1 /******************************************************************************
2  *
3  * Copyright(c) 2009-2012  Realtek Corporation.
4  *
5  * Tmis program is free software; you can redistribute it and/or modify it
6  * under the terms of version 2 of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * Tmis program is distributed in the hope that it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  *
14  * You should have received a copy of the GNU General Public License along with
15  * tmis program; if not, write to the Free Software Foundation, Inc.,
16  * 51 Franklin Street, Fifth Floor, Boston, MA 02110, USA
17  *
18  * Tme full GNU General Public License is included in this distribution in the
19  * file called LICENSE.
20  *
21  * Contact Information:
22  * wlanfae <wlanfae@realtek.com>
23  * Realtek Corporation, No. 2, Innovation Road II, Hsinchu Science Park,
24  * Hsinchu 300, Taiwan.
25  *
26  * Larry Finger <Larry.Finger@lwfinger.net>
27  *
28  *****************************************************************************/
29 
30 #include <linux/export.h>
31 #include "wifi.h"
32 #include "efuse.h"
33 
34 static const u8 MAX_PGPKT_SIZE = 9;
35 static const u8 PGPKT_DATA_SIZE = 8;
36 static const int EFUSE_MAX_SIZE = 512;
37 
38 static const u8 EFUSE_OOB_PROTECT_BYTES = 15;
39 
40 static const struct efuse_map RTL8712_SDIO_EFUSE_TABLE[] = {
41 	{0, 0, 0, 2},
42 	{0, 1, 0, 2},
43 	{0, 2, 0, 2},
44 	{1, 0, 0, 1},
45 	{1, 0, 1, 1},
46 	{1, 1, 0, 1},
47 	{1, 1, 1, 3},
48 	{1, 3, 0, 17},
49 	{3, 3, 1, 48},
50 	{10, 0, 0, 6},
51 	{10, 3, 0, 1},
52 	{10, 3, 1, 1},
53 	{11, 0, 0, 28}
54 };
55 
56 static void efuse_shadow_read_1byte(struct ieee80211_hw *hw, u16 offset,
57 				    u8 *value);
58 static void efuse_shadow_read_2byte(struct ieee80211_hw *hw, u16 offset,
59 				    u16 *value);
60 static void efuse_shadow_read_4byte(struct ieee80211_hw *hw, u16 offset,
61 				    u32 *value);
62 static void efuse_shadow_write_1byte(struct ieee80211_hw *hw, u16 offset,
63 				     u8 value);
64 static void efuse_shadow_write_2byte(struct ieee80211_hw *hw, u16 offset,
65 				     u16 value);
66 static void efuse_shadow_write_4byte(struct ieee80211_hw *hw, u16 offset,
67 				     u32 value);
68 static int efuse_one_byte_read(struct ieee80211_hw *hw, u16 addr,
69 					u8 *data);
70 static int efuse_one_byte_write(struct ieee80211_hw *hw, u16 addr,
71 					u8 data);
72 static void efuse_read_all_map(struct ieee80211_hw *hw, u8 *efuse);
73 static int efuse_pg_packet_read(struct ieee80211_hw *hw, u8 offset,
74 					u8 *data);
75 static int efuse_pg_packet_write(struct ieee80211_hw *hw, u8 offset,
76 				 u8 word_en, u8 *data);
77 static void efuse_word_enable_data_read(u8 word_en, u8 *sourdata,
78 					u8 *targetdata);
79 static u8 efuse_word_enable_data_write(struct ieee80211_hw *hw,
80 				       u16 efuse_addr, u8 word_en, u8 *data);
81 static void efuse_power_switch(struct ieee80211_hw *hw, u8 write,
82 					u8 pwrstate);
83 static u16 efuse_get_current_size(struct ieee80211_hw *hw);
84 static u8 efuse_calculate_word_cnts(u8 word_en);
85 
efuse_initialize(struct ieee80211_hw * hw)86 void efuse_initialize(struct ieee80211_hw *hw)
87 {
88 	struct rtl_priv *rtlpriv = rtl_priv(hw);
89 	u8 bytetemp;
90 	u8 temp;
91 
92 	bytetemp = rtl_read_byte(rtlpriv, rtlpriv->cfg->maps[SYS_FUNC_EN] + 1);
93 	temp = bytetemp | 0x20;
94 	rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[SYS_FUNC_EN] + 1, temp);
95 
96 	bytetemp = rtl_read_byte(rtlpriv, rtlpriv->cfg->maps[SYS_ISO_CTRL] + 1);
97 	temp = bytetemp & 0xFE;
98 	rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[SYS_ISO_CTRL] + 1, temp);
99 
100 	bytetemp = rtl_read_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_TEST] + 3);
101 	temp = bytetemp | 0x80;
102 	rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_TEST] + 3, temp);
103 
104 	rtl_write_byte(rtlpriv, 0x2F8, 0x3);
105 
106 	rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 3, 0x72);
107 
108 }
109 
efuse_read_1byte(struct ieee80211_hw * hw,u16 address)110 u8 efuse_read_1byte(struct ieee80211_hw *hw, u16 address)
111 {
112 	struct rtl_priv *rtlpriv = rtl_priv(hw);
113 	u8 data;
114 	u8 bytetemp;
115 	u8 temp;
116 	u32 k = 0;
117 	const u32 efuse_len =
118 		rtlpriv->cfg->maps[EFUSE_REAL_CONTENT_SIZE];
119 
120 	if (address < efuse_len) {
121 		temp = address & 0xFF;
122 		rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 1,
123 			       temp);
124 		bytetemp = rtl_read_byte(rtlpriv,
125 					 rtlpriv->cfg->maps[EFUSE_CTRL] + 2);
126 		temp = ((address >> 8) & 0x03) | (bytetemp & 0xFC);
127 		rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 2,
128 			       temp);
129 
130 		bytetemp = rtl_read_byte(rtlpriv,
131 					 rtlpriv->cfg->maps[EFUSE_CTRL] + 3);
132 		temp = bytetemp & 0x7F;
133 		rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 3,
134 			       temp);
135 
136 		bytetemp = rtl_read_byte(rtlpriv,
137 					 rtlpriv->cfg->maps[EFUSE_CTRL] + 3);
138 		while (!(bytetemp & 0x80)) {
139 			bytetemp = rtl_read_byte(rtlpriv,
