1 /*
2 	Copyright (C) 2010 Willow Garage <http://www.willowgarage.com>
3 	Copyright (C) 2004 - 2010 Ivo van Doorn <IvDoorn@gmail.com>
4 	Copyright (C) 2004 - 2009 Gertjan van Wingerde <gwingerde@gmail.com>
5 	<http://rt2x00.serialmonkey.com>
6 
7 	This program is free software; you can redistribute it and/or modify
8 	it under the terms of the GNU General Public License as published by
9 	the Free Software Foundation; either version 2 of the License, or
10 	(at your option) any later version.
11 
12 	This program is distributed in the hope that it will be useful,
13 	but WITHOUT ANY WARRANTY; without even the implied warranty of
14 	MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 	GNU General Public License for more details.
16 
17 	You should have received a copy of the GNU General Public License
18 	along with this program; if not, write to the
19 	Free Software Foundation, Inc.,
20 	59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
21  */
22 
23 /*
24 	Module: rt2x00lib
25 	Abstract: rt2x00 queue specific routines.
26  */
27 
28 #include <linux/slab.h>
29 #include <linux/kernel.h>
30 #include <linux/module.h>
31 #include <linux/dma-mapping.h>
32 
33 #include "rt2x00.h"
34 #include "rt2x00lib.h"
35 
rt2x00queue_alloc_rxskb(struct queue_entry * entry)36 struct sk_buff *rt2x00queue_alloc_rxskb(struct queue_entry *entry)
37 {
38 	struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
39 	struct sk_buff *skb;
40 	struct skb_frame_desc *skbdesc;
41 	unsigned int frame_size;
42 	unsigned int head_size = 0;
43 	unsigned int tail_size = 0;
44 
45 	/*
46 	 * The frame size includes descriptor size, because the
47 	 * hardware directly receive the frame into the skbuffer.
48 	 */
49 	frame_size = entry->queue->data_size + entry->queue->desc_size;
50 
51 	/*
52 	 * The payload should be aligned to a 4-byte boundary,
53 	 * this means we need at least 3 bytes for moving the frame
54 	 * into the correct offset.
55 	 */
56 	head_size = 4;
57 
58 	/*
59 	 * For IV/EIV/ICV assembly we must make sure there is
60 	 * at least 8 bytes bytes available in headroom for IV/EIV
61 	 * and 8 bytes for ICV data as tailroon.
62 	 */
63 	if (test_bit(CAPABILITY_HW_CRYPTO, &rt2x00dev->cap_flags)) {
64 		head_size += 8;
65 		tail_size += 8;
66 	}
67 
68 	/*
69 	 * Allocate skbuffer.
70 	 */
71 	skb = dev_alloc_skb(frame_size + head_size + tail_size);
72 	if (!skb)
73 		return NULL;
74 
75 	/*
76 	 * Make sure we not have a frame with the requested bytes
77 	 * available in the head and tail.
78 	 */
79 	skb_reserve(skb, head_size);
80 	skb_put(skb, frame_size);
81 
82 	/*
83 	 * Populate skbdesc.
