1 /*
2  * salinfo.c
3  *
4  * Creates entries in /proc/sal for various system features.
5  *
6  * Copyright (c) 2003, 2006 Silicon Graphics, Inc.  All rights reserved.
7  * Copyright (c) 2003 Hewlett-Packard Co
8  *	Bjorn Helgaas <bjorn.helgaas@hp.com>
9  *
10  * 10/30/2001	jbarnes@sgi.com		copied much of Stephane's palinfo
11  *					code to create this file
12  * Oct 23 2003	kaos@sgi.com
13  *   Replace IPI with set_cpus_allowed() to read a record from the required cpu.
14  *   Redesign salinfo log processing to separate interrupt and user space
15  *   contexts.
16  *   Cache the record across multi-block reads from user space.
17  *   Support > 64 cpus.
18  *   Delete module_exit and MOD_INC/DEC_COUNT, salinfo cannot be a module.
19  *
20  * Jan 28 2004	kaos@sgi.com
21  *   Periodically check for outstanding MCA or INIT records.
22  *
23  * Dec  5 2004	kaos@sgi.com
24  *   Standardize which records are cleared automatically.
25  *
26  * Aug 18 2005	kaos@sgi.com
27  *   mca.c may not pass a buffer, a NULL buffer just indicates that a new
28  *   record is available in SAL.
29  *   Replace some NR_CPUS by cpus_online, for hotplug cpu.
30  *
31  * Jan  5 2006        kaos@sgi.com
32  *   Handle hotplug cpus coming online.
33  *   Handle hotplug cpus going offline while they still have outstanding records.
34  *   Use the cpu_* macros consistently.
35  *   Replace the counting semaphore with a mutex and a test if the cpumask is non-empty.
36  *   Modify the locking to make the test for "work to do" an atomic operation.
37  */
38 
39 #include <linux/capability.h>
40 #include <linux/cpu.h>
41 #include <linux/types.h>
42 #include <linux/proc_fs.h>
43 #include <linux/module.h>
44 #include <linux/smp.h>
45 #include <linux/timer.h>
46 #include <linux/vmalloc.h>
47 #include <linux/semaphore.h>
48 
49 #include <asm/sal.h>
50 #include <asm/uaccess.h>
51 
52 MODULE_AUTHOR("Jesse Barnes <jbarnes@sgi.com>");
53 MODULE_DESCRIPTION("/proc interface to IA-64 SAL features");
54 MODULE_LICENSE("GPL");
55 
56 static int salinfo_read(char *page, char **start, off_t off, int count, int *eof, void *data);
57 
58 typedef struct {
59 	const char		*name;		/* name of the proc entry */
60 	unsigned long           feature;        /* feature bit */
61 	struct proc_dir_entry	*entry;		/* registered entry (removal) */
62 } salinfo_entry_t;
63 
64 /*
65  * List {name,feature} pairs for every entry in /proc/sal/<feature>
66  * that this module exports
67  */
68 static salinfo_entry_t salinfo_entries[]={
69 	{ "bus_lock",           IA64_SAL_PLATFORM_FEATURE_BUS_LOCK, },
70 	{ "irq_redirection",	IA64_SAL_PLATFORM_FEATURE_IRQ_REDIR_HINT, },
71 	{ "ipi_redirection",	IA64_SAL_PLATFORM_FEATURE_IPI_REDIR_HINT, },
72 	{ "itc_drift",		IA64_SAL_PLATFORM_FEATURE_ITC_DRIFT, },
73 };
74 
75 #define NR_SALINFO_ENTRIES ARRAY_SIZE(salinfo_entries)
76 
77 static char *salinfo_log_name[] = {
78 	"mca",
79 	"init",
80 	"cmc",
81 	"cpe",
82 };
83 
84 static struct proc_dir_entry *salinfo_proc_entries[
85 	ARRAY_SIZE(salinfo_entries) +			/* /proc/sal/bus_lock */
86 	ARRAY_SIZE(salinfo_log_name) +			/* /proc/sal/{mca,...} */
87 	(2 * ARRAY_SIZE(salinfo_log_name)) +		/* /proc/sal/mca/{event,data} */
88 	1];						/* /proc/sal */
89 
90 /* Some records we get ourselves, some are accessed as saved data in buffers
91  * that are owned by mca.c.
