1 /*
2 * RT-Mutexes: simple blocking mutual exclusion locks with PI support
3 *
4 * started by Ingo Molnar and Thomas Gleixner.
5 *
6 * Copyright (C) 2004-2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
7 * Copyright (C) 2005-2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
8 * Copyright (C) 2005 Kihon Technologies Inc., Steven Rostedt
9 * Copyright (C) 2006 Esben Nielsen
10 *
11 * See Documentation/rt-mutex-design.txt for details.
12 */
13 #include <linux/spinlock.h>
14 #include <linux/module.h>
15 #include <linux/sched.h>
16 #include <linux/timer.h>
17
18 #include "rtmutex_common.h"
19
20 /*
21 * lock->owner state tracking:
22 *
23 * lock->owner holds the task_struct pointer of the owner. Bit 0
24 * is used to keep track of the "lock has waiters" state.
25 *
26 * owner bit0
27 * NULL 0 lock is free (fast acquire possible)
28 * NULL 1 lock is free and has waiters and the top waiter
29 * is going to take the lock*
30 * taskpointer 0 lock is held (fast release possible)
31 * taskpointer 1 lock is held and has waiters**
32 *
33 * The fast atomic compare exchange based acquire and release is only
34 * possible when bit 0 of lock->owner is 0.
35 *
36 * (*) It also can be a transitional state when grabbing the lock
37 * with ->wait_lock is held. To prevent any fast path cmpxchg to the lock,
38 * we need to set the bit0 before looking at the lock, and the owner may be
39 * NULL in this small time, hence this can be a transitional state.
40 *
41 * (**) There is a small time when bit 0 is set but there are no
42 * waiters. This can happen when grabbing the lock in the slow path.
43 * To prevent a cmpxchg of the owner releasing the lock, we need to
44 * set this bit before looking at the lock.
45 */
46
47 static void
rt_mutex_set_owner(struct rt_mutex * lock,struct task_struct * owner)48 rt_mutex_set_owner(struct rt_mutex *lock, struct task_struct *owner)
49 {
50 unsigned long val = (unsigned long)owner;
51
52 if (rt_mutex_has_waiters(lock))
53 val |= RT_MUTEX_HAS_WAITERS;
54
55 lock->owner = (struct task_struct *)val;
56 }
57
clear_rt_mutex_waiters(struct rt_mutex * lock)58 static inline void clear_rt_mutex_waiters(struct rt_mutex *lock)
59 {
60 lock->owner = (struct task_struct *)
61 ((unsigned long)lock->owner & ~RT_MUTEX_HAS_WAITERS);
62 }
63
fixup_rt_mutex_waiters(struct rt_mutex * lock)64 static void fixup_rt_mutex_waiters(struct rt_mutex *lock)
65 {
66 if (!rt_mutex_has_waiters(lock))
67 clear_rt_mutex_waiters(lock);
68 }
69
70 /*
71 * We can speed up the acquire/release, if the architecture
72 * supports cmpxchg and if there's no debugging state to be set up
73 */
74 #if defined(__HAVE_ARCH_CMPXCHG) && !defined(CONFIG_DEBUG_RT_MUTEXES)
75 # define rt_mutex_cmpxchg(l,c,n) (cmpxchg(&l->owner, c, n) == c)
mark_rt_mutex_waiters(struct rt_mutex * lock)76 static inline void mark_rt_mutex_waiters(struct rt_mutex *lock)
77 {
78 unsigned long owner, *p = (unsigned long *) &lock->owner;
79
80 do {
81 owner = *p;
82 } while (cmpxchg(p, owner, owner | RT_MUTEX_HAS_WAITERS) != owner);
83 }
84 #else
85 # define rt_mutex_cmpxchg(l,c,n) (0)
mark_rt_mutex_waiters(struct rt_mutex * lock)86 static inline void mark_rt_mutex_waiters(struct rt_mutex *lock)
87 {
88 lock->owner = (struct task_struct *)
89 ((unsigned long)lock->owner | RT_MUTEX_HAS_WAITERS);
90 }
91 #endif
92
93 /*
94 * Calculate task priority from the waiter list priority
95 *
96 * Return task->normal_prio when the waiter list is empty or when
97 * the waiter is not allowed to do priority boosting
98 */
rt_mutex_getprio(struct task_struct * task)99 int rt_mutex_getprio(struct task_struct *task)
100 {
101 if (likely(!task_has_pi_waiters(task)))
102 return task->normal_prio;
103
104 return min(task_top_pi_waiter(task)->pi_list_entry.prio,
105 task->normal_prio);
106 }
107
108 /*
109 * Adjust the priority of a task, after its pi_waiters got modified.
110 *
111 * This can be both boosting and unboosting. task->pi_lock must be held.
112 */
__rt_mutex_adjust_prio(struct task_struct * task)113 static void __rt_mutex_adjust_prio(struct task_struct *task)
114 {
115 int prio = rt_mutex_getprio(task);
116
117 if (task->prio != prio)
118 rt_mutex_setprio(task, prio);
119 }
120
121 /*
122 * Adjust task priority (undo boosting). Called from the exit path of
123 * rt_mutex_slowunlock() and rt_mutex_slowlock().
