If after this point a bound task is being woken on this CPU then the
9451 * responsible hotplug callback has failed to do it's job.
9452 * sched_cpu_dying() will catch it with the appropriate fireworks.
9453 */
sched_cpu_wait_empty(unsigned int cpu)9454 int sched_cpu_wait_empty(unsigned int cpu)
9455 {
9456 balance_hotplug_wait();
9457 return 0;
9458 }
9459
9460 /*
9461 * Since this CPU is going 'away' for a while, fold any nr_active delta we
9462 * might have. Called from the CPU stopper task after ensuring that the
9463 * stopper is the last running task on the CPU, so nr_active count is
9464 * stable. We need to take the teardown thread which is calling this into
9465 * account, so we hand in adjust = 1 to the load calculation.
9466 *
9467 * Also see the comment "Global load-average calculations".
9468 */
calc_load_migrate(struct rq * rq)9469 static void calc_load_migrate(struct rq *rq)
9470 {
9471 long delta = calc_load_fold_active(rq, 1);
9472
9473 if (delta)
9474 atomic_long_add(delta, &calc_load_tasks);
9475 }
9476
dump_rq_tasks(struct rq * rq,const char * loglvl)9477 static void dump_rq_tasks(struct rq *rq, const char *loglvl)
9478 {
9479 struct task_struct *g, *p;
9480 int cpu = cpu_of(rq);
9481
9482 lockdep_assert_rq_held(rq);
9483
9484 printk("%sCPU%d enqueued tasks (%u total):\n", loglvl, cpu, rq->nr_running);
9485 for_each_process_thread(g, p) {
9486 if (task_cpu(p) != cpu)
9487 continue;
9488
9489 if (!task_on_rq_queued(p))
9490 continue;
9491
9492 printk("%s\tpid: %d, name: %s\n", loglvl, p->pid, p->comm);
9493 }
9494 }
9495
sched_cpu_dying(unsigned int cpu)9496 int sched_cpu_dying(unsigned int cpu)
9497 {
9498 struct rq *rq = cpu_rq(cpu);
9499 struct rq_flags rf;
9500
9501 /* Handle pending wakeups and then migrate everything off */
9502 sched_tick_stop(cpu);
9503
9504 rq_lock_irqsave(rq, &rf);
9505 if (rq->nr_running != 1 || rq_has_pinned_tasks(rq)) {
9506 WARN(true, "Dying CPU not properly vacated!");
9507 dump_rq_tasks(rq, KERN_WARNING);
9508 }
9509 rq_unlock_irqrestore(rq, &rf);
9510
9511 calc_load_migrate(rq);
9512 update_max_interval();
9513 hrtick_clear(rq);
9514 sched_core_cpu_dying(cpu);
9515 return 0;
9516 }
9517 #endif
9518
sched_init_smp(void)9519 void __init sched_init_smp(void)
9520 {
9521 sched_init_numa(NUMA_NO_NODE);
9522
9523 /*
9524 * There's no userspace yet to cause hotplug operations; hence all the
9525 * CPU masks are stable and all blatant races in the below code cannot
9526 * happen.
9527 */
9528 mutex_lock(&sched_domains_mutex);
9529 sched_init_domains(cpu_active_mask);
9530 mutex_unlock(&sched_domains_mutex);
9531
9532 /* Move init over to a non-isolated CPU */
9533 if (set_cpus_allowed_ptr(current, housekeeping_cpumask(HK_TYPE_DOMAIN)) < 0)
9534 BUG();
9535 current->flags &= ~PF_NO_SETAFFINITY;
9536 sched_init_granularity();
9537
9538 init_sched_rt_class();
9539 init_sched_dl_class();
9540
9541 sched_smp_initialized = true;
9542 }
9543
migration_init(void)9544 static int __init migration_init(void)
9545 {
9546 sched_cpu_starting(smp_processor_id());
9547 return 0;
9548 }
9549 early_initcall(migration_init);
9550
9551 #else
sched_init_smp(void)9552 void __init sched_init_smp(void)
9553 {
9554 sched_init_granularity();
9555 }
9556 #endif /* CONFIG_SMP */
9557
in_sched_functions(unsigned long addr)9558 int in_sched_functions(unsigned long addr)
9559 {
9560 return in_lock_functions(addr) ||
9561 (addr >= (unsigned long)__sched_text_start
9562 && addr < (unsigned long)__sched_text_end);
9563 }
9564
9565 #ifdef CONFIG_CGROUP_SCHED
9566 /*
9567 * Default task group.
9568 * Every task in system belongs to this group at bootup.
9569 */
9570 struct task_group root_task_group;
9571 LIST_HEAD(task_groups);
9572
9573 /* Cacheline aligned slab cache for task_group */
9574 static struct kmem_cache *task_group_cache __read_mostly;
9575 #endif
9576
9577 DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
9578 DECLARE_PER_CPU(cpumask_var_t, select_idle_mask);
9579
sched_init(void)9580 void __init sched_init(void)
9581 {
9582 unsigned long ptr = 0;
9583 int i;
9584
9585 /* Make sure the linker didn't screw up */
9586 BUG_ON(&idle_sched_class != &fair_sched_class + 1 ||
9587 &fair_sched_class != &rt_sched_class + 1 ||
9588 &rt_sched_class != &dl_sched_class + 1);
9589 #ifdef CONFIG_SMP
9590 BUG_ON(&dl_sched_class != &stop_sched_class + 1);
9591 #endif
9592
9593 wait_bit_init();
9594
9595 #ifdef CONFIG_FAIR_GROUP_SCHED
9596 ptr += 2 * nr_cpu_ids * sizeof(void **);
9597 #endif
9598 #ifdef CONFIG_RT_GROUP_SCHED
9599 ptr += 2 * nr_cpu_ids * sizeof(void **);
9600 #endif
9601 if (ptr) {
9602 ptr = (unsigned long)kzalloc(ptr, GFP_NOWAIT);
9603
9604 #ifdef CONFIG_FAIR_GROUP_SCHED
9605 root_task_group.se = (struct sched_entity **)ptr;
9606 ptr += nr_cpu_ids * sizeof(void **);
9607
9608 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
9609 ptr += nr_cpu_ids * sizeof(void **);
9610
9611 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
9612 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
9613 #endif /* CONFIG_FAIR_GROUP_SCHED */
9614 #ifdef CONFIG_RT_GROUP_SCHED
9615 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
9616 ptr += nr_cpu_ids * sizeof(void **);
9617
9618 root_task_group.rt_rq = (struct rt_rq **)ptr;
9619 ptr += nr_cpu_ids * sizeof(void **);
9620
9621 #endif /* CONFIG_RT_GROUP_SCHED */
9622 }
9623 #ifdef CONFIG_CPUMASK_OFFSTACK
9624 for_each_possible_cpu(i) {
9625 per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
9626 cpumask_size(), GFP_KERNEL, cpu_to_node(i));
9627 per_cpu(select_idle_mask, i) = (cpumask_var_t)kzalloc_node(
9628 cpumask_size(), GFP_KERNEL, cpu_to_node(i));
9629 }
9630 #endif /* CONFIG_CPUMASK_OFFSTACK */
9631
9632 init_rt_bandwidth(&def_rt_bandwidth, global_rt_period(), global_rt_runtime());
9633
9634 #ifdef CONFIG_SMP
9635 init_defrootdomain();
9636 #endif
9637
9638 #ifdef CONFIG_RT_GROUP_SCHED
9639 init_rt_bandwidth(&root_task_group.rt_bandwidth,
9640 global_rt_period(), global_rt_runtime());
9641 #endif /* CONFIG_RT_GROUP_SCHED */
9642
9643 #ifdef CONFIG_CGROUP_SCHED
9644 task_group_cache = KMEM_CACHE(task_group, 0);
9645
9646 list_add(&root_task_group.list, &task_groups);
9647 INIT_LIST_HEAD(&root_task_group.children);
9648 INIT_LIST_HEAD(&root_task_group.siblings);
9649 autogroup_init(&init_task);
9650 #endif /* CONFIG_CGROUP_SCHED */
9651
9652 for_each_possible_cpu(i) {
9653 struct rq *rq;
9654
9655 rq = cpu_rq(i);
9656 raw_spin_lock_init(&rq->__lock);
9657 rq->nr_running = 0;
9658 rq->calc_load_active = 0;
9659 rq->calc_load_update = jiffies + LOAD_FREQ;
9660 init_cfs_rq(&rq->cfs);
9661 init_rt_rq(&rq->rt);
9662 init_dl_rq(&rq->dl);
9663 #ifdef CONFIG_FAIR_GROUP_SCHED
9664 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
9665 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
9666 /*
9667 * How much CPU bandwidth does root_task_group get?
