1 /******************************************************************************
2  *
3  * Copyright(c) 2009-2012  Realtek Corporation.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms of version 2 of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  *
14  * You should have received a copy of the GNU General Public License along with
15  * this program; if not, write to the Free Software Foundation, Inc.,
16  * 51 Franklin Street, Fifth Floor, Boston, MA 02110, USA
17  *
18  * The full GNU General Public License is included in this distribution in the
19  * file called LICENSE.
20  *
21  * Contact Information:
22  * wlanfae <wlanfae@realtek.com>
23  * Realtek Corporation, No. 2, Innovation Road II, Hsinchu Science Park,
24  * Hsinchu 300, Taiwan.
25  *
26  * Larry Finger <Larry.Finger@lwfinger.net>
27  *
28  *****************************************************************************/
29 
30 #include "../wifi.h"
31 #include "../efuse.h"
32 #include "../base.h"
33 #include "../regd.h"
34 #include "../cam.h"
35 #include "../ps.h"
36 #include "../pci.h"
37 #include "reg.h"
38 #include "def.h"
39 #include "phy.h"
40 #include "dm.h"
41 #include "fw.h"
42 #include "led.h"
43 #include "hw.h"
44 
rtl92se_get_hw_reg(struct ieee80211_hw * hw,u8 variable,u8 * val)45 void rtl92se_get_hw_reg(struct ieee80211_hw *hw, u8 variable, u8 *val)
46 {
47 	struct rtl_priv *rtlpriv = rtl_priv(hw);
48 	struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
49 	struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
50 
51 	switch (variable) {
52 	case HW_VAR_RCR: {
53 			*((u32 *) (val)) = rtlpci->receive_config;
54 			break;
55 		}
56 	case HW_VAR_RF_STATE: {
57 			*((enum rf_pwrstate *)(val)) = ppsc->rfpwr_state;
58 			break;
59 		}
60 	case HW_VAR_FW_PSMODE_STATUS: {
61 			*((bool *) (val)) = ppsc->fw_current_inpsmode;
62 			break;
63 		}
64 	case HW_VAR_CORRECT_TSF: {
65 			u64 tsf;
66 			u32 *ptsf_low = (u32 *)&tsf;
67 			u32 *ptsf_high = ((u32 *)&tsf) + 1;
68 
69 			*ptsf_high = rtl_read_dword(rtlpriv, (TSFR + 4));
70 			*ptsf_low = rtl_read_dword(rtlpriv, TSFR);
71 
72 			*((u64 *) (val)) = tsf;
73 
74 			break;
75 		}
76 	case HW_VAR_MRC: {
77 			*((bool *)(val)) = rtlpriv->dm.current_mrc_switch;
78 			break;
79 		}
80 	default: {
81 		RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
82 			 "switch case not processed\n");
83 			break;
84 		}
85 	}
86 }
87 
rtl92se_set_hw_reg(struct ieee80211_hw * hw,u8 variable,u8 * val)88 void rtl92se_set_hw_reg(struct ieee80211_hw *hw, u8 variable, u8 *val)
89 {
90 	struct rtl_priv *rtlpriv = rtl_priv(hw);
91 	struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
92 	struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
93 	struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
94 	struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
95 	struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
96 
97 	switch (variable) {
98 	case HW_VAR_ETHER_ADDR:{
99 			rtl_write_dword(rtlpriv, IDR0, ((u32 *)(val))[0]);
100 			rtl_write_word(rtlpriv, IDR4, ((u16 *)(val + 4))[0]);
101 			break;
102 		}
103 	case HW_VAR_BASIC_RATE:{
104 			u16 rate_cfg = ((u16 *) val)[0];
105 			u8 rate_index = 0;
106 
107 			if (rtlhal->version == VERSION_8192S_ACUT)
108 				rate_cfg = rate_cfg & 0x150;
109 			else
110 				rate_cfg = rate_cfg & 0x15f;
111 
112 			rate_cfg |= 0x01;
113 
114 			rtl_write_byte(rtlpriv, RRSR, rate_cfg & 0xff);
115 			rtl_write_byte(rtlpriv, RRSR + 1,
116 				       (rate_cfg >> 8) & 0xff);
117 
118 			while (rate_cfg > 0x1) {
119 				rate_cfg = (rate_cfg >> 1);
120 				rate_index++;
121 			}
122 			rtl_write_byte(rtlpriv, INIRTSMCS_SEL, rate_index);
123 
124 			break;
125 		}
126 	case HW_VAR_BSSID:{
127 			rtl_write_dword(rtlpriv, BSSIDR, ((u32 *)(val))[0]);
128 			rtl_write_word(rtlpriv, BSSIDR + 4,
129 				       ((u16 *)(val + 4))[0]);
130 			break;
131 		}
132 	case HW_VAR_SIFS:{
133 			rtl_write_byte(rtlpriv, SIFS_OFDM, val[0]);
134 			rtl_write_byte(rtlpriv, SIFS_OFDM + 1, val[1]);
135 			break;
136 		}
137 	case HW_VAR_SLOT_TIME:{
138 			u8 e_aci;
139 
140 			RT_TRACE(rtlpriv, COMP_MLME, DBG_LOUD,
141 				 "HW_VAR_SLOT_TIME %x\n", val[0]);
142 
143 			rtl_write_byte(rtlpriv, SLOT_TIME, val[0]);
144 
145 			for (e_aci = 0; e_aci < AC_MAX; e_aci++) {
146 				rtlpriv->cfg->ops->set_hw_reg(hw,
147 						HW_VAR_AC_PARAM,
148 						(u8 *)(&e_aci));
149 			}
150 			break;
151 		}
152 	case HW_VAR_ACK_PREAMBLE:{
153 			u8 reg_tmp;
154 			u8 short_preamble = (bool) (*(u8 *) val);
155 			reg_tmp = (mac->cur_40_prime_sc) << 5;
156 			if (short_preamble)
157 				reg_tmp |= 0x80;
158 
159 			rtl_write_byte(rtlpriv, RRSR + 2, reg_tmp);
160 			break;
161 		}
162 	case HW_VAR_AMPDU_MIN_SPACE:{
163 			u8 min_spacing_to_set;
164 			u8 sec_min_space;
165 
166 			min_spacing_to_set = *((u8 *)val);
167 			if (min_spacing_to_set <= 7) {
168 				if (rtlpriv->sec.pairwise_enc_algorithm ==
169 				    NO_ENCRYPTION)
170 					sec_min_space = 0;
171 				else
172 					sec_min_space = 1;
173 
174 				if (min_spacing_to_set < sec_min_space)
175 					min_spacing_to_set = sec_min_space;
176 				if (min_spacing_to_set > 5)
177 					min_spacing_to_set = 5;
178 
179 				mac->min_space_cfg =
180 						((mac->min_space_cfg & 0xf8) |
181 						min_spacing_to_set);
182 
183 				*val = min_spacing_to_set;
184 
185 				RT_TRACE(rtlpriv, COMP_MLME, DBG_LOUD,
186 					 "Set HW_VAR_AMPDU_MIN_SPACE: %#x\n",
187 					 mac->min_space_cfg);
188 
189 				rtl_write_byte(rtlpriv, AMPDU_MIN_SPACE,
190 					       mac->min_space_cfg);
191 			}
192 			break;
193 		}
194 	case HW_VAR_SHORTGI_DENSITY:{
195 			u8 density_to_set;
196 
197 			density_to_set = *((u8 *) val);
198 			mac->min_space_cfg = rtlpriv->rtlhal.minspace_cfg;
199 			mac->min_space_cfg |= (density_to_set << 3);
200 
201 			RT_TRACE(rtlpriv, COMP_MLME, DBG_LOUD,
202 				 "Set HW_VAR_SHORTGI_DENSITY: %#x\n",
203 				 mac->min_space_cfg);
204 
205 			rtl_write_byte(rtlpriv, AMPDU_MIN_SPACE,
206 				       mac->min_space_cfg);
207 
208 			break;
209 		}
210 	case HW_VAR_AMPDU_FACTOR:{
211 			u8 factor_toset;
212 			u8 regtoset;
213 			u8 factorlevel[18] = {
214 				2, 4, 4, 7, 7, 13, 13,
215 				13, 2, 7, 7, 13, 13,
216 				15, 15, 15, 15, 0};
217 			u8 index = 0;
218 
219 			factor_toset = *((u8 *) val);
220 			if (factor_toset <= 3) {
221 				factor_toset = (1 << (factor_toset + 2));
222 				if (factor_toset > 0xf)
223 					factor_toset = 0xf;
224 
225 				for (index = 0; index < 17; index++) {
226 					if (factorlevel[index] > factor_toset)
227 						factorlevel[index] =
228 								 factor_toset;
229 				}
230 
231 				for (index = 0; index < 8; index++) {
232 					regtoset = ((factorlevel[index * 2]) |
233 						    (factorlevel[index *
234 						    2 + 1] << 4));
235 					rtl_write_byte(rtlpriv,
236 						       AGGLEN_LMT_L + index,
237 						       regtoset);
238 				}
239 
240 				regtoset = ((factorlevel[16]) |
241 					    (factorlevel[17] << 4));
242 				rtl_write_byte(rtlpriv, AGGLEN_LMT_H, regtoset);
243 
244 				RT_TRACE(rtlpriv, COMP_MLME, DBG_LOUD,
245 					 "Set HW_VAR_AMPDU_FACTOR: %#x\n",
246 					 factor_toset);
247 			}
248 			break;
249 		}
250 	case HW_VAR_AC_PARAM:{
251 			u8 e_aci = *((u8 *) val);
252 			rtl92s_dm_init_edca_turbo(hw);
253 
254 			if (rtlpci->acm_method != eAcmWay2_SW)
255 				rtlpriv->cfg->ops->set_hw_reg(hw,
256 						 HW_VAR_ACM_CTRL,
257 						 (u8 *)(&e_aci));
258 			break;
259 		}
260 	case HW_VAR_ACM_CTRL:{
261 			u8 e_aci = *((u8 *) val);
262 			union aci_aifsn *p_aci_aifsn = (union aci_aifsn *)(&(
263 							mac->ac[0].aifs));
264 			u8 acm = p_aci_aifsn->f.acm;
265 			u8 acm_ctrl = rtl_read_byte(rtlpriv, AcmHwCtrl);
266 
267 			acm_ctrl = acm_ctrl | ((rtlpci->acm_method == 2) ?
268 				   0x0 : 0x1);
269 
270 			if (acm) {
271 				switch (e_aci) {
272 				case AC0_BE:
273 					acm_ctrl |= AcmHw_BeqEn;
274 					break;
275 				case AC2_VI:
276 					acm_ctrl |= AcmHw_ViqEn;
277 					break;
278 				case AC3_VO:
279 					acm_ctrl |= AcmHw_VoqEn;
280 					break;
281 				default:
282 					RT_TRACE(rtlpriv, COMP_ERR, DBG_WARNING,
283 						 "HW_VAR_ACM_CTRL acm set failed: eACI is %d\n",
284 						 acm);
285 					break;
286 				}
287 			} else {
288 				switch (e_aci) {
289 				case AC0_BE:
290 					acm_ctrl &= (~AcmHw_BeqEn);
291 					break;
292 				case AC2_VI:
293 					acm_ctrl &= (~AcmHw_ViqEn);
294 					break;
295 				case AC3_VO:
296 					acm_ctrl &= (~AcmHw_BeqEn);
297 					break;
298 				default:
299 					RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
300 						 "switch case not processed\n");
301 					break;
302 				}
303 			}
304 
305 			RT_TRACE(rtlpriv, COMP_QOS, DBG_TRACE,
306 				 "HW_VAR_ACM_CTRL Write 0x%X\n", acm_ctrl);
307 			rtl_write_byte(rtlpriv, AcmHwCtrl, acm_ctrl);
308 			break;
309 		}
310 	case HW_VAR_RCR:{
311 			rtl_write_dword(rtlpriv, RCR, ((u32 *) (val))[0]);
312 			rtlpci->receive_config = ((u32 *) (val))[0];
313 			break;
314 		}
315 	case HW_VAR_RETRY_LIMIT:{
316 			u8 retry_limit = ((u8 *) (val))[0];
317 
318 			rtl_write_word(rtlpriv, RETRY_LIMIT,
319 				       retry_limit << RETRY_LIMIT_SHORT_SHIFT |
320 				       retry_limit << RETRY_LIMIT_LONG_SHIFT);
321 			break;
322 		}
323 	case HW_VAR_DUAL_TSF_RST: {
324 			break;
325 		}
326 	case HW_VAR_EFUSE_BYTES: {
327 			rtlefuse->efuse_usedbytes = *((u16 *) val);
328 			break;
329 		}
330 	case HW_VAR_EFUSE_USAGE: {
331 			rtlefuse->efuse_usedpercentage = *((u8 *) val);
332 			break;
333 		}
334 	case HW_VAR_IO_CMD: {
335 			break;
336 		}
337 	case HW_VAR_WPA_CONFIG: {
338 			rtl_write_byte(rtlpriv, REG_SECR, *((u8 *) val));
339 			break;
340 		}
341 	case HW_VAR_SET_RPWM:{
342 			break;
343 		}
344 	case HW_VAR_H2C_FW_PWRMODE:{
345 			break;
346 		}
347 	case HW_VAR_FW_PSMODE_STATUS: {
348 			ppsc->fw_current_inpsmode = *((bool *) val);
349 			break;
350 		}
351 	case HW_VAR_H2C_FW_JOINBSSRPT:{
352 			break;
353 		}
354 	case HW_VAR_AID:{
355 			break;
356 		}
357 	case HW_VAR_CORRECT_TSF:{
358 			break;
359 		}
360 	case HW_VAR_MRC: {
361 			bool bmrc_toset = *((bool *)val);
362 			u8 u1bdata = 0;
363 
364 			if (bmrc_toset) {
365 				rtl_set_bbreg(hw, ROFDM0_TRXPATHENABLE,
366 					      MASKBYTE0, 0x33);
367 				u1bdata = (u8)rtl_get_bbreg(hw,
368 						ROFDM1_TRXPATHENABLE,
369 						MASKBYTE0);