124 *
125 * (Note: We do this outside of the protection of lock->wait_lock to
126 * allow the lock to be taken while or before we readjust the priority
127 * of task. We do not use the spin_xx_mutex() variants here as we are
128 * outside of the debug path.)
129 */
rt_mutex_adjust_prio(struct task_struct * task)130 static void rt_mutex_adjust_prio(struct task_struct *task)
131 {
132 unsigned long flags;
133
134 raw_spin_lock_irqsave(&task->pi_lock, flags);
135 __rt_mutex_adjust_prio(task);
136 raw_spin_unlock_irqrestore(&task->pi_lock, flags);
137 }
138
139 /*
140 * Max number of times we'll walk the boosting chain:
141 */
142 int max_lock_depth = 1024;
143
144 /*
145 * Adjust the priority chain. Also used for deadlock detection.
146 * Decreases task's usage by one - may thus free the task.
147 * Returns 0 or -EDEADLK.
148 */
rt_mutex_adjust_prio_chain(struct task_struct * task,int deadlock_detect,struct rt_mutex * orig_lock,struct rt_mutex_waiter * orig_waiter,struct task_struct * top_task)149 static int rt_mutex_adjust_prio_chain(struct task_struct *task,
150 int deadlock_detect,
151 struct rt_mutex *orig_lock,
152 struct rt_mutex_waiter *orig_waiter,
153 struct task_struct *top_task)
154 {
155 struct rt_mutex *lock;
156 struct rt_mutex_waiter *waiter, *top_waiter = orig_waiter;
157 int detect_deadlock, ret = 0, depth = 0;
158 unsigned long flags;
159
160 detect_deadlock = debug_rt_mutex_detect_deadlock(orig_waiter,
161 deadlock_detect);
162
163 /*
164 * The (de)boosting is a step by step approach with a lot of
165 * pitfalls. We want this to be preemptible and we want hold a
166 * maximum of two locks per step. So we have to check
167 * carefully whether things change under us.
168 */
169 again:
170 if (++depth > max_lock_depth) {
171 static int prev_max;
172
173 /*
174 * Print this only once. If the admin changes the limit,
175 * print a new message when reaching the limit again.
176 */
177 if (prev_max != max_lock_depth) {
178 prev_max = max_lock_depth;
179 printk(KERN_WARNING "Maximum lock depth %d reached "
180 "task: %s (%d)\n", max_lock_depth,
181 top_task->comm, task_pid_nr(top_task));
182 }
183 put_task_struct(task);
184
185 return deadlock_detect ? -EDEADLK : 0;
186 }
187 retry:
188 /*
189 * Task can not go away as we did a get_task() before !
190 */
191 raw_spin_lock_irqsave(&task->pi_lock, flags);
192
193 waiter = task->pi_blocked_on;
194 /*
195 * Check whether the end of the boosting chain has been
196 * reached or the state of the chain has changed while we
197 * dropped the locks.
198 */
199 if (!waiter)
200 goto out_unlock_pi;
201
202 /*
203 * Check the orig_waiter state. After we dropped the locks,
204 * the previous owner of the lock might have released the lock.
205 */
206 if (orig_waiter && !rt_mutex_owner(orig_lock))
207 goto out_unlock_pi;
208
209 /*
210 * Drop out, when the task has no waiters. Note,
211 * top_waiter can be NULL, when we are in the deboosting
212 * mode!
213 */
214 if (top_waiter && (!task_has_pi_waiters(task) ||
215 top_waiter != task_top_pi_waiter(task)))
216 goto out_unlock_pi;
217
218 /*
219 * When deadlock detection is off then we check, if further
220 * priority adjustment is necessary.
221 */
222 if (!detect_deadlock && waiter->list_entry.prio == task->prio)
223 goto out_unlock_pi;
224
225 lock = waiter->lock;
226 if (!raw_spin_trylock(&lock->wait_lock)) {
227 raw_spin_unlock_irqrestore(&task->pi_lock, flags);
228 cpu_relax();
229 goto retry;
230 }
231
232 /* Deadlock detection */
233 if (lock == orig_lock || rt_mutex_owner(lock) == top_task) {
234 debug_rt_mutex_deadlock(deadlock_detect, orig_waiter, lock);
235 raw_spin_unlock(&lock->wait_lock);
236 ret = deadlock_detect ? -EDEADLK : 0;
237 goto out_unlock_pi;
238 }
239
240 top_waiter = rt_mutex_top_waiter(lock);
241
242 /* Requeue the waiter */
243 plist_del(&waiter->list_entry, &lock->wait_list);
244 waiter->list_entry.prio = task->prio;
245 plist_add(&waiter->list_entry, &lock->wait_list);
246
247 /* Release the task */
248 raw_spin_unlock_irqrestore(&task->pi_lock, flags);
249 if (!rt_mutex_owner(lock)) {
250 /*
251 * If the requeue above changed the top waiter, then we need
252 * to wake the new top waiter up to try to get the lock.