9668 *
9669 * In case of task-groups formed thr' the cgroup filesystem, it
9670 * gets 100% of the CPU resources in the system. This overall
9671 * system CPU resource is divided among the tasks of
9672 * root_task_group and its child task-groups in a fair manner,
9673 * based on each entity's (task or task-group's) weight
9674 * (se->load.weight).
9675 *
9676 * In other words, if root_task_group has 10 tasks of weight
9677 * 1024) and two child groups A0 and A1 (of weight 1024 each),
9678 * then A0's share of the CPU resource is:
9679 *
9680 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
9681 *
9682 * We achieve this by letting root_task_group's tasks sit
9683 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
9684 */
9685 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
9686 #endif /* CONFIG_FAIR_GROUP_SCHED */
9687
9688 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
9689 #ifdef CONFIG_RT_GROUP_SCHED
9690 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
9691 #endif
9692 #ifdef CONFIG_SMP
9693 rq->sd = NULL;
9694 rq->rd = NULL;
9695 rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
9696 rq->balance_callback = &balance_push_callback;
9697 rq->active_balance = 0;
9698 rq->next_balance = jiffies;
9699 rq->push_cpu = 0;
9700 rq->cpu = i;
9701 rq->online = 0;
9702 rq->idle_stamp = 0;
9703 rq->avg_idle = 2*sysctl_sched_migration_cost;
9704 rq->wake_stamp = jiffies;
9705 rq->wake_avg_idle = rq->avg_idle;
9706 rq->max_idle_balance_cost = sysctl_sched_migration_cost;
9707
9708 INIT_LIST_HEAD(&rq->cfs_tasks);
9709
9710 rq_attach_root(rq, &def_root_domain);
9711 #ifdef CONFIG_NO_HZ_COMMON
9712 rq->last_blocked_load_update_tick = jiffies;
9713 atomic_set(&rq->nohz_flags, 0);
9714
9715 INIT_CSD(&rq->nohz_csd, nohz_csd_func, rq);
9716 #endif
9717 #ifdef CONFIG_HOTPLUG_CPU
9718 rcuwait_init(&rq->hotplug_wait);
9719 #endif
9720 #endif /* CONFIG_SMP */
9721 hrtick_rq_init(rq);
9722 atomic_set(&rq->nr_iowait, 0);
9723
9724 #ifdef CONFIG_SCHED_CORE
9725 rq->core = rq;
9726 rq->core_pick = NULL;
9727 rq->core_enabled = 0;
9728 rq->core_tree = RB_ROOT;
9729 rq->core_forceidle_count = 0;
9730 rq->core_forceidle_occupation = 0;
9731 rq->core_forceidle_start = 0;
9732
9733 rq->core_cookie = 0UL;
9734 #endif
9735 }
9736
9737 set_load_weight(&init_task, false);
9738
9739 /*
9740 * The boot idle thread does lazy MMU switching as well:
9741 */
9742 mmgrab(&init_mm);
9743 enter_lazy_tlb(&init_mm, current);
9744
9745 /*
9746 * The idle task doesn't need the kthread struct to function, but it
9747 * is dressed up as a per-CPU kthread and thus needs to play the part
9748 * if we want to avoid special-casing it in code that deals with per-CPU
9749 * kthreads.
9750 */
9751 WARN_ON(!set_kthread_struct(current));
9752
9753 /*
9754 * Make us the idle thread. Technically, schedule() should not be
9755 * called from this thread, however somewhere below it might be,
9756 * but because we are the idle thread, we just pick up running again
9757 * when this runqueue becomes "idle".
9758 */
9759 init_idle(current, smp_processor_id());
9760
9761 calc_load_update = jiffies + LOAD_FREQ;
9762
9763 #ifdef CONFIG_SMP
9764 idle_thread_set_boot_cpu();
9765 balance_push_set(smp_processor_id(), false);
9766 #endif
9767 init_sched_fair_class();
9768
9769 psi_init();
9770
9771 init_uclamp();
9772
9773 preempt_dynamic_init();
9774
9775 scheduler_running = 1;
9776 }
9777
9778 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
9779
__might_sleep(const char * file,int line)9780 void __might_sleep(const char *file, int line)
9781 {
9782 unsigned int state = get_current_state();
9783 /*
9784 * Blocking primitives will set (and therefore destroy) current->state,
9785 * since we will exit with TASK_RUNNING make sure we enter with it,
9786 * otherwise we will destroy state.
9787 */
9788 WARN_ONCE(state != TASK_RUNNING && current->task_state_change,
9789 "do not call blocking ops when !TASK_RUNNING; "
9790 "state=%x set at [<%p>] %pS\n", state,
9791 (void *)current->task_state_change,
9792 (void *)current->task_state_change);
9793
9794 __might_resched(file, line, 0);
9795 }
9796 EXPORT_SYMBOL(__might_sleep);
9797
print_preempt_disable_ip(int preempt_offset,unsigned long ip)9798 static void print_preempt_disable_ip(int preempt_offset, unsigned long ip)
9799 {
9800 if (!IS_ENABLED(CONFIG_DEBUG_PREEMPT))
9801 return;
9802
9803 if (preempt_count() == preempt_offset)
9804 return;
9805
9806 pr_err("Preemption disabled at:");
9807 print_ip_sym(KERN_ERR, ip);
9808 }
9809
resched_offsets_ok(unsigned int offsets)9810 static inline bool resched_offsets_ok(unsigned int offsets)
9811 {
9812 unsigned int nested = preempt_count();
9813
9814 nested += rcu_preempt_depth() << MIGHT_RESCHED_RCU_SHIFT;
9815
9816 return nested == offsets;
9817 }
9818
__might_resched(const char * file,int line,unsigned int offsets)9819 void __might_resched(const char *file, int line, unsigned int offsets)
9820 {
9821 /* Ratelimiting timestamp: */
9822 static unsigned long prev_jiffy;
9823
9824 unsigned long preempt_disable_ip;
9825
9826 /* WARN_ON_ONCE() by default, no rate limit required: */
9827 rcu_sleep_check();
9828
9829 if ((resched_offsets_ok(offsets) && !irqs_disabled() &&
9830 !is_idle_task(current) && !current->non_block_count) ||
9831 system_state == SYSTEM_BOOTING || system_state > SYSTEM_RUNNING ||
9832 oops_in_progress)
9833 return;
9834
9835 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
9836 return;
9837 prev_jiffy = jiffies;
9838
9839 /* Save this before calling printk(), since that will clobber it: */
9840 preempt_disable_ip = get_preempt_disable_ip(current);
9841
9842 pr_err("BUG: sleeping function called from invalid context at %s:%d\n",
9843 file, line);
9844 pr_err("in_atomic(): %d, irqs_disabled(): %d, non_block: %d, pid: %d, name: %s\n",
9845 in_atomic(), irqs_disabled(), current->non_block_count,
9846 current->pid, current->comm);
9847 pr_err("preempt_count: %x, expected: %x\n", preempt_count(),
9848 offsets & MIGHT_RESCHED_PREEMPT_MASK);
9849
9850 if (IS_ENABLED(CONFIG_PREEMPT_RCU)) {
9851 pr_err("RCU nest depth: %d, expected: %u\n",
9852 rcu_preempt_depth(), offsets >> MIGHT_RESCHED_RCU_SHIFT);
9853 }
9854
9855 if (task_stack_end_corrupted(current))
9856 pr_emerg("Thread overran stack, or stack corrupted\n");
9857
9858 debug_show_held_locks(current);
9859 if (irqs_disabled())
9860 print_irqtrace_events(current);
9861
9862 print_preempt_disable_ip(offsets & MIGHT_RESCHED_PREEMPT_MASK,
9863 preempt_disable_ip);
9864
9865 dump_stack();
9866 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
9867 }
9868 EXPORT_SYMBOL(__might_resched);
9869
__cant_sleep(const char * file,int line,int preempt_offset)9870 void __cant_sleep(const char *file, int line, int preempt_offset)
9871 {
9872 static unsigned long prev_jiffy;
9873
9874 if (irqs_disabled())
9875 return;
9876
9877 if (!IS_ENABLED(CONFIG_PREEMPT_COUNT))
9878 return;
9879
9880 if (preempt_count() > preempt_offset)
9881 return;
9882
9883 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
9884 return;
9885 prev_jiffy = jiffies;
9886
9887 printk(KERN_ERR "BUG: assuming atomic context at %s:%d\n", file, line);
9888 printk(KERN_ERR "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
9889 in_atomic(), irqs_disabled(),
9890 current->pid, current->comm);
9891
9892 debug_show_held_locks(current);