92  */
93 struct salinfo_data_saved {
94 	u8*			buffer;
95 	u64			size;
96 	u64			id;
97 	int			cpu;
98 };
99 
100 /* State transitions.  Actions are :-
101  *   Write "read <cpunum>" to the data file.
102  *   Write "clear <cpunum>" to the data file.
103  *   Write "oemdata <cpunum> <offset> to the data file.
104  *   Read from the data file.
105  *   Close the data file.
106  *
107  * Start state is NO_DATA.
108  *
109  * NO_DATA
110  *    write "read <cpunum>" -> NO_DATA or LOG_RECORD.
111  *    write "clear <cpunum>" -> NO_DATA or LOG_RECORD.
112  *    write "oemdata <cpunum> <offset> -> return -EINVAL.
113  *    read data -> return EOF.
114  *    close -> unchanged.  Free record areas.
115  *
116  * LOG_RECORD
117  *    write "read <cpunum>" -> NO_DATA or LOG_RECORD.
118  *    write "clear <cpunum>" -> NO_DATA or LOG_RECORD.
119  *    write "oemdata <cpunum> <offset> -> format the oem data, goto OEMDATA.
120  *    read data -> return the INIT/MCA/CMC/CPE record.
121  *    close -> unchanged.  Keep record areas.
122  *
123  * OEMDATA
124  *    write "read <cpunum>" -> NO_DATA or LOG_RECORD.
125  *    write "clear <cpunum>" -> NO_DATA or LOG_RECORD.
126  *    write "oemdata <cpunum> <offset> -> format the oem data, goto OEMDATA.
127  *    read data -> return the formatted oemdata.
128  *    close -> unchanged.  Keep record areas.
129  *
130  * Closing the data file does not change the state.  This allows shell scripts
131  * to manipulate salinfo data, each shell redirection opens the file, does one
132  * action then closes it again.  The record areas are only freed at close when
133  * the state is NO_DATA.
134  */
135 enum salinfo_state {
136 	STATE_NO_DATA,
137 	STATE_LOG_RECORD,
138 	STATE_OEMDATA,
139 };
140 
141 struct salinfo_data {
142 	cpumask_t		cpu_event;	/* which cpus have outstanding events */
143 	struct semaphore	mutex;
144 	u8			*log_buffer;
145 	u64			log_size;
146 	u8			*oemdata;	/* decoded oem data */
147 	u64			oemdata_size;
148 	int			open;		/* single-open to prevent races */
149 	u8			type;
150 	u8			saved_num;	/* using a saved record? */
151 	enum salinfo_state	state :8;	/* processing state */
152 	u8			padding;
153 	int			cpu_check;	/* next CPU to check */
154 	struct salinfo_data_saved data_saved[5];/* save last 5 records from mca.c, must be < 255 */
155 };
156 
157 static struct salinfo_data salinfo_data[ARRAY_SIZE(salinfo_log_name)];
158 
159 static DEFINE_SPINLOCK(data_lock);
160 static DEFINE_SPINLOCK(data_saved_lock);
161 
162 /** salinfo_platform_oemdata - optional callback to decode oemdata from an error
163  * record.
164  * @sect_header: pointer to the start of the section to decode.
165  * @oemdata: returns vmalloc area containing the decoded output.
166  * @oemdata_size: returns length of decoded output (strlen).
167  *
168  * Description: If user space asks for oem data to be decoded by the kernel
169  * and/or prom and the platform has set salinfo_platform_oemdata to the address
170  * of a platform specific routine then call that routine.  salinfo_platform_oemdata
171  * vmalloc's and formats its output area, returning the address of the text
172  * and its strlen.  Returns 0 for success, -ve for error.  The callback is
173  * invoked on the cpu that generated the error record.
174  */
175 int (*salinfo_platform_oemdata)(const u8 *sect_header, u8 **oemdata, u64 *oemdata_size);
176 
177 struct salinfo_platform_oemdata_parms {
178 	const u8 *efi_guid;
179 	u8 **oemdata;
180 	u64 *oemdata_size;
181 	int ret;
182 };
183 
184 /* Kick the mutex that tells user space that there is work to do.  Instead of
185  * trying to track the state of the mutex across multiple cpus, in user
186  * context, interrupt context, non-maskable interrupt context and hotplug cpu,
187  * it is far easier just to grab the mutex if it is free then release it.
