1 // SPDX-License-Identifier: GPL-2.0 or BSD-3-Clause
2 /*
3 * Copyright(c) 2016 - 2020 Intel Corporation.
4 */
5
6 #include <linux/hash.h>
7 #include <linux/bitops.h>
8 #include <linux/lockdep.h>
9 #include <linux/vmalloc.h>
10 #include <linux/slab.h>
11 #include <rdma/ib_verbs.h>
12 #include <rdma/ib_hdrs.h>
13 #include <rdma/opa_addr.h>
14 #include <rdma/uverbs_ioctl.h>
15 #include "qp.h"
16 #include "vt.h"
17 #include "trace.h"
18
19 #define RVT_RWQ_COUNT_THRESHOLD 16
20
21 static void rvt_rc_timeout(struct timer_list *t);
22 static void rvt_reset_qp(struct rvt_dev_info *rdi, struct rvt_qp *qp,
23 enum ib_qp_type type);
24
25 /*
26 * Convert the AETH RNR timeout code into the number of microseconds.
27 */
28 static const u32 ib_rvt_rnr_table[32] = {
29 655360, /* 00: 655.36 */
30 10, /* 01: .01 */
31 20, /* 02 .02 */
32 30, /* 03: .03 */
33 40, /* 04: .04 */
34 60, /* 05: .06 */
35 80, /* 06: .08 */
36 120, /* 07: .12 */
37 160, /* 08: .16 */
38 240, /* 09: .24 */
39 320, /* 0A: .32 */
40 480, /* 0B: .48 */
41 640, /* 0C: .64 */
42 960, /* 0D: .96 */
43 1280, /* 0E: 1.28 */
44 1920, /* 0F: 1.92 */
45 2560, /* 10: 2.56 */
46 3840, /* 11: 3.84 */
47 5120, /* 12: 5.12 */
48 7680, /* 13: 7.68 */
49 10240, /* 14: 10.24 */
50 15360, /* 15: 15.36 */
51 20480, /* 16: 20.48 */
52 30720, /* 17: 30.72 */
53 40960, /* 18: 40.96 */
54 61440, /* 19: 61.44 */
55 81920, /* 1A: 81.92 */
56 122880, /* 1B: 122.88 */
57 163840, /* 1C: 163.84 */
58 245760, /* 1D: 245.76 */
59 327680, /* 1E: 327.68 */
60 491520 /* 1F: 491.52 */
61 };
62
63 /*
64 * Note that it is OK to post send work requests in the SQE and ERR
65 * states; rvt_do_send() will process them and generate error
66 * completions as per IB 1.2 C10-96.
67 */
68 const int ib_rvt_state_ops[IB_QPS_ERR + 1] = {
69 [IB_QPS_RESET] = 0,
70 [IB_QPS_INIT] = RVT_POST_RECV_OK,
71 [IB_QPS_RTR] = RVT_POST_RECV_OK | RVT_PROCESS_RECV_OK,
72 [IB_QPS_RTS] = RVT_POST_RECV_OK | RVT_PROCESS_RECV_OK |
73 RVT_POST_SEND_OK | RVT_PROCESS_SEND_OK |
74 RVT_PROCESS_NEXT_SEND_OK,
75 [IB_QPS_SQD] = RVT_POST_RECV_OK | RVT_PROCESS_RECV_OK |
76 RVT_POST_SEND_OK | RVT_PROCESS_SEND_OK,
77 [IB_QPS_SQE] = RVT_POST_RECV_OK | RVT_PROCESS_RECV_OK |
78 RVT_POST_SEND_OK | RVT_FLUSH_SEND,
79 [IB_QPS_ERR] = RVT_POST_RECV_OK | RVT_FLUSH_RECV |
80 RVT_POST_SEND_OK | RVT_FLUSH_SEND,
81 };
82 EXPORT_SYMBOL(ib_rvt_state_ops);
83
84 /* platform specific: return the last level cache (llc) size, in KiB */
rvt_wss_llc_size(void)85 static int rvt_wss_llc_size(void)
86 {
87 /* assume that the boot CPU value is universal for all CPUs */
88 return boot_cpu_data.x86_cache_size;
89 }
90
91 /* platform specific: cacheless copy */
cacheless_memcpy(void * dst,void * src,size_t n)92 static void cacheless_memcpy(void *dst, void *src, size_t n)
93 {
94 /*
95 * Use the only available X64 cacheless copy. Add a __user cast
96 * to quiet sparse. The src agument is already in the kernel so
97 * there are no security issues. The extra fault recovery machinery
98 * is not invoked.
99 */
100 __copy_user_nocache(dst, (void __user *)src, n, 0);
101 }
102
rvt_wss_exit(struct rvt_dev_info * rdi)103 void rvt_wss_exit(struct rvt_dev_info *rdi)
104 {
105 struct rvt_wss *wss = rdi->wss;
106
107 if (!wss)
108 return;
109
110 /* coded to handle partially initialized and repeat callers */
111 kfree(wss->entries);
112 wss->entries = NULL;
113 kfree(rdi->wss);
114 rdi->wss = NULL;
115 }
116
117 /*
118 * rvt_wss_init - Init wss data structures
119 *
120 * Return: 0 on success
121 */
rvt_wss_init(struct rvt_dev_info * rdi)122 int rvt_wss_init(struct rvt_dev_info *rdi)
123 {
124 unsigned int sge_copy_mode = rdi->dparms.sge_copy_mode;
125 unsigned int wss_threshold = rdi->dparms.wss_threshold;
126 unsigned int wss_clean_period = rdi->dparms.wss_clean_period;
127 long llc_size;
128 long llc_bits;
129 long table_size;
130 long table_bits;
131 struct rvt_wss *wss;
132 int node = rdi->dparms.node;
133
134 if (sge_copy_mode != RVT_SGE_COPY_ADAPTIVE) {
135 rdi->wss = NULL;
136 return 0;
137 }
138
139 rdi->wss = kzalloc_node(sizeof(*rdi->wss), GFP_KERNEL, node);
140 if (!rdi->wss)
141 return -ENOMEM;
142 wss = rdi->wss;
143
144 /* check for a valid percent range - default to 80 if none or invalid */
145 if (wss_threshold < 1 || wss_threshold > 100)
146 wss_threshold = 80;
147
148 /* reject a wildly large period */
149 if (wss_clean_period > 1000000)
150 wss_clean_period = 256;
151
152 /* reject a zero period */
153 if (wss_clean_period == 0)
154 wss_clean_period = 1;
155
156 /*
157 * Calculate the table size - the next power of 2 larger than the
158 * LLC size. LLC size is in KiB.
159 */
160 llc_size = rvt_wss_llc_size() * 1024;
161 table_size = roundup_pow_of_two(llc_size);
162
163 /* one bit per page in rounded up table */
164 llc_bits = llc_size / PAGE_SIZE;
165 table_bits = table_size / PAGE_SIZE;
166 wss->pages_mask = table_bits - 1;
167 wss->num_entries = table_bits / BITS_PER_LONG;
168
169 wss->threshold = (llc_bits * wss_threshold) / 100;
170 if (wss->threshold == 0)
171 wss->threshold = 1;
172
173 wss->clean_period = wss_clean_period;
174 atomic_set(&wss->clean_counter, wss_clean_period);
175
176 wss->entries = kcalloc_node(wss->num_entries, sizeof(*wss->entries),
177 GFP_KERNEL, node);
178 if (!wss->entries) {
179 rvt_wss_exit(rdi);
180 return -ENOMEM;
181 }
182
183 return 0;
184 }
185
186 /*
187 * Advance the clean counter. When the clean period has expired,
188 * clean an entry.
189 *
190 * This is implemented in atomics to avoid locking. Because multiple
191 * variables are involved, it can be racy which can lead to slightly
192 * inaccurate information. Since this is only a heuristic, this is
193 * OK. Any innaccuracies will clean themselves out as the counter
194 * advances. That said, it is unlikely the entry clean operation will
195 * race - the next possible racer will not start until the next clean
196 * period.
197 *
198 * The clean counter is implemented as a decrement to zero. When zero
199 * is reached an entry is cleaned.
200 */
wss_advance_clean_counter(struct rvt_wss * wss)201 static void wss_advance_clean_counter(struct rvt_wss *wss)
202 {
203 int entry;
204 int weight;
205 unsigned long bits;
206
207 /* become the cleaner if we decrement the counter to zero */
208 if (atomic_dec_and_test(&wss->clean_counter)) {
209 /*
210 * Set, not add, the clean period. This avoids an issue
211 * where the counter could decrement below the clean period.
212 * Doing a set can result in lost decrements, slowing the
213 * clean advance. Since this a heuristic, this possible
214 * slowdown is OK.
215 *
216 * An alternative is to loop, advancing the counter by a
217 * clean period until the result is > 0. However, this could
218 * lead to several threads keeping another in the clean loop.
219 * This could be mitigated by limiting the number of times
220 * we stay in the loop.
221 */
222 atomic_set(&wss->clean_counter, wss->clean_period);
223
224 /*
225 * Uniquely grab the entry to clean and move to next.
226 * The current entry is always the lower bits of
227 * wss.clean_entry. The table size, wss.num_entries,
228 * is always a power-of-2.
229 */
230 entry = (atomic_inc_return(&wss->clean_entry) - 1)
231 & (wss->num_entries - 1);
232
233 /* clear the entry and count the bits */
234 bits = xchg(&wss->entries[entry], 0);
235 weight = hweight64((u64)bits);
236 /* only adjust the contended total count if needed */
237 if (weight)
238 atomic_sub(weight, &wss->total_count);
239 }
240 }
241
242 /*
243 * Insert the given address into the working set array.
244 */
wss_insert(struct rvt_wss * wss,void * address)245 static void wss_insert(struct rvt_wss *wss, void *address)
246 {
247 u32 page = ((unsigned long)address >> PAGE_SHIFT) & wss->pages_mask;
248 u32 entry = page / BITS_PER_LONG; /* assumes this ends up a shift */
249 u32 nr = page & (BITS_PER_LONG - 1);
250
251 if (!test_and_set_bit(nr, &wss->entries[entry]))
252 atomic_inc(&wss->total_count);
253
254 wss_advance_clean_counter(wss);
255 }
256
257 /*
258 * Is the working set larger than the threshold?
259 */
wss_exceeds_threshold(struct rvt_wss * wss)260 static inline bool wss_exceeds_threshold(struct rvt_wss *wss)
261 {
262 return atomic_read(&wss->total_count) >= wss->threshold;
263 }
264
get_map_page(struct rvt_qpn_table * qpt,struct rvt_qpn_map * map)265 static void get_map_page(struct rvt_qpn_table *qpt,
266 struct rvt_qpn_map *map)
267 {
268 unsigned long page = get_zeroed_page(GFP_KERNEL);
269
270 /*
271 * Free the page if someone raced with us installing it.
272 */
273
274 spin_lock(&qpt->lock);
275 if (map->page)
276 free_page(page);
277 else
278 map->page = (void *)page;
279 spin_unlock(&qpt->lock);
280 }
281
282 /**
283 * init_qpn_table - initialize the QP number table for a device
284 * @rdi: rvt dev struct
285 * @qpt: the QPN table
286 */
init_qpn_table(struct rvt_dev_info * rdi,struct rvt_qpn_table * qpt)287 static int init_qpn_table(struct rvt_dev_info *rdi, struct rvt_qpn_table *qpt)
288 {
289 u32 offset, i;
290 struct rvt_qpn_map *map;
291 int ret = 0;
292
293 if (!(rdi->dparms.qpn_res_end >= rdi->dparms.qpn_res_start))
294 return -EINVAL;
295
296 spin_lock_init(&qpt->lock);
297
298 qpt->last = rdi->dparms.qpn_start;
299 qpt->incr = rdi->dparms.qpn_inc << rdi->dparms.qos_shift;
300
301 /*
302 * Drivers may want some QPs beyond what we need for verbs let them use
303 * our qpn table. No need for two. Lets go ahead and mark the bitmaps
304 * for those. The reserved range must be *after* the range which verbs
305 * will pick from.
306 */
307
308 /* Figure out number of bit maps needed before reserved range */
309 qpt->nmaps = rdi->dparms.qpn_res_start / RVT_BITS_PER_PAGE;
310
311 /* This should always be zero */
312 offset = rdi->dparms.qpn_res_start & RVT_BITS_PER_PAGE_MASK;
313
314 /* Starting with the first reserved bit map */
315 map = &qpt->map[qpt->nmaps];
316
317 rvt_pr_info(rdi, "Reserving QPNs from 0x%x to 0x%x for non-verbs use\n",
318 rdi->dparms.qpn_res_start, rdi->dparms.qpn_res_end);
319 for (i = rdi->dparms.qpn_res_start; i <= rdi->dparms.qpn_res_end; i++) {
320 if (!map->page) {
321 get_map_page(qpt, map);
322 if (!map->page) {
323 ret = -ENOMEM;
324 break;
325 }
326 }
327 set_bit(offset, map->page);
328 offset++;
329 if (offset == RVT_BITS_PER_PAGE) {
330 /* next page */
331 qpt->nmaps++;
332 map++;
333 offset = 0;
334 }
335 }
336 return ret;
337 }
338
339 /**
340 * free_qpn_table - free the QP number table for a device
341 * @qpt: the QPN table
342 */
free_qpn_table(struct rvt_qpn_table * qpt)343 static void free_qpn_table(struct rvt_qpn_table *qpt)
344 {
345 int i;
346
347 for (i = 0; i < ARRAY_SIZE(qpt->map); i++)
348 free_page((unsigned long)qpt->map[i].page);
349 }
350
351 /**
352 * rvt_driver_qp_init - Init driver qp resources
353 * @rdi: rvt dev strucutre
354 *
355 * Return: 0 on success
356 */
rvt_driver_qp_init(struct rvt_dev_info * rdi)357 int rvt_driver_qp_init(struct rvt_dev_info *rdi)
358 {
359 int i;
360 int ret = -ENOMEM;
361
362 if (!rdi->dparms.qp_table_size)
363 return -EINVAL;
364
365 /*
366 * If driver is not doing any QP allocation then make sure it is
367 * providing the necessary QP functions.
368 */
369 if (!rdi->driver_f.free_all_qps ||
370 !rdi->driver_f.qp_priv_alloc ||
371 !rdi->driver_f.qp_priv_free ||
372 !rdi->driver_f.notify_qp_reset ||
373 !rdi->driver_f.notify_restart_rc)
374 return -EINVAL;
375
376 /* allocate parent object */
377 rdi->qp_dev = kzalloc_node(sizeof(*rdi->qp_dev), GFP_KERNEL,
378 rdi->dparms.node);
379 if (!rdi->qp_dev)
380 return -ENOMEM;
381
382 /* allocate hash table */
383 rdi->qp_dev->qp_table_size = rdi->dparms.qp_table_size;
384 rdi->qp_dev->qp_table_bits = ilog2(rdi->dparms.qp_table_size);
385 rdi->qp_dev->qp_table =
386 kmalloc_array_node(rdi->qp_dev->qp_table_size,
387 sizeof(*rdi->qp_dev->qp_table),
388 GFP_KERNEL, rdi->dparms.node);
389 if (!rdi->qp_dev->qp_table)
390 goto no_qp_table;
391
392 for (i = 0; i < rdi->qp_dev->qp_table_size; i++)
393 RCU_INIT_POINTER(rdi->qp_dev->qp_table[i], NULL);
394
395 spin_lock_init(&rdi->qp_dev->qpt_lock);
396
397 /* initialize qpn map */
398 if (init_qpn_table(rdi, &rdi->qp_dev->qpn_table))
399 goto fail_table;
400
401 spin_lock_init(&rdi->n_qps_lock);
402
403 return 0;
404
405 fail_table:
406 kfree(rdi->qp_dev->qp_table);
407 free_qpn_table(&rdi->qp_dev->qpn_table);
408
409 no_qp_table:
410 kfree(rdi->qp_dev);
411
412 return ret;
413 }
414
415 /**
416 * rvt_free_qp_cb - callback function to reset a qp
417 * @qp: the qp to reset
418 * @v: a 64-bit value
419 *
420 * This function resets the qp and removes it from the
421 * qp hash table.
422 */
rvt_free_qp_cb(struct rvt_qp * qp,u64 v)423 static void rvt_free_qp_cb(struct rvt_qp *qp, u64 v)
424 {
425 unsigned int *qp_inuse = (unsigned int *)v;
426 struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device);
427
428 /* Reset the qp and remove it from the qp hash list */
429 rvt_reset_qp(rdi, qp, qp->ibqp.qp_type);
430
431 /* Increment the qp_inuse count */
432 (*qp_inuse)++;
433 }
434
435 /**
436 * rvt_free_all_qps - check for QPs still in use
437 * @rdi: rvt device info structure
438 *
439 * There should not be any QPs still in use.
440 * Free memory for table.
441 * Return the number of QPs still in use.