140 						 rtlpriv->cfg->
141 						 maps[EFUSE_CTRL] + 3);
142 			k++;
143 			if (k == 1000) {
144 				k = 0;
145 				break;
146 			}
147 		}
148 		data = rtl_read_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL]);
149 		return data;
150 	} else
151 		return 0xFF;
152 
153 }
154 EXPORT_SYMBOL(efuse_read_1byte);
155 
efuse_write_1byte(struct ieee80211_hw * hw,u16 address,u8 value)156 void efuse_write_1byte(struct ieee80211_hw *hw, u16 address, u8 value)
157 {
158 	struct rtl_priv *rtlpriv = rtl_priv(hw);
159 	u8 bytetemp;
160 	u8 temp;
161 	u32 k = 0;
162 	const u32 efuse_len =
163 		rtlpriv->cfg->maps[EFUSE_REAL_CONTENT_SIZE];
164 
165 	RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD, "Addr=%x Data =%x\n",
166 		 address, value);
167 
168 	if (address < efuse_len) {
169 		rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL], value);
170 
171 		temp = address & 0xFF;
172 		rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 1,
173 			       temp);
174 		bytetemp = rtl_read_byte(rtlpriv,
175 					 rtlpriv->cfg->maps[EFUSE_CTRL] + 2);
176 
177 		temp = ((address >> 8) & 0x03) | (bytetemp & 0xFC);
178 		rtl_write_byte(rtlpriv,
179 			       rtlpriv->cfg->maps[EFUSE_CTRL] + 2, temp);
180 
181 		bytetemp = rtl_read_byte(rtlpriv,
182 					 rtlpriv->cfg->maps[EFUSE_CTRL] + 3);
183 		temp = bytetemp | 0x80;
184 		rtl_write_byte(rtlpriv,
185 			       rtlpriv->cfg->maps[EFUSE_CTRL] + 3, temp);
186 
187 		bytetemp = rtl_read_byte(rtlpriv,
188 					 rtlpriv->cfg->maps[EFUSE_CTRL] + 3);
189 
190 		while (bytetemp & 0x80) {
191 			bytetemp = rtl_read_byte(rtlpriv,
192 						 rtlpriv->cfg->
193 						 maps[EFUSE_CTRL] + 3);
194 			k++;
195 			if (k == 100) {
196 				k = 0;
197 				break;
198 			}
199 		}
200 	}
201 
202 }
203 
read_efuse_byte(struct ieee80211_hw * hw,u16 _offset,u8 * pbuf)204 void read_efuse_byte(struct ieee80211_hw *hw, u16 _offset, u8 *pbuf)
205 {
206 	struct rtl_priv *rtlpriv = rtl_priv(hw);
207 	u32 value32;
208 	u8 readbyte;
209 	u16 retry;
210 
211 	rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 1,
212 		       (_offset & 0xff));
213 	readbyte = rtl_read_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 2);
214 	rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 2,
215 		       ((_offset >> 8) & 0x03) | (readbyte & 0xfc));
216 
217 	readbyte = rtl_read_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 3);
218 	rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 3,
219 		       (readbyte & 0x7f));
220 
221 	retry = 0;
222 	value32 = rtl_read_dword(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL]);
223 	while (!(((value32 >> 24) & 0xff) & 0x80) && (retry < 10000)) {
224 		value32 = rtl_read_dword(rtlpriv,
225 					 rtlpriv->cfg->maps[EFUSE_CTRL]);
226 		retry++;
227 	}
228 
229 	udelay(50);
230 	value32 = rtl_read_dword(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL]);
231 
232 	*pbuf = (u8) (value32 & 0xff);
233 }
234 
read_efuse(struct ieee80211_hw * hw,u16 _offset,u16 _size_byte,u8 * pbuf)235 void read_efuse(struct ieee80211_hw *hw, u16 _offset, u16 _size_byte, u8 *pbuf)
236 {
237 	struct rtl_priv *rtlpriv = rtl_priv(hw);
238 	struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
239 	u8 *efuse_tbl;
240 	u8 rtemp8[1];
241 	u16 efuse_addr = 0;
242 	u8 offset, wren;
243 	u16 i;
244 	u16 j;
245 	const u16 efuse_max_section =
246 		rtlpriv->cfg->maps[EFUSE_MAX_SECTION_MAP];
247 	const u32 efuse_len =
248 		rtlpriv->cfg->maps[EFUSE_REAL_CONTENT_SIZE];
249 	u16 **efuse_word;
250 	u16 efuse_utilized = 0;
251 	u8 efuse_usage;
252 
253 	if ((_offset + _size_byte) > rtlpriv->cfg->maps[EFUSE_HWSET_MAX_SIZE]) {
254 		RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD,
255 			 "read_efuse(): Invalid offset(%#x) with read bytes(%#x)!!\n",
256 			 _offset, _size_byte);
257 		return;
258 	}
259 
260 	/* allocate memory for efuse_tbl and efuse_word */
261 	efuse_tbl = kmalloc(rtlpriv->cfg->maps[EFUSE_HWSET_MAX_SIZE] *
262 			    sizeof(u8), GFP_ATOMIC);
263 	if (!efuse_tbl)
264 		return;
265 	efuse_word = kmalloc(EFUSE_MAX_WORD_UNIT * sizeof(u16 *), GFP_ATOMIC);
266 	if (!efuse_word)
267 		goto done;
268 	for (i = 0; i < EFUSE_MAX_WORD_UNIT; i++) {
269 		efuse_word[i] = kmalloc(efuse_max_section * sizeof(u16),
270 					GFP_ATOMIC);
271 		if (!efuse_word[i])
272 			goto done;
273 	}
274 
275 	for (i = 0; i < efuse_max_section; i++)
276 		for (j = 0; j < EFUSE_MAX_WORD_UNIT; j++)
277 			efuse_word[j][i] = 0xFFFF;
278 
279 	read_efuse_byte(hw, efuse_addr, rtemp8);
280 	if (*rtemp8 != 0xFF) {
281 		efuse_utilized++;
282 		RTPRINT(rtlpriv, FEEPROM, EFUSE_READ_ALL,
283 			"Addr=%d\n", efuse_addr);
284 		efuse_addr++;
285 	}
286 
287 	while ((*rtemp8 != 0xFF) && (efuse_addr < efuse_len)) {
288 		offset = ((*rtemp8 >> 4) & 0x0f);
289 
290 		if (offset < efuse_max_section) {
291 			wren = (*rtemp8 & 0x0f);
292 			RTPRINT(rtlpriv, FEEPROM, EFUSE_READ_ALL,
293 				"offset-%d Worden=%x\n", offset, wren);
294 
295 			for (i = 0; i < EFUSE_MAX_WORD_UNIT; i++) {
296 				if (!(wren & 0x01)) {
297 					RTPRINT(rtlpriv, FEEPROM,