9893 dump_stack();
9894 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
9895 }
9896 EXPORT_SYMBOL_GPL(__cant_sleep);
9897
9898 #ifdef CONFIG_SMP
__cant_migrate(const char * file,int line)9899 void __cant_migrate(const char *file, int line)
9900 {
9901 static unsigned long prev_jiffy;
9902
9903 if (irqs_disabled())
9904 return;
9905
9906 if (is_migration_disabled(current))
9907 return;
9908
9909 if (!IS_ENABLED(CONFIG_PREEMPT_COUNT))
9910 return;
9911
9912 if (preempt_count() > 0)
9913 return;
9914
9915 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
9916 return;
9917 prev_jiffy = jiffies;
9918
9919 pr_err("BUG: assuming non migratable context at %s:%d\n", file, line);
9920 pr_err("in_atomic(): %d, irqs_disabled(): %d, migration_disabled() %u pid: %d, name: %s\n",
9921 in_atomic(), irqs_disabled(), is_migration_disabled(current),
9922 current->pid, current->comm);
9923
9924 debug_show_held_locks(current);
9925 dump_stack();
9926 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
9927 }
9928 EXPORT_SYMBOL_GPL(__cant_migrate);
9929 #endif
9930 #endif
9931
9932 #ifdef CONFIG_MAGIC_SYSRQ
normalize_rt_tasks(void)9933 void normalize_rt_tasks(void)
9934 {
9935 struct task_struct *g, *p;
9936 struct sched_attr attr = {
9937 .sched_policy = SCHED_NORMAL,
9938 };
9939
9940 read_lock(&tasklist_lock);
9941 for_each_process_thread(g, p) {
9942 /*
9943 * Only normalize user tasks:
9944 */
9945 if (p->flags & PF_KTHREAD)
9946 continue;
9947
9948 p->se.exec_start = 0;
9949 schedstat_set(p->stats.wait_start, 0);
9950 schedstat_set(p->stats.sleep_start, 0);
9951 schedstat_set(p->stats.block_start, 0);
9952
9953 if (!dl_task(p) && !rt_task(p)) {
9954 /*
9955 * Renice negative nice level userspace
9956 * tasks back to 0:
9957 */
9958 if (task_nice(p) < 0)
9959 set_user_nice(p, 0);
9960 continue;
9961 }
9962
9963 __sched_setscheduler(p, &attr, false, false);
9964 }
9965 read_unlock(&tasklist_lock);
9966 }
9967
9968 #endif /* CONFIG_MAGIC_SYSRQ */
9969
9970 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
9971 /*
9972 * These functions are only useful for the IA64 MCA handling, or kdb.
9973 *
9974 * They can only be called when the whole system has been
9975 * stopped - every CPU needs to be quiescent, and no scheduling
9976 * activity can take place. Using them for anything else would
9977 * be a serious bug, and as a result, they aren't even visible
9978 * under any other configuration.
9979 */
9980
9981 /**
9982 * curr_task - return the current task for a given CPU.
9983 * @cpu: the processor in question.
9984 *
9985 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
9986 *
9987 * Return: The current task for @cpu.
9988 */
curr_task(int cpu)9989 struct task_struct *curr_task(int cpu)
9990 {
9991 return cpu_curr(cpu);
9992 }
9993
9994 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
9995
9996 #ifdef CONFIG_IA64
9997 /**
9998 * ia64_set_curr_task - set the current task for a given CPU.
9999 * @cpu: the processor in question.
10000 * @p: the task pointer to set.
10001 *
10002 * Description: This function must only be used when non-maskable interrupts
10003 * are serviced on a separate stack. It allows the architecture to switch the
10004 * notion of the current task on a CPU in a non-blocking manner. This function
10005 * must be called with all CPU's synchronized, and interrupts disabled, the
10006 * and caller must save the original value of the current task (see
10007 * curr_task() above) and restore that value before reenabling interrupts and
10008 * re-starting the system.
10009 *
10010 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
10011 */
ia64_set_curr_task(int cpu,struct task_struct * p)10012 void ia64_set_curr_task(int cpu, struct task_struct *p)
10013 {
10014 cpu_curr(cpu) = p;
10015 }
10016
10017 #endif
10018
10019 #ifdef CONFIG_CGROUP_SCHED
10020 /* task_group_lock serializes the addition/removal of task groups */
10021 static DEFINE_SPINLOCK(task_group_lock);
10022
alloc_uclamp_sched_group(struct task_group * tg,struct task_group * parent)10023 static inline void alloc_uclamp_sched_group(struct task_group *tg,
10024 struct task_group *parent)
10025 {
10026 #ifdef CONFIG_UCLAMP_TASK_GROUP
10027 enum uclamp_id clamp_id;
10028
10029 for_each_clamp_id(clamp_id) {
10030 uclamp_se_set(&tg->uclamp_req[clamp_id],
10031 uclamp_none(clamp_id), false);
10032 tg->uclamp[clamp_id] = parent->uclamp[clamp_id];
10033 }
10034 #endif
10035 }
10036
sched_free_group(struct task_group * tg)10037 static void sched_free_group(struct task_group *tg)
10038 {
10039 free_fair_sched_group(tg);
10040 free_rt_sched_group(tg);
10041 autogroup_free(tg);
10042 kmem_cache_free(task_group_cache, tg);
10043 }
10044
sched_free_group_rcu(struct rcu_head * rcu)10045 static void sched_free_group_rcu(struct rcu_head *rcu)
10046 {
10047 sched_free_group(container_of(rcu, struct task_group, rcu));
10048 }
10049
sched_unregister_group(struct task_group * tg)10050 static void sched_unregister_group(struct task_group *tg)
10051 {
10052 unregister_fair_sched_group(tg);
10053 unregister_rt_sched_group(tg);
10054 /*
10055 * We have to wait for yet another RCU grace period to expire, as
10056 * print_cfs_stats() might run concurrently.
10057 */
10058 call_rcu(&tg->rcu, sched_free_group_rcu);
10059 }
10060
10061 /* allocate runqueue etc for a new task group */
sched_create_group(struct task_group * parent)10062 struct task_group *sched_create_group(struct task_group *parent)
10063 {
10064 struct task_group *tg;
10065
10066 tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
10067 if (!tg)
10068 return ERR_PTR(-ENOMEM);
10069
10070 if (!alloc_fair_sched_group(tg, parent))
10071 goto err;
10072
10073 if (!alloc_rt_sched_group(tg, parent))
10074 goto err;
10075
10076 alloc_uclamp_sched_group(tg, parent);
10077
10078 return tg;
10079
10080 err:
10081 sched_free_group(tg);
10082 return ERR_PTR(-ENOMEM);
10083 }
10084
sched_online_group(struct task_group * tg,struct task_group * parent)10085 void sched_online_group(struct task_group *tg, struct task_group *parent)
10086 {
10087 unsigned long flags;
10088
10089 spin_lock_irqsave(&task_group_lock, flags);
10090 list_add_rcu(&tg->list, &task_groups);
10091
10092 /* Root should already exist: */
10093 WARN_ON(!parent);
10094
10095 tg->parent = parent;
10096 INIT_LIST_HEAD(&tg->children);
10097 list_add_rcu(&tg->siblings, &parent->children);
10098 spin_unlock_irqrestore(&task_group_lock, flags);
10099
10100 online_fair_sched_group(tg);
10101 }
10102
10103 /* rcu callback to free various structures associated with a task group */
sched_unregister_group_rcu(struct rcu_head * rhp)10104 static void sched_unregister_group_rcu(struct rcu_head *rhp)
10105 {
10106 /* Now it should be safe to free those cfs_rqs: */
10107 sched_unregister_group(container_of(rhp, struct task_group, rcu));
10108 }
10109
sched_destroy_group(struct task_group * tg)10110 void sched_destroy_group(struct task_group *tg)
10111 {
10112 /* Wait for possible concurrent references to cfs_rqs complete: */
10113 call_rcu(&tg->rcu, sched_unregister_group_rcu);
10114 }
10115
sched_release_group(struct task_group * tg)10116 void sched_release_group(struct task_group *tg)
10117 {
10118 unsigned long flags;
10119
10120 /*
10121 * Unlink first, to avoid walk_tg_tree_from() from finding us (via
10122 * sched_cfs_period_timer()).