188  *
189  * This routine must be called with data_saved_lock held, to make the down/up
190  * operation atomic.
191  */
192 static void
salinfo_work_to_do(struct salinfo_data * data)193 salinfo_work_to_do(struct salinfo_data *data)
194 {
195 	(void)(down_trylock(&data->mutex) ?: 0);
196 	up(&data->mutex);
197 }
198 
199 static void
salinfo_platform_oemdata_cpu(void * context)200 salinfo_platform_oemdata_cpu(void *context)
201 {
202 	struct salinfo_platform_oemdata_parms *parms = context;
203 	parms->ret = salinfo_platform_oemdata(parms->efi_guid, parms->oemdata, parms->oemdata_size);
204 }
205 
206 static void
shift1_data_saved(struct salinfo_data * data,int shift)207 shift1_data_saved (struct salinfo_data *data, int shift)
208 {
209 	memcpy(data->data_saved+shift, data->data_saved+shift+1,
210 	       (ARRAY_SIZE(data->data_saved) - (shift+1)) * sizeof(data->data_saved[0]));
211 	memset(data->data_saved + ARRAY_SIZE(data->data_saved) - 1, 0,
212 	       sizeof(data->data_saved[0]));
213 }
214 
215 /* This routine is invoked in interrupt context.  Note: mca.c enables
216  * interrupts before calling this code for CMC/CPE.  MCA and INIT events are
217  * not irq safe, do not call any routines that use spinlocks, they may deadlock.
218  * MCA and INIT records are recorded, a timer event will look for any
219  * outstanding events and wake up the user space code.
220  *
221  * The buffer passed from mca.c points to the output from ia64_log_get. This is
222  * a persistent buffer but its contents can change between the interrupt and
223  * when user space processes the record.  Save the record id to identify
224  * changes.  If the buffer is NULL then just update the bitmap.
225  */
226 void
salinfo_log_wakeup(int type,u8 * buffer,u64 size,int irqsafe)227 salinfo_log_wakeup(int type, u8 *buffer, u64 size, int irqsafe)
228 {
229 	struct salinfo_data *data = salinfo_data + type;
230 	struct salinfo_data_saved *data_saved;
231 	unsigned long flags = 0;
232 	int i;
233 	int saved_size = ARRAY_SIZE(data->data_saved);
234 
235 	BUG_ON(type >= ARRAY_SIZE(salinfo_log_name));
236 
237 	if (irqsafe)
238 		spin_lock_irqsave(&data_saved_lock, flags);
239 	if (buffer) {
240 		for (i = 0, data_saved = data->data_saved; i < saved_size; ++i, ++data_saved) {
241 			if (!data_saved->buffer)
242 				break;
243 		}
244 		if (i == saved_size) {
245 			if (!data->saved_num) {
246 				shift1_data_saved(data, 0);
247 				data_saved = data->data_saved + saved_size - 1;
248 			} else
249 				data_saved = NULL;
250 		}
251 		if (data_saved) {
252 			data_saved->cpu = smp_processor_id();
253 			data_saved->id = ((sal_log_record_header_t *)buffer)->id;
254 			data_saved->size = size;
255 			data_saved->buffer = buffer;
256 		}
257 	}
258 	cpu_set(smp_processor_id(), data->cpu_event);
259 	if (irqsafe) {
260 		salinfo_work_to_do(data);
261 		spin_unlock_irqrestore(&data_saved_lock, flags);
262 	}
263 }
264 
265 /* Check for outstanding MCA/INIT records every minute (arbitrary) */
266 #define SALINFO_TIMER_DELAY (60*HZ)
267 static struct timer_list salinfo_timer;
268 extern void ia64_mlogbuf_dump(void);
269 
270 static void
salinfo_timeout_check(struct salinfo_data * data)271 salinfo_timeout_check(struct salinfo_data *data)
272 {
273 	unsigned long flags;
274 	if (!data->open)
275 		return;