253 */
254
255 if (top_waiter != rt_mutex_top_waiter(lock))
256 wake_up_process(rt_mutex_top_waiter(lock)->task);
257 raw_spin_unlock(&lock->wait_lock);
258 goto out_put_task;
259 }
260 put_task_struct(task);
261
262 /* Grab the next task */
263 task = rt_mutex_owner(lock);
264 get_task_struct(task);
265 raw_spin_lock_irqsave(&task->pi_lock, flags);
266
267 if (waiter == rt_mutex_top_waiter(lock)) {
268 /* Boost the owner */
269 plist_del(&top_waiter->pi_list_entry, &task->pi_waiters);
270 waiter->pi_list_entry.prio = waiter->list_entry.prio;
271 plist_add(&waiter->pi_list_entry, &task->pi_waiters);
272 __rt_mutex_adjust_prio(task);
273
274 } else if (top_waiter == waiter) {
275 /* Deboost the owner */
276 plist_del(&waiter->pi_list_entry, &task->pi_waiters);
277 waiter = rt_mutex_top_waiter(lock);
278 waiter->pi_list_entry.prio = waiter->list_entry.prio;
279 plist_add(&waiter->pi_list_entry, &task->pi_waiters);
280 __rt_mutex_adjust_prio(task);
281 }
282
283 raw_spin_unlock_irqrestore(&task->pi_lock, flags);
284
285 top_waiter = rt_mutex_top_waiter(lock);
286 raw_spin_unlock(&lock->wait_lock);
287
288 if (!detect_deadlock && waiter != top_waiter)
289 goto out_put_task;
290
291 goto again;
292
293 out_unlock_pi:
294 raw_spin_unlock_irqrestore(&task->pi_lock, flags);
295 out_put_task:
296 put_task_struct(task);
297
298 return ret;
299 }
300
301 /*
302 * Try to take an rt-mutex
303 *
304 * Must be called with lock->wait_lock held.
305 *
306 * @lock: the lock to be acquired.
307 * @task: the task which wants to acquire the lock
308 * @waiter: the waiter that is queued to the lock's wait list. (could be NULL)
309 */
try_to_take_rt_mutex(struct rt_mutex * lock,struct task_struct * task,struct rt_mutex_waiter * waiter)310 static int try_to_take_rt_mutex(struct rt_mutex *lock, struct task_struct *task,
311 struct rt_mutex_waiter *waiter)
312 {
313 /*
314 * We have to be careful here if the atomic speedups are
315 * enabled, such that, when
316 * - no other waiter is on the lock
317 * - the lock has been released since we did the cmpxchg
318 * the lock can be released or taken while we are doing the
319 * checks and marking the lock with RT_MUTEX_HAS_WAITERS.
320 *
321 * The atomic acquire/release aware variant of
322 * mark_rt_mutex_waiters uses a cmpxchg loop. After setting
323 * the WAITERS bit, the atomic release / acquire can not
324 * happen anymore and lock->wait_lock protects us from the
325 * non-atomic case.
326 *
327 * Note, that this might set lock->owner =
328 * RT_MUTEX_HAS_WAITERS in the case the lock is not contended
329 * any more. This is fixed up when we take the ownership.
330 * This is the transitional state explained at the top of this file.
331 */
332 mark_rt_mutex_waiters(lock);
333
334 if (rt_mutex_owner(lock))
335 return 0;
336
337 /*
338 * It will get the lock because of one of these conditions:
339 * 1) there is no waiter
340 * 2) higher priority than waiters
341 * 3) it is top waiter
342 */
343 if (rt_mutex_has_waiters(lock)) {
344 if (task->prio >= rt_mutex_top_waiter(lock)->list_entry.prio) {
345 if (!waiter || waiter != rt_mutex_top_waiter(lock))
346 return 0;
347 }
348 }
349
350 if (waiter || rt_mutex_has_waiters(lock)) {
351 unsigned long flags;
352 struct rt_mutex_waiter *top;
353
354 raw_spin_lock_irqsave(&task->pi_lock, flags);
355
356 /* remove the queued waiter. */
357 if (waiter) {
358 plist_del(&waiter->list_entry, &lock->wait_list);
359 task->pi_blocked_on = NULL;
360 }
361
362 /*
363 * We have to enqueue the top waiter(if it exists) into
364 * task->pi_waiters list.
365 */
366 if (rt_mutex_has_waiters(lock)) {
367 top = rt_mutex_top_waiter(lock);
368 top->pi_list_entry.prio = top->list_entry.prio;
369 plist_add(&top->pi_list_entry, &task->pi_waiters);
370 }
371 raw_spin_unlock_irqrestore(&task->pi_lock, flags);
372 }
373
374 /* We got the lock. */
375 debug_rt_mutex_lock(lock);
376
377 rt_mutex_set_owner(lock, task);
378
379 rt_mutex_deadlock_account_lock(lock, task);
380
381 return 1;
382 }
383
384 /*
385 * Task blocks on lock.
386 *
387 * Prepare waiter and propagate pi chain
388 *
389 * This must be called with lock->wait_lock held.
