1 /*
2  * Copyright (C) 1994 Linus Torvalds
3  *
4  * Pentium III FXSR, SSE support
5  * General FPU state handling cleanups
6  *	Gareth Hughes <gareth@valinux.com>, May 2000
7  * x86-64 work by Andi Kleen 2002
8  */
9 
10 #ifndef _ASM_X86_I387_H
11 #define _ASM_X86_I387_H
12 
13 #ifndef __ASSEMBLY__
14 
15 #include <linux/sched.h>
16 #include <linux/kernel_stat.h>
17 #include <linux/regset.h>
18 #include <linux/hardirq.h>
19 #include <linux/slab.h>
20 #include <asm/asm.h>
21 #include <asm/cpufeature.h>
22 #include <asm/processor.h>
23 #include <asm/sigcontext.h>
24 #include <asm/user.h>
25 #include <asm/uaccess.h>
26 #include <asm/xsave.h>
27 
28 extern unsigned int sig_xstate_size;
29 extern void fpu_init(void);
30 extern void mxcsr_feature_mask_init(void);
31 extern int init_fpu(struct task_struct *child);
32 extern asmlinkage void math_state_restore(void);
33 extern void __math_state_restore(void);
34 extern int dump_fpu(struct pt_regs *, struct user_i387_struct *);
35 
36 extern user_regset_active_fn fpregs_active, xfpregs_active;
37 extern user_regset_get_fn fpregs_get, xfpregs_get, fpregs_soft_get,
38 				xstateregs_get;
39 extern user_regset_set_fn fpregs_set, xfpregs_set, fpregs_soft_set,
40 				 xstateregs_set;
41 
42 /*
43  * xstateregs_active == fpregs_active. Please refer to the comment
44  * at the definition of fpregs_active.
45  */
46 #define xstateregs_active	fpregs_active
47 
48 extern struct _fpx_sw_bytes fx_sw_reserved;
49 #ifdef CONFIG_IA32_EMULATION
50 extern unsigned int sig_xstate_ia32_size;
51 extern struct _fpx_sw_bytes fx_sw_reserved_ia32;
52 struct _fpstate_ia32;
53 struct _xstate_ia32;
54 extern int save_i387_xstate_ia32(void __user *buf);
55 extern int restore_i387_xstate_ia32(void __user *buf);
56 #endif
57 
58 #ifdef CONFIG_MATH_EMULATION
59 extern void finit_soft_fpu(struct i387_soft_struct *soft);
60 #else
finit_soft_fpu(struct i387_soft_struct * soft)61 static inline void finit_soft_fpu(struct i387_soft_struct *soft) {}
62 #endif
63 
64 #define X87_FSW_ES (1 << 7)	/* Exception Summary */
65 
use_xsaveopt(void)66 static __always_inline __pure bool use_xsaveopt(void)
67 {
68 	return static_cpu_has(X86_FEATURE_XSAVEOPT);
69 }
70 
use_xsave(void)71 static __always_inline __pure bool use_xsave(void)
72 {
73 	return static_cpu_has(X86_FEATURE_XSAVE);
74 }
75 
use_fxsr(void)76 static __always_inline __pure bool use_fxsr(void)
77 {
78         return static_cpu_has(X86_FEATURE_FXSR);
79 }
80 
81 extern void __sanitize_i387_state(struct task_struct *);
82 
sanitize_i387_state(struct task_struct * tsk)83 static inline void sanitize_i387_state(struct task_struct *tsk)
84 {
85 	if (!use_xsaveopt())
86 		return;
87 	__sanitize_i387_state(tsk);
88 }
89 
90 #ifdef CONFIG_X86_64
fxrstor_checking(struct i387_fxsave_struct * fx)91 static inline int fxrstor_checking(struct i387_fxsave_struct *fx)
92 {
93 	int err;
94 
95 	/* See comment in fxsave() below. */
96 #ifdef CONFIG_AS_FXSAVEQ
97 	asm volatile("1:  fxrstorq %[fx]\n\t"
98 		     "2:\n"
99 		     ".section .fixup,\"ax\"\n"
100 		     "3:  movl $-1,%[err]\n"
101 		     "    jmp  2b\n"
102 		     ".previous\n"
103 		     _ASM_EXTABLE(1b, 3b)
104 		     : [err] "=r" (err)
105 		     : [fx] "m" (*fx), "0" (0));
106 #else
107 	asm volatile("1:  rex64/fxrstor (%[fx])\n\t"
108 		     "2:\n"
109 		     ".section .fixup,\"ax\"\n"
110 		     "3:  movl $-1,%[err]\n"
111 		     "    jmp  2b\n"
112 		     ".previous\n"
113 		     _ASM_EXTABLE(1b, 3b)
114 		     : [err] "=r" (err)
115 		     : [fx] "R" (fx), "m" (*fx), "0" (0));
116 #endif
117 	return err;
118 }
119 
fxsave_user(struct i387_fxsave_struct __user * fx)120 static inline int fxsave_user(struct i387_fxsave_struct __user *fx)
121 {
122 	int err;
123 
124 	/*
125 	 * Clear the bytes not touched by the fxsave and reserved
126 	 * for the SW usage.