276 	if (!cpus_empty(data->cpu_event)) {
277 		spin_lock_irqsave(&data_saved_lock, flags);
278 		salinfo_work_to_do(data);
279 		spin_unlock_irqrestore(&data_saved_lock, flags);
280 	}
281 }
282 
283 static void
salinfo_timeout(unsigned long arg)284 salinfo_timeout (unsigned long arg)
285 {
286 	ia64_mlogbuf_dump();
287 	salinfo_timeout_check(salinfo_data + SAL_INFO_TYPE_MCA);
288 	salinfo_timeout_check(salinfo_data + SAL_INFO_TYPE_INIT);
289 	salinfo_timer.expires = jiffies + SALINFO_TIMER_DELAY;
290 	add_timer(&salinfo_timer);
291 }
292 
293 static int
salinfo_event_open(struct inode * inode,struct file * file)294 salinfo_event_open(struct inode *inode, struct file *file)
295 {
296 	if (!capable(CAP_SYS_ADMIN))
297 		return -EPERM;
298 	return 0;
299 }
300 
301 static ssize_t
salinfo_event_read(struct file * file,char __user * buffer,size_t count,loff_t * ppos)302 salinfo_event_read(struct file *file, char __user *buffer, size_t count, loff_t *ppos)
303 {
304 	struct inode *inode = file->f_path.dentry->d_inode;
305 	struct proc_dir_entry *entry = PDE(inode);
306 	struct salinfo_data *data = entry->data;
307 	char cmd[32];
308 	size_t size;
309 	int i, n, cpu = -1;
310 
311 retry:
312 	if (cpus_empty(data->cpu_event) && down_trylock(&data->mutex)) {
313 		if (file->f_flags & O_NONBLOCK)
314 			return -EAGAIN;
315 		if (down_interruptible(&data->mutex))
316 			return -EINTR;
317 	}
318 
319 	n = data->cpu_check;
320 	for (i = 0; i < nr_cpu_ids; i++) {
321 		if (cpu_isset(n, data->cpu_event)) {
322 			if (!cpu_online(n)) {
323 				cpu_clear(n, data->cpu_event);
324 				continue;
325 			}
326 			cpu = n;
327 			break;
328 		}
329 		if (++n == nr_cpu_ids)
330 			n = 0;
331 	}
332 
333 	if (cpu == -1)
334 		goto retry;
335 
336 	ia64_mlogbuf_dump();
337 
338 	/* for next read, start checking at next CPU */
339 	data->cpu_check = cpu;
340 	if (++data->cpu_check == nr_cpu_ids)
341 		data->cpu_check = 0;
342 
343 	snprintf(cmd, sizeof(cmd), "read %d\n", cpu);
344 
345 	size = strlen(cmd);
346 	if (size > count)
347 		size = count;
348 	if (copy_to_user(buffer, cmd, size))
349 		return -EFAULT;
350 
351 	return size;
352 }
353 
354 static const struct file_operations salinfo_event_fops = {
355 	.open  = salinfo_event_open,
356 	.read  = salinfo_event_read,
357 	.llseek = noop_llseek,
358 };
359 
360 static int
salinfo_log_open(struct inode * inode,struct file * file)361 salinfo_log_open(struct inode *inode, struct file *file)
362 {
363 	struct proc_dir_entry *entry = PDE(inode);
364 	struct salinfo_data *data = entry->data;
365 
366 	if (!capable(CAP_SYS_ADMIN))
367 		return -EPERM;
368 
369 	spin_lock(&data_lock);
370 	if (data->open) {
371 		spin_unlock(&data_lock);
372 		return -EBUSY;
373 	}
374 	data->open = 1;
375 	spin_unlock(&data_lock);
376 
377 	if (data->state == STATE_NO_DATA &&
378 	    !(data->log_buffer = vmalloc(ia64_sal_get_state_info_size(data->type)))) {
379 		data->open = 0;
380 		return -ENOMEM;
381 	}
382 
383 	return 0;
384 }
385 
386 static int
salinfo_log_release(struct inode * inode,struct file * file)387 salinfo_log_release(struct inode *inode, struct file *file)
388 {
389 	struct proc_dir_entry *entry = PDE(inode);
390 	struct salinfo_data *data = entry->data;
391 
392 	if (data->state == STATE_NO_DATA) {
393 		vfree(data->log_buffer);
394 		vfree(data->oemdata);