370 				rtl_set_bbreg(hw, ROFDM1_TRXPATHENABLE,
371 					      MASKBYTE0,
372 					      ((u1bdata & 0xf0) | 0x03));
373 				u1bdata = (u8)rtl_get_bbreg(hw,
374 						ROFDM0_TRXPATHENABLE,
375 						MASKBYTE1);
376 				rtl_set_bbreg(hw, ROFDM0_TRXPATHENABLE,
377 					      MASKBYTE1,
378 					      (u1bdata | 0x04));
379 
380 				/* Update current settings. */
381 				rtlpriv->dm.current_mrc_switch = bmrc_toset;
382 			} else {
383 				rtl_set_bbreg(hw, ROFDM0_TRXPATHENABLE,
384 					      MASKBYTE0, 0x13);
385 				u1bdata = (u8)rtl_get_bbreg(hw,
386 						 ROFDM1_TRXPATHENABLE,
387 						 MASKBYTE0);
388 				rtl_set_bbreg(hw, ROFDM1_TRXPATHENABLE,
389 					      MASKBYTE0,
390 					      ((u1bdata & 0xf0) | 0x01));
391 				u1bdata = (u8)rtl_get_bbreg(hw,
392 						ROFDM0_TRXPATHENABLE,
393 						MASKBYTE1);
394 				rtl_set_bbreg(hw, ROFDM0_TRXPATHENABLE,
395 					      MASKBYTE1, (u1bdata & 0xfb));
396 
397 				/* Update current settings. */
398 				rtlpriv->dm.current_mrc_switch = bmrc_toset;
399 			}
400 
401 			break;
402 		}
403 	default:
404 		RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
405 			 "switch case not processed\n");
406 		break;
407 	}
408 
409 }
410 
rtl92se_enable_hw_security_config(struct ieee80211_hw * hw)411 void rtl92se_enable_hw_security_config(struct ieee80211_hw *hw)
412 {
413 	struct rtl_priv *rtlpriv = rtl_priv(hw);
414 	u8 sec_reg_value = 0x0;
415 
416 	RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
417 		 "PairwiseEncAlgorithm = %d GroupEncAlgorithm = %d\n",
418 		 rtlpriv->sec.pairwise_enc_algorithm,
419 		 rtlpriv->sec.group_enc_algorithm);
420 
421 	if (rtlpriv->cfg->mod_params->sw_crypto || rtlpriv->sec.use_sw_sec) {
422 		RT_TRACE(rtlpriv, COMP_SEC, DBG_DMESG,
423 			 "not open hw encryption\n");
424 		return;
425 	}
426 
427 	sec_reg_value = SCR_TXENCENABLE | SCR_RXENCENABLE;
428 
429 	if (rtlpriv->sec.use_defaultkey) {
430 		sec_reg_value |= SCR_TXUSEDK;
431 		sec_reg_value |= SCR_RXUSEDK;
432 	}
433 
434 	RT_TRACE(rtlpriv, COMP_SEC, DBG_LOUD, "The SECR-value %x\n",
435 		 sec_reg_value);
436 
437 	rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_WPA_CONFIG, &sec_reg_value);
438 
439 }
440 
_rtl92ce_halset_sysclk(struct ieee80211_hw * hw,u8 data)441 static u8 _rtl92ce_halset_sysclk(struct ieee80211_hw *hw, u8 data)
442 {
443 	struct rtl_priv *rtlpriv = rtl_priv(hw);
444 	u8 waitcount = 100;
445 	bool bresult = false;
446 	u8 tmpvalue;
447 
448 	rtl_write_byte(rtlpriv, SYS_CLKR + 1, data);
449 
450 	/* Wait the MAC synchronized. */
451 	udelay(400);
452 
453 	/* Check if it is set ready. */
454 	tmpvalue = rtl_read_byte(rtlpriv, SYS_CLKR + 1);
455 	bresult = ((tmpvalue & BIT(7)) == (data & BIT(7)));
456 
457 	if ((data & (BIT(6) | BIT(7))) == false) {
458 		waitcount = 100;
459 		tmpvalue = 0;
460 
461 		while (1) {
462 			waitcount--;
463 
464 			tmpvalue = rtl_read_byte(rtlpriv, SYS_CLKR + 1);
465 			if ((tmpvalue & BIT(6)))
466 				break;
467 
468 			pr_err("wait for BIT(6) return value %x\n", tmpvalue);
469 			if (waitcount == 0)
470 				break;
471 
472 			udelay(10);
473 		}
474 
475 		if (waitcount == 0)
476 			bresult = false;
477 		else
478 			bresult = true;
479 	}
480 
481 	return bresult;
482 }
483 
rtl8192se_gpiobit3_cfg_inputmode(struct ieee80211_hw * hw)484 void rtl8192se_gpiobit3_cfg_inputmode(struct ieee80211_hw *hw)
485 {
486 	struct rtl_priv *rtlpriv = rtl_priv(hw);
487 	u8 u1tmp;
488 
489 	/* The following config GPIO function */
490 	rtl_write_byte(rtlpriv, MAC_PINMUX_CFG, (GPIOMUX_EN | GPIOSEL_GPIO));
491 	u1tmp = rtl_read_byte(rtlpriv, GPIO_IO_SEL);
492 
493 	/* config GPIO3 to input */
494 	u1tmp &= HAL_8192S_HW_GPIO_OFF_MASK;
495 	rtl_write_byte(rtlpriv, GPIO_IO_SEL, u1tmp);
496 
497 }
498 
_rtl92se_rf_onoff_detect(struct ieee80211_hw * hw)499 static u8 _rtl92se_rf_onoff_detect(struct ieee80211_hw *hw)
500 {
501 	struct rtl_priv *rtlpriv = rtl_priv(hw);
502 	u8 u1tmp;
503 	u8 retval = ERFON;
504 
505 	/* The following config GPIO function */
506 	rtl_write_byte(rtlpriv, MAC_PINMUX_CFG, (GPIOMUX_EN | GPIOSEL_GPIO));
507 	u1tmp = rtl_read_byte(rtlpriv, GPIO_IO_SEL);
508 
509 	/* config GPIO3 to input */
510 	u1tmp &= HAL_8192S_HW_GPIO_OFF_MASK;
511 	rtl_write_byte(rtlpriv, GPIO_IO_SEL, u1tmp);
512 
513 	/* On some of the platform, driver cannot read correct
514 	 * value without delay between Write_GPIO_SEL and Read_GPIO_IN */
515 	mdelay(10);
516 
517 	/* check GPIO3 */
518 	u1tmp = rtl_read_byte(rtlpriv, GPIO_IN_SE);
519 	retval = (u1tmp & HAL_8192S_HW_GPIO_OFF_BIT) ? ERFON : ERFOFF;
520 
521 	return retval;
522 }
523 
_rtl92se_macconfig_before_fwdownload(struct ieee80211_hw * hw)524 static void _rtl92se_macconfig_before_fwdownload(struct ieee80211_hw *hw)
525 {
526 	struct rtl_priv *rtlpriv = rtl_priv(hw);
527 	struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
528 	struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
529 
530 	u8 i;
531 	u8 tmpu1b;
532 	u16 tmpu2b;
533 	u8 pollingcnt = 20;
534 
535 	if (rtlpci->first_init) {
536 		/* Reset PCIE Digital */
537 		tmpu1b = rtl_read_byte(rtlpriv, REG_SYS_FUNC_EN + 1);
538 		tmpu1b &= 0xFE;
539 		rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN + 1, tmpu1b);
540 		udelay(1);
541 		rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN + 1, tmpu1b | BIT(0));
542 	}
543 
544 	/* Switch to SW IO control */
545 	tmpu1b = rtl_read_byte(rtlpriv, (SYS_CLKR + 1));
546 	if (tmpu1b & BIT(7)) {
547 		tmpu1b &= ~(BIT(6) | BIT(7));
548 
549 		/* Set failed, return to prevent hang. */
550 		if (!_rtl92ce_halset_sysclk(hw, tmpu1b))
551 			return;
552 	}
553 
554 	rtl_write_byte(rtlpriv, AFE_PLL_CTRL, 0x0);
555 	udelay(50);
556 	rtl_write_byte(rtlpriv, LDOA15_CTRL, 0x34);
557 	udelay(50);
558 
559 	/* Clear FW RPWM for FW control LPS.*/
560 	rtl_write_byte(rtlpriv, RPWM, 0x0);
561 
562 	/* Reset MAC-IO and CPU and Core Digital BIT(10)/11/15 */
563 	tmpu1b = rtl_read_byte(rtlpriv, REG_SYS_FUNC_EN + 1);
564 	tmpu1b &= 0x73;
565 	rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN + 1, tmpu1b);
566 	/* wait for BIT 10/11/15 to pull high automatically!! */
567 	mdelay(1);
568 
569 	rtl_write_byte(rtlpriv, CMDR, 0);
570 	rtl_write_byte(rtlpriv, TCR, 0);
571 
572 	/* Data sheet not define 0x562!!! Copy from WMAC!!!!! */
573 	tmpu1b = rtl_read_byte(rtlpriv, 0x562);
574 	tmpu1b |= 0x08;
575 	rtl_write_byte(rtlpriv, 0x562, tmpu1b);
576 	tmpu1b &= ~(BIT(3));
577 	rtl_write_byte(rtlpriv, 0x562, tmpu1b);
578 
579 	/* Enable AFE clock source */
580 	tmpu1b = rtl_read_byte(rtlpriv, AFE_XTAL_CTRL);
581 	rtl_write_byte(rtlpriv, AFE_XTAL_CTRL, (tmpu1b | 0x01));
582 	/* Delay 1.5ms */
583 	mdelay(2);
584 	tmpu1b = rtl_read_byte(rtlpriv, AFE_XTAL_CTRL + 1);
585 	rtl_write_byte(rtlpriv, AFE_XTAL_CTRL + 1, (tmpu1b & 0xfb));
586 
587 	/* Enable AFE Macro Block's Bandgap */
588 	tmpu1b = rtl_read_byte(rtlpriv, AFE_MISC);
589 	rtl_write_byte(rtlpriv, AFE_MISC, (tmpu1b | BIT(0)));
590 	mdelay(1);
591 
592 	/* Enable AFE Mbias */
593 	tmpu1b = rtl_read_byte(rtlpriv, AFE_MISC);
594 	rtl_write_byte(rtlpriv, AFE_MISC, (tmpu1b | 0x02));
595 	mdelay(1);
596 
597 	/* Enable LDOA15 block	*/
598 	tmpu1b = rtl_read_byte(rtlpriv, LDOA15_CTRL);
599 	rtl_write_byte(rtlpriv, LDOA15_CTRL, (tmpu1b | BIT(0)));
600 
601 	/* Set Digital Vdd to Retention isolation Path. */
602 	tmpu2b = rtl_read_word(rtlpriv, REG_SYS_ISO_CTRL);
603 	rtl_write_word(rtlpriv, REG_SYS_ISO_CTRL, (tmpu2b | BIT(11)));
604 
605 	/* For warm reboot NIC disappera bug. */
606 	tmpu2b = rtl_read_word(rtlpriv, REG_SYS_FUNC_EN);
607 	rtl_write_word(rtlpriv, REG_SYS_FUNC_EN, (tmpu2b | BIT(13)));
608 
609 	rtl_write_byte(rtlpriv, REG_SYS_ISO_CTRL + 1, 0x68);
610 
611 	/* Enable AFE PLL Macro Block */
612 	/* We need to delay 100u before enabling PLL. */
613 	udelay(200);
614 	tmpu1b = rtl_read_byte(rtlpriv, AFE_PLL_CTRL);
615 	rtl_write_byte(rtlpriv, AFE_PLL_CTRL, (tmpu1b | BIT(0) | BIT(4)));
616 
617 	/* for divider reset  */
618 	udelay(100);
619 	rtl_write_byte(rtlpriv, AFE_PLL_CTRL, (tmpu1b | BIT(0) |
620 		       BIT(4) | BIT(6)));
621 	udelay(10);
622 	rtl_write_byte(rtlpriv, AFE_PLL_CTRL, (tmpu1b | BIT(0) | BIT(4)));
623 	udelay(10);
624 
625 	/* Enable MAC 80MHZ clock  */
626 	tmpu1b = rtl_read_byte(rtlpriv, AFE_PLL_CTRL + 1);
627 	rtl_write_byte(rtlpriv, AFE_PLL_CTRL + 1, (tmpu1b | BIT(0)));
628 	mdelay(1);
629 
630 	/* Release isolation AFE PLL & MD */
631 	rtl_write_byte(rtlpriv, REG_SYS_ISO_CTRL, 0xA6);
632 
633 	/* Enable MAC clock */
634 	tmpu2b = rtl_read_word(rtlpriv, SYS_CLKR);
635 	rtl_write_word(rtlpriv, SYS_CLKR, (tmpu2b | BIT(12) | BIT(11)));
636 
637 	/* Enable Core digital and enable IOREG R/W */
638 	tmpu2b = rtl_read_word(rtlpriv, REG_SYS_FUNC_EN);
639 	rtl_write_word(rtlpriv, REG_SYS_FUNC_EN, (tmpu2b | BIT(11)));
640 
641 	tmpu1b = rtl_read_byte(rtlpriv, REG_SYS_FUNC_EN + 1);
642 	rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN + 1, tmpu1b & ~(BIT(7)));
643 
644 	/* enable REG_EN */
645 	rtl_write_word(rtlpriv, REG_SYS_FUNC_EN, (tmpu2b | BIT(11) | BIT(15)));
646 
647 	/* Switch the control path. */
648 	tmpu2b = rtl_read_word(rtlpriv, SYS_CLKR);
649 	rtl_write_word(rtlpriv, SYS_CLKR, (tmpu2b & (~BIT(2))));
650 
651 	tmpu1b = rtl_read_byte(rtlpriv, (SYS_CLKR + 1));
652 	tmpu1b = ((tmpu1b | BIT(7)) & (~BIT(6)));
653 	if (!_rtl92ce_halset_sysclk(hw, tmpu1b))
654 		return; /* Set failed, return to prevent hang. */
655 
656 	rtl_write_word(rtlpriv, CMDR, 0x07FC);
657 
658 	/* MH We must enable the section of code to prevent load IMEM fail. */
659 	/* Load MAC register from WMAc temporarily We simulate macreg. */
660 	/* txt HW will provide MAC txt later  */
661 	rtl_write_byte(rtlpriv, 0x6, 0x30);
662 	rtl_write_byte(rtlpriv, 0x49, 0xf0);
663 
664 	rtl_write_byte(rtlpriv, 0x4b, 0x81);
665 
666 	rtl_write_byte(rtlpriv, 0xb5, 0x21);
667 
668 	rtl_write_byte(rtlpriv, 0xdc, 0xff);
669 	rtl_write_byte(rtlpriv, 0xdd, 0xff);
670 	rtl_write_byte(rtlpriv, 0xde, 0xff);
671 	rtl_write_byte(rtlpriv, 0xdf, 0xff);
672 
673 	rtl_write_byte(rtlpriv, 0x11a, 0x00);
674 	rtl_write_byte(rtlpriv, 0x11b, 0x00);
675 
676 	for (i = 0; i < 32; i++)
677 		rtl_write_byte(rtlpriv, INIMCS_SEL + i, 0x1b);
678 
679 	rtl_write_byte(rtlpriv, 0x236, 0xff);
680 
681 	rtl_write_byte(rtlpriv, 0x503, 0x22);
682 
683 	if (ppsc->support_aspm && !ppsc->support_backdoor)