10123 *
10124 * For this to be effective, we have to wait for all pending users of
10125 * this task group to leave their RCU critical section to ensure no new
10126 * user will see our dying task group any more. Specifically ensure
10127 * that tg_unthrottle_up() won't add decayed cfs_rq's to it.
10128 *
10129 * We therefore defer calling unregister_fair_sched_group() to
10130 * sched_unregister_group() which is guarantied to get called only after the
10131 * current RCU grace period has expired.
10132 */
10133 spin_lock_irqsave(&task_group_lock, flags);
10134 list_del_rcu(&tg->list);
10135 list_del_rcu(&tg->siblings);
10136 spin_unlock_irqrestore(&task_group_lock, flags);
10137 }
10138
sched_change_group(struct task_struct * tsk,int type)10139 static void sched_change_group(struct task_struct *tsk, int type)
10140 {
10141 struct task_group *tg;
10142
10143 /*
10144 * All callers are synchronized by task_rq_lock(); we do not use RCU
10145 * which is pointless here. Thus, we pass "true" to task_css_check()
10146 * to prevent lockdep warnings.
10147 */
10148 tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
10149 struct task_group, css);
10150 tg = autogroup_task_group(tsk, tg);
10151 tsk->sched_task_group = tg;
10152
10153 #ifdef CONFIG_FAIR_GROUP_SCHED
10154 if (tsk->sched_class->task_change_group)
10155 tsk->sched_class->task_change_group(tsk, type);
10156 else
10157 #endif
10158 set_task_rq(tsk, task_cpu(tsk));
10159 }
10160
10161 /*
10162 * Change task's runqueue when it moves between groups.
10163 *
10164 * The caller of this function should have put the task in its new group by
10165 * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect
10166 * its new group.
10167 */
sched_move_task(struct task_struct * tsk)10168 void sched_move_task(struct task_struct *tsk)
10169 {
10170 int queued, running, queue_flags =
10171 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
10172 struct rq_flags rf;
10173 struct rq *rq;
10174
10175 rq = task_rq_lock(tsk, &rf);
10176 update_rq_clock(rq);
10177
10178 running = task_current(rq, tsk);
10179 queued = task_on_rq_queued(tsk);
10180
10181 if (queued)
10182 dequeue_task(rq, tsk, queue_flags);
10183 if (running)
10184 put_prev_task(rq, tsk);
10185
10186 sched_change_group(tsk, TASK_MOVE_GROUP);
10187
10188 if (queued)
10189 enqueue_task(rq, tsk, queue_flags);
10190 if (running) {
10191 set_next_task(rq, tsk);
10192 /*
10193 * After changing group, the running task may have joined a
10194 * throttled one but it's still the running task. Trigger a
10195 * resched to make sure that task can still run.
10196 */
10197 resched_curr(rq);
10198 }
10199
10200 task_rq_unlock(rq, tsk, &rf);
10201 }
10202
css_tg(struct cgroup_subsys_state * css)10203 static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
10204 {
10205 return css ? container_of(css, struct task_group, css) : NULL;
10206 }
10207
10208 static struct cgroup_subsys_state *
cpu_cgroup_css_alloc(struct cgroup_subsys_state * parent_css)10209 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
10210 {
10211 struct task_group *parent = css_tg(parent_css);
10212 struct task_group *tg;
10213
10214 if (!parent) {
10215 /* This is early initialization for the top cgroup */
10216 return &root_task_group.css;
10217 }
10218
10219 tg = sched_create_group(parent);
10220 if (IS_ERR(tg))
10221 return ERR_PTR(-ENOMEM);
10222
10223 return &tg->css;
10224 }
10225
10226 /* Expose task group only after completing cgroup initialization */
cpu_cgroup_css_online(struct cgroup_subsys_state * css)10227 static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
10228 {
10229 struct task_group *tg = css_tg(css);
10230 struct task_group *parent = css_tg(css->parent);
10231
10232 if (parent)
10233 sched_online_group(tg, parent);
10234
10235 #ifdef CONFIG_UCLAMP_TASK_GROUP
10236 /* Propagate the effective uclamp value for the new group */
10237 mutex_lock(&uclamp_mutex);
10238 rcu_read_lock();
10239 cpu_util_update_eff(css);
10240 rcu_read_unlock();
10241 mutex_unlock(&uclamp_mutex);
10242 #endif
10243
10244 return 0;
10245 }
10246
cpu_cgroup_css_released(struct cgroup_subsys_state * css)10247 static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
10248 {
10249 struct task_group *tg = css_tg(css);
10250
10251 sched_release_group(tg);
10252 }
10253
cpu_cgroup_css_free(struct cgroup_subsys_state * css)10254 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
10255 {
10256 struct task_group *tg = css_tg(css);
10257
10258 /*
10259 * Relies on the RCU grace period between css_released() and this.
10260 */
10261 sched_unregister_group(tg);
10262 }
10263
10264 /*
10265 * This is called before wake_up_new_task(), therefore we really only
10266 * have to set its group bits, all the other stuff does not apply.
10267 */
cpu_cgroup_fork(struct task_struct * task)10268 static void cpu_cgroup_fork(struct task_struct *task)
10269 {
10270 struct rq_flags rf;
10271 struct rq *rq;
10272
10273 rq = task_rq_lock(task, &rf);
10274
10275 update_rq_clock(rq);
10276 sched_change_group(task, TASK_SET_GROUP);
10277
10278 task_rq_unlock(rq, task, &rf);
10279 }
10280
cpu_cgroup_can_attach(struct cgroup_taskset * tset)10281 static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
10282 {
10283 struct task_struct *task;
10284 struct cgroup_subsys_state *css;
10285 int ret = 0;
10286
10287 cgroup_taskset_for_each(task, css, tset) {
10288 #ifdef CONFIG_RT_GROUP_SCHED
10289 if (!sched_rt_can_attach(css_tg(css), task))
10290 return -EINVAL;
10291 #endif
10292 /*
10293 * Serialize against wake_up_new_task() such that if it's
10294 * running, we're sure to observe its full state.
10295 */
10296 raw_spin_lock_irq(&task->pi_lock);
10297 /*
10298 * Avoid calling sched_move_task() before wake_up_new_task()
10299 * has happened. This would lead to problems with PELT, due to
10300 * move wanting to detach+attach while we're not attached yet.
10301 */
10302 if (READ_ONCE(task->__state) == TASK_NEW)
10303 ret = -EINVAL;
10304 raw_spin_unlock_irq(&task->pi_lock);
10305
10306 if (ret)
10307 break;
10308 }
10309 return ret;
10310 }
10311
cpu_cgroup_attach(struct cgroup_taskset * tset)10312 static void cpu_cgroup_attach(struct cgroup_taskset *tset)
10313 {
10314 struct task_struct *task;
10315 struct cgroup_subsys_state *css;
10316
10317 cgroup_taskset_for_each(task, css, tset)
10318 sched_move_task(task);
10319 }
10320
10321 #ifdef CONFIG_UCLAMP_TASK_GROUP
cpu_util_update_eff(struct cgroup_subsys_state * css)10322 static void cpu_util_update_eff(struct cgroup_subsys_state *css)
10323 {
10324 struct cgroup_subsys_state *top_css = css;
10325 struct uclamp_se *uc_parent = NULL;
10326 struct uclamp_se *uc_se = NULL;
10327 unsigned int eff[UCLAMP_CNT];
10328 enum uclamp_id clamp_id;
10329 unsigned int clamps;
10330
10331 lockdep_assert_held(&uclamp_mutex);
10332 SCHED_WARN_ON(!rcu_read_lock_held());
10333
10334 css_for_each_descendant_pre(css, top_css) {
10335 uc_parent = css_tg(css)->parent
10336 ? css_tg(css)->parent->uclamp : NULL;
10337
10338 for_each_clamp_id(clamp_id) {
10339 /* Assume effective clamps matches requested clamps */
10340 eff[clamp_id] = css_tg(css)->uclamp_req[clamp_id].value;
10341 /* Cap effective clamps with parent's effective clamps */
10342 if (uc_parent &&
10343 eff[clamp_id] > uc_parent[clamp_id].value) {
10344 eff[clamp_id] = uc_parent[clamp_id].value;
10345 }
10346 }
10347 /* Ensure protection is always capped by limit */
10348 eff[UCLAMP_MIN] = min(eff[UCLAMP_MIN], eff[UCLAMP_MAX]);
10349
10350 /* Propagate most restrictive effective clamps */
10351 clamps = 0x0;
10352 uc_se = css_tg(css)->uclamp;
10353 for_each_clamp_id(clamp_id) {
10354 if (eff[clamp_id] == uc_se[clamp_id].value)
10355 continue;
10356 uc_se[clamp_id].value = eff[clamp_id];
10357 uc_se[clamp_id].bucket_id = uclamp_bucket_id(eff[clamp_id]);
10358 clamps |= (0x1 << clamp_id);
10359 }
10360 if (!clamps) {
10361 css = css_rightmost_descendant(css);
10362 continue;
10363 }
10364
10365 /* Immediately update descendants RUNNABLE tasks */
10366 uclamp_update_active_tasks(css);
10367 }
10368 }
10369
10370 /*
10371 * Integer 10^N with a given N exponent by casting to integer the literal "1eN"
10372 * C expression. Since there is no way to convert a macro argument (N) into a
10373 * character constant, use two levels of macros.