442 */
rvt_free_all_qps(struct rvt_dev_info * rdi)443 static unsigned rvt_free_all_qps(struct rvt_dev_info *rdi)
444 {
445 unsigned int qp_inuse = 0;
446
447 qp_inuse += rvt_mcast_tree_empty(rdi);
448
449 rvt_qp_iter(rdi, (u64)&qp_inuse, rvt_free_qp_cb);
450
451 return qp_inuse;
452 }
453
454 /**
455 * rvt_qp_exit - clean up qps on device exit
456 * @rdi: rvt dev structure
457 *
458 * Check for qp leaks and free resources.
459 */
rvt_qp_exit(struct rvt_dev_info * rdi)460 void rvt_qp_exit(struct rvt_dev_info *rdi)
461 {
462 u32 qps_inuse = rvt_free_all_qps(rdi);
463
464 if (qps_inuse)
465 rvt_pr_err(rdi, "QP memory leak! %u still in use\n",
466 qps_inuse);
467 if (!rdi->qp_dev)
468 return;
469
470 kfree(rdi->qp_dev->qp_table);
471 free_qpn_table(&rdi->qp_dev->qpn_table);
472 kfree(rdi->qp_dev);
473 }
474
mk_qpn(struct rvt_qpn_table * qpt,struct rvt_qpn_map * map,unsigned off)475 static inline unsigned mk_qpn(struct rvt_qpn_table *qpt,
476 struct rvt_qpn_map *map, unsigned off)
477 {
478 return (map - qpt->map) * RVT_BITS_PER_PAGE + off;
479 }
480
481 /**
482 * alloc_qpn - Allocate the next available qpn or zero/one for QP type
483 * IB_QPT_SMI/IB_QPT_GSI
484 * @rdi: rvt device info structure
485 * @qpt: queue pair number table pointer
486 * @type: the QP type
487 * @port_num: IB port number, 1 based, comes from core
488 * @exclude_prefix: prefix of special queue pair number being allocated
489 *
490 * Return: The queue pair number
491 */
alloc_qpn(struct rvt_dev_info * rdi,struct rvt_qpn_table * qpt,enum ib_qp_type type,u8 port_num,u8 exclude_prefix)492 static int alloc_qpn(struct rvt_dev_info *rdi, struct rvt_qpn_table *qpt,
493 enum ib_qp_type type, u8 port_num, u8 exclude_prefix)
494 {
495 u32 i, offset, max_scan, qpn;
496 struct rvt_qpn_map *map;
497 u32 ret;
498 u32 max_qpn = exclude_prefix == RVT_AIP_QP_PREFIX ?
499 RVT_AIP_QPN_MAX : RVT_QPN_MAX;
500
501 if (rdi->driver_f.alloc_qpn)
502 return rdi->driver_f.alloc_qpn(rdi, qpt, type, port_num);
503
504 if (type == IB_QPT_SMI || type == IB_QPT_GSI) {
505 unsigned n;
506
507 ret = type == IB_QPT_GSI;
508 n = 1 << (ret + 2 * (port_num - 1));
509 spin_lock(&qpt->lock);
510 if (qpt->flags & n)
511 ret = -EINVAL;
512 else
513 qpt->flags |= n;
514 spin_unlock(&qpt->lock);
515 goto bail;
516 }
517
518 qpn = qpt->last + qpt->incr;
519 if (qpn >= max_qpn)
520 qpn = qpt->incr | ((qpt->last & 1) ^ 1);
521 /* offset carries bit 0 */
522 offset = qpn & RVT_BITS_PER_PAGE_MASK;
523 map = &qpt->map[qpn / RVT_BITS_PER_PAGE];
524 max_scan = qpt->nmaps - !offset;
525 for (i = 0;;) {
526 if (unlikely(!map->page)) {
527 get_map_page(qpt, map);
528 if (unlikely(!map->page))
529 break;
530 }
531 do {
532 if (!test_and_set_bit(offset, map->page)) {
533 qpt->last = qpn;
534 ret = qpn;
535 goto bail;
536 }
537 offset += qpt->incr;
538 /*
539 * This qpn might be bogus if offset >= BITS_PER_PAGE.
540 * That is OK. It gets re-assigned below
541 */
542 qpn = mk_qpn(qpt, map, offset);
543 } while (offset < RVT_BITS_PER_PAGE && qpn < RVT_QPN_MAX);
544 /*
545 * In order to keep the number of pages allocated to a
546 * minimum, we scan the all existing pages before increasing
547 * the size of the bitmap table.
548 */
549 if (++i > max_scan) {
550 if (qpt->nmaps == RVT_QPNMAP_ENTRIES)
551 break;
552 map = &qpt->map[qpt->nmaps++];
553 /* start at incr with current bit 0 */
554 offset = qpt->incr | (offset & 1);
555 } else if (map < &qpt->map[qpt->nmaps]) {
556 ++map;
557 /* start at incr with current bit 0 */
558 offset = qpt->incr | (offset & 1);
559 } else {
560 map = &qpt->map[0];
561 /* wrap to first map page, invert bit 0 */
562 offset = qpt->incr | ((offset & 1) ^ 1);
563 }
564 /* there can be no set bits in low-order QoS bits */
565 WARN_ON(rdi->dparms.qos_shift > 1 &&
566 offset & ((BIT(rdi->dparms.qos_shift - 1) - 1) << 1));
567 qpn = mk_qpn(qpt, map, offset);
568 }
569
570 ret = -ENOMEM;
571
572 bail:
573 return ret;
574 }
575
576 /**
577 * rvt_clear_mr_refs - Drop help mr refs
578 * @qp: rvt qp data structure
579 * @clr_sends: If shoudl clear send side or not
580 */
rvt_clear_mr_refs(struct rvt_qp * qp,int clr_sends)581 static void rvt_clear_mr_refs(struct rvt_qp *qp, int clr_sends)
582 {
583 unsigned n;
584 struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device);
585
586 if (test_and_clear_bit(RVT_R_REWIND_SGE, &qp->r_aflags))
587 rvt_put_ss(&qp->s_rdma_read_sge);
588
589 rvt_put_ss(&qp->r_sge);
590
591 if (clr_sends) {
592 while (qp->s_last != qp->s_head) {
593 struct rvt_swqe *wqe = rvt_get_swqe_ptr(qp, qp->s_last);
594
595 rvt_put_qp_swqe(qp, wqe);
596 if (++qp->s_last >= qp->s_size)
597 qp->s_last = 0;
598 smp_wmb(); /* see qp_set_savail */
599 }
600 if (qp->s_rdma_mr) {
601 rvt_put_mr(qp->s_rdma_mr);
602 qp->s_rdma_mr = NULL;
603 }
604 }
605
606 for (n = 0; qp->s_ack_queue && n < rvt_max_atomic(rdi); n++) {
607 struct rvt_ack_entry *e = &qp->s_ack_queue[n];
608
609 if (e->rdma_sge.mr) {
610 rvt_put_mr(e->rdma_sge.mr);
611 e->rdma_sge.mr = NULL;
612 }
613 }
614 }
615
616 /**
617 * rvt_swqe_has_lkey - return true if lkey is used by swqe
618 * @wqe: the send wqe
619 * @lkey: the lkey
620 *
621 * Test the swqe for using lkey
622 */
rvt_swqe_has_lkey(struct rvt_swqe * wqe,u32 lkey)623 static bool rvt_swqe_has_lkey(struct rvt_swqe *wqe, u32 lkey)
624 {
625 int i;
626
627 for (i = 0; i < wqe->wr.num_sge; i++) {
628 struct rvt_sge *sge = &wqe->sg_list[i];
629
630 if (rvt_mr_has_lkey(sge->mr, lkey))
631 return true;
632 }
633 return false;
634 }
635
636 /**
637 * rvt_qp_sends_has_lkey - return true is qp sends use lkey
638 * @qp: the rvt_qp
639 * @lkey: the lkey
640 */
rvt_qp_sends_has_lkey(struct rvt_qp * qp,u32 lkey)641 static bool rvt_qp_sends_has_lkey(struct rvt_qp *qp, u32 lkey)
642 {
643 u32 s_last = qp->s_last;
644
645 while (s_last != qp->s_head) {
646 struct rvt_swqe *wqe = rvt_get_swqe_ptr(qp, s_last);
647
648 if (rvt_swqe_has_lkey(wqe, lkey))
649 return true;
650
651 if (++s_last >= qp->s_size)
652 s_last = 0;
653 }
654 if (qp->s_rdma_mr)
655 if (rvt_mr_has_lkey(qp->s_rdma_mr, lkey))
656 return true;
657 return false;
658 }
659
660 /**
661 * rvt_qp_acks_has_lkey - return true if acks have lkey
662 * @qp: the qp
663 * @lkey: the lkey
664 */
rvt_qp_acks_has_lkey(struct rvt_qp * qp,u32 lkey)665 static bool rvt_qp_acks_has_lkey(struct rvt_qp *qp, u32 lkey)
666 {
667 int i;
668 struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device);
669
670 for (i = 0; qp->s_ack_queue && i < rvt_max_atomic(rdi); i++) {
671 struct rvt_ack_entry *e = &qp->s_ack_queue[i];
672
673 if (rvt_mr_has_lkey(e->rdma_sge.mr, lkey))
674 return true;
675 }
676 return false;
677 }
678
679 /**
680 * rvt_qp_mr_clean - clean up remote ops for lkey
681 * @qp: the qp
682 * @lkey: the lkey that is being de-registered
683 *
684 * This routine checks if the lkey is being used by
685 * the qp.
686 *
687 * If so, the qp is put into an error state to elminate
688 * any references from the qp.
689 */
rvt_qp_mr_clean(struct rvt_qp * qp,u32 lkey)690 void rvt_qp_mr_clean(struct rvt_qp *qp, u32 lkey)
691 {
692 bool lastwqe = false;
693
694 if (qp->ibqp.qp_type == IB_QPT_SMI ||
695 qp->ibqp.qp_type == IB_QPT_GSI)
696 /* avoid special QPs */
697 return;
698 spin_lock_irq(&qp->r_lock);
699 spin_lock(&qp->s_hlock);
700 spin_lock(&qp->s_lock);
701
702 if (qp->state == IB_QPS_ERR || qp->state == IB_QPS_RESET)
703 goto check_lwqe;
704
705 if (rvt_ss_has_lkey(&qp->r_sge, lkey) ||
706 rvt_qp_sends_has_lkey(qp, lkey) ||
707 rvt_qp_acks_has_lkey(qp, lkey))
708 lastwqe = rvt_error_qp(qp, IB_WC_LOC_PROT_ERR);
709 check_lwqe:
710 spin_unlock(&qp->s_lock);
711 spin_unlock(&qp->s_hlock);
712 spin_unlock_irq(&qp->r_lock);
713 if (lastwqe) {
714 struct ib_event ev;
715
716 ev.device = qp->ibqp.device;
717 ev.element.qp = &qp->ibqp;
718 ev.event = IB_EVENT_QP_LAST_WQE_REACHED;
719 qp->ibqp.event_handler(&ev, qp->ibqp.qp_context);
720 }
721 }
722
723 /**
724 * rvt_remove_qp - remove qp form table
725 * @rdi: rvt dev struct
726 * @qp: qp to remove
727 *
728 * Remove the QP from the table so it can't be found asynchronously by
729 * the receive routine.
730 */
rvt_remove_qp(struct rvt_dev_info * rdi,struct rvt_qp * qp)731 static void rvt_remove_qp(struct rvt_dev_info *rdi, struct rvt_qp *qp)
732 {
733 struct rvt_ibport *rvp = rdi->ports[qp->port_num - 1];
734 u32 n = hash_32(qp->ibqp.qp_num, rdi->qp_dev->qp_table_bits);
735 unsigned long flags;
736 int removed = 1;
737
738 spin_lock_irqsave(&rdi->qp_dev->qpt_lock, flags);
739
740 if (rcu_dereference_protected(rvp->qp[0],
741 lockdep_is_held(&rdi->qp_dev->qpt_lock)) == qp) {
742 RCU_INIT_POINTER(rvp->qp[0], NULL);
743 } else if (rcu_dereference_protected(rvp->qp[1],
744 lockdep_is_held(&rdi->qp_dev->qpt_lock)) == qp) {
745 RCU_INIT_POINTER(rvp->qp[1], NULL);
746 } else {
747 struct rvt_qp *q;
748 struct rvt_qp __rcu **qpp;
749
750 removed = 0;
751 qpp = &rdi->qp_dev->qp_table[n];
752 for (; (q = rcu_dereference_protected(*qpp,
753 lockdep_is_held(&rdi->qp_dev->qpt_lock))) != NULL;
754 qpp = &q->next) {
755 if (q == qp) {
756 RCU_INIT_POINTER(*qpp,
757 rcu_dereference_protected(qp->next,
758 lockdep_is_held(&rdi->qp_dev->qpt_lock)));
759 removed = 1;
760 trace_rvt_qpremove(qp, n);
761 break;
762 }
763 }
764 }
765
766 spin_unlock_irqrestore(&rdi->qp_dev->qpt_lock, flags);
767 if (removed) {
768 synchronize_rcu();
769 rvt_put_qp(qp);
770 }
771 }
772
773 /**
774 * rvt_alloc_rq - allocate memory for user or kernel buffer
775 * @rq: receive queue data structure
776 * @size: number of request queue entries
777 * @node: The NUMA node
778 * @udata: True if user data is available or not false
779 *
780 * Return: If memory allocation failed, return -ENONEM
781 * This function is used by both shared receive
782 * queues and non-shared receive queues to allocate
783 * memory.
784 */
rvt_alloc_rq(struct rvt_rq * rq,u32 size,int node,struct ib_udata * udata)785 int rvt_alloc_rq(struct rvt_rq *rq, u32 size, int node,
786 struct ib_udata *udata)
787 {
788 if (udata) {
789 rq->wq = vmalloc_user(sizeof(struct rvt_rwq) + size);
790 if (!rq->wq)
791 goto bail;
792 /* need kwq with no buffers */
793 rq->kwq = kzalloc_node(sizeof(*rq->kwq), GFP_KERNEL, node);
794 if (!rq->kwq)
795 goto bail;
796 rq->kwq->curr_wq = rq->wq->wq;
797 } else {
798 /* need kwq with buffers */
799 rq->kwq =
800 vzalloc_node(sizeof(struct rvt_krwq) + size, node);
801 if (!rq->kwq)
802 goto bail;
803 rq->kwq->curr_wq = rq->kwq->wq;
804 }
805
806 spin_lock_init(&rq->kwq->p_lock);
807 spin_lock_init(&rq->kwq->c_lock);
808 return 0;
809 bail:
810 rvt_free_rq(rq);
811 return -ENOMEM;
812 }
813
814 /**
815 * rvt_init_qp - initialize the QP state to the reset state
816 * @rdi: rvt dev struct
817 * @qp: the QP to init or reinit
818 * @type: the QP type
819 *
820 * This function is called from both rvt_create_qp() and
821 * rvt_reset_qp(). The difference is that the reset
822 * patch the necessary locks to protect against concurent
823 * access.