684 		rtl_write_byte(rtlpriv, 0x560, 0x40);
685 	else
686 		rtl_write_byte(rtlpriv, 0x560, 0x00);
687 
688 	rtl_write_byte(rtlpriv, DBG_PORT, 0x91);
689 
690 	/* Set RX Desc Address */
691 	rtl_write_dword(rtlpriv, RDQDA, rtlpci->rx_ring[RX_MPDU_QUEUE].dma);
692 	rtl_write_dword(rtlpriv, RCDA, rtlpci->rx_ring[RX_CMD_QUEUE].dma);
693 
694 	/* Set TX Desc Address */
695 	rtl_write_dword(rtlpriv, TBKDA, rtlpci->tx_ring[BK_QUEUE].dma);
696 	rtl_write_dword(rtlpriv, TBEDA, rtlpci->tx_ring[BE_QUEUE].dma);
697 	rtl_write_dword(rtlpriv, TVIDA, rtlpci->tx_ring[VI_QUEUE].dma);
698 	rtl_write_dword(rtlpriv, TVODA, rtlpci->tx_ring[VO_QUEUE].dma);
699 	rtl_write_dword(rtlpriv, TBDA, rtlpci->tx_ring[BEACON_QUEUE].dma);
700 	rtl_write_dword(rtlpriv, TCDA, rtlpci->tx_ring[TXCMD_QUEUE].dma);
701 	rtl_write_dword(rtlpriv, TMDA, rtlpci->tx_ring[MGNT_QUEUE].dma);
702 	rtl_write_dword(rtlpriv, THPDA, rtlpci->tx_ring[HIGH_QUEUE].dma);
703 	rtl_write_dword(rtlpriv, HDA, rtlpci->tx_ring[HCCA_QUEUE].dma);
704 
705 	rtl_write_word(rtlpriv, CMDR, 0x37FC);
706 
707 	/* To make sure that TxDMA can ready to download FW. */
708 	/* We should reset TxDMA if IMEM RPT was not ready. */
709 	do {
710 		tmpu1b = rtl_read_byte(rtlpriv, TCR);
711 		if ((tmpu1b & TXDMA_INIT_VALUE) == TXDMA_INIT_VALUE)
712 			break;
713 
714 		udelay(5);
715 	} while (pollingcnt--);
716 
717 	if (pollingcnt <= 0) {
718 		RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
719 			 "Polling TXDMA_INIT_VALUE timeout!! Current TCR(%#x)\n",
720 			 tmpu1b);
721 		tmpu1b = rtl_read_byte(rtlpriv, CMDR);
722 		rtl_write_byte(rtlpriv, CMDR, tmpu1b & (~TXDMA_EN));
723 		udelay(2);
724 		/* Reset TxDMA */
725 		rtl_write_byte(rtlpriv, CMDR, tmpu1b | TXDMA_EN);
726 	}
727 
728 	/* After MACIO reset,we must refresh LED state. */
729 	if ((ppsc->rfoff_reason == RF_CHANGE_BY_IPS) ||
730 	   (ppsc->rfoff_reason == 0)) {
731 		struct rtl_pci_priv *pcipriv = rtl_pcipriv(hw);
732 		struct rtl_led *pLed0 = &(pcipriv->ledctl.sw_led0);
733 		enum rf_pwrstate rfpwr_state_toset;
734 		rfpwr_state_toset = _rtl92se_rf_onoff_detect(hw);
735 
736 		if (rfpwr_state_toset == ERFON)
737 			rtl92se_sw_led_on(hw, pLed0);
738 	}
739 }
740 
_rtl92se_macconfig_after_fwdownload(struct ieee80211_hw * hw)741 static void _rtl92se_macconfig_after_fwdownload(struct ieee80211_hw *hw)
742 {
743 	struct rtl_priv *rtlpriv = rtl_priv(hw);
744 	struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
745 	struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
746 	struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
747 	u8 i;
748 	u16 tmpu2b;
749 
750 	/* 1. System Configure Register (Offset: 0x0000 - 0x003F) */
751 
752 	/* 2. Command Control Register (Offset: 0x0040 - 0x004F) */
753 	/* Turn on 0x40 Command register */
754 	rtl_write_word(rtlpriv, CMDR, (BBRSTN | BB_GLB_RSTN |
755 			SCHEDULE_EN | MACRXEN | MACTXEN | DDMA_EN | FW2HW_EN |
756 			RXDMA_EN | TXDMA_EN | HCI_RXDMA_EN | HCI_TXDMA_EN));
757 
758 	/* Set TCR TX DMA pre 2 FULL enable bit	*/
759 	rtl_write_dword(rtlpriv, TCR, rtl_read_dword(rtlpriv, TCR) |
760 			TXDMAPRE2FULL);
761 
762 	/* Set RCR	*/
763 	rtl_write_dword(rtlpriv, RCR, rtlpci->receive_config);
764 
765 	/* 3. MACID Setting Register (Offset: 0x0050 - 0x007F) */
766 
767 	/* 4. Timing Control Register  (Offset: 0x0080 - 0x009F) */
768 	/* Set CCK/OFDM SIFS */
769 	/* CCK SIFS shall always be 10us. */
770 	rtl_write_word(rtlpriv, SIFS_CCK, 0x0a0a);
771 	rtl_write_word(rtlpriv, SIFS_OFDM, 0x1010);
772 
773 	/* Set AckTimeout */
774 	rtl_write_byte(rtlpriv, ACK_TIMEOUT, 0x40);
775 
776 	/* Beacon related */
777 	rtl_write_word(rtlpriv, BCN_INTERVAL, 100);
778 	rtl_write_word(rtlpriv, ATIMWND, 2);
779 
780 	/* 5. FIFO Control Register (Offset: 0x00A0 - 0x015F) */
781 	/* 5.1 Initialize Number of Reserved Pages in Firmware Queue */
782 	/* Firmware allocate now, associate with FW internal setting.!!! */
783 
784 	/* 5.2 Setting TX/RX page size 0/1/2/3/4=64/128/256/512/1024 */
785 	/* 5.3 Set driver info, we only accept PHY status now. */
786 	/* 5.4 Set RXDMA arbitration to control RXDMA/MAC/FW R/W for RXFIFO  */
787 	rtl_write_byte(rtlpriv, RXDMA, rtl_read_byte(rtlpriv, RXDMA) | BIT(6));
788 
789 	/* 6. Adaptive Control Register  (Offset: 0x0160 - 0x01CF) */
790 	/* Set RRSR to all legacy rate and HT rate
791 	 * CCK rate is supported by default.
792 	 * CCK rate will be filtered out only when associated
793 	 * AP does not support it.
794 	 * Only enable ACK rate to OFDM 24M
795 	 * Disable RRSR for CCK rate in A-Cut	*/
796 
797 	if (rtlhal->version == VERSION_8192S_ACUT)
798 		rtl_write_byte(rtlpriv, RRSR, 0xf0);
799 	else if (rtlhal->version == VERSION_8192S_BCUT)
800 		rtl_write_byte(rtlpriv, RRSR, 0xff);
801 	rtl_write_byte(rtlpriv, RRSR + 1, 0x01);
802 	rtl_write_byte(rtlpriv, RRSR + 2, 0x00);
803 
804 	/* A-Cut IC do not support CCK rate. We forbid ARFR to */
805 	/* fallback to CCK rate */
806 	for (i = 0; i < 8; i++) {
807 		/*Disable RRSR for CCK rate in A-Cut */
808 		if (rtlhal->version == VERSION_8192S_ACUT)
809 			rtl_write_dword(rtlpriv, ARFR0 + i * 4, 0x1f0ff0f0);
810 	}
811 
812 	/* Different rate use different AMPDU size */
813 	/* MCS32/ MCS15_SG use max AMPDU size 15*2=30K */
814 	rtl_write_byte(rtlpriv, AGGLEN_LMT_H, 0x0f);
815 	/* MCS0/1/2/3 use max AMPDU size 4*2=8K */
816 	rtl_write_word(rtlpriv, AGGLEN_LMT_L, 0x7442);
817 	/* MCS4/5 use max AMPDU size 8*2=16K 6/7 use 10*2=20K */
818 	rtl_write_word(rtlpriv, AGGLEN_LMT_L + 2, 0xddd7);
819 	/* MCS8/9 use max AMPDU size 8*2=16K 10/11 use 10*2=20K */
820 	rtl_write_word(rtlpriv, AGGLEN_LMT_L + 4, 0xd772);
821 	/* MCS12/13/14/15 use max AMPDU size 15*2=30K */
822 	rtl_write_word(rtlpriv, AGGLEN_LMT_L + 6, 0xfffd);
823 
824 	/* Set Data / Response auto rate fallack retry count */
825 	rtl_write_dword(rtlpriv, DARFRC, 0x04010000);
826 	rtl_write_dword(rtlpriv, DARFRC + 4, 0x09070605);
827 	rtl_write_dword(rtlpriv, RARFRC, 0x04010000);
828 	rtl_write_dword(rtlpriv, RARFRC + 4, 0x09070605);
829 
830 	/* 7. EDCA Setting Register (Offset: 0x01D0 - 0x01FF) */
831 	/* Set all rate to support SG */
832 	rtl_write_word(rtlpriv, SG_RATE, 0xFFFF);
833 
834 	/* 8. WMAC, BA, and CCX related Register (Offset: 0x0200 - 0x023F) */
835 	/* Set NAV protection length */
836 	rtl_write_word(rtlpriv, NAV_PROT_LEN, 0x0080);
837 	/* CF-END Threshold */
838 	rtl_write_byte(rtlpriv, CFEND_TH, 0xFF);
839 	/* Set AMPDU minimum space */
840 	rtl_write_byte(rtlpriv, AMPDU_MIN_SPACE, 0x07);
841 	/* Set TXOP stall control for several queue/HI/BCN/MGT/ */
842 	rtl_write_byte(rtlpriv, TXOP_STALL_CTRL, 0x00);
843 
844 	/* 9. Security Control Register (Offset: 0x0240 - 0x025F) */
845 	/* 10. Power Save Control Register (Offset: 0x0260 - 0x02DF) */
846 	/* 11. General Purpose Register (Offset: 0x02E0 - 0x02FF) */
847 	/* 12. Host Interrupt Status Register (Offset: 0x0300 - 0x030F) */
848 	/* 13. Test Mode and Debug Control Register (Offset: 0x0310 - 0x034F) */
849 
850 	/* 14. Set driver info, we only accept PHY status now. */
851 	rtl_write_byte(rtlpriv, RXDRVINFO_SZ, 4);
852 
853 	/* 15. For EEPROM R/W Workaround */
854 	/* 16. For EFUSE to share REG_SYS_FUNC_EN with EEPROM!!! */
855 	tmpu2b = rtl_read_byte(rtlpriv, REG_SYS_FUNC_EN);
856 	rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN, tmpu2b | BIT(13));
857 	tmpu2b = rtl_read_byte(rtlpriv, REG_SYS_ISO_CTRL);
858 	rtl_write_byte(rtlpriv, REG_SYS_ISO_CTRL, tmpu2b & (~BIT(8)));
859 
860 	/* 17. For EFUSE */
861 	/* We may R/W EFUSE in EEPROM mode */
862 	if (rtlefuse->epromtype == EEPROM_BOOT_EFUSE) {
863 		u8	tempval;
864 
865 		tempval = rtl_read_byte(rtlpriv, REG_SYS_ISO_CTRL + 1);
866 		tempval &= 0xFE;
867 		rtl_write_byte(rtlpriv, REG_SYS_ISO_CTRL + 1, tempval);
868 
869 		/* Change Program timing */
870 		rtl_write_byte(rtlpriv, REG_EFUSE_CTRL + 3, 0x72);
871 		RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG, "EFUSE CONFIG OK\n");
872 	}
873 
874 	RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG, "OK\n");
875 
876 }
877 
_rtl92se_hw_configure(struct ieee80211_hw * hw)878 static void _rtl92se_hw_configure(struct ieee80211_hw *hw)
879 {
880 	struct rtl_priv *rtlpriv = rtl_priv(hw);
881 	struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
882 	struct rtl_phy *rtlphy = &(rtlpriv->phy);
883 	struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
884 
885 	u8 reg_bw_opmode = 0;
886 	u32 reg_rrsr = 0;
887 	u8 regtmp = 0;
888 
889 	reg_bw_opmode = BW_OPMODE_20MHZ;
890 	reg_rrsr = RATE_ALL_CCK | RATE_ALL_OFDM_AG;
891 
892 	regtmp = rtl_read_byte(rtlpriv, INIRTSMCS_SEL);
893 	reg_rrsr = ((reg_rrsr & 0x000fffff) << 8) | regtmp;
894 	rtl_write_dword(rtlpriv, INIRTSMCS_SEL, reg_rrsr);
895 	rtl_write_byte(rtlpriv, BW_OPMODE, reg_bw_opmode);
896 
897 	/* Set Retry Limit here */
898 	rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_RETRY_LIMIT,
899 			(u8 *)(&rtlpci->shortretry_limit));
900 
901 	rtl_write_byte(rtlpriv, MLT, 0x8f);
902 
903 	/* For Min Spacing configuration. */
904 	switch (rtlphy->rf_type) {
905 	case RF_1T2R:
906 	case RF_1T1R:
907 		rtlhal->minspace_cfg = (MAX_MSS_DENSITY_1T << 3);
908 		break;
909 	case RF_2T2R:
910 	case RF_2T2R_GREEN:
911 		rtlhal->minspace_cfg = (MAX_MSS_DENSITY_2T << 3);
912 		break;
913 	}
914 	rtl_write_byte(rtlpriv, AMPDU_MIN_SPACE, rtlhal->minspace_cfg);
915 }
916 
rtl92se_hw_init(struct ieee80211_hw * hw)917 int rtl92se_hw_init(struct ieee80211_hw *hw)
918 {
919 	struct rtl_priv *rtlpriv = rtl_priv(hw);
920 	struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
921 	struct rtl_phy *rtlphy = &(rtlpriv->phy);
922 	struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
923 	struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
924 	u8 tmp_byte = 0;
925 	unsigned long flags;
926 	bool rtstatus = true;
927 	u8 tmp_u1b;
928 	int err = false;
929 	u8 i;
930 	int wdcapra_add[] = {
931 		EDCAPARA_BE, EDCAPARA_BK,
932 		EDCAPARA_VI, EDCAPARA_VO};
933 	u8 secr_value = 0x0;
934 
935 	rtlpci->being_init_adapter = true;
936 
937 	/* As this function can take a very long time (up to 350 ms)
938 	 * and can be called with irqs disabled, reenable the irqs
939 	 * to let the other devices continue being serviced.
940 	 *
941 	 * It is safe doing so since our own interrupts will only be enabled
942 	 * in a subsequent step.