10374 */
10375 #define _POW10(exp) ((unsigned int)1e##exp)
10376 #define POW10(exp) _POW10(exp)
10377
10378 struct uclamp_request {
10379 #define UCLAMP_PERCENT_SHIFT 2
10380 #define UCLAMP_PERCENT_SCALE (100 * POW10(UCLAMP_PERCENT_SHIFT))
10381 s64 percent;
10382 u64 util;
10383 int ret;
10384 };
10385
10386 static inline struct uclamp_request
capacity_from_percent(char * buf)10387 capacity_from_percent(char *buf)
10388 {
10389 struct uclamp_request req = {
10390 .percent = UCLAMP_PERCENT_SCALE,
10391 .util = SCHED_CAPACITY_SCALE,
10392 .ret = 0,
10393 };
10394
10395 buf = strim(buf);
10396 if (strcmp(buf, "max")) {
10397 req.ret = cgroup_parse_float(buf, UCLAMP_PERCENT_SHIFT,
10398 &req.percent);
10399 if (req.ret)
10400 return req;
10401 if ((u64)req.percent > UCLAMP_PERCENT_SCALE) {
10402 req.ret = -ERANGE;
10403 return req;
10404 }
10405
10406 req.util = req.percent << SCHED_CAPACITY_SHIFT;
10407 req.util = DIV_ROUND_CLOSEST_ULL(req.util, UCLAMP_PERCENT_SCALE);
10408 }
10409
10410 return req;
10411 }
10412
cpu_uclamp_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off,enum uclamp_id clamp_id)10413 static ssize_t cpu_uclamp_write(struct kernfs_open_file *of, char *buf,
10414 size_t nbytes, loff_t off,
10415 enum uclamp_id clamp_id)
10416 {
10417 struct uclamp_request req;
10418 struct task_group *tg;
10419
10420 req = capacity_from_percent(buf);
10421 if (req.ret)
10422 return req.ret;
10423
10424 static_branch_enable(&sched_uclamp_used);
10425
10426 mutex_lock(&uclamp_mutex);
10427 rcu_read_lock();
10428
10429 tg = css_tg(of_css(of));
10430 if (tg->uclamp_req[clamp_id].value != req.util)
10431 uclamp_se_set(&tg->uclamp_req[clamp_id], req.util, false);
10432
10433 /*
10434 * Because of not recoverable conversion rounding we keep track of the
10435 * exact requested value
10436 */
10437 tg->uclamp_pct[clamp_id] = req.percent;
10438
10439 /* Update effective clamps to track the most restrictive value */
10440 cpu_util_update_eff(of_css(of));
10441
10442 rcu_read_unlock();
10443 mutex_unlock(&uclamp_mutex);
10444
10445 return nbytes;
10446 }
10447
cpu_uclamp_min_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)10448 static ssize_t cpu_uclamp_min_write(struct kernfs_open_file *of,
10449 char *buf, size_t nbytes,
10450 loff_t off)
10451 {
10452 return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MIN);
10453 }
10454
cpu_uclamp_max_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)10455 static ssize_t cpu_uclamp_max_write(struct kernfs_open_file *of,
10456 char *buf, size_t nbytes,
10457 loff_t off)
10458 {
10459 return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MAX);
10460 }
10461
cpu_uclamp_print(struct seq_file * sf,enum uclamp_id clamp_id)10462 static inline void cpu_uclamp_print(struct seq_file *sf,
10463 enum uclamp_id clamp_id)
10464 {
10465 struct task_group *tg;
10466 u64 util_clamp;
10467 u64 percent;
10468 u32 rem;
10469
10470 rcu_read_lock();
10471 tg = css_tg(seq_css(sf));
10472 util_clamp = tg->uclamp_req[clamp_id].value;
10473 rcu_read_unlock();
10474
10475 if (util_clamp == SCHED_CAPACITY_SCALE) {
10476 seq_puts(sf, "max\n");
10477 return;
10478 }
10479
10480 percent = tg->uclamp_pct[clamp_id];
10481 percent = div_u64_rem(percent, POW10(UCLAMP_PERCENT_SHIFT), &rem);
10482 seq_printf(sf, "%llu.%0*u\n", percent, UCLAMP_PERCENT_SHIFT, rem);
10483 }
10484
cpu_uclamp_min_show(struct seq_file * sf,void * v)10485 static int cpu_uclamp_min_show(struct seq_file *sf, void *v)
10486 {
10487 cpu_uclamp_print(sf, UCLAMP_MIN);
10488 return 0;
10489 }
10490
cpu_uclamp_max_show(struct seq_file * sf,void * v)10491 static int cpu_uclamp_max_show(struct seq_file *sf, void *v)
10492 {
10493 cpu_uclamp_print(sf, UCLAMP_MAX);
10494 return 0;
10495 }
10496 #endif /* CONFIG_UCLAMP_TASK_GROUP */
10497
10498 #ifdef CONFIG_FAIR_GROUP_SCHED
cpu_shares_write_u64(struct cgroup_subsys_state * css,struct cftype * cftype,u64 shareval)10499 static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
10500 struct cftype *cftype, u64 shareval)
10501 {
10502 if (shareval > scale_load_down(ULONG_MAX))
10503 shareval = MAX_SHARES;
10504 return sched_group_set_shares(css_tg(css), scale_load(shareval));
10505 }
10506
cpu_shares_read_u64(struct cgroup_subsys_state * css,struct cftype * cft)10507 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
10508 struct cftype *cft)
10509 {
10510 struct task_group *tg = css_tg(css);
10511
10512 return (u64) scale_load_down(tg->shares);
10513 }
10514
10515 #ifdef CONFIG_CFS_BANDWIDTH
10516 static DEFINE_MUTEX(cfs_constraints_mutex);
10517
10518 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
10519 static const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
10520 /* More than 203 days if BW_SHIFT equals 20. */
10521 static const u64 max_cfs_runtime = MAX_BW * NSEC_PER_USEC;
10522
10523 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
10524
tg_set_cfs_bandwidth(struct task_group * tg,u64 period,u64 quota,u64 burst)10525 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota,
10526 u64 burst)
10527 {
10528 int i, ret = 0, runtime_enabled, runtime_was_enabled;
10529 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
10530
10531 if (tg == &root_task_group)
10532 return -EINVAL;
10533
10534 /*
10535 * Ensure we have at some amount of bandwidth every period. This is
10536 * to prevent reaching a state of large arrears when throttled via
10537 * entity_tick() resulting in prolonged exit starvation.
10538 */
10539 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
10540 return -EINVAL;
10541
10542 /*
10543 * Likewise, bound things on the other side by preventing insane quota
10544 * periods. This also allows us to normalize in computing quota
10545 * feasibility.
10546 */
10547 if (period > max_cfs_quota_period)
10548 return -EINVAL;
10549
10550 /*
10551 * Bound quota to defend quota against overflow during bandwidth shift.
10552 */
10553 if (quota != RUNTIME_INF && quota > max_cfs_runtime)
10554 return -EINVAL;
10555
10556 if (quota != RUNTIME_INF && (burst > quota ||
10557 burst + quota > max_cfs_runtime))
10558 return -EINVAL;
10559
10560 /*
10561 * Prevent race between setting of cfs_rq->runtime_enabled and
10562 * unthrottle_offline_cfs_rqs().