824 */
rvt_init_qp(struct rvt_dev_info * rdi,struct rvt_qp * qp,enum ib_qp_type type)825 static void rvt_init_qp(struct rvt_dev_info *rdi, struct rvt_qp *qp,
826 enum ib_qp_type type)
827 {
828 qp->remote_qpn = 0;
829 qp->qkey = 0;
830 qp->qp_access_flags = 0;
831 qp->s_flags &= RVT_S_SIGNAL_REQ_WR;
832 qp->s_hdrwords = 0;
833 qp->s_wqe = NULL;
834 qp->s_draining = 0;
835 qp->s_next_psn = 0;
836 qp->s_last_psn = 0;
837 qp->s_sending_psn = 0;
838 qp->s_sending_hpsn = 0;
839 qp->s_psn = 0;
840 qp->r_psn = 0;
841 qp->r_msn = 0;
842 if (type == IB_QPT_RC) {
843 qp->s_state = IB_OPCODE_RC_SEND_LAST;
844 qp->r_state = IB_OPCODE_RC_SEND_LAST;
845 } else {
846 qp->s_state = IB_OPCODE_UC_SEND_LAST;
847 qp->r_state = IB_OPCODE_UC_SEND_LAST;
848 }
849 qp->s_ack_state = IB_OPCODE_RC_ACKNOWLEDGE;
850 qp->r_nak_state = 0;
851 qp->r_aflags = 0;
852 qp->r_flags = 0;
853 qp->s_head = 0;
854 qp->s_tail = 0;
855 qp->s_cur = 0;
856 qp->s_acked = 0;
857 qp->s_last = 0;
858 qp->s_ssn = 1;
859 qp->s_lsn = 0;
860 qp->s_mig_state = IB_MIG_MIGRATED;
861 qp->r_head_ack_queue = 0;
862 qp->s_tail_ack_queue = 0;
863 qp->s_acked_ack_queue = 0;
864 qp->s_num_rd_atomic = 0;
865 qp->r_sge.num_sge = 0;
866 atomic_set(&qp->s_reserved_used, 0);
867 }
868
869 /**
870 * _rvt_reset_qp - initialize the QP state to the reset state
871 * @rdi: rvt dev struct
872 * @qp: the QP to reset
873 * @type: the QP type
874 *
875 * r_lock, s_hlock, and s_lock are required to be held by the caller
876 */
_rvt_reset_qp(struct rvt_dev_info * rdi,struct rvt_qp * qp,enum ib_qp_type type)877 static void _rvt_reset_qp(struct rvt_dev_info *rdi, struct rvt_qp *qp,
878 enum ib_qp_type type)
879 __must_hold(&qp->s_lock)
880 __must_hold(&qp->s_hlock)
881 __must_hold(&qp->r_lock)
882 {
883 lockdep_assert_held(&qp->r_lock);
884 lockdep_assert_held(&qp->s_hlock);
885 lockdep_assert_held(&qp->s_lock);
886 if (qp->state != IB_QPS_RESET) {
887 qp->state = IB_QPS_RESET;
888
889 /* Let drivers flush their waitlist */
890 rdi->driver_f.flush_qp_waiters(qp);
891 rvt_stop_rc_timers(qp);
892 qp->s_flags &= ~(RVT_S_TIMER | RVT_S_ANY_WAIT);
893 spin_unlock(&qp->s_lock);
894 spin_unlock(&qp->s_hlock);
895 spin_unlock_irq(&qp->r_lock);
896
897 /* Stop the send queue and the retry timer */
898 rdi->driver_f.stop_send_queue(qp);
899 rvt_del_timers_sync(qp);
900 /* Wait for things to stop */
901 rdi->driver_f.quiesce_qp(qp);
902
903 /* take qp out the hash and wait for it to be unused */
904 rvt_remove_qp(rdi, qp);
905
906 /* grab the lock b/c it was locked at call time */
907 spin_lock_irq(&qp->r_lock);
908 spin_lock(&qp->s_hlock);
909 spin_lock(&qp->s_lock);
910
911 rvt_clear_mr_refs(qp, 1);
912 /*
913 * Let the driver do any tear down or re-init it needs to for
914 * a qp that has been reset
915 */
916 rdi->driver_f.notify_qp_reset(qp);
917 }
918 rvt_init_qp(rdi, qp, type);
919 lockdep_assert_held(&qp->r_lock);
920 lockdep_assert_held(&qp->s_hlock);
921 lockdep_assert_held(&qp->s_lock);
922 }
923
924 /**
925 * rvt_reset_qp - initialize the QP state to the reset state
926 * @rdi: the device info
927 * @qp: the QP to reset
928 * @type: the QP type
929 *
930 * This is the wrapper function to acquire the r_lock, s_hlock, and s_lock
931 * before calling _rvt_reset_qp().
932 */
rvt_reset_qp(struct rvt_dev_info * rdi,struct rvt_qp * qp,enum ib_qp_type type)933 static void rvt_reset_qp(struct rvt_dev_info *rdi, struct rvt_qp *qp,
934 enum ib_qp_type type)
935 {
936 spin_lock_irq(&qp->r_lock);
937 spin_lock(&qp->s_hlock);
938 spin_lock(&qp->s_lock);
939 _rvt_reset_qp(rdi, qp, type);
940 spin_unlock(&qp->s_lock);
941 spin_unlock(&qp->s_hlock);
942 spin_unlock_irq(&qp->r_lock);
943 }
944
945 /**
946 * rvt_free_qpn - Free a qpn from the bit map
947 * @qpt: QP table
948 * @qpn: queue pair number to free
949 */
rvt_free_qpn(struct rvt_qpn_table * qpt,u32 qpn)950 static void rvt_free_qpn(struct rvt_qpn_table *qpt, u32 qpn)
951 {
952 struct rvt_qpn_map *map;
953
954 if ((qpn & RVT_AIP_QP_PREFIX_MASK) == RVT_AIP_QP_BASE)
955 qpn &= RVT_AIP_QP_SUFFIX;
956
957 map = qpt->map + (qpn & RVT_QPN_MASK) / RVT_BITS_PER_PAGE;
958 if (map->page)
959 clear_bit(qpn & RVT_BITS_PER_PAGE_MASK, map->page);
960 }
961
962 /**
963 * get_allowed_ops - Given a QP type return the appropriate allowed OP
964 * @type: valid, supported, QP type
965 */
get_allowed_ops(enum ib_qp_type type)966 static u8 get_allowed_ops(enum ib_qp_type type)
967 {
968 return type == IB_QPT_RC ? IB_OPCODE_RC : type == IB_QPT_UC ?
969 IB_OPCODE_UC : IB_OPCODE_UD;
970 }
971
972 /**
973 * free_ud_wq_attr - Clean up AH attribute cache for UD QPs
974 * @qp: Valid QP with allowed_ops set
975 *
976 * The rvt_swqe data structure being used is a union, so this is
977 * only valid for UD QPs.
978 */
free_ud_wq_attr(struct rvt_qp * qp)979 static void free_ud_wq_attr(struct rvt_qp *qp)
980 {
981 struct rvt_swqe *wqe;
982 int i;
983
984 for (i = 0; qp->allowed_ops == IB_OPCODE_UD && i < qp->s_size; i++) {
985 wqe = rvt_get_swqe_ptr(qp, i);
986 kfree(wqe->ud_wr.attr);
987 wqe->ud_wr.attr = NULL;
988 }
989 }
990
991 /**
992 * alloc_ud_wq_attr - AH attribute cache for UD QPs
993 * @qp: Valid QP with allowed_ops set
994 * @node: Numa node for allocation
995 *
996 * The rvt_swqe data structure being used is a union, so this is
997 * only valid for UD QPs.
998 */
alloc_ud_wq_attr(struct rvt_qp * qp,int node)999 static int alloc_ud_wq_attr(struct rvt_qp *qp, int node)
1000 {
1001 struct rvt_swqe *wqe;
1002 int i;
1003
1004 for (i = 0; qp->allowed_ops == IB_OPCODE_UD && i < qp->s_size; i++) {
1005 wqe = rvt_get_swqe_ptr(qp, i);
1006 wqe->ud_wr.attr = kzalloc_node(sizeof(*wqe->ud_wr.attr),
1007 GFP_KERNEL, node);
1008 if (!wqe->ud_wr.attr) {
1009 free_ud_wq_attr(qp);
1010 return -ENOMEM;
1011 }
1012 }
1013
1014 return 0;
1015 }
1016
1017 /**
1018 * rvt_create_qp - create a queue pair for a device
1019 * @ibqp: the queue pair
1020 * @init_attr: the attributes of the queue pair
1021 * @udata: user data for libibverbs.so
1022 *
1023 * Queue pair creation is mostly an rvt issue. However, drivers have their own
1024 * unique idea of what queue pair numbers mean. For instance there is a reserved
1025 * range for PSM.
1026 *
1027 * Return: 0 on success, otherwise returns an errno.
1028 *
1029 * Called by the ib_create_qp() core verbs function.
1030 */
rvt_create_qp(struct ib_qp * ibqp,struct ib_qp_init_attr * init_attr,struct ib_udata * udata)1031 int rvt_create_qp(struct ib_qp *ibqp, struct ib_qp_init_attr *init_attr,
1032 struct ib_udata *udata)
1033 {
1034 struct rvt_qp *qp = ibqp_to_rvtqp(ibqp);
1035 int ret = -ENOMEM;
1036 struct rvt_swqe *swq = NULL;
1037 size_t sz;
1038 size_t sg_list_sz = 0;
1039 struct rvt_dev_info *rdi = ib_to_rvt(ibqp->device);
1040 void *priv = NULL;
1041 size_t sqsize;
1042 u8 exclude_prefix = 0;
1043
1044 if (!rdi)
1045 return -EINVAL;
1046
1047 if (init_attr->create_flags & ~IB_QP_CREATE_NETDEV_USE)
1048 return -EOPNOTSUPP;
1049
1050 if (init_attr->cap.max_send_sge > rdi->dparms.props.max_send_sge ||
1051 init_attr->cap.max_send_wr > rdi->dparms.props.max_qp_wr)
1052 return -EINVAL;
1053
1054 /* Check receive queue parameters if no SRQ is specified. */
1055 if (!init_attr->srq) {
1056 if (init_attr->cap.max_recv_sge >
1057 rdi->dparms.props.max_recv_sge ||
1058 init_attr->cap.max_recv_wr > rdi->dparms.props.max_qp_wr)
1059 return -EINVAL;
1060
1061 if (init_attr->cap.max_send_sge +
1062 init_attr->cap.max_send_wr +
1063 init_attr->cap.max_recv_sge +
1064 init_attr->cap.max_recv_wr == 0)
1065 return -EINVAL;
1066 }
1067 sqsize =
1068 init_attr->cap.max_send_wr + 1 +
1069 rdi->dparms.reserved_operations;
1070 switch (init_attr->qp_type) {
1071 case IB_QPT_SMI:
1072 case IB_QPT_GSI:
1073 if (init_attr->port_num == 0 ||
1074 init_attr->port_num > ibqp->device->phys_port_cnt)
1075 return -EINVAL;
1076 fallthrough;
1077 case IB_QPT_UC:
1078 case IB_QPT_RC:
1079 case IB_QPT_UD:
1080 sz = struct_size(swq, sg_list, init_attr->cap.max_send_sge);
1081 swq = vzalloc_node(array_size(sz, sqsize), rdi->dparms.node);
1082 if (!swq)
1083 return -ENOMEM;
1084
1085 if (init_attr->srq) {
1086 struct rvt_srq *srq = ibsrq_to_rvtsrq(init_attr->srq);
1087
1088 if (srq->rq.max_sge > 1)
1089 sg_list_sz = sizeof(*qp->r_sg_list) *
1090 (srq->rq.max_sge - 1);
1091 } else if (init_attr->cap.max_recv_sge > 1)
1092 sg_list_sz = sizeof(*qp->r_sg_list) *
1093 (init_attr->cap.max_recv_sge - 1);
1094 qp->r_sg_list =
1095 kzalloc_node(sg_list_sz, GFP_KERNEL, rdi->dparms.node);
1096 if (!qp->r_sg_list)
1097 goto bail_qp;
1098 qp->allowed_ops = get_allowed_ops(init_attr->qp_type);
1099
1100 RCU_INIT_POINTER(qp->next, NULL);
1101 if (init_attr->qp_type == IB_QPT_RC) {
1102 qp->s_ack_queue =
1103 kcalloc_node(rvt_max_atomic(rdi),
1104 sizeof(*qp->s_ack_queue),
1105 GFP_KERNEL,
1106 rdi->dparms.node);
1107 if (!qp->s_ack_queue)
1108 goto bail_qp;
1109 }
1110 /* initialize timers needed for rc qp */
1111 timer_setup(&qp->s_timer, rvt_rc_timeout, 0);
1112 hrtimer_init(&qp->s_rnr_timer, CLOCK_MONOTONIC,
1113 HRTIMER_MODE_REL);
1114 qp->s_rnr_timer.function = rvt_rc_rnr_retry;
1115
1116 /*
1117 * Driver needs to set up it's private QP structure and do any
1118 * initialization that is needed.
1119 */
1120 priv = rdi->driver_f.qp_priv_alloc(rdi, qp);
1121 if (IS_ERR(priv)) {
1122 ret = PTR_ERR(priv);
1123 goto bail_qp;
1124 }
1125 qp->priv = priv;
1126 qp->timeout_jiffies =
1127 usecs_to_jiffies((4096UL * (1UL << qp->timeout)) /
1128 1000UL);
1129 if (init_attr->srq) {
1130 sz = 0;
1131 } else {
1132 qp->r_rq.size = init_attr->cap.max_recv_wr + 1;
1133 qp->r_rq.max_sge = init_attr->cap.max_recv_sge;
1134 sz = (sizeof(struct ib_sge) * qp->r_rq.max_sge) +
1135 sizeof(struct rvt_rwqe);
1136 ret = rvt_alloc_rq(&qp->r_rq, qp->r_rq.size * sz,
1137 rdi->dparms.node, udata);
1138 if (ret)
1139 goto bail_driver_priv;
1140 }
1141
1142 /*
1143 * ib_create_qp() will initialize qp->ibqp
1144 * except for qp->ibqp.qp_num.
1145 */
1146 spin_lock_init(&qp->r_lock);
1147 spin_lock_init(&qp->s_hlock);
1148 spin_lock_init(&qp->s_lock);
1149 atomic_set(&qp->refcount, 0);
1150 atomic_set(&qp->local_ops_pending, 0);
1151 init_waitqueue_head(&qp->wait);
1152 INIT_LIST_HEAD(&qp->rspwait);
1153 qp->state = IB_QPS_RESET;
1154 qp->s_wq = swq;
1155 qp->s_size = sqsize;
1156 qp->s_avail = init_attr->cap.max_send_wr;
1157 qp->s_max_sge = init_attr->cap.max_send_sge;
1158 if (init_attr->sq_sig_type == IB_SIGNAL_REQ_WR)
1159 qp->s_flags = RVT_S_SIGNAL_REQ_WR;
1160 ret = alloc_ud_wq_attr(qp, rdi->dparms.node);
1161 if (ret)
1162 goto bail_rq_rvt;
1163
1164 if (init_attr->create_flags & IB_QP_CREATE_NETDEV_USE)
1165 exclude_prefix = RVT_AIP_QP_PREFIX;
1166
1167 ret = alloc_qpn(rdi, &rdi->qp_dev->qpn_table,
1168 init_attr->qp_type,
1169 init_attr->port_num,
1170 exclude_prefix);
1171 if (ret < 0)
1172 goto bail_rq_wq;
1173
1174 qp->ibqp.qp_num = ret;
1175 if (init_attr->create_flags & IB_QP_CREATE_NETDEV_USE)
1176 qp->ibqp.qp_num |= RVT_AIP_QP_BASE;
1177 qp->port_num = init_attr->port_num;
1178 rvt_init_qp(rdi, qp, init_attr->qp_type);
1179 if (rdi->driver_f.qp_priv_init) {
1180 ret = rdi->driver_f.qp_priv_init(rdi, qp, init_attr);
1181 if (ret)
1182 goto bail_rq_wq;
1183 }
1184 break;
1185
1186 default:
1187 /* Don't support raw QPs */
1188 return -EOPNOTSUPP;
1189 }
1190
1191 init_attr->cap.max_inline_data = 0;
1192
1193 /*
1194 * Return the address of the RWQ as the offset to mmap.
1195 * See rvt_mmap() for details.
1196 */
1197 if (udata && udata->outlen >= sizeof(__u64)) {
1198 if (!qp->r_rq.wq) {
1199 __u64 offset = 0;
1200
1201 ret = ib_copy_to_udata(udata, &offset,
1202 sizeof(offset));
1203 if (ret)
1204 goto bail_qpn;
1205 } else {
1206 u32 s = sizeof(struct rvt_rwq) + qp->r_rq.size * sz;
1207
1208 qp->ip = rvt_create_mmap_info(rdi, s, udata,
1209 qp->r_rq.wq);
1210 if (IS_ERR(qp->ip)) {
1211 ret = PTR_ERR(qp->ip);
1212 goto bail_qpn;
1213 }
1214
1215 ret = ib_copy_to_udata(udata, &qp->ip->offset,
1216 sizeof(qp->ip->offset));
1217 if (ret)
1218 goto bail_ip;
1219 }
1220 qp->pid = current->pid;
1221 }
1222
1223 spin_lock(&rdi->n_qps_lock);
1224 if (rdi->n_qps_allocated == rdi->dparms.props.max_qp) {
1225 spin_unlock(&rdi->n_qps_lock);
1226 ret = -ENOMEM;
1227 goto bail_ip;
1228 }
1229
1230 rdi->n_qps_allocated++;
1231 /*
1232 * Maintain a busy_jiffies variable that will be added to the timeout
1233 * period in mod_retry_timer and add_retry_timer. This busy jiffies
1234 * is scaled by the number of rc qps created for the device to reduce
1235 * the number of timeouts occurring when there is a large number of
1236 * qps. busy_jiffies is incremented every rc qp scaling interval.
1237 * The scaling interval is selected based on extensive performance
1238 * evaluation of targeted workloads.