390 */
task_blocks_on_rt_mutex(struct rt_mutex * lock,struct rt_mutex_waiter * waiter,struct task_struct * task,int detect_deadlock)391 static int task_blocks_on_rt_mutex(struct rt_mutex *lock,
392 struct rt_mutex_waiter *waiter,
393 struct task_struct *task,
394 int detect_deadlock)
395 {
396 struct task_struct *owner = rt_mutex_owner(lock);
397 struct rt_mutex_waiter *top_waiter = waiter;
398 unsigned long flags;
399 int chain_walk = 0, res;
400
401 raw_spin_lock_irqsave(&task->pi_lock, flags);
402 __rt_mutex_adjust_prio(task);
403 waiter->task = task;
404 waiter->lock = lock;
405 plist_node_init(&waiter->list_entry, task->prio);
406 plist_node_init(&waiter->pi_list_entry, task->prio);
407
408 /* Get the top priority waiter on the lock */
409 if (rt_mutex_has_waiters(lock))
410 top_waiter = rt_mutex_top_waiter(lock);
411 plist_add(&waiter->list_entry, &lock->wait_list);
412
413 task->pi_blocked_on = waiter;
414
415 raw_spin_unlock_irqrestore(&task->pi_lock, flags);
416
417 if (!owner)
418 return 0;
419
420 if (waiter == rt_mutex_top_waiter(lock)) {
421 raw_spin_lock_irqsave(&owner->pi_lock, flags);
422 plist_del(&top_waiter->pi_list_entry, &owner->pi_waiters);
423 plist_add(&waiter->pi_list_entry, &owner->pi_waiters);
424
425 __rt_mutex_adjust_prio(owner);
426 if (owner->pi_blocked_on)
427 chain_walk = 1;
428 raw_spin_unlock_irqrestore(&owner->pi_lock, flags);
429 }
430 else if (debug_rt_mutex_detect_deadlock(waiter, detect_deadlock))
431 chain_walk = 1;
432
433 if (!chain_walk)
434 return 0;
435
436 /*
437 * The owner can't disappear while holding a lock,
438 * so the owner struct is protected by wait_lock.
439 * Gets dropped in rt_mutex_adjust_prio_chain()!
440 */
441 get_task_struct(owner);
442
443 raw_spin_unlock(&lock->wait_lock);
444
445 res = rt_mutex_adjust_prio_chain(owner, detect_deadlock, lock, waiter,
446 task);
447
448 raw_spin_lock(&lock->wait_lock);
449
450 return res;
451 }
452
453 /*
454 * Wake up the next waiter on the lock.
455 *
456 * Remove the top waiter from the current tasks waiter list and wake it up.
457 *
458 * Called with lock->wait_lock held.
459 */
wakeup_next_waiter(struct rt_mutex * lock)460 static void wakeup_next_waiter(struct rt_mutex *lock)
461 {
462 struct rt_mutex_waiter *waiter;
463 unsigned long flags;
464
465 raw_spin_lock_irqsave(¤t->pi_lock, flags);
466
467 waiter = rt_mutex_top_waiter(lock);
468
469 /*
470 * Remove it from current->pi_waiters. We do not adjust a
471 * possible priority boost right now. We execute wakeup in the
472 * boosted mode and go back to normal after releasing
473 * lock->wait_lock.
474 */
475 plist_del(&waiter->pi_list_entry, ¤t->pi_waiters);
476
477 rt_mutex_set_owner(lock, NULL);
478
479 raw_spin_unlock_irqrestore(¤t->pi_lock, flags);
480
481 wake_up_process(waiter->task);
482 }
483
484 /*
485 * Remove a waiter from a lock and give up
486 *
487 * Must be called with lock->wait_lock held and
488 * have just failed to try_to_take_rt_mutex().
