1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Serial Attached SCSI (SAS) Expander discovery and configuration
4 *
5 * Copyright (C) 2005 Adaptec, Inc. All rights reserved.
6 * Copyright (C) 2005 Luben Tuikov <luben_tuikov@adaptec.com>
7 *
8 * This file is licensed under GPLv2.
9 */
10
11 #include <linux/scatterlist.h>
12 #include <linux/blkdev.h>
13 #include <linux/slab.h>
14 #include <asm/unaligned.h>
15
16 #include "sas_internal.h"
17
18 #include <scsi/sas_ata.h>
19 #include <scsi/scsi_transport.h>
20 #include <scsi/scsi_transport_sas.h>
21 #include "scsi_sas_internal.h"
22
23 static int sas_discover_expander(struct domain_device *dev);
24 static int sas_configure_routing(struct domain_device *dev, u8 *sas_addr);
25 static int sas_configure_phy(struct domain_device *dev, int phy_id,
26 u8 *sas_addr, int include);
27 static int sas_disable_routing(struct domain_device *dev, u8 *sas_addr);
28
29 /* ---------- SMP task management ---------- */
30
31 /* Give it some long enough timeout. In seconds. */
32 #define SMP_TIMEOUT 10
33
smp_execute_task_sg(struct domain_device * dev,struct scatterlist * req,struct scatterlist * resp)34 static int smp_execute_task_sg(struct domain_device *dev,
35 struct scatterlist *req, struct scatterlist *resp)
36 {
37 int res, retry;
38 struct sas_task *task = NULL;
39 struct sas_internal *i =
40 to_sas_internal(dev->port->ha->core.shost->transportt);
41 struct sas_ha_struct *ha = dev->port->ha;
42
43 pm_runtime_get_sync(ha->dev);
44 mutex_lock(&dev->ex_dev.cmd_mutex);
45 for (retry = 0; retry < 3; retry++) {
46 if (test_bit(SAS_DEV_GONE, &dev->state)) {
47 res = -ECOMM;
48 break;
49 }
50
51 task = sas_alloc_slow_task(GFP_KERNEL);
52 if (!task) {
53 res = -ENOMEM;
54 break;
55 }
56 task->dev = dev;
57 task->task_proto = dev->tproto;
58 task->smp_task.smp_req = *req;
59 task->smp_task.smp_resp = *resp;
60
61 task->task_done = sas_task_internal_done;
62
63 task->slow_task->timer.function = sas_task_internal_timedout;
64 task->slow_task->timer.expires = jiffies + SMP_TIMEOUT*HZ;
65 add_timer(&task->slow_task->timer);
66
67 res = i->dft->lldd_execute_task(task, GFP_KERNEL);
68
69 if (res) {
70 del_timer(&task->slow_task->timer);
71 pr_notice("executing SMP task failed:%d\n", res);
72 break;
73 }
74
75 wait_for_completion(&task->slow_task->completion);
76 res = -ECOMM;
77 if ((task->task_state_flags & SAS_TASK_STATE_ABORTED)) {
78 pr_notice("smp task timed out or aborted\n");
79 i->dft->lldd_abort_task(task);
80 if (!(task->task_state_flags & SAS_TASK_STATE_DONE)) {
81 pr_notice("SMP task aborted and not done\n");
82 break;
83 }
84 }
85 if (task->task_status.resp == SAS_TASK_COMPLETE &&
86 task->task_status.stat == SAS_SAM_STAT_GOOD) {
87 res = 0;
88 break;
89 }
90 if (task->task_status.resp == SAS_TASK_COMPLETE &&
91 task->task_status.stat == SAS_DATA_UNDERRUN) {
92 /* no error, but return the number of bytes of
93 * underrun */
94 res = task->task_status.residual;
95 break;
96 }
97 if (task->task_status.resp == SAS_TASK_COMPLETE &&
98 task->task_status.stat == SAS_DATA_OVERRUN) {
99 res = -EMSGSIZE;
100 break;
101 }
102 if (task->task_status.resp == SAS_TASK_UNDELIVERED &&
103 task->task_status.stat == SAS_DEVICE_UNKNOWN)
104 break;
105 else {
106 pr_notice("%s: task to dev %016llx response: 0x%x status 0x%x\n",
107 __func__,
108 SAS_ADDR(dev->sas_addr),
109 task->task_status.resp,
110 task->task_status.stat);
111 sas_free_task(task);
112 task = NULL;
113 }
114 }
115 mutex_unlock(&dev->ex_dev.cmd_mutex);
116 pm_runtime_put_sync(ha->dev);
117
118 BUG_ON(retry == 3 && task != NULL);
119 sas_free_task(task);
120 return res;
121 }
122
smp_execute_task(struct domain_device * dev,void * req,int req_size,void * resp,int resp_size)123 static int smp_execute_task(struct domain_device *dev, void *req, int req_size,
124 void *resp, int resp_size)
125 {
126 struct scatterlist req_sg;
127 struct scatterlist resp_sg;
128
129 sg_init_one(&req_sg, req, req_size);
130 sg_init_one(&resp_sg, resp, resp_size);
131 return smp_execute_task_sg(dev, &req_sg, &resp_sg);
132 }
133
134 /* ---------- Allocations ---------- */
135
alloc_smp_req(int size)136 static inline void *alloc_smp_req(int size)
137 {
138 u8 *p = kzalloc(size, GFP_KERNEL);
139 if (p)
140 p[0] = SMP_REQUEST;
141 return p;
142 }
143
alloc_smp_resp(int size)144 static inline void *alloc_smp_resp(int size)
145 {
146 return kzalloc(size, GFP_KERNEL);
147 }
148
sas_route_char(struct domain_device * dev,struct ex_phy * phy)149 static char sas_route_char(struct domain_device *dev, struct ex_phy *phy)
150 {
151 switch (phy->routing_attr) {
152 case TABLE_ROUTING:
153 if (dev->ex_dev.t2t_supp)
154 return 'U';
155 else
156 return 'T';
157 case DIRECT_ROUTING:
158 return 'D';
159 case SUBTRACTIVE_ROUTING:
160 return 'S';
161 default:
162 return '?';
163 }
164 }
165
to_dev_type(struct discover_resp * dr)166 static enum sas_device_type to_dev_type(struct discover_resp *dr)
167 {
168 /* This is detecting a failure to transmit initial dev to host
169 * FIS as described in section J.5 of sas-2 r16
170 */
171 if (dr->attached_dev_type == SAS_PHY_UNUSED && dr->attached_sata_dev &&
172 dr->linkrate >= SAS_LINK_RATE_1_5_GBPS)
173 return SAS_SATA_PENDING;
174 else
175 return dr->attached_dev_type;
176 }
177
sas_set_ex_phy(struct domain_device * dev,int phy_id,void * rsp)178 static void sas_set_ex_phy(struct domain_device *dev, int phy_id, void *rsp)
179 {
180 enum sas_device_type dev_type;
181 enum sas_linkrate linkrate;
182 u8 sas_addr[SAS_ADDR_SIZE];
183 struct smp_resp *resp = rsp;
184 struct discover_resp *dr = &resp->disc;
185 struct sas_ha_struct *ha = dev->port->ha;
186 struct expander_device *ex = &dev->ex_dev;
187 struct ex_phy *phy = &ex->ex_phy[phy_id];
188 struct sas_rphy *rphy = dev->rphy;
189 bool new_phy = !phy->phy;
190 char *type;
191
192 if (new_phy) {
193 if (WARN_ON_ONCE(test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state)))
194 return;
195 phy->phy = sas_phy_alloc(&rphy->dev, phy_id);
196
197 /* FIXME: error_handling */
198 BUG_ON(!phy->phy);
199 }
200
201 switch (resp->result) {
202 case SMP_RESP_PHY_VACANT:
203 phy->phy_state = PHY_VACANT;
204 break;
205 default:
206 phy->phy_state = PHY_NOT_PRESENT;
207 break;
208 case SMP_RESP_FUNC_ACC:
209 phy->phy_state = PHY_EMPTY; /* do not know yet */
210 break;
211 }
212
213 /* check if anything important changed to squelch debug */
214 dev_type = phy->attached_dev_type;
215 linkrate = phy->linkrate;
216 memcpy(sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
217
218 /* Handle vacant phy - rest of dr data is not valid so skip it */
219 if (phy->phy_state == PHY_VACANT) {
220 memset(phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
221 phy->attached_dev_type = SAS_PHY_UNUSED;
222 if (!test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state)) {
223 phy->phy_id = phy_id;
224 goto skip;
225 } else
226 goto out;
227 }
228
229 phy->attached_dev_type = to_dev_type(dr);
230 if (test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state))
231 goto out;
232 phy->phy_id = phy_id;
233 phy->linkrate = dr->linkrate;
234 phy->attached_sata_host = dr->attached_sata_host;
235 phy->attached_sata_dev = dr->attached_sata_dev;
236 phy->attached_sata_ps = dr->attached_sata_ps;
237 phy->attached_iproto = dr->iproto << 1;
238 phy->attached_tproto = dr->tproto << 1;
239 /* help some expanders that fail to zero sas_address in the 'no
240 * device' case
241 */
242 if (phy->attached_dev_type == SAS_PHY_UNUSED ||
243 phy->linkrate < SAS_LINK_RATE_1_5_GBPS)
244 memset(phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
245 else
246 memcpy(phy->attached_sas_addr, dr->attached_sas_addr, SAS_ADDR_SIZE);
247 phy->attached_phy_id = dr->attached_phy_id;
248 phy->phy_change_count = dr->change_count;
249 phy->routing_attr = dr->routing_attr;
250 phy->virtual = dr->virtual;
251 phy->last_da_index = -1;
252
253 phy->phy->identify.sas_address = SAS_ADDR(phy->attached_sas_addr);