127 	 */
128 	err = __clear_user(&fx->sw_reserved,
129 			   sizeof(struct _fpx_sw_bytes));
130 	if (unlikely(err))
131 		return -EFAULT;
132 
133 	/* See comment in fxsave() below. */
134 #ifdef CONFIG_AS_FXSAVEQ
135 	asm volatile("1:  fxsaveq %[fx]\n\t"
136 		     "2:\n"
137 		     ".section .fixup,\"ax\"\n"
138 		     "3:  movl $-1,%[err]\n"
139 		     "    jmp  2b\n"
140 		     ".previous\n"
141 		     _ASM_EXTABLE(1b, 3b)
142 		     : [err] "=r" (err), [fx] "=m" (*fx)
143 		     : "0" (0));
144 #else
145 	asm volatile("1:  rex64/fxsave (%[fx])\n\t"
146 		     "2:\n"
147 		     ".section .fixup,\"ax\"\n"
148 		     "3:  movl $-1,%[err]\n"
149 		     "    jmp  2b\n"
150 		     ".previous\n"
151 		     _ASM_EXTABLE(1b, 3b)
152 		     : [err] "=r" (err), "=m" (*fx)
153 		     : [fx] "R" (fx), "0" (0));
154 #endif
155 	if (unlikely(err) &&
156 	    __clear_user(fx, sizeof(struct i387_fxsave_struct)))
157 		err = -EFAULT;
158 	/* No need to clear here because the caller clears USED_MATH */
159 	return err;
160 }
161 
fpu_fxsave(struct fpu * fpu)162 static inline void fpu_fxsave(struct fpu *fpu)
163 {
164 	/* Using "rex64; fxsave %0" is broken because, if the memory operand
165 	   uses any extended registers for addressing, a second REX prefix
166 	   will be generated (to the assembler, rex64 followed by semicolon
167 	   is a separate instruction), and hence the 64-bitness is lost. */
168 
169 #ifdef CONFIG_AS_FXSAVEQ
170 	/* Using "fxsaveq %0" would be the ideal choice, but is only supported
171 	   starting with gas 2.16. */
172 	__asm__ __volatile__("fxsaveq %0"
173 			     : "=m" (fpu->state->fxsave));
174 #else
175 	/* Using, as a workaround, the properly prefixed form below isn't
176 	   accepted by any binutils version so far released, complaining that
177 	   the same type of prefix is used twice if an extended register is
178 	   needed for addressing (fix submitted to mainline 2005-11-21).
179 	asm volatile("rex64/fxsave %0"
180 		     : "=m" (fpu->state->fxsave));
181 	   This, however, we can work around by forcing the compiler to select
182 	   an addressing mode that doesn't require extended registers. */
183 	asm volatile("rex64/fxsave (%[fx])"
184 		     : "=m" (fpu->state->fxsave)
185 		     : [fx] "R" (&fpu->state->fxsave));
186 #endif
187 }
188 
189 #else  /* CONFIG_X86_32 */
190 
191 /* perform fxrstor iff the processor has extended states, otherwise frstor */
fxrstor_checking(struct i387_fxsave_struct * fx)192 static inline int fxrstor_checking(struct i387_fxsave_struct *fx)
193 {
194 	/*
195 	 * The "nop" is needed to make the instructions the same
196 	 * length.