489 */
remove_waiter(struct rt_mutex * lock,struct rt_mutex_waiter * waiter)490 static void remove_waiter(struct rt_mutex *lock,
491 struct rt_mutex_waiter *waiter)
492 {
493 int first = (waiter == rt_mutex_top_waiter(lock));
494 struct task_struct *owner = rt_mutex_owner(lock);
495 unsigned long flags;
496 int chain_walk = 0;
497
498 raw_spin_lock_irqsave(¤t->pi_lock, flags);
499 plist_del(&waiter->list_entry, &lock->wait_list);
500 current->pi_blocked_on = NULL;
501 raw_spin_unlock_irqrestore(¤t->pi_lock, flags);
502
503 if (!owner)
504 return;
505
506 if (first) {
507
508 raw_spin_lock_irqsave(&owner->pi_lock, flags);
509
510 plist_del(&waiter->pi_list_entry, &owner->pi_waiters);
511
512 if (rt_mutex_has_waiters(lock)) {
513 struct rt_mutex_waiter *next;
514
515 next = rt_mutex_top_waiter(lock);
516 plist_add(&next->pi_list_entry, &owner->pi_waiters);
517 }
518 __rt_mutex_adjust_prio(owner);
519
520 if (owner->pi_blocked_on)
521 chain_walk = 1;
522
523 raw_spin_unlock_irqrestore(&owner->pi_lock, flags);
524 }
525
526 WARN_ON(!plist_node_empty(&waiter->pi_list_entry));
527
528 if (!chain_walk)
529 return;
530
531 /* gets dropped in rt_mutex_adjust_prio_chain()! */
532 get_task_struct(owner);
533
534 raw_spin_unlock(&lock->wait_lock);
535
536 rt_mutex_adjust_prio_chain(owner, 0, lock, NULL, current);
537
538 raw_spin_lock(&lock->wait_lock);
539 }
540
541 /*
542 * Recheck the pi chain, in case we got a priority setting
543 *
544 * Called from sched_setscheduler
545 */
rt_mutex_adjust_pi(struct task_struct * task)546 void rt_mutex_adjust_pi(struct task_struct *task)
547 {
548 struct rt_mutex_waiter *waiter;
549 unsigned long flags;
550
551 raw_spin_lock_irqsave(&task->pi_lock, flags);
552
553 waiter = task->pi_blocked_on;
554 if (!waiter || waiter->list_entry.prio == task->prio) {
555 raw_spin_unlock_irqrestore(&task->pi_lock, flags);
556 return;
557 }
558
559 raw_spin_unlock_irqrestore(&task->pi_lock, flags);
560
561 /* gets dropped in rt_mutex_adjust_prio_chain()! */
562 get_task_struct(task);
563 rt_mutex_adjust_prio_chain(task, 0, NULL, NULL, task);
564 }
565
566 /**
567 * __rt_mutex_slowlock() - Perform the wait-wake-try-to-take loop
568 * @lock: the rt_mutex to take
569 * @state: the state the task should block in (TASK_INTERRUPTIBLE
570 * or TASK_UNINTERRUPTIBLE)
571 * @timeout: the pre-initialized and started timer, or NULL for none
572 * @waiter: the pre-initialized rt_mutex_waiter
573 *
574 * lock->wait_lock must be held by the caller.
575 */
576 static int __sched
__rt_mutex_slowlock(struct rt_mutex * lock,int state,struct hrtimer_sleeper * timeout,struct rt_mutex_waiter * waiter)577 __rt_mutex_slowlock(struct rt_mutex *lock, int state,
578 struct hrtimer_sleeper *timeout,
579 struct rt_mutex_waiter *waiter)
580 {
581 int ret = 0;
582
583 for (;;) {
584 /* Try to acquire the lock: */
585 if (try_to_take_rt_mutex(lock, current, waiter))
586 break;
587
588 /*
589 * TASK_INTERRUPTIBLE checks for signals and
590 * timeout. Ignored otherwise.
591 */
592 if (unlikely(state == TASK_INTERRUPTIBLE)) {
593 /* Signal pending? */
594 if (signal_pending(current))
595 ret = -EINTR;
596 if (timeout && !timeout->task)
597 ret = -ETIMEDOUT;
598 if (ret)
599 break;
600 }
601
602 raw_spin_unlock(&lock->wait_lock);
603
604 debug_rt_mutex_print_deadlock(waiter);
605
606 schedule_rt_mutex(lock);
607
608 raw_spin_lock(&lock->wait_lock);
609 set_current_state(state);
610 }
611
612 return ret;
613 }
614
615 /*
616 * Slow path lock function:
617 */
618 static int __sched
rt_mutex_slowlock(struct rt_mutex * lock,int state,struct hrtimer_sleeper * timeout,int detect_deadlock)619 rt_mutex_slowlock(struct rt_mutex *lock, int state,
620 struct hrtimer_sleeper *timeout,
621 int detect_deadlock)
622 {
623 struct rt_mutex_waiter waiter;
624 int ret = 0;
625
626 debug_rt_mutex_init_waiter(&waiter);
627
628 raw_spin_lock(&lock->wait_lock);
629
630 /* Try to acquire the lock again: */
631 if (try_to_take_rt_mutex(lock, current, NULL)) {
632 raw_spin_unlock(&lock->wait_lock);
633 return 0;
634 }
635
636 set_current_state(state);
637
638 /* Setup the timer, when timeout != NULL */
639 if (unlikely(timeout)) {
640 hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS);
641 if (!hrtimer_active(&timeout->timer))
642 timeout->task = NULL;
643 }
644
645 ret = task_blocks_on_rt_mutex(lock, &waiter, current, detect_deadlock);
646
647 if (likely(!ret))
648 ret = __rt_mutex_slowlock(lock, state, timeout, &waiter);
649
650 set_current_state(TASK_RUNNING);
651
652 if (unlikely(ret))
653 remove_waiter(lock, &waiter);
654
655 /*
656 * try_to_take_rt_mutex() sets the waiter bit
657 * unconditionally. We might have to fix that up.