254 phy->phy->identify.device_type = dr->attached_dev_type;
255 phy->phy->identify.initiator_port_protocols = phy->attached_iproto;
256 phy->phy->identify.target_port_protocols = phy->attached_tproto;
257 if (!phy->attached_tproto && dr->attached_sata_dev)
258 phy->phy->identify.target_port_protocols = SAS_PROTOCOL_SATA;
259 phy->phy->identify.phy_identifier = phy_id;
260 phy->phy->minimum_linkrate_hw = dr->hmin_linkrate;
261 phy->phy->maximum_linkrate_hw = dr->hmax_linkrate;
262 phy->phy->minimum_linkrate = dr->pmin_linkrate;
263 phy->phy->maximum_linkrate = dr->pmax_linkrate;
264 phy->phy->negotiated_linkrate = phy->linkrate;
265 phy->phy->enabled = (phy->linkrate != SAS_PHY_DISABLED);
266
267 skip:
268 if (new_phy)
269 if (sas_phy_add(phy->phy)) {
270 sas_phy_free(phy->phy);
271 return;
272 }
273
274 out:
275 switch (phy->attached_dev_type) {
276 case SAS_SATA_PENDING:
277 type = "stp pending";
278 break;
279 case SAS_PHY_UNUSED:
280 type = "no device";
281 break;
282 case SAS_END_DEVICE:
283 if (phy->attached_iproto) {
284 if (phy->attached_tproto)
285 type = "host+target";
286 else
287 type = "host";
288 } else {
289 if (dr->attached_sata_dev)
290 type = "stp";
291 else
292 type = "ssp";
293 }
294 break;
295 case SAS_EDGE_EXPANDER_DEVICE:
296 case SAS_FANOUT_EXPANDER_DEVICE:
297 type = "smp";
298 break;
299 default:
300 type = "unknown";
301 }
302
303 /* this routine is polled by libata error recovery so filter
304 * unimportant messages
305 */
306 if (new_phy || phy->attached_dev_type != dev_type ||
307 phy->linkrate != linkrate ||
308 SAS_ADDR(phy->attached_sas_addr) != SAS_ADDR(sas_addr))
309 /* pass */;
310 else
311 return;
312
313 /* if the attached device type changed and ata_eh is active,
314 * make sure we run revalidation when eh completes (see:
315 * sas_enable_revalidation)
316 */
317 if (test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state))
318 set_bit(DISCE_REVALIDATE_DOMAIN, &dev->port->disc.pending);
319
320 pr_debug("%sex %016llx phy%02d:%c:%X attached: %016llx (%s)\n",
321 test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state) ? "ata: " : "",
322 SAS_ADDR(dev->sas_addr), phy->phy_id,
323 sas_route_char(dev, phy), phy->linkrate,
324 SAS_ADDR(phy->attached_sas_addr), type);
325 }
326
327 /* check if we have an existing attached ata device on this expander phy */
sas_ex_to_ata(struct domain_device * ex_dev,int phy_id)328 struct domain_device *sas_ex_to_ata(struct domain_device *ex_dev, int phy_id)
329 {
330 struct ex_phy *ex_phy = &ex_dev->ex_dev.ex_phy[phy_id];
331 struct domain_device *dev;
332 struct sas_rphy *rphy;
333
334 if (!ex_phy->port)
335 return NULL;
336
337 rphy = ex_phy->port->rphy;
338 if (!rphy)
339 return NULL;
340
341 dev = sas_find_dev_by_rphy(rphy);
342
343 if (dev && dev_is_sata(dev))
344 return dev;
345
346 return NULL;
347 }
348
349 #define DISCOVER_REQ_SIZE 16
350 #define DISCOVER_RESP_SIZE 56
351
sas_ex_phy_discover_helper(struct domain_device * dev,u8 * disc_req,u8 * disc_resp,int single)352 static int sas_ex_phy_discover_helper(struct domain_device *dev, u8 *disc_req,
353 u8 *disc_resp, int single)
354 {
355 struct discover_resp *dr;
356 int res;
357
358 disc_req[9] = single;
359
360 res = smp_execute_task(dev, disc_req, DISCOVER_REQ_SIZE,
361 disc_resp, DISCOVER_RESP_SIZE);
362 if (res)
363 return res;
364 dr = &((struct smp_resp *)disc_resp)->disc;
365 if (memcmp(dev->sas_addr, dr->attached_sas_addr, SAS_ADDR_SIZE) == 0) {
366 pr_notice("Found loopback topology, just ignore it!\n");
367 return 0;
368 }
369 sas_set_ex_phy(dev, single, disc_resp);
370 return 0;
371 }
372
sas_ex_phy_discover(struct domain_device * dev,int single)373 int sas_ex_phy_discover(struct domain_device *dev, int single)
374 {
375 struct expander_device *ex = &dev->ex_dev;
376 int res = 0;
377 u8 *disc_req;
378 u8 *disc_resp;
379
380 disc_req = alloc_smp_req(DISCOVER_REQ_SIZE);
381 if (!disc_req)
382 return -ENOMEM;
383
384 disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE);
385 if (!disc_resp) {
386 kfree(disc_req);
387 return -ENOMEM;
388 }
389
390 disc_req[1] = SMP_DISCOVER;
391
392 if (0 <= single && single < ex->num_phys) {
393 res = sas_ex_phy_discover_helper(dev, disc_req, disc_resp, single);
394 } else {
395 int i;
396
397 for (i = 0; i < ex->num_phys; i++) {
398 res = sas_ex_phy_discover_helper(dev, disc_req,
399 disc_resp, i);
400 if (res)
401 goto out_err;
402 }
403 }
404 out_err:
405 kfree(disc_resp);
406 kfree(disc_req);
407 return res;
408 }
409
sas_expander_discover(struct domain_device * dev)410 static int sas_expander_discover(struct domain_device *dev)
411 {
412 struct expander_device *ex = &dev->ex_dev;
413 int res;
414
415 ex->ex_phy = kcalloc(ex->num_phys, sizeof(*ex->ex_phy), GFP_KERNEL);
416 if (!ex->ex_phy)
417 return -ENOMEM;
418
419 res = sas_ex_phy_discover(dev, -1);
420 if (res)
421 goto out_err;
422
423 return 0;
424 out_err:
425 kfree(ex->ex_phy);
426 ex->ex_phy = NULL;
427 return res;
428 }
429
430 #define MAX_EXPANDER_PHYS 128
431
ex_assign_report_general(struct domain_device * dev,struct smp_resp * resp)432 static void ex_assign_report_general(struct domain_device *dev,
433 struct smp_resp *resp)
434 {
435 struct report_general_resp *rg = &resp->rg;
436
437 dev->ex_dev.ex_change_count = be16_to_cpu(rg->change_count);
438 dev->ex_dev.max_route_indexes = be16_to_cpu(rg->route_indexes);
439 dev->ex_dev.num_phys = min(rg->num_phys, (u8)MAX_EXPANDER_PHYS);
440 dev->ex_dev.t2t_supp = rg->t2t_supp;
441 dev->ex_dev.conf_route_table = rg->conf_route_table;
442 dev->ex_dev.configuring = rg->configuring;
443 memcpy(dev->ex_dev.enclosure_logical_id, rg->enclosure_logical_id, 8);
444 }
445
446 #define RG_REQ_SIZE 8
447 #define RG_RESP_SIZE 32
448
sas_ex_general(struct domain_device * dev)449 static int sas_ex_general(struct domain_device *dev)
450 {
451 u8 *rg_req;
452 struct smp_resp *rg_resp;
453 int res;
454 int i;
455
456 rg_req = alloc_smp_req(RG_REQ_SIZE);
457 if (!rg_req)
458 return -ENOMEM;
459
460 rg_resp = alloc_smp_resp(RG_RESP_SIZE);
461 if (!rg_resp) {
462 kfree(rg_req);
463 return -ENOMEM;
464 }
465
466 rg_req[1] = SMP_REPORT_GENERAL;
467
468 for (i = 0; i < 5; i++) {
469 res = smp_execute_task(dev, rg_req, RG_REQ_SIZE, rg_resp,
470 RG_RESP_SIZE);
471
472 if (res) {
473 pr_notice("RG to ex %016llx failed:0x%x\n",
474 SAS_ADDR(dev->sas_addr), res);
475 goto out;
476 } else if (rg_resp->result != SMP_RESP_FUNC_ACC) {
477 pr_debug("RG:ex %016llx returned SMP result:0x%x\n",
478 SAS_ADDR(dev->sas_addr), rg_resp->result);
479 res = rg_resp->result;
480 goto out;
481 }
482
483 ex_assign_report_general(dev, rg_resp);
484
485 if (dev->ex_dev.configuring) {
486 pr_debug("RG: ex %016llx self-configuring...\n",
487 SAS_ADDR(dev->sas_addr));
488 schedule_timeout_interruptible(5*HZ);
489 } else
490 break;
491 }
492 out:
493 kfree(rg_req);
494 kfree(rg_resp);
495 return res;
496 }
497
ex_assign_manuf_info(struct domain_device * dev,void * _mi_resp)498 static void ex_assign_manuf_info(struct domain_device *dev, void
499 *_mi_resp)
500 {
501 u8 *mi_resp = _mi_resp;
502 struct sas_rphy *rphy = dev->rphy;
503 struct sas_expander_device *edev = rphy_to_expander_device(rphy);
504
505 memcpy(edev->vendor_id, mi_resp + 12, SAS_EXPANDER_VENDOR_ID_LEN);
506 memcpy(edev->product_id, mi_resp + 20, SAS_EXPANDER_PRODUCT_ID_LEN);
507 memcpy(edev->product_rev, mi_resp + 36,
508 SAS_EXPANDER_PRODUCT_REV_LEN);
509
510 if (mi_resp[8] & 1) {
511 memcpy(edev->component_vendor_id, mi_resp + 40,
512 SAS_EXPANDER_COMPONENT_VENDOR_ID_LEN);
513 edev->component_id = mi_resp[48] << 8 | mi_resp[49];
514 edev->component_revision_id = mi_resp[50];
515 }
516 }
517
518 #define MI_REQ_SIZE 8
519 #define MI_RESP_SIZE 64
520
sas_ex_manuf_info(struct domain_device * dev)521 static int sas_ex_manuf_info(struct domain_device *dev)
522 {
523 u8 *mi_req;
524 u8 *mi_resp;
525 int res;
526
527 mi_req = alloc_smp_req(MI_REQ_SIZE);