395 		data->log_buffer = NULL;
396 		data->oemdata = NULL;
397 	}
398 	spin_lock(&data_lock);
399 	data->open = 0;
400 	spin_unlock(&data_lock);
401 	return 0;
402 }
403 
404 static void
call_on_cpu(int cpu,void (* fn)(void *),void * arg)405 call_on_cpu(int cpu, void (*fn)(void *), void *arg)
406 {
407 	cpumask_t save_cpus_allowed = current->cpus_allowed;
408 	set_cpus_allowed_ptr(current, cpumask_of(cpu));
409 	(*fn)(arg);
410 	set_cpus_allowed_ptr(current, &save_cpus_allowed);
411 }
412 
413 static void
salinfo_log_read_cpu(void * context)414 salinfo_log_read_cpu(void *context)
415 {
416 	struct salinfo_data *data = context;
417 	sal_log_record_header_t *rh;
418 	data->log_size = ia64_sal_get_state_info(data->type, (u64 *) data->log_buffer);
419 	rh = (sal_log_record_header_t *)(data->log_buffer);
420 	/* Clear corrected errors as they are read from SAL */
421 	if (rh->severity == sal_log_severity_corrected)
422 		ia64_sal_clear_state_info(data->type);
423 }
424 
425 static void
salinfo_log_new_read(int cpu,struct salinfo_data * data)426 salinfo_log_new_read(int cpu, struct salinfo_data *data)
427 {
428 	struct salinfo_data_saved *data_saved;
429 	unsigned long flags;
430 	int i;
431 	int saved_size = ARRAY_SIZE(data->data_saved);
432 
433 	data->saved_num = 0;
434 	spin_lock_irqsave(&data_saved_lock, flags);
435 retry:
436 	for (i = 0, data_saved = data->data_saved; i < saved_size; ++i, ++data_saved) {
437 		if (data_saved->buffer && data_saved->cpu == cpu) {
438 			sal_log_record_header_t *rh = (sal_log_record_header_t *)(data_saved->buffer);
439 			data->log_size = data_saved->size;
440 			memcpy(data->log_buffer, rh, data->log_size);
441 			barrier();	/* id check must not be moved */
442 			if (rh->id == data_saved->id) {
443 				data->saved_num = i+1;
444 				break;
445 			}
446 			/* saved record changed by mca.c since interrupt, discard it */
447 			shift1_data_saved(data, i);
448 			goto retry;
449 		}
450 	}
451 	spin_unlock_irqrestore(&data_saved_lock, flags);
452 
453 	if (!data->saved_num)
454 		call_on_cpu(cpu, salinfo_log_read_cpu, data);
455 	if (!data->log_size) {
456 		data->state = STATE_NO_DATA;
457 		cpu_clear(cpu, data->cpu_event);
458 	} else {
459 		data->state = STATE_LOG_RECORD;
460 	}
461 }
462 
463 static ssize_t
salinfo_log_read(struct file * file,char __user * buffer,size_t count,loff_t * ppos)464 salinfo_log_read(struct file *file, char __user *buffer, size_t count, loff_t *ppos)
465 {
466 	struct inode *inode = file->f_path.dentry->d_inode;
467 	struct proc_dir_entry *entry = PDE(inode);
468 	struct salinfo_data *data = entry->data;
469 	u8 *buf;
470 	u64 bufsize;
471 
472 	if (data->state == STATE_LOG_RECORD) {
473 		buf = data->log_buffer;
474 		bufsize = data->log_size;
475 	} else if (data->state == STATE_OEMDATA) {
476 		buf = data->oemdata;
477 		bufsize = data->oemdata_size;
478 	} else {
479 		buf = NULL;
480 		bufsize = 0;
481 	}
482 	return simple_read_from_buffer(buffer, count, ppos, buf, bufsize);
483 }
484 
485 static void
salinfo_log_clear_cpu(void * context)486 salinfo_log_clear_cpu(void *context)
487 {
488 	struct salinfo_data *data = context;
489 	ia64_sal_clear_state_info(data->type);
490 }
491 
492 static int
salinfo_log_clear(struct salinfo_data * data,int cpu)493 salinfo_log_clear(struct salinfo_data *data, int cpu)