658 */
659 fixup_rt_mutex_waiters(lock);
660
661 raw_spin_unlock(&lock->wait_lock);
662
663 /* Remove pending timer: */
664 if (unlikely(timeout))
665 hrtimer_cancel(&timeout->timer);
666
667 debug_rt_mutex_free_waiter(&waiter);
668
669 return ret;
670 }
671
672 /*
673 * Slow path try-lock function:
674 */
675 static inline int
rt_mutex_slowtrylock(struct rt_mutex * lock)676 rt_mutex_slowtrylock(struct rt_mutex *lock)
677 {
678 int ret = 0;
679
680 raw_spin_lock(&lock->wait_lock);
681
682 if (likely(rt_mutex_owner(lock) != current)) {
683
684 ret = try_to_take_rt_mutex(lock, current, NULL);
685 /*
686 * try_to_take_rt_mutex() sets the lock waiters
687 * bit unconditionally. Clean this up.
688 */
689 fixup_rt_mutex_waiters(lock);
690 }
691
692 raw_spin_unlock(&lock->wait_lock);
693
694 return ret;
695 }
696
697 /*
698 * Slow path to release a rt-mutex:
699 */
700 static void __sched
rt_mutex_slowunlock(struct rt_mutex * lock)701 rt_mutex_slowunlock(struct rt_mutex *lock)
702 {
703 raw_spin_lock(&lock->wait_lock);
704
705 debug_rt_mutex_unlock(lock);
706
707 rt_mutex_deadlock_account_unlock(current);
708
709 if (!rt_mutex_has_waiters(lock)) {
710 lock->owner = NULL;
711 raw_spin_unlock(&lock->wait_lock);
712 return;
713 }
714
715 wakeup_next_waiter(lock);
716
717 raw_spin_unlock(&lock->wait_lock);
718
719 /* Undo pi boosting if necessary: */
720 rt_mutex_adjust_prio(current);
721 }
722
723 /*
724 * debug aware fast / slowpath lock,trylock,unlock
725 *
726 * The atomic acquire/release ops are compiled away, when either the
727 * architecture does not support cmpxchg or when debugging is enabled.
728 */
729 static inline int
rt_mutex_fastlock(struct rt_mutex * lock,int state,int detect_deadlock,int (* slowfn)(struct rt_mutex * lock,int state,struct hrtimer_sleeper * timeout,int detect_deadlock))730 rt_mutex_fastlock(struct rt_mutex *lock, int state,
731 int detect_deadlock,
732 int (*slowfn)(struct rt_mutex *lock, int state,
733 struct hrtimer_sleeper *timeout,
734 int detect_deadlock))
735 {
736 if (!detect_deadlock && likely(rt_mutex_cmpxchg(lock, NULL, current))) {
737 rt_mutex_deadlock_account_lock(lock, current);
738 return 0;
739 } else
740 return slowfn(lock, state, NULL, detect_deadlock);
741 }
742
743 static inline int
rt_mutex_timed_fastlock(struct rt_mutex * lock,int state,struct hrtimer_sleeper * timeout,int detect_deadlock,int (* slowfn)(struct rt_mutex * lock,int state,struct hrtimer_sleeper * timeout,int detect_deadlock))744 rt_mutex_timed_fastlock(struct rt_mutex *lock, int state,
745 struct hrtimer_sleeper *timeout, int detect_deadlock,
746 int (*slowfn)(struct rt_mutex *lock, int state,
747 struct hrtimer_sleeper *timeout,
748 int detect_deadlock))
749 {
750 if (!detect_deadlock && likely(rt_mutex_cmpxchg(lock, NULL, current))) {
751 rt_mutex_deadlock_account_lock(lock, current);
752 return 0;
753 } else
754 return slowfn(lock, state, timeout, detect_deadlock);
755 }
756
757 static inline int
rt_mutex_fasttrylock(struct rt_mutex * lock,int (* slowfn)(struct rt_mutex * lock))758 rt_mutex_fasttrylock(struct rt_mutex *lock,
759 int (*slowfn)(struct rt_mutex *lock))
760 {
761 if (likely(rt_mutex_cmpxchg(lock, NULL, current))) {
762 rt_mutex_deadlock_account_lock(lock, current);
763 return 1;
764 }
765 return slowfn(lock);
766 }
767
768 static inline void
rt_mutex_fastunlock(struct rt_mutex * lock,void (* slowfn)(struct rt_mutex * lock))769 rt_mutex_fastunlock(struct rt_mutex *lock,