197 	 */
198 	alternative_input(
199 		"nop ; frstor %1",
200 		"fxrstor %1",
201 		X86_FEATURE_FXSR,
202 		"m" (*fx));
203 
204 	return 0;
205 }
206 
fpu_fxsave(struct fpu * fpu)207 static inline void fpu_fxsave(struct fpu *fpu)
208 {
209 	asm volatile("fxsave %[fx]"
210 		     : [fx] "=m" (fpu->state->fxsave));
211 }
212 
213 #endif	/* CONFIG_X86_64 */
214 
215 /* We need a safe address that is cheap to find and that is already
216    in L1 during context switch. The best choices are unfortunately
217    different for UP and SMP */
218 #ifdef CONFIG_SMP
219 #define safe_address (__per_cpu_offset[0])
220 #else
221 #define safe_address (kstat_cpu(0).cpustat.user)
222 #endif
223 
224 /*
225  * These must be called with preempt disabled
226  */
fpu_save_init(struct fpu * fpu)227 static inline void fpu_save_init(struct fpu *fpu)
228 {
229 	if (use_xsave()) {
230 		fpu_xsave(fpu);
231 
232 		/*
233 		 * xsave header may indicate the init state of the FP.
234 		 */
235 		if (!(fpu->state->xsave.xsave_hdr.xstate_bv & XSTATE_FP))
236 			return;
237 	} else if (use_fxsr()) {
238 		fpu_fxsave(fpu);
239 	} else {
240 		asm volatile("fnsave %[fx]; fwait"
241 			     : [fx] "=m" (fpu->state->fsave));
242 		return;
243 	}
244 
245 	if (unlikely(fpu->state->fxsave.swd & X87_FSW_ES))
246 		asm volatile("fnclex");
247 
248 	/* AMD K7/K8 CPUs don't save/restore FDP/FIP/FOP unless an exception
249 	   is pending.  Clear the x87 state here by setting it to fixed
250 	   values. safe_address is a random variable that should be in L1 */
251 	alternative_input(
252 		ASM_NOP8 ASM_NOP2,
253 		"emms\n\t"	  	/* clear stack tags */
254 		"fildl %P[addr]",	/* set F?P to defined value */
255 		X86_FEATURE_FXSAVE_LEAK,
256 		[addr] "m" (safe_address));
257 }
258 
__save_init_fpu(struct task_struct * tsk)259 static inline void __save_init_fpu(struct task_struct *tsk)
260 {
261 	fpu_save_init(&tsk->thread.fpu);
262 	task_thread_info(tsk)->status &= ~TS_USEDFPU;
263 }
264 
fpu_fxrstor_checking(struct fpu * fpu)265 static inline int fpu_fxrstor_checking(struct fpu *fpu)
266 {
267 	return fxrstor_checking(&fpu->state->fxsave);
268 }
269 
fpu_restore_checking(struct fpu * fpu)270 static inline int fpu_restore_checking(struct fpu *fpu)
271 {
272 	if (use_xsave())
273 		return fpu_xrstor_checking(fpu);
274 	else
275 		return fpu_fxrstor_checking(fpu);
276 }
277 
restore_fpu_checking(struct task_struct * tsk)278 static inline int restore_fpu_checking(struct task_struct *tsk)
279 {
280 	return fpu_restore_checking(&tsk->thread.fpu);
281 }
282 
283 /*
284  * Signal frame handlers...
285  */
286 extern int save_i387_xstate(void __user *buf);
287 extern int restore_i387_xstate(void __user *buf);
288 
__unlazy_fpu(struct task_struct * tsk)289 static inline void __unlazy_fpu(struct task_struct *tsk)
290 {
291 	if (task_thread_info(tsk)->status & TS_USEDFPU) {
292 		__save_init_fpu(tsk);
293 		stts();
294 	} else
295 		tsk->fpu_counter = 0;
296 }
297 
__clear_fpu(struct task_struct * tsk)298 static inline void __clear_fpu(struct task_struct *tsk)
299 {
300 	if (task_thread_info(tsk)->status & TS_USEDFPU) {
301 		/* Ignore delayed exceptions from user space */
302 		asm volatile("1: fwait\n"
303 			     "2:\n"
304 			     _ASM_EXTABLE(1b, 2b));
305 		task_thread_info(tsk)->status &= ~TS_USEDFPU;
306 		stts();
307 	}
308 }
309 
kernel_fpu_begin(void)310 static inline void kernel_fpu_begin(void)
311 {
312 	struct thread_info *me = current_thread_info();
313 	preempt_disable();
314 	if (me->status & TS_USEDFPU)
315 		__save_init_fpu(me->task);
316 	else
317 		clts();
318 }
319 
kernel_fpu_end(void)320 static inline void kernel_fpu_end(void)
321 {
322 	stts();
323 	preempt_enable();
324 }
325 
irq_fpu_usable(void)326 static inline bool irq_fpu_usable(void)
327 {
328 	struct pt_regs *regs;
329 
330 	return !in_interrupt() || !(regs = get_irq_regs()) || \
331 		user_mode(regs) || (read_cr0() & X86_CR0_TS);
332 }
333 
334 /*
335  * Some instructions like VIA's padlock instructions generate a spurious
336  * DNA fault but don't modify SSE registers. And these instructions
337  * get used from interrupt context as well. To prevent these kernel instructions
338  * in interrupt context interacting wrongly with other user/kernel fpu usage, we
339  * should use them only in the context of irq_ts_save/restore()
340  */
irq_ts_save(void)341 static inline int irq_ts_save(void)
342 {
343 	/*
344 	 * If in process context and not atomic, we can take a spurious DNA fault.