943 	 */
944 	local_save_flags(flags);
945 	local_irq_enable();
946 
947 	rtlpriv->intf_ops->disable_aspm(hw);
948 
949 	/* 1. MAC Initialize */
950 	/* Before FW download, we have to set some MAC register */
951 	_rtl92se_macconfig_before_fwdownload(hw);
952 
953 	rtlhal->version = (enum version_8192s)((rtl_read_dword(rtlpriv,
954 			PMC_FSM) >> 16) & 0xF);
955 
956 	rtl8192se_gpiobit3_cfg_inputmode(hw);
957 
958 	/* 2. download firmware */
959 	rtstatus = rtl92s_download_fw(hw);
960 	if (!rtstatus) {
961 		RT_TRACE(rtlpriv, COMP_ERR, DBG_WARNING,
962 			 "Failed to download FW. Init HW without FW now... "
963 			 "Please copy FW into /lib/firmware/rtlwifi\n");
964 		err = 1;
965 		goto exit;
966 	}
967 
968 	/* After FW download, we have to reset MAC register */
969 	_rtl92se_macconfig_after_fwdownload(hw);
970 
971 	/*Retrieve default FW Cmd IO map. */
972 	rtlhal->fwcmd_iomap =	rtl_read_word(rtlpriv, LBUS_MON_ADDR);
973 	rtlhal->fwcmd_ioparam = rtl_read_dword(rtlpriv, LBUS_ADDR_MASK);
974 
975 	/* 3. Initialize MAC/PHY Config by MACPHY_reg.txt */
976 	if (!rtl92s_phy_mac_config(hw)) {
977 		RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG, "MAC Config failed\n");
978 		err = rtstatus;
979 		goto exit;
980 	}
981 
982 	/* Make sure BB/RF write OK. We should prevent enter IPS. radio off. */
983 	/* We must set flag avoid BB/RF config period later!! */
984 	rtl_write_dword(rtlpriv, CMDR, 0x37FC);
985 
986 	/* 4. Initialize BB After MAC Config PHY_reg.txt, AGC_Tab.txt */
987 	if (!rtl92s_phy_bb_config(hw)) {
988 		RT_TRACE(rtlpriv, COMP_INIT, DBG_EMERG, "BB Config failed\n");
989 		err = rtstatus;
990 		goto exit;
991 	}
992 
993 	/* 5. Initiailze RF RAIO_A.txt RF RAIO_B.txt */
994 	/* Before initalizing RF. We can not use FW to do RF-R/W. */
995 
996 	rtlphy->rf_mode = RF_OP_BY_SW_3WIRE;
997 
998 	/* RF Power Save */
999 #if 0
1000 	/* H/W or S/W RF OFF before sleep. */
1001 	if (rtlpriv->psc.rfoff_reason > RF_CHANGE_BY_PS) {
1002 		u32 rfoffreason = rtlpriv->psc.rfoff_reason;
1003 
1004 		rtlpriv->psc.rfoff_reason = RF_CHANGE_BY_INIT;
1005 		rtlpriv->psc.rfpwr_state = ERFON;
1006 		/* FIXME: check spinlocks if this block is uncommented */
1007 		rtl_ps_set_rf_state(hw, ERFOFF, rfoffreason);
1008 	} else {
1009 		/* gpio radio on/off is out of adapter start */
1010 		if (rtlpriv->psc.hwradiooff == false) {
1011 			rtlpriv->psc.rfpwr_state = ERFON;
1012 			rtlpriv->psc.rfoff_reason = 0;
1013 		}
1014 	}
1015 #endif
1016 
1017 	/* Before RF-R/W we must execute the IO from Scott's suggestion. */
1018 	rtl_write_byte(rtlpriv, AFE_XTAL_CTRL + 1, 0xDB);
1019 	if (rtlhal->version == VERSION_8192S_ACUT)
1020 		rtl_write_byte(rtlpriv, SPS1_CTRL + 3, 0x07);
1021 	else
1022 		rtl_write_byte(rtlpriv, RF_CTRL, 0x07);
1023 
1024 	if (!rtl92s_phy_rf_config(hw)) {
1025 		RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG, "RF Config failed\n");
1026 		err = rtstatus;
1027 		goto exit;
1028 	}
1029 
1030 	/* After read predefined TXT, we must set BB/MAC/RF
1031 	 * register as our requirement */
1032 
1033 	rtlphy->rfreg_chnlval[0] = rtl92s_phy_query_rf_reg(hw,
1034 							   (enum radio_path)0,
1035 							   RF_CHNLBW,
1036 							   RFREG_OFFSET_MASK);
1037 	rtlphy->rfreg_chnlval[1] = rtl92s_phy_query_rf_reg(hw,
1038 							   (enum radio_path)1,
1039 							   RF_CHNLBW,
1040 							   RFREG_OFFSET_MASK);
1041 
1042 	/*---- Set CCK and OFDM Block "ON"----*/
1043 	rtl_set_bbreg(hw, RFPGA0_RFMOD, BCCKEN, 0x1);
1044 	rtl_set_bbreg(hw, RFPGA0_RFMOD, BOFDMEN, 0x1);
1045 
1046 	/*3 Set Hardware(Do nothing now) */
1047 	_rtl92se_hw_configure(hw);
1048 
1049 	/* Read EEPROM TX power index and PHY_REG_PG.txt to capture correct */
1050 	/* TX power index for different rate set. */
1051 	/* Get original hw reg values */
1052 	rtl92s_phy_get_hw_reg_originalvalue(hw);
1053 	/* Write correct tx power index */
1054 	rtl92s_phy_set_txpower(hw, rtlphy->current_channel);
1055 
1056 	/* We must set MAC address after firmware download. */
1057 	for (i = 0; i < 6; i++)
1058 		rtl_write_byte(rtlpriv, MACIDR0 + i, rtlefuse->dev_addr[i]);
1059 
1060 	/* EEPROM R/W workaround */
1061 	tmp_u1b = rtl_read_byte(rtlpriv, MAC_PINMUX_CFG);
1062 	rtl_write_byte(rtlpriv, MAC_PINMUX_CFG, tmp_u1b & (~BIT(3)));
1063 
1064 	rtl_write_byte(rtlpriv, 0x4d, 0x0);
1065 
1066 	if (hal_get_firmwareversion(rtlpriv) >= 0x49) {
1067 		tmp_byte = rtl_read_byte(rtlpriv, FW_RSVD_PG_CRTL) & (~BIT(4));
1068 		tmp_byte = tmp_byte | BIT(5);
1069 		rtl_write_byte(rtlpriv, FW_RSVD_PG_CRTL, tmp_byte);
1070 		rtl_write_dword(rtlpriv, TXDESC_MSK, 0xFFFFCFFF);
1071 	}
1072 
1073 	/* We enable high power and RA related mechanism after NIC
1074 	 * initialized. */
1075 	rtl92s_phy_set_fw_cmd(hw, FW_CMD_RA_INIT);
1076 
1077 	/* Add to prevent ASPM bug. */
1078 	/* Always enable hst and NIC clock request. */
1079 	rtl92s_phy_switch_ephy_parameter(hw);
1080 
1081 	/* Security related
1082 	 * 1. Clear all H/W keys.
1083 	 * 2. Enable H/W encryption/decryption. */
1084 	rtl_cam_reset_all_entry(hw);
1085 	secr_value |= SCR_TXENCENABLE;
1086 	secr_value |= SCR_RXENCENABLE;
1087 	secr_value |= SCR_NOSKMC;
1088 	rtl_write_byte(rtlpriv, REG_SECR, secr_value);
1089 
1090 	for (i = 0; i < 4; i++)
1091 		rtl_write_dword(rtlpriv, wdcapra_add[i], 0x5e4322);
1092 
1093 	if (rtlphy->rf_type == RF_1T2R) {
1094 		bool mrc2set = true;
1095 		/* Turn on B-Path */
1096 		rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_MRC, (u8 *)&mrc2set);
1097 	}
1098 
1099 	rtlpriv->cfg->ops->led_control(hw, LED_CTL_POWER_ON);
1100 	rtl92s_dm_init(hw);
1101 exit:
1102 	local_irq_restore(flags);
1103 	rtlpci->being_init_adapter = false;
1104 	return err;
1105 }
1106 
rtl92se_set_mac_addr(struct rtl_io * io,const u8 * addr)1107 void rtl92se_set_mac_addr(struct rtl_io *io, const u8 * addr)
1108 {
1109 }
1110 
rtl92se_set_check_bssid(struct ieee80211_hw * hw,bool check_bssid)1111 void rtl92se_set_check_bssid(struct ieee80211_hw *hw, bool check_bssid)
1112 {
1113 	struct rtl_priv *rtlpriv = rtl_priv(hw);
1114 	struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
1115 	u32 reg_rcr = rtlpci->receive_config;
1116 
1117 	if (rtlpriv->psc.rfpwr_state != ERFON)
1118 		return;
1119 
1120 	if (check_bssid) {
1121 		reg_rcr |= (RCR_CBSSID);
1122 		rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_RCR, (u8 *)(&reg_rcr));
1123 	} else if (!check_bssid) {
1124 		reg_rcr &= (~RCR_CBSSID);
1125 		rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_RCR, (u8 *)(&reg_rcr));
1126 	}
1127 
1128 }
1129 
_rtl92se_set_media_status(struct ieee80211_hw * hw,enum nl80211_iftype type)1130 static int _rtl92se_set_media_status(struct ieee80211_hw *hw,
1131 				     enum nl80211_iftype type)
1132 {
1133 	struct rtl_priv *rtlpriv = rtl_priv(hw);
1134 	u8 bt_msr = rtl_read_byte(rtlpriv, MSR);
1135 	u32 temp;
1136 	bt_msr &= ~MSR_LINK_MASK;
1137 
1138 	switch (type) {
1139 	case NL80211_IFTYPE_UNSPECIFIED:
1140 		bt_msr |= (MSR_LINK_NONE << MSR_LINK_SHIFT);
1141 		RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE,
1142 			 "Set Network type to NO LINK!\n");
1143 		break;
1144 	case NL80211_IFTYPE_ADHOC:
1145 		bt_msr |= (MSR_LINK_ADHOC << MSR_LINK_SHIFT);
1146 		RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE,
1147 			 "Set Network type to Ad Hoc!\n");
1148 		break;
1149 	case NL80211_IFTYPE_STATION:
1150 		bt_msr |= (MSR_LINK_MANAGED << MSR_LINK_SHIFT);
1151 		RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE,
1152 			 "Set Network type to STA!\n");
1153 		break;
1154 	case NL80211_IFTYPE_AP:
1155 		bt_msr |= (MSR_LINK_MASTER << MSR_LINK_SHIFT);
1156 		RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE,
1157 			 "Set Network type to AP!\n");
1158 		break;
1159 	default:
1160 		RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
1161 			 "Network type %d not supported!\n", type);
1162 		return 1;
1163 		break;
1164 
1165 	}
1166 
1167 	rtl_write_byte(rtlpriv, (MSR), bt_msr);
1168 
1169 	temp = rtl_read_dword(rtlpriv, TCR);
1170 	rtl_write_dword(rtlpriv, TCR, temp & (~BIT(8)));
1171 	rtl_write_dword(rtlpriv, TCR, temp | BIT(8));
1172 
1173 
1174 	return 0;
1175 }
1176 
1177 /* HW_VAR_MEDIA_STATUS & HW_VAR_CECHK_BSSID */
rtl92se_set_network_type(struct ieee80211_hw * hw,enum nl80211_iftype type)1178 int rtl92se_set_network_type(struct ieee80211_hw *hw, enum nl80211_iftype type)
1179 {
1180 	struct rtl_priv *rtlpriv = rtl_priv(hw);
1181 
1182 	if (_rtl92se_set_media_status(hw, type))
1183 		return -EOPNOTSUPP;
1184 
1185 	if (rtlpriv->mac80211.link_state == MAC80211_LINKED) {
1186 		if (type != NL80211_IFTYPE_AP)
1187 			rtl92se_set_check_bssid(hw, true);
1188 	} else {
1189 		rtl92se_set_check_bssid(hw, false);
1190 	}
1191 
1192 	return 0;
1193 }
1194 
1195 /* don't set REG_EDCA_BE_PARAM here because mac80211 will send pkt when scan */
rtl92se_set_qos(struct ieee80211_hw * hw,int aci)1196 void rtl92se_set_qos(struct ieee80211_hw *hw, int aci)
1197 {
1198 	struct rtl_priv *rtlpriv = rtl_priv(hw);
1199 	rtl92s_dm_init_edca_turbo(hw);
1200 
1201 	switch (aci) {
1202 	case AC1_BK:
1203 		rtl_write_dword(rtlpriv, EDCAPARA_BK, 0xa44f);
1204 		break;
1205 	case AC0_BE:
1206 		/* rtl_write_dword(rtlpriv, EDCAPARA_BE, u4b_ac_param); */
1207 		break;
1208 	case AC2_VI:
1209 		rtl_write_dword(rtlpriv, EDCAPARA_VI, 0x5e4322);
1210 		break;
1211 	case AC3_VO:
1212 		rtl_write_dword(rtlpriv, EDCAPARA_VO, 0x2f3222);
1213 		break;
1214 	default:
1215 		RT_ASSERT(false, "invalid aci: %d !\n", aci);
1216 		break;
1217 	}
1218 }
1219 
rtl92se_enable_interrupt(struct ieee80211_hw * hw)1220 void rtl92se_enable_interrupt(struct ieee80211_hw *hw)
1221 {
1222 	struct rtl_priv *rtlpriv = rtl_priv(hw);
1223 	struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
1224 
1225 	rtl_write_dword(rtlpriv, INTA_MASK, rtlpci->irq_mask[0]);
1226 	/* Support Bit 32-37(Assign as Bit 0-5) interrupt setting now */
1227 	rtl_write_dword(rtlpriv, INTA_MASK + 4, rtlpci->irq_mask[1] & 0x3F);
1228 }
1229 
rtl92se_disable_interrupt(struct ieee80211_hw * hw)1230 void rtl92se_disable_interrupt(struct ieee80211_hw *hw)
1231 {
1232 	struct rtl_priv *rtlpriv;
1233 	struct rtl_pci *rtlpci;
1234 
1235 	rtlpriv = rtl_priv(hw);
1236 	/* if firmware not available, no interrupts */
1237 	if (!rtlpriv || !rtlpriv->max_fw_size)
1238 		return;
1239 	rtlpci = rtl_pcidev(rtl_pcipriv(hw));
1240 	rtl_write_dword(rtlpriv, INTA_MASK, 0);
1241 	rtl_write_dword(rtlpriv, INTA_MASK + 4, 0);
1242 
1243 	synchronize_irq(rtlpci->pdev->irq);
1244 }
1245 
1246 
_rtl92s_set_sysclk(struct ieee80211_hw * hw,u8 data)1247 static u8 _rtl92s_set_sysclk(struct ieee80211_hw *hw, u8 data)
1248 {
1249 	struct rtl_priv *rtlpriv = rtl_priv(hw);
1250 	u8 waitcnt = 100;
1251 	bool result = false;
1252 	u8 tmp;
1253 
1254 	rtl_write_byte(rtlpriv, SYS_CLKR + 1, data);
1255 
1256 	/* Wait the MAC synchronized. */
1257 	udelay(400);
1258 
1259 	/* Check if it is set ready. */
1260 	tmp = rtl_read_byte(rtlpriv, SYS_CLKR + 1);
1261 	result = ((tmp & BIT(7)) == (data & BIT(7)));
1262 
1263 	if ((data & (BIT(6) | BIT(7))) == false) {
1264 		waitcnt = 100;
1265 		tmp = 0;
1266 
1267 		while (1) {
1268 			waitcnt--;
1269 			tmp = rtl_read_byte(rtlpriv, SYS_CLKR + 1);
1270 
1271 			if ((tmp & BIT(6)))
1272 				break;
1273 
1274 			pr_err("wait for BIT(6) return value %x\n", tmp);
1275 
1276 			if (waitcnt == 0)
1277 				break;
1278 			udelay(10);
1279 		}
1280 
1281 		if (waitcnt == 0)
1282 			result = false;
1283 		else
1284 			result = true;
1285 	}
1286 
1287 	return result;
1288 }
1289 
_rtl92s_phy_set_rfhalt(struct ieee80211_hw * hw)1290 static void _rtl92s_phy_set_rfhalt(struct ieee80211_hw *hw)
1291 {