770 void (*slowfn)(struct rt_mutex *lock))
771 {
772 if (likely(rt_mutex_cmpxchg(lock, current, NULL)))
773 rt_mutex_deadlock_account_unlock(current);
774 else
775 slowfn(lock);
776 }
777
778 /**
779 * rt_mutex_lock - lock a rt_mutex
780 *
781 * @lock: the rt_mutex to be locked
782 */
rt_mutex_lock(struct rt_mutex * lock)783 void __sched rt_mutex_lock(struct rt_mutex *lock)
784 {
785 might_sleep();
786
787 rt_mutex_fastlock(lock, TASK_UNINTERRUPTIBLE, 0, rt_mutex_slowlock);
788 }
789 EXPORT_SYMBOL_GPL(rt_mutex_lock);
790
791 /**
792 * rt_mutex_lock_interruptible - lock a rt_mutex interruptible
793 *
794 * @lock: the rt_mutex to be locked
795 * @detect_deadlock: deadlock detection on/off
796 *
797 * Returns:
798 * 0 on success
799 * -EINTR when interrupted by a signal
800 * -EDEADLK when the lock would deadlock (when deadlock detection is on)
801 */
rt_mutex_lock_interruptible(struct rt_mutex * lock,int detect_deadlock)802 int __sched rt_mutex_lock_interruptible(struct rt_mutex *lock,
803 int detect_deadlock)
804 {
805 might_sleep();
806
807 return rt_mutex_fastlock(lock, TASK_INTERRUPTIBLE,
808 detect_deadlock, rt_mutex_slowlock);
809 }
810 EXPORT_SYMBOL_GPL(rt_mutex_lock_interruptible);
811
812 /**
813 * rt_mutex_timed_lock - lock a rt_mutex interruptible
814 * the timeout structure is provided
815 * by the caller
816 *
817 * @lock: the rt_mutex to be locked
818 * @timeout: timeout structure or NULL (no timeout)
819 * @detect_deadlock: deadlock detection on/off
820 *
821 * Returns:
822 * 0 on success
823 * -EINTR when interrupted by a signal
824 * -ETIMEDOUT when the timeout expired
825 * -EDEADLK when the lock would deadlock (when deadlock detection is on)
826 */
827 int
rt_mutex_timed_lock(struct rt_mutex * lock,struct hrtimer_sleeper * timeout,int detect_deadlock)828 rt_mutex_timed_lock(struct rt_mutex *lock, struct hrtimer_sleeper *timeout,
829 int detect_deadlock)
830 {
831 might_sleep();
832
833 return rt_mutex_timed_fastlock(lock, TASK_INTERRUPTIBLE, timeout,
834 detect_deadlock, rt_mutex_slowlock);
835 }
836 EXPORT_SYMBOL_GPL(rt_mutex_timed_lock);
837
838 /**
839 * rt_mutex_trylock - try to lock a rt_mutex
840 *
841 * @lock: the rt_mutex to be locked
842 *
843 * Returns 1 on success and 0 on contention
844 */
rt_mutex_trylock(struct rt_mutex * lock)845 int __sched rt_mutex_trylock(struct rt_mutex *lock)
846 {
847 return rt_mutex_fasttrylock(lock, rt_mutex_slowtrylock);
848 }
849 EXPORT_SYMBOL_GPL(rt_mutex_trylock);
850
851 /**
852 * rt_mutex_unlock - unlock a rt_mutex
853 *
854 * @lock: the rt_mutex to be unlocked
855 */
rt_mutex_unlock(struct rt_mutex * lock)856 void __sched rt_mutex_unlock(struct rt_mutex *lock)
857 {
858 rt_mutex_fastunlock(lock, rt_mutex_slowunlock);
859 }
860 EXPORT_SYMBOL_GPL(rt_mutex_unlock);
861
862 /**
863 * rt_mutex_destroy - mark a mutex unusable
864 * @lock: the mutex to be destroyed
865 *
866 * This function marks the mutex uninitialized, and any subsequent
867 * use of the mutex is forbidden. The mutex must not be locked when
868 * this function is called.
869 */
rt_mutex_destroy(struct rt_mutex * lock)870 void rt_mutex_destroy(struct rt_mutex *lock)
871 {
872 WARN_ON(rt_mutex_is_locked(lock));
873 #ifdef CONFIG_DEBUG_RT_MUTEXES
874 lock->magic = NULL;
875 #endif
876 }
877
878 EXPORT_SYMBOL_GPL(rt_mutex_destroy);
879
880 /**
881 * __rt_mutex_init - initialize the rt lock
882 *
883 * @lock: the rt lock to be initialized
884 *
885 * Initialize the rt lock to unlocked state.