494 {
495 	sal_log_record_header_t *rh;
496 	unsigned long flags;
497 	spin_lock_irqsave(&data_saved_lock, flags);
498 	data->state = STATE_NO_DATA;
499 	if (!cpu_isset(cpu, data->cpu_event)) {
500 		spin_unlock_irqrestore(&data_saved_lock, flags);
501 		return 0;
502 	}
503 	cpu_clear(cpu, data->cpu_event);
504 	if (data->saved_num) {
505 		shift1_data_saved(data, data->saved_num - 1);
506 		data->saved_num = 0;
507 	}
508 	spin_unlock_irqrestore(&data_saved_lock, flags);
509 	rh = (sal_log_record_header_t *)(data->log_buffer);
510 	/* Corrected errors have already been cleared from SAL */
511 	if (rh->severity != sal_log_severity_corrected)
512 		call_on_cpu(cpu, salinfo_log_clear_cpu, data);
513 	/* clearing a record may make a new record visible */
514 	salinfo_log_new_read(cpu, data);
515 	if (data->state == STATE_LOG_RECORD) {
516 		spin_lock_irqsave(&data_saved_lock, flags);
517 		cpu_set(cpu, data->cpu_event);
518 		salinfo_work_to_do(data);
519 		spin_unlock_irqrestore(&data_saved_lock, flags);
520 	}
521 	return 0;
522 }
523 
524 static ssize_t
salinfo_log_write(struct file * file,const char __user * buffer,size_t count,loff_t * ppos)525 salinfo_log_write(struct file *file, const char __user *buffer, size_t count, loff_t *ppos)
526 {
527 	struct inode *inode = file->f_path.dentry->d_inode;
528 	struct proc_dir_entry *entry = PDE(inode);
529 	struct salinfo_data *data = entry->data;
530 	char cmd[32];
531 	size_t size;
532 	u32 offset;
533 	int cpu;
534 
535 	size = sizeof(cmd);
536 	if (count < size)
537 		size = count;
538 	if (copy_from_user(cmd, buffer, size))
539 		return -EFAULT;
540 
541 	if (sscanf(cmd, "read %d", &cpu) == 1) {
542 		salinfo_log_new_read(cpu, data);
543 	} else if (sscanf(cmd, "clear %d", &cpu) == 1) {
544 		int ret;
545 		if ((ret = salinfo_log_clear(data, cpu)))
546 			count = ret;
547 	} else if (sscanf(cmd, "oemdata %d %d", &cpu, &offset) == 2) {
548 		if (data->state != STATE_LOG_RECORD && data->state != STATE_OEMDATA)
549 			return -EINVAL;
550 		if (offset > data->log_size - sizeof(efi_guid_t))
551 			return -EINVAL;
552 		data->state = STATE_OEMDATA;
553 		if (salinfo_platform_oemdata) {
554 			struct salinfo_platform_oemdata_parms parms = {
555 				.efi_guid = data->log_buffer + offset,
556 				.oemdata = &data->oemdata,
557 				.oemdata_size = &data->oemdata_size
558 			};
559 			call_on_cpu(cpu, salinfo_platform_oemdata_cpu, &parms);
560 			if (parms.ret)
561 				count = parms.ret;
562 		} else
563 			data->oemdata_size = 0;
564 	} else
565 		return -EINVAL;
566 
567 	return count;
568 }
569 
570 static const struct file_operations salinfo_data_fops = {
571 	.open    = salinfo_log_open,
572 	.release = salinfo_log_release,
573 	.read    = salinfo_log_read,
574 	.write   = salinfo_log_write,
575 	.llseek  = default_llseek,
576 };
577 
578 static int __cpuinit
salinfo_cpu_callback(struct notifier_block * nb,unsigned long action,void * hcpu)579 salinfo_cpu_callback(struct notifier_block *nb, unsigned long action, void *hcpu)
580 {
581 	unsigned int i, cpu = (unsigned long)hcpu;
582 	unsigned long flags;
583 	struct salinfo_data *data;
584 	switch (action) {
585 	case CPU_ONLINE:
586 	case CPU_ONLINE_FROZEN:
587 		spin_lock_irqsave(&data_saved_lock, flags);
588 		for (i = 0, data = salinfo_data;
