1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * RT-Mutexes: simple blocking mutual exclusion locks with PI support
4 *
5 * started by Ingo Molnar and Thomas Gleixner.
6 *
7 * Copyright (C) 2004-2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
8 * Copyright (C) 2005-2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
9 * Copyright (C) 2005 Kihon Technologies Inc., Steven Rostedt
10 * Copyright (C) 2006 Esben Nielsen
11 * Adaptive Spinlocks:
12 * Copyright (C) 2008 Novell, Inc., Gregory Haskins, Sven Dietrich,
13 * and Peter Morreale,
14 * Adaptive Spinlocks simplification:
15 * Copyright (C) 2008 Red Hat, Inc., Steven Rostedt <srostedt@redhat.com>
16 *
17 * See Documentation/locking/rt-mutex-design.rst for details.
18 */
19 #include <linux/sched.h>
20 #include <linux/sched/debug.h>
21 #include <linux/sched/deadline.h>
22 #include <linux/sched/signal.h>
23 #include <linux/sched/rt.h>
24 #include <linux/sched/wake_q.h>
25 #include <linux/ww_mutex.h>
26
27 #include <trace/events/lock.h>
28
29 #include "rtmutex_common.h"
30
31 #ifndef WW_RT
32 # define build_ww_mutex() (false)
33 # define ww_container_of(rtm) NULL
34
__ww_mutex_add_waiter(struct rt_mutex_waiter * waiter,struct rt_mutex * lock,struct ww_acquire_ctx * ww_ctx)35 static inline int __ww_mutex_add_waiter(struct rt_mutex_waiter *waiter,
36 struct rt_mutex *lock,
37 struct ww_acquire_ctx *ww_ctx)
38 {
39 return 0;
40 }
41
__ww_mutex_check_waiters(struct rt_mutex * lock,struct ww_acquire_ctx * ww_ctx)42 static inline void __ww_mutex_check_waiters(struct rt_mutex *lock,
43 struct ww_acquire_ctx *ww_ctx)
44 {
45 }
46
ww_mutex_lock_acquired(struct ww_mutex * lock,struct ww_acquire_ctx * ww_ctx)47 static inline void ww_mutex_lock_acquired(struct ww_mutex *lock,
48 struct ww_acquire_ctx *ww_ctx)
49 {
50 }
51
__ww_mutex_check_kill(struct rt_mutex * lock,struct rt_mutex_waiter * waiter,struct ww_acquire_ctx * ww_ctx)52 static inline int __ww_mutex_check_kill(struct rt_mutex *lock,
53 struct rt_mutex_waiter *waiter,
54 struct ww_acquire_ctx *ww_ctx)
55 {
56 return 0;
57 }
58
59 #else
60 # define build_ww_mutex() (true)
61 # define ww_container_of(rtm) container_of(rtm, struct ww_mutex, base)
62 # include "ww_mutex.h"
63 #endif
64
65 /*
66 * lock->owner state tracking:
67 *
68 * lock->owner holds the task_struct pointer of the owner. Bit 0
69 * is used to keep track of the "lock has waiters" state.
70 *
71 * owner bit0
72 * NULL 0 lock is free (fast acquire possible)
73 * NULL 1 lock is free and has waiters and the top waiter
74 * is going to take the lock*
75 * taskpointer 0 lock is held (fast release possible)
76 * taskpointer 1 lock is held and has waiters**
77 *
78 * The fast atomic compare exchange based acquire and release is only
79 * possible when bit 0 of lock->owner is 0.
80 *
81 * (*) It also can be a transitional state when grabbing the lock
82 * with ->wait_lock is held. To prevent any fast path cmpxchg to the lock,
83 * we need to set the bit0 before looking at the lock, and the owner may be
84 * NULL in this small time, hence this can be a transitional state.
85 *
86 * (**) There is a small time when bit 0 is set but there are no
87 * waiters. This can happen when grabbing the lock in the slow path.
88 * To prevent a cmpxchg of the owner releasing the lock, we need to
89 * set this bit before looking at the lock.
90 */
91
92 static __always_inline struct task_struct *
rt_mutex_owner_encode(struct rt_mutex_base * lock,struct task_struct * owner)93 rt_mutex_owner_encode(struct rt_mutex_base *lock, struct task_struct *owner)
94 {
95 unsigned long val = (unsigned long)owner;
96
97 if (rt_mutex_has_waiters(lock))
98 val |= RT_MUTEX_HAS_WAITERS;
99
100 return (struct task_struct *)val;
101 }
102
103 static __always_inline void
rt_mutex_set_owner(struct rt_mutex_base * lock,struct task_struct * owner)104 rt_mutex_set_owner(struct rt_mutex_base *lock, struct task_struct *owner)
105 {
106 /*
107 * lock->wait_lock is held but explicit acquire semantics are needed
108 * for a new lock owner so WRITE_ONCE is insufficient.
109 */
110 xchg_acquire(&lock->owner, rt_mutex_owner_encode(lock, owner));
111 }
112
rt_mutex_clear_owner(struct rt_mutex_base * lock)113 static __always_inline void rt_mutex_clear_owner(struct rt_mutex_base *lock)
114 {
115 /* lock->wait_lock is held so the unlock provides release semantics. */
116 WRITE_ONCE(lock->owner, rt_mutex_owner_encode(lock, NULL));
117 }
118
clear_rt_mutex_waiters(struct rt_mutex_base * lock)119 static __always_inline void clear_rt_mutex_waiters(struct rt_mutex_base *lock)
120 {
121 lock->owner = (struct task_struct *)
122 ((unsigned long)lock->owner & ~RT_MUTEX_HAS_WAITERS);
123 }
124
125 static __always_inline void
fixup_rt_mutex_waiters(struct rt_mutex_base * lock,bool acquire_lock)126 fixup_rt_mutex_waiters(struct rt_mutex_base *lock, bool acquire_lock)
127 {
128 unsigned long owner, *p = (unsigned long *) &lock->owner;
129
130 if (rt_mutex_has_waiters(lock))
131 return;
132
133 /*
134 * The rbtree has no waiters enqueued, now make sure that the
135 * lock->owner still has the waiters bit set, otherwise the
136 * following can happen:
137 *
138 * CPU 0 CPU 1 CPU2
139 * l->owner=T1
140 * rt_mutex_lock(l)
141 * lock(l->lock)
142 * l->owner = T1 | HAS_WAITERS;
143 * enqueue(T2)
144 * boost()
145 * unlock(l->lock)
146 * block()
147 *
148 * rt_mutex_lock(l)
149 * lock(l->lock)
150 * l->owner = T1 | HAS_WAITERS;
151 * enqueue(T3)
152 * boost()
153 * unlock(l->lock)
154 * block()
155 * signal(->T2) signal(->T3)
156 * lock(l->lock)
157 * dequeue(T2)
158 * deboost()
159 * unlock(l->lock)
160 * lock(l->lock)
161 * dequeue(T3)
162 * ==> wait list is empty
163 * deboost()
164 * unlock(l->lock)
165 * lock(l->lock)
166 * fixup_rt_mutex_waiters()
167 * if (wait_list_empty(l) {
168 * l->owner = owner
169 * owner = l->owner & ~HAS_WAITERS;
170 * ==> l->owner = T1
171 * }
172 * lock(l->lock)
173 * rt_mutex_unlock(l) fixup_rt_mutex_waiters()
174 * if (wait_list_empty(l) {
175 * owner = l->owner & ~HAS_WAITERS;
176 * cmpxchg(l->owner, T1, NULL)
177 * ===> Success (l->owner = NULL)
178 *
179 * l->owner = owner
180 * ==> l->owner = T1
181 * }
182 *
183 * With the check for the waiter bit in place T3 on CPU2 will not
184 * overwrite. All tasks fiddling with the waiters bit are
185 * serialized by l->lock, so nothing else can modify the waiters
186 * bit. If the bit is set then nothing can change l->owner either
187 * so the simple RMW is safe. The cmpxchg() will simply fail if it
188 * happens in the middle of the RMW because the waiters bit is
189 * still set.
190 */
191 owner = READ_ONCE(*p);
192 if (owner & RT_MUTEX_HAS_WAITERS) {
193 /*
194 * See rt_mutex_set_owner() and rt_mutex_clear_owner() on
195 * why xchg_acquire() is used for updating owner for
196 * locking and WRITE_ONCE() for unlocking.
197 *
198 * WRITE_ONCE() would work for the acquire case too, but
199 * in case that the lock acquisition failed it might
200 * force other lockers into the slow path unnecessarily.
201 */
202 if (acquire_lock)
203 xchg_acquire(p, owner & ~RT_MUTEX_HAS_WAITERS);
204 else
205 WRITE_ONCE(*p, owner & ~RT_MUTEX_HAS_WAITERS);
206 }
207 }
208
209 /*
210 * We can speed up the acquire/release, if there's no debugging state to be
211 * set up.