298 						EFUSE_READ_ALL,
299 						"Addr=%d\n", efuse_addr);
300 
301 					read_efuse_byte(hw, efuse_addr, rtemp8);
302 					efuse_addr++;
303 					efuse_utilized++;
304 					efuse_word[i][offset] =
305 							 (*rtemp8 & 0xff);
306 
307 					if (efuse_addr >= efuse_len)
308 						break;
309 
310 					RTPRINT(rtlpriv, FEEPROM,
311 						EFUSE_READ_ALL,
312 						"Addr=%d\n", efuse_addr);
313 
314 					read_efuse_byte(hw, efuse_addr, rtemp8);
315 					efuse_addr++;
316 					efuse_utilized++;
317 					efuse_word[i][offset] |=
318 					    (((u16)*rtemp8 << 8) & 0xff00);
319 
320 					if (efuse_addr >= efuse_len)
321 						break;
322 				}
323 
324 				wren >>= 1;
325 			}
326 		}
327 
328 		RTPRINT(rtlpriv, FEEPROM, EFUSE_READ_ALL,
329 			"Addr=%d\n", efuse_addr);
330 		read_efuse_byte(hw, efuse_addr, rtemp8);
331 		if (*rtemp8 != 0xFF && (efuse_addr < efuse_len)) {
332 			efuse_utilized++;
333 			efuse_addr++;
334 		}
335 	}
336 
337 	for (i = 0; i < efuse_max_section; i++) {
338 		for (j = 0; j < EFUSE_MAX_WORD_UNIT; j++) {
339 			efuse_tbl[(i * 8) + (j * 2)] =
340 			    (efuse_word[j][i] & 0xff);
341 			efuse_tbl[(i * 8) + ((j * 2) + 1)] =
342 			    ((efuse_word[j][i] >> 8) & 0xff);
343 		}
344 	}
345 
346 	for (i = 0; i < _size_byte; i++)
347 		pbuf[i] = efuse_tbl[_offset + i];
348 
349 	rtlefuse->efuse_usedbytes = efuse_utilized;
350 	efuse_usage = (u8) ((efuse_utilized * 100) / efuse_len);
351 	rtlefuse->efuse_usedpercentage = efuse_usage;
352 	rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_EFUSE_BYTES,
353 				      (u8 *)&efuse_utilized);
354 	rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_EFUSE_USAGE,
355 				      (u8 *)&efuse_usage);
356 done:
357 	for (i = 0; i < EFUSE_MAX_WORD_UNIT; i++)
358 		kfree(efuse_word[i]);
359 	kfree(efuse_word);
360 	kfree(efuse_tbl);
361 }
362 
efuse_shadow_update_chk(struct ieee80211_hw * hw)363 bool efuse_shadow_update_chk(struct ieee80211_hw *hw)
364 {
365 	struct rtl_priv *rtlpriv = rtl_priv(hw);
366 	struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
367 	u8 section_idx, i, Base;
368 	u16 words_need = 0, hdr_num = 0, totalbytes, efuse_used;
369 	bool wordchanged, result = true;
370 
371 	for (section_idx = 0; section_idx < 16; section_idx++) {
372 		Base = section_idx * 8;
373 		wordchanged = false;
374 
375 		for (i = 0; i < 8; i = i + 2) {
376 			if ((rtlefuse->efuse_map[EFUSE_INIT_MAP][Base + i] !=
377 			     rtlefuse->efuse_map[EFUSE_MODIFY_MAP][Base + i]) ||
378 			    (rtlefuse->efuse_map[EFUSE_INIT_MAP][Base + i + 1] !=
379 			     rtlefuse->efuse_map[EFUSE_MODIFY_MAP][Base + i +
380 								   1])) {
381 				words_need++;
382 				wordchanged = true;
383 			}
384 		}
385 
386 		if (wordchanged)
387 			hdr_num++;
388 	}
389 
390 	totalbytes = hdr_num + words_need * 2;
391 	efuse_used = rtlefuse->efuse_usedbytes;
392 
393 	if ((totalbytes + efuse_used) >=
394 	    (EFUSE_MAX_SIZE - EFUSE_OOB_PROTECT_BYTES))
395 		result = false;
396 
397 	RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD,
398 		 "efuse_shadow_update_chk(): totalbytes(%#x), hdr_num(%#x), words_need(%#x), efuse_used(%d)\n",
399 		 totalbytes, hdr_num, words_need, efuse_used);
400 
401 	return result;
402 }
403 
efuse_shadow_read(struct ieee80211_hw * hw,u8 type,u16 offset,u32 * value)404 void efuse_shadow_read(struct ieee80211_hw *hw, u8 type,
405 		       u16 offset, u32 *value)
406 {
407 	if (type == 1)
408 		efuse_shadow_read_1byte(hw, offset, (u8 *) value);
409 	else if (type == 2)
410 		efuse_shadow_read_2byte(hw, offset, (u16 *) value);
411 	else if (type == 4)
412 		efuse_shadow_read_4byte(hw, offset, (u32 *) value);
413 
414 }
415 
efuse_shadow_write(struct ieee80211_hw * hw,u8 type,u16 offset,u32 value)416 void efuse_shadow_write(struct ieee80211_hw *hw, u8 type, u16 offset,
417 				u32 value)
418 {
419 	if (type == 1)
420 		efuse_shadow_write_1byte(hw, offset, (u8) value);
421 	else if (type == 2)
422 		efuse_shadow_write_2byte(hw, offset, (u16) value);
423 	else if (type == 4)
424 		efuse_shadow_write_4byte(hw, offset, value);
425 
426 }
427 
efuse_shadow_update(struct ieee80211_hw * hw)428 bool efuse_shadow_update(struct ieee80211_hw *hw)
429 {
430 	struct rtl_priv *rtlpriv = rtl_priv(hw);
431 	struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
432 	u16 i, offset, base;
433 	u8 word_en = 0x0F;
434 	u8 first_pg = false;
435 
436 	RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD, "--->\n");
437 
438 	if (!efuse_shadow_update_chk(hw)) {
439 		efuse_read_all_map(hw, &rtlefuse->efuse_map[EFUSE_INIT_MAP][0]);
440 		memcpy(&rtlefuse->efuse_map[EFUSE_MODIFY_MAP][0],
441 		       &rtlefuse->efuse_map[EFUSE_INIT_MAP][0],
442 		       rtlpriv->cfg->maps[EFUSE_HWSET_MAX_SIZE]);
443 
444 		RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD,
445 			 "<---efuse out of capacity!!\n");
446 		return false;
447 	}
448 	efuse_power_switch(hw, true, true);
449 
450 	for (offset = 0; offset < 16; offset++) {
451 
452 		word_en = 0x0F;
453 		base = offset * 8;
454 
455 		for (i = 0; i < 8; i++) {
456 			if (first_pg) {