528 if (!mi_req)
529 return -ENOMEM;
530
531 mi_resp = alloc_smp_resp(MI_RESP_SIZE);
532 if (!mi_resp) {
533 kfree(mi_req);
534 return -ENOMEM;
535 }
536
537 mi_req[1] = SMP_REPORT_MANUF_INFO;
538
539 res = smp_execute_task(dev, mi_req, MI_REQ_SIZE, mi_resp, MI_RESP_SIZE);
540 if (res) {
541 pr_notice("MI: ex %016llx failed:0x%x\n",
542 SAS_ADDR(dev->sas_addr), res);
543 goto out;
544 } else if (mi_resp[2] != SMP_RESP_FUNC_ACC) {
545 pr_debug("MI ex %016llx returned SMP result:0x%x\n",
546 SAS_ADDR(dev->sas_addr), mi_resp[2]);
547 goto out;
548 }
549
550 ex_assign_manuf_info(dev, mi_resp);
551 out:
552 kfree(mi_req);
553 kfree(mi_resp);
554 return res;
555 }
556
557 #define PC_REQ_SIZE 44
558 #define PC_RESP_SIZE 8
559
sas_smp_phy_control(struct domain_device * dev,int phy_id,enum phy_func phy_func,struct sas_phy_linkrates * rates)560 int sas_smp_phy_control(struct domain_device *dev, int phy_id,
561 enum phy_func phy_func,
562 struct sas_phy_linkrates *rates)
563 {
564 u8 *pc_req;
565 u8 *pc_resp;
566 int res;
567
568 pc_req = alloc_smp_req(PC_REQ_SIZE);
569 if (!pc_req)
570 return -ENOMEM;
571
572 pc_resp = alloc_smp_resp(PC_RESP_SIZE);
573 if (!pc_resp) {
574 kfree(pc_req);
575 return -ENOMEM;
576 }
577
578 pc_req[1] = SMP_PHY_CONTROL;
579 pc_req[9] = phy_id;
580 pc_req[10] = phy_func;
581 if (rates) {
582 pc_req[32] = rates->minimum_linkrate << 4;
583 pc_req[33] = rates->maximum_linkrate << 4;
584 }
585
586 res = smp_execute_task(dev, pc_req, PC_REQ_SIZE, pc_resp, PC_RESP_SIZE);
587 if (res) {
588 pr_err("ex %016llx phy%02d PHY control failed: %d\n",
589 SAS_ADDR(dev->sas_addr), phy_id, res);
590 } else if (pc_resp[2] != SMP_RESP_FUNC_ACC) {
591 pr_err("ex %016llx phy%02d PHY control failed: function result 0x%x\n",
592 SAS_ADDR(dev->sas_addr), phy_id, pc_resp[2]);
593 res = pc_resp[2];
594 }
595 kfree(pc_resp);
596 kfree(pc_req);
597 return res;
598 }
599
sas_ex_disable_phy(struct domain_device * dev,int phy_id)600 static void sas_ex_disable_phy(struct domain_device *dev, int phy_id)
601 {
602 struct expander_device *ex = &dev->ex_dev;
603 struct ex_phy *phy = &ex->ex_phy[phy_id];
604
605 sas_smp_phy_control(dev, phy_id, PHY_FUNC_DISABLE, NULL);
606 phy->linkrate = SAS_PHY_DISABLED;
607 }
608
sas_ex_disable_port(struct domain_device * dev,u8 * sas_addr)609 static void sas_ex_disable_port(struct domain_device *dev, u8 *sas_addr)
610 {
611 struct expander_device *ex = &dev->ex_dev;
612 int i;
613
614 for (i = 0; i < ex->num_phys; i++) {
615 struct ex_phy *phy = &ex->ex_phy[i];
616
617 if (phy->phy_state == PHY_VACANT ||
618 phy->phy_state == PHY_NOT_PRESENT)
619 continue;
620
621 if (SAS_ADDR(phy->attached_sas_addr) == SAS_ADDR(sas_addr))
622 sas_ex_disable_phy(dev, i);
623 }
624 }
625
sas_dev_present_in_domain(struct asd_sas_port * port,u8 * sas_addr)626 static int sas_dev_present_in_domain(struct asd_sas_port *port,
627 u8 *sas_addr)
628 {
629 struct domain_device *dev;
630
631 if (SAS_ADDR(port->sas_addr) == SAS_ADDR(sas_addr))
632 return 1;
633 list_for_each_entry(dev, &port->dev_list, dev_list_node) {
634 if (SAS_ADDR(dev->sas_addr) == SAS_ADDR(sas_addr))
635 return 1;
636 }
637 return 0;
638 }
639
640 #define RPEL_REQ_SIZE 16
641 #define RPEL_RESP_SIZE 32
sas_smp_get_phy_events(struct sas_phy * phy)642 int sas_smp_get_phy_events(struct sas_phy *phy)
643 {
644 int res;
645 u8 *req;
646 u8 *resp;
647 struct sas_rphy *rphy = dev_to_rphy(phy->dev.parent);
648 struct domain_device *dev = sas_find_dev_by_rphy(rphy);
649
650 req = alloc_smp_req(RPEL_REQ_SIZE);
651 if (!req)
652 return -ENOMEM;
653
654 resp = alloc_smp_resp(RPEL_RESP_SIZE);
655 if (!resp) {
656 kfree(req);
657 return -ENOMEM;
658 }
659
660 req[1] = SMP_REPORT_PHY_ERR_LOG;
661 req[9] = phy->number;
662
663 res = smp_execute_task(dev, req, RPEL_REQ_SIZE,
664 resp, RPEL_RESP_SIZE);
665
666 if (res)
667 goto out;
668
669 phy->invalid_dword_count = get_unaligned_be32(&resp[12]);
670 phy->running_disparity_error_count = get_unaligned_be32(&resp[16]);
671 phy->loss_of_dword_sync_count = get_unaligned_be32(&resp[20]);
672 phy->phy_reset_problem_count = get_unaligned_be32(&resp[24]);
673
674 out:
675 kfree(req);
676 kfree(resp);
677 return res;
678
679 }
680
681 #ifdef CONFIG_SCSI_SAS_ATA
682
683 #define RPS_REQ_SIZE 16
684 #define RPS_RESP_SIZE 60
685
sas_get_report_phy_sata(struct domain_device * dev,int phy_id,struct smp_resp * rps_resp)686 int sas_get_report_phy_sata(struct domain_device *dev, int phy_id,
687 struct smp_resp *rps_resp)
688 {
689 int res;
690 u8 *rps_req = alloc_smp_req(RPS_REQ_SIZE);
691 u8 *resp = (u8 *)rps_resp;
692
693 if (!rps_req)
694 return -ENOMEM;
695
696 rps_req[1] = SMP_REPORT_PHY_SATA;
697 rps_req[9] = phy_id;
698
699 res = smp_execute_task(dev, rps_req, RPS_REQ_SIZE,
700 rps_resp, RPS_RESP_SIZE);
701
702 /* 0x34 is the FIS type for the D2H fis. There's a potential
703 * standards cockup here. sas-2 explicitly specifies the FIS
704 * should be encoded so that FIS type is in resp[24].
705 * However, some expanders endian reverse this. Undo the
706 * reversal here */
707 if (!res && resp[27] == 0x34 && resp[24] != 0x34) {
708 int i;
709
710 for (i = 0; i < 5; i++) {
711 int j = 24 + (i*4);
712 u8 a, b;
713 a = resp[j + 0];
714 b = resp[j + 1];
715 resp[j + 0] = resp[j + 3];
716 resp[j + 1] = resp[j + 2];
717 resp[j + 2] = b;
718 resp[j + 3] = a;
719 }
720 }
721
722 kfree(rps_req);
723 return res;
724 }
725 #endif
726
sas_ex_get_linkrate(struct domain_device * parent,struct domain_device * child,struct ex_phy * parent_phy)727 static void sas_ex_get_linkrate(struct domain_device *parent,
728 struct domain_device *child,
729 struct ex_phy *parent_phy)
730 {
731 struct expander_device *parent_ex = &parent->ex_dev;
732 struct sas_port *port;
733 int i;
734
735 child->pathways = 0;
736
737 port = parent_phy->port;
738
739 for (i = 0; i < parent_ex->num_phys; i++) {
740 struct ex_phy *phy = &parent_ex->ex_phy[i];
741
742 if (phy->phy_state == PHY_VACANT ||
743 phy->phy_state == PHY_NOT_PRESENT)
744 continue;
745
746 if (SAS_ADDR(phy->attached_sas_addr) ==
747 SAS_ADDR(child->sas_addr)) {
748
749 child->min_linkrate = min(parent->min_linkrate,
750 phy->linkrate);
751 child->max_linkrate = max(parent->max_linkrate,
752 phy->linkrate);
753 child->pathways++;
754 sas_port_add_phy(port, phy->phy);
755 }
756 }
757 child->linkrate = min(parent_phy->linkrate, child->max_linkrate);
758 child->pathways = min(child->pathways, parent->pathways);
759 }
760
sas_ex_discover_end_dev(struct domain_device * parent,int phy_id)761 static struct domain_device *sas_ex_discover_end_dev(
762 struct domain_device *parent, int phy_id)
763 {
764 struct expander_device *parent_ex = &parent->ex_dev;
765 struct ex_phy *phy = &parent_ex->ex_phy[phy_id];
766 struct domain_device *child = NULL;
767 struct sas_rphy *rphy;
768 int res;
769
770 if (phy->attached_sata_host || phy->attached_sata_ps)
771 return NULL;
772
773 child = sas_alloc_device();
774 if (!child)
775 return NULL;
776
777 kref_get(&parent->kref);
778 child->parent = parent;
779 child->port = parent->port;
780 child->iproto = phy->attached_iproto;
781 memcpy(child->sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
782 sas_hash_addr(child->hashed_sas_addr, child->sas_addr);
783 if (!phy->port) {
784 phy->port = sas_port_alloc(&parent->rphy->dev, phy_id);
785 if (unlikely(!phy->port))
786 goto out_err;
787 if (unlikely(sas_port_add(phy->port) != 0)) {
788 sas_port_free(phy->port);
789 goto out_err;
790 }
791 }
792 sas_ex_get_linkrate(parent, child, phy);
793 sas_device_set_phy(child, phy->port);
794
795 #ifdef CONFIG_SCSI_SAS_ATA
796 if ((phy->attached_tproto & SAS_PROTOCOL_STP) || phy->attached_sata_dev) {
797 if (child->linkrate > parent->min_linkrate) {
798 struct sas_phy *cphy = child->phy;
799 enum sas_linkrate min_prate = cphy->minimum_linkrate,
800 parent_min_lrate = parent->min_linkrate,
801 min_linkrate = (min_prate > parent_min_lrate) ?