212 */
213 #ifndef CONFIG_DEBUG_RT_MUTEXES
rt_mutex_cmpxchg_acquire(struct rt_mutex_base * lock,struct task_struct * old,struct task_struct * new)214 static __always_inline bool rt_mutex_cmpxchg_acquire(struct rt_mutex_base *lock,
215 struct task_struct *old,
216 struct task_struct *new)
217 {
218 return try_cmpxchg_acquire(&lock->owner, &old, new);
219 }
220
rt_mutex_cmpxchg_release(struct rt_mutex_base * lock,struct task_struct * old,struct task_struct * new)221 static __always_inline bool rt_mutex_cmpxchg_release(struct rt_mutex_base *lock,
222 struct task_struct *old,
223 struct task_struct *new)
224 {
225 return try_cmpxchg_release(&lock->owner, &old, new);
226 }
227
228 /*
229 * Callers must hold the ->wait_lock -- which is the whole purpose as we force
230 * all future threads that attempt to [Rmw] the lock to the slowpath. As such
231 * relaxed semantics suffice.
232 */
mark_rt_mutex_waiters(struct rt_mutex_base * lock)233 static __always_inline void mark_rt_mutex_waiters(struct rt_mutex_base *lock)
234 {
235 unsigned long owner, *p = (unsigned long *) &lock->owner;
236
237 do {
238 owner = *p;
239 } while (cmpxchg_relaxed(p, owner,
240 owner | RT_MUTEX_HAS_WAITERS) != owner);
241
242 /*
243 * The cmpxchg loop above is relaxed to avoid back-to-back ACQUIRE
244 * operations in the event of contention. Ensure the successful
245 * cmpxchg is visible.
246 */
247 smp_mb__after_atomic();
248 }
249
250 /*
251 * Safe fastpath aware unlock:
252 * 1) Clear the waiters bit
253 * 2) Drop lock->wait_lock
254 * 3) Try to unlock the lock with cmpxchg
255 */
unlock_rt_mutex_safe(struct rt_mutex_base * lock,unsigned long flags)256 static __always_inline bool unlock_rt_mutex_safe(struct rt_mutex_base *lock,
257 unsigned long flags)
258 __releases(lock->wait_lock)
259 {
260 struct task_struct *owner = rt_mutex_owner(lock);
261
262 clear_rt_mutex_waiters(lock);
263 raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
264 /*
265 * If a new waiter comes in between the unlock and the cmpxchg
266 * we have two situations:
267 *
268 * unlock(wait_lock);
269 * lock(wait_lock);
270 * cmpxchg(p, owner, 0) == owner
271 * mark_rt_mutex_waiters(lock);
272 * acquire(lock);
273 * or:
274 *
275 * unlock(wait_lock);
276 * lock(wait_lock);
277 * mark_rt_mutex_waiters(lock);
278 *
279 * cmpxchg(p, owner, 0) != owner
280 * enqueue_waiter();
281 * unlock(wait_lock);
282 * lock(wait_lock);
283 * wake waiter();
284 * unlock(wait_lock);
285 * lock(wait_lock);
286 * acquire(lock);
287 */
288 return rt_mutex_cmpxchg_release(lock, owner, NULL);
289 }
290
291 #else
rt_mutex_cmpxchg_acquire(struct rt_mutex_base * lock,struct task_struct * old,struct task_struct * new)292 static __always_inline bool rt_mutex_cmpxchg_acquire(struct rt_mutex_base *lock,
293 struct task_struct *old,
294 struct task_struct *new)
295 {
296 return false;
297
298 }
299
rt_mutex_cmpxchg_release(struct rt_mutex_base * lock,struct task_struct * old,struct task_struct * new)300 static __always_inline bool rt_mutex_cmpxchg_release(struct rt_mutex_base *lock,
301 struct task_struct *old,
302 struct task_struct *new)
303 {
304 return false;
305 }
306
mark_rt_mutex_waiters(struct rt_mutex_base * lock)307 static __always_inline void mark_rt_mutex_waiters(struct rt_mutex_base *lock)
308 {
309 lock->owner = (struct task_struct *)
310 ((unsigned long)lock->owner | RT_MUTEX_HAS_WAITERS);
311 }
312
313 /*
314 * Simple slow path only version: lock->owner is protected by lock->wait_lock.
315 */
unlock_rt_mutex_safe(struct rt_mutex_base * lock,unsigned long flags)316 static __always_inline bool unlock_rt_mutex_safe(struct rt_mutex_base *lock,
317 unsigned long flags)
318 __releases(lock->wait_lock)
319 {
320 lock->owner = NULL;
321 raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
322 return true;
323 }
324 #endif
325
__waiter_prio(struct task_struct * task)326 static __always_inline int __waiter_prio(struct task_struct *task)
327 {
328 int prio = task->prio;
329
330 if (!rt_prio(prio))
331 return DEFAULT_PRIO;
332
333 return prio;
334 }
335
336 static __always_inline void
waiter_update_prio(struct rt_mutex_waiter * waiter,struct task_struct * task)337 waiter_update_prio(struct rt_mutex_waiter *waiter, struct task_struct *task)
338 {
339 waiter->prio = __waiter_prio(task);
340 waiter->deadline = task->dl.deadline;
341 }
342
343 /*
344 * Only use with rt_mutex_waiter_{less,equal}()
345 */
346 #define task_to_waiter(p) \
347 &(struct rt_mutex_waiter){ .prio = __waiter_prio(p), .deadline = (p)->dl.deadline }
348
rt_mutex_waiter_less(struct rt_mutex_waiter * left,struct rt_mutex_waiter * right)349 static __always_inline int rt_mutex_waiter_less(struct rt_mutex_waiter *left,
350 struct rt_mutex_waiter *right)
351 {
352 if (left->prio < right->prio)
353 return 1;
354
355 /*
356 * If both waiters have dl_prio(), we check the deadlines of the
357 * associated tasks.
358 * If left waiter has a dl_prio(), and we didn't return 1 above,
359 * then right waiter has a dl_prio() too.
360 */
361 if (dl_prio(left->prio))
362 return dl_time_before(left->deadline, right->deadline);
363
364 return 0;
365 }
366
rt_mutex_waiter_equal(struct rt_mutex_waiter * left,struct rt_mutex_waiter * right)367 static __always_inline int rt_mutex_waiter_equal(struct rt_mutex_waiter *left,
368 struct rt_mutex_waiter *right)
369 {
370 if (left->prio != right->prio)
371 return 0;
372
373 /*
374 * If both waiters have dl_prio(), we check the deadlines of the
375 * associated tasks.
376 * If left waiter has a dl_prio(), and we didn't return 0 above,
377 * then right waiter has a dl_prio() too.
378 */
379 if (dl_prio(left->prio))
380 return left->deadline == right->deadline;
381
382 return 1;
383 }
384
rt_mutex_steal(struct rt_mutex_waiter * waiter,struct rt_mutex_waiter * top_waiter)385 static inline bool rt_mutex_steal(struct rt_mutex_waiter *waiter,
386 struct rt_mutex_waiter *top_waiter)
387 {
388 if (rt_mutex_waiter_less(waiter, top_waiter))
389 return true;
390
391 #ifdef RT_MUTEX_BUILD_SPINLOCKS
392 /*
393 * Note that RT tasks are excluded from same priority (lateral)
394 * steals to prevent the introduction of an unbounded latency.