10563 */
10564 cpus_read_lock();
10565 mutex_lock(&cfs_constraints_mutex);
10566 ret = __cfs_schedulable(tg, period, quota);
10567 if (ret)
10568 goto out_unlock;
10569
10570 runtime_enabled = quota != RUNTIME_INF;
10571 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
10572 /*
10573 * If we need to toggle cfs_bandwidth_used, off->on must occur
10574 * before making related changes, and on->off must occur afterwards
10575 */
10576 if (runtime_enabled && !runtime_was_enabled)
10577 cfs_bandwidth_usage_inc();
10578 raw_spin_lock_irq(&cfs_b->lock);
10579 cfs_b->period = ns_to_ktime(period);
10580 cfs_b->quota = quota;
10581 cfs_b->burst = burst;
10582
10583 __refill_cfs_bandwidth_runtime(cfs_b);
10584
10585 /* Restart the period timer (if active) to handle new period expiry: */
10586 if (runtime_enabled)
10587 start_cfs_bandwidth(cfs_b);
10588
10589 raw_spin_unlock_irq(&cfs_b->lock);
10590
10591 for_each_online_cpu(i) {
10592 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
10593 struct rq *rq = cfs_rq->rq;
10594 struct rq_flags rf;
10595
10596 rq_lock_irq(rq, &rf);
10597 cfs_rq->runtime_enabled = runtime_enabled;
10598 cfs_rq->runtime_remaining = 0;
10599
10600 if (cfs_rq->throttled)
10601 unthrottle_cfs_rq(cfs_rq);
10602 rq_unlock_irq(rq, &rf);
10603 }
10604 if (runtime_was_enabled && !runtime_enabled)
10605 cfs_bandwidth_usage_dec();
10606 out_unlock:
10607 mutex_unlock(&cfs_constraints_mutex);
10608 cpus_read_unlock();
10609
10610 return ret;
10611 }
10612
tg_set_cfs_quota(struct task_group * tg,long cfs_quota_us)10613 static int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
10614 {
10615 u64 quota, period, burst;
10616
10617 period = ktime_to_ns(tg->cfs_bandwidth.period);
10618 burst = tg->cfs_bandwidth.burst;
10619 if (cfs_quota_us < 0)
10620 quota = RUNTIME_INF;
10621 else if ((u64)cfs_quota_us <= U64_MAX / NSEC_PER_USEC)
10622 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
10623 else
10624 return -EINVAL;
10625
10626 return tg_set_cfs_bandwidth(tg, period, quota, burst);
10627 }
10628
tg_get_cfs_quota(struct task_group * tg)10629 static long tg_get_cfs_quota(struct task_group *tg)
10630 {
10631 u64 quota_us;
10632
10633 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
10634 return -1;
10635
10636 quota_us = tg->cfs_bandwidth.quota;
10637 do_div(quota_us, NSEC_PER_USEC);
10638
10639 return quota_us;
10640 }
10641
tg_set_cfs_period(struct task_group * tg,long cfs_period_us)10642 static int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
10643 {
10644 u64 quota, period, burst;
10645
10646 if ((u64)cfs_period_us > U64_MAX / NSEC_PER_USEC)
10647 return -EINVAL;
10648
10649 period = (u64)cfs_period_us * NSEC_PER_USEC;
10650 quota = tg->cfs_bandwidth.quota;
10651 burst = tg->cfs_bandwidth.burst;
10652
10653 return tg_set_cfs_bandwidth(tg, period, quota, burst);
10654 }
10655
tg_get_cfs_period(struct task_group * tg)10656 static long tg_get_cfs_period(struct task_group *tg)
10657 {
10658 u64 cfs_period_us;
10659
10660 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
10661 do_div(cfs_period_us, NSEC_PER_USEC);
10662
10663 return cfs_period_us;
10664 }
10665
tg_set_cfs_burst(struct task_group * tg,long cfs_burst_us)10666 static int tg_set_cfs_burst(struct task_group *tg, long cfs_burst_us)
10667 {
10668 u64 quota, period, burst;
10669
10670 if ((u64)cfs_burst_us > U64_MAX / NSEC_PER_USEC)
10671 return -EINVAL;
10672
10673 burst = (u64)cfs_burst_us * NSEC_PER_USEC;
10674 period = ktime_to_ns(tg->cfs_bandwidth.period);
10675 quota = tg->cfs_bandwidth.quota;
10676
10677 return tg_set_cfs_bandwidth(tg, period, quota, burst);
10678 }
10679
tg_get_cfs_burst(struct task_group * tg)10680 static long tg_get_cfs_burst(struct task_group *tg)
10681 {
10682 u64 burst_us;
10683
10684 burst_us = tg->cfs_bandwidth.burst;
10685 do_div(burst_us, NSEC_PER_USEC);
10686
10687 return burst_us;
10688 }
10689
cpu_cfs_quota_read_s64(struct cgroup_subsys_state * css,struct cftype * cft)10690 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
10691 struct cftype *cft)
10692 {
10693 return tg_get_cfs_quota(css_tg(css));
10694 }
10695
cpu_cfs_quota_write_s64(struct cgroup_subsys_state * css,struct cftype * cftype,s64 cfs_quota_us)10696 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
10697 struct cftype *cftype, s64 cfs_quota_us)
10698 {
10699 return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
10700 }
10701
cpu_cfs_period_read_u64(struct cgroup_subsys_state * css,struct cftype * cft)10702 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
10703 struct cftype *cft)
10704 {
10705 return tg_get_cfs_period(css_tg(css));
10706 }
10707
cpu_cfs_period_write_u64(struct cgroup_subsys_state * css,struct cftype * cftype,u64 cfs_period_us)10708 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
10709 struct cftype *cftype, u64 cfs_period_us)
10710 {
10711 return tg_set_cfs_period(css_tg(css), cfs_period_us);
10712 }
10713
cpu_cfs_burst_read_u64(struct cgroup_subsys_state * css,struct cftype * cft)10714 static u64 cpu_cfs_burst_read_u64(struct cgroup_subsys_state *css,
10715 struct cftype *cft)
10716 {
10717 return tg_get_cfs_burst(css_tg(css));
10718 }
10719
cpu_cfs_burst_write_u64(struct cgroup_subsys_state * css,struct cftype * cftype,u64 cfs_burst_us)10720 static int cpu_cfs_burst_write_u64(struct cgroup_subsys_state *css,
10721 struct cftype *cftype, u64 cfs_burst_us)
10722 {
10723 return tg_set_cfs_burst(css_tg(css), cfs_burst_us);
10724 }
10725
10726 struct cfs_schedulable_data {
10727 struct task_group *tg;
10728 u64 period, quota;
10729 };
10730
10731 /*
10732 * normalize group quota/period to be quota/max_period
10733 * note: units are usecs
10734 */
normalize_cfs_quota(struct task_group * tg,struct cfs_schedulable_data * d)10735 static u64 normalize_cfs_quota(struct task_group *tg,
10736 struct cfs_schedulable_data *d)
10737 {
10738 u64 quota, period;
10739
10740 if (tg == d->tg) {
10741 period = d->period;
10742 quota = d->quota;
10743 } else {
10744 period = tg_get_cfs_period(tg);
10745 quota = tg_get_cfs_quota(tg);
10746 }
10747
10748 /* note: these should typically be equivalent */
10749 if (quota == RUNTIME_INF || quota == -1)
10750 return RUNTIME_INF;
10751
10752 return to_ratio(period, quota);
10753 }
10754
tg_cfs_schedulable_down(struct task_group * tg,void * data)10755 static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
10756 {
10757 struct cfs_schedulable_data *d = data;
10758 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
10759 s64 quota = 0, parent_quota = -1;
10760
10761 if (!tg->parent) {
10762 quota = RUNTIME_INF;
10763 } else {
10764 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
10765
10766 quota = normalize_cfs_quota(tg, d);
10767 parent_quota = parent_b->hierarchical_quota;
10768
10769 /*
10770 * Ensure max(child_quota) <= parent_quota. On cgroup2,
10771 * always take the min. On cgroup1, only inherit when no