802 parent_min_lrate : 0;
803 struct sas_phy_linkrates rates = {
804 .maximum_linkrate = parent->min_linkrate,
805 .minimum_linkrate = min_linkrate,
806 };
807 int ret;
808
809 pr_notice("ex %016llx phy%02d SATA device linkrate > min pathway connection rate, attempting to lower device linkrate\n",
810 SAS_ADDR(child->sas_addr), phy_id);
811 ret = sas_smp_phy_control(parent, phy_id,
812 PHY_FUNC_LINK_RESET, &rates);
813 if (ret) {
814 pr_err("ex %016llx phy%02d SATA device could not set linkrate (%d)\n",
815 SAS_ADDR(child->sas_addr), phy_id, ret);
816 goto out_free;
817 }
818 pr_notice("ex %016llx phy%02d SATA device set linkrate successfully\n",
819 SAS_ADDR(child->sas_addr), phy_id);
820 child->linkrate = child->min_linkrate;
821 }
822 res = sas_get_ata_info(child, phy);
823 if (res)
824 goto out_free;
825
826 sas_init_dev(child);
827 res = sas_ata_init(child);
828 if (res)
829 goto out_free;
830 rphy = sas_end_device_alloc(phy->port);
831 if (!rphy)
832 goto out_free;
833 rphy->identify.phy_identifier = phy_id;
834
835 child->rphy = rphy;
836 get_device(&rphy->dev);
837
838 list_add_tail(&child->disco_list_node, &parent->port->disco_list);
839
840 res = sas_discover_sata(child);
841 if (res) {
842 pr_notice("sas_discover_sata() for device %16llx at %016llx:%02d returned 0x%x\n",
843 SAS_ADDR(child->sas_addr),
844 SAS_ADDR(parent->sas_addr), phy_id, res);
845 goto out_list_del;
846 }
847 } else
848 #endif
849 if (phy->attached_tproto & SAS_PROTOCOL_SSP) {
850 child->dev_type = SAS_END_DEVICE;
851 rphy = sas_end_device_alloc(phy->port);
852 /* FIXME: error handling */
853 if (unlikely(!rphy))
854 goto out_free;
855 child->tproto = phy->attached_tproto;
856 sas_init_dev(child);
857
858 child->rphy = rphy;
859 get_device(&rphy->dev);
860 rphy->identify.phy_identifier = phy_id;
861 sas_fill_in_rphy(child, rphy);
862
863 list_add_tail(&child->disco_list_node, &parent->port->disco_list);
864
865 res = sas_discover_end_dev(child);
866 if (res) {
867 pr_notice("sas_discover_end_dev() for device %016llx at %016llx:%02d returned 0x%x\n",
868 SAS_ADDR(child->sas_addr),
869 SAS_ADDR(parent->sas_addr), phy_id, res);
870 goto out_list_del;
871 }
872 } else {
873 pr_notice("target proto 0x%x at %016llx:0x%x not handled\n",
874 phy->attached_tproto, SAS_ADDR(parent->sas_addr),
875 phy_id);
876 goto out_free;
877 }
878
879 list_add_tail(&child->siblings, &parent_ex->children);
880 return child;
881
882 out_list_del:
883 sas_rphy_free(child->rphy);
884 list_del(&child->disco_list_node);
885 spin_lock_irq(&parent->port->dev_list_lock);
886 list_del(&child->dev_list_node);
887 spin_unlock_irq(&parent->port->dev_list_lock);
888 out_free:
889 sas_port_delete(phy->port);
890 out_err:
891 phy->port = NULL;
892 sas_put_device(child);
893 return NULL;
894 }
895
896 /* See if this phy is part of a wide port */
sas_ex_join_wide_port(struct domain_device * parent,int phy_id)897 static bool sas_ex_join_wide_port(struct domain_device *parent, int phy_id)
898 {
899 struct ex_phy *phy = &parent->ex_dev.ex_phy[phy_id];
900 int i;
901
902 for (i = 0; i < parent->ex_dev.num_phys; i++) {
903 struct ex_phy *ephy = &parent->ex_dev.ex_phy[i];
904
905 if (ephy == phy)
906 continue;
907
908 if (!memcmp(phy->attached_sas_addr, ephy->attached_sas_addr,
909 SAS_ADDR_SIZE) && ephy->port) {
910 sas_port_add_phy(ephy->port, phy->phy);
911 phy->port = ephy->port;
912 phy->phy_state = PHY_DEVICE_DISCOVERED;
913 return true;
914 }
915 }
916
917 return false;
918 }
919
sas_ex_discover_expander(struct domain_device * parent,int phy_id)920 static struct domain_device *sas_ex_discover_expander(
921 struct domain_device *parent, int phy_id)
922 {
923 struct sas_expander_device *parent_ex = rphy_to_expander_device(parent->rphy);
924 struct ex_phy *phy = &parent->ex_dev.ex_phy[phy_id];
925 struct domain_device *child = NULL;
926 struct sas_rphy *rphy;
927 struct sas_expander_device *edev;
928 struct asd_sas_port *port;
929 int res;
930
931 if (phy->routing_attr == DIRECT_ROUTING) {
932 pr_warn("ex %016llx:%02d:D <--> ex %016llx:0x%x is not allowed\n",
933 SAS_ADDR(parent->sas_addr), phy_id,
934 SAS_ADDR(phy->attached_sas_addr),
935 phy->attached_phy_id);
936 return NULL;
937 }
938 child = sas_alloc_device();
939 if (!child)
940 return NULL;
941
942 phy->port = sas_port_alloc(&parent->rphy->dev, phy_id);
943 /* FIXME: better error handling */
944 BUG_ON(sas_port_add(phy->port) != 0);
945
946
947 switch (phy->attached_dev_type) {
948 case SAS_EDGE_EXPANDER_DEVICE:
949 rphy = sas_expander_alloc(phy->port,
950 SAS_EDGE_EXPANDER_DEVICE);
951 break;
952 case SAS_FANOUT_EXPANDER_DEVICE:
953 rphy = sas_expander_alloc(phy->port,
954 SAS_FANOUT_EXPANDER_DEVICE);
955 break;
956 default:
957 rphy = NULL; /* shut gcc up */
958 BUG();
959 }
960 port = parent->port;
961 child->rphy = rphy;
962 get_device(&rphy->dev);
963 edev = rphy_to_expander_device(rphy);
964 child->dev_type = phy->attached_dev_type;
965 kref_get(&parent->kref);
966 child->parent = parent;
967 child->port = port;
968 child->iproto = phy->attached_iproto;
969 child->tproto = phy->attached_tproto;
970 memcpy(child->sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
971 sas_hash_addr(child->hashed_sas_addr, child->sas_addr);
972 sas_ex_get_linkrate(parent, child, phy);
973 edev->level = parent_ex->level + 1;
974 parent->port->disc.max_level = max(parent->port->disc.max_level,
975 edev->level);
976 sas_init_dev(child);
977 sas_fill_in_rphy(child, rphy);
978 sas_rphy_add(rphy);
979
980 spin_lock_irq(&parent->port->dev_list_lock);
981 list_add_tail(&child->dev_list_node, &parent->port->dev_list);
982 spin_unlock_irq(&parent->port->dev_list_lock);
983
984 res = sas_discover_expander(child);
985 if (res) {
986 sas_rphy_delete(rphy);
987 spin_lock_irq(&parent->port->dev_list_lock);
988 list_del(&child->dev_list_node);
989 spin_unlock_irq(&parent->port->dev_list_lock);
990 sas_put_device(child);
991 sas_port_delete(phy->port);
992 phy->port = NULL;
993 return NULL;
994 }
995 list_add_tail(&child->siblings, &parent->ex_dev.children);
996 return child;
997 }
998
sas_ex_discover_dev(struct domain_device * dev,int phy_id)999 static int sas_ex_discover_dev(struct domain_device *dev, int phy_id)
1000 {
1001 struct expander_device *ex = &dev->ex_dev;
1002 struct ex_phy *ex_phy = &ex->ex_phy[phy_id];
1003 struct domain_device *child = NULL;
1004 int res = 0;
1005
1006 /* Phy state */
1007 if (ex_phy->linkrate == SAS_SATA_SPINUP_HOLD) {
1008 if (!sas_smp_phy_control(dev, phy_id, PHY_FUNC_LINK_RESET, NULL))
1009 res = sas_ex_phy_discover(dev, phy_id);
1010 if (res)
1011 return res;
1012 }
1013
1014 /* Parent and domain coherency */
1015 if (!dev->parent && (SAS_ADDR(ex_phy->attached_sas_addr) ==
1016 SAS_ADDR(dev->port->sas_addr))) {
1017 sas_add_parent_port(dev, phy_id);
1018 return 0;
1019 }
1020 if (dev->parent && (SAS_ADDR(ex_phy->attached_sas_addr) ==
1021 SAS_ADDR(dev->parent->sas_addr))) {
1022 sas_add_parent_port(dev, phy_id);
1023 if (ex_phy->routing_attr == TABLE_ROUTING)
1024 sas_configure_phy(dev, phy_id, dev->port->sas_addr, 1);
1025 return 0;
1026 }
1027
1028 if (sas_dev_present_in_domain(dev->port, ex_phy->attached_sas_addr))
1029 sas_ex_disable_port(dev, ex_phy->attached_sas_addr);
1030
1031 if (ex_phy->attached_dev_type == SAS_PHY_UNUSED) {
1032 if (ex_phy->routing_attr == DIRECT_ROUTING) {
1033 memset(ex_phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
1034 sas_configure_routing(dev, ex_phy->attached_sas_addr);
1035 }
1036 return 0;
1037 } else if (ex_phy->linkrate == SAS_LINK_RATE_UNKNOWN)
1038 return 0;
1039
1040 if (ex_phy->attached_dev_type != SAS_END_DEVICE &&
1041 ex_phy->attached_dev_type != SAS_FANOUT_EXPANDER_DEVICE &&
1042 ex_phy->attached_dev_type != SAS_EDGE_EXPANDER_DEVICE &&
1043 ex_phy->attached_dev_type != SAS_SATA_PENDING) {
1044 pr_warn("unknown device type(0x%x) attached to ex %016llx phy%02d\n",
1045 ex_phy->attached_dev_type,
1046 SAS_ADDR(dev->sas_addr),
1047 phy_id);
1048 return 0;
1049 }
1050
1051 res = sas_configure_routing(dev, ex_phy->attached_sas_addr);
1052 if (res) {
1053 pr_notice("configure routing for dev %016llx reported 0x%x. Forgotten\n",
1054 SAS_ADDR(ex_phy->attached_sas_addr), res);
1055 sas_disable_routing(dev, ex_phy->attached_sas_addr);
1056 return res;
1057 }
1058
1059 if (sas_ex_join_wide_port(dev, phy_id)) {
1060 pr_debug("Attaching ex phy%02d to wide port %016llx\n",
1061 phy_id, SAS_ADDR(ex_phy->attached_sas_addr));
1062 return res;
1063 }
1064
1065 switch (ex_phy->attached_dev_type) {
1066 case SAS_END_DEVICE:
1067 case SAS_SATA_PENDING:
1068 child = sas_ex_discover_end_dev(dev, phy_id);
1069 break;
1070 case SAS_FANOUT_EXPANDER_DEVICE:
1071 if (SAS_ADDR(dev->port->disc.fanout_sas_addr)) {
1072 pr_debug("second fanout expander %016llx phy%02d attached to ex %016llx phy%02d\n",
1073 SAS_ADDR(ex_phy->attached_sas_addr),
1074 ex_phy->attached_phy_id,
1075 SAS_ADDR(dev->sas_addr),
1076 phy_id);
1077 sas_ex_disable_phy(dev, phy_id);
1078 return res;
1079 } else
1080 memcpy(dev->port->disc.fanout_sas_addr,
1081 ex_phy->attached_sas_addr, SAS_ADDR_SIZE);
1082 fallthrough;
1083 case SAS_EDGE_EXPANDER_DEVICE:
1084 child = sas_ex_discover_expander(dev, phy_id);
1085 break;
1086 default:
1087 break;
1088 }
1089
1090 if (!child)
1091 pr_notice("ex %016llx phy%02d failed to discover\n",
1092 SAS_ADDR(dev->sas_addr), phy_id);
1093 return res;
1094 }
1095
sas_find_sub_addr(struct domain_device * dev,u8 * sub_addr)1096 static int sas_find_sub_addr(struct domain_device *dev, u8 *sub_addr)
1097 {
1098 struct expander_device *ex = &dev->ex_dev;
1099 int i;
1100
1101 for (i = 0; i < ex->num_phys; i++) {
1102 struct ex_phy *phy = &ex->ex_phy[i];
1103
1104 if (phy->phy_state == PHY_VACANT ||
1105 phy->phy_state == PHY_NOT_PRESENT)
1106 continue;
1107
1108 if (dev_is_expander(phy->attached_dev_type) &&
1109 phy->routing_attr == SUBTRACTIVE_ROUTING) {
1110
1111 memcpy(sub_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
1112
1113 return 1;
1114 }
1115 }
1116 return 0;
1117 }
1118
sas_check_level_subtractive_boundary(struct domain_device * dev)1119 static int sas_check_level_subtractive_boundary(struct domain_device *dev)
1120 {
1121 struct expander_device *ex = &dev->ex_dev;
1122 struct domain_device *child;
1123 u8 sub_addr[SAS_ADDR_SIZE] = {0, };
1124
1125 list_for_each_entry(child, &ex->children, siblings) {
1126 if (!dev_is_expander(child->dev_type))
1127 continue;
1128 if (sub_addr[0] == 0) {
1129 sas_find_sub_addr(child, sub_addr);
1130 continue;
1131 } else {
1132 u8 s2[SAS_ADDR_SIZE];
1133
1134 if (sas_find_sub_addr(child, s2) &&
1135 (SAS_ADDR(sub_addr) != SAS_ADDR(s2))) {
1136
1137 pr_notice("ex %016llx->%016llx-?->%016llx diverges from subtractive boundary %016llx\n",
1138 SAS_ADDR(dev->sas_addr),
1139 SAS_ADDR(child->sas_addr),
1140 SAS_ADDR(s2),
1141 SAS_ADDR(sub_addr));
1142
1143 sas_ex_disable_port(child, s2);
1144 }
1145 }
1146 }
1147 return 0;
1148 }
1149 /**
1150 * sas_ex_discover_devices - discover devices attached to this expander
1151 * @dev: pointer to the expander domain device
1152 * @single: if you want to do a single phy, else set to -1;
1153 *
1154 * Configure this expander for use with its devices and register the
1155 * devices of this expander.