1292 	struct rtl_priv *rtlpriv = rtl_priv(hw);
1293 	struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
1294 	struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
1295 	u8 u1btmp;
1296 
1297 	if (rtlhal->driver_going2unload)
1298 		rtl_write_byte(rtlpriv, 0x560, 0x0);
1299 
1300 	/* Power save for BB/RF */
1301 	u1btmp = rtl_read_byte(rtlpriv, LDOV12D_CTRL);
1302 	u1btmp |= BIT(0);
1303 	rtl_write_byte(rtlpriv, LDOV12D_CTRL, u1btmp);
1304 	rtl_write_byte(rtlpriv, SPS1_CTRL, 0x0);
1305 	rtl_write_byte(rtlpriv, TXPAUSE, 0xFF);
1306 	rtl_write_word(rtlpriv, CMDR, 0x57FC);
1307 	udelay(100);
1308 	rtl_write_word(rtlpriv, CMDR, 0x77FC);
1309 	rtl_write_byte(rtlpriv, PHY_CCA, 0x0);
1310 	udelay(10);
1311 	rtl_write_word(rtlpriv, CMDR, 0x37FC);
1312 	udelay(10);
1313 	rtl_write_word(rtlpriv, CMDR, 0x77FC);
1314 	udelay(10);
1315 	rtl_write_word(rtlpriv, CMDR, 0x57FC);
1316 	rtl_write_word(rtlpriv, CMDR, 0x0000);
1317 
1318 	if (rtlhal->driver_going2unload) {
1319 		u1btmp = rtl_read_byte(rtlpriv, (REG_SYS_FUNC_EN + 1));
1320 		u1btmp &= ~(BIT(0));
1321 		rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN + 1, u1btmp);
1322 	}
1323 
1324 	u1btmp = rtl_read_byte(rtlpriv, (SYS_CLKR + 1));
1325 
1326 	/* Add description. After switch control path. register
1327 	 * after page1 will be invisible. We can not do any IO
1328 	 * for register>0x40. After resume&MACIO reset, we need
1329 	 * to remember previous reg content. */
1330 	if (u1btmp & BIT(7)) {
1331 		u1btmp &= ~(BIT(6) | BIT(7));
1332 		if (!_rtl92s_set_sysclk(hw, u1btmp)) {
1333 			pr_err("Switch ctrl path fail\n");
1334 			return;
1335 		}
1336 	}
1337 
1338 	/* Power save for MAC */
1339 	if (ppsc->rfoff_reason == RF_CHANGE_BY_IPS  &&
1340 		!rtlhal->driver_going2unload) {
1341 		/* enable LED function */
1342 		rtl_write_byte(rtlpriv, 0x03, 0xF9);
1343 	/* SW/HW radio off or halt adapter!! For example S3/S4 */
1344 	} else {
1345 		/* LED function disable. Power range is about 8mA now. */
1346 		/* if write 0xF1 disconnet_pci power
1347 		 *	 ifconfig wlan0 down power are both high 35:70 */
1348 		/* if write oxF9 disconnet_pci power
1349 		 * ifconfig wlan0 down power are both low  12:45*/
1350 		rtl_write_byte(rtlpriv, 0x03, 0xF9);
1351 	}
1352 
1353 	rtl_write_byte(rtlpriv, SYS_CLKR + 1, 0x70);
1354 	rtl_write_byte(rtlpriv, AFE_PLL_CTRL + 1, 0x68);
1355 	rtl_write_byte(rtlpriv,  AFE_PLL_CTRL, 0x00);
1356 	rtl_write_byte(rtlpriv, LDOA15_CTRL, 0x34);
1357 	rtl_write_byte(rtlpriv, AFE_XTAL_CTRL, 0x0E);
1358 	RT_SET_PS_LEVEL(ppsc, RT_RF_OFF_LEVL_HALT_NIC);
1359 
1360 }
1361 
_rtl92se_gen_refreshledstate(struct ieee80211_hw * hw)1362 static void _rtl92se_gen_refreshledstate(struct ieee80211_hw *hw)
1363 {
1364 	struct rtl_priv *rtlpriv = rtl_priv(hw);
1365 	struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
1366 	struct rtl_pci_priv *pcipriv = rtl_pcipriv(hw);
1367 	struct rtl_led *pLed0 = &(pcipriv->ledctl.sw_led0);
1368 
1369 	if (rtlpci->up_first_time == 1)
1370 		return;
1371 
1372 	if (rtlpriv->psc.rfoff_reason == RF_CHANGE_BY_IPS)
1373 		rtl92se_sw_led_on(hw, pLed0);
1374 	else
1375 		rtl92se_sw_led_off(hw, pLed0);
1376 }
1377 
1378 
_rtl92se_power_domain_init(struct ieee80211_hw * hw)1379 static void _rtl92se_power_domain_init(struct ieee80211_hw *hw)
1380 {
1381 	struct rtl_priv *rtlpriv = rtl_priv(hw);
1382 	u16 tmpu2b;
1383 	u8 tmpu1b;
1384 
1385 	rtlpriv->psc.pwrdomain_protect = true;
1386 
1387 	tmpu1b = rtl_read_byte(rtlpriv, (SYS_CLKR + 1));
1388 	if (tmpu1b & BIT(7)) {
1389 		tmpu1b &= ~(BIT(6) | BIT(7));
1390 		if (!_rtl92s_set_sysclk(hw, tmpu1b)) {
1391 			rtlpriv->psc.pwrdomain_protect = false;
1392 			return;
1393 		}
1394 	}
1395 
1396 	rtl_write_byte(rtlpriv, AFE_PLL_CTRL, 0x0);
1397 	rtl_write_byte(rtlpriv, LDOA15_CTRL, 0x34);
1398 
1399 	/* Reset MAC-IO and CPU and Core Digital BIT10/11/15 */
1400 	tmpu1b = rtl_read_byte(rtlpriv, REG_SYS_FUNC_EN + 1);
1401 
1402 	/* If IPS we need to turn LED on. So we not
1403 	 * not disable BIT 3/7 of reg3. */
1404 	if (rtlpriv->psc.rfoff_reason & (RF_CHANGE_BY_IPS | RF_CHANGE_BY_HW))
1405 		tmpu1b &= 0xFB;
1406 	else
1407 		tmpu1b &= 0x73;
1408 
1409 	rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN + 1, tmpu1b);
1410 	/* wait for BIT 10/11/15 to pull high automatically!! */
1411 	mdelay(1);
1412 
1413 	rtl_write_byte(rtlpriv, CMDR, 0);
1414 	rtl_write_byte(rtlpriv, TCR, 0);
1415 
1416 	/* Data sheet not define 0x562!!! Copy from WMAC!!!!! */
1417 	tmpu1b = rtl_read_byte(rtlpriv, 0x562);
1418 	tmpu1b |= 0x08;
1419 	rtl_write_byte(rtlpriv, 0x562, tmpu1b);
1420 	tmpu1b &= ~(BIT(3));
1421 	rtl_write_byte(rtlpriv, 0x562, tmpu1b);
1422 
1423 	/* Enable AFE clock source */
1424 	tmpu1b = rtl_read_byte(rtlpriv, AFE_XTAL_CTRL);
1425 	rtl_write_byte(rtlpriv, AFE_XTAL_CTRL, (tmpu1b | 0x01));
1426 	/* Delay 1.5ms */
1427 	udelay(1500);
1428 	tmpu1b = rtl_read_byte(rtlpriv, AFE_XTAL_CTRL + 1);
1429 	rtl_write_byte(rtlpriv, AFE_XTAL_CTRL + 1, (tmpu1b & 0xfb));
1430 
1431 	/* Enable AFE Macro Block's Bandgap */
1432 	tmpu1b = rtl_read_byte(rtlpriv, AFE_MISC);
1433 	rtl_write_byte(rtlpriv, AFE_MISC, (tmpu1b | BIT(0)));
1434 	mdelay(1);
1435 
1436 	/* Enable AFE Mbias */
1437 	tmpu1b = rtl_read_byte(rtlpriv, AFE_MISC);
1438 	rtl_write_byte(rtlpriv, AFE_MISC, (tmpu1b | 0x02));
1439 	mdelay(1);
1440 
1441 	/* Enable LDOA15 block */
1442 	tmpu1b = rtl_read_byte(rtlpriv, LDOA15_CTRL);
1443 	rtl_write_byte(rtlpriv, LDOA15_CTRL, (tmpu1b | BIT(0)));
1444 
1445 	/* Set Digital Vdd to Retention isolation Path. */
1446 	tmpu2b = rtl_read_word(rtlpriv, REG_SYS_ISO_CTRL);
1447 	rtl_write_word(rtlpriv, REG_SYS_ISO_CTRL, (tmpu2b | BIT(11)));
1448 
1449 
1450 	/* For warm reboot NIC disappera bug. */
1451 	tmpu2b = rtl_read_word(rtlpriv, REG_SYS_FUNC_EN);
1452 	rtl_write_word(rtlpriv, REG_SYS_FUNC_EN, (tmpu2b | BIT(13)));
1453 
1454 	rtl_write_byte(rtlpriv, REG_SYS_ISO_CTRL + 1, 0x68);
1455 
1456 	/* Enable AFE PLL Macro Block */
1457 	tmpu1b = rtl_read_byte(rtlpriv, AFE_PLL_CTRL);
1458 	rtl_write_byte(rtlpriv, AFE_PLL_CTRL, (tmpu1b | BIT(0) | BIT(4)));
1459 	/* Enable MAC 80MHZ clock */
1460 	tmpu1b = rtl_read_byte(rtlpriv, AFE_PLL_CTRL + 1);
1461 	rtl_write_byte(rtlpriv, AFE_PLL_CTRL + 1, (tmpu1b | BIT(0)));
1462 	mdelay(1);
1463 
1464 	/* Release isolation AFE PLL & MD */
1465 	rtl_write_byte(rtlpriv, REG_SYS_ISO_CTRL, 0xA6);
1466 
1467 	/* Enable MAC clock */
1468 	tmpu2b = rtl_read_word(rtlpriv, SYS_CLKR);
1469 	rtl_write_word(rtlpriv, SYS_CLKR, (tmpu2b | BIT(12) | BIT(11)));
1470 
1471 	/* Enable Core digital and enable IOREG R/W */
1472 	tmpu2b = rtl_read_word(rtlpriv, REG_SYS_FUNC_EN);
1473 	rtl_write_word(rtlpriv, REG_SYS_FUNC_EN, (tmpu2b | BIT(11)));
1474 	/* enable REG_EN */
1475 	rtl_write_word(rtlpriv, REG_SYS_FUNC_EN, (tmpu2b | BIT(11) | BIT(15)));
1476 
1477 	/* Switch the control path. */
1478 	tmpu2b = rtl_read_word(rtlpriv, SYS_CLKR);
1479 	rtl_write_word(rtlpriv, SYS_CLKR, (tmpu2b & (~BIT(2))));
1480 
1481 	tmpu1b = rtl_read_byte(rtlpriv, (SYS_CLKR + 1));
1482 	tmpu1b = ((tmpu1b | BIT(7)) & (~BIT(6)));
1483 	if (!_rtl92s_set_sysclk(hw, tmpu1b)) {
1484 		rtlpriv->psc.pwrdomain_protect = false;
1485 		return;
1486 	}
1487 
1488 	rtl_write_word(rtlpriv, CMDR, 0x37FC);
1489 
1490 	/* After MACIO reset,we must refresh LED state. */
1491 	_rtl92se_gen_refreshledstate(hw);
1492 
1493 	rtlpriv->psc.pwrdomain_protect = false;
1494 }
1495 
rtl92se_card_disable(struct ieee80211_hw * hw)1496 void rtl92se_card_disable(struct ieee80211_hw *hw)
1497 {
1498 	struct rtl_priv *rtlpriv = rtl_priv(hw);
1499 	struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
1500 	struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
1501 	struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
1502 	enum nl80211_iftype opmode;
1503 	u8 wait = 30;
1504 
1505 	rtlpriv->intf_ops->enable_aspm(hw);
1506 
1507 	if (rtlpci->driver_is_goingto_unload ||
1508 		ppsc->rfoff_reason > RF_CHANGE_BY_PS)
1509 		rtlpriv->cfg->ops->led_control(hw, LED_CTL_POWER_OFF);
1510 
1511 	/* we should chnge GPIO to input mode
1512 	 * this will drop away current about 25mA*/
1513 	rtl8192se_gpiobit3_cfg_inputmode(hw);
1514 
1515 	/* this is very important for ips power save */
1516 	while (wait-- >= 10 && rtlpriv->psc.pwrdomain_protect) {
1517 		if (rtlpriv->psc.pwrdomain_protect)
1518 			mdelay(20);
1519 		else
1520 			break;
1521 	}
1522 
1523 	mac->link_state = MAC80211_NOLINK;
1524 	opmode = NL80211_IFTYPE_UNSPECIFIED;
1525 	_rtl92se_set_media_status(hw, opmode);
1526 
1527 	_rtl92s_phy_set_rfhalt(hw);
1528 	udelay(100);
1529 }
1530 
rtl92se_interrupt_recognized(struct ieee80211_hw * hw,u32 * p_inta,u32 * p_intb)1531 void rtl92se_interrupt_recognized(struct ieee80211_hw *hw, u32 *p_inta,
1532 			     u32 *p_intb)
1533 {
1534 	struct rtl_priv *rtlpriv = rtl_priv(hw);
1535 	struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
1536 
1537 	*p_inta = rtl_read_dword(rtlpriv, ISR) & rtlpci->irq_mask[0];
1538 	rtl_write_dword(rtlpriv, ISR, *p_inta);
1539 
1540 	*p_intb = rtl_read_dword(rtlpriv, ISR + 4) & rtlpci->irq_mask[1];
1541 	rtl_write_dword(rtlpriv, ISR + 4, *p_intb);
1542 }
1543 
rtl92se_set_beacon_related_registers(struct ieee80211_hw * hw)1544 void rtl92se_set_beacon_related_registers(struct ieee80211_hw *hw)
1545 {
1546 	struct rtl_priv *rtlpriv = rtl_priv(hw);
1547 	struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
1548 	u16 bcntime_cfg = 0;
1549 	u16 bcn_cw = 6, bcn_ifs = 0xf;
1550 	u16 atim_window = 2;
1551 
1552 	/* ATIM Window (in unit of TU). */
1553 	rtl_write_word(rtlpriv, ATIMWND, atim_window);
1554 
1555 	/* Beacon interval (in unit of TU). */
1556 	rtl_write_word(rtlpriv, BCN_INTERVAL, mac->beacon_interval);
1557 
1558 	/* DrvErlyInt (in unit of TU). (Time to send
1559 	 * interrupt to notify driver to change
1560 	 * beacon content) */
1561 	rtl_write_word(rtlpriv, BCN_DRV_EARLY_INT, 10 << 4);
1562 
1563 	/* BcnDMATIM(in unit of us). Indicates the
1564 	 * time before TBTT to perform beacon queue DMA  */
1565 	rtl_write_word(rtlpriv, BCN_DMATIME, 256);
1566 
1567 	/* Force beacon frame transmission even
1568 	 * after receiving beacon frame from
1569 	 * other ad hoc STA */
1570 	rtl_write_byte(rtlpriv, BCN_ERR_THRESH, 100);
1571 
1572 	/* Beacon Time Configuration */
1573 	if (mac->opmode == NL80211_IFTYPE_ADHOC)
1574 		bcntime_cfg |= (bcn_cw << BCN_TCFG_CW_SHIFT);
1575 
1576 	/* TODO: bcn_ifs may required to be changed on ASIC */
1577 	bcntime_cfg |= bcn_ifs << BCN_TCFG_IFS;
1578 
1579 	/*for beacon changed */
1580 	rtl92s_phy_set_beacon_hwreg(hw, mac->beacon_interval);
1581 }
1582 
rtl92se_set_beacon_interval(struct ieee80211_hw * hw)1583 void rtl92se_set_beacon_interval(struct ieee80211_hw *hw)
1584 {
1585 	struct rtl_priv *rtlpriv = rtl_priv(hw);
1586 	struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
1587 	u16 bcn_interval = mac->beacon_interval;
1588 
1589 	/* Beacon interval (in unit of TU). */
1590 	rtl_write_word(rtlpriv, BCN_INTERVAL, bcn_interval);
1591 	/* 2008.10.24 added by tynli for beacon changed. */
1592 	rtl92s_phy_set_beacon_hwreg(hw, bcn_interval);
1593 }
1594 
rtl92se_update_interrupt_mask(struct ieee80211_hw * hw,u32 add_msr,u32 rm_msr)1595 void rtl92se_update_interrupt_mask(struct ieee80211_hw *hw,
1596 		u32 add_msr, u32 rm_msr)
1597 {
1598 	struct rtl_priv *rtlpriv = rtl_priv(hw);
1599 	struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
1600 
1601 	RT_TRACE(rtlpriv, COMP_INTR, DBG_LOUD, "add_msr:%x, rm_msr:%x\n",
1602 		 add_msr, rm_msr);
1603 
1604 	if (add_msr)
1605 		rtlpci->irq_mask[0] |= add_msr;
1606 
1607 	if (rm_msr)
1608 		rtlpci->irq_mask[0] &= (~rm_msr);
1609 
1610 	rtl92se_disable_interrupt(hw);