10772 * limit is set:
10773 */
10774 if (cgroup_subsys_on_dfl(cpu_cgrp_subsys)) {
10775 quota = min(quota, parent_quota);
10776 } else {
10777 if (quota == RUNTIME_INF)
10778 quota = parent_quota;
10779 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
10780 return -EINVAL;
10781 }
10782 }
10783 cfs_b->hierarchical_quota = quota;
10784
10785 return 0;
10786 }
10787
__cfs_schedulable(struct task_group * tg,u64 period,u64 quota)10788 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
10789 {
10790 int ret;
10791 struct cfs_schedulable_data data = {
10792 .tg = tg,
10793 .period = period,
10794 .quota = quota,
10795 };
10796
10797 if (quota != RUNTIME_INF) {
10798 do_div(data.period, NSEC_PER_USEC);
10799 do_div(data.quota, NSEC_PER_USEC);
10800 }
10801
10802 rcu_read_lock();
10803 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
10804 rcu_read_unlock();
10805
10806 return ret;
10807 }
10808
cpu_cfs_stat_show(struct seq_file * sf,void * v)10809 static int cpu_cfs_stat_show(struct seq_file *sf, void *v)
10810 {
10811 struct task_group *tg = css_tg(seq_css(sf));
10812 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
10813
10814 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
10815 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
10816 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
10817
10818 if (schedstat_enabled() && tg != &root_task_group) {
10819 struct sched_statistics *stats;
10820 u64 ws = 0;
10821 int i;
10822
10823 for_each_possible_cpu(i) {
10824 stats = __schedstats_from_se(tg->se[i]);
10825 ws += schedstat_val(stats->wait_sum);
10826 }
10827
10828 seq_printf(sf, "wait_sum %llu\n", ws);
10829 }
10830
10831 seq_printf(sf, "nr_bursts %d\n", cfs_b->nr_burst);
10832 seq_printf(sf, "burst_time %llu\n", cfs_b->burst_time);
10833
10834 return 0;
10835 }
10836 #endif /* CONFIG_CFS_BANDWIDTH */
10837 #endif /* CONFIG_FAIR_GROUP_SCHED */
10838
10839 #ifdef CONFIG_RT_GROUP_SCHED
cpu_rt_runtime_write(struct cgroup_subsys_state * css,struct cftype * cft,s64 val)10840 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
10841 struct cftype *cft, s64 val)
10842 {
10843 return sched_group_set_rt_runtime(css_tg(css), val);
10844 }
10845
cpu_rt_runtime_read(struct cgroup_subsys_state * css,struct cftype * cft)10846 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
10847 struct cftype *cft)
10848 {
10849 return sched_group_rt_runtime(css_tg(css));
10850 }
10851
cpu_rt_period_write_uint(struct cgroup_subsys_state * css,struct cftype * cftype,u64 rt_period_us)10852 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
10853 struct cftype *cftype, u64 rt_period_us)
10854 {
10855 return sched_group_set_rt_period(css_tg(css), rt_period_us);
10856 }
10857
cpu_rt_period_read_uint(struct cgroup_subsys_state * css,struct cftype * cft)10858 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
10859 struct cftype *cft)
10860 {
10861 return sched_group_rt_period(css_tg(css));
10862 }
10863 #endif /* CONFIG_RT_GROUP_SCHED */
10864
10865 #ifdef CONFIG_FAIR_GROUP_SCHED
cpu_idle_read_s64(struct cgroup_subsys_state * css,struct cftype * cft)10866 static s64 cpu_idle_read_s64(struct cgroup_subsys_state *css,
10867 struct cftype *cft)
10868 {
10869 return css_tg(css)->idle;
10870 }
10871
cpu_idle_write_s64(struct cgroup_subsys_state * css,struct cftype * cft,s64 idle)10872 static int cpu_idle_write_s64(struct cgroup_subsys_state *css,
10873 struct cftype *cft, s64 idle)
10874 {
10875 return sched_group_set_idle(css_tg(css), idle);
10876 }
10877 #endif
10878
10879 static struct cftype cpu_legacy_files[] = {
10880 #ifdef CONFIG_FAIR_GROUP_SCHED
10881 {
10882 .name = "shares",
10883 .read_u64 = cpu_shares_read_u64,
10884 .write_u64 = cpu_shares_write_u64,
10885 },
10886 {
10887 .name = "idle",
10888 .read_s64 = cpu_idle_read_s64,
10889 .write_s64 = cpu_idle_write_s64,
10890 },
10891 #endif
10892 #ifdef CONFIG_CFS_BANDWIDTH
10893 {
10894 .name = "cfs_quota_us",
10895 .read_s64 = cpu_cfs_quota_read_s64,
10896 .write_s64 = cpu_cfs_quota_write_s64,
10897 },
10898 {
10899 .name = "cfs_period_us",
10900 .read_u64 = cpu_cfs_period_read_u64,
10901 .write_u64 = cpu_cfs_period_write_u64,
10902 },
10903 {
10904 .name = "cfs_burst_us",
10905 .read_u64 = cpu_cfs_burst_read_u64,
10906 .write_u64 = cpu_cfs_burst_write_u64,
10907 },
10908 {
10909 .name = "stat",
10910 .seq_show = cpu_cfs_stat_show,
10911 },
10912 #endif
10913 #ifdef CONFIG_RT_GROUP_SCHED
10914 {
10915 .name = "rt_runtime_us",
10916 .read_s64 = cpu_rt_runtime_read,
10917 .write_s64 = cpu_rt_runtime_write,
10918 },
10919 {
10920 .name = "rt_period_us",
10921 .read_u64 = cpu_rt_period_read_uint,
10922 .write_u64 = cpu_rt_period_write_uint,
10923 },
10924 #endif
10925 #ifdef CONFIG_UCLAMP_TASK_GROUP
10926 {
10927 .name = "uclamp.min",
10928 .flags = CFTYPE_NOT_ON_ROOT,
10929 .seq_show = cpu_uclamp_min_show,
10930 .write = cpu_uclamp_min_write,
10931 },
10932 {
10933 .name = "uclamp.max",
10934 .flags = CFTYPE_NOT_ON_ROOT,
10935 .seq_show = cpu_uclamp_max_show,
10936 .write = cpu_uclamp_max_write,
10937 },
10938 #endif
10939 { } /* Terminate */
10940 };
10941
cpu_extra_stat_show(struct seq_file * sf,struct cgroup_subsys_state * css)10942 static int cpu_extra_stat_show(struct seq_file *sf,
10943 struct cgroup_subsys_state *css)
10944 {
10945 #ifdef CONFIG_CFS_BANDWIDTH
10946 {
10947 struct task_group *tg = css_tg(css);
10948 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
10949 u64 throttled_usec, burst_usec;
10950
10951 throttled_usec = cfs_b->throttled_time;
10952 do_div(throttled_usec, NSEC_PER_USEC);
10953 burst_usec = cfs_b->burst_time;
10954 do_div(burst_usec, NSEC_PER_USEC);
10955
10956 seq_printf(sf, "nr_periods %d\n"
10957 "nr_throttled %d\n"
10958 "throttled_usec %llu\n"
10959 "nr_bursts %d\n"
10960 "burst_usec %llu\n",
10961 cfs_b->nr_periods, cfs_b->nr_throttled,
10962 throttled_usec, cfs_b->nr_burst, burst_usec);
10963 }
10964 #endif
10965 return 0;
10966 }
10967
10968 #ifdef CONFIG_FAIR_GROUP_SCHED
cpu_weight_read_u64(struct cgroup_subsys_state * css,struct cftype * cft)10969 static u64 cpu_weight_read_u64(struct cgroup_subsys_state *css,
10970 struct cftype *cft)
10971 {
10972 struct task_group *tg = css_tg(css);
10973 u64 weight = scale_load_down(tg->shares);
10974
10975 return DIV_ROUND_CLOSEST_ULL(weight * CGROUP_WEIGHT_DFL, 1024);
10976 }
10977
cpu_weight_write_u64(struct cgroup_subsys_state * css,struct cftype * cft,u64 weight)10978 static int cpu_weight_write_u64(struct cgroup_subsys_state *css,
10979 struct cftype *cft, u64 weight)
10980 {
10981 /*
10982 * cgroup weight knobs should use the common MIN, DFL and MAX
10983 * values which are 1, 100 and 10000 respectively. While it loses
10984 * a bit of range on both ends, it maps pretty well onto the shares
10985 * value used by scheduler and the round-trip conversions preserve
10986 * the original value over the entire range.