84 	 */
85 	skbdesc = get_skb_frame_desc(skb);
86 	memset(skbdesc, 0, sizeof(*skbdesc));
87 	skbdesc->entry = entry;
88 
89 	if (test_bit(REQUIRE_DMA, &rt2x00dev->cap_flags)) {
90 		skbdesc->skb_dma = dma_map_single(rt2x00dev->dev,
91 						  skb->data,
92 						  skb->len,
93 						  DMA_FROM_DEVICE);
94 		skbdesc->flags |= SKBDESC_DMA_MAPPED_RX;
95 	}
96 
97 	return skb;
98 }
99 
rt2x00queue_map_txskb(struct queue_entry * entry)100 void rt2x00queue_map_txskb(struct queue_entry *entry)
101 {
102 	struct device *dev = entry->queue->rt2x00dev->dev;
103 	struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
104 
105 	skbdesc->skb_dma =
106 	    dma_map_single(dev, entry->skb->data, entry->skb->len, DMA_TO_DEVICE);
107 	skbdesc->flags |= SKBDESC_DMA_MAPPED_TX;
108 }
109 EXPORT_SYMBOL_GPL(rt2x00queue_map_txskb);
110 
rt2x00queue_unmap_skb(struct queue_entry * entry)111 void rt2x00queue_unmap_skb(struct queue_entry *entry)
112 {
113 	struct device *dev = entry->queue->rt2x00dev->dev;
114 	struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
115 
116 	if (skbdesc->flags & SKBDESC_DMA_MAPPED_RX) {
117 		dma_unmap_single(dev, skbdesc->skb_dma, entry->skb->len,
118 				 DMA_FROM_DEVICE);
119 		skbdesc->flags &= ~SKBDESC_DMA_MAPPED_RX;
120 	} else if (skbdesc->flags & SKBDESC_DMA_MAPPED_TX) {
121 		dma_unmap_single(dev, skbdesc->skb_dma, entry->skb->len,
122 				 DMA_TO_DEVICE);
123 		skbdesc->flags &= ~SKBDESC_DMA_MAPPED_TX;
124 	}
125 }
126 EXPORT_SYMBOL_GPL(rt2x00queue_unmap_skb);
127 
rt2x00queue_free_skb(struct queue_entry * entry)128 void rt2x00queue_free_skb(struct queue_entry *entry)
129 {
130 	if (!entry->skb)
131 		return;
132 
133 	rt2x00queue_unmap_skb(entry);
134 	dev_kfree_skb_any(entry->skb);
135 	entry->skb = NULL;
136 }
137 
rt2x00queue_align_frame(struct sk_buff * skb)138 void rt2x00queue_align_frame(struct sk_buff *skb)
139 {
140 	unsigned int frame_length = skb->len;
141 	unsigned int align = ALIGN_SIZE(skb, 0);
142 
143 	if (!align)
144 		return;
145 
146 	skb_push(skb, align);
147 	memmove(skb->data, skb->data + align, frame_length);
148 	skb_trim(skb, frame_length);
149 }
150 
rt2x00queue_insert_l2pad(struct sk_buff * skb,unsigned int header_length)151 void rt2x00queue_insert_l2pad(struct sk_buff *skb, unsigned int header_length)
152 {
153 	unsigned int payload_length = skb->len - header_length;
154 	unsigned int header_align = ALIGN_SIZE(skb, 0);
155 	unsigned int payload_align = ALIGN_SIZE(skb, header_length);
156 	unsigned int l2pad = payload_length ? L2PAD_SIZE(header_length) : 0;
157 
158 	/*
159 	 * Adjust the header alignment if the payload needs to be moved more
160 	 * than the header.
161 	 */
162 	if (payload_align > header_align)
163 		header_align += 4;
164 
165 	/* There is nothing to do if no alignment is needed */
166 	if (!header_align)
167 		return;
168 
169 	/* Reserve the amount of space needed in front of the frame */
170 	skb_push(skb, header_align);
171 
172 	/*
173 	 * Move the header.
174 	 */
175 	memmove(skb->data, skb->data + header_align, header_length);
176 
177 	/* Move the payload, if present and if required */
178 	if (payload_length && payload_align)
179 		memmove(skb->data + header_length + l2pad,
180 			skb->data + header_length + l2pad + payload_align,
181 			payload_length);
182 
183 	/* Trim the skb to the correct size */
184 	skb_trim(skb, header_length + l2pad + payload_length);
185 }
186 
rt2x00queue_remove_l2pad(struct sk_buff * skb,unsigned int header_length)187 void rt2x00queue_remove_l2pad(struct sk_buff *skb, unsigned int header_length)
188 {
189 	/*
190 	 * L2 padding is only present if the skb contains more than just the
191 	 * IEEE 802.11 header.
192 	 */
193 	unsigned int l2pad = (skb->len > header_length) ?
194 				L2PAD_SIZE(header_length) : 0;
195 
196 	if (!l2pad)
197 		return;
198 
199 	memmove(skb->data + l2pad, skb->data, header_length);
200 	skb_pull(skb, l2pad);
201 }
202 
rt2x00queue_create_tx_descriptor_seq(struct rt2x00_dev * rt2x00dev,struct sk_buff * skb,struct txentry_desc * txdesc)203 static void rt2x00queue_create_tx_descriptor_seq(struct rt2x00_dev *rt2x00dev,
204 						 struct sk_buff *skb,
205 						 struct txentry_desc *txdesc)
206 {
207 	struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
208 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
209 	struct rt2x00_intf *intf = vif_to_intf(tx_info->control.vif);
210 	u16 seqno;
211 
212 	if (!(tx_info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ))
213 		return;
214 
215 	__set_bit(ENTRY_TXD_GENERATE_SEQ, &txdesc->flags);
216 
217 	if (!test_bit(REQUIRE_SW_SEQNO, &rt2x00dev->cap_flags))
218 		return;
219 
220 	/*
221 	 * The hardware is not able to insert a sequence number. Assign a
222 	 * software generated one here.