1239 */
1240 if (init_attr->qp_type == IB_QPT_RC) {
1241 rdi->n_rc_qps++;
1242 rdi->busy_jiffies = rdi->n_rc_qps / RC_QP_SCALING_INTERVAL;
1243 }
1244 spin_unlock(&rdi->n_qps_lock);
1245
1246 if (qp->ip) {
1247 spin_lock_irq(&rdi->pending_lock);
1248 list_add(&qp->ip->pending_mmaps, &rdi->pending_mmaps);
1249 spin_unlock_irq(&rdi->pending_lock);
1250 }
1251
1252 return 0;
1253
1254 bail_ip:
1255 if (qp->ip)
1256 kref_put(&qp->ip->ref, rvt_release_mmap_info);
1257
1258 bail_qpn:
1259 rvt_free_qpn(&rdi->qp_dev->qpn_table, qp->ibqp.qp_num);
1260
1261 bail_rq_wq:
1262 free_ud_wq_attr(qp);
1263
1264 bail_rq_rvt:
1265 rvt_free_rq(&qp->r_rq);
1266
1267 bail_driver_priv:
1268 rdi->driver_f.qp_priv_free(rdi, qp);
1269
1270 bail_qp:
1271 kfree(qp->s_ack_queue);
1272 kfree(qp->r_sg_list);
1273 vfree(swq);
1274 return ret;
1275 }
1276
1277 /**
1278 * rvt_error_qp - put a QP into the error state
1279 * @qp: the QP to put into the error state
1280 * @err: the receive completion error to signal if a RWQE is active
1281 *
1282 * Flushes both send and receive work queues.
1283 *
1284 * Return: true if last WQE event should be generated.
1285 * The QP r_lock and s_lock should be held and interrupts disabled.
1286 * If we are already in error state, just return.
1287 */
rvt_error_qp(struct rvt_qp * qp,enum ib_wc_status err)1288 int rvt_error_qp(struct rvt_qp *qp, enum ib_wc_status err)
1289 {
1290 struct ib_wc wc;
1291 int ret = 0;
1292 struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device);
1293
1294 lockdep_assert_held(&qp->r_lock);
1295 lockdep_assert_held(&qp->s_lock);
1296 if (qp->state == IB_QPS_ERR || qp->state == IB_QPS_RESET)
1297 goto bail;
1298
1299 qp->state = IB_QPS_ERR;
1300
1301 if (qp->s_flags & (RVT_S_TIMER | RVT_S_WAIT_RNR)) {
1302 qp->s_flags &= ~(RVT_S_TIMER | RVT_S_WAIT_RNR);
1303 del_timer(&qp->s_timer);
1304 }
1305
1306 if (qp->s_flags & RVT_S_ANY_WAIT_SEND)
1307 qp->s_flags &= ~RVT_S_ANY_WAIT_SEND;
1308
1309 rdi->driver_f.notify_error_qp(qp);
1310
1311 /* Schedule the sending tasklet to drain the send work queue. */
1312 if (READ_ONCE(qp->s_last) != qp->s_head)
1313 rdi->driver_f.schedule_send(qp);
1314
1315 rvt_clear_mr_refs(qp, 0);
1316
1317 memset(&wc, 0, sizeof(wc));
1318 wc.qp = &qp->ibqp;
1319 wc.opcode = IB_WC_RECV;
1320
1321 if (test_and_clear_bit(RVT_R_WRID_VALID, &qp->r_aflags)) {
1322 wc.wr_id = qp->r_wr_id;
1323 wc.status = err;
1324 rvt_cq_enter(ibcq_to_rvtcq(qp->ibqp.recv_cq), &wc, 1);
1325 }
1326 wc.status = IB_WC_WR_FLUSH_ERR;
1327
1328 if (qp->r_rq.kwq) {
1329 u32 head;
1330 u32 tail;
1331 struct rvt_rwq *wq = NULL;
1332 struct rvt_krwq *kwq = NULL;
1333
1334 spin_lock(&qp->r_rq.kwq->c_lock);
1335 /* qp->ip used to validate if there is a user buffer mmaped */
1336 if (qp->ip) {
1337 wq = qp->r_rq.wq;
1338 head = RDMA_READ_UAPI_ATOMIC(wq->head);
1339 tail = RDMA_READ_UAPI_ATOMIC(wq->tail);
1340 } else {
1341 kwq = qp->r_rq.kwq;
1342 head = kwq->head;
1343 tail = kwq->tail;
1344 }
1345 /* sanity check pointers before trusting them */
1346 if (head >= qp->r_rq.size)
1347 head = 0;
1348 if (tail >= qp->r_rq.size)
1349 tail = 0;
1350 while (tail != head) {
1351 wc.wr_id = rvt_get_rwqe_ptr(&qp->r_rq, tail)->wr_id;
1352 if (++tail >= qp->r_rq.size)
1353 tail = 0;
1354 rvt_cq_enter(ibcq_to_rvtcq(qp->ibqp.recv_cq), &wc, 1);
1355 }
1356 if (qp->ip)
1357 RDMA_WRITE_UAPI_ATOMIC(wq->tail, tail);
1358 else
1359 kwq->tail = tail;
1360 spin_unlock(&qp->r_rq.kwq->c_lock);
1361 } else if (qp->ibqp.event_handler) {
1362 ret = 1;
1363 }
1364
1365 bail:
1366 return ret;
1367 }
1368 EXPORT_SYMBOL(rvt_error_qp);
1369
1370 /*
1371 * Put the QP into the hash table.
1372 * The hash table holds a reference to the QP.
1373 */
rvt_insert_qp(struct rvt_dev_info * rdi,struct rvt_qp * qp)1374 static void rvt_insert_qp(struct rvt_dev_info *rdi, struct rvt_qp *qp)
1375 {
1376 struct rvt_ibport *rvp = rdi->ports[qp->port_num - 1];
1377 unsigned long flags;
1378
1379 rvt_get_qp(qp);
1380 spin_lock_irqsave(&rdi->qp_dev->qpt_lock, flags);
1381
1382 if (qp->ibqp.qp_num <= 1) {
1383 rcu_assign_pointer(rvp->qp[qp->ibqp.qp_num], qp);
1384 } else {
1385 u32 n = hash_32(qp->ibqp.qp_num, rdi->qp_dev->qp_table_bits);
1386
1387 qp->next = rdi->qp_dev->qp_table[n];
1388 rcu_assign_pointer(rdi->qp_dev->qp_table[n], qp);
1389 trace_rvt_qpinsert(qp, n);
1390 }
1391
1392 spin_unlock_irqrestore(&rdi->qp_dev->qpt_lock, flags);
1393 }
1394
1395 /**
1396 * rvt_modify_qp - modify the attributes of a queue pair
1397 * @ibqp: the queue pair who's attributes we're modifying
1398 * @attr: the new attributes
1399 * @attr_mask: the mask of attributes to modify
1400 * @udata: user data for libibverbs.so
1401 *
1402 * Return: 0 on success, otherwise returns an errno.
1403 */
rvt_modify_qp(struct ib_qp * ibqp,struct ib_qp_attr * attr,int attr_mask,struct ib_udata * udata)1404 int rvt_modify_qp(struct ib_qp *ibqp, struct ib_qp_attr *attr,
1405 int attr_mask, struct ib_udata *udata)
1406 {
1407 struct rvt_dev_info *rdi = ib_to_rvt(ibqp->device);
1408 struct rvt_qp *qp = ibqp_to_rvtqp(ibqp);
1409 enum ib_qp_state cur_state, new_state;
1410 struct ib_event ev;
1411 int lastwqe = 0;
1412 int mig = 0;
1413 int pmtu = 0; /* for gcc warning only */
1414 int opa_ah;
1415
1416 if (attr_mask & ~IB_QP_ATTR_STANDARD_BITS)
1417 return -EOPNOTSUPP;
1418
1419 spin_lock_irq(&qp->r_lock);
1420 spin_lock(&qp->s_hlock);
1421 spin_lock(&qp->s_lock);
1422
1423 cur_state = attr_mask & IB_QP_CUR_STATE ?
1424 attr->cur_qp_state : qp->state;
1425 new_state = attr_mask & IB_QP_STATE ? attr->qp_state : cur_state;
1426 opa_ah = rdma_cap_opa_ah(ibqp->device, qp->port_num);
1427
1428 if (!ib_modify_qp_is_ok(cur_state, new_state, ibqp->qp_type,
1429 attr_mask))
1430 goto inval;
1431
1432 if (rdi->driver_f.check_modify_qp &&
1433 rdi->driver_f.check_modify_qp(qp, attr, attr_mask, udata))
1434 goto inval;
1435
1436 if (attr_mask & IB_QP_AV) {
1437 if (opa_ah) {
1438 if (rdma_ah_get_dlid(&attr->ah_attr) >=
1439 opa_get_mcast_base(OPA_MCAST_NR))
1440 goto inval;
1441 } else {
1442 if (rdma_ah_get_dlid(&attr->ah_attr) >=
1443 be16_to_cpu(IB_MULTICAST_LID_BASE))
1444 goto inval;
1445 }
1446
1447 if (rvt_check_ah(qp->ibqp.device, &attr->ah_attr))
1448 goto inval;
1449 }
1450
1451 if (attr_mask & IB_QP_ALT_PATH) {
1452 if (opa_ah) {
1453 if (rdma_ah_get_dlid(&attr->alt_ah_attr) >=
1454 opa_get_mcast_base(OPA_MCAST_NR))
1455 goto inval;
1456 } else {
1457 if (rdma_ah_get_dlid(&attr->alt_ah_attr) >=
1458 be16_to_cpu(IB_MULTICAST_LID_BASE))
1459 goto inval;
1460 }
1461
1462 if (rvt_check_ah(qp->ibqp.device, &attr->alt_ah_attr))
1463 goto inval;
1464 if (attr->alt_pkey_index >= rvt_get_npkeys(rdi))
1465 goto inval;
1466 }
1467
1468 if (attr_mask & IB_QP_PKEY_INDEX)
1469 if (attr->pkey_index >= rvt_get_npkeys(rdi))
1470 goto inval;
1471
1472 if (attr_mask & IB_QP_MIN_RNR_TIMER)
1473 if (attr->min_rnr_timer > 31)
1474 goto inval;
1475
1476 if (attr_mask & IB_QP_PORT)
1477 if (qp->ibqp.qp_type == IB_QPT_SMI ||
1478 qp->ibqp.qp_type == IB_QPT_GSI ||
1479 attr->port_num == 0 ||
1480 attr->port_num > ibqp->device->phys_port_cnt)
1481 goto inval;
1482
1483 if (attr_mask & IB_QP_DEST_QPN)
1484 if (attr->dest_qp_num > RVT_QPN_MASK)
1485 goto inval;
1486
1487 if (attr_mask & IB_QP_RETRY_CNT)
1488 if (attr->retry_cnt > 7)
1489 goto inval;
1490
1491 if (attr_mask & IB_QP_RNR_RETRY)
1492 if (attr->rnr_retry > 7)
1493 goto inval;
1494
1495 /*
1496 * Don't allow invalid path_mtu values. OK to set greater
1497 * than the active mtu (or even the max_cap, if we have tuned
1498 * that to a small mtu. We'll set qp->path_mtu
1499 * to the lesser of requested attribute mtu and active,
1500 * for packetizing messages.
1501 * Note that the QP port has to be set in INIT and MTU in RTR.
1502 */
1503 if (attr_mask & IB_QP_PATH_MTU) {
1504 pmtu = rdi->driver_f.get_pmtu_from_attr(rdi, qp, attr);
1505 if (pmtu < 0)
1506 goto inval;
1507 }
1508
1509 if (attr_mask & IB_QP_PATH_MIG_STATE) {
1510 if (attr->path_mig_state == IB_MIG_REARM) {
1511 if (qp->s_mig_state == IB_MIG_ARMED)
1512 goto inval;
1513 if (new_state != IB_QPS_RTS)
1514 goto inval;
1515 } else if (attr->path_mig_state == IB_MIG_MIGRATED) {
1516 if (qp->s_mig_state == IB_MIG_REARM)
1517 goto inval;
1518 if (new_state != IB_QPS_RTS && new_state != IB_QPS_SQD)
1519 goto inval;
1520 if (qp->s_mig_state == IB_MIG_ARMED)
1521 mig = 1;
1522 } else {
1523 goto inval;
1524 }
1525 }
1526
1527 if (attr_mask & IB_QP_MAX_DEST_RD_ATOMIC)
1528 if (attr->max_dest_rd_atomic > rdi->dparms.max_rdma_atomic)
1529 goto inval;
1530
1531 switch (new_state) {
1532 case IB_QPS_RESET:
1533 if (qp->state != IB_QPS_RESET)
1534 _rvt_reset_qp(rdi, qp, ibqp->qp_type);
1535 break;
1536
1537 case IB_QPS_RTR:
1538 /* Allow event to re-trigger if QP set to RTR more than once */
1539 qp->r_flags &= ~RVT_R_COMM_EST;
1540 qp->state = new_state;
1541 break;
1542
1543 case IB_QPS_SQD:
1544 qp->s_draining = qp->s_last != qp->s_cur;
1545 qp->state = new_state;
1546 break;
1547
1548 case IB_QPS_SQE:
1549 if (qp->ibqp.qp_type == IB_QPT_RC)
1550 goto inval;
1551 qp->state = new_state;
1552 break;
1553
1554 case IB_QPS_ERR:
1555 lastwqe = rvt_error_qp(qp, IB_WC_WR_FLUSH_ERR);
1556 break;
1557
1558 default:
1559 qp->state = new_state;
1560 break;
1561 }
1562
1563 if (attr_mask & IB_QP_PKEY_INDEX)
1564 qp->s_pkey_index = attr->pkey_index;
1565
1566 if (attr_mask & IB_QP_PORT)
1567 qp->port_num = attr->port_num;
1568
1569 if (attr_mask & IB_QP_DEST_QPN)
1570 qp->remote_qpn = attr->dest_qp_num;
1571
1572 if (attr_mask & IB_QP_SQ_PSN) {
1573 qp->s_next_psn = attr->sq_psn & rdi->dparms.psn_modify_mask;
1574 qp->s_psn = qp->s_next_psn;
1575 qp->s_sending_psn = qp->s_next_psn;
1576 qp->s_last_psn = qp->s_next_psn - 1;
1577 qp->s_sending_hpsn = qp->s_last_psn;
1578 }
1579
1580 if (attr_mask & IB_QP_RQ_PSN)
1581 qp->r_psn = attr->rq_psn & rdi->dparms.psn_modify_mask;
1582
1583 if (attr_mask & IB_QP_ACCESS_FLAGS)
1584 qp->qp_access_flags = attr->qp_access_flags;
1585
1586 if (attr_mask & IB_QP_AV) {
1587 rdma_replace_ah_attr(&qp->remote_ah_attr, &attr->ah_attr);
1588 qp->s_srate = rdma_ah_get_static_rate(&attr->ah_attr);
1589 qp->srate_mbps = ib_rate_to_mbps(qp->s_srate);
1590 }
1591
1592 if (attr_mask & IB_QP_ALT_PATH) {
1593 rdma_replace_ah_attr(&qp->alt_ah_attr, &attr->alt_ah_attr);
1594 qp->s_alt_pkey_index = attr->alt_pkey_index;
1595 }
1596
1597 if (attr_mask & IB_QP_PATH_MIG_STATE) {
1598 qp->s_mig_state = attr->path_mig_state;
1599 if (mig) {
1600 qp->remote_ah_attr = qp->alt_ah_attr;
1601 qp->port_num = rdma_ah_get_port_num(&qp->alt_ah_attr);
1602 qp->s_pkey_index = qp->s_alt_pkey_index;
1603 }
1604 }
1605
1606 if (attr_mask & IB_QP_PATH_MTU) {
1607 qp->pmtu = rdi->driver_f.mtu_from_qp(rdi, qp, pmtu);
1608 qp->log_pmtu = ilog2(qp->pmtu);
1609 }
1610
1611 if (attr_mask & IB_QP_RETRY_CNT) {
1612 qp->s_retry_cnt = attr->retry_cnt;
1613 qp->s_retry = attr->retry_cnt;
1614 }
1615
1616 if (attr_mask & IB_QP_RNR_RETRY) {
1617 qp->s_rnr_retry_cnt = attr->rnr_retry;
1618 qp->s_rnr_retry = attr->rnr_retry;
1619 }
1620
1621 if (attr_mask & IB_QP_MIN_RNR_TIMER)
1622 qp->r_min_rnr_timer = attr->min_rnr_timer;
1623
1624 if (attr_mask & IB_QP_TIMEOUT) {
1625 qp->timeout = attr->timeout;
1626 qp->timeout_jiffies = rvt_timeout_to_jiffies(qp->timeout);
1627 }
1628
1629 if (attr_mask & IB_QP_QKEY)
1630 qp->qkey = attr->qkey;
1631
1632 if (attr_mask & IB_QP_MAX_DEST_RD_ATOMIC)
1633 qp->r_max_rd_atomic = attr->max_dest_rd_atomic;
1634
1635 if (attr_mask & IB_QP_MAX_QP_RD_ATOMIC)
1636 qp->s_max_rd_atomic = attr->max_rd_atomic;
1637
1638 if (rdi->driver_f.modify_qp)
1639 rdi->driver_f.modify_qp(qp, attr, attr_mask, udata);
1640
1641 spin_unlock(&qp->s_lock);
1642 spin_unlock(&qp->s_hlock);
1643 spin_unlock_irq(&qp->r_lock);
1644
1645 if (cur_state == IB_QPS_RESET && new_state == IB_QPS_INIT)
1646 rvt_insert_qp(rdi, qp);
1647
1648 if (lastwqe) {
1649 ev.device = qp->ibqp.device;
1650 ev.element.qp = &qp->ibqp;
1651 ev.event = IB_EVENT_QP_LAST_WQE_REACHED;
1652 qp->ibqp.event_handler(&ev, qp->ibqp.qp_context);
1653 }
1654 if (mig) {
1655 ev.device = qp->ibqp.device;
1656 ev.element.qp = &qp->ibqp;
1657 ev.event = IB_EVENT_PATH_MIG;
1658 qp->ibqp.event_handler(&ev, qp->ibqp.qp_context);
1659 }
1660 return 0;
1661
1662 inval:
1663 spin_unlock(&qp->s_lock);
1664 spin_unlock(&qp->s_hlock);
1665 spin_unlock_irq(&qp->r_lock);
1666 return -EINVAL;
1667 }
1668
1669 /**
1670 * rvt_destroy_qp - destroy a queue pair
1671 * @ibqp: the queue pair to destroy
1672 * @udata: unused by the driver
1673 *
1674 * Note that this can be called while the QP is actively sending or
1675 * receiving!