345 	 * Otherwise, doing clts() in process context requires disabling preemption
346 	 * or some heavy lifting like kernel_fpu_begin()
347 	 */
348 	if (!in_atomic())
349 		return 0;
350 
351 	if (read_cr0() & X86_CR0_TS) {
352 		clts();
353 		return 1;
354 	}
355 
356 	return 0;
357 }
358 
irq_ts_restore(int TS_state)359 static inline void irq_ts_restore(int TS_state)
360 {
361 	if (TS_state)
362 		stts();
363 }
364 
365 /*
366  * These disable preemption on their own and are safe
367  */
save_init_fpu(struct task_struct * tsk)368 static inline void save_init_fpu(struct task_struct *tsk)
369 {
370 	preempt_disable();
371 	__save_init_fpu(tsk);
372 	stts();
373 	preempt_enable();
374 }
375 
unlazy_fpu(struct task_struct * tsk)376 static inline void unlazy_fpu(struct task_struct *tsk)
377 {
378 	preempt_disable();
379 	__unlazy_fpu(tsk);
380 	preempt_enable();
381 }
382 
clear_fpu(struct task_struct * tsk)383 static inline void clear_fpu(struct task_struct *tsk)
384 {
385 	preempt_disable();
386 	__clear_fpu(tsk);
387 	preempt_enable();
388 }
389 
390 /*
391  * i387 state interaction
392  */
get_fpu_cwd(struct task_struct * tsk)393 static inline unsigned short get_fpu_cwd(struct task_struct *tsk)
394 {
395 	if (cpu_has_fxsr) {
396 		return tsk->thread.fpu.state->fxsave.cwd;
397 	} else {
398 		return (unsigned short)tsk->thread.fpu.state->fsave.cwd;
399 	}
400 }
401 
get_fpu_swd(struct task_struct * tsk)402 static inline unsigned short get_fpu_swd(struct task_struct *tsk)
403 {
404 	if (cpu_has_fxsr) {
405 		return tsk->thread.fpu.state->fxsave.swd;
406 	} else {
407 		return (unsigned short)tsk->thread.fpu.state->fsave.swd;
408 	}
409 }
410 
get_fpu_mxcsr(struct task_struct * tsk)411 static inline unsigned short get_fpu_mxcsr(struct task_struct *tsk)
412 {
413 	if (cpu_has_xmm) {
414 		return tsk->thread.fpu.state->fxsave.mxcsr;
415 	} else {
416 		return MXCSR_DEFAULT;
417 	}
418 }
419 
fpu_allocated(struct fpu * fpu)420 static bool fpu_allocated(struct fpu *fpu)
421 {
422 	return fpu->state != NULL;
423 }
424 
fpu_alloc(struct fpu * fpu)425 static inline int fpu_alloc(struct fpu *fpu)
426 {
427 	if (fpu_allocated(fpu))
428 		return 0;
429 	fpu->state = kmem_cache_alloc(task_xstate_cachep, GFP_KERNEL);
430 	if (!fpu->state)
431 		return -ENOMEM;
432 	WARN_ON((unsigned long)fpu->state & 15);
433 	return 0;
434 }
435 
fpu_free(struct fpu * fpu)436 static inline void fpu_free(struct fpu *fpu)
437 {
438 	if (fpu->state) {
439 		kmem_cache_free(task_xstate_cachep, fpu->state);
440 		fpu->state = NULL;
441 	}
442 }
443 
fpu_copy(struct fpu * dst,struct fpu * src)444 static inline void fpu_copy(struct fpu *dst, struct fpu *src)
445 {
446 	memcpy(dst->state, src->state, xstate_size);
447 }
448 
449 extern void fpu_finit(struct fpu *fpu);
450 
451 #endif /* __ASSEMBLY__ */
452 
453 #endif /* _ASM_X86_I387_H */
454