1156 */
sas_ex_discover_devices(struct domain_device * dev,int single)1157 static int sas_ex_discover_devices(struct domain_device *dev, int single)
1158 {
1159 struct expander_device *ex = &dev->ex_dev;
1160 int i = 0, end = ex->num_phys;
1161 int res = 0;
1162
1163 if (0 <= single && single < end) {
1164 i = single;
1165 end = i+1;
1166 }
1167
1168 for ( ; i < end; i++) {
1169 struct ex_phy *ex_phy = &ex->ex_phy[i];
1170
1171 if (ex_phy->phy_state == PHY_VACANT ||
1172 ex_phy->phy_state == PHY_NOT_PRESENT ||
1173 ex_phy->phy_state == PHY_DEVICE_DISCOVERED)
1174 continue;
1175
1176 switch (ex_phy->linkrate) {
1177 case SAS_PHY_DISABLED:
1178 case SAS_PHY_RESET_PROBLEM:
1179 case SAS_SATA_PORT_SELECTOR:
1180 continue;
1181 default:
1182 res = sas_ex_discover_dev(dev, i);
1183 if (res)
1184 break;
1185 continue;
1186 }
1187 }
1188
1189 if (!res)
1190 sas_check_level_subtractive_boundary(dev);
1191
1192 return res;
1193 }
1194
sas_check_ex_subtractive_boundary(struct domain_device * dev)1195 static int sas_check_ex_subtractive_boundary(struct domain_device *dev)
1196 {
1197 struct expander_device *ex = &dev->ex_dev;
1198 int i;
1199 u8 *sub_sas_addr = NULL;
1200
1201 if (dev->dev_type != SAS_EDGE_EXPANDER_DEVICE)
1202 return 0;
1203
1204 for (i = 0; i < ex->num_phys; i++) {
1205 struct ex_phy *phy = &ex->ex_phy[i];
1206
1207 if (phy->phy_state == PHY_VACANT ||
1208 phy->phy_state == PHY_NOT_PRESENT)
1209 continue;
1210
1211 if (dev_is_expander(phy->attached_dev_type) &&
1212 phy->routing_attr == SUBTRACTIVE_ROUTING) {
1213
1214 if (!sub_sas_addr)
1215 sub_sas_addr = &phy->attached_sas_addr[0];
1216 else if (SAS_ADDR(sub_sas_addr) !=
1217 SAS_ADDR(phy->attached_sas_addr)) {
1218
1219 pr_notice("ex %016llx phy%02d diverges(%016llx) on subtractive boundary(%016llx). Disabled\n",
1220 SAS_ADDR(dev->sas_addr), i,
1221 SAS_ADDR(phy->attached_sas_addr),
1222 SAS_ADDR(sub_sas_addr));
1223 sas_ex_disable_phy(dev, i);
1224 }
1225 }
1226 }
1227 return 0;
1228 }
1229
sas_print_parent_topology_bug(struct domain_device * child,struct ex_phy * parent_phy,struct ex_phy * child_phy)1230 static void sas_print_parent_topology_bug(struct domain_device *child,
1231 struct ex_phy *parent_phy,
1232 struct ex_phy *child_phy)
1233 {
1234 static const char *ex_type[] = {
1235 [SAS_EDGE_EXPANDER_DEVICE] = "edge",
1236 [SAS_FANOUT_EXPANDER_DEVICE] = "fanout",
1237 };
1238 struct domain_device *parent = child->parent;
1239
1240 pr_notice("%s ex %016llx phy%02d <--> %s ex %016llx phy%02d has %c:%c routing link!\n",
1241 ex_type[parent->dev_type],
1242 SAS_ADDR(parent->sas_addr),
1243 parent_phy->phy_id,
1244
1245 ex_type[child->dev_type],
1246 SAS_ADDR(child->sas_addr),
1247 child_phy->phy_id,
1248
1249 sas_route_char(parent, parent_phy),
1250 sas_route_char(child, child_phy));
1251 }
1252
sas_check_eeds(struct domain_device * child,struct ex_phy * parent_phy,struct ex_phy * child_phy)1253 static int sas_check_eeds(struct domain_device *child,
1254 struct ex_phy *parent_phy,
1255 struct ex_phy *child_phy)
1256 {
1257 int res = 0;
1258 struct domain_device *parent = child->parent;
1259
1260 if (SAS_ADDR(parent->port->disc.fanout_sas_addr) != 0) {
1261 res = -ENODEV;
1262 pr_warn("edge ex %016llx phy S:%02d <--> edge ex %016llx phy S:%02d, while there is a fanout ex %016llx\n",
1263 SAS_ADDR(parent->sas_addr),
1264 parent_phy->phy_id,
1265 SAS_ADDR(child->sas_addr),
1266 child_phy->phy_id,
1267 SAS_ADDR(parent->port->disc.fanout_sas_addr));
1268 } else if (SAS_ADDR(parent->port->disc.eeds_a) == 0) {
1269 memcpy(parent->port->disc.eeds_a, parent->sas_addr,
1270 SAS_ADDR_SIZE);
1271 memcpy(parent->port->disc.eeds_b, child->sas_addr,
1272 SAS_ADDR_SIZE);
1273 } else if (((SAS_ADDR(parent->port->disc.eeds_a) ==
1274 SAS_ADDR(parent->sas_addr)) ||
1275 (SAS_ADDR(parent->port->disc.eeds_a) ==
1276 SAS_ADDR(child->sas_addr)))
1277 &&
1278 ((SAS_ADDR(parent->port->disc.eeds_b) ==
1279 SAS_ADDR(parent->sas_addr)) ||
1280 (SAS_ADDR(parent->port->disc.eeds_b) ==
1281 SAS_ADDR(child->sas_addr))))
1282 ;
1283 else {
1284 res = -ENODEV;
1285 pr_warn("edge ex %016llx phy%02d <--> edge ex %016llx phy%02d link forms a third EEDS!\n",
1286 SAS_ADDR(parent->sas_addr),
1287 parent_phy->phy_id,
1288 SAS_ADDR(child->sas_addr),
1289 child_phy->phy_id);
1290 }
1291
1292 return res;
1293 }
1294
1295 /* Here we spill over 80 columns. It is intentional.