1676 *
1677 * Return: 0 on success.
1678 */
rvt_destroy_qp(struct ib_qp * ibqp,struct ib_udata * udata)1679 int rvt_destroy_qp(struct ib_qp *ibqp, struct ib_udata *udata)
1680 {
1681 struct rvt_qp *qp = ibqp_to_rvtqp(ibqp);
1682 struct rvt_dev_info *rdi = ib_to_rvt(ibqp->device);
1683
1684 rvt_reset_qp(rdi, qp, ibqp->qp_type);
1685
1686 wait_event(qp->wait, !atomic_read(&qp->refcount));
1687 /* qpn is now available for use again */
1688 rvt_free_qpn(&rdi->qp_dev->qpn_table, qp->ibqp.qp_num);
1689
1690 spin_lock(&rdi->n_qps_lock);
1691 rdi->n_qps_allocated--;
1692 if (qp->ibqp.qp_type == IB_QPT_RC) {
1693 rdi->n_rc_qps--;
1694 rdi->busy_jiffies = rdi->n_rc_qps / RC_QP_SCALING_INTERVAL;
1695 }
1696 spin_unlock(&rdi->n_qps_lock);
1697
1698 if (qp->ip)
1699 kref_put(&qp->ip->ref, rvt_release_mmap_info);
1700 kvfree(qp->r_rq.kwq);
1701 rdi->driver_f.qp_priv_free(rdi, qp);
1702 kfree(qp->s_ack_queue);
1703 kfree(qp->r_sg_list);
1704 rdma_destroy_ah_attr(&qp->remote_ah_attr);
1705 rdma_destroy_ah_attr(&qp->alt_ah_attr);
1706 free_ud_wq_attr(qp);
1707 vfree(qp->s_wq);
1708 return 0;
1709 }
1710
1711 /**
1712 * rvt_query_qp - query an ipbq
1713 * @ibqp: IB qp to query
1714 * @attr: attr struct to fill in
1715 * @attr_mask: attr mask ignored
1716 * @init_attr: struct to fill in
1717 *
1718 * Return: always 0
1719 */
rvt_query_qp(struct ib_qp * ibqp,struct ib_qp_attr * attr,int attr_mask,struct ib_qp_init_attr * init_attr)1720 int rvt_query_qp(struct ib_qp *ibqp, struct ib_qp_attr *attr,
1721 int attr_mask, struct ib_qp_init_attr *init_attr)
1722 {
1723 struct rvt_qp *qp = ibqp_to_rvtqp(ibqp);
1724 struct rvt_dev_info *rdi = ib_to_rvt(ibqp->device);
1725
1726 attr->qp_state = qp->state;
1727 attr->cur_qp_state = attr->qp_state;
1728 attr->path_mtu = rdi->driver_f.mtu_to_path_mtu(qp->pmtu);
1729 attr->path_mig_state = qp->s_mig_state;
1730 attr->qkey = qp->qkey;
1731 attr->rq_psn = qp->r_psn & rdi->dparms.psn_mask;
1732 attr->sq_psn = qp->s_next_psn & rdi->dparms.psn_mask;
1733 attr->dest_qp_num = qp->remote_qpn;
1734 attr->qp_access_flags = qp->qp_access_flags;
1735 attr->cap.max_send_wr = qp->s_size - 1 -
1736 rdi->dparms.reserved_operations;
1737 attr->cap.max_recv_wr = qp->ibqp.srq ? 0 : qp->r_rq.size - 1;
1738 attr->cap.max_send_sge = qp->s_max_sge;
1739 attr->cap.max_recv_sge = qp->r_rq.max_sge;
1740 attr->cap.max_inline_data = 0;
1741 attr->ah_attr = qp->remote_ah_attr;
1742 attr->alt_ah_attr = qp->alt_ah_attr;
1743 attr->pkey_index = qp->s_pkey_index;
1744 attr->alt_pkey_index = qp->s_alt_pkey_index;
1745 attr->en_sqd_async_notify = 0;
1746 attr->sq_draining = qp->s_draining;
1747 attr->max_rd_atomic = qp->s_max_rd_atomic;
1748 attr->max_dest_rd_atomic = qp->r_max_rd_atomic;
1749 attr->min_rnr_timer = qp->r_min_rnr_timer;
1750 attr->port_num = qp->port_num;
1751 attr->timeout = qp->timeout;
1752 attr->retry_cnt = qp->s_retry_cnt;
1753 attr->rnr_retry = qp->s_rnr_retry_cnt;
1754 attr->alt_port_num =
1755 rdma_ah_get_port_num(&qp->alt_ah_attr);
1756 attr->alt_timeout = qp->alt_timeout;
1757
1758 init_attr->event_handler = qp->ibqp.event_handler;
1759 init_attr->qp_context = qp->ibqp.qp_context;
1760 init_attr->send_cq = qp->ibqp.send_cq;
1761 init_attr->recv_cq = qp->ibqp.recv_cq;
1762 init_attr->srq = qp->ibqp.srq;
1763 init_attr->cap = attr->cap;
1764 if (qp->s_flags & RVT_S_SIGNAL_REQ_WR)
1765 init_attr->sq_sig_type = IB_SIGNAL_REQ_WR;
1766 else
1767 init_attr->sq_sig_type = IB_SIGNAL_ALL_WR;
1768 init_attr->qp_type = qp->ibqp.qp_type;
1769 init_attr->port_num = qp->port_num;
1770 return 0;
1771 }
1772
1773 /**
1774 * rvt_post_recv - post a receive on a QP
1775 * @ibqp: the QP to post the receive on
1776 * @wr: the WR to post
1777 * @bad_wr: the first bad WR is put here
1778 *
1779 * This may be called from interrupt context.
1780 *
1781 * Return: 0 on success otherwise errno
1782 */
rvt_post_recv(struct ib_qp * ibqp,const struct ib_recv_wr * wr,const struct ib_recv_wr ** bad_wr)1783 int rvt_post_recv(struct ib_qp *ibqp, const struct ib_recv_wr *wr,
1784 const struct ib_recv_wr **bad_wr)
1785 {
1786 struct rvt_qp *qp = ibqp_to_rvtqp(ibqp);
1787 struct rvt_krwq *wq = qp->r_rq.kwq;
1788 unsigned long flags;
1789 int qp_err_flush = (ib_rvt_state_ops[qp->state] & RVT_FLUSH_RECV) &&
1790 !qp->ibqp.srq;
1791
1792 /* Check that state is OK to post receive. */
1793 if (!(ib_rvt_state_ops[qp->state] & RVT_POST_RECV_OK) || !wq) {
1794 *bad_wr = wr;
1795 return -EINVAL;
1796 }
1797
1798 for (; wr; wr = wr->next) {
1799 struct rvt_rwqe *wqe;
1800 u32 next;
1801 int i;
1802
1803 if ((unsigned)wr->num_sge > qp->r_rq.max_sge) {
1804 *bad_wr = wr;
1805 return -EINVAL;
1806 }
1807
1808 spin_lock_irqsave(&qp->r_rq.kwq->p_lock, flags);
1809 next = wq->head + 1;
1810 if (next >= qp->r_rq.size)
1811 next = 0;
1812 if (next == READ_ONCE(wq->tail)) {
1813 spin_unlock_irqrestore(&qp->r_rq.kwq->p_lock, flags);
1814 *bad_wr = wr;
1815 return -ENOMEM;
1816 }
1817 if (unlikely(qp_err_flush)) {
1818 struct ib_wc wc;
1819
1820 memset(&wc, 0, sizeof(wc));
1821 wc.qp = &qp->ibqp;
1822 wc.opcode = IB_WC_RECV;
1823 wc.wr_id = wr->wr_id;
1824 wc.status = IB_WC_WR_FLUSH_ERR;
1825 rvt_cq_enter(ibcq_to_rvtcq(qp->ibqp.recv_cq), &wc, 1);
1826 } else {
1827 wqe = rvt_get_rwqe_ptr(&qp->r_rq, wq->head);
1828 wqe->wr_id = wr->wr_id;
1829 wqe->num_sge = wr->num_sge;
1830 for (i = 0; i < wr->num_sge; i++) {
1831 wqe->sg_list[i].addr = wr->sg_list[i].addr;
1832 wqe->sg_list[i].length = wr->sg_list[i].length;
1833 wqe->sg_list[i].lkey = wr->sg_list[i].lkey;
1834 }
1835 /*
1836 * Make sure queue entry is written
1837 * before the head index.
1838 */
1839 smp_store_release(&wq->head, next);
1840 }
1841 spin_unlock_irqrestore(&qp->r_rq.kwq->p_lock, flags);
1842 }
1843 return 0;
1844 }
1845
1846 /**
1847 * rvt_qp_valid_operation - validate post send wr request
1848 * @qp: the qp
1849 * @post_parms: the post send table for the driver
1850 * @wr: the work request
1851 *
1852 * The routine validates the operation based on the
1853 * validation table an returns the length of the operation
1854 * which can extend beyond the ib_send_bw. Operation
1855 * dependent flags key atomic operation validation.
1856 *
1857 * There is an exception for UD qps that validates the pd and
1858 * overrides the length to include the additional UD specific
1859 * length.
1860 *
1861 * Returns a negative error or the length of the work request
1862 * for building the swqe.
1863 */
rvt_qp_valid_operation(struct rvt_qp * qp,const struct rvt_operation_params * post_parms,const struct ib_send_wr * wr)1864 static inline int rvt_qp_valid_operation(
1865 struct rvt_qp *qp,
1866 const struct rvt_operation_params *post_parms,
1867 const struct ib_send_wr *wr)
1868 {
1869 int len;
1870
1871 if (wr->opcode >= RVT_OPERATION_MAX || !post_parms[wr->opcode].length)
1872 return -EINVAL;
1873 if (!(post_parms[wr->opcode].qpt_support & BIT(qp->ibqp.qp_type)))
1874 return -EINVAL;
1875 if ((post_parms[wr->opcode].flags & RVT_OPERATION_PRIV) &&
1876 ibpd_to_rvtpd(qp->ibqp.pd)->user)
1877 return -EINVAL;
1878 if (post_parms[wr->opcode].flags & RVT_OPERATION_ATOMIC_SGE &&
1879 (wr->num_sge == 0 ||
1880 wr->sg_list[0].length < sizeof(u64) ||
1881 wr->sg_list[0].addr & (sizeof(u64) - 1)))
1882 return -EINVAL;
1883 if (post_parms[wr->opcode].flags & RVT_OPERATION_ATOMIC &&
1884 !qp->s_max_rd_atomic)
1885 return -EINVAL;
1886 len = post_parms[wr->opcode].length;
1887 /* UD specific */
1888 if (qp->ibqp.qp_type != IB_QPT_UC &&
1889 qp->ibqp.qp_type != IB_QPT_RC) {
1890 if (qp->ibqp.pd != ud_wr(wr)->ah->pd)
1891 return -EINVAL;
1892 len = sizeof(struct ib_ud_wr);
1893 }
1894 return len;
1895 }
1896
1897 /**
1898 * rvt_qp_is_avail - determine queue capacity
1899 * @qp: the qp
1900 * @rdi: the rdmavt device
1901 * @reserved_op: is reserved operation
1902 *
1903 * This assumes the s_hlock is held but the s_last
1904 * qp variable is uncontrolled.
1905 *
1906 * For non reserved operations, the qp->s_avail
1907 * may be changed.
1908 *
1909 * The return value is zero or a -ENOMEM.
1910 */
rvt_qp_is_avail(struct rvt_qp * qp,struct rvt_dev_info * rdi,bool reserved_op)1911 static inline int rvt_qp_is_avail(
1912 struct rvt_qp *qp,
1913 struct rvt_dev_info *rdi,
1914 bool reserved_op)
1915 {
1916 u32 slast;
1917 u32 avail;
1918 u32 reserved_used;
1919
1920 /* see rvt_qp_wqe_unreserve() */
1921 smp_mb__before_atomic();
1922 if (unlikely(reserved_op)) {
1923 /* see rvt_qp_wqe_unreserve() */
1924 reserved_used = atomic_read(&qp->s_reserved_used);
1925 if (reserved_used >= rdi->dparms.reserved_operations)
1926 return -ENOMEM;
1927 return 0;
1928 }
1929 /* non-reserved operations */
1930 if (likely(qp->s_avail))
1931 return 0;
1932 /* See rvt_qp_complete_swqe() */
1933 slast = smp_load_acquire(&qp->s_last);
1934 if (qp->s_head >= slast)
1935 avail = qp->s_size - (qp->s_head - slast);
1936 else
1937 avail = slast - qp->s_head;
1938
1939 reserved_used = atomic_read(&qp->s_reserved_used);
1940 avail = avail - 1 -
1941 (rdi->dparms.reserved_operations - reserved_used);
1942 /* insure we don't assign a negative s_avail */
1943 if ((s32)avail <= 0)
1944 return -ENOMEM;
1945 qp->s_avail = avail;
1946 if (WARN_ON(qp->s_avail >
1947 (qp->s_size - 1 - rdi->dparms.reserved_operations)))
1948 rvt_pr_err(rdi,
1949 "More avail entries than QP RB size.\nQP: %u, size: %u, avail: %u\nhead: %u, tail: %u, cur: %u, acked: %u, last: %u",
1950 qp->ibqp.qp_num, qp->s_size, qp->s_avail,
1951 qp->s_head, qp->s_tail, qp->s_cur,
1952 qp->s_acked, qp->s_last);
1953 return 0;
1954 }
1955
1956 /**
1957 * rvt_post_one_wr - post one RC, UC, or UD send work request
1958 * @qp: the QP to post on
1959 * @wr: the work request to send
1960 * @call_send: kick the send engine into gear
1961 */
rvt_post_one_wr(struct rvt_qp * qp,const struct ib_send_wr * wr,bool * call_send)1962 static int rvt_post_one_wr(struct rvt_qp *qp,
1963 const struct ib_send_wr *wr,
1964 bool *call_send)
1965 {
1966 struct rvt_swqe *wqe;
1967 u32 next;
1968 int i;
1969 int j;
1970 int acc;
1971 struct rvt_lkey_table *rkt;
1972 struct rvt_pd *pd;
1973 struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device);
1974 u8 log_pmtu;
1975 int ret;
1976 size_t cplen;
1977 bool reserved_op;
1978 int local_ops_delayed = 0;
1979
1980 BUILD_BUG_ON(IB_QPT_MAX >= (sizeof(u32) * BITS_PER_BYTE));
1981
1982 /* IB spec says that num_sge == 0 is OK. */
1983 if (unlikely(wr->num_sge > qp->s_max_sge))
1984 return -EINVAL;
1985
1986 ret = rvt_qp_valid_operation(qp, rdi->post_parms, wr);
1987 if (ret < 0)
1988 return ret;
1989 cplen = ret;
1990
1991 /*
1992 * Local operations include fast register and local invalidate.
1993 * Fast register needs to be processed immediately because the
1994 * registered lkey may be used by following work requests and the
1995 * lkey needs to be valid at the time those requests are posted.
1996 * Local invalidate can be processed immediately if fencing is
1997 * not required and no previous local invalidate ops are pending.
1998 * Signaled local operations that have been processed immediately
1999 * need to have requests with "completion only" flags set posted
2000 * to the send queue in order to generate completions.