886 *
887 * Initializing of a locked rt lock is not allowed
888 */
__rt_mutex_init(struct rt_mutex * lock,const char * name)889 void __rt_mutex_init(struct rt_mutex *lock, const char *name)
890 {
891 lock->owner = NULL;
892 raw_spin_lock_init(&lock->wait_lock);
893 plist_head_init_raw(&lock->wait_list, &lock->wait_lock);
894
895 debug_rt_mutex_init(lock, name);
896 }
897 EXPORT_SYMBOL_GPL(__rt_mutex_init);
898
899 /**
900 * rt_mutex_init_proxy_locked - initialize and lock a rt_mutex on behalf of a
901 * proxy owner
902 *
903 * @lock: the rt_mutex to be locked
904 * @proxy_owner:the task to set as owner
905 *
906 * No locking. Caller has to do serializing itself
907 * Special API call for PI-futex support
908 */
rt_mutex_init_proxy_locked(struct rt_mutex * lock,struct task_struct * proxy_owner)909 void rt_mutex_init_proxy_locked(struct rt_mutex *lock,
910 struct task_struct *proxy_owner)
911 {
912 __rt_mutex_init(lock, NULL);
913 debug_rt_mutex_proxy_lock(lock, proxy_owner);
914 rt_mutex_set_owner(lock, proxy_owner);
915 rt_mutex_deadlock_account_lock(lock, proxy_owner);
916 }
917
918 /**
919 * rt_mutex_proxy_unlock - release a lock on behalf of owner
920 *
921 * @lock: the rt_mutex to be locked
922 *
923 * No locking. Caller has to do serializing itself
924 * Special API call for PI-futex support
925 */
rt_mutex_proxy_unlock(struct rt_mutex * lock,struct task_struct * proxy_owner)926 void rt_mutex_proxy_unlock(struct rt_mutex *lock,
927 struct task_struct *proxy_owner)
928 {
929 debug_rt_mutex_proxy_unlock(lock);
930 rt_mutex_set_owner(lock, NULL);
931 rt_mutex_deadlock_account_unlock(proxy_owner);
932 }
933
934 /**
935 * rt_mutex_start_proxy_lock() - Start lock acquisition for another task
936 * @lock: the rt_mutex to take
937 * @waiter: the pre-initialized rt_mutex_waiter
938 * @task: the task to prepare
939 * @detect_deadlock: perform deadlock detection (1) or not (0)
940 *
941 * Returns:
942 * 0 - task blocked on lock
943 * 1 - acquired the lock for task, caller should wake it up
944 * <0 - error
945 *
946 * Special API call for FUTEX_REQUEUE_PI support.
947 */
rt_mutex_start_proxy_lock(struct rt_mutex * lock,struct rt_mutex_waiter * waiter,struct task_struct * task,int detect_deadlock)948 int rt_mutex_start_proxy_lock(struct rt_mutex *lock,
949 struct rt_mutex_waiter *waiter,
950 struct task_struct *task, int detect_deadlock)
951 {
952 int ret;
953
954 raw_spin_lock(&lock->wait_lock);
955
956 if (try_to_take_rt_mutex(lock, task, NULL)) {
957 raw_spin_unlock(&lock->wait_lock);
958 return 1;
959 }
960
961 ret = task_blocks_on_rt_mutex(lock, waiter, task, detect_deadlock);
962
963 if (ret && !rt_mutex_owner(lock)) {
964 /*
965 * Reset the return value. We might have
966 * returned with -EDEADLK and the owner
967 * released the lock while we were walking the
968 * pi chain. Let the waiter sort it out.
969 */
970 ret = 0;
971 }
972
973 if (unlikely(ret))
974 remove_waiter(lock, waiter);
975
976 raw_spin_unlock(&lock->wait_lock);
977
978 debug_rt_mutex_print_deadlock(waiter);
979
980 return ret;
981 }
982
983 /**
984 * rt_mutex_next_owner - return the next owner of the lock
985 *
986 * @lock: the rt lock query
987 *
988 * Returns the next owner of the lock or NULL
989 *
990 * Caller has to serialize against other accessors to the lock
991 * itself.
992 *
993 * Special API call for PI-futex support
994 */
rt_mutex_next_owner(struct rt_mutex * lock)995 struct task_struct *rt_mutex_next_owner(struct rt_mutex *lock)
996 {
997 if (!rt_mutex_has_waiters(lock))
998 return NULL;
999
1000 return rt_mutex_top_waiter(lock)->task;
1001 }
1002
1003 /**
1004 * rt_mutex_finish_proxy_lock() - Complete lock acquisition
1005 * @lock: the rt_mutex we were woken on
1006 * @to: the timeout, null if none. hrtimer should already have
1007 * been started.
1008 * @waiter: the pre-initialized rt_mutex_waiter
1009 * @detect_deadlock: perform deadlock detection (1) or not (0)
1010 *
1011 * Complete the lock acquisition started our behalf by another thread.
1012 *
1013 * Returns:
1014 * 0 - success
1015 * <0 - error, one of -EINTR, -ETIMEDOUT, or -EDEADLK
1016 *
1017 * Special API call for PI-futex requeue support
1018 */
rt_mutex_finish_proxy_lock(struct rt_mutex * lock,struct hrtimer_sleeper * to,struct rt_mutex_waiter * waiter,int detect_deadlock)1019 int rt_mutex_finish_proxy_lock(struct rt_mutex *lock,
1020 struct hrtimer_sleeper *to,
1021 struct rt_mutex_waiter *waiter,
1022 int detect_deadlock)
1023 {
1024 int ret;
1025
1026 raw_spin_lock(&lock->wait_lock);
1027
1028 set_current_state(TASK_INTERRUPTIBLE);
1029
1030 ret = __rt_mutex_slowlock(lock, TASK_INTERRUPTIBLE, to, waiter);
1031
1032 set_current_state(TASK_RUNNING);
1033
1034 if (unlikely(ret))
1035 remove_waiter(lock, waiter);
1036
1037 /*
1038 * try_to_take_rt_mutex() sets the waiter bit unconditionally. We might
1039 * have to fix that up.
1040 */
1041 fixup_rt_mutex_waiters(lock);
1042
1043 raw_spin_unlock(&lock->wait_lock);
1044
1045 return ret;
1046 }
1047