457 
458 				word_en &= ~(BIT(i / 2));
459 
460 				rtlefuse->efuse_map[EFUSE_INIT_MAP][base + i] =
461 				    rtlefuse->efuse_map[EFUSE_MODIFY_MAP][base + i];
462 			} else {
463 
464 				if (rtlefuse->efuse_map[EFUSE_INIT_MAP][base + i] !=
465 				    rtlefuse->efuse_map[EFUSE_MODIFY_MAP][base + i]) {
466 					word_en &= ~(BIT(i / 2));
467 
468 					rtlefuse->efuse_map[EFUSE_INIT_MAP][base + i] =
469 					    rtlefuse->efuse_map[EFUSE_MODIFY_MAP][base + i];
470 				}
471 			}
472 		}
473 
474 		if (word_en != 0x0F) {
475 			u8 tmpdata[8];
476 			memcpy(tmpdata,
477 			       &rtlefuse->efuse_map[EFUSE_MODIFY_MAP][base],
478 			       8);
479 			RT_PRINT_DATA(rtlpriv, COMP_INIT, DBG_LOUD,
480 				      "U-efuse", tmpdata, 8);
481 
482 			if (!efuse_pg_packet_write(hw, (u8) offset, word_en,
483 						   tmpdata)) {
484 				RT_TRACE(rtlpriv, COMP_ERR, DBG_WARNING,
485 					 "PG section(%#x) fail!!\n", offset);
486 				break;
487 			}
488 		}
489 
490 	}
491 
492 	efuse_power_switch(hw, true, false);
493 	efuse_read_all_map(hw, &rtlefuse->efuse_map[EFUSE_INIT_MAP][0]);
494 
495 	memcpy(&rtlefuse->efuse_map[EFUSE_MODIFY_MAP][0],
496 	       &rtlefuse->efuse_map[EFUSE_INIT_MAP][0],
497 	       rtlpriv->cfg->maps[EFUSE_HWSET_MAX_SIZE]);
498 
499 	RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD, "<---\n");
500 	return true;
501 }
502 
rtl_efuse_shadow_map_update(struct ieee80211_hw * hw)503 void rtl_efuse_shadow_map_update(struct ieee80211_hw *hw)
504 {
505 	struct rtl_priv *rtlpriv = rtl_priv(hw);
506 	struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
507 
508 	if (rtlefuse->autoload_failflag)
509 		memset(&rtlefuse->efuse_map[EFUSE_INIT_MAP][0], 0xFF,
510 			rtlpriv->cfg->maps[EFUSE_HWSET_MAX_SIZE]);
511 	else
512 		efuse_read_all_map(hw, &rtlefuse->efuse_map[EFUSE_INIT_MAP][0]);
513 
514 	memcpy(&rtlefuse->efuse_map[EFUSE_MODIFY_MAP][0],
515 	       &rtlefuse->efuse_map[EFUSE_INIT_MAP][0],
516 	       rtlpriv->cfg->maps[EFUSE_HWSET_MAX_SIZE]);
517 
518 }
519 EXPORT_SYMBOL(rtl_efuse_shadow_map_update);
520 
efuse_force_write_vendor_Id(struct ieee80211_hw * hw)521 void efuse_force_write_vendor_Id(struct ieee80211_hw *hw)
522 {
523 	u8 tmpdata[8] = { 0xFF, 0xFF, 0xEC, 0x10, 0xFF, 0xFF, 0xFF, 0xFF };
524 
525 	efuse_power_switch(hw, true, true);
526 
527 	efuse_pg_packet_write(hw, 1, 0xD, tmpdata);
528 
529 	efuse_power_switch(hw, true, false);
530 
531 }
532 
efuse_re_pg_section(struct ieee80211_hw * hw,u8 section_idx)533 void efuse_re_pg_section(struct ieee80211_hw *hw, u8 section_idx)
534 {
535 }
536 
efuse_shadow_read_1byte(struct ieee80211_hw * hw,u16 offset,u8 * value)537 static void efuse_shadow_read_1byte(struct ieee80211_hw *hw,
538 				    u16 offset, u8 *value)
539 {
540 	struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
541 	*value = rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset];
542 }
543 
efuse_shadow_read_2byte(struct ieee80211_hw * hw,u16 offset,u16 * value)544 static void efuse_shadow_read_2byte(struct ieee80211_hw *hw,
545 				    u16 offset, u16 *value)
546 {
547 	struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
548 
549 	*value = rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset];
550 	*value |= rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 1] << 8;
551 
552 }
553 
efuse_shadow_read_4byte(struct ieee80211_hw * hw,u16 offset,u32 * value)554 static void efuse_shadow_read_4byte(struct ieee80211_hw *hw,
555 				    u16 offset, u32 *value)
556 {
557 	struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
558 
559 	*value = rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset];
560 	*value |= rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 1] << 8;
561 	*value |= rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 2] << 16;
562 	*value |= rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 3] << 24;
563 }
564 
efuse_shadow_write_1byte(struct ieee80211_hw * hw,u16 offset,u8 value)565 static void efuse_shadow_write_1byte(struct ieee80211_hw *hw,
566 				     u16 offset, u8 value)
567 {
568 	struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
569 
570 	rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset] = value;
571 }
572 
efuse_shadow_write_2byte(struct ieee80211_hw * hw,u16 offset,u16 value)573 static void efuse_shadow_write_2byte(struct ieee80211_hw *hw,
574 				     u16 offset, u16 value)
575 {
576 	struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
577 
578 	rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset] = value & 0x00FF;
579 	rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 1] = value >> 8;
580 
581 }
582 
efuse_shadow_write_4byte(struct ieee80211_hw * hw,u16 offset,u32 value)583 static void efuse_shadow_write_4byte(struct ieee80211_hw *hw,
584 				     u16 offset, u32 value)
585 {
586 	struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
587 
588 	rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset] =
589 	    (u8) (value & 0x000000FF);
590 	rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 1] =