2001 */
2002 if ((rdi->post_parms[wr->opcode].flags & RVT_OPERATION_LOCAL)) {
2003 switch (wr->opcode) {
2004 case IB_WR_REG_MR:
2005 ret = rvt_fast_reg_mr(qp,
2006 reg_wr(wr)->mr,
2007 reg_wr(wr)->key,
2008 reg_wr(wr)->access);
2009 if (ret || !(wr->send_flags & IB_SEND_SIGNALED))
2010 return ret;
2011 break;
2012 case IB_WR_LOCAL_INV:
2013 if ((wr->send_flags & IB_SEND_FENCE) ||
2014 atomic_read(&qp->local_ops_pending)) {
2015 local_ops_delayed = 1;
2016 } else {
2017 ret = rvt_invalidate_rkey(
2018 qp, wr->ex.invalidate_rkey);
2019 if (ret || !(wr->send_flags & IB_SEND_SIGNALED))
2020 return ret;
2021 }
2022 break;
2023 default:
2024 return -EINVAL;
2025 }
2026 }
2027
2028 reserved_op = rdi->post_parms[wr->opcode].flags &
2029 RVT_OPERATION_USE_RESERVE;
2030 /* check for avail */
2031 ret = rvt_qp_is_avail(qp, rdi, reserved_op);
2032 if (ret)
2033 return ret;
2034 next = qp->s_head + 1;
2035 if (next >= qp->s_size)
2036 next = 0;
2037
2038 rkt = &rdi->lkey_table;
2039 pd = ibpd_to_rvtpd(qp->ibqp.pd);
2040 wqe = rvt_get_swqe_ptr(qp, qp->s_head);
2041
2042 /* cplen has length from above */
2043 memcpy(&wqe->wr, wr, cplen);
2044
2045 wqe->length = 0;
2046 j = 0;
2047 if (wr->num_sge) {
2048 struct rvt_sge *last_sge = NULL;
2049
2050 acc = wr->opcode >= IB_WR_RDMA_READ ?
2051 IB_ACCESS_LOCAL_WRITE : 0;
2052 for (i = 0; i < wr->num_sge; i++) {
2053 u32 length = wr->sg_list[i].length;
2054
2055 if (length == 0)
2056 continue;
2057 ret = rvt_lkey_ok(rkt, pd, &wqe->sg_list[j], last_sge,
2058 &wr->sg_list[i], acc);
2059 if (unlikely(ret < 0))
2060 goto bail_inval_free;
2061 wqe->length += length;
2062 if (ret)
2063 last_sge = &wqe->sg_list[j];
2064 j += ret;
2065 }
2066 wqe->wr.num_sge = j;
2067 }
2068
2069 /*
2070 * Calculate and set SWQE PSN values prior to handing it off
2071 * to the driver's check routine. This give the driver the
2072 * opportunity to adjust PSN values based on internal checks.
2073 */
2074 log_pmtu = qp->log_pmtu;
2075 if (qp->allowed_ops == IB_OPCODE_UD) {
2076 struct rvt_ah *ah = rvt_get_swqe_ah(wqe);
2077
2078 log_pmtu = ah->log_pmtu;
2079 rdma_copy_ah_attr(wqe->ud_wr.attr, &ah->attr);
2080 }
2081
2082 if (rdi->post_parms[wr->opcode].flags & RVT_OPERATION_LOCAL) {
2083 if (local_ops_delayed)
2084 atomic_inc(&qp->local_ops_pending);
2085 else
2086 wqe->wr.send_flags |= RVT_SEND_COMPLETION_ONLY;
2087 wqe->ssn = 0;
2088 wqe->psn = 0;
2089 wqe->lpsn = 0;
2090 } else {
2091 wqe->ssn = qp->s_ssn++;
2092 wqe->psn = qp->s_next_psn;
2093 wqe->lpsn = wqe->psn +
2094 (wqe->length ?
2095 ((wqe->length - 1) >> log_pmtu) :
2096 0);
2097 }
2098
2099 /* general part of wqe valid - allow for driver checks */
2100 if (rdi->driver_f.setup_wqe) {
2101 ret = rdi->driver_f.setup_wqe(qp, wqe, call_send);
2102 if (ret < 0)
2103 goto bail_inval_free_ref;
2104 }
2105
2106 if (!(rdi->post_parms[wr->opcode].flags & RVT_OPERATION_LOCAL))
2107 qp->s_next_psn = wqe->lpsn + 1;
2108
2109 if (unlikely(reserved_op)) {
2110 wqe->wr.send_flags |= RVT_SEND_RESERVE_USED;
2111 rvt_qp_wqe_reserve(qp, wqe);
2112 } else {
2113 wqe->wr.send_flags &= ~RVT_SEND_RESERVE_USED;
2114 qp->s_avail--;
2115 }
2116 trace_rvt_post_one_wr(qp, wqe, wr->num_sge);
2117 smp_wmb(); /* see request builders */
2118 qp->s_head = next;
2119
2120 return 0;
2121
2122 bail_inval_free_ref:
2123 if (qp->allowed_ops == IB_OPCODE_UD)
2124 rdma_destroy_ah_attr(wqe->ud_wr.attr);
2125 bail_inval_free:
2126 /* release mr holds */
2127 while (j) {
2128 struct rvt_sge *sge = &wqe->sg_list[--j];
2129
2130 rvt_put_mr(sge->mr);
2131 }
2132 return ret;
2133 }
2134
2135 /**
2136 * rvt_post_send - post a send on a QP
2137 * @ibqp: the QP to post the send on
2138 * @wr: the list of work requests to post
2139 * @bad_wr: the first bad WR is put here
2140 *
2141 * This may be called from interrupt context.
2142 *
2143 * Return: 0 on success else errno
2144 */
rvt_post_send(struct ib_qp * ibqp,const struct ib_send_wr * wr,const struct ib_send_wr ** bad_wr)2145 int rvt_post_send(struct ib_qp *ibqp, const struct ib_send_wr *wr,
2146 const struct ib_send_wr **bad_wr)
2147 {
2148 struct rvt_qp *qp = ibqp_to_rvtqp(ibqp);
2149 struct rvt_dev_info *rdi = ib_to_rvt(ibqp->device);
2150 unsigned long flags = 0;
2151 bool call_send;
2152 unsigned nreq = 0;
2153 int err = 0;
2154
2155 spin_lock_irqsave(&qp->s_hlock, flags);
2156
2157 /*
2158 * Ensure QP state is such that we can send. If not bail out early,
2159 * there is no need to do this every time we post a send.
2160 */
2161 if (unlikely(!(ib_rvt_state_ops[qp->state] & RVT_POST_SEND_OK))) {
2162 spin_unlock_irqrestore(&qp->s_hlock, flags);
2163 return -EINVAL;
2164 }
2165
2166 /*
2167 * If the send queue is empty, and we only have a single WR then just go
2168 * ahead and kick the send engine into gear. Otherwise we will always
2169 * just schedule the send to happen later.
2170 */
2171 call_send = qp->s_head == READ_ONCE(qp->s_last) && !wr->next;
2172
2173 for (; wr; wr = wr->next) {
2174 err = rvt_post_one_wr(qp, wr, &call_send);
2175 if (unlikely(err)) {
2176 *bad_wr = wr;
2177 goto bail;
2178 }
2179 nreq++;
2180 }
2181 bail:
2182 spin_unlock_irqrestore(&qp->s_hlock, flags);
2183 if (nreq) {
2184 /*
2185 * Only call do_send if there is exactly one packet, and the
2186 * driver said it was ok.
2187 */
2188 if (nreq == 1 && call_send)
2189 rdi->driver_f.do_send(qp);
2190 else
2191 rdi->driver_f.schedule_send_no_lock(qp);
2192 }
2193 return err;
2194 }
2195
2196 /**
2197 * rvt_post_srq_recv - post a receive on a shared receive queue
2198 * @ibsrq: the SRQ to post the receive on
2199 * @wr: the list of work requests to post
2200 * @bad_wr: A pointer to the first WR to cause a problem is put here
2201 *
2202 * This may be called from interrupt context.
2203 *
2204 * Return: 0 on success else errno
2205 */
rvt_post_srq_recv(struct ib_srq * ibsrq,const struct ib_recv_wr * wr,const struct ib_recv_wr ** bad_wr)2206 int rvt_post_srq_recv(struct ib_srq *ibsrq, const struct ib_recv_wr *wr,
2207 const struct ib_recv_wr **bad_wr)
2208 {
2209 struct rvt_srq *srq = ibsrq_to_rvtsrq(ibsrq);
2210 struct rvt_krwq *wq;
2211 unsigned long flags;
2212
2213 for (; wr; wr = wr->next) {
2214 struct rvt_rwqe *wqe;
2215 u32 next;
2216 int i;
2217
2218 if ((unsigned)wr->num_sge > srq->rq.max_sge) {
2219 *bad_wr = wr;
2220 return -EINVAL;
2221 }
2222
2223 spin_lock_irqsave(&srq->rq.kwq->p_lock, flags);
2224 wq = srq->rq.kwq;
2225 next = wq->head + 1;
2226 if (next >= srq->rq.size)
2227 next = 0;
2228 if (next == READ_ONCE(wq->tail)) {
2229 spin_unlock_irqrestore(&srq->rq.kwq->p_lock, flags);
2230 *bad_wr = wr;
2231 return -ENOMEM;
2232 }
2233
2234 wqe = rvt_get_rwqe_ptr(&srq->rq, wq->head);
2235 wqe->wr_id = wr->wr_id;
2236 wqe->num_sge = wr->num_sge;
2237 for (i = 0; i < wr->num_sge; i++) {
2238 wqe->sg_list[i].addr = wr->sg_list[i].addr;
2239 wqe->sg_list[i].length = wr->sg_list[i].length;
2240 wqe->sg_list[i].lkey = wr->sg_list[i].lkey;
2241 }
2242 /* Make sure queue entry is written before the head index. */
2243 smp_store_release(&wq->head, next);
2244 spin_unlock_irqrestore(&srq->rq.kwq->p_lock, flags);
2245 }
2246 return 0;
2247 }
2248
2249 /*
2250 * rvt used the internal kernel struct as part of its ABI, for now make sure
2251 * the kernel struct does not change layout. FIXME: rvt should never cast the
2252 * user struct to a kernel struct.
2253 */
rvt_cast_sge(struct rvt_wqe_sge * sge)2254 static struct ib_sge *rvt_cast_sge(struct rvt_wqe_sge *sge)
2255 {
2256 BUILD_BUG_ON(offsetof(struct ib_sge, addr) !=
2257 offsetof(struct rvt_wqe_sge, addr));
2258 BUILD_BUG_ON(offsetof(struct ib_sge, length) !=
2259 offsetof(struct rvt_wqe_sge, length));
2260 BUILD_BUG_ON(offsetof(struct ib_sge, lkey) !=
2261 offsetof(struct rvt_wqe_sge, lkey));
2262 return (struct ib_sge *)sge;
2263 }
2264
2265 /*
2266 * Validate a RWQE and fill in the SGE state.
2267 * Return 1 if OK.
2268 */
init_sge(struct rvt_qp * qp,struct rvt_rwqe * wqe)2269 static int init_sge(struct rvt_qp *qp, struct rvt_rwqe *wqe)
2270 {
2271 int i, j, ret;
2272 struct ib_wc wc;
2273 struct rvt_lkey_table *rkt;
2274 struct rvt_pd *pd;
2275 struct rvt_sge_state *ss;
2276 struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device);
2277
2278 rkt = &rdi->lkey_table;
2279 pd = ibpd_to_rvtpd(qp->ibqp.srq ? qp->ibqp.srq->pd : qp->ibqp.pd);
2280 ss = &qp->r_sge;
2281 ss->sg_list = qp->r_sg_list;
2282 qp->r_len = 0;
2283 for (i = j = 0; i < wqe->num_sge; i++) {
2284 if (wqe->sg_list[i].length == 0)
2285 continue;
2286 /* Check LKEY */
2287 ret = rvt_lkey_ok(rkt, pd, j ? &ss->sg_list[j - 1] : &ss->sge,
2288 NULL, rvt_cast_sge(&wqe->sg_list[i]),
2289 IB_ACCESS_LOCAL_WRITE);
2290 if (unlikely(ret <= 0))
2291 goto bad_lkey;
2292 qp->r_len += wqe->sg_list[i].length;
2293 j++;
2294 }
2295 ss->num_sge = j;
2296 ss->total_len = qp->r_len;
2297 return 1;
2298
2299 bad_lkey:
2300 while (j) {
2301 struct rvt_sge *sge = --j ? &ss->sg_list[j - 1] : &ss->sge;
2302
2303 rvt_put_mr(sge->mr);
2304 }
2305 ss->num_sge = 0;
2306 memset(&wc, 0, sizeof(wc));
2307 wc.wr_id = wqe->wr_id;
2308 wc.status = IB_WC_LOC_PROT_ERR;
2309 wc.opcode = IB_WC_RECV;
2310 wc.qp = &qp->ibqp;
2311 /* Signal solicited completion event. */
2312 rvt_cq_enter(ibcq_to_rvtcq(qp->ibqp.recv_cq), &wc, 1);
2313 return 0;
2314 }
2315
2316 /**
2317 * get_rvt_head - get head indices of the circular buffer
2318 * @rq: data structure for request queue entry
2319 * @ip: the QP
2320 *
2321 * Return - head index value
2322 */
get_rvt_head(struct rvt_rq * rq,void * ip)2323 static inline u32 get_rvt_head(struct rvt_rq *rq, void *ip)
2324 {
2325 u32 head;
2326
2327 if (ip)
2328 head = RDMA_READ_UAPI_ATOMIC(rq->wq->head);
2329 else
2330 head = rq->kwq->head;
2331
2332 return head;
2333 }
2334
2335 /**
2336 * rvt_get_rwqe - copy the next RWQE into the QP's RWQE
2337 * @qp: the QP
2338 * @wr_id_only: update qp->r_wr_id only, not qp->r_sge
2339 *
2340 * Return -1 if there is a local error, 0 if no RWQE is available,
2341 * otherwise return 1.
2342 *
2343 * Can be called from interrupt level.
2344 */
rvt_get_rwqe(struct rvt_qp * qp,bool wr_id_only)2345 int rvt_get_rwqe(struct rvt_qp *qp, bool wr_id_only)
2346 {
2347 unsigned long flags;
2348 struct rvt_rq *rq;
2349 struct rvt_krwq *kwq = NULL;
2350 struct rvt_rwq *wq;
2351 struct rvt_srq *srq;
2352 struct rvt_rwqe *wqe;
2353 void (*handler)(struct ib_event *, void *);
2354 u32 tail;
2355 u32 head;
2356 int ret;
2357 void *ip = NULL;
2358
2359 if (qp->ibqp.srq) {
2360 srq = ibsrq_to_rvtsrq(qp->ibqp.srq);
2361 handler = srq->ibsrq.event_handler;
2362 rq = &srq->rq;
2363 ip = srq->ip;
2364 } else {
2365 srq = NULL;
2366 handler = NULL;
2367 rq = &qp->r_rq;
2368 ip = qp->ip;
2369 }
2370
2371 spin_lock_irqsave(&rq->kwq->c_lock, flags);
2372 if (!(ib_rvt_state_ops[qp->state] & RVT_PROCESS_RECV_OK)) {
2373 ret = 0;
2374 goto unlock;
2375 }
2376 kwq = rq->kwq;
2377 if (ip) {
2378 wq = rq->wq;
2379 tail = RDMA_READ_UAPI_ATOMIC(wq->tail);
2380 } else {
2381 tail = kwq->tail;
2382 }
2383
2384 /* Validate tail before using it since it is user writable. */
2385 if (tail >= rq->size)
2386 tail = 0;
2387
2388 if (kwq->count < RVT_RWQ_COUNT_THRESHOLD) {
2389 head = get_rvt_head(rq, ip);
2390 kwq->count = rvt_get_rq_count(rq, head, tail);
2391 }
2392 if (unlikely(kwq->count == 0)) {
2393 ret = 0;
2394 goto unlock;
2395 }
2396 /* Make sure entry is read after the count is read. */
2397 smp_rmb();
2398 wqe = rvt_get_rwqe_ptr(rq, tail);
2399 /*
2400 * Even though we update the tail index in memory, the verbs
2401 * consumer is not supposed to post more entries until a
2402 * completion is generated.
2403 */
2404 if (++tail >= rq->size)
2405 tail = 0;
2406 if (ip)
2407 RDMA_WRITE_UAPI_ATOMIC(wq->tail, tail);
2408 else
2409 kwq->tail = tail;
2410 if (!wr_id_only && !init_sge(qp, wqe)) {
2411 ret = -1;
2412 goto unlock;
2413 }
2414 qp->r_wr_id = wqe->wr_id;
2415
2416 kwq->count--;
2417 ret = 1;
2418 set_bit(RVT_R_WRID_VALID, &qp->r_aflags);
2419 if (handler) {
2420 /*
2421 * Validate head pointer value and compute
2422 * the number of remaining WQEs.