395 */
396 if (rt_prio(waiter->prio) || dl_prio(waiter->prio))
397 return false;
398
399 return rt_mutex_waiter_equal(waiter, top_waiter);
400 #else
401 return false;
402 #endif
403 }
404
405 #define __node_2_waiter(node) \
406 rb_entry((node), struct rt_mutex_waiter, tree_entry)
407
__waiter_less(struct rb_node * a,const struct rb_node * b)408 static __always_inline bool __waiter_less(struct rb_node *a, const struct rb_node *b)
409 {
410 struct rt_mutex_waiter *aw = __node_2_waiter(a);
411 struct rt_mutex_waiter *bw = __node_2_waiter(b);
412
413 if (rt_mutex_waiter_less(aw, bw))
414 return 1;
415
416 if (!build_ww_mutex())
417 return 0;
418
419 if (rt_mutex_waiter_less(bw, aw))
420 return 0;
421
422 /* NOTE: relies on waiter->ww_ctx being set before insertion */
423 if (aw->ww_ctx) {
424 if (!bw->ww_ctx)
425 return 1;
426
427 return (signed long)(aw->ww_ctx->stamp -
428 bw->ww_ctx->stamp) < 0;
429 }
430
431 return 0;
432 }
433
434 static __always_inline void
rt_mutex_enqueue(struct rt_mutex_base * lock,struct rt_mutex_waiter * waiter)435 rt_mutex_enqueue(struct rt_mutex_base *lock, struct rt_mutex_waiter *waiter)
436 {
437 rb_add_cached(&waiter->tree_entry, &lock->waiters, __waiter_less);
438 }
439
440 static __always_inline void
rt_mutex_dequeue(struct rt_mutex_base * lock,struct rt_mutex_waiter * waiter)441 rt_mutex_dequeue(struct rt_mutex_base *lock, struct rt_mutex_waiter *waiter)
442 {
443 if (RB_EMPTY_NODE(&waiter->tree_entry))
444 return;
445
446 rb_erase_cached(&waiter->tree_entry, &lock->waiters);
447 RB_CLEAR_NODE(&waiter->tree_entry);
448 }
449
450 #define __node_2_pi_waiter(node) \
451 rb_entry((node), struct rt_mutex_waiter, pi_tree_entry)
452
453 static __always_inline bool
__pi_waiter_less(struct rb_node * a,const struct rb_node * b)454 __pi_waiter_less(struct rb_node *a, const struct rb_node *b)
455 {
456 return rt_mutex_waiter_less(__node_2_pi_waiter(a), __node_2_pi_waiter(b));
457 }
458
459 static __always_inline void
rt_mutex_enqueue_pi(struct task_struct * task,struct rt_mutex_waiter * waiter)460 rt_mutex_enqueue_pi(struct task_struct *task, struct rt_mutex_waiter *waiter)
461 {
462 rb_add_cached(&waiter->pi_tree_entry, &task->pi_waiters, __pi_waiter_less);
463 }
464
465 static __always_inline void
rt_mutex_dequeue_pi(struct task_struct * task,struct rt_mutex_waiter * waiter)466 rt_mutex_dequeue_pi(struct task_struct *task, struct rt_mutex_waiter *waiter)
467 {
468 if (RB_EMPTY_NODE(&waiter->pi_tree_entry))
469 return;
470
471 rb_erase_cached(&waiter->pi_tree_entry, &task->pi_waiters);
472 RB_CLEAR_NODE(&waiter->pi_tree_entry);
473 }
474
rt_mutex_adjust_prio(struct task_struct * p)475 static __always_inline void rt_mutex_adjust_prio(struct task_struct *p)
476 {
477 struct task_struct *pi_task = NULL;
478
479 lockdep_assert_held(&p->pi_lock);
480
481 if (task_has_pi_waiters(p))
482 pi_task = task_top_pi_waiter(p)->task;
483
484 rt_mutex_setprio(p, pi_task);
485 }
486
487 /* RT mutex specific wake_q wrappers */
rt_mutex_wake_q_add_task(struct rt_wake_q_head * wqh,struct task_struct * task,unsigned int wake_state)488 static __always_inline void rt_mutex_wake_q_add_task(struct rt_wake_q_head *wqh,
489 struct task_struct *task,
490 unsigned int wake_state)
491 {
492 if (IS_ENABLED(CONFIG_PREEMPT_RT) && wake_state == TASK_RTLOCK_WAIT) {
493 if (IS_ENABLED(CONFIG_PROVE_LOCKING))
494 WARN_ON_ONCE(wqh->rtlock_task);
495 get_task_struct(task);
496 wqh->rtlock_task = task;
497 } else {
498 wake_q_add(&wqh->head, task);
499 }
500 }
501
rt_mutex_wake_q_add(struct rt_wake_q_head * wqh,struct rt_mutex_waiter * w)502 static __always_inline void rt_mutex_wake_q_add(struct rt_wake_q_head *wqh,
503 struct rt_mutex_waiter *w)
504 {
505 rt_mutex_wake_q_add_task(wqh, w->task, w->wake_state);
506 }
507
rt_mutex_wake_up_q(struct rt_wake_q_head * wqh)508 static __always_inline void rt_mutex_wake_up_q(struct rt_wake_q_head *wqh)
509 {
510 if (IS_ENABLED(CONFIG_PREEMPT_RT) && wqh->rtlock_task) {
511 wake_up_state(wqh->rtlock_task, TASK_RTLOCK_WAIT);
512 put_task_struct(wqh->rtlock_task);
513 wqh->rtlock_task = NULL;
514 }
515
516 if (!wake_q_empty(&wqh->head))
517 wake_up_q(&wqh->head);
518
519 /* Pairs with preempt_disable() in mark_wakeup_next_waiter() */
520 preempt_enable();
521 }
522
523 /*
524 * Deadlock detection is conditional:
525 *
526 * If CONFIG_DEBUG_RT_MUTEXES=n, deadlock detection is only conducted
527 * if the detect argument is == RT_MUTEX_FULL_CHAINWALK.
528 *
529 * If CONFIG_DEBUG_RT_MUTEXES=y, deadlock detection is always
530 * conducted independent of the detect argument.
531 *
532 * If the waiter argument is NULL this indicates the deboost path and
533 * deadlock detection is disabled independent of the detect argument
534 * and the config settings.
535 */
536 static __always_inline bool
rt_mutex_cond_detect_deadlock(struct rt_mutex_waiter * waiter,enum rtmutex_chainwalk chwalk)537 rt_mutex_cond_detect_deadlock(struct rt_mutex_waiter *waiter,
538 enum rtmutex_chainwalk chwalk)
539 {
540 if (IS_ENABLED(CONFIG_DEBUG_RT_MUTEXES))
541 return waiter != NULL;
542 return chwalk == RT_MUTEX_FULL_CHAINWALK;
543 }
544
task_blocked_on_lock(struct task_struct * p)545 static __always_inline struct rt_mutex_base *task_blocked_on_lock(struct task_struct *p)
546 {
547 return p->pi_blocked_on ? p->pi_blocked_on->lock : NULL;
548 }
549
550 /*
551 * Adjust the priority chain. Also used for deadlock detection.
552 * Decreases task's usage by one - may thus free the task.
553 *
554 * @task: the task owning the mutex (owner) for which a chain walk is
555 * probably needed
556 * @chwalk: do we have to carry out deadlock detection?
557 * @orig_lock: the mutex (can be NULL if we are walking the chain to recheck
558 * things for a task that has just got its priority adjusted, and
559 * is waiting on a mutex)
560 * @next_lock: the mutex on which the owner of @orig_lock was blocked before
561 * we dropped its pi_lock. Is never dereferenced, only used for
562 * comparison to detect lock chain changes.
563 * @orig_waiter: rt_mutex_waiter struct for the task that has just donated
564 * its priority to the mutex owner (can be NULL in the case
565 * depicted above or if the top waiter is gone away and we are
566 * actually deboosting the owner)
567 * @top_task: the current top waiter
568 *
569 * Returns 0 or -EDEADLK.
570 *
571 * Chain walk basics and protection scope
572 *
573 * [R] refcount on task
574 * [P] task->pi_lock held
575 * [L] rtmutex->wait_lock held
576 *
577 * Step Description Protected by
578 * function arguments:
579 * @task [R]
580 * @orig_lock if != NULL @top_task is blocked on it
581 * @next_lock Unprotected. Cannot be
582 * dereferenced. Only used for
583 * comparison.
584 * @orig_waiter if != NULL @top_task is blocked on it
585 * @top_task current, or in case of proxy
586 * locking protected by calling
587 * code
588 * again:
589 * loop_sanity_check();
590 * retry:
591 * [1] lock(task->pi_lock); [R] acquire [P]
592 * [2] waiter = task->pi_blocked_on; [P]
593 * [3] check_exit_conditions_1(); [P]
594 * [4] lock = waiter->lock; [P]
595 * [5] if (!try_lock(lock->wait_lock)) { [P] try to acquire [L]
596 * unlock(task->pi_lock); release [P]
597 * goto retry;
598 * }
599 * [6] check_exit_conditions_2(); [P] + [L]
600 * [7] requeue_lock_waiter(lock, waiter); [P] + [L]
601 * [8] unlock(task->pi_lock); release [P]
602 * put_task_struct(task); release [R]
603 * [9] check_exit_conditions_3(); [L]
604 * [10] task = owner(lock); [L]
605 * get_task_struct(task); [L] acquire [R]
606 * lock(task->pi_lock); [L] acquire [P]
607 * [11] requeue_pi_waiter(tsk, waiters(lock));[P] + [L]
608 * [12] check_exit_conditions_4(); [P] + [L]
609 * [13] unlock(task->pi_lock); release [P]
610 * unlock(lock->wait_lock); release [L]
611 * goto again;
612 */
rt_mutex_adjust_prio_chain(struct task_struct * task,enum rtmutex_chainwalk chwalk,struct rt_mutex_base * orig_lock,struct rt_mutex_base * next_lock,struct rt_mutex_waiter * orig_waiter,struct task_struct * top_task)613 static int __sched rt_mutex_adjust_prio_chain(struct task_struct *task,
614 enum rtmutex_chainwalk chwalk,
615 struct rt_mutex_base *orig_lock,
616 struct rt_mutex_base *next_lock,
617 struct rt_mutex_waiter *orig_waiter,
618 struct task_struct *top_task)
619 {
620 struct rt_mutex_waiter *waiter, *top_waiter = orig_waiter;
621 struct rt_mutex_waiter *prerequeue_top_waiter;
622 int ret = 0, depth = 0;
623 struct rt_mutex_base *lock;
624 bool detect_deadlock;
625 bool requeue = true;
626
627 detect_deadlock = rt_mutex_cond_detect_deadlock(orig_waiter, chwalk);
628
629 /*
630 * The (de)boosting is a step by step approach with a lot of
631 * pitfalls. We want this to be preemptible and we want hold a
632 * maximum of two locks per step. So we have to check
633 * carefully whether things change under us.