591 	    (u8) ((value >> 8) & 0x0000FF);
592 	rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 2] =
593 	    (u8) ((value >> 16) & 0x00FF);
594 	rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 3] =
595 	    (u8) ((value >> 24) & 0xFF);
596 
597 }
598 
efuse_one_byte_read(struct ieee80211_hw * hw,u16 addr,u8 * data)599 static int efuse_one_byte_read(struct ieee80211_hw *hw, u16 addr, u8 *data)
600 {
601 	struct rtl_priv *rtlpriv = rtl_priv(hw);
602 	u8 tmpidx = 0;
603 	int result;
604 
605 	rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 1,
606 		       (u8) (addr & 0xff));
607 	rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 2,
608 		       ((u8) ((addr >> 8) & 0x03)) |
609 		       (rtl_read_byte(rtlpriv,
610 				      rtlpriv->cfg->maps[EFUSE_CTRL] + 2) &
611 			0xFC));
612 
613 	rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 3, 0x72);
614 
615 	while (!(0x80 & rtl_read_byte(rtlpriv,
616 				      rtlpriv->cfg->maps[EFUSE_CTRL] + 3))
617 	       && (tmpidx < 100)) {
618 		tmpidx++;
619 	}
620 
621 	if (tmpidx < 100) {
622 		*data = rtl_read_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL]);
623 		result = true;
624 	} else {
625 		*data = 0xff;
626 		result = false;
627 	}
628 	return result;
629 }
630 
efuse_one_byte_write(struct ieee80211_hw * hw,u16 addr,u8 data)631 static int efuse_one_byte_write(struct ieee80211_hw *hw, u16 addr, u8 data)
632 {
633 	struct rtl_priv *rtlpriv = rtl_priv(hw);
634 	u8 tmpidx = 0;
635 
636 	RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD, "Addr = %x Data=%x\n",
637 		 addr, data);
638 
639 	rtl_write_byte(rtlpriv,
640 		       rtlpriv->cfg->maps[EFUSE_CTRL] + 1, (u8) (addr & 0xff));
641 	rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 2,
642 		       (rtl_read_byte(rtlpriv,
643 			 rtlpriv->cfg->maps[EFUSE_CTRL] +
644 			 2) & 0xFC) | (u8) ((addr >> 8) & 0x03));
645 
646 	rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL], data);
647 	rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 3, 0xF2);
648 
649 	while ((0x80 & rtl_read_byte(rtlpriv,
650 				     rtlpriv->cfg->maps[EFUSE_CTRL] + 3))
651 	       && (tmpidx < 100)) {
652 		tmpidx++;
653 	}
654 
655 	if (tmpidx < 100)
656 		return true;
657 
658 	return false;
659 }
660 
efuse_read_all_map(struct ieee80211_hw * hw,u8 * efuse)661 static void efuse_read_all_map(struct ieee80211_hw *hw, u8 * efuse)
662 {
663 	struct rtl_priv *rtlpriv = rtl_priv(hw);
664 	efuse_power_switch(hw, false, true);
665 	read_efuse(hw, 0, rtlpriv->cfg->maps[EFUSE_HWSET_MAX_SIZE], efuse);
666 	efuse_power_switch(hw, false, false);
667 }
668 
efuse_read_data_case1(struct ieee80211_hw * hw,u16 * efuse_addr,u8 efuse_data,u8 offset,u8 * tmpdata,u8 * readstate)669 static void efuse_read_data_case1(struct ieee80211_hw *hw, u16 *efuse_addr,
670 				u8 efuse_data, u8 offset, u8 *tmpdata,
671 				u8 *readstate)
672 {
673 	bool dataempty = true;
674 	u8 hoffset;
675 	u8 tmpidx;
676 	u8 hworden;
677 	u8 word_cnts;
678 
679 	hoffset = (efuse_data >> 4) & 0x0F;
680 	hworden = efuse_data & 0x0F;
681 	word_cnts = efuse_calculate_word_cnts(hworden);
682 
683 	if (hoffset == offset) {
684 		for (tmpidx = 0; tmpidx < word_cnts * 2; tmpidx++) {
685 			if (efuse_one_byte_read(hw, *efuse_addr + 1 + tmpidx,
686 			    &efuse_data)) {
687 				tmpdata[tmpidx] = efuse_data;
688 				if (efuse_data != 0xff)
689 					dataempty = true;
690 			}
691 		}
692 
693 		if (dataempty) {
694 			*readstate = PG_STATE_DATA;
695 		} else {
696 			*efuse_addr = *efuse_addr + (word_cnts * 2) + 1;
697 			*readstate = PG_STATE_HEADER;
698 		}
699 
700 	} else {
701 		*efuse_addr = *efuse_addr + (word_cnts * 2) + 1;
702 		*readstate = PG_STATE_HEADER;
703 	}
704 }
705 
efuse_pg_packet_read(struct ieee80211_hw * hw,u8 offset,u8 * data)706 static int efuse_pg_packet_read(struct ieee80211_hw *hw, u8 offset, u8 *data)
707 {
708 	u8 readstate = PG_STATE_HEADER;
709 	bool continual = true;
710 	u8 efuse_data, word_cnts = 0;
711 	u16 efuse_addr = 0;
712 	u8 tmpdata[8];
713 
714 	if (data == NULL)
715 		return false;
716 	if (offset > 15)
717 		return false;
718 
719 	memset(data, 0xff, PGPKT_DATA_SIZE * sizeof(u8));
720 	memset(tmpdata, 0xff, PGPKT_DATA_SIZE * sizeof(u8));
721 
722 	while (continual && (efuse_addr < EFUSE_MAX_SIZE)) {
723 		if (readstate & PG_STATE_HEADER) {
724 			if (efuse_one_byte_read(hw, efuse_addr, &efuse_data)
725 			    && (efuse_data != 0xFF))
726 				efuse_read_data_case1(hw, &efuse_addr,
727 						      efuse_data,
728 						      offset, tmpdata,
729 						      &readstate);
730 			else
731 				continual = false;
732 		} else if (readstate & PG_STATE_DATA) {
733 			efuse_word_enable_data_read(0, tmpdata, data);
734 			efuse_addr = efuse_addr + (word_cnts * 2) + 1;
735 			readstate = PG_STATE_HEADER;
736 		}
737 
738 	}
739 
740 	if ((data[0] == 0xff) && (data[1] == 0xff) &&
741 	    (data[2] == 0xff) && (data[3] == 0xff) &&
742 	    (data[4] == 0xff) && (data[5] == 0xff) &&
743 	    (data[6] == 0xff) && (data[7] == 0xff))
744 		return false;
745 	else
746 		return true;
747 
748 }