223 	 *
224 	 * This is wrong because beacons are not getting sequence
225 	 * numbers assigned properly.
226 	 *
227 	 * A secondary problem exists for drivers that cannot toggle
228 	 * sequence counting per-frame, since those will override the
229 	 * sequence counter given by mac80211.
230 	 */
231 	if (test_bit(ENTRY_TXD_FIRST_FRAGMENT, &txdesc->flags))
232 		seqno = atomic_add_return(0x10, &intf->seqno);
233 	else
234 		seqno = atomic_read(&intf->seqno);
235 
236 	hdr->seq_ctrl &= cpu_to_le16(IEEE80211_SCTL_FRAG);
237 	hdr->seq_ctrl |= cpu_to_le16(seqno);
238 }
239 
rt2x00queue_create_tx_descriptor_plcp(struct rt2x00_dev * rt2x00dev,struct sk_buff * skb,struct txentry_desc * txdesc,const struct rt2x00_rate * hwrate)240 static void rt2x00queue_create_tx_descriptor_plcp(struct rt2x00_dev *rt2x00dev,
241 						  struct sk_buff *skb,
242 						  struct txentry_desc *txdesc,
243 						  const struct rt2x00_rate *hwrate)
244 {
245 	struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
246 	struct ieee80211_tx_rate *txrate = &tx_info->control.rates[0];
247 	unsigned int data_length;
248 	unsigned int duration;
249 	unsigned int residual;
250 
251 	/*
252 	 * Determine with what IFS priority this frame should be send.
253 	 * Set ifs to IFS_SIFS when the this is not the first fragment,
254 	 * or this fragment came after RTS/CTS.
255 	 */
256 	if (test_bit(ENTRY_TXD_FIRST_FRAGMENT, &txdesc->flags))
257 		txdesc->u.plcp.ifs = IFS_BACKOFF;
258 	else
259 		txdesc->u.plcp.ifs = IFS_SIFS;
260 
261 	/* Data length + CRC + Crypto overhead (IV/EIV/ICV/MIC) */
262 	data_length = skb->len + 4;
263 	data_length += rt2x00crypto_tx_overhead(rt2x00dev, skb);
264 
265 	/*
266 	 * PLCP setup
267 	 * Length calculation depends on OFDM/CCK rate.
268 	 */
269 	txdesc->u.plcp.signal = hwrate->plcp;
270 	txdesc->u.plcp.service = 0x04;
271 
272 	if (hwrate->flags & DEV_RATE_OFDM) {
273 		txdesc->u.plcp.length_high = (data_length >> 6) & 0x3f;
274 		txdesc->u.plcp.length_low = data_length & 0x3f;
275 	} else {
276 		/*
277 		 * Convert length to microseconds.
278 		 */
279 		residual = GET_DURATION_RES(data_length, hwrate->bitrate);
280 		duration = GET_DURATION(data_length, hwrate->bitrate);
281 
282 		if (residual != 0) {
283 			duration++;
284 
285 			/*
286 			 * Check if we need to set the Length Extension
287 			 */
288 			if (hwrate->bitrate == 110 && residual <= 30)
289 				txdesc->u.plcp.service |= 0x80;
290 		}
291 
292 		txdesc->u.plcp.length_high = (duration >> 8) & 0xff;
293 		txdesc->u.plcp.length_low = duration & 0xff;
294 
295 		/*
296 		 * When preamble is enabled we should set the
297 		 * preamble bit for the signal.