1611 	rtl92se_enable_interrupt(hw);
1612 }
1613 
_rtl8192se_get_IC_Inferiority(struct ieee80211_hw * hw)1614 static void _rtl8192se_get_IC_Inferiority(struct ieee80211_hw *hw)
1615 {
1616 	struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
1617 	struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
1618 	u8 efuse_id;
1619 
1620 	rtlhal->ic_class = IC_INFERIORITY_A;
1621 
1622 	/* Only retrieving while using EFUSE. */
1623 	if ((rtlefuse->epromtype == EEPROM_BOOT_EFUSE) &&
1624 		!rtlefuse->autoload_failflag) {
1625 		efuse_id = efuse_read_1byte(hw, EFUSE_IC_ID_OFFSET);
1626 
1627 		if (efuse_id == 0xfe)
1628 			rtlhal->ic_class = IC_INFERIORITY_B;
1629 	}
1630 }
1631 
_rtl92se_read_adapter_info(struct ieee80211_hw * hw)1632 static void _rtl92se_read_adapter_info(struct ieee80211_hw *hw)
1633 {
1634 	struct rtl_priv *rtlpriv = rtl_priv(hw);
1635 	struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
1636 	struct rtl_phy *rtlphy = &(rtlpriv->phy);
1637 	u16 i, usvalue;
1638 	u16	eeprom_id;
1639 	u8 tempval;
1640 	u8 hwinfo[HWSET_MAX_SIZE_92S];
1641 	u8 rf_path, index;
1642 
1643 	if (rtlefuse->epromtype == EEPROM_93C46) {
1644 		RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
1645 			 "RTL819X Not boot from eeprom, check it !!\n");
1646 	} else if (rtlefuse->epromtype == EEPROM_BOOT_EFUSE) {
1647 		rtl_efuse_shadow_map_update(hw);
1648 
1649 		memcpy((void *)hwinfo, (void *)
1650 			&rtlefuse->efuse_map[EFUSE_INIT_MAP][0],
1651 			HWSET_MAX_SIZE_92S);
1652 	}
1653 
1654 	RT_PRINT_DATA(rtlpriv, COMP_INIT, DBG_DMESG, "MAP",
1655 		      hwinfo, HWSET_MAX_SIZE_92S);
1656 
1657 	eeprom_id = *((u16 *)&hwinfo[0]);
1658 	if (eeprom_id != RTL8190_EEPROM_ID) {
1659 		RT_TRACE(rtlpriv, COMP_ERR, DBG_WARNING,
1660 			 "EEPROM ID(%#x) is invalid!!\n", eeprom_id);
1661 		rtlefuse->autoload_failflag = true;
1662 	} else {
1663 		RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "Autoload OK\n");
1664 		rtlefuse->autoload_failflag = false;
1665 	}
1666 
1667 	if (rtlefuse->autoload_failflag)
1668 		return;
1669 
1670 	_rtl8192se_get_IC_Inferiority(hw);
1671 
1672 	/* Read IC Version && Channel Plan */
1673 	/* VID, DID	 SE	0xA-D */
1674 	rtlefuse->eeprom_vid = *(u16 *)&hwinfo[EEPROM_VID];
1675 	rtlefuse->eeprom_did = *(u16 *)&hwinfo[EEPROM_DID];
1676 	rtlefuse->eeprom_svid = *(u16 *)&hwinfo[EEPROM_SVID];
1677 	rtlefuse->eeprom_smid = *(u16 *)&hwinfo[EEPROM_SMID];
1678 	rtlefuse->eeprom_version = *(u16 *)&hwinfo[EEPROM_VERSION];
1679 
1680 	RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
1681 		 "EEPROMId = 0x%4x\n", eeprom_id);
1682 	RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
1683 		 "EEPROM VID = 0x%4x\n", rtlefuse->eeprom_vid);
1684 	RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
1685 		 "EEPROM DID = 0x%4x\n", rtlefuse->eeprom_did);
1686 	RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
1687 		 "EEPROM SVID = 0x%4x\n", rtlefuse->eeprom_svid);
1688 	RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
1689 		 "EEPROM SMID = 0x%4x\n", rtlefuse->eeprom_smid);
1690 
1691 	for (i = 0; i < 6; i += 2) {
1692 		usvalue = *(u16 *)&hwinfo[EEPROM_MAC_ADDR + i];
1693 		*((u16 *) (&rtlefuse->dev_addr[i])) = usvalue;
1694 	}
1695 
1696 	for (i = 0; i < 6; i++)
1697 		rtl_write_byte(rtlpriv, MACIDR0 + i, rtlefuse->dev_addr[i]);
1698 
1699 	RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG, "%pM\n", rtlefuse->dev_addr);
1700 
1701 	/* Get Tx Power Level by Channel */
1702 	/* Read Tx power of Channel 1 ~ 14 from EEPROM. */
1703 	/* 92S suupport RF A & B */
1704 	for (rf_path = 0; rf_path < 2; rf_path++) {
1705 		for (i = 0; i < 3; i++) {
1706 			/* Read CCK RF A & B Tx power  */
1707 			rtlefuse->eeprom_chnlarea_txpwr_cck[rf_path][i] =
1708 			hwinfo[EEPROM_TXPOWERBASE + rf_path * 3 + i];
1709 
1710 			/* Read OFDM RF A & B Tx power for 1T */
1711 			rtlefuse->eeprom_chnlarea_txpwr_ht40_1s[rf_path][i] =
1712 			hwinfo[EEPROM_TXPOWERBASE + 6 + rf_path * 3 + i];
1713 
1714 			/* Read OFDM RF A & B Tx power for 2T */
1715 			rtlefuse->eeprom_chnlarea_txpwr_ht40_2sdiif[rf_path][i]
1716 				 = hwinfo[EEPROM_TXPOWERBASE + 12 +
1717 				   rf_path * 3 + i];
1718 		}
1719 	}
1720 
1721 	for (rf_path = 0; rf_path < 2; rf_path++)
1722 		for (i = 0; i < 3; i++)
1723 			RTPRINT(rtlpriv, FINIT, INIT_EEPROM,
1724 				"RF(%d) EEPROM CCK Area(%d) = 0x%x\n",
1725 				rf_path, i,
1726 				rtlefuse->eeprom_chnlarea_txpwr_cck
1727 				[rf_path][i]);
1728 	for (rf_path = 0; rf_path < 2; rf_path++)
1729 		for (i = 0; i < 3; i++)
1730 			RTPRINT(rtlpriv, FINIT, INIT_EEPROM,
1731 				"RF(%d) EEPROM HT40 1S Area(%d) = 0x%x\n",
1732 				rf_path, i,
1733 				rtlefuse->eeprom_chnlarea_txpwr_ht40_1s
1734 				[rf_path][i]);
1735 	for (rf_path = 0; rf_path < 2; rf_path++)
1736 		for (i = 0; i < 3; i++)
1737 			RTPRINT(rtlpriv, FINIT, INIT_EEPROM,
1738 				"RF(%d) EEPROM HT40 2S Diff Area(%d) = 0x%x\n",
1739 				rf_path, i,
1740 				rtlefuse->eeprom_chnlarea_txpwr_ht40_2sdiif
1741 				[rf_path][i]);
1742 
1743 	for (rf_path = 0; rf_path < 2; rf_path++) {
1744 
1745 		/* Assign dedicated channel tx power */
1746 		for (i = 0; i < 14; i++)	{
1747 			/* channel 1~3 use the same Tx Power Level. */
1748 			if (i < 3)
1749 				index = 0;
1750 			/* Channel 4-8 */
1751 			else if (i < 8)
1752 				index = 1;
1753 			/* Channel 9-14 */
1754 			else
1755 				index = 2;
1756 
1757 			/* Record A & B CCK /OFDM - 1T/2T Channel area
1758 			 * tx power */
1759 			rtlefuse->txpwrlevel_cck[rf_path][i]  =
1760 				rtlefuse->eeprom_chnlarea_txpwr_cck
1761 							[rf_path][index];
1762 			rtlefuse->txpwrlevel_ht40_1s[rf_path][i]  =
1763 				rtlefuse->eeprom_chnlarea_txpwr_ht40_1s
1764 							[rf_path][index];
1765 			rtlefuse->txpwrlevel_ht40_2s[rf_path][i]  =
1766 				rtlefuse->eeprom_chnlarea_txpwr_ht40_2sdiif
1767 							[rf_path][index];
1768 		}
1769 
1770 		for (i = 0; i < 14; i++) {
1771 			RTPRINT(rtlpriv, FINIT, INIT_TxPower,
1772 				"RF(%d)-Ch(%d) [CCK / HT40_1S / HT40_2S] = [0x%x / 0x%x / 0x%x]\n",
1773 				rf_path, i,
1774 				rtlefuse->txpwrlevel_cck[rf_path][i],
1775 				rtlefuse->txpwrlevel_ht40_1s[rf_path][i],
1776 				rtlefuse->txpwrlevel_ht40_2s[rf_path][i]);
1777 		}
1778 	}
1779 
1780 	for (rf_path = 0; rf_path < 2; rf_path++) {
1781 		for (i = 0; i < 3; i++) {
1782 			/* Read Power diff limit. */
1783 			rtlefuse->eeprom_pwrgroup[rf_path][i] =
1784 				hwinfo[EEPROM_TXPWRGROUP + rf_path * 3 + i];
1785 		}
1786 	}
1787 
1788 	for (rf_path = 0; rf_path < 2; rf_path++) {
1789 		/* Fill Pwr group */
1790 		for (i = 0; i < 14; i++) {
1791 			/* Chanel 1-3 */
1792 			if (i < 3)
1793 				index = 0;
1794 			/* Channel 4-8 */
1795 			else if (i < 8)
1796 				index = 1;
1797 			/* Channel 9-13 */
1798 			else
1799 				index = 2;
1800 
1801 			rtlefuse->pwrgroup_ht20[rf_path][i] =
1802 				(rtlefuse->eeprom_pwrgroup[rf_path][index] &
1803 				0xf);
1804 			rtlefuse->pwrgroup_ht40[rf_path][i] =
1805 				((rtlefuse->eeprom_pwrgroup[rf_path][index] &
1806 				0xf0) >> 4);
1807 
1808 			RTPRINT(rtlpriv, FINIT, INIT_TxPower,
1809 				"RF-%d pwrgroup_ht20[%d] = 0x%x\n",
1810 				rf_path, i,
1811 				rtlefuse->pwrgroup_ht20[rf_path][i]);
1812 			RTPRINT(rtlpriv, FINIT, INIT_TxPower,
1813 				"RF-%d pwrgroup_ht40[%d] = 0x%x\n",
1814 				rf_path, i,
1815 				rtlefuse->pwrgroup_ht40[rf_path][i]);
1816 			}
1817 	}
1818 
1819 	for (i = 0; i < 14; i++) {
1820 		/* Read tx power difference between HT OFDM 20/40 MHZ */
1821 		/* channel 1-3 */
1822 		if (i < 3)
1823 			index = 0;
1824 		/* Channel 4-8 */
1825 		else if (i < 8)
1826 			index = 1;
1827 		/* Channel 9-14 */
1828 		else
1829 			index = 2;
1830 
1831 		tempval = (*(u8 *)&hwinfo[EEPROM_TX_PWR_HT20_DIFF +
1832 			   index]) & 0xff;
1833 		rtlefuse->txpwr_ht20diff[RF90_PATH_A][i] = (tempval & 0xF);
1834 		rtlefuse->txpwr_ht20diff[RF90_PATH_B][i] =
1835 						 ((tempval >> 4) & 0xF);
1836 
1837 		/* Read OFDM<->HT tx power diff */
1838 		/* Channel 1-3 */
1839 		if (i < 3)
1840 			index = 0;
1841 		/* Channel 4-8 */
1842 		else if (i < 8)
1843 			index = 0x11;
1844 		/* Channel 9-14 */
1845 		else
1846 			index = 1;
1847 
1848 		tempval = (*(u8 *)&hwinfo[EEPROM_TX_PWR_OFDM_DIFF + index])
1849 				  & 0xff;
1850 		rtlefuse->txpwr_legacyhtdiff[RF90_PATH_A][i] =
1851 				 (tempval & 0xF);
1852 		rtlefuse->txpwr_legacyhtdiff[RF90_PATH_B][i] =
1853 				 ((tempval >> 4) & 0xF);
1854 
1855 		tempval = (*(u8 *)&hwinfo[TX_PWR_SAFETY_CHK]);
1856 		rtlefuse->txpwr_safetyflag = (tempval & 0x01);
1857 	}
1858 
1859 	rtlefuse->eeprom_regulatory = 0;
1860 	if (rtlefuse->eeprom_version >= 2) {
1861 		/* BIT(0)~2 */
1862 		if (rtlefuse->eeprom_version >= 4)
1863 			rtlefuse->eeprom_regulatory =
1864 				 (hwinfo[EEPROM_REGULATORY] & 0x7);
1865 		else /* BIT(0) */
1866 			rtlefuse->eeprom_regulatory =
1867 				 (hwinfo[EEPROM_REGULATORY] & 0x1);
1868 	}
1869 	RTPRINT(rtlpriv, FINIT, INIT_TxPower,
1870 		"eeprom_regulatory = 0x%x\n", rtlefuse->eeprom_regulatory);
1871 
1872 	for (i = 0; i < 14; i++)
1873 		RTPRINT(rtlpriv, FINIT, INIT_TxPower,
1874 			"RF-A Ht20 to HT40 Diff[%d] = 0x%x\n",
1875 			i, rtlefuse->txpwr_ht20diff[RF90_PATH_A][i]);
1876 	for (i = 0; i < 14; i++)
1877 		RTPRINT(rtlpriv, FINIT, INIT_TxPower,
1878 			"RF-A Legacy to Ht40 Diff[%d] = 0x%x\n",
1879 			i, rtlefuse->txpwr_legacyhtdiff[RF90_PATH_A][i]);
1880 	for (i = 0; i < 14; i++)
1881 		RTPRINT(rtlpriv, FINIT, INIT_TxPower,
1882 			"RF-B Ht20 to HT40 Diff[%d] = 0x%x\n",
1883 			i, rtlefuse->txpwr_ht20diff[RF90_PATH_B][i]);
1884 	for (i = 0; i < 14; i++)
1885 		RTPRINT(rtlpriv, FINIT, INIT_TxPower,
1886 			"RF-B Legacy to HT40 Diff[%d] = 0x%x\n",
1887 			i, rtlefuse->txpwr_legacyhtdiff[RF90_PATH_B][i]);
1888 
1889 	RTPRINT(rtlpriv, FINIT, INIT_TxPower,
1890 		"TxPwrSafetyFlag = %d\n", rtlefuse->txpwr_safetyflag);
1891 
1892 	/* Read RF-indication and Tx Power gain
1893 	 * index diff of legacy to HT OFDM rate. */
1894 	tempval = (*(u8 *)&hwinfo[EEPROM_RFIND_POWERDIFF]) & 0xff;
1895 	rtlefuse->eeprom_txpowerdiff = tempval;
1896 	rtlefuse->legacy_httxpowerdiff =
1897 		rtlefuse->txpwr_legacyhtdiff[RF90_PATH_A][0];
1898 
1899 	RTPRINT(rtlpriv, FINIT, INIT_TxPower,
1900 		"TxPowerDiff = %#x\n", rtlefuse->eeprom_txpowerdiff);
1901 
1902 	/* Get TSSI value for each path. */
1903 	usvalue = *(u16 *)&hwinfo[EEPROM_TSSI_A];
1904 	rtlefuse->eeprom_tssi[RF90_PATH_A] = (u8)((usvalue & 0xff00) >> 8);
1905 	usvalue = *(u8 *)&hwinfo[EEPROM_TSSI_B];
1906 	rtlefuse->eeprom_tssi[RF90_PATH_B] = (u8)(usvalue & 0xff);
1907 
1908 	RTPRINT(rtlpriv, FINIT, INIT_TxPower, "TSSI_A = 0x%x, TSSI_B = 0x%x\n",
1909 		rtlefuse->eeprom_tssi[RF90_PATH_A],
1910 		rtlefuse->eeprom_tssi[RF90_PATH_B]);
1911 
1912 	/* Read antenna tx power offset of B/C/D to A  from EEPROM */
1913 	/* and read ThermalMeter from EEPROM */
1914 	tempval = *(u8 *)&hwinfo[EEPROM_THERMALMETER];
1915 	rtlefuse->eeprom_thermalmeter = tempval;
1916 	RTPRINT(rtlpriv, FINIT, INIT_TxPower,
1917 		"thermalmeter = 0x%x\n", rtlefuse->eeprom_thermalmeter);
1918 
1919 	/* ThermalMeter, BIT(0)~3 for RFIC1, BIT(4)~7 for RFIC2 */
1920 	rtlefuse->thermalmeter[0] = (rtlefuse->eeprom_thermalmeter & 0x1f);
1921 	rtlefuse->tssi_13dbm = rtlefuse->eeprom_thermalmeter * 100;
1922 
1923 	/* Read CrystalCap from EEPROM */
1924 	tempval = (*(u8 *)&hwinfo[EEPROM_CRYSTALCAP]) >> 4;
1925 	rtlefuse->eeprom_crystalcap = tempval;
1926 	/* CrystalCap, BIT(12)~15 */
1927 	rtlefuse->crystalcap = rtlefuse->eeprom_crystalcap;
1928 
1929 	/* Read IC Version && Channel Plan */
1930 	/* Version ID, Channel plan */
1931 	rtlefuse->eeprom_channelplan = *(u8 *)&hwinfo[EEPROM_CHANNELPLAN];
1932 	rtlefuse->txpwr_fromeprom = true;
1933 	RTPRINT(rtlpriv, FINIT, INIT_TxPower,