634 */
635 again:
636 /*
637 * We limit the lock chain length for each invocation.
638 */
639 if (++depth > max_lock_depth) {
640 static int prev_max;
641
642 /*
643 * Print this only once. If the admin changes the limit,
644 * print a new message when reaching the limit again.
645 */
646 if (prev_max != max_lock_depth) {
647 prev_max = max_lock_depth;
648 printk(KERN_WARNING "Maximum lock depth %d reached "
649 "task: %s (%d)\n", max_lock_depth,
650 top_task->comm, task_pid_nr(top_task));
651 }
652 put_task_struct(task);
653
654 return -EDEADLK;
655 }
656
657 /*
658 * We are fully preemptible here and only hold the refcount on
659 * @task. So everything can have changed under us since the
660 * caller or our own code below (goto retry/again) dropped all
661 * locks.
662 */
663 retry:
664 /*
665 * [1] Task cannot go away as we did a get_task() before !
666 */
667 raw_spin_lock_irq(&task->pi_lock);
668
669 /*
670 * [2] Get the waiter on which @task is blocked on.
671 */
672 waiter = task->pi_blocked_on;
673
674 /*
675 * [3] check_exit_conditions_1() protected by task->pi_lock.
676 */
677
678 /*
679 * Check whether the end of the boosting chain has been
680 * reached or the state of the chain has changed while we
681 * dropped the locks.
682 */
683 if (!waiter)
684 goto out_unlock_pi;
685
686 /*
687 * Check the orig_waiter state. After we dropped the locks,
688 * the previous owner of the lock might have released the lock.
689 */
690 if (orig_waiter && !rt_mutex_owner(orig_lock))
691 goto out_unlock_pi;
692
693 /*
694 * We dropped all locks after taking a refcount on @task, so
695 * the task might have moved on in the lock chain or even left
696 * the chain completely and blocks now on an unrelated lock or
697 * on @orig_lock.
698 *
699 * We stored the lock on which @task was blocked in @next_lock,
700 * so we can detect the chain change.
701 */
702 if (next_lock != waiter->lock)
703 goto out_unlock_pi;
704
705 /*
706 * There could be 'spurious' loops in the lock graph due to ww_mutex,
707 * consider:
708 *
709 * P1: A, ww_A, ww_B
710 * P2: ww_B, ww_A
711 * P3: A
712 *
713 * P3 should not return -EDEADLK because it gets trapped in the cycle
714 * created by P1 and P2 (which will resolve -- and runs into
715 * max_lock_depth above). Therefore disable detect_deadlock such that
716 * the below termination condition can trigger once all relevant tasks
717 * are boosted.
718 *
719 * Even when we start with ww_mutex we can disable deadlock detection,
720 * since we would supress a ww_mutex induced deadlock at [6] anyway.
721 * Supressing it here however is not sufficient since we might still
722 * hit [6] due to adjustment driven iteration.
723 *
724 * NOTE: if someone were to create a deadlock between 2 ww_classes we'd
725 * utterly fail to report it; lockdep should.
726 */
727 if (IS_ENABLED(CONFIG_PREEMPT_RT) && waiter->ww_ctx && detect_deadlock)
728 detect_deadlock = false;
729
730 /*
731 * Drop out, when the task has no waiters. Note,
732 * top_waiter can be NULL, when we are in the deboosting
733 * mode!
734 */
735 if (top_waiter) {
736 if (!task_has_pi_waiters(task))
737 goto out_unlock_pi;
738 /*
739 * If deadlock detection is off, we stop here if we
740 * are not the top pi waiter of the task. If deadlock
741 * detection is enabled we continue, but stop the
742 * requeueing in the chain walk.
743 */
744 if (top_waiter != task_top_pi_waiter(task)) {
745 if (!detect_deadlock)
746 goto out_unlock_pi;
747 else
748 requeue = false;
749 }
750 }
751
752 /*
753 * If the waiter priority is the same as the task priority
754 * then there is no further priority adjustment necessary. If
755 * deadlock detection is off, we stop the chain walk. If its
756 * enabled we continue, but stop the requeueing in the chain
757 * walk.
758 */
759 if (rt_mutex_waiter_equal(waiter, task_to_waiter(task))) {
760 if (!detect_deadlock)
761 goto out_unlock_pi;
762 else
763 requeue = false;
764 }
765
766 /*
767 * [4] Get the next lock
768 */
769 lock = waiter->lock;
770 /*
771 * [5] We need to trylock here as we are holding task->pi_lock,
772 * which is the reverse lock order versus the other rtmutex
773 * operations.
774 */
775 if (!raw_spin_trylock(&lock->wait_lock)) {
776 raw_spin_unlock_irq(&task->pi_lock);
777 cpu_relax();
778 goto retry;
779 }
780
781 /*
782 * [6] check_exit_conditions_2() protected by task->pi_lock and
783 * lock->wait_lock.
784 *
785 * Deadlock detection. If the lock is the same as the original
786 * lock which caused us to walk the lock chain or if the
787 * current lock is owned by the task which initiated the chain
788 * walk, we detected a deadlock.
789 */
790 if (lock == orig_lock || rt_mutex_owner(lock) == top_task) {
791 ret = -EDEADLK;
792
793 /*
794 * When the deadlock is due to ww_mutex; also see above. Don't
795 * report the deadlock and instead let the ww_mutex wound/die
796 * logic pick which of the contending threads gets -EDEADLK.
797 *
798 * NOTE: assumes the cycle only contains a single ww_class; any
799 * other configuration and we fail to report; also, see
800 * lockdep.
801 */
802 if (IS_ENABLED(CONFIG_PREEMPT_RT) && orig_waiter && orig_waiter->ww_ctx)
803 ret = 0;
804
805 raw_spin_unlock(&lock->wait_lock);
806 goto out_unlock_pi;
807 }
808
809 /*
810 * If we just follow the lock chain for deadlock detection, no
811 * need to do all the requeue operations. To avoid a truckload
812 * of conditionals around the various places below, just do the
813 * minimum chain walk checks.
814 */
815 if (!requeue) {
816 /*
817 * No requeue[7] here. Just release @task [8]
818 */
819 raw_spin_unlock(&task->pi_lock);
820 put_task_struct(task);
821
822 /*
823 * [9] check_exit_conditions_3 protected by lock->wait_lock.
824 * If there is no owner of the lock, end of chain.
825 */
826 if (!rt_mutex_owner(lock)) {
827 raw_spin_unlock_irq(&lock->wait_lock);
828 return 0;
829 }
830
831 /* [10] Grab the next task, i.e. owner of @lock */
832 task = get_task_struct(rt_mutex_owner(lock));
833 raw_spin_lock(&task->pi_lock);
834
835 /*
836 * No requeue [11] here. We just do deadlock detection.
837 *
838 * [12] Store whether owner is blocked
839 * itself. Decision is made after dropping the locks
840 */
841 next_lock = task_blocked_on_lock(task);
842 /*
843 * Get the top waiter for the next iteration
844 */
845 top_waiter = rt_mutex_top_waiter(lock);
846
847 /* [13] Drop locks */
848 raw_spin_unlock(&task->pi_lock);
849 raw_spin_unlock_irq(&lock->wait_lock);
850
851 /* If owner is not blocked, end of chain. */
852 if (!next_lock)
853 goto out_put_task;
854 goto again;
855 }
856
857 /*
858 * Store the current top waiter before doing the requeue
859 * operation on @lock. We need it for the boost/deboost
860 * decision below.
861 */
862 prerequeue_top_waiter = rt_mutex_top_waiter(lock);
863
864 /* [7] Requeue the waiter in the lock waiter tree. */
865 rt_mutex_dequeue(lock, waiter);
866
867 /*
868 * Update the waiter prio fields now that we're dequeued.
869 *
870 * These values can have changed through either:
871 *
872 * sys_sched_set_scheduler() / sys_sched_setattr()
873 *
874 * or
875 *
876 * DL CBS enforcement advancing the effective deadline.