2423 */
2424 if (kwq->count < srq->limit) {
2425 kwq->count =
2426 rvt_get_rq_count(rq,
2427 get_rvt_head(rq, ip), tail);
2428 if (kwq->count < srq->limit) {
2429 struct ib_event ev;
2430
2431 srq->limit = 0;
2432 spin_unlock_irqrestore(&rq->kwq->c_lock, flags);
2433 ev.device = qp->ibqp.device;
2434 ev.element.srq = qp->ibqp.srq;
2435 ev.event = IB_EVENT_SRQ_LIMIT_REACHED;
2436 handler(&ev, srq->ibsrq.srq_context);
2437 goto bail;
2438 }
2439 }
2440 }
2441 unlock:
2442 spin_unlock_irqrestore(&rq->kwq->c_lock, flags);
2443 bail:
2444 return ret;
2445 }
2446 EXPORT_SYMBOL(rvt_get_rwqe);
2447
2448 /**
2449 * rvt_comm_est - handle trap with QP established
2450 * @qp: the QP
2451 */
rvt_comm_est(struct rvt_qp * qp)2452 void rvt_comm_est(struct rvt_qp *qp)
2453 {
2454 qp->r_flags |= RVT_R_COMM_EST;
2455 if (qp->ibqp.event_handler) {
2456 struct ib_event ev;
2457
2458 ev.device = qp->ibqp.device;
2459 ev.element.qp = &qp->ibqp;
2460 ev.event = IB_EVENT_COMM_EST;
2461 qp->ibqp.event_handler(&ev, qp->ibqp.qp_context);
2462 }
2463 }
2464 EXPORT_SYMBOL(rvt_comm_est);
2465
rvt_rc_error(struct rvt_qp * qp,enum ib_wc_status err)2466 void rvt_rc_error(struct rvt_qp *qp, enum ib_wc_status err)
2467 {
2468 unsigned long flags;
2469 int lastwqe;
2470
2471 spin_lock_irqsave(&qp->s_lock, flags);
2472 lastwqe = rvt_error_qp(qp, err);
2473 spin_unlock_irqrestore(&qp->s_lock, flags);
2474
2475 if (lastwqe) {
2476 struct ib_event ev;
2477
2478 ev.device = qp->ibqp.device;
2479 ev.element.qp = &qp->ibqp;
2480 ev.event = IB_EVENT_QP_LAST_WQE_REACHED;
2481 qp->ibqp.event_handler(&ev, qp->ibqp.qp_context);
2482 }
2483 }
2484 EXPORT_SYMBOL(rvt_rc_error);
2485
2486 /*
2487 * rvt_rnr_tbl_to_usec - return index into ib_rvt_rnr_table
2488 * @index - the index
2489 * return usec from an index into ib_rvt_rnr_table
2490 */
rvt_rnr_tbl_to_usec(u32 index)2491 unsigned long rvt_rnr_tbl_to_usec(u32 index)
2492 {
2493 return ib_rvt_rnr_table[(index & IB_AETH_CREDIT_MASK)];
2494 }
2495 EXPORT_SYMBOL(rvt_rnr_tbl_to_usec);
2496
rvt_aeth_to_usec(u32 aeth)2497 static inline unsigned long rvt_aeth_to_usec(u32 aeth)
2498 {
2499 return ib_rvt_rnr_table[(aeth >> IB_AETH_CREDIT_SHIFT) &
2500 IB_AETH_CREDIT_MASK];
2501 }
2502
2503 /*
2504 * rvt_add_retry_timer_ext - add/start a retry timer
2505 * @qp - the QP
2506 * @shift - timeout shift to wait for multiple packets
2507 * add a retry timer on the QP
2508 */
rvt_add_retry_timer_ext(struct rvt_qp * qp,u8 shift)2509 void rvt_add_retry_timer_ext(struct rvt_qp *qp, u8 shift)
2510 {
2511 struct ib_qp *ibqp = &qp->ibqp;
2512 struct rvt_dev_info *rdi = ib_to_rvt(ibqp->device);
2513
2514 lockdep_assert_held(&qp->s_lock);
2515 qp->s_flags |= RVT_S_TIMER;
2516 /* 4.096 usec. * (1 << qp->timeout) */
2517 qp->s_timer.expires = jiffies + rdi->busy_jiffies +
2518 (qp->timeout_jiffies << shift);
2519 add_timer(&qp->s_timer);
2520 }
2521 EXPORT_SYMBOL(rvt_add_retry_timer_ext);
2522
2523 /**
2524 * rvt_add_rnr_timer - add/start an rnr timer on the QP
2525 * @qp: the QP
2526 * @aeth: aeth of RNR timeout, simulated aeth for loopback
2527 */
rvt_add_rnr_timer(struct rvt_qp * qp,u32 aeth)2528 void rvt_add_rnr_timer(struct rvt_qp *qp, u32 aeth)
2529 {
2530 u32 to;
2531
2532 lockdep_assert_held(&qp->s_lock);
2533 qp->s_flags |= RVT_S_WAIT_RNR;
2534 to = rvt_aeth_to_usec(aeth);
2535 trace_rvt_rnrnak_add(qp, to);
2536 hrtimer_start(&qp->s_rnr_timer,
2537 ns_to_ktime(1000 * to), HRTIMER_MODE_REL_PINNED);
2538 }
2539 EXPORT_SYMBOL(rvt_add_rnr_timer);
2540
2541 /**
2542 * rvt_stop_rc_timers - stop all timers
2543 * @qp: the QP
2544 * stop any pending timers
2545 */
rvt_stop_rc_timers(struct rvt_qp * qp)2546 void rvt_stop_rc_timers(struct rvt_qp *qp)
2547 {
2548 lockdep_assert_held(&qp->s_lock);
2549 /* Remove QP from all timers */
2550 if (qp->s_flags & (RVT_S_TIMER | RVT_S_WAIT_RNR)) {
2551 qp->s_flags &= ~(RVT_S_TIMER | RVT_S_WAIT_RNR);
2552 del_timer(&qp->s_timer);
2553 hrtimer_try_to_cancel(&qp->s_rnr_timer);
2554 }
2555 }
2556 EXPORT_SYMBOL(rvt_stop_rc_timers);
2557
2558 /**
2559 * rvt_stop_rnr_timer - stop an rnr timer
2560 * @qp: the QP
2561 *
2562 * stop an rnr timer and return if the timer
2563 * had been pending.
2564 */
rvt_stop_rnr_timer(struct rvt_qp * qp)2565 static void rvt_stop_rnr_timer(struct rvt_qp *qp)
2566 {
2567 lockdep_assert_held(&qp->s_lock);
2568 /* Remove QP from rnr timer */
2569 if (qp->s_flags & RVT_S_WAIT_RNR) {
2570 qp->s_flags &= ~RVT_S_WAIT_RNR;
2571 trace_rvt_rnrnak_stop(qp, 0);
2572 }
2573 }
2574
2575 /**
2576 * rvt_del_timers_sync - wait for any timeout routines to exit
2577 * @qp: the QP
2578 */
rvt_del_timers_sync(struct rvt_qp * qp)2579 void rvt_del_timers_sync(struct rvt_qp *qp)
2580 {
2581 del_timer_sync(&qp->s_timer);
2582 hrtimer_cancel(&qp->s_rnr_timer);
2583 }
2584 EXPORT_SYMBOL(rvt_del_timers_sync);
2585
2586 /*
2587 * This is called from s_timer for missing responses.
2588 */
rvt_rc_timeout(struct timer_list * t)2589 static void rvt_rc_timeout(struct timer_list *t)
2590 {
2591 struct rvt_qp *qp = from_timer(qp, t, s_timer);
2592 struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device);
2593 unsigned long flags;
2594
2595 spin_lock_irqsave(&qp->r_lock, flags);
2596 spin_lock(&qp->s_lock);
2597 if (qp->s_flags & RVT_S_TIMER) {
2598 struct rvt_ibport *rvp = rdi->ports[qp->port_num - 1];
2599
2600 qp->s_flags &= ~RVT_S_TIMER;
2601 rvp->n_rc_timeouts++;
2602 del_timer(&qp->s_timer);
2603 trace_rvt_rc_timeout(qp, qp->s_last_psn + 1);
2604 if (rdi->driver_f.notify_restart_rc)
2605 rdi->driver_f.notify_restart_rc(qp,
2606 qp->s_last_psn + 1,
2607 1);
2608 rdi->driver_f.schedule_send(qp);
2609 }
2610 spin_unlock(&qp->s_lock);
2611 spin_unlock_irqrestore(&qp->r_lock, flags);
2612 }
2613
2614 /*
2615 * This is called from s_timer for RNR timeouts.
2616 */
rvt_rc_rnr_retry(struct hrtimer * t)2617 enum hrtimer_restart rvt_rc_rnr_retry(struct hrtimer *t)
2618 {
2619 struct rvt_qp *qp = container_of(t, struct rvt_qp, s_rnr_timer);
2620 struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device);
2621 unsigned long flags;
2622
2623 spin_lock_irqsave(&qp->s_lock, flags);
2624 rvt_stop_rnr_timer(qp);
2625 trace_rvt_rnrnak_timeout(qp, 0);
2626 rdi->driver_f.schedule_send(qp);
2627 spin_unlock_irqrestore(&qp->s_lock, flags);
2628 return HRTIMER_NORESTART;
2629 }
2630 EXPORT_SYMBOL(rvt_rc_rnr_retry);
2631
2632 /**
2633 * rvt_qp_iter_init - initial for QP iteration
2634 * @rdi: rvt devinfo
2635 * @v: u64 value
2636 * @cb: user-defined callback
2637 *
2638 * This returns an iterator suitable for iterating QPs
2639 * in the system.
2640 *
2641 * The @cb is a user-defined callback and @v is a 64-bit
2642 * value passed to and relevant for processing in the
2643 * @cb. An example use case would be to alter QP processing
2644 * based on criteria not part of the rvt_qp.
2645 *
2646 * Use cases that require memory allocation to succeed
2647 * must preallocate appropriately.
2648 *
2649 * Return: a pointer to an rvt_qp_iter or NULL
2650 */
rvt_qp_iter_init(struct rvt_dev_info * rdi,u64 v,void (* cb)(struct rvt_qp * qp,u64 v))2651 struct rvt_qp_iter *rvt_qp_iter_init(struct rvt_dev_info *rdi,
2652 u64 v,
2653 void (*cb)(struct rvt_qp *qp, u64 v))
2654 {
2655 struct rvt_qp_iter *i;
2656
2657 i = kzalloc(sizeof(*i), GFP_KERNEL);
2658 if (!i)
2659 return NULL;
2660
2661 i->rdi = rdi;
2662 /* number of special QPs (SMI/GSI) for device */
2663 i->specials = rdi->ibdev.phys_port_cnt * 2;
2664 i->v = v;
2665 i->cb = cb;
2666
2667 return i;
2668 }
2669 EXPORT_SYMBOL(rvt_qp_iter_init);
2670
2671 /**
2672 * rvt_qp_iter_next - return the next QP in iter
2673 * @iter: the iterator
2674 *
2675 * Fine grained QP iterator suitable for use
2676 * with debugfs seq_file mechanisms.
2677 *
2678 * Updates iter->qp with the current QP when the return
2679 * value is 0.
2680 *
2681 * Return: 0 - iter->qp is valid 1 - no more QPs
2682 */
rvt_qp_iter_next(struct rvt_qp_iter * iter)2683 int rvt_qp_iter_next(struct rvt_qp_iter *iter)
2684 __must_hold(RCU)
2685 {
2686 int n = iter->n;
2687 int ret = 1;
2688 struct rvt_qp *pqp = iter->qp;
2689 struct rvt_qp *qp;
2690 struct rvt_dev_info *rdi = iter->rdi;
2691
2692 /*
2693 * The approach is to consider the special qps
2694 * as additional table entries before the
2695 * real hash table. Since the qp code sets
2696 * the qp->next hash link to NULL, this works just fine.
2697 *
2698 * iter->specials is 2 * # ports
2699 *
2700 * n = 0..iter->specials is the special qp indices
2701 *
2702 * n = iter->specials..rdi->qp_dev->qp_table_size+iter->specials are
2703 * the potential hash bucket entries
2704 *
2705 */
2706 for (; n < rdi->qp_dev->qp_table_size + iter->specials; n++) {
2707 if (pqp) {
2708 qp = rcu_dereference(pqp->next);
2709 } else {
2710 if (n < iter->specials) {
2711 struct rvt_ibport *rvp;
2712 int pidx;
2713
2714 pidx = n % rdi->ibdev.phys_port_cnt;
2715 rvp = rdi->ports[pidx];
2716 qp = rcu_dereference(rvp->qp[n & 1]);
2717 } else {
2718 qp = rcu_dereference(
2719 rdi->qp_dev->qp_table[
2720 (n - iter->specials)]);
2721 }
2722 }
2723 pqp = qp;
2724 if (qp) {
2725 iter->qp = qp;
2726 iter->n = n;
2727 return 0;
2728 }
2729 }
2730 return ret;
2731 }
2732 EXPORT_SYMBOL(rvt_qp_iter_next);
2733
2734 /**
2735 * rvt_qp_iter - iterate all QPs
2736 * @rdi: rvt devinfo
2737 * @v: a 64-bit value
2738 * @cb: a callback
2739 *
2740 * This provides a way for iterating all QPs.
2741 *
2742 * The @cb is a user-defined callback and @v is a 64-bit
2743 * value passed to and relevant for processing in the
2744 * cb. An example use case would be to alter QP processing
2745 * based on criteria not part of the rvt_qp.
2746 *
2747 * The code has an internal iterator to simplify
2748 * non seq_file use cases.
2749 */
rvt_qp_iter(struct rvt_dev_info * rdi,u64 v,void (* cb)(struct rvt_qp * qp,u64 v))2750 void rvt_qp_iter(struct rvt_dev_info *rdi,
2751 u64 v,
2752 void (*cb)(struct rvt_qp *qp, u64 v))
2753 {
2754 int ret;
2755 struct rvt_qp_iter i = {
2756 .rdi = rdi,
2757 .specials = rdi->ibdev.phys_port_cnt * 2,
2758 .v = v,
2759 .cb = cb
2760 };
2761
2762 rcu_read_lock();
2763 do {
2764 ret = rvt_qp_iter_next(&i);
2765 if (!ret) {
2766 rvt_get_qp(i.qp);
2767 rcu_read_unlock();
2768 i.cb(i.qp, i.v);
2769 rcu_read_lock();
2770 rvt_put_qp(i.qp);
2771 }
2772 } while (!ret);
2773 rcu_read_unlock();
2774 }
2775 EXPORT_SYMBOL(rvt_qp_iter);
2776
2777 /*
2778 * This should be called with s_lock and r_lock held.
2779 */
rvt_send_complete(struct rvt_qp * qp,struct rvt_swqe * wqe,enum ib_wc_status status)2780 void rvt_send_complete(struct rvt_qp *qp, struct rvt_swqe *wqe,
2781 enum ib_wc_status status)
2782 {
2783 u32 old_last, last;
2784 struct rvt_dev_info *rdi;
2785
2786 if (!(ib_rvt_state_ops[qp->state] & RVT_PROCESS_OR_FLUSH_SEND))
2787 return;
2788 rdi = ib_to_rvt(qp->ibqp.device);
2789
2790 old_last = qp->s_last;
2791 trace_rvt_qp_send_completion(qp, wqe, old_last);
2792 last = rvt_qp_complete_swqe(qp, wqe, rdi->wc_opcode[wqe->wr.opcode],
2793 status);
2794 if (qp->s_acked == old_last)
2795 qp->s_acked = last;
2796 if (qp->s_cur == old_last)
2797 qp->s_cur = last;
2798 if (qp->s_tail == old_last)
2799 qp->s_tail = last;
2800 if (qp->state == IB_QPS_SQD && last == qp->s_cur)
2801 qp->s_draining = 0;
2802 }
2803 EXPORT_SYMBOL(rvt_send_complete);
2804
2805 /**
2806 * rvt_copy_sge - copy data to SGE memory
2807 * @qp: associated QP
2808 * @ss: the SGE state
2809 * @data: the data to copy
2810 * @length: the length of the data
2811 * @release: boolean to release MR
2812 * @copy_last: do a separate copy of the last 8 bytes
2813 */
rvt_copy_sge(struct rvt_qp * qp,struct rvt_sge_state * ss,void * data,u32 length,bool release,bool copy_last)2814 void rvt_copy_sge(struct rvt_qp *qp, struct rvt_sge_state *ss,
2815 void *data, u32 length,
2816 bool release, bool copy_last)
2817 {
2818 struct rvt_sge *sge = &ss->sge;
2819 int i;
2820 bool in_last = false;
2821 bool cacheless_copy = false;
2822 struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device);
2823 struct rvt_wss *wss = rdi->wss;
2824 unsigned int sge_copy_mode = rdi->dparms.sge_copy_mode;
2825
2826 if (sge_copy_mode == RVT_SGE_COPY_CACHELESS) {
2827 cacheless_copy = length >= PAGE_SIZE;
2828 } else if (sge_copy_mode == RVT_SGE_COPY_ADAPTIVE) {
2829 if (length >= PAGE_SIZE) {
2830 /*
2831 * NOTE: this *assumes*:
2832 * o The first vaddr is the dest.
2833 * o If multiple pages, then vaddr is sequential.