589 		     i < ARRAY_SIZE(salinfo_data);
590 		     ++i, ++data) {
591 			cpu_set(cpu, data->cpu_event);
592 			salinfo_work_to_do(data);
593 		}
594 		spin_unlock_irqrestore(&data_saved_lock, flags);
595 		break;
596 	case CPU_DEAD:
597 	case CPU_DEAD_FROZEN:
598 		spin_lock_irqsave(&data_saved_lock, flags);
599 		for (i = 0, data = salinfo_data;
600 		     i < ARRAY_SIZE(salinfo_data);
601 		     ++i, ++data) {
602 			struct salinfo_data_saved *data_saved;
603 			int j;
604 			for (j = ARRAY_SIZE(data->data_saved) - 1, data_saved = data->data_saved + j;
605 			     j >= 0;
606 			     --j, --data_saved) {
607 				if (data_saved->buffer && data_saved->cpu == cpu) {
608 					shift1_data_saved(data, j);
609 				}
610 			}
611 			cpu_clear(cpu, data->cpu_event);
612 		}
613 		spin_unlock_irqrestore(&data_saved_lock, flags);
614 		break;
615 	}
616 	return NOTIFY_OK;
617 }
618 
619 static struct notifier_block salinfo_cpu_notifier __cpuinitdata =
620 {
621 	.notifier_call = salinfo_cpu_callback,
622 	.priority = 0,
623 };
624 
625 static int __init
salinfo_init(void)626 salinfo_init(void)
627 {
628 	struct proc_dir_entry *salinfo_dir; /* /proc/sal dir entry */
629 	struct proc_dir_entry **sdir = salinfo_proc_entries; /* keeps track of every entry */
630 	struct proc_dir_entry *dir, *entry;
631 	struct salinfo_data *data;
632 	int i, j;
633 
634 	salinfo_dir = proc_mkdir("sal", NULL);
635 	if (!salinfo_dir)
636 		return 0;
637 
638 	for (i=0; i < NR_SALINFO_ENTRIES; i++) {
639 		/* pass the feature bit in question as misc data */
640 		*sdir++ = create_proc_read_entry (salinfo_entries[i].name, 0, salinfo_dir,
641 						  salinfo_read, (void *)salinfo_entries[i].feature);
642 	}
643 
644 	for (i = 0; i < ARRAY_SIZE(salinfo_log_name); i++) {
645 		data = salinfo_data + i;
646 		data->type = i;
647 		sema_init(&data->mutex, 1);
648 		dir = proc_mkdir(salinfo_log_name[i], salinfo_dir);
649 		if (!dir)
650 			continue;
651 
652 		entry = proc_create_data("event", S_IRUSR, dir,
653 					 &salinfo_event_fops, data);
654 		if (!entry)
655 			continue;
656 		*sdir++ = entry;
657 
658 		entry = proc_create_data("data", S_IRUSR | S_IWUSR, dir,
659 					 &salinfo_data_fops, data);
660 		if (!entry)
661 			continue;
662 		*sdir++ = entry;
663 
664 		/* we missed any events before now */
665 		for_each_online_cpu(j)
666 			cpu_set(j, data->cpu_event);
667 
668 		*sdir++ = dir;
669 	}
670 
671 	*sdir++ = salinfo_dir;
672 
673 	init_timer(&salinfo_timer);
674 	salinfo_timer.expires = jiffies + SALINFO_TIMER_DELAY;
675 	salinfo_timer.function = &salinfo_timeout;
676 	add_timer(&salinfo_timer);
677 
678 	register_hotcpu_notifier(&salinfo_cpu_notifier);
679 
680 	return 0;
681 }
682 
683 /*
684  * 'data' contains an integer that corresponds to the feature we're
685  * testing
686  */
687 static int
salinfo_read(char * page,char ** start,off_t off,int count,int * eof,void * data)688 salinfo_read(char *page, char **start, off_t off, int count, int *eof, void *data)
689 {
690 	int len = 0;
691 
692 	len = sprintf(page, (sal_platform_features & (unsigned long)data) ? "1\n" : "0\n");
693 
694 	if (len <= off+count) *eof = 1;
695 
696 	*start = page + off;
697 	len   -= off;
698 
699 	if (len>count) len = count;
700 	if (len<0) len = 0;
701 
702 	return len;
703 }
704 
705 module_init(salinfo_init);
706