877 *
878 * Even though pi_waiters also uses these fields, and that tree is only
879 * updated in [11], we can do this here, since we hold [L], which
880 * serializes all pi_waiters access and rb_erase() does not care about
881 * the values of the node being removed.
882 */
883 waiter_update_prio(waiter, task);
884
885 rt_mutex_enqueue(lock, waiter);
886
887 /* [8] Release the task */
888 raw_spin_unlock(&task->pi_lock);
889 put_task_struct(task);
890
891 /*
892 * [9] check_exit_conditions_3 protected by lock->wait_lock.
893 *
894 * We must abort the chain walk if there is no lock owner even
895 * in the dead lock detection case, as we have nothing to
896 * follow here. This is the end of the chain we are walking.
897 */
898 if (!rt_mutex_owner(lock)) {
899 /*
900 * If the requeue [7] above changed the top waiter,
901 * then we need to wake the new top waiter up to try
902 * to get the lock.
903 */
904 if (prerequeue_top_waiter != rt_mutex_top_waiter(lock))
905 wake_up_state(waiter->task, waiter->wake_state);
906 raw_spin_unlock_irq(&lock->wait_lock);
907 return 0;
908 }
909
910 /* [10] Grab the next task, i.e. the owner of @lock */
911 task = get_task_struct(rt_mutex_owner(lock));
912 raw_spin_lock(&task->pi_lock);
913
914 /* [11] requeue the pi waiters if necessary */
915 if (waiter == rt_mutex_top_waiter(lock)) {
916 /*
917 * The waiter became the new top (highest priority)
918 * waiter on the lock. Replace the previous top waiter
919 * in the owner tasks pi waiters tree with this waiter
920 * and adjust the priority of the owner.
921 */
922 rt_mutex_dequeue_pi(task, prerequeue_top_waiter);
923 rt_mutex_enqueue_pi(task, waiter);
924 rt_mutex_adjust_prio(task);
925
926 } else if (prerequeue_top_waiter == waiter) {
927 /*
928 * The waiter was the top waiter on the lock, but is
929 * no longer the top priority waiter. Replace waiter in
930 * the owner tasks pi waiters tree with the new top
931 * (highest priority) waiter and adjust the priority
932 * of the owner.
933 * The new top waiter is stored in @waiter so that
934 * @waiter == @top_waiter evaluates to true below and
935 * we continue to deboost the rest of the chain.
936 */
937 rt_mutex_dequeue_pi(task, waiter);
938 waiter = rt_mutex_top_waiter(lock);
939 rt_mutex_enqueue_pi(task, waiter);
940 rt_mutex_adjust_prio(task);
941 } else {
942 /*
943 * Nothing changed. No need to do any priority
944 * adjustment.
945 */
946 }
947
948 /*
949 * [12] check_exit_conditions_4() protected by task->pi_lock
950 * and lock->wait_lock. The actual decisions are made after we
951 * dropped the locks.
952 *
953 * Check whether the task which owns the current lock is pi
954 * blocked itself. If yes we store a pointer to the lock for
955 * the lock chain change detection above. After we dropped
956 * task->pi_lock next_lock cannot be dereferenced anymore.
957 */
958 next_lock = task_blocked_on_lock(task);
959 /*
960 * Store the top waiter of @lock for the end of chain walk
961 * decision below.
962 */
963 top_waiter = rt_mutex_top_waiter(lock);
964
965 /* [13] Drop the locks */
966 raw_spin_unlock(&task->pi_lock);
967 raw_spin_unlock_irq(&lock->wait_lock);
968
969 /*
970 * Make the actual exit decisions [12], based on the stored
971 * values.
972 *
973 * We reached the end of the lock chain. Stop right here. No
974 * point to go back just to figure that out.
975 */
976 if (!next_lock)
977 goto out_put_task;
978
979 /*
980 * If the current waiter is not the top waiter on the lock,
981 * then we can stop the chain walk here if we are not in full
982 * deadlock detection mode.
983 */
984 if (!detect_deadlock && waiter != top_waiter)
985 goto out_put_task;
986
987 goto again;
988
989 out_unlock_pi:
990 raw_spin_unlock_irq(&task->pi_lock);
991 out_put_task:
992 put_task_struct(task);
993
994 return ret;
995 }
996
997 /*
998 * Try to take an rt-mutex
999 *
1000 * Must be called with lock->wait_lock held and interrupts disabled
1001 *
1002 * @lock: The lock to be acquired.
1003 * @task: The task which wants to acquire the lock
1004 * @waiter: The waiter that is queued to the lock's wait tree if the
1005 * callsite called task_blocked_on_lock(), otherwise NULL
1006 */
1007 static int __sched
try_to_take_rt_mutex(struct rt_mutex_base * lock,struct task_struct * task,struct rt_mutex_waiter * waiter)1008 try_to_take_rt_mutex(struct rt_mutex_base *lock, struct task_struct *task,
1009 struct rt_mutex_waiter *waiter)
1010 {
1011 lockdep_assert_held(&lock->wait_lock);
1012
1013 /*
1014 * Before testing whether we can acquire @lock, we set the
1015 * RT_MUTEX_HAS_WAITERS bit in @lock->owner. This forces all
1016 * other tasks which try to modify @lock into the slow path
1017 * and they serialize on @lock->wait_lock.
1018 *
1019 * The RT_MUTEX_HAS_WAITERS bit can have a transitional state
1020 * as explained at the top of this file if and only if:
1021 *
1022 * - There is a lock owner. The caller must fixup the
1023 * transient state if it does a trylock or leaves the lock
1024 * function due to a signal or timeout.
1025 *
1026 * - @task acquires the lock and there are no other
1027 * waiters. This is undone in rt_mutex_set_owner(@task) at
1028 * the end of this function.
1029 */
1030 mark_rt_mutex_waiters(lock);
1031
1032 /*
1033 * If @lock has an owner, give up.
1034 */
1035 if (rt_mutex_owner(lock))
1036 return 0;
1037
1038 /*
1039 * If @waiter != NULL, @task has already enqueued the waiter
1040 * into @lock waiter tree. If @waiter == NULL then this is a
1041 * trylock attempt.
1042 */
1043 if (waiter) {
1044 struct rt_mutex_waiter *top_waiter = rt_mutex_top_waiter(lock);
1045
1046 /*
1047 * If waiter is the highest priority waiter of @lock,
1048 * or allowed to steal it, take it over.
1049 */
1050 if (waiter == top_waiter || rt_mutex_steal(waiter, top_waiter)) {
1051 /*
1052 * We can acquire the lock. Remove the waiter from the
1053 * lock waiters tree.
1054 */
1055 rt_mutex_dequeue(lock, waiter);
1056 } else {
1057 return 0;
1058 }
1059 } else {
1060 /*
1061 * If the lock has waiters already we check whether @task is
1062 * eligible to take over the lock.
1063 *
1064 * If there are no other waiters, @task can acquire
1065 * the lock. @task->pi_blocked_on is NULL, so it does
1066 * not need to be dequeued.
1067 */
1068 if (rt_mutex_has_waiters(lock)) {
1069 /* Check whether the trylock can steal it. */
1070 if (!rt_mutex_steal(task_to_waiter(task),
1071 rt_mutex_top_waiter(lock)))
1072 return 0;
1073
1074 /*
1075 * The current top waiter stays enqueued. We
1076 * don't have to change anything in the lock
1077 * waiters order.
1078 */
1079 } else {
1080 /*
1081 * No waiters. Take the lock without the
1082 * pi_lock dance.@task->pi_blocked_on is NULL
1083 * and we have no waiters to enqueue in @task
1084 * pi waiters tree.
1085 */
1086 goto takeit;
1087 }
1088 }
1089
1090 /*
1091 * Clear @task->pi_blocked_on. Requires protection by
1092 * @task->pi_lock. Redundant operation for the @waiter == NULL
1093 * case, but conditionals are more expensive than a redundant
1094 * store.
1095 */
1096 raw_spin_lock(&task->pi_lock);
1097 task->pi_blocked_on = NULL;
1098 /*
1099 * Finish the lock acquisition. @task is the new owner. If
1100 * other waiters exist we have to insert the highest priority
1101 * waiter into @task->pi_waiters tree.
1102 */
1103 if (rt_mutex_has_waiters(lock))
1104 rt_mutex_enqueue_pi(task, rt_mutex_top_waiter(lock));
1105 raw_spin_unlock(&task->pi_lock);
1106
1107 takeit:
1108 /*
1109 * This either preserves the RT_MUTEX_HAS_WAITERS bit if there
1110 * are still waiters or clears it.
1111 */
1112 rt_mutex_set_owner(lock, task);
1113
1114 return 1;
1115 }
1116
1117 /*
1118 * Task blocks on lock.