749 
efuse_write_data_case1(struct ieee80211_hw * hw,u16 * efuse_addr,u8 efuse_data,u8 offset,int * continual,u8 * write_state,struct pgpkt_struct * target_pkt,int * repeat_times,int * result,u8 word_en)750 static void efuse_write_data_case1(struct ieee80211_hw *hw, u16 *efuse_addr,
751 			u8 efuse_data, u8 offset, int *continual,
752 			u8 *write_state, struct pgpkt_struct *target_pkt,
753 			int *repeat_times, int *result, u8 word_en)
754 {
755 	struct rtl_priv *rtlpriv = rtl_priv(hw);
756 	struct pgpkt_struct tmp_pkt;
757 	bool dataempty = true;
758 	u8 originaldata[8 * sizeof(u8)];
759 	u8 badworden = 0x0F;
760 	u8 match_word_en, tmp_word_en;
761 	u8 tmpindex;
762 	u8 tmp_header = efuse_data;
763 	u8 tmp_word_cnts;
764 
765 	tmp_pkt.offset = (tmp_header >> 4) & 0x0F;
766 	tmp_pkt.word_en = tmp_header & 0x0F;
767 	tmp_word_cnts = efuse_calculate_word_cnts(tmp_pkt.word_en);
768 
769 	if (tmp_pkt.offset != target_pkt->offset) {
770 		*efuse_addr = *efuse_addr + (tmp_word_cnts * 2) + 1;
771 		*write_state = PG_STATE_HEADER;
772 	} else {
773 		for (tmpindex = 0; tmpindex < (tmp_word_cnts * 2); tmpindex++) {
774 			u16 address = *efuse_addr + 1 + tmpindex;
775 			if (efuse_one_byte_read(hw, address,
776 			     &efuse_data) && (efuse_data != 0xFF))
777 				dataempty = false;
778 		}
779 
780 		if (!dataempty) {
781 			*efuse_addr = *efuse_addr + (tmp_word_cnts * 2) + 1;
782 			*write_state = PG_STATE_HEADER;
783 		} else {
784 			match_word_en = 0x0F;
785 			if (!((target_pkt->word_en & BIT(0)) |
786 			     (tmp_pkt.word_en & BIT(0))))
787 				match_word_en &= (~BIT(0));
788 
789 			if (!((target_pkt->word_en & BIT(1)) |
790 			     (tmp_pkt.word_en & BIT(1))))
791 				match_word_en &= (~BIT(1));
792 
793 			if (!((target_pkt->word_en & BIT(2)) |
794 			     (tmp_pkt.word_en & BIT(2))))
795 				match_word_en &= (~BIT(2));
796 
797 			if (!((target_pkt->word_en & BIT(3)) |
798 			     (tmp_pkt.word_en & BIT(3))))
799 				match_word_en &= (~BIT(3));
800 
801 			if ((match_word_en & 0x0F) != 0x0F) {
802 				badworden = efuse_word_enable_data_write(
803 							    hw, *efuse_addr + 1,
804 							    tmp_pkt.word_en,
805 							    target_pkt->data);
806 
807 				if (0x0F != (badworden & 0x0F)) {
808 					u8 reorg_offset = offset;
809 					u8 reorg_worden = badworden;
810 					efuse_pg_packet_write(hw, reorg_offset,
811 							       reorg_worden,
812 							       originaldata);
813 				}
814 
815 				tmp_word_en = 0x0F;
816 				if ((target_pkt->word_en & BIT(0)) ^
817 				    (match_word_en & BIT(0)))
818 					tmp_word_en &= (~BIT(0));
819 
820 				if ((target_pkt->word_en & BIT(1)) ^
821 				    (match_word_en & BIT(1)))
822 					tmp_word_en &= (~BIT(1));
823 
824 				if ((target_pkt->word_en & BIT(2)) ^
825 				     (match_word_en & BIT(2)))
826 					tmp_word_en &= (~BIT(2));
827 
828 				if ((target_pkt->word_en & BIT(3)) ^
829 				     (match_word_en & BIT(3)))
830 					tmp_word_en &= (~BIT(3));
831 
832 				if ((tmp_word_en & 0x0F) != 0x0F) {
833 					*efuse_addr = efuse_get_current_size(hw);
834 					target_pkt->offset = offset;
835 					target_pkt->word_en = tmp_word_en;
836 				} else {
837 					*continual = false;
838 				}
839 				*write_state = PG_STATE_HEADER;
840 				*repeat_times += 1;
841 				if (*repeat_times > EFUSE_REPEAT_THRESHOLD_) {
842 					*continual = false;
843 					*result = false;
844 				}
845 			} else {
846 				*efuse_addr += (2 * tmp_word_cnts) + 1;
847 				target_pkt->offset = offset;
848 				target_pkt->word_en = word_en;
849 				*write_state = PG_STATE_HEADER;
850 			}
851 		}
852 	}
853 	RTPRINT(rtlpriv, FEEPROM, EFUSE_PG,  "efuse PG_STATE_HEADER-1\n");
854 }
855 
efuse_write_data_case2(struct ieee80211_hw * hw,u16 * efuse_addr,int * continual,u8 * write_state,struct pgpkt_struct target_pkt,int * repeat_times,int * result)856 static void efuse_write_data_case2(struct ieee80211_hw *hw, u16 *efuse_addr,
857 				   int *continual, u8 *write_state,
858 				   struct pgpkt_struct target_pkt,
859 				   int *repeat_times, int *result)
860 {
861 	struct rtl_priv *rtlpriv = rtl_priv(hw);
862 	struct pgpkt_struct tmp_pkt;
863 	u8 pg_header;
864 	u8 tmp_header;
865 	u8 originaldata[8 * sizeof(u8)];
866 	u8 tmp_word_cnts;
867 	u8 badworden = 0x0F;
868 
869 	pg_header = ((target_pkt.offset << 4) & 0xf0) | target_pkt.word_en;
870 	efuse_one_byte_write(hw, *efuse_addr, pg_header);
871 	efuse_one_byte_read(hw, *efuse_addr, &tmp_header);
872 
873 	if (tmp_header == pg_header) {
874 		*write_state = PG_STATE_DATA;
875 	} else if (tmp_header == 0xFF) {
876 		*write_state = PG_STATE_HEADER;
877 		*repeat_times += 1;
878 		if (*repeat_times > EFUSE_REPEAT_THRESHOLD_) {
879 			*continual = false;
880 			*result = false;
881 		}
882 	} else {
883 		tmp_pkt.offset = (tmp_header >> 4) & 0x0F;
884 		tmp_pkt.word_en = tmp_header & 0x0F;
885 
886 		tmp_word_cnts = efuse_calculate_word_cnts(tmp_pkt.word_en);
887 
888 		memset(originaldata, 0xff, 8 * sizeof(u8));
889 
890 		if (efuse_pg_packet_read(hw, tmp_pkt.offset, originaldata)) {
891 			badworden = efuse_word_enable_data_write(hw,