1296 */
sas_check_parent_topology(struct domain_device * child)1297 static int sas_check_parent_topology(struct domain_device *child)
1298 {
1299 struct expander_device *child_ex = &child->ex_dev;
1300 struct expander_device *parent_ex;
1301 int i;
1302 int res = 0;
1303
1304 if (!child->parent)
1305 return 0;
1306
1307 if (!dev_is_expander(child->parent->dev_type))
1308 return 0;
1309
1310 parent_ex = &child->parent->ex_dev;
1311
1312 for (i = 0; i < parent_ex->num_phys; i++) {
1313 struct ex_phy *parent_phy = &parent_ex->ex_phy[i];
1314 struct ex_phy *child_phy;
1315
1316 if (parent_phy->phy_state == PHY_VACANT ||
1317 parent_phy->phy_state == PHY_NOT_PRESENT)
1318 continue;
1319
1320 if (SAS_ADDR(parent_phy->attached_sas_addr) != SAS_ADDR(child->sas_addr))
1321 continue;
1322
1323 child_phy = &child_ex->ex_phy[parent_phy->attached_phy_id];
1324
1325 switch (child->parent->dev_type) {
1326 case SAS_EDGE_EXPANDER_DEVICE:
1327 if (child->dev_type == SAS_FANOUT_EXPANDER_DEVICE) {
1328 if (parent_phy->routing_attr != SUBTRACTIVE_ROUTING ||
1329 child_phy->routing_attr != TABLE_ROUTING) {
1330 sas_print_parent_topology_bug(child, parent_phy, child_phy);
1331 res = -ENODEV;
1332 }
1333 } else if (parent_phy->routing_attr == SUBTRACTIVE_ROUTING) {
1334 if (child_phy->routing_attr == SUBTRACTIVE_ROUTING) {
1335 res = sas_check_eeds(child, parent_phy, child_phy);
1336 } else if (child_phy->routing_attr != TABLE_ROUTING) {
1337 sas_print_parent_topology_bug(child, parent_phy, child_phy);
1338 res = -ENODEV;
1339 }
1340 } else if (parent_phy->routing_attr == TABLE_ROUTING) {
1341 if (child_phy->routing_attr == SUBTRACTIVE_ROUTING ||
1342 (child_phy->routing_attr == TABLE_ROUTING &&
1343 child_ex->t2t_supp && parent_ex->t2t_supp)) {
1344 /* All good */;
1345 } else {
1346 sas_print_parent_topology_bug(child, parent_phy, child_phy);
1347 res = -ENODEV;
1348 }
1349 }
1350 break;
1351 case SAS_FANOUT_EXPANDER_DEVICE:
1352 if (parent_phy->routing_attr != TABLE_ROUTING ||
1353 child_phy->routing_attr != SUBTRACTIVE_ROUTING) {
1354 sas_print_parent_topology_bug(child, parent_phy, child_phy);
1355 res = -ENODEV;
1356 }
1357 break;
1358 default:
1359 break;
1360 }
1361 }
1362
1363 return res;
1364 }
1365
1366 #define RRI_REQ_SIZE 16
1367 #define RRI_RESP_SIZE 44
1368
sas_configure_present(struct domain_device * dev,int phy_id,u8 * sas_addr,int * index,int * present)1369 static int sas_configure_present(struct domain_device *dev, int phy_id,
1370 u8 *sas_addr, int *index, int *present)
1371 {
1372 int i, res = 0;
1373 struct expander_device *ex = &dev->ex_dev;
1374 struct ex_phy *phy = &ex->ex_phy[phy_id];
1375 u8 *rri_req;
1376 u8 *rri_resp;
1377
1378 *present = 0;
1379 *index = 0;
1380
1381 rri_req = alloc_smp_req(RRI_REQ_SIZE);
1382 if (!rri_req)
1383 return -ENOMEM;
1384
1385 rri_resp = alloc_smp_resp(RRI_RESP_SIZE);
1386 if (!rri_resp) {
1387 kfree(rri_req);
1388 return -ENOMEM;
1389 }
1390
1391 rri_req[1] = SMP_REPORT_ROUTE_INFO;
1392 rri_req[9] = phy_id;
1393
1394 for (i = 0; i < ex->max_route_indexes ; i++) {
1395 *(__be16 *)(rri_req+6) = cpu_to_be16(i);
1396 res = smp_execute_task(dev, rri_req, RRI_REQ_SIZE, rri_resp,
1397 RRI_RESP_SIZE);
1398 if (res)
1399 goto out;
1400 res = rri_resp[2];
1401 if (res == SMP_RESP_NO_INDEX) {
1402 pr_warn("overflow of indexes: dev %016llx phy%02d index 0x%x\n",
1403 SAS_ADDR(dev->sas_addr), phy_id, i);
1404 goto out;
1405 } else if (res != SMP_RESP_FUNC_ACC) {
1406 pr_notice("%s: dev %016llx phy%02d index 0x%x result 0x%x\n",
1407 __func__, SAS_ADDR(dev->sas_addr), phy_id,
1408 i, res);
1409 goto out;
1410 }
1411 if (SAS_ADDR(sas_addr) != 0) {
1412 if (SAS_ADDR(rri_resp+16) == SAS_ADDR(sas_addr)) {
1413 *index = i;
1414 if ((rri_resp[12] & 0x80) == 0x80)
1415 *present = 0;
1416 else
1417 *present = 1;
1418 goto out;
1419 } else if (SAS_ADDR(rri_resp+16) == 0) {
1420 *index = i;
1421 *present = 0;
1422 goto out;
1423 }
1424 } else if (SAS_ADDR(rri_resp+16) == 0 &&
1425 phy->last_da_index < i) {
1426 phy->last_da_index = i;
1427 *index = i;
1428 *present = 0;
1429 goto out;
1430 }
1431 }
1432 res = -1;
1433 out:
1434 kfree(rri_req);
1435 kfree(rri_resp);
1436 return res;
1437 }
1438
1439 #define CRI_REQ_SIZE 44
1440 #define CRI_RESP_SIZE 8
1441
sas_configure_set(struct domain_device * dev,int phy_id,u8 * sas_addr,int index,int include)1442 static int sas_configure_set(struct domain_device *dev, int phy_id,
1443 u8 *sas_addr, int index, int include)
1444 {
1445 int res;
1446 u8 *cri_req;
1447 u8 *cri_resp;
1448
1449 cri_req = alloc_smp_req(CRI_REQ_SIZE);
1450 if (!cri_req)
1451 return -ENOMEM;
1452
1453 cri_resp = alloc_smp_resp(CRI_RESP_SIZE);
1454 if (!cri_resp) {
1455 kfree(cri_req);
1456 return -ENOMEM;
1457 }
1458
1459 cri_req[1] = SMP_CONF_ROUTE_INFO;
1460 *(__be16 *)(cri_req+6) = cpu_to_be16(index);
1461 cri_req[9] = phy_id;
1462 if (SAS_ADDR(sas_addr) == 0 || !include)
1463 cri_req[12] |= 0x80;
1464 memcpy(cri_req+16, sas_addr, SAS_ADDR_SIZE);
1465
1466 res = smp_execute_task(dev, cri_req, CRI_REQ_SIZE, cri_resp,
1467 CRI_RESP_SIZE);
1468 if (res)
1469 goto out;
1470 res = cri_resp[2];
1471 if (res == SMP_RESP_NO_INDEX) {
1472 pr_warn("overflow of indexes: dev %016llx phy%02d index 0x%x\n",
1473 SAS_ADDR(dev->sas_addr), phy_id, index);
1474 }
1475 out:
1476 kfree(cri_req);
1477 kfree(cri_resp);
1478 return res;
1479 }
1480
sas_configure_phy(struct domain_device * dev,int phy_id,u8 * sas_addr,int include)1481 static int sas_configure_phy(struct domain_device *dev, int phy_id,
1482 u8 *sas_addr, int include)
1483 {
1484 int index;
1485 int present;
1486 int res;
1487
1488 res = sas_configure_present(dev, phy_id, sas_addr, &index, &present);
1489 if (res)
1490 return res;
1491 if (include ^ present)
1492 return sas_configure_set(dev, phy_id, sas_addr, index,
1493 include);
1494
1495 return res;
1496 }
1497
1498 /**
1499 * sas_configure_parent - configure routing table of parent
1500 * @parent: parent expander
1501 * @child: child expander
1502 * @sas_addr: SAS port identifier of device directly attached to child
1503 * @include: whether or not to include @child in the expander routing table
1504 */
sas_configure_parent(struct domain_device * parent,struct domain_device * child,u8 * sas_addr,int include)1505 static int sas_configure_parent(struct domain_device *parent,
1506 struct domain_device *child,
1507 u8 *sas_addr, int include)
1508 {
1509 struct expander_device *ex_parent = &parent->ex_dev;
1510 int res = 0;
1511 int i;
1512
1513 if (parent->parent) {
1514 res = sas_configure_parent(parent->parent, parent, sas_addr,
1515 include);
1516 if (res)
1517 return res;
1518 }
1519
1520 if (ex_parent->conf_route_table == 0) {
1521 pr_debug("ex %016llx has self-configuring routing table\n",
1522 SAS_ADDR(parent->sas_addr));
1523 return 0;
1524 }
1525
1526 for (i = 0; i < ex_parent->num_phys; i++) {
1527 struct ex_phy *phy = &ex_parent->ex_phy[i];
1528
1529 if ((phy->routing_attr == TABLE_ROUTING) &&
1530 (SAS_ADDR(phy->attached_sas_addr) ==
1531 SAS_ADDR(child->sas_addr))) {
1532 res = sas_configure_phy(parent, i, sas_addr, include);
1533 if (res)
1534 return res;
1535 }
1536 }
1537
1538 return res;
1539 }
1540
1541 /**
1542 * sas_configure_routing - configure routing
1543 * @dev: expander device
1544 * @sas_addr: port identifier of device directly attached to the expander device
1545 */
sas_configure_routing(struct domain_device * dev,u8 * sas_addr)1546 static int sas_configure_routing(struct domain_device *dev, u8 *sas_addr)
1547 {
1548 if (dev->parent)
1549 return sas_configure_parent(dev->parent, dev, sas_addr, 1);
1550 return 0;
1551 }
1552
sas_disable_routing(struct domain_device * dev,u8 * sas_addr)1553 static int sas_disable_routing(struct domain_device *dev, u8 *sas_addr)
1554 {
1555 if (dev->parent)
1556 return sas_configure_parent(dev->parent, dev, sas_addr, 0);
1557 return 0;
1558 }
1559
1560 /**
1561 * sas_discover_expander - expander discovery
1562 * @dev: pointer to expander domain device
1563 *
1564 * See comment in sas_discover_sata().