1119 *
1120 * Prepare waiter and propagate pi chain
1121 *
1122 * This must be called with lock->wait_lock held and interrupts disabled
1123 */
task_blocks_on_rt_mutex(struct rt_mutex_base * lock,struct rt_mutex_waiter * waiter,struct task_struct * task,struct ww_acquire_ctx * ww_ctx,enum rtmutex_chainwalk chwalk)1124 static int __sched task_blocks_on_rt_mutex(struct rt_mutex_base *lock,
1125 struct rt_mutex_waiter *waiter,
1126 struct task_struct *task,
1127 struct ww_acquire_ctx *ww_ctx,
1128 enum rtmutex_chainwalk chwalk)
1129 {
1130 struct task_struct *owner = rt_mutex_owner(lock);
1131 struct rt_mutex_waiter *top_waiter = waiter;
1132 struct rt_mutex_base *next_lock;
1133 int chain_walk = 0, res;
1134
1135 lockdep_assert_held(&lock->wait_lock);
1136
1137 /*
1138 * Early deadlock detection. We really don't want the task to
1139 * enqueue on itself just to untangle the mess later. It's not
1140 * only an optimization. We drop the locks, so another waiter
1141 * can come in before the chain walk detects the deadlock. So
1142 * the other will detect the deadlock and return -EDEADLOCK,
1143 * which is wrong, as the other waiter is not in a deadlock
1144 * situation.
1145 *
1146 * Except for ww_mutex, in that case the chain walk must already deal
1147 * with spurious cycles, see the comments at [3] and [6].
1148 */
1149 if (owner == task && !(build_ww_mutex() && ww_ctx))
1150 return -EDEADLK;
1151
1152 raw_spin_lock(&task->pi_lock);
1153 waiter->task = task;
1154 waiter->lock = lock;
1155 waiter_update_prio(waiter, task);
1156
1157 /* Get the top priority waiter on the lock */
1158 if (rt_mutex_has_waiters(lock))
1159 top_waiter = rt_mutex_top_waiter(lock);
1160 rt_mutex_enqueue(lock, waiter);
1161
1162 task->pi_blocked_on = waiter;
1163
1164 raw_spin_unlock(&task->pi_lock);
1165
1166 if (build_ww_mutex() && ww_ctx) {
1167 struct rt_mutex *rtm;
1168
1169 /* Check whether the waiter should back out immediately */
1170 rtm = container_of(lock, struct rt_mutex, rtmutex);
1171 res = __ww_mutex_add_waiter(waiter, rtm, ww_ctx);
1172 if (res) {
1173 raw_spin_lock(&task->pi_lock);
1174 rt_mutex_dequeue(lock, waiter);
1175 task->pi_blocked_on = NULL;
1176 raw_spin_unlock(&task->pi_lock);
1177 return res;
1178 }
1179 }
1180
1181 if (!owner)
1182 return 0;
1183
1184 raw_spin_lock(&owner->pi_lock);
1185 if (waiter == rt_mutex_top_waiter(lock)) {
1186 rt_mutex_dequeue_pi(owner, top_waiter);
1187 rt_mutex_enqueue_pi(owner, waiter);
1188
1189 rt_mutex_adjust_prio(owner);
1190 if (owner->pi_blocked_on)
1191 chain_walk = 1;
1192 } else if (rt_mutex_cond_detect_deadlock(waiter, chwalk)) {
1193 chain_walk = 1;
1194 }
1195
1196 /* Store the lock on which owner is blocked or NULL */
1197 next_lock = task_blocked_on_lock(owner);
1198
1199 raw_spin_unlock(&owner->pi_lock);
1200 /*
1201 * Even if full deadlock detection is on, if the owner is not
1202 * blocked itself, we can avoid finding this out in the chain
1203 * walk.
1204 */
1205 if (!chain_walk || !next_lock)
1206 return 0;
1207
1208 /*
1209 * The owner can't disappear while holding a lock,
1210 * so the owner struct is protected by wait_lock.
1211 * Gets dropped in rt_mutex_adjust_prio_chain()!
1212 */
1213 get_task_struct(owner);
1214
1215 raw_spin_unlock_irq(&lock->wait_lock);
1216
1217 res = rt_mutex_adjust_prio_chain(owner, chwalk, lock,
1218 next_lock, waiter, task);
1219
1220 raw_spin_lock_irq(&lock->wait_lock);
1221
1222 return res;
1223 }
1224
1225 /*
1226 * Remove the top waiter from the current tasks pi waiter tree and
1227 * queue it up.
1228 *
1229 * Called with lock->wait_lock held and interrupts disabled.
1230 */
mark_wakeup_next_waiter(struct rt_wake_q_head * wqh,struct rt_mutex_base * lock)1231 static void __sched mark_wakeup_next_waiter(struct rt_wake_q_head *wqh,
1232 struct rt_mutex_base *lock)
1233 {
1234 struct rt_mutex_waiter *waiter;
1235
1236 raw_spin_lock(¤t->pi_lock);
1237
1238 waiter = rt_mutex_top_waiter(lock);
1239
1240 /*
1241 * Remove it from current->pi_waiters and deboost.
1242 *
1243 * We must in fact deboost here in order to ensure we call
1244 * rt_mutex_setprio() to update p->pi_top_task before the
1245 * task unblocks.
1246 */
1247 rt_mutex_dequeue_pi(current, waiter);
1248 rt_mutex_adjust_prio(current);
1249
1250 /*
1251 * As we are waking up the top waiter, and the waiter stays
1252 * queued on the lock until it gets the lock, this lock
1253 * obviously has waiters. Just set the bit here and this has
1254 * the added benefit of forcing all new tasks into the
1255 * slow path making sure no task of lower priority than
1256 * the top waiter can steal this lock.
1257 */
1258 lock->owner = (void *) RT_MUTEX_HAS_WAITERS;
1259
1260 /*
1261 * We deboosted before waking the top waiter task such that we don't
1262 * run two tasks with the 'same' priority (and ensure the
1263 * p->pi_top_task pointer points to a blocked task). This however can
1264 * lead to priority inversion if we would get preempted after the
1265 * deboost but before waking our donor task, hence the preempt_disable()
1266 * before unlock.
1267 *
1268 * Pairs with preempt_enable() in rt_mutex_wake_up_q();
1269 */
1270 preempt_disable();
1271 rt_mutex_wake_q_add(wqh, waiter);
1272 raw_spin_unlock(¤t->pi_lock);
1273 }
1274
__rt_mutex_slowtrylock(struct rt_mutex_base * lock)1275 static int __sched __rt_mutex_slowtrylock(struct rt_mutex_base *lock)
1276 {
1277 int ret = try_to_take_rt_mutex(lock, current, NULL);
1278
1279 /*
1280 * try_to_take_rt_mutex() sets the lock waiters bit
1281 * unconditionally. Clean this up.
1282 */
1283 fixup_rt_mutex_waiters(lock, true);
1284
1285 return ret;
1286 }
1287
1288 /*
1289 * Slow path try-lock function:
1290 */
rt_mutex_slowtrylock(struct rt_mutex_base * lock)1291 static int __sched rt_mutex_slowtrylock(struct rt_mutex_base *lock)
1292 {
1293 unsigned long flags;
1294 int ret;
1295
1296 /*
1297 * If the lock already has an owner we fail to get the lock.
1298 * This can be done without taking the @lock->wait_lock as
1299 * it is only being read, and this is a trylock anyway.
1300 */
1301 if (rt_mutex_owner(lock))
1302 return 0;
1303
1304 /*
1305 * The mutex has currently no owner. Lock the wait lock and try to
1306 * acquire the lock. We use irqsave here to support early boot calls.
1307 */
1308 raw_spin_lock_irqsave(&lock->wait_lock, flags);
1309
1310 ret = __rt_mutex_slowtrylock(lock);
1311
1312 raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
1313
1314 return ret;
1315 }
1316
__rt_mutex_trylock(struct rt_mutex_base * lock)1317 static __always_inline int __rt_mutex_trylock(struct rt_mutex_base *lock)
1318 {
1319 if (likely(rt_mutex_cmpxchg_acquire(lock, NULL, current)))
1320 return 1;
1321
1322 return rt_mutex_slowtrylock(lock);
1323 }
1324
1325 /*
1326 * Slow path to release a rt-mutex.