892 				    *efuse_addr + 1, tmp_pkt.word_en,
893 				    originaldata);
894 
895 			if (0x0F != (badworden & 0x0F)) {
896 				u8 reorg_offset = tmp_pkt.offset;
897 				u8 reorg_worden = badworden;
898 				efuse_pg_packet_write(hw, reorg_offset,
899 						      reorg_worden,
900 						      originaldata);
901 				*efuse_addr = efuse_get_current_size(hw);
902 			} else {
903 				*efuse_addr = *efuse_addr + (tmp_word_cnts * 2)
904 					      + 1;
905 			}
906 		} else {
907 			*efuse_addr = *efuse_addr + (tmp_word_cnts * 2) + 1;
908 		}
909 
910 		*write_state = PG_STATE_HEADER;
911 		*repeat_times += 1;
912 		if (*repeat_times > EFUSE_REPEAT_THRESHOLD_) {
913 			*continual = false;
914 			*result = false;
915 		}
916 
917 		RTPRINT(rtlpriv, FEEPROM, EFUSE_PG,
918 			"efuse PG_STATE_HEADER-2\n");
919 	}
920 }
921 
efuse_pg_packet_write(struct ieee80211_hw * hw,u8 offset,u8 word_en,u8 * data)922 static int efuse_pg_packet_write(struct ieee80211_hw *hw,
923 				 u8 offset, u8 word_en, u8 *data)
924 {
925 	struct rtl_priv *rtlpriv = rtl_priv(hw);
926 	struct pgpkt_struct target_pkt;
927 	u8 write_state = PG_STATE_HEADER;
928 	int continual = true, result = true;
929 	u16 efuse_addr = 0;
930 	u8 efuse_data;
931 	u8 target_word_cnts = 0;
932 	u8 badworden = 0x0F;
933 	static int repeat_times;
934 
935 	if (efuse_get_current_size(hw) >=
936 	    (EFUSE_MAX_SIZE - EFUSE_OOB_PROTECT_BYTES)) {
937 		RTPRINT(rtlpriv, FEEPROM, EFUSE_PG,
938 			"efuse_pg_packet_write error\n");
939 		return false;
940 	}
941 
942 	target_pkt.offset = offset;
943 	target_pkt.word_en = word_en;
944 
945 	memset(target_pkt.data, 0xFF, 8 * sizeof(u8));
946 
947 	efuse_word_enable_data_read(word_en, data, target_pkt.data);
948 	target_word_cnts = efuse_calculate_word_cnts(target_pkt.word_en);
949 
950 	RTPRINT(rtlpriv, FEEPROM, EFUSE_PG,  "efuse Power ON\n");
951 
952 	while (continual && (efuse_addr <
953 	       (EFUSE_MAX_SIZE - EFUSE_OOB_PROTECT_BYTES))) {
954 
955 		if (write_state == PG_STATE_HEADER) {
956 			badworden = 0x0F;
957 			RTPRINT(rtlpriv, FEEPROM, EFUSE_PG,
958 				"efuse PG_STATE_HEADER\n");
959 
960 			if (efuse_one_byte_read(hw, efuse_addr, &efuse_data) &&
961 			    (efuse_data != 0xFF))
962 				efuse_write_data_case1(hw, &efuse_addr,
963 						       efuse_data, offset,
964 						       &continual,
965 						       &write_state, &target_pkt,
966 						       &repeat_times, &result,
967 						       word_en);
968 			else
969 				efuse_write_data_case2(hw, &efuse_addr,
970 						       &continual,
971 						       &write_state,
972 						       target_pkt,
973 						       &repeat_times,
974 						       &result);
975 
976 		} else if (write_state == PG_STATE_DATA) {
977 			RTPRINT(rtlpriv, FEEPROM, EFUSE_PG,
978 				"efuse PG_STATE_DATA\n");
979 			badworden =
980 			    efuse_word_enable_data_write(hw, efuse_addr + 1,
981 							 target_pkt.word_en,
982 							 target_pkt.data);
983 
984 			if ((badworden & 0x0F) == 0x0F) {
985 				continual = false;
986 			} else {
987 				efuse_addr += (2 * target_word_cnts) + 1;
988 
989 				target_pkt.offset = offset;
990 				target_pkt.word_en = badworden;
991 				target_word_cnts =
992 				    efuse_calculate_word_cnts(target_pkt.
993 							      word_en);
994 				write_state = PG_STATE_HEADER;
995 				repeat_times++;
996 				if (repeat_times > EFUSE_REPEAT_THRESHOLD_) {
997 					continual = false;
998 					result = false;
999 				}
1000 				RTPRINT(rtlpriv, FEEPROM, EFUSE_PG,
1001 					"efuse PG_STATE_HEADER-3\n");
1002 			}
1003 		}
1004 	}
1005 
1006 	if (efuse_addr >= (EFUSE_MAX_SIZE - EFUSE_OOB_PROTECT_BYTES)) {
1007 		RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD,
1008 			 "efuse_addr(%#x) Out of size!!\n", efuse_addr);
1009 	}
1010 
1011 	return true;
1012 }
1013 
efuse_word_enable_data_read(u8 word_en,u8 * sourdata,u8 * targetdata)1014 static void efuse_word_enable_data_read(u8 word_en,
1015 					u8 *sourdata, u8 *targetdata)
1016 {
1017 	if (!(word_en & BIT(0))) {
1018 		targetdata[0] = sourdata[0];
1019 		targetdata[1] = sourdata[1];
1020 	}
1021 
1022 	if (!(word_en & BIT(1))) {
1023 		targetdata[2] = sourdata[2];
1024 		targetdata[3] = sourdata[3];
1025 	}
1026 
1027 	if (!(word_en & BIT(2))) {
1028 		targetdata[4] = sourdata[4];
1029 		targetdata[5] = sourdata[5];
1030 	}
1031 
1032 	if (!(word_en & BIT(3))) {
1033 		targetdata[6] = sourdata[6];
1034 		targetdata[7] = sourdata[7];
1035 	}
1036 }
1037 
efuse_word_enable_data_write(struct ieee80211_hw * hw,u16 efuse_addr,u8 word_en,u8 * data)1038 static u8 efuse_word_enable_data_write(struct ieee80211_hw *hw,
1039 				       u16 efuse_addr, u8 word_en, u8 *data)
1040 {
1041 	struct rtl_priv *rtlpriv = rtl_priv(hw);
1042 	u16 tmpaddr;
1043 	u16 start_addr = efuse_addr;
1044 	u8 badworden = 0x0F;
1045 	u8 tmpdata[8];
1046 
1047 	memset(tmpdata, 0xff, PGPKT_DATA_SIZE);
1048 	RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD, "word_en = %x efuse_addr=%x\n",
1049 		 word_en, efuse_addr);
1050 
1051 	if (!(word_en & BIT(0))) {
1052 		tmpaddr = start_addr;