298 		 */
299 		if (txrate->flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE)
300 			txdesc->u.plcp.signal |= 0x08;
301 	}
302 }
303 
rt2x00queue_create_tx_descriptor_ht(struct rt2x00_dev * rt2x00dev,struct sk_buff * skb,struct txentry_desc * txdesc,const struct rt2x00_rate * hwrate)304 static void rt2x00queue_create_tx_descriptor_ht(struct rt2x00_dev *rt2x00dev,
305 						struct sk_buff *skb,
306 						struct txentry_desc *txdesc,
307 						const struct rt2x00_rate *hwrate)
308 {
309 	struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
310 	struct ieee80211_tx_rate *txrate = &tx_info->control.rates[0];
311 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
312 	struct rt2x00_sta *sta_priv = NULL;
313 
314 	if (tx_info->control.sta) {
315 		txdesc->u.ht.mpdu_density =
316 		    tx_info->control.sta->ht_cap.ampdu_density;
317 
318 		sta_priv = sta_to_rt2x00_sta(tx_info->control.sta);
319 		txdesc->u.ht.wcid = sta_priv->wcid;
320 	}
321 
322 	txdesc->u.ht.ba_size = 7;	/* FIXME: What value is needed? */
323 
324 	/*
325 	 * Only one STBC stream is supported for now.
326 	 */
327 	if (tx_info->flags & IEEE80211_TX_CTL_STBC)
328 		txdesc->u.ht.stbc = 1;
329 
330 	/*
331 	 * If IEEE80211_TX_RC_MCS is set txrate->idx just contains the
332 	 * mcs rate to be used
333 	 */
334 	if (txrate->flags & IEEE80211_TX_RC_MCS) {
335 		txdesc->u.ht.mcs = txrate->idx;
336 
337 		/*
338 		 * MIMO PS should be set to 1 for STA's using dynamic SM PS
339 		 * when using more then one tx stream (>MCS7).
340 		 */
341 		if (tx_info->control.sta && txdesc->u.ht.mcs > 7 &&
342 		    ((tx_info->control.sta->ht_cap.cap &
343 		      IEEE80211_HT_CAP_SM_PS) >>
344 		     IEEE80211_HT_CAP_SM_PS_SHIFT) ==
345 		    WLAN_HT_CAP_SM_PS_DYNAMIC)
346 			__set_bit(ENTRY_TXD_HT_MIMO_PS, &txdesc->flags);
347 	} else {
348 		txdesc->u.ht.mcs = rt2x00_get_rate_mcs(hwrate->mcs);
349 		if (txrate->flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE)
350 			txdesc->u.ht.mcs |= 0x08;
351 	}
352 
353 	/*
354 	 * This frame is eligible for an AMPDU, however, don't aggregate
355 	 * frames that are intended to probe a specific tx rate.
356 	 */
357 	if (tx_info->flags & IEEE80211_TX_CTL_AMPDU &&
358 	    !(tx_info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE))
359 		__set_bit(ENTRY_TXD_HT_AMPDU, &txdesc->flags);
360 
361 	/*
362 	 * Set 40Mhz mode if necessary (for legacy rates this will
363 	 * duplicate the frame to both channels).
364 	 */
365 	if (txrate->flags & IEEE80211_TX_RC_40_MHZ_WIDTH ||
366 	    txrate->flags & IEEE80211_TX_RC_DUP_DATA)
367 		__set_bit(ENTRY_TXD_HT_BW_40, &txdesc->flags);
368 	if (txrate->flags & IEEE80211_TX_RC_SHORT_GI)
369 		__set_bit(ENTRY_TXD_HT_SHORT_GI, &txdesc->flags);
370 
371 	/*
372 	 * Determine IFS values
373 	 * - Use TXOP_BACKOFF for management frames except beacons
374 	 * - Use TXOP_SIFS for fragment bursts
375 	 * - Use TXOP_HTTXOP for everything else
376 	 *
377 	 * Note: rt2800 devices won't use CTS protection (if used)
378 	 * for frames not transmitted with TXOP_HTTXOP
379 	 */
380 	if (ieee80211_is_mgmt(hdr->frame_control) &&
381 	    !ieee80211_is_beacon(hdr->frame_control))
382 		txdesc->u.ht.txop = TXOP_BACKOFF;
383 	else if (!(tx_info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT))
384 		txdesc->u.ht.txop = TXOP_SIFS;
385 	else
386 		txdesc->u.ht.txop = TXOP_HTTXOP;
387 }
388 
rt2x00queue_create_tx_descriptor(struct rt2x00_dev * rt2x00dev,struct sk_buff * skb,struct txentry_desc * txdesc)389 static void rt2x00queue_create_tx_descriptor(struct rt2x00_dev *rt2x00dev,
390 					     struct sk_buff *skb,
391 					     struct txentry_desc *txdesc)
392 {
393 	struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
394 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
395 	struct ieee80211_tx_rate *txrate = &tx_info->control.rates[0];
396 	struct ieee80211_rate *rate;
397 	const struct rt2x00_rate *hwrate = NULL;
398 
399 	memset(txdesc, 0, sizeof(*txdesc));
400 
401 	/*
402 	 * Header and frame information.