1565 */
sas_discover_expander(struct domain_device * dev)1566 static int sas_discover_expander(struct domain_device *dev)
1567 {
1568 int res;
1569
1570 res = sas_notify_lldd_dev_found(dev);
1571 if (res)
1572 return res;
1573
1574 res = sas_ex_general(dev);
1575 if (res)
1576 goto out_err;
1577 res = sas_ex_manuf_info(dev);
1578 if (res)
1579 goto out_err;
1580
1581 res = sas_expander_discover(dev);
1582 if (res) {
1583 pr_warn("expander %016llx discovery failed(0x%x)\n",
1584 SAS_ADDR(dev->sas_addr), res);
1585 goto out_err;
1586 }
1587
1588 sas_check_ex_subtractive_boundary(dev);
1589 res = sas_check_parent_topology(dev);
1590 if (res)
1591 goto out_err;
1592 return 0;
1593 out_err:
1594 sas_notify_lldd_dev_gone(dev);
1595 return res;
1596 }
1597
sas_ex_level_discovery(struct asd_sas_port * port,const int level)1598 static int sas_ex_level_discovery(struct asd_sas_port *port, const int level)
1599 {
1600 int res = 0;
1601 struct domain_device *dev;
1602
1603 list_for_each_entry(dev, &port->dev_list, dev_list_node) {
1604 if (dev_is_expander(dev->dev_type)) {
1605 struct sas_expander_device *ex =
1606 rphy_to_expander_device(dev->rphy);
1607
1608 if (level == ex->level)
1609 res = sas_ex_discover_devices(dev, -1);
1610 else if (level > 0)
1611 res = sas_ex_discover_devices(port->port_dev, -1);
1612
1613 }
1614 }
1615
1616 return res;
1617 }
1618
sas_ex_bfs_disc(struct asd_sas_port * port)1619 static int sas_ex_bfs_disc(struct asd_sas_port *port)
1620 {
1621 int res;
1622 int level;
1623
1624 do {
1625 level = port->disc.max_level;
1626 res = sas_ex_level_discovery(port, level);
1627 mb();
1628 } while (level < port->disc.max_level);
1629
1630 return res;
1631 }
1632
sas_discover_root_expander(struct domain_device * dev)1633 int sas_discover_root_expander(struct domain_device *dev)
1634 {
1635 int res;
1636 struct sas_expander_device *ex = rphy_to_expander_device(dev->rphy);
1637
1638 res = sas_rphy_add(dev->rphy);
1639 if (res)
1640 goto out_err;
1641
1642 ex->level = dev->port->disc.max_level; /* 0 */
1643 res = sas_discover_expander(dev);
1644 if (res)
1645 goto out_err2;
1646
1647 sas_ex_bfs_disc(dev->port);
1648
1649 return res;
1650
1651 out_err2:
1652 sas_rphy_remove(dev->rphy);
1653 out_err:
1654 return res;
1655 }
1656
1657 /* ---------- Domain revalidation ---------- */
1658
sas_get_phy_discover(struct domain_device * dev,int phy_id,struct smp_resp * disc_resp)1659 static int sas_get_phy_discover(struct domain_device *dev,
1660 int phy_id, struct smp_resp *disc_resp)
1661 {
1662 int res;
1663 u8 *disc_req;
1664
1665 disc_req = alloc_smp_req(DISCOVER_REQ_SIZE);
1666 if (!disc_req)
1667 return -ENOMEM;
1668
1669 disc_req[1] = SMP_DISCOVER;
1670 disc_req[9] = phy_id;
1671
1672 res = smp_execute_task(dev, disc_req, DISCOVER_REQ_SIZE,
1673 disc_resp, DISCOVER_RESP_SIZE);
1674 if (res)
1675 goto out;
1676 else if (disc_resp->result != SMP_RESP_FUNC_ACC) {
1677 res = disc_resp->result;
1678 goto out;
1679 }
1680 out:
1681 kfree(disc_req);
1682 return res;
1683 }
1684
sas_get_phy_change_count(struct domain_device * dev,int phy_id,int * pcc)1685 static int sas_get_phy_change_count(struct domain_device *dev,
1686 int phy_id, int *pcc)
1687 {
1688 int res;
1689 struct smp_resp *disc_resp;
1690
1691 disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE);
1692 if (!disc_resp)
1693 return -ENOMEM;
1694
1695 res = sas_get_phy_discover(dev, phy_id, disc_resp);
1696 if (!res)
1697 *pcc = disc_resp->disc.change_count;
1698
1699 kfree(disc_resp);
1700 return res;
1701 }
1702
sas_get_phy_attached_dev(struct domain_device * dev,int phy_id,u8 * sas_addr,enum sas_device_type * type)1703 static int sas_get_phy_attached_dev(struct domain_device *dev, int phy_id,
1704 u8 *sas_addr, enum sas_device_type *type)
1705 {
1706 int res;
1707 struct smp_resp *disc_resp;
1708 struct discover_resp *dr;
1709
1710 disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE);
1711 if (!disc_resp)
1712 return -ENOMEM;
1713 dr = &disc_resp->disc;
1714
1715 res = sas_get_phy_discover(dev, phy_id, disc_resp);
1716 if (res == 0) {
1717 memcpy(sas_addr, disc_resp->disc.attached_sas_addr,
1718 SAS_ADDR_SIZE);
1719 *type = to_dev_type(dr);
1720 if (*type == 0)
1721 memset(sas_addr, 0, SAS_ADDR_SIZE);
1722 }
1723 kfree(disc_resp);
1724 return res;
1725 }
1726
sas_find_bcast_phy(struct domain_device * dev,int * phy_id,int from_phy,bool update)1727 static int sas_find_bcast_phy(struct domain_device *dev, int *phy_id,
1728 int from_phy, bool update)
1729 {
1730 struct expander_device *ex = &dev->ex_dev;
1731 int res = 0;
1732 int i;
1733
1734 for (i = from_phy; i < ex->num_phys; i++) {
1735 int phy_change_count = 0;
1736
1737 res = sas_get_phy_change_count(dev, i, &phy_change_count);
1738 switch (res) {
1739 case SMP_RESP_PHY_VACANT:
1740 case SMP_RESP_NO_PHY:
1741 continue;
1742 case SMP_RESP_FUNC_ACC:
1743 break;
1744 default:
1745 return res;
1746 }
1747
1748 if (phy_change_count != ex->ex_phy[i].phy_change_count) {
1749 if (update)
1750 ex->ex_phy[i].phy_change_count =
1751 phy_change_count;
1752 *phy_id = i;
1753 return 0;
1754 }
1755 }
1756 return 0;
1757 }
1758
sas_get_ex_change_count(struct domain_device * dev,int * ecc)1759 static int sas_get_ex_change_count(struct domain_device *dev, int *ecc)
1760 {
1761 int res;
1762 u8 *rg_req;
1763 struct smp_resp *rg_resp;
1764
1765 rg_req = alloc_smp_req(RG_REQ_SIZE);
1766 if (!rg_req)
1767 return -ENOMEM;
1768
1769 rg_resp = alloc_smp_resp(RG_RESP_SIZE);
1770 if (!rg_resp) {
1771 kfree(rg_req);
1772 return -ENOMEM;
1773 }
1774
1775 rg_req[1] = SMP_REPORT_GENERAL;
1776
1777 res = smp_execute_task(dev, rg_req, RG_REQ_SIZE, rg_resp,
1778 RG_RESP_SIZE);
1779 if (res)
1780 goto out;
1781 if (rg_resp->result != SMP_RESP_FUNC_ACC) {
1782 res = rg_resp->result;
1783 goto out;
1784 }
1785
1786 *ecc = be16_to_cpu(rg_resp->rg.change_count);
1787 out:
1788 kfree(rg_resp);
1789 kfree(rg_req);
1790 return res;
1791 }
1792 /**
1793 * sas_find_bcast_dev - find the device issue BROADCAST(CHANGE).
1794 * @dev:domain device to be detect.
1795 * @src_dev: the device which originated BROADCAST(CHANGE).
1796 *
1797 * Add self-configuration expander support. Suppose two expander cascading,
1798 * when the first level expander is self-configuring, hotplug the disks in
1799 * second level expander, BROADCAST(CHANGE) will not only be originated
1800 * in the second level expander, but also be originated in the first level
1801 * expander (see SAS protocol SAS 2r-14, 7.11 for detail), it is to say,
1802 * expander changed count in two level expanders will all increment at least
1803 * once, but the phy which chang count has changed is the source device which
1804 * we concerned.
1805 */
1806
sas_find_bcast_dev(struct domain_device * dev,struct domain_device ** src_dev)1807 static int sas_find_bcast_dev(struct domain_device *dev,
1808 struct domain_device **src_dev)
1809 {
1810 struct expander_device *ex = &dev->ex_dev;
1811 int ex_change_count = -1;
1812 int phy_id = -1;
1813 int res;
1814 struct domain_device *ch;
1815
1816 res = sas_get_ex_change_count(dev, &ex_change_count);
1817 if (res)
1818 goto out;
1819 if (ex_change_count != -1 && ex_change_count != ex->ex_change_count) {
1820 /* Just detect if this expander phys phy change count changed,
1821 * in order to determine if this expander originate BROADCAST,
1822 * and do not update phy change count field in our structure.
1823 */
1824 res = sas_find_bcast_phy(dev, &phy_id, 0, false);
1825 if (phy_id != -1) {
1826 *src_dev = dev;
1827 ex->ex_change_count = ex_change_count;
1828 pr_info("ex %016llx phy%02d change count has changed\n",
1829 SAS_ADDR(dev->sas_addr), phy_id);
1830 return res;
1831 } else
1832 pr_info("ex %016llx phys DID NOT change\n",
1833 SAS_ADDR(dev->sas_addr));
1834 }
1835 list_for_each_entry(ch, &ex->children, siblings) {
1836 if (dev_is_expander(ch->dev_type)) {
1837 res = sas_find_bcast_dev(ch, src_dev);
1838 if (*src_dev)
1839 return res;
1840 }
1841 }
1842 out:
1843 return res;
1844 }
1845
sas_unregister_ex_tree(struct asd_sas_port * port,struct domain_device * dev)1846 static void sas_unregister_ex_tree(struct asd_sas_port *port, struct domain_device *dev)
1847 {
1848 struct expander_device *ex = &dev->ex_dev;
1849 struct domain_device *child, *n;
1850
1851 list_for_each_entry_safe(child, n, &ex->children, siblings) {
1852 set_bit(SAS_DEV_GONE, &child->state);
1853 if (dev_is_expander(child->dev_type))
1854 sas_unregister_ex_tree(port, child);
1855 else
1856 sas_unregister_dev(port, child);
1857 }
1858 sas_unregister_dev(port, dev);
1859 }
1860
sas_unregister_devs_sas_addr(struct domain_device * parent,int phy_id,bool last)1861 static void sas_unregister_devs_sas_addr(struct domain_device *parent,
1862 int phy_id, bool last)
1863 {
1864 struct expander_device *ex_dev = &parent->ex_dev;
1865 struct ex_phy *phy = &ex_dev->ex_phy[phy_id];
1866 struct domain_device *child, *n, *found = NULL;
1867 if (last) {
1868 list_for_each_entry_safe(child, n,
1869 &ex_dev->children, siblings) {
1870 if (SAS_ADDR(child->sas_addr) ==
1871 SAS_ADDR(phy->attached_sas_addr)) {
1872 set_bit(SAS_DEV_GONE, &child->state);
1873 if (dev_is_expander(child->dev_type))
1874 sas_unregister_ex_tree(parent->port, child);
1875 else
1876 sas_unregister_dev(parent->port, child);