1327 */
rt_mutex_slowunlock(struct rt_mutex_base * lock)1328 static void __sched rt_mutex_slowunlock(struct rt_mutex_base *lock)
1329 {
1330 DEFINE_RT_WAKE_Q(wqh);
1331 unsigned long flags;
1332
1333 /* irqsave required to support early boot calls */
1334 raw_spin_lock_irqsave(&lock->wait_lock, flags);
1335
1336 debug_rt_mutex_unlock(lock);
1337
1338 /*
1339 * We must be careful here if the fast path is enabled. If we
1340 * have no waiters queued we cannot set owner to NULL here
1341 * because of:
1342 *
1343 * foo->lock->owner = NULL;
1344 * rtmutex_lock(foo->lock); <- fast path
1345 * free = atomic_dec_and_test(foo->refcnt);
1346 * rtmutex_unlock(foo->lock); <- fast path
1347 * if (free)
1348 * kfree(foo);
1349 * raw_spin_unlock(foo->lock->wait_lock);
1350 *
1351 * So for the fastpath enabled kernel:
1352 *
1353 * Nothing can set the waiters bit as long as we hold
1354 * lock->wait_lock. So we do the following sequence:
1355 *
1356 * owner = rt_mutex_owner(lock);
1357 * clear_rt_mutex_waiters(lock);
1358 * raw_spin_unlock(&lock->wait_lock);
1359 * if (cmpxchg(&lock->owner, owner, 0) == owner)
1360 * return;
1361 * goto retry;
1362 *
1363 * The fastpath disabled variant is simple as all access to
1364 * lock->owner is serialized by lock->wait_lock:
1365 *
1366 * lock->owner = NULL;
1367 * raw_spin_unlock(&lock->wait_lock);
1368 */
1369 while (!rt_mutex_has_waiters(lock)) {
1370 /* Drops lock->wait_lock ! */
1371 if (unlock_rt_mutex_safe(lock, flags) == true)
1372 return;
1373 /* Relock the rtmutex and try again */
1374 raw_spin_lock_irqsave(&lock->wait_lock, flags);
1375 }
1376
1377 /*
1378 * The wakeup next waiter path does not suffer from the above
1379 * race. See the comments there.
1380 *
1381 * Queue the next waiter for wakeup once we release the wait_lock.
1382 */
1383 mark_wakeup_next_waiter(&wqh, lock);
1384 raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
1385
1386 rt_mutex_wake_up_q(&wqh);
1387 }
1388
__rt_mutex_unlock(struct rt_mutex_base * lock)1389 static __always_inline void __rt_mutex_unlock(struct rt_mutex_base *lock)
1390 {
1391 if (likely(rt_mutex_cmpxchg_release(lock, current, NULL)))
1392 return;
1393
1394 rt_mutex_slowunlock(lock);
1395 }
1396
1397 #ifdef CONFIG_SMP
rtmutex_spin_on_owner(struct rt_mutex_base * lock,struct rt_mutex_waiter * waiter,struct task_struct * owner)1398 static bool rtmutex_spin_on_owner(struct rt_mutex_base *lock,
1399 struct rt_mutex_waiter *waiter,
1400 struct task_struct *owner)
1401 {
1402 bool res = true;
1403
1404 rcu_read_lock();
1405 for (;;) {
1406 /* If owner changed, trylock again. */
1407 if (owner != rt_mutex_owner(lock))
1408 break;
1409 /*
1410 * Ensure that @owner is dereferenced after checking that
1411 * the lock owner still matches @owner. If that fails,
1412 * @owner might point to freed memory. If it still matches,
1413 * the rcu_read_lock() ensures the memory stays valid.
1414 */
1415 barrier();
1416 /*
1417 * Stop spinning when:
1418 * - the lock owner has been scheduled out
1419 * - current is not longer the top waiter
1420 * - current is requested to reschedule (redundant
1421 * for CONFIG_PREEMPT_RCU=y)
1422 * - the VCPU on which owner runs is preempted
1423 */
1424 if (!owner_on_cpu(owner) || need_resched() ||
1425 !rt_mutex_waiter_is_top_waiter(lock, waiter)) {
1426 res = false;
1427 break;
1428 }
1429 cpu_relax();
1430 }
1431 rcu_read_unlock();
1432 return res;
1433 }
1434 #else
rtmutex_spin_on_owner(struct rt_mutex_base * lock,struct rt_mutex_waiter * waiter,struct task_struct * owner)1435 static bool rtmutex_spin_on_owner(struct rt_mutex_base *lock,
1436 struct rt_mutex_waiter *waiter,
1437 struct task_struct *owner)
1438 {
1439 return false;
1440 }
1441 #endif
1442
1443 #ifdef RT_MUTEX_BUILD_MUTEX
1444 /*
1445 * Functions required for:
1446 * - rtmutex, futex on all kernels
1447 * - mutex and rwsem substitutions on RT kernels
1448 */
1449
1450 /*
1451 * Remove a waiter from a lock and give up
1452 *
1453 * Must be called with lock->wait_lock held and interrupts disabled. It must
1454 * have just failed to try_to_take_rt_mutex().
1455 */
remove_waiter(struct rt_mutex_base * lock,struct rt_mutex_waiter * waiter)1456 static void __sched remove_waiter(struct rt_mutex_base *lock,
1457 struct rt_mutex_waiter *waiter)
1458 {
1459 bool is_top_waiter = (waiter == rt_mutex_top_waiter(lock));
1460 struct task_struct *owner = rt_mutex_owner(lock);
1461 struct rt_mutex_base *next_lock;
1462
1463 lockdep_assert_held(&lock->wait_lock);
1464
1465 raw_spin_lock(¤t->pi_lock);
1466 rt_mutex_dequeue(lock, waiter);
1467 current->pi_blocked_on = NULL;
1468 raw_spin_unlock(¤t->pi_lock);
1469
1470 /*
1471 * Only update priority if the waiter was the highest priority
1472 * waiter of the lock and there is an owner to update.
1473 */
1474 if (!owner || !is_top_waiter)
1475 return;
1476
1477 raw_spin_lock(&owner->pi_lock);
1478
1479 rt_mutex_dequeue_pi(owner, waiter);
1480
1481 if (rt_mutex_has_waiters(lock))
1482 rt_mutex_enqueue_pi(owner, rt_mutex_top_waiter(lock));
1483
1484 rt_mutex_adjust_prio(owner);
1485
1486 /* Store the lock on which owner is blocked or NULL */
1487 next_lock = task_blocked_on_lock(owner);
1488
1489 raw_spin_unlock(&owner->pi_lock);
1490
1491 /*
1492 * Don't walk the chain, if the owner task is not blocked
1493 * itself.
1494 */
1495 if (!next_lock)
1496 return;
1497
1498 /* gets dropped in rt_mutex_adjust_prio_chain()! */
1499 get_task_struct(owner);
1500
1501 raw_spin_unlock_irq(&lock->wait_lock);
1502
1503 rt_mutex_adjust_prio_chain(owner, RT_MUTEX_MIN_CHAINWALK, lock,
1504 next_lock, NULL, current);
1505
1506 raw_spin_lock_irq(&lock->wait_lock);
1507 }
1508
1509 /**
1510 * rt_mutex_slowlock_block() - Perform the wait-wake-try-to-take loop
1511 * @lock: the rt_mutex to take
1512 * @ww_ctx: WW mutex context pointer
1513 * @state: the state the task should block in (TASK_INTERRUPTIBLE
1514 * or TASK_UNINTERRUPTIBLE)
1515 * @timeout: the pre-initialized and started timer, or NULL for none
1516 * @waiter: the pre-initialized rt_mutex_waiter
1517 *
1518 * Must be called with lock->wait_lock held and interrupts disabled
1519 */
rt_mutex_slowlock_block(struct rt_mutex_base * lock,struct ww_acquire_ctx * ww_ctx,unsigned int state,struct hrtimer_sleeper * timeout,struct rt_mutex_waiter * waiter)1520 static int __sched rt_mutex_slowlock_block(struct rt_mutex_base *lock,
1521 struct ww_acquire_ctx *ww_ctx,
1522 unsigned int state,
1523 struct hrtimer_sleeper *timeout,
1524 struct rt_mutex_waiter *waiter)
1525 {
1526 struct rt_mutex *rtm = container_of(lock, struct rt_mutex, rtmutex);
1527 struct task_struct *owner;
1528 int ret = 0;
1529
1530 for (;;) {
1531 /* Try to acquire the lock: */
1532 if (try_to_take_rt_mutex(lock, current, waiter))
1533 break;
1534
1535 if (timeout && !timeout->task) {
1536 ret = -ETIMEDOUT;
1537 break;
1538 }
1539 if (signal_pending_state(state, current)) {
1540 ret = -EINTR;
1541 break;
1542 }
1543
1544 if (build_ww_mutex() && ww_ctx) {
1545 ret = __ww_mutex_check_kill(rtm, waiter, ww_ctx);
1546 if (ret)
1547 break;
1548 }
1549
1550 if (waiter == rt_mutex_top_waiter(lock))
1551 owner = rt_mutex_owner(lock);
1552 else
1553 owner = NULL;
1554 raw_spin_unlock_irq(&lock->wait_lock);
1555
1556 if (!owner || !rtmutex_spin_on_owner(lock, waiter, owner))
1557 schedule();
1558
1559 raw_spin_lock_irq(&lock->wait_lock);
1560 set_current_state(state);
1561 }
1562
1563 __set_current_state(TASK_RUNNING);
1564 return ret;
1565 }
1566
rt_mutex_handle_deadlock(int res,int detect_deadlock,struct rt_mutex_waiter * w)1567 static void __sched rt_mutex_handle_deadlock(int res, int detect_deadlock,
1568 struct rt_mutex_waiter *w)
1569 {
1570 /*
1571 * If the result is not -EDEADLOCK or the caller requested
1572 * deadlock detection, nothing to do here.