1934 		"EEPROM ChannelPlan = 0x%4x\n", rtlefuse->eeprom_channelplan);
1935 
1936 	/* Read Customer ID or Board Type!!! */
1937 	tempval = *(u8 *)&hwinfo[EEPROM_BOARDTYPE];
1938 	/* Change RF type definition */
1939 	if (tempval == 0)
1940 		rtlphy->rf_type = RF_2T2R;
1941 	else if (tempval == 1)
1942 		rtlphy->rf_type = RF_1T2R;
1943 	else if (tempval == 2)
1944 		rtlphy->rf_type = RF_1T2R;
1945 	else if (tempval == 3)
1946 		rtlphy->rf_type = RF_1T1R;
1947 
1948 	/* 1T2R but 1SS (1x1 receive combining) */
1949 	rtlefuse->b1x1_recvcombine = false;
1950 	if (rtlphy->rf_type == RF_1T2R) {
1951 		tempval = rtl_read_byte(rtlpriv, 0x07);
1952 		if (!(tempval & BIT(0))) {
1953 			rtlefuse->b1x1_recvcombine = true;
1954 			RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
1955 				 "RF_TYPE=1T2R but only 1SS\n");
1956 		}
1957 	}
1958 	rtlefuse->b1ss_support = rtlefuse->b1x1_recvcombine;
1959 	rtlefuse->eeprom_oemid = *(u8 *)&hwinfo[EEPROM_CUSTOMID];
1960 
1961 	RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "EEPROM Customer ID: 0x%2x",
1962 		 rtlefuse->eeprom_oemid);
1963 
1964 	/* set channel paln to world wide 13 */
1965 	rtlefuse->channel_plan = COUNTRY_CODE_WORLD_WIDE_13;
1966 }
1967 
rtl92se_read_eeprom_info(struct ieee80211_hw * hw)1968 void rtl92se_read_eeprom_info(struct ieee80211_hw *hw)
1969 {
1970 	struct rtl_priv *rtlpriv = rtl_priv(hw);
1971 	struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
1972 	u8 tmp_u1b = 0;
1973 
1974 	tmp_u1b = rtl_read_byte(rtlpriv, EPROM_CMD);
1975 
1976 	if (tmp_u1b & BIT(4)) {
1977 		RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG, "Boot from EEPROM\n");
1978 		rtlefuse->epromtype = EEPROM_93C46;
1979 	} else {
1980 		RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG, "Boot from EFUSE\n");
1981 		rtlefuse->epromtype = EEPROM_BOOT_EFUSE;
1982 	}
1983 
1984 	if (tmp_u1b & BIT(5)) {
1985 		RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "Autoload OK\n");
1986 		rtlefuse->autoload_failflag = false;
1987 		_rtl92se_read_adapter_info(hw);
1988 	} else {
1989 		RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG, "Autoload ERR!!\n");
1990 		rtlefuse->autoload_failflag = true;
1991 	}
1992 }
1993 
rtl92se_update_hal_rate_table(struct ieee80211_hw * hw,struct ieee80211_sta * sta)1994 static void rtl92se_update_hal_rate_table(struct ieee80211_hw *hw,
1995 					  struct ieee80211_sta *sta)
1996 {
1997 	struct rtl_priv *rtlpriv = rtl_priv(hw);
1998 	struct rtl_phy *rtlphy = &(rtlpriv->phy);
1999 	struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
2000 	struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
2001 	u32 ratr_value;
2002 	u8 ratr_index = 0;
2003 	u8 nmode = mac->ht_enable;
2004 	u8 mimo_ps = IEEE80211_SMPS_OFF;
2005 	u16 shortgi_rate = 0;
2006 	u32 tmp_ratr_value = 0;
2007 	u8 curtxbw_40mhz = mac->bw_40;
2008 	u8 curshortgi_40mhz = (sta->ht_cap.cap & IEEE80211_HT_CAP_SGI_40) ?
2009 				1 : 0;
2010 	u8 curshortgi_20mhz = (sta->ht_cap.cap & IEEE80211_HT_CAP_SGI_20) ?
2011 				1 : 0;
2012 	enum wireless_mode wirelessmode = mac->mode;
2013 
2014 	if (rtlhal->current_bandtype == BAND_ON_5G)
2015 		ratr_value = sta->supp_rates[1] << 4;
2016 	else
2017 		ratr_value = sta->supp_rates[0];
2018 	ratr_value |= (sta->ht_cap.mcs.rx_mask[1] << 20 |
2019 			sta->ht_cap.mcs.rx_mask[0] << 12);
2020 	switch (wirelessmode) {
2021 	case WIRELESS_MODE_B:
2022 		ratr_value &= 0x0000000D;
2023 		break;
2024 	case WIRELESS_MODE_G:
2025 		ratr_value &= 0x00000FF5;
2026 		break;
2027 	case WIRELESS_MODE_N_24G:
2028 	case WIRELESS_MODE_N_5G:
2029 		nmode = 1;
2030 		if (mimo_ps == IEEE80211_SMPS_STATIC) {
2031 			ratr_value &= 0x0007F005;
2032 		} else {
2033 			u32 ratr_mask;
2034 
2035 			if (get_rf_type(rtlphy) == RF_1T2R ||
2036 			    get_rf_type(rtlphy) == RF_1T1R) {
2037 				if (curtxbw_40mhz)
2038 					ratr_mask = 0x000ff015;
2039 				else
2040 					ratr_mask = 0x000ff005;
2041 			} else {
2042 				if (curtxbw_40mhz)
2043 					ratr_mask = 0x0f0ff015;
2044 				else
2045 					ratr_mask = 0x0f0ff005;
2046 			}
2047 
2048 			ratr_value &= ratr_mask;
2049 		}
2050 		break;
2051 	default:
2052 		if (rtlphy->rf_type == RF_1T2R)
2053 			ratr_value &= 0x000ff0ff;
2054 		else
2055 			ratr_value &= 0x0f0ff0ff;
2056 
2057 		break;
2058 	}
2059 
2060 	if (rtlpriv->rtlhal.version >= VERSION_8192S_BCUT)
2061 		ratr_value &= 0x0FFFFFFF;
2062 	else if (rtlpriv->rtlhal.version == VERSION_8192S_ACUT)
2063 		ratr_value &= 0x0FFFFFF0;
2064 
2065 	if (nmode && ((curtxbw_40mhz &&
2066 			 curshortgi_40mhz) || (!curtxbw_40mhz &&
2067 						 curshortgi_20mhz))) {
2068 
2069 		ratr_value |= 0x10000000;
2070 		tmp_ratr_value = (ratr_value >> 12);
2071 
2072 		for (shortgi_rate = 15; shortgi_rate > 0; shortgi_rate--) {
2073 			if ((1 << shortgi_rate) & tmp_ratr_value)
2074 				break;
2075 		}
2076 
2077 		shortgi_rate = (shortgi_rate << 12) | (shortgi_rate << 8) |
2078 		    (shortgi_rate << 4) | (shortgi_rate);
2079 
2080 		rtl_write_byte(rtlpriv, SG_RATE, shortgi_rate);
2081 	}
2082 
2083 	rtl_write_dword(rtlpriv, ARFR0 + ratr_index * 4, ratr_value);
2084 	if (ratr_value & 0xfffff000)
2085 		rtl92s_phy_set_fw_cmd(hw, FW_CMD_RA_REFRESH_N);
2086 	else
2087 		rtl92s_phy_set_fw_cmd(hw, FW_CMD_RA_REFRESH_BG);
2088 
2089 	RT_TRACE(rtlpriv, COMP_RATR, DBG_DMESG, "%x\n",
2090 		 rtl_read_dword(rtlpriv, ARFR0));
2091 }
2092 
rtl92se_update_hal_rate_mask(struct ieee80211_hw * hw,struct ieee80211_sta * sta,u8 rssi_level)2093 static void rtl92se_update_hal_rate_mask(struct ieee80211_hw *hw,
2094 					 struct ieee80211_sta *sta,
2095 					 u8 rssi_level)
2096 {
2097 	struct rtl_priv *rtlpriv = rtl_priv(hw);
2098 	struct rtl_phy *rtlphy = &(rtlpriv->phy);
2099 	struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
2100 	struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
2101 	struct rtl_sta_info *sta_entry = NULL;
2102 	u32 ratr_bitmap;
2103 	u8 ratr_index = 0;
2104 	u8 curtxbw_40mhz = (sta->ht_cap.cap & IEEE80211_HT_CAP_SUP_WIDTH_20_40)
2105 				? 1 : 0;
2106 	u8 curshortgi_40mhz = (sta->ht_cap.cap & IEEE80211_HT_CAP_SGI_40) ?
2107 				1 : 0;
2108 	u8 curshortgi_20mhz = (sta->ht_cap.cap & IEEE80211_HT_CAP_SGI_20) ?
2109 				1 : 0;
2110 	enum wireless_mode wirelessmode = 0;
2111 	bool shortgi = false;
2112 	u32 ratr_value = 0;
2113 	u8 shortgi_rate = 0;
2114 	u32 mask = 0;
2115 	u32 band = 0;
2116 	bool bmulticast = false;
2117 	u8 macid = 0;
2118 	u8 mimo_ps = IEEE80211_SMPS_OFF;
2119 
2120 	sta_entry = (struct rtl_sta_info *) sta->drv_priv;
2121 	wirelessmode = sta_entry->wireless_mode;
2122 	if (mac->opmode == NL80211_IFTYPE_STATION)
2123 		curtxbw_40mhz = mac->bw_40;
2124 	else if (mac->opmode == NL80211_IFTYPE_AP ||
2125 		mac->opmode == NL80211_IFTYPE_ADHOC)
2126 		macid = sta->aid + 1;
2127 
2128 	if (rtlhal->current_bandtype == BAND_ON_5G)
2129 		ratr_bitmap = sta->supp_rates[1] << 4;
2130 	else
2131 		ratr_bitmap = sta->supp_rates[0];
2132 	ratr_bitmap |= (sta->ht_cap.mcs.rx_mask[1] << 20 |
2133 			sta->ht_cap.mcs.rx_mask[0] << 12);
2134 	switch (wirelessmode) {
2135 	case WIRELESS_MODE_B:
2136 		band |= WIRELESS_11B;
2137 		ratr_index = RATR_INX_WIRELESS_B;
2138 		if (ratr_bitmap & 0x0000000c)
2139 			ratr_bitmap &= 0x0000000d;
2140 		else
2141 			ratr_bitmap &= 0x0000000f;
2142 		break;
2143 	case WIRELESS_MODE_G:
2144 		band |= (WIRELESS_11G | WIRELESS_11B);
2145 		ratr_index = RATR_INX_WIRELESS_GB;
2146 
2147 		if (rssi_level == 1)
2148 			ratr_bitmap &= 0x00000f00;
2149 		else if (rssi_level == 2)
2150 			ratr_bitmap &= 0x00000ff0;
2151 		else
2152 			ratr_bitmap &= 0x00000ff5;
2153 		break;
2154 	case WIRELESS_MODE_A:
2155 		band |= WIRELESS_11A;
2156 		ratr_index = RATR_INX_WIRELESS_A;
2157 		ratr_bitmap &= 0x00000ff0;
2158 		break;
2159 	case WIRELESS_MODE_N_24G:
2160 	case WIRELESS_MODE_N_5G:
2161 		band |= (WIRELESS_11N | WIRELESS_11G | WIRELESS_11B);
2162 		ratr_index = RATR_INX_WIRELESS_NGB;
2163 
2164 		if (mimo_ps == IEEE80211_SMPS_STATIC) {
2165 			if (rssi_level == 1)
2166 				ratr_bitmap &= 0x00070000;
2167 			else if (rssi_level == 2)
2168 				ratr_bitmap &= 0x0007f000;
2169 			else
2170 				ratr_bitmap &= 0x0007f005;
2171 		} else {
2172 			if (rtlphy->rf_type == RF_1T2R ||
2173 				rtlphy->rf_type == RF_1T1R) {
2174 				if (rssi_level == 1) {
2175 						ratr_bitmap &= 0x000f0000;
2176 				} else if (rssi_level == 3) {
2177 					ratr_bitmap &= 0x000fc000;
2178 				} else if (rssi_level == 5) {
2179 						ratr_bitmap &= 0x000ff000;
2180 				} else {
2181 					if (curtxbw_40mhz)
2182 						ratr_bitmap &= 0x000ff015;
2183 					else
2184 						ratr_bitmap &= 0x000ff005;
2185 				}
2186 			} else {
2187 				if (rssi_level == 1) {
2188 					ratr_bitmap &= 0x0f8f0000;
2189 				} else if (rssi_level == 3) {
2190 					ratr_bitmap &= 0x0f8fc000;
2191 				} else if (rssi_level == 5) {
2192 					ratr_bitmap &= 0x0f8ff000;
2193 				} else {
2194 					if (curtxbw_40mhz)
2195 						ratr_bitmap &= 0x0f8ff015;
2196 					else
2197 						ratr_bitmap &= 0x0f8ff005;
2198 				}
2199 			}
2200 		}
2201 
2202 		if ((curtxbw_40mhz && curshortgi_40mhz) ||
2203 		    (!curtxbw_40mhz && curshortgi_20mhz)) {
2204 			if (macid == 0)
2205 				shortgi = true;
2206 			else if (macid == 1)
2207 				shortgi = false;
2208 		}
2209 		break;
2210 	default:
2211 		band |= (WIRELESS_11N | WIRELESS_11G | WIRELESS_11B);
2212 		ratr_index = RATR_INX_WIRELESS_NGB;
2213 
2214 		if (rtlphy->rf_type == RF_1T2R)
2215 			ratr_bitmap &= 0x000ff0ff;
2216 		else
2217 			ratr_bitmap &= 0x0f8ff0ff;
2218 		break;
2219 	}
2220 
2221 	if (rtlpriv->rtlhal.version >= VERSION_8192S_BCUT)
2222 		ratr_bitmap &= 0x0FFFFFFF;
2223 	else if (rtlpriv->rtlhal.version == VERSION_8192S_ACUT)
2224 		ratr_bitmap &= 0x0FFFFFF0;
2225 
2226 	if (shortgi) {
2227 		ratr_bitmap |= 0x10000000;
2228 		/* Get MAX MCS available. */
2229 		ratr_value = (ratr_bitmap >> 12);
2230 		for (shortgi_rate = 15; shortgi_rate > 0; shortgi_rate--) {
2231 			if ((1 << shortgi_rate) & ratr_value)
2232 				break;
2233 		}
2234 
2235 		shortgi_rate = (shortgi_rate << 12) | (shortgi_rate << 8) |
2236 			(shortgi_rate << 4) | (shortgi_rate);
2237 		rtl_write_byte(rtlpriv, SG_RATE, shortgi_rate);
2238 	}
2239 
2240 	mask |= (bmulticast ? 1 : 0) << 9 | (macid & 0x1f) << 4 | (band & 0xf);
2241 
2242 	RT_TRACE(rtlpriv, COMP_RATR, DBG_TRACE, "mask = %x, bitmap = %x\n",
2243 		 mask, ratr_bitmap);
2244 	rtl_write_dword(rtlpriv, 0x2c4, ratr_bitmap);
2245 	rtl_write_dword(rtlpriv, WFM5, (FW_RA_UPDATE_MASK | (mask << 8)));
2246 
2247 	if (macid != 0)
2248 		sta_entry->ratr_index = ratr_index;
2249 }
2250 
rtl92se_update_hal_rate_tbl(struct ieee80211_hw * hw,struct ieee80211_sta * sta,u8 rssi_level)2251 void rtl92se_update_hal_rate_tbl(struct ieee80211_hw *hw,
2252 		struct ieee80211_sta *sta, u8 rssi_level)
2253 {
2254 	struct rtl_priv *rtlpriv = rtl_priv(hw);
2255 
2256 	if (rtlpriv->dm.useramask)
2257 		rtl92se_update_hal_rate_mask(hw, sta, rssi_level);
2258 	else
2259 		rtl92se_update_hal_rate_table(hw, sta);
2260 }
2261 
rtl92se_update_channel_access_setting(struct ieee80211_hw * hw)2262 void rtl92se_update_channel_access_setting(struct ieee80211_hw *hw)
2263 {
2264 	struct rtl_priv *rtlpriv = rtl_priv(hw);
2265 	struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
2266 	u16 sifs_timer;
2267 
2268 	rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_SLOT_TIME,
2269 				      (u8 *)&mac->slot_time);
2270 	sifs_timer = 0x0e0e;
2271 	rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_SIFS, (u8 *)&sifs_timer);
2272 
2273 }
2274 
2275 /* this ifunction is for RFKILL, it's different with windows,
2276  * because UI will disable wireless when GPIO Radio Off.