1877 found = child;
1878 break;
1879 }
1880 }
1881 sas_disable_routing(parent, phy->attached_sas_addr);
1882 }
1883 memset(phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
1884 if (phy->port) {
1885 sas_port_delete_phy(phy->port, phy->phy);
1886 sas_device_set_phy(found, phy->port);
1887 if (phy->port->num_phys == 0)
1888 list_add_tail(&phy->port->del_list,
1889 &parent->port->sas_port_del_list);
1890 phy->port = NULL;
1891 }
1892 }
1893
sas_discover_bfs_by_root_level(struct domain_device * root,const int level)1894 static int sas_discover_bfs_by_root_level(struct domain_device *root,
1895 const int level)
1896 {
1897 struct expander_device *ex_root = &root->ex_dev;
1898 struct domain_device *child;
1899 int res = 0;
1900
1901 list_for_each_entry(child, &ex_root->children, siblings) {
1902 if (dev_is_expander(child->dev_type)) {
1903 struct sas_expander_device *ex =
1904 rphy_to_expander_device(child->rphy);
1905
1906 if (level > ex->level)
1907 res = sas_discover_bfs_by_root_level(child,
1908 level);
1909 else if (level == ex->level)
1910 res = sas_ex_discover_devices(child, -1);
1911 }
1912 }
1913 return res;
1914 }
1915
sas_discover_bfs_by_root(struct domain_device * dev)1916 static int sas_discover_bfs_by_root(struct domain_device *dev)
1917 {
1918 int res;
1919 struct sas_expander_device *ex = rphy_to_expander_device(dev->rphy);
1920 int level = ex->level+1;
1921
1922 res = sas_ex_discover_devices(dev, -1);
1923 if (res)
1924 goto out;
1925 do {
1926 res = sas_discover_bfs_by_root_level(dev, level);
1927 mb();
1928 level += 1;
1929 } while (level <= dev->port->disc.max_level);
1930 out:
1931 return res;
1932 }
1933
sas_discover_new(struct domain_device * dev,int phy_id)1934 static int sas_discover_new(struct domain_device *dev, int phy_id)
1935 {
1936 struct ex_phy *ex_phy = &dev->ex_dev.ex_phy[phy_id];
1937 struct domain_device *child;
1938 int res;
1939
1940 pr_debug("ex %016llx phy%02d new device attached\n",
1941 SAS_ADDR(dev->sas_addr), phy_id);
1942 res = sas_ex_phy_discover(dev, phy_id);
1943 if (res)
1944 return res;
1945
1946 if (sas_ex_join_wide_port(dev, phy_id))
1947 return 0;
1948
1949 res = sas_ex_discover_devices(dev, phy_id);
1950 if (res)
1951 return res;
1952 list_for_each_entry(child, &dev->ex_dev.children, siblings) {
1953 if (SAS_ADDR(child->sas_addr) ==
1954 SAS_ADDR(ex_phy->attached_sas_addr)) {
1955 if (dev_is_expander(child->dev_type))
1956 res = sas_discover_bfs_by_root(child);
1957 break;
1958 }
1959 }
1960 return res;
1961 }
1962
dev_type_flutter(enum sas_device_type new,enum sas_device_type old)1963 static bool dev_type_flutter(enum sas_device_type new, enum sas_device_type old)
1964 {
1965 if (old == new)
1966 return true;
1967
1968 /* treat device directed resets as flutter, if we went
1969 * SAS_END_DEVICE to SAS_SATA_PENDING the link needs recovery
1970 */
1971 if ((old == SAS_SATA_PENDING && new == SAS_END_DEVICE) ||
1972 (old == SAS_END_DEVICE && new == SAS_SATA_PENDING))
1973 return true;
1974
1975 return false;
1976 }
1977
sas_rediscover_dev(struct domain_device * dev,int phy_id,bool last,int sibling)1978 static int sas_rediscover_dev(struct domain_device *dev, int phy_id,
1979 bool last, int sibling)
1980 {
1981 struct expander_device *ex = &dev->ex_dev;
1982 struct ex_phy *phy = &ex->ex_phy[phy_id];
1983 enum sas_device_type type = SAS_PHY_UNUSED;
1984 u8 sas_addr[SAS_ADDR_SIZE];
1985 char msg[80] = "";
1986 int res;
1987
1988 if (!last)
1989 sprintf(msg, ", part of a wide port with phy%02d", sibling);
1990
1991 pr_debug("ex %016llx rediscovering phy%02d%s\n",
1992 SAS_ADDR(dev->sas_addr), phy_id, msg);
1993
1994 memset(sas_addr, 0, SAS_ADDR_SIZE);
1995 res = sas_get_phy_attached_dev(dev, phy_id, sas_addr, &type);
1996 switch (res) {
1997 case SMP_RESP_NO_PHY:
1998 phy->phy_state = PHY_NOT_PRESENT;
1999 sas_unregister_devs_sas_addr(dev, phy_id, last);
2000 return res;
2001 case SMP_RESP_PHY_VACANT:
2002 phy->phy_state = PHY_VACANT;
2003 sas_unregister_devs_sas_addr(dev, phy_id, last);
2004 return res;
2005 case SMP_RESP_FUNC_ACC:
2006 break;
2007 case -ECOMM:
2008 break;
2009 default:
2010 return res;
2011 }
2012
2013 if ((SAS_ADDR(sas_addr) == 0) || (res == -ECOMM)) {
2014 phy->phy_state = PHY_EMPTY;
2015 sas_unregister_devs_sas_addr(dev, phy_id, last);
2016 /*
2017 * Even though the PHY is empty, for convenience we discover
2018 * the PHY to update the PHY info, like negotiated linkrate.
2019 */
2020 sas_ex_phy_discover(dev, phy_id);
2021 return res;
2022 } else if (SAS_ADDR(sas_addr) == SAS_ADDR(phy->attached_sas_addr) &&
2023 dev_type_flutter(type, phy->attached_dev_type)) {
2024 struct domain_device *ata_dev = sas_ex_to_ata(dev, phy_id);
2025 char *action = "";
2026
2027 sas_ex_phy_discover(dev, phy_id);
2028
2029 if (ata_dev && phy->attached_dev_type == SAS_SATA_PENDING)
2030 action = ", needs recovery";
2031 pr_debug("ex %016llx phy%02d broadcast flutter%s\n",
2032 SAS_ADDR(dev->sas_addr), phy_id, action);
2033 return res;
2034 }
2035
2036 /* we always have to delete the old device when we went here */
2037 pr_info("ex %016llx phy%02d replace %016llx\n",
2038 SAS_ADDR(dev->sas_addr), phy_id,
2039 SAS_ADDR(phy->attached_sas_addr));
2040 sas_unregister_devs_sas_addr(dev, phy_id, last);
2041
2042 return sas_discover_new(dev, phy_id);
2043 }
2044
2045 /**
2046 * sas_rediscover - revalidate the domain.
2047 * @dev:domain device to be detect.
2048 * @phy_id: the phy id will be detected.
2049 *
2050 * NOTE: this process _must_ quit (return) as soon as any connection
2051 * errors are encountered. Connection recovery is done elsewhere.
2052 * Discover process only interrogates devices in order to discover the
2053 * domain.For plugging out, we un-register the device only when it is
2054 * the last phy in the port, for other phys in this port, we just delete it
2055 * from the port.For inserting, we do discovery when it is the
2056 * first phy,for other phys in this port, we add it to the port to
2057 * forming the wide-port.
2058 */
sas_rediscover(struct domain_device * dev,const int phy_id)2059 static int sas_rediscover(struct domain_device *dev, const int phy_id)
2060 {
2061 struct expander_device *ex = &dev->ex_dev;
2062 struct ex_phy *changed_phy = &ex->ex_phy[phy_id];
2063 int res = 0;
2064 int i;
2065 bool last = true; /* is this the last phy of the port */
2066
2067 pr_debug("ex %016llx phy%02d originated BROADCAST(CHANGE)\n",
2068 SAS_ADDR(dev->sas_addr), phy_id);
2069
2070 if (SAS_ADDR(changed_phy->attached_sas_addr) != 0) {
2071 for (i = 0; i < ex->num_phys; i++) {
2072 struct ex_phy *phy = &ex->ex_phy[i];
2073
2074 if (i == phy_id)
2075 continue;
2076 if (SAS_ADDR(phy->attached_sas_addr) ==
2077 SAS_ADDR(changed_phy->attached_sas_addr)) {
2078 last = false;
2079 break;
2080 }
2081 }
2082 res = sas_rediscover_dev(dev, phy_id, last, i);
2083 } else
2084 res = sas_discover_new(dev, phy_id);
2085 return res;
2086 }
2087
2088 /**
2089 * sas_ex_revalidate_domain - revalidate the domain
2090 * @port_dev: port domain device.
2091 *
2092 * NOTE: this process _must_ quit (return) as soon as any connection
2093 * errors are encountered. Connection recovery is done elsewhere.
2094 * Discover process only interrogates devices in order to discover the
2095 * domain.
2096 */
sas_ex_revalidate_domain(struct domain_device * port_dev)2097 int sas_ex_revalidate_domain(struct domain_device *port_dev)
2098 {
2099 int res;
2100 struct domain_device *dev = NULL;
2101
2102 res = sas_find_bcast_dev(port_dev, &dev);
2103 if (res == 0 && dev) {
2104 struct expander_device *ex = &dev->ex_dev;
2105 int i = 0, phy_id;
2106
2107 do {
2108 phy_id = -1;
2109 res = sas_find_bcast_phy(dev, &phy_id, i, true);
2110 if (phy_id == -1)
2111 break;
2112 res = sas_rediscover(dev, phy_id);
2113 i = phy_id + 1;
2114 } while (i < ex->num_phys);
2115 }
2116 return res;
2117 }
2118
sas_smp_handler(struct bsg_job * job,struct Scsi_Host * shost,struct sas_rphy * rphy)2119 void sas_smp_handler(struct bsg_job *job, struct Scsi_Host *shost,
2120 struct sas_rphy *rphy)
2121 {
2122 struct domain_device *dev;
2123 unsigned int rcvlen = 0;
2124 int ret = -EINVAL;
2125
2126 /* no rphy means no smp target support (ie aic94xx host) */
2127 if (!rphy)
2128 return sas_smp_host_handler(job, shost);
2129
2130 switch (rphy->identify.device_type) {
2131 case SAS_EDGE_EXPANDER_DEVICE:
2132 case SAS_FANOUT_EXPANDER_DEVICE:
2133 break;
2134 default:
2135 pr_err("%s: can we send a smp request to a device?\n",
2136 __func__);
2137 goto out;
2138 }
2139
2140 dev = sas_find_dev_by_rphy(rphy);
2141 if (!dev) {
2142 pr_err("%s: fail to find a domain_device?\n", __func__);
2143 goto out;
2144 }
2145
2146 /* do we need to support multiple segments? */
2147 if (job->request_payload.sg_cnt > 1 ||
2148 job->reply_payload.sg_cnt > 1) {
2149 pr_info("%s: multiple segments req %u, rsp %u\n",
2150 __func__, job->request_payload.payload_len,
2151 job->reply_payload.payload_len);
2152 goto out;
2153 }
2154
2155 ret = smp_execute_task_sg(dev, job->request_payload.sg_list,
2156 job->reply_payload.sg_list);
2157 if (ret >= 0) {
2158 /* bsg_job_done() requires the length received */
2159 rcvlen = job->reply_payload.payload_len - ret;
2160 ret = 0;
2161 }
2162
2163 out:
2164 bsg_job_done(job, ret, rcvlen);
2165 }
2166