403 	 */
404 	txdesc->length = skb->len;
405 	txdesc->header_length = ieee80211_get_hdrlen_from_skb(skb);
406 
407 	/*
408 	 * Check whether this frame is to be acked.
409 	 */
410 	if (!(tx_info->flags & IEEE80211_TX_CTL_NO_ACK))
411 		__set_bit(ENTRY_TXD_ACK, &txdesc->flags);
412 
413 	/*
414 	 * Check if this is a RTS/CTS frame
415 	 */
416 	if (ieee80211_is_rts(hdr->frame_control) ||
417 	    ieee80211_is_cts(hdr->frame_control)) {
418 		__set_bit(ENTRY_TXD_BURST, &txdesc->flags);
419 		if (ieee80211_is_rts(hdr->frame_control))
420 			__set_bit(ENTRY_TXD_RTS_FRAME, &txdesc->flags);
421 		else
422 			__set_bit(ENTRY_TXD_CTS_FRAME, &txdesc->flags);
423 		if (tx_info->control.rts_cts_rate_idx >= 0)
424 			rate =
425 			    ieee80211_get_rts_cts_rate(rt2x00dev->hw, tx_info);
426 	}
427 
428 	/*
429 	 * Determine retry information.
430 	 */
431 	txdesc->retry_limit = tx_info->control.rates[0].count - 1;
432 	if (txdesc->retry_limit >= rt2x00dev->long_retry)
433 		__set_bit(ENTRY_TXD_RETRY_MODE, &txdesc->flags);
434 
435 	/*
436 	 * Check if more fragments are pending
437 	 */
438 	if (ieee80211_has_morefrags(hdr->frame_control)) {
439 		__set_bit(ENTRY_TXD_BURST, &txdesc->flags);
440 		__set_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags);
441 	}
442 
443 	/*
444 	 * Check if more frames (!= fragments) are pending
445 	 */
446 	if (tx_info->flags & IEEE80211_TX_CTL_MORE_FRAMES)
447 		__set_bit(ENTRY_TXD_BURST, &txdesc->flags);
448 
449 	/*
450 	 * Beacons and probe responses require the tsf timestamp
451 	 * to be inserted into the frame.
452 	 */
453 	if (ieee80211_is_beacon(hdr->frame_control) ||
454 	    ieee80211_is_probe_resp(hdr->frame_control))
455 		__set_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags);
456 
457 	if ((tx_info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT) &&
458 	    !test_bit(ENTRY_TXD_RTS_FRAME, &txdesc->flags))
459 		__set_bit(ENTRY_TXD_FIRST_FRAGMENT, &txdesc->flags);
460 
461 	/*
462 	 * Determine rate modulation.
463 	 */
464 	if (txrate->flags & IEEE80211_TX_RC_GREEN_FIELD)
465 		txdesc->rate_mode = RATE_MODE_HT_GREENFIELD;
466 	else if (txrate->flags & IEEE80211_TX_RC_MCS)
467 		txdesc->rate_mode = RATE_MODE_HT_MIX;
468 	else {
469 		rate = ieee80211_get_tx_rate(rt2x00dev->hw, tx_info);
470 		hwrate = rt2x00_get_rate(rate->hw_value);
471 		if (hwrate->flags & DEV_RATE_OFDM)
472 			txdesc->rate_mode = RATE_MODE_OFDM;
473 		else
474 			txdesc->rate_mode = RATE_MODE_CCK;
475 	}
476 
477 	/*
478 	 * Apply TX descriptor handling by components
479 	 */
480 	rt2x00crypto_create_tx_descriptor(rt2x00dev, skb, txdesc);
481 	rt2x00queue_create_tx_descriptor_seq(rt2x00dev, skb, txdesc);
482 
483 	if (test_bit(REQUIRE_HT_TX_DESC, &rt2x00dev->cap_flags))
484 		rt2x00queue_create_tx_descriptor_ht(rt2x00dev, skb, txdesc,
485