1053 		efuse_one_byte_write(hw, start_addr++, data[0]);
1054 		efuse_one_byte_write(hw, start_addr++, data[1]);
1055 
1056 		efuse_one_byte_read(hw, tmpaddr, &tmpdata[0]);
1057 		efuse_one_byte_read(hw, tmpaddr + 1, &tmpdata[1]);
1058 		if ((data[0] != tmpdata[0]) || (data[1] != tmpdata[1]))
1059 			badworden &= (~BIT(0));
1060 	}
1061 
1062 	if (!(word_en & BIT(1))) {
1063 		tmpaddr = start_addr;
1064 		efuse_one_byte_write(hw, start_addr++, data[2]);
1065 		efuse_one_byte_write(hw, start_addr++, data[3]);
1066 
1067 		efuse_one_byte_read(hw, tmpaddr, &tmpdata[2]);
1068 		efuse_one_byte_read(hw, tmpaddr + 1, &tmpdata[3]);
1069 		if ((data[2] != tmpdata[2]) || (data[3] != tmpdata[3]))
1070 			badworden &= (~BIT(1));
1071 	}
1072 
1073 	if (!(word_en & BIT(2))) {
1074 		tmpaddr = start_addr;
1075 		efuse_one_byte_write(hw, start_addr++, data[4]);
1076 		efuse_one_byte_write(hw, start_addr++, data[5]);
1077 
1078 		efuse_one_byte_read(hw, tmpaddr, &tmpdata[4]);
1079 		efuse_one_byte_read(hw, tmpaddr + 1, &tmpdata[5]);
1080 		if ((data[4] != tmpdata[4]) || (data[5] != tmpdata[5]))
1081 			badworden &= (~BIT(2));
1082 	}
1083 
1084 	if (!(word_en & BIT(3))) {
1085 		tmpaddr = start_addr;
1086 		efuse_one_byte_write(hw, start_addr++, data[6]);
1087 		efuse_one_byte_write(hw, start_addr++, data[7]);
1088 
1089 		efuse_one_byte_read(hw, tmpaddr, &tmpdata[6]);
1090 		efuse_one_byte_read(hw, tmpaddr + 1, &tmpdata[7]);
1091 		if ((data[6] != tmpdata[6]) || (data[7] != tmpdata[7]))
1092 			badworden &= (~BIT(3));
1093 	}
1094 
1095 	return badworden;
1096 }
1097 
efuse_power_switch(struct ieee80211_hw * hw,u8 write,u8 pwrstate)1098 static void efuse_power_switch(struct ieee80211_hw *hw, u8 write, u8 pwrstate)
1099 {
1100 	struct rtl_priv *rtlpriv = rtl_priv(hw);
1101 	struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
1102 	u8 tempval;
1103 	u16 tmpV16;
1104 
1105 	if (pwrstate && (rtlhal->hw_type !=
1106 		HARDWARE_TYPE_RTL8192SE)) {
1107 		tmpV16 = rtl_read_word(rtlpriv,
1108 				       rtlpriv->cfg->maps[SYS_ISO_CTRL]);
1109 		if (!(tmpV16 & rtlpriv->cfg->maps[EFUSE_PWC_EV12V])) {
1110 			tmpV16 |= rtlpriv->cfg->maps[EFUSE_PWC_EV12V];
1111 			rtl_write_word(rtlpriv,
1112 				       rtlpriv->cfg->maps[SYS_ISO_CTRL],
1113 				       tmpV16);
1114 		}
1115 
1116 		tmpV16 = rtl_read_word(rtlpriv,
1117 				       rtlpriv->cfg->maps[SYS_FUNC_EN]);
1118 		if (!(tmpV16 & rtlpriv->cfg->maps[EFUSE_FEN_ELDR])) {
1119 			tmpV16 |= rtlpriv->cfg->maps[EFUSE_FEN_ELDR];
1120 			rtl_write_word(rtlpriv,
1121 				       rtlpriv->cfg->maps[SYS_FUNC_EN], tmpV16);
1122 		}
1123 
1124 		tmpV16 = rtl_read_word(rtlpriv, rtlpriv->cfg->maps[SYS_CLK]);
1125 		if ((!(tmpV16 & rtlpriv->cfg->maps[EFUSE_LOADER_CLK_EN])) ||
1126 		    (!(tmpV16 & rtlpriv->cfg->maps[EFUSE_ANA8M]))) {
1127 			tmpV16 |= (rtlpriv->cfg->maps[EFUSE_LOADER_CLK_EN] |
1128 				   rtlpriv->cfg->maps[EFUSE_ANA8M]);
1129 			rtl_write_word(rtlpriv,
1130 				       rtlpriv->cfg->maps[SYS_CLK], tmpV16);
1131 		}
1132 	}
1133 
1134 	if (pwrstate) {
1135 		if (write) {
1136 			tempval = rtl_read_byte(rtlpriv,
1137 						rtlpriv->cfg->maps[EFUSE_TEST] +
1138 						3);
1139 
1140 			if (rtlhal->hw_type != HARDWARE_TYPE_RTL8192SE) {
1141 				tempval &= 0x0F;
1142 				tempval |= (VOLTAGE_V25 << 4);
1143 			}
1144 
1145 			rtl_write_byte(rtlpriv,
1146 				       rtlpriv->cfg->maps[EFUSE_TEST] + 3,
1147 				       (tempval | 0x80));
1148 		}
1149 
1150 		if (rtlhal->hw_type == HARDWARE_TYPE_RTL8192SE) {
1151 			rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CLK],
1152 						0x03);
1153 		}
1154 
1155 	} else {
1156 		if (write) {
1157 			tempval = rtl_read_byte(rtlpriv,
1158 						rtlpriv->cfg->maps[EFUSE_TEST] +
1159 						3);
1160 			rtl_write_byte(rtlpriv,
1161 				       rtlpriv->cfg->maps[EFUSE_TEST] + 3,
1162 				       (tempval & 0x7F));
1163 		}
1164 
1165 		if (rtlhal->hw_type == HARDWARE_TYPE_RTL8192SE) {
1166 			rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CLK],
1167 						0x02);
1168 		}
1169 
1170 	}
1171 
1172 }
1173 
efuse_get_current_size(struct ieee80211_hw * hw)1174 static u16 efuse_get_current_size(struct ieee80211_hw *hw)
1175 {
1176 	int continual = true;
1177 	u16 efuse_addr = 0;
1178 	u8 hworden;
1179 	u8 efuse_data, word_cnts;
1180 
1181 	while (continual && efuse_one_byte_read(hw, efuse_addr, &efuse_data)
1182 	       && (efuse_addr < EFUSE_MAX_SIZE)) {
1183 		if (efuse_data != 0xFF) {
1184 			hworden = efuse_data & 0x0F;
1185 			word_cnts = efuse_calculate_word_cnts(hworden);
1186 			efuse_addr = efuse_addr + (word_cnts * 2) + 1;
1187 		} else {
1188 			continual = false;
1189 		}
1190 	}
1191 
1192 	return efuse_addr;
1193 }
1194 
efuse_calculate_word_cnts(u8 word_en)1195 static u8 efuse_calculate_word_cnts(u8 word_en)
1196 {
1197 	u8 word_cnts = 0;
1198 	if (!(word_en & BIT(0)))
1199 		word_cnts++;
1200 	if (!(word_en & BIT(1)))
1201 		word_cnts++;
1202 	if (!(word_en & BIT(2)))
1203 		word_cnts++;
1204 	if (!(word_en & BIT(3)))
1205 		word_cnts++;
1206 	return word_cnts;
1207 }
1208 
1209