1573 */
1574 if (res != -EDEADLOCK || detect_deadlock)
1575 return;
1576
1577 if (build_ww_mutex() && w->ww_ctx)
1578 return;
1579
1580 /*
1581 * Yell loudly and stop the task right here.
1582 */
1583 WARN(1, "rtmutex deadlock detected\n");
1584 while (1) {
1585 set_current_state(TASK_INTERRUPTIBLE);
1586 schedule();
1587 }
1588 }
1589
1590 /**
1591 * __rt_mutex_slowlock - Locking slowpath invoked with lock::wait_lock held
1592 * @lock: The rtmutex to block lock
1593 * @ww_ctx: WW mutex context pointer
1594 * @state: The task state for sleeping
1595 * @chwalk: Indicator whether full or partial chainwalk is requested
1596 * @waiter: Initializer waiter for blocking
1597 */
__rt_mutex_slowlock(struct rt_mutex_base * lock,struct ww_acquire_ctx * ww_ctx,unsigned int state,enum rtmutex_chainwalk chwalk,struct rt_mutex_waiter * waiter)1598 static int __sched __rt_mutex_slowlock(struct rt_mutex_base *lock,
1599 struct ww_acquire_ctx *ww_ctx,
1600 unsigned int state,
1601 enum rtmutex_chainwalk chwalk,
1602 struct rt_mutex_waiter *waiter)
1603 {
1604 struct rt_mutex *rtm = container_of(lock, struct rt_mutex, rtmutex);
1605 struct ww_mutex *ww = ww_container_of(rtm);
1606 int ret;
1607
1608 lockdep_assert_held(&lock->wait_lock);
1609
1610 /* Try to acquire the lock again: */
1611 if (try_to_take_rt_mutex(lock, current, NULL)) {
1612 if (build_ww_mutex() && ww_ctx) {
1613 __ww_mutex_check_waiters(rtm, ww_ctx);
1614 ww_mutex_lock_acquired(ww, ww_ctx);
1615 }
1616 return 0;
1617 }
1618
1619 set_current_state(state);
1620
1621 trace_contention_begin(lock, LCB_F_RT);
1622
1623 ret = task_blocks_on_rt_mutex(lock, waiter, current, ww_ctx, chwalk);
1624 if (likely(!ret))
1625 ret = rt_mutex_slowlock_block(lock, ww_ctx, state, NULL, waiter);
1626
1627 if (likely(!ret)) {
1628 /* acquired the lock */
1629 if (build_ww_mutex() && ww_ctx) {
1630 if (!ww_ctx->is_wait_die)
1631 __ww_mutex_check_waiters(rtm, ww_ctx);
1632 ww_mutex_lock_acquired(ww, ww_ctx);
1633 }
1634 } else {
1635 __set_current_state(TASK_RUNNING);
1636 remove_waiter(lock, waiter);
1637 rt_mutex_handle_deadlock(ret, chwalk, waiter);
1638 }
1639
1640 /*
1641 * try_to_take_rt_mutex() sets the waiter bit
1642 * unconditionally. We might have to fix that up.
1643 */
1644 fixup_rt_mutex_waiters(lock, true);
1645
1646 trace_contention_end(lock, ret);
1647
1648 return ret;
1649 }
1650
__rt_mutex_slowlock_locked(struct rt_mutex_base * lock,struct ww_acquire_ctx * ww_ctx,unsigned int state)1651 static inline int __rt_mutex_slowlock_locked(struct rt_mutex_base *lock,
1652 struct ww_acquire_ctx *ww_ctx,
1653 unsigned int state)
1654 {
1655 struct rt_mutex_waiter waiter;
1656 int ret;
1657
1658 rt_mutex_init_waiter(&waiter);
1659 waiter.ww_ctx = ww_ctx;
1660
1661 ret = __rt_mutex_slowlock(lock, ww_ctx, state, RT_MUTEX_MIN_CHAINWALK,
1662 &waiter);
1663
1664 debug_rt_mutex_free_waiter(&waiter);
1665 return ret;
1666 }
1667
1668 /*
1669 * rt_mutex_slowlock - Locking slowpath invoked when fast path fails
1670 * @lock: The rtmutex to block lock
1671 * @ww_ctx: WW mutex context pointer
1672 * @state: The task state for sleeping
1673 */
rt_mutex_slowlock(struct rt_mutex_base * lock,struct ww_acquire_ctx * ww_ctx,unsigned int state)1674 static int __sched rt_mutex_slowlock(struct rt_mutex_base *lock,
1675 struct ww_acquire_ctx *ww_ctx,
1676 unsigned int state)
1677 {
1678 unsigned long flags;
1679 int ret;
1680
1681 /*
1682 * Technically we could use raw_spin_[un]lock_irq() here, but this can
1683 * be called in early boot if the cmpxchg() fast path is disabled
1684 * (debug, no architecture support). In this case we will acquire the
1685 * rtmutex with lock->wait_lock held. But we cannot unconditionally
1686 * enable interrupts in that early boot case. So we need to use the
1687 * irqsave/restore variants.
1688 */
1689 raw_spin_lock_irqsave(&lock->wait_lock, flags);
1690 ret = __rt_mutex_slowlock_locked(lock, ww_ctx, state);
1691 raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
1692
1693 return ret;
1694 }
1695
__rt_mutex_lock(struct rt_mutex_base * lock,unsigned int state)1696 static __always_inline int __rt_mutex_lock(struct rt_mutex_base *lock,
1697 unsigned int state)
1698 {
1699 if (likely(rt_mutex_cmpxchg_acquire(lock, NULL, current)))
1700 return 0;
1701
1702 return rt_mutex_slowlock(lock, NULL, state);
1703 }
1704 #endif /* RT_MUTEX_BUILD_MUTEX */
1705
1706 #ifdef RT_MUTEX_BUILD_SPINLOCKS
1707 /*
1708 * Functions required for spin/rw_lock substitution on RT kernels
1709 */
1710
1711 /**
1712 * rtlock_slowlock_locked - Slow path lock acquisition for RT locks
1713 * @lock: The underlying RT mutex
1714 */
rtlock_slowlock_locked(struct rt_mutex_base * lock)1715 static void __sched rtlock_slowlock_locked(struct rt_mutex_base *lock)
1716 {
1717 struct rt_mutex_waiter waiter;
1718 struct task_struct *owner;
1719
1720 lockdep_assert_held(&lock->wait_lock);
1721
1722 if (try_to_take_rt_mutex(lock, current, NULL))
1723 return;
1724
1725 rt_mutex_init_rtlock_waiter(&waiter);
1726
1727 /* Save current state and set state to TASK_RTLOCK_WAIT */
1728 current_save_and_set_rtlock_wait_state();
1729
1730 trace_contention_begin(lock, LCB_F_RT);
1731
1732 task_blocks_on_rt_mutex(lock, &waiter, current, NULL, RT_MUTEX_MIN_CHAINWALK);
1733
1734 for (;;) {
1735 /* Try to acquire the lock again */
1736 if (try_to_take_rt_mutex(lock, current, &waiter))
1737 break;
1738
1739 if (&waiter == rt_mutex_top_waiter(lock))
1740 owner = rt_mutex_owner(lock);
1741 else
1742 owner = NULL;
1743 raw_spin_unlock_irq(&lock->wait_lock);
1744
1745 if (!owner || !rtmutex_spin_on_owner(lock, &waiter, owner))
1746 schedule_rtlock();
1747
1748 raw_spin_lock_irq(&lock->wait_lock);
1749 set_current_state(TASK_RTLOCK_WAIT);
1750 }
1751
1752 /* Restore the task state */
1753 current_restore_rtlock_saved_state();
1754
1755 /*
1756 * try_to_take_rt_mutex() sets the waiter bit unconditionally.
1757 * We might have to fix that up:
1758 */
1759 fixup_rt_mutex_waiters(lock, true);
1760 debug_rt_mutex_free_waiter(&waiter);
1761
1762 trace_contention_end(lock, 0);
1763 }
1764
rtlock_slowlock(struct rt_mutex_base * lock)1765 static __always_inline void __sched rtlock_slowlock(struct rt_mutex_base *lock)
1766 {
1767 unsigned long flags;
1768
1769 raw_spin_lock_irqsave(&lock->wait_lock, flags);
1770 rtlock_slowlock_locked(lock);
1771 raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
1772 }
1773
1774 #endif /* RT_MUTEX_BUILD_SPINLOCKS */
1775