2834 */
2835 wss_insert(wss, sge->vaddr);
2836 if (length >= (2 * PAGE_SIZE))
2837 wss_insert(wss, (sge->vaddr + PAGE_SIZE));
2838
2839 cacheless_copy = wss_exceeds_threshold(wss);
2840 } else {
2841 wss_advance_clean_counter(wss);
2842 }
2843 }
2844
2845 if (copy_last) {
2846 if (length > 8) {
2847 length -= 8;
2848 } else {
2849 copy_last = false;
2850 in_last = true;
2851 }
2852 }
2853
2854 again:
2855 while (length) {
2856 u32 len = rvt_get_sge_length(sge, length);
2857
2858 WARN_ON_ONCE(len == 0);
2859 if (unlikely(in_last)) {
2860 /* enforce byte transfer ordering */
2861 for (i = 0; i < len; i++)
2862 ((u8 *)sge->vaddr)[i] = ((u8 *)data)[i];
2863 } else if (cacheless_copy) {
2864 cacheless_memcpy(sge->vaddr, data, len);
2865 } else {
2866 memcpy(sge->vaddr, data, len);
2867 }
2868 rvt_update_sge(ss, len, release);
2869 data += len;
2870 length -= len;
2871 }
2872
2873 if (copy_last) {
2874 copy_last = false;
2875 in_last = true;
2876 length = 8;
2877 goto again;
2878 }
2879 }
2880 EXPORT_SYMBOL(rvt_copy_sge);
2881
loopback_qp_drop(struct rvt_ibport * rvp,struct rvt_qp * sqp)2882 static enum ib_wc_status loopback_qp_drop(struct rvt_ibport *rvp,
2883 struct rvt_qp *sqp)
2884 {
2885 rvp->n_pkt_drops++;
2886 /*
2887 * For RC, the requester would timeout and retry so
2888 * shortcut the timeouts and just signal too many retries.
2889 */
2890 return sqp->ibqp.qp_type == IB_QPT_RC ?
2891 IB_WC_RETRY_EXC_ERR : IB_WC_SUCCESS;
2892 }
2893
2894 /**
2895 * rvt_ruc_loopback - handle UC and RC loopback requests
2896 * @sqp: the sending QP
2897 *
2898 * This is called from rvt_do_send() to forward a WQE addressed to the same HFI
2899 * Note that although we are single threaded due to the send engine, we still
2900 * have to protect against post_send(). We don't have to worry about
2901 * receive interrupts since this is a connected protocol and all packets
2902 * will pass through here.
2903 */
rvt_ruc_loopback(struct rvt_qp * sqp)2904 void rvt_ruc_loopback(struct rvt_qp *sqp)
2905 {
2906 struct rvt_ibport *rvp = NULL;
2907 struct rvt_dev_info *rdi = ib_to_rvt(sqp->ibqp.device);
2908 struct rvt_qp *qp;
2909 struct rvt_swqe *wqe;
2910 struct rvt_sge *sge;
2911 unsigned long flags;
2912 struct ib_wc wc;
2913 u64 sdata;
2914 atomic64_t *maddr;
2915 enum ib_wc_status send_status;
2916 bool release;
2917 int ret;
2918 bool copy_last = false;
2919 int local_ops = 0;
2920
2921 rcu_read_lock();
2922 rvp = rdi->ports[sqp->port_num - 1];
2923
2924 /*
2925 * Note that we check the responder QP state after
2926 * checking the requester's state.
2927 */
2928
2929 qp = rvt_lookup_qpn(ib_to_rvt(sqp->ibqp.device), rvp,
2930 sqp->remote_qpn);
2931
2932 spin_lock_irqsave(&sqp->s_lock, flags);
2933
2934 /* Return if we are already busy processing a work request. */
2935 if ((sqp->s_flags & (RVT_S_BUSY | RVT_S_ANY_WAIT)) ||
2936 !(ib_rvt_state_ops[sqp->state] & RVT_PROCESS_OR_FLUSH_SEND))
2937 goto unlock;
2938
2939 sqp->s_flags |= RVT_S_BUSY;
2940
2941 again:
2942 if (sqp->s_last == READ_ONCE(sqp->s_head))
2943 goto clr_busy;
2944 wqe = rvt_get_swqe_ptr(sqp, sqp->s_last);
2945
2946 /* Return if it is not OK to start a new work request. */
2947 if (!(ib_rvt_state_ops[sqp->state] & RVT_PROCESS_NEXT_SEND_OK)) {
2948 if (!(ib_rvt_state_ops[sqp->state] & RVT_FLUSH_SEND))
2949 goto clr_busy;
2950 /* We are in the error state, flush the work request. */
2951 send_status = IB_WC_WR_FLUSH_ERR;
2952 goto flush_send;
2953 }
2954
2955 /*
2956 * We can rely on the entry not changing without the s_lock
2957 * being held until we update s_last.
2958 * We increment s_cur to indicate s_last is in progress.
2959 */
2960 if (sqp->s_last == sqp->s_cur) {
2961 if (++sqp->s_cur >= sqp->s_size)
2962 sqp->s_cur = 0;
2963 }
2964 spin_unlock_irqrestore(&sqp->s_lock, flags);
2965
2966 if (!qp) {
2967 send_status = loopback_qp_drop(rvp, sqp);
2968 goto serr_no_r_lock;
2969 }
2970 spin_lock_irqsave(&qp->r_lock, flags);
2971 if (!(ib_rvt_state_ops[qp->state] & RVT_PROCESS_RECV_OK) ||
2972 qp->ibqp.qp_type != sqp->ibqp.qp_type) {
2973 send_status = loopback_qp_drop(rvp, sqp);
2974 goto serr;
2975 }
2976
2977 memset(&wc, 0, sizeof(wc));
2978 send_status = IB_WC_SUCCESS;
2979
2980 release = true;
2981 sqp->s_sge.sge = wqe->sg_list[0];
2982 sqp->s_sge.sg_list = wqe->sg_list + 1;
2983 sqp->s_sge.num_sge = wqe->wr.num_sge;
2984 sqp->s_len = wqe->length;
2985 switch (wqe->wr.opcode) {
2986 case IB_WR_REG_MR:
2987 goto send_comp;
2988
2989 case IB_WR_LOCAL_INV:
2990 if (!(wqe->wr.send_flags & RVT_SEND_COMPLETION_ONLY)) {
2991 if (rvt_invalidate_rkey(sqp,
2992 wqe->wr.ex.invalidate_rkey))
2993 send_status = IB_WC_LOC_PROT_ERR;
2994 local_ops = 1;
2995 }
2996 goto send_comp;
2997
2998 case IB_WR_SEND_WITH_INV:
2999 case IB_WR_SEND_WITH_IMM:
3000 case IB_WR_SEND:
3001 ret = rvt_get_rwqe(qp, false);
3002 if (ret < 0)
3003 goto op_err;
3004 if (!ret)
3005 goto rnr_nak;
3006 if (wqe->length > qp->r_len)
3007 goto inv_err;
3008 switch (wqe->wr.opcode) {
3009 case IB_WR_SEND_WITH_INV:
3010 if (!rvt_invalidate_rkey(qp,
3011 wqe->wr.ex.invalidate_rkey)) {
3012 wc.wc_flags = IB_WC_WITH_INVALIDATE;
3013 wc.ex.invalidate_rkey =
3014 wqe->wr.ex.invalidate_rkey;
3015 }
3016 break;
3017 case IB_WR_SEND_WITH_IMM:
3018 wc.wc_flags = IB_WC_WITH_IMM;
3019 wc.ex.imm_data = wqe->wr.ex.imm_data;
3020 break;
3021 default:
3022 break;
3023 }
3024 break;
3025
3026 case IB_WR_RDMA_WRITE_WITH_IMM:
3027 if (unlikely(!(qp->qp_access_flags & IB_ACCESS_REMOTE_WRITE)))
3028 goto inv_err;
3029 wc.wc_flags = IB_WC_WITH_IMM;
3030 wc.ex.imm_data = wqe->wr.ex.imm_data;
3031 ret = rvt_get_rwqe(qp, true);
3032 if (ret < 0)
3033 goto op_err;
3034 if (!ret)
3035 goto rnr_nak;
3036 /* skip copy_last set and qp_access_flags recheck */
3037 goto do_write;
3038 case IB_WR_RDMA_WRITE:
3039 copy_last = rvt_is_user_qp(qp);
3040 if (unlikely(!(qp->qp_access_flags & IB_ACCESS_REMOTE_WRITE)))
3041 goto inv_err;
3042 do_write:
3043 if (wqe->length == 0)
3044 break;
3045 if (unlikely(!rvt_rkey_ok(qp, &qp->r_sge.sge, wqe->length,
3046 wqe->rdma_wr.remote_addr,
3047 wqe->rdma_wr.rkey,
3048 IB_ACCESS_REMOTE_WRITE)))
3049 goto acc_err;
3050 qp->r_sge.sg_list = NULL;
3051 qp->r_sge.num_sge = 1;
3052 qp->r_sge.total_len = wqe->length;
3053 break;
3054
3055 case IB_WR_RDMA_READ:
3056 if (unlikely(!(qp->qp_access_flags & IB_ACCESS_REMOTE_READ)))
3057 goto inv_err;
3058 if (unlikely(!rvt_rkey_ok(qp, &sqp->s_sge.sge, wqe->length,
3059 wqe->rdma_wr.remote_addr,
3060 wqe->rdma_wr.rkey,
3061 IB_ACCESS_REMOTE_READ)))
3062 goto acc_err;
3063 release = false;
3064 sqp->s_sge.sg_list = NULL;
3065 sqp->s_sge.num_sge = 1;
3066 qp->r_sge.sge = wqe->sg_list[0];
3067 qp->r_sge.sg_list = wqe->sg_list + 1;
3068 qp->r_sge.num_sge = wqe->wr.num_sge;
3069 qp->r_sge.total_len = wqe->length;
3070 break;
3071
3072 case IB_WR_ATOMIC_CMP_AND_SWP:
3073 case IB_WR_ATOMIC_FETCH_AND_ADD:
3074 if (unlikely(!(qp->qp_access_flags & IB_ACCESS_REMOTE_ATOMIC)))
3075 goto inv_err;
3076 if (unlikely(wqe->atomic_wr.remote_addr & (sizeof(u64) - 1)))
3077 goto inv_err;
3078 if (unlikely(!rvt_rkey_ok(qp, &qp->r_sge.sge, sizeof(u64),
3079 wqe->atomic_wr.remote_addr,
3080 wqe->atomic_wr.rkey,
3081 IB_ACCESS_REMOTE_ATOMIC)))
3082 goto acc_err;
3083 /* Perform atomic OP and save result. */
3084 maddr = (atomic64_t *)qp->r_sge.sge.vaddr;
3085 sdata = wqe->atomic_wr.compare_add;
3086 *(u64 *)sqp->s_sge.sge.vaddr =
3087 (wqe->wr.opcode == IB_WR_ATOMIC_FETCH_AND_ADD) ?
3088 (u64)atomic64_add_return(sdata, maddr) - sdata :
3089 (u64)cmpxchg((u64 *)qp->r_sge.sge.vaddr,
3090 sdata, wqe->atomic_wr.swap);
3091 rvt_put_mr(qp->r_sge.sge.mr);
3092 qp->r_sge.num_sge = 0;
3093 goto send_comp;
3094
3095 default:
3096 send_status = IB_WC_LOC_QP_OP_ERR;
3097 goto serr;
3098 }
3099
3100 sge = &sqp->s_sge.sge;
3101 while (sqp->s_len) {
3102 u32 len = rvt_get_sge_length(sge, sqp->s_len);
3103
3104 WARN_ON_ONCE(len == 0);
3105 rvt_copy_sge(qp, &qp->r_sge, sge->vaddr,
3106 len, release, copy_last);
3107 rvt_update_sge(&sqp->s_sge, len, !release);
3108 sqp->s_len -= len;
3109 }
3110 if (release)
3111 rvt_put_ss(&qp->r_sge);
3112
3113 if (!test_and_clear_bit(RVT_R_WRID_VALID, &qp->r_aflags))
3114 goto send_comp;
3115
3116 if (wqe->wr.opcode == IB_WR_RDMA_WRITE_WITH_IMM)
3117 wc.opcode = IB_WC_RECV_RDMA_WITH_IMM;
3118 else
3119 wc.opcode = IB_WC_RECV;
3120 wc.wr_id = qp->r_wr_id;
3121 wc.status = IB_WC_SUCCESS;
3122 wc.byte_len = wqe->length;
3123 wc.qp = &qp->ibqp;
3124 wc.src_qp = qp->remote_qpn;
3125 wc.slid = rdma_ah_get_dlid(&qp->remote_ah_attr) & U16_MAX;
3126 wc.sl = rdma_ah_get_sl(&qp->remote_ah_attr);
3127 wc.port_num = 1;
3128 /* Signal completion event if the solicited bit is set. */
3129 rvt_recv_cq(qp, &wc, wqe->wr.send_flags & IB_SEND_SOLICITED);
3130
3131 send_comp:
3132 spin_unlock_irqrestore(&qp->r_lock, flags);
3133 spin_lock_irqsave(&sqp->s_lock, flags);
3134 rvp->n_loop_pkts++;
3135 flush_send:
3136 sqp->s_rnr_retry = sqp->s_rnr_retry_cnt;
3137 spin_lock(&sqp->r_lock);
3138 rvt_send_complete(sqp, wqe, send_status);
3139 spin_unlock(&sqp->r_lock);
3140 if (local_ops) {
3141 atomic_dec(&sqp->local_ops_pending);
3142 local_ops = 0;
3143 }
3144 goto again;
3145
3146 rnr_nak:
3147 /* Handle RNR NAK */
3148 if (qp->ibqp.qp_type == IB_QPT_UC)
3149 goto send_comp;
3150 rvp->n_rnr_naks++;
3151 /*
3152 * Note: we don't need the s_lock held since the BUSY flag
3153 * makes this single threaded.
3154 */
3155 if (sqp->s_rnr_retry == 0) {
3156 send_status = IB_WC_RNR_RETRY_EXC_ERR;
3157 goto serr;
3158 }
3159 if (sqp->s_rnr_retry_cnt < 7)
3160 sqp->s_rnr_retry--;
3161 spin_unlock_irqrestore(&qp->r_lock, flags);
3162 spin_lock_irqsave(&sqp->s_lock, flags);
3163 if (!(ib_rvt_state_ops[sqp->state] & RVT_PROCESS_RECV_OK))
3164 goto clr_busy;
3165 rvt_add_rnr_timer(sqp, qp->r_min_rnr_timer <<
3166 IB_AETH_CREDIT_SHIFT);
3167 goto clr_busy;
3168
3169 op_err:
3170 send_status = IB_WC_REM_OP_ERR;
3171 wc.status = IB_WC_LOC_QP_OP_ERR;
3172 goto err;
3173
3174 inv_err:
3175 send_status =
3176 sqp->ibqp.qp_type == IB_QPT_RC ?
3177 IB_WC_REM_INV_REQ_ERR :
3178 IB_WC_SUCCESS;
3179 wc.status = IB_WC_LOC_QP_OP_ERR;
3180 goto err;
3181
3182 acc_err:
3183 send_status = IB_WC_REM_ACCESS_ERR;
3184 wc.status = IB_WC_LOC_PROT_ERR;
3185 err:
3186 /* responder goes to error state */
3187 rvt_rc_error(qp, wc.status);
3188
3189 serr:
3190 spin_unlock_irqrestore(&qp->r_lock, flags);
3191 serr_no_r_lock:
3192 spin_lock_irqsave(&sqp->s_lock, flags);
3193 spin_lock(&sqp->r_lock);
3194 rvt_send_complete(sqp, wqe, send_status);
3195 spin_unlock(&sqp->r_lock);
3196 if (sqp->ibqp.qp_type == IB_QPT_RC) {
3197 int lastwqe;
3198
3199 spin_lock(&sqp->r_lock);
3200 lastwqe = rvt_error_qp(sqp, IB_WC_WR_FLUSH_ERR);
3201 spin_unlock(&sqp->r_lock);
3202
3203 sqp->s_flags &= ~RVT_S_BUSY;
3204 spin_unlock_irqrestore(&sqp->s_lock, flags);
3205 if (lastwqe) {
3206 struct ib_event ev;
3207
3208 ev.device = sqp->ibqp.device;
3209 ev.element.qp = &sqp->ibqp;
3210 ev.event = IB_EVENT_QP_LAST_WQE_REACHED;
3211 sqp->ibqp.event_handler(&ev, sqp->ibqp.qp_context);
3212 }
3213 goto done;
3214 }
3215 clr_busy:
3216 sqp->s_flags &= ~RVT_S_BUSY;
3217 unlock:
3218 spin_unlock_irqrestore(&sqp->s_lock, flags);
3219 done:
3220 rcu_read_unlock();
3221 }
3222 EXPORT_SYMBOL(rvt_ruc_loopback);
3223