2277  * And here we not check or Disable/Enable ASPM like windows*/
rtl92se_gpio_radio_on_off_checking(struct ieee80211_hw * hw,u8 * valid)2278 bool rtl92se_gpio_radio_on_off_checking(struct ieee80211_hw *hw, u8 *valid)
2279 {
2280 	struct rtl_priv *rtlpriv = rtl_priv(hw);
2281 	struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
2282 	struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
2283 	enum rf_pwrstate rfpwr_toset /*, cur_rfstate */;
2284 	unsigned long flag = 0;
2285 	bool actuallyset = false;
2286 	bool turnonbypowerdomain = false;
2287 
2288 	/* just 8191se can check gpio before firstup, 92c/92d have fixed it */
2289 	if ((rtlpci->up_first_time == 1) || (rtlpci->being_init_adapter))
2290 		return false;
2291 
2292 	if (ppsc->swrf_processing)
2293 		return false;
2294 
2295 	spin_lock_irqsave(&rtlpriv->locks.rf_ps_lock, flag);
2296 	if (ppsc->rfchange_inprogress) {
2297 		spin_unlock_irqrestore(&rtlpriv->locks.rf_ps_lock, flag);
2298 		return false;
2299 	} else {
2300 		ppsc->rfchange_inprogress = true;
2301 		spin_unlock_irqrestore(&rtlpriv->locks.rf_ps_lock, flag);
2302 	}
2303 
2304 	/* cur_rfstate = ppsc->rfpwr_state;*/
2305 
2306 	/* because after _rtl92s_phy_set_rfhalt, all power
2307 	 * closed, so we must open some power for GPIO check,
2308 	 * or we will always check GPIO RFOFF here,
2309 	 * And we should close power after GPIO check */
2310 	if (RT_IN_PS_LEVEL(ppsc, RT_RF_OFF_LEVL_HALT_NIC)) {
2311 		_rtl92se_power_domain_init(hw);
2312 		turnonbypowerdomain = true;
2313 	}
2314 
2315 	rfpwr_toset = _rtl92se_rf_onoff_detect(hw);
2316 
2317 	if ((ppsc->hwradiooff) && (rfpwr_toset == ERFON)) {
2318 		RT_TRACE(rtlpriv, COMP_RF, DBG_DMESG,
2319 			 "RFKILL-HW Radio ON, RF ON\n");
2320 
2321 		rfpwr_toset = ERFON;
2322 		ppsc->hwradiooff = false;
2323 		actuallyset = true;
2324 	} else if ((!ppsc->hwradiooff) && (rfpwr_toset == ERFOFF)) {
2325 		RT_TRACE(rtlpriv, COMP_RF,
2326 			 DBG_DMESG, "RFKILL-HW Radio OFF, RF OFF\n");
2327 
2328 		rfpwr_toset = ERFOFF;
2329 		ppsc->hwradiooff = true;
2330 		actuallyset = true;
2331 	}
2332 
2333 	if (actuallyset) {
2334 		spin_lock_irqsave(&rtlpriv->locks.rf_ps_lock, flag);
2335 		ppsc->rfchange_inprogress = false;
2336 		spin_unlock_irqrestore(&rtlpriv->locks.rf_ps_lock, flag);
2337 
2338 	/* this not include ifconfig wlan0 down case */
2339 	/* } else if (rfpwr_toset == ERFOFF || cur_rfstate == ERFOFF) { */
2340 	} else {
2341 		/* because power_domain_init may be happen when
2342 		 * _rtl92s_phy_set_rfhalt, this will open some powers
2343 		 * and cause current increasing about 40 mA for ips,
2344 		 * rfoff and ifconfig down, so we set
2345 		 * _rtl92s_phy_set_rfhalt again here */
2346 		if (ppsc->reg_rfps_level & RT_RF_OFF_LEVL_HALT_NIC &&
2347 			turnonbypowerdomain) {
2348 			_rtl92s_phy_set_rfhalt(hw);
2349 			RT_SET_PS_LEVEL(ppsc, RT_RF_OFF_LEVL_HALT_NIC);
2350 		}
2351 
2352 		spin_lock_irqsave(&rtlpriv->locks.rf_ps_lock, flag);
2353 		ppsc->rfchange_inprogress = false;
2354 		spin_unlock_irqrestore(&rtlpriv->locks.rf_ps_lock, flag);
2355 	}
2356 
2357 	*valid = 1;
2358 	return !ppsc->hwradiooff;
2359 
2360 }
2361 
2362 /* Is_wepkey just used for WEP used as group & pairwise key
2363  * if pairwise is AES ang group is WEP Is_wepkey == false.*/
rtl92se_set_key(struct ieee80211_hw * hw,u32 key_index,u8 * p_macaddr,bool is_group,u8 enc_algo,bool is_wepkey,bool clear_all)2364 void rtl92se_set_key(struct ieee80211_hw *hw, u32 key_index, u8 *p_macaddr,
2365 	bool is_group, u8 enc_algo, bool is_wepkey, bool clear_all)
2366 {
2367 	struct rtl_priv *rtlpriv = rtl_priv(hw);
2368 	struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
2369 	struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
2370 	u8 *macaddr = p_macaddr;
2371 
2372 	u32 entry_id = 0;
2373 	bool is_pairwise = false;
2374 
2375 	static u8 cam_const_addr[4][6] = {
2376 		{0x00, 0x00, 0x00, 0x00, 0x00, 0x00},
2377 		{0x00, 0x00, 0x00, 0x00, 0x00, 0x01},
2378 		{0x00, 0x00, 0x00, 0x00, 0x00, 0x02},
2379 		{0x00, 0x00, 0x00, 0x00, 0x00, 0x03}
2380 	};
2381 	static u8 cam_const_broad[] = {
2382 		0xff, 0xff, 0xff, 0xff, 0xff, 0xff
2383 	};
2384 
2385 	if (clear_all) {
2386 		u8 idx = 0;
2387 		u8 cam_offset = 0;
2388 		u8 clear_number = 5;
2389 
2390 		RT_TRACE(rtlpriv, COMP_SEC, DBG_DMESG, "clear_all\n");
2391 
2392 		for (idx = 0; idx < clear_number; idx++) {
2393 			rtl_cam_mark_invalid(hw, cam_offset + idx);
2394 			rtl_cam_empty_entry(hw, cam_offset + idx);
2395 
2396 			if (idx < 5) {
2397 				memset(rtlpriv->sec.key_buf[idx], 0,
2398 				       MAX_KEY_LEN);
2399 				rtlpriv->sec.key_len[idx] = 0;
2400 			}
2401 		}
2402 
2403 	} else {
2404 		switch (enc_algo) {
2405 		case WEP40_ENCRYPTION:
2406 			enc_algo = CAM_WEP40;
2407 			break;
2408 		case WEP104_ENCRYPTION:
2409 			enc_algo = CAM_WEP104;
2410 			break;
2411 		case TKIP_ENCRYPTION:
2412 			enc_algo = CAM_TKIP;
2413 			break;
2414 		case AESCCMP_ENCRYPTION:
2415 			enc_algo = CAM_AES;
2416 			break;
2417 		default:
2418 			RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
2419 				 "switch case not processed\n");
2420 			enc_algo = CAM_TKIP;
2421 			break;
2422 		}
2423 
2424 		if (is_wepkey || rtlpriv->sec.use_defaultkey) {
2425 			macaddr = cam_const_addr[key_index];
2426 			entry_id = key_index;
2427 		} else {
2428 			if (is_group) {
2429 				macaddr = cam_const_broad;
2430 				entry_id = key_index;
2431 			} else {
2432 				if (mac->opmode == NL80211_IFTYPE_AP) {
2433 					entry_id = rtl_cam_get_free_entry(hw,
2434 								 p_macaddr);
2435 					if (entry_id >=  TOTAL_CAM_ENTRY) {
2436 						RT_TRACE(rtlpriv,
2437 							 COMP_SEC, DBG_EMERG,
2438 							 "Can not find free hw security cam entry\n");
2439 						return;
2440 					}
2441 				} else {
2442 					entry_id = CAM_PAIRWISE_KEY_POSITION;
2443 				}
2444 
2445 				key_index = PAIRWISE_KEYIDX;
2446 				is_pairwise = true;
2447 			}
2448 		}
2449 
2450 		if (rtlpriv->sec.key_len[key_index] == 0) {
2451 			RT_TRACE(rtlpriv, COMP_SEC, DBG_DMESG,
2452 				 "delete one entry, entry_id is %d\n",
2453 				 entry_id);
2454 			if (mac->opmode == NL80211_IFTYPE_AP)
2455 				rtl_cam_del_entry(hw, p_macaddr);
2456 			rtl_cam_delete_one_entry(hw, p_macaddr, entry_id);
2457 		} else {
2458 			RT_TRACE(rtlpriv, COMP_SEC, DBG_LOUD,
2459 				 "The insert KEY length is %d\n",
2460 				 rtlpriv->sec.key_len[PAIRWISE_KEYIDX]);
2461 			RT_TRACE(rtlpriv, COMP_SEC, DBG_LOUD,
2462 				 "The insert KEY is %x %x\n",
2463 				 rtlpriv->sec.key_buf[0][0],
2464 				 rtlpriv->sec.key_buf[0][1]);
2465 
2466 			RT_TRACE(rtlpriv, COMP_SEC, DBG_DMESG,
2467 				 "add one entry\n");
2468 			if (is_pairwise) {
2469 				RT_PRINT_DATA(rtlpriv, COMP_SEC, DBG_LOUD,
2470 					      "Pairwise Key content",
2471 					      rtlpriv->sec.pairwise_key,
2472 					      rtlpriv->sec.
2473 					      key_len[PAIRWISE_KEYIDX]);
2474 
2475 				RT_TRACE(rtlpriv, COMP_SEC, DBG_DMESG,
2476 					 "set Pairwise key\n");
2477 
2478 				rtl_cam_add_one_entry(hw, macaddr, key_index,
2479 					entry_id, enc_algo,
2480 					CAM_CONFIG_NO_USEDK,
2481 					rtlpriv->sec.key_buf[key_index]);
2482 			} else {
2483 				RT_TRACE(rtlpriv, COMP_SEC, DBG_DMESG,
2484 					 "set group key\n");
2485 
2486 				if (mac->opmode == NL80211_IFTYPE_ADHOC) {
2487 					rtl_cam_add_one_entry(hw,
2488 						rtlefuse->dev_addr,
2489 						PAIRWISE_KEYIDX,
2490 						CAM_PAIRWISE_KEY_POSITION,
2491 						enc_algo, CAM_CONFIG_NO_USEDK,
2492 						rtlpriv->sec.key_buf[entry_id]);
2493 				}
2494 
2495 				rtl_cam_add_one_entry(hw, macaddr, key_index,
2496 					      entry_id, enc_algo,
2497 					      CAM_CONFIG_NO_USEDK,
2498 					      rtlpriv->sec.key_buf[entry_id]);
2499 			}
2500 
2501 		}
2502 	}
2503 }
2504 
rtl92se_suspend(struct ieee80211_hw * hw)2505 void rtl92se_suspend(struct ieee80211_hw *hw)
2506 {
2507 	struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
2508 
2509 	rtlpci->up_first_time = true;
2510 }
2511 
rtl92se_resume(struct ieee80211_hw * hw)2512 void rtl92se_resume(struct ieee80211_hw *hw)
2513 {
2514 	struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
2515 	u32 val;
2516 
2517 	pci_read_config_dword(rtlpci->pdev, 0x40, &val);
2518 	if ((val & 0x0000ff00) != 0)
2519 		pci_write_config_dword(rtlpci->pdev, 0x40,
2520 			val & 0xffff00ff);
2521 }
2522