10987 */
10988 if (weight < CGROUP_WEIGHT_MIN || weight > CGROUP_WEIGHT_MAX)
10989 return -ERANGE;
10990
10991 weight = DIV_ROUND_CLOSEST_ULL(weight * 1024, CGROUP_WEIGHT_DFL);
10992
10993 return sched_group_set_shares(css_tg(css), scale_load(weight));
10994 }
10995
cpu_weight_nice_read_s64(struct cgroup_subsys_state * css,struct cftype * cft)10996 static s64 cpu_weight_nice_read_s64(struct cgroup_subsys_state *css,
10997 struct cftype *cft)
10998 {
10999 unsigned long weight = scale_load_down(css_tg(css)->shares);
11000 int last_delta = INT_MAX;
11001 int prio, delta;
11002
11003 /* find the closest nice value to the current weight */
11004 for (prio = 0; prio < ARRAY_SIZE(sched_prio_to_weight); prio++) {
11005 delta = abs(sched_prio_to_weight[prio] - weight);
11006 if (delta >= last_delta)
11007 break;
11008 last_delta = delta;
11009 }
11010
11011 return PRIO_TO_NICE(prio - 1 + MAX_RT_PRIO);
11012 }
11013
cpu_weight_nice_write_s64(struct cgroup_subsys_state * css,struct cftype * cft,s64 nice)11014 static int cpu_weight_nice_write_s64(struct cgroup_subsys_state *css,
11015 struct cftype *cft, s64 nice)
11016 {
11017 unsigned long weight;
11018 int idx;
11019
11020 if (nice < MIN_NICE || nice > MAX_NICE)
11021 return -ERANGE;
11022
11023 idx = NICE_TO_PRIO(nice) - MAX_RT_PRIO;
11024 idx = array_index_nospec(idx, 40);
11025 weight = sched_prio_to_weight[idx];
11026
11027 return sched_group_set_shares(css_tg(css), scale_load(weight));
11028 }
11029 #endif
11030
cpu_period_quota_print(struct seq_file * sf,long period,long quota)11031 static void __maybe_unused cpu_period_quota_print(struct seq_file *sf,
11032 long period, long quota)
11033 {
11034 if (quota < 0)
11035 seq_puts(sf, "max");
11036 else
11037 seq_printf(sf, "%ld", quota);
11038
11039 seq_printf(sf, " %ld\n", period);
11040 }
11041
11042 /* caller should put the current value in *@periodp before calling */
cpu_period_quota_parse(char * buf,u64 * periodp,u64 * quotap)11043 static int __maybe_unused cpu_period_quota_parse(char *buf,
11044 u64 *periodp, u64 *quotap)
11045 {
11046 char tok[21]; /* U64_MAX */
11047
11048 if (sscanf(buf, "%20s %llu", tok, periodp) < 1)
11049 return -EINVAL;
11050
11051 *periodp *= NSEC_PER_USEC;
11052
11053 if (sscanf(tok, "%llu", quotap))
11054 *quotap *= NSEC_PER_USEC;
11055 else if (!strcmp(tok, "max"))
11056 *quotap = RUNTIME_INF;
11057 else
11058 return -EINVAL;
11059
11060 return 0;
11061 }
11062
11063 #ifdef CONFIG_CFS_BANDWIDTH
cpu_max_show(struct seq_file * sf,void * v)11064 static int cpu_max_show(struct seq_file *sf, void *v)
11065 {
11066 struct task_group *tg = css_tg(seq_css(sf));
11067
11068 cpu_period_quota_print(sf, tg_get_cfs_period(tg), tg_get_cfs_quota(tg));
11069 return 0;
11070 }
11071
cpu_max_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)11072 static ssize_t cpu_max_write(struct kernfs_open_file *of,
11073 char *buf, size_t nbytes, loff_t off)
11074 {
11075 struct task_group *tg = css_tg(of_css(of));
11076 u64 period = tg_get_cfs_period(tg);
11077 u64 burst = tg_get_cfs_burst(tg);
11078 u64 quota;
11079 int ret;
11080
11081 ret = cpu_period_quota_parse(buf, &period, "a);
11082 if (!ret)
11083 ret = tg_set_cfs_bandwidth(tg, period, quota, burst);
11084 return ret ?: nbytes;
11085 }
11086 #endif
11087
11088 static struct cftype cpu_files[] = {
11089 #ifdef CONFIG_FAIR_GROUP_SCHED
11090 {
11091 .name = "weight",
11092 .flags = CFTYPE_NOT_ON_ROOT,
11093 .read_u64 = cpu_weight_read_u64,
11094 .write_u64 = cpu_weight_write_u64,
11095 },
11096 {
11097 .name = "weight.nice",
11098 .flags = CFTYPE_NOT_ON_ROOT,
11099 .read_s64 = cpu_weight_nice_read_s64,
11100 .write_s64 = cpu_weight_nice_write_s64,
11101 },
11102 {
11103 .name = "idle",
11104 .flags = CFTYPE_NOT_ON_ROOT,
11105 .read_s64 = cpu_idle_read_s64,
11106 .write_s64 = cpu_idle_write_s64,
11107 },
11108 #endif
11109 #ifdef CONFIG_CFS_BANDWIDTH
11110 {
11111 .name = "max",
11112 .flags = CFTYPE_NOT_ON_ROOT,
11113 .seq_show = cpu_max_show,
11114 .write = cpu_max_write,
11115 },
11116 {
11117 .name = "max.burst",
11118 .flags = CFTYPE_NOT_ON_ROOT,
11119 .read_u64 = cpu_cfs_burst_read_u64,
11120 .write_u64 = cpu_cfs_burst_write_u64,
11121 },
11122 #endif
11123 #ifdef CONFIG_UCLAMP_TASK_GROUP
11124 {
11125 .name = "uclamp.min",
11126 .flags = CFTYPE_NOT_ON_ROOT,
11127 .seq_show = cpu_uclamp_min_show,
11128 .write = cpu_uclamp_min_write,
11129 },
11130 {
11131 .name = "uclamp.max",
11132 .flags = CFTYPE_NOT_ON_ROOT,
11133 .seq_show = cpu_uclamp_max_show,
11134 .write = cpu_uclamp_max_write,
11135 },
11136 #endif
11137 { } /* terminate */
11138 };
11139
11140 struct cgroup_subsys cpu_cgrp_subsys = {
11141 .css_alloc = cpu_cgroup_css_alloc,
11142 .css_online = cpu_cgroup_css_online,
11143 .css_released = cpu_cgroup_css_released,
11144 .css_free = cpu_cgroup_css_free,
11145 .css_extra_stat_show = cpu_extra_stat_show,
11146 .fork = cpu_cgroup_fork,
11147 .can_attach = cpu_cgroup_can_attach,
11148 .attach = cpu_cgroup_attach,
11149 .legacy_cftypes = cpu_legacy_files,
11150 .dfl_cftypes = cpu_files,
11151 .early_init = true,
11152 .threaded = true,
11153 };
11154
11155 #endif /* CONFIG_CGROUP_SCHED */
11156
dump_cpu_task(int cpu)11157 void dump_cpu_task(int cpu)
11158 {
11159 pr_info("Task dump for CPU %d:\n", cpu);
11160 sched_show_task(cpu_curr(cpu));
11161 }
11162
11163 /*
11164 * Nice levels are multiplicative, with a gentle 10% change for every
11165 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
11166 * nice 1, it will get ~10% less CPU time than another CPU-bound task
11167 * that remained on nice 0.
11168 *
11169 * The "10% effect" is relative and cumulative: from _any_ nice level,
11170 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
11171 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
11172 * If a task goes up by ~10% and another task goes down by ~10% then
11173 * the relative distance between them is ~25%.)
11174 */
11175 const int sched_prio_to_weight[40] = {
11176 /* -20 */ 88761, 71755, 56483, 46273, 36291,
11177 /* -15 */ 29154, 23254, 18705, 14949, 11916,
11178 /* -10 */ 9548, 7620, 6100, 4904, 3906,
11179 /* -5 */ 3121, 2501, 1991, 1586, 1277,
11180 /* 0 */ 1024, 820, 655, 526, 423,
11181 /* 5 */ 335, 272, 215, 172, 137,
11182 /* 10 */ 110, 87, 70, 56, 45,
11183 /* 15 */ 36, 29, 23, 18, 15,
11184 };
11185
11186 /*
11187 * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated.
11188 *
11189 * In cases where the weight does not change often, we can use the
11190 * precalculated inverse to speed up arithmetics by turning divisions
11191 * into multiplications:
11192 */
11193 const u32 sched_prio_to_wmult[40] = {
11194 /* -20 */ 48388, 59856, 76040, 92818, 118348,
11195 /* -15 */ 147320, 184698, 229616, 287308, 360437,
11196 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
11197 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
11198 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
11199 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
11200 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
11201 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
11202 };
11203
call_trace_sched_update_nr_running(struct rq * rq,int count)11204 void call_trace_sched_update_nr_running(struct rq *rq, int count)
11205 {
11206 trace_sched_update_nr_running_tp(rq, count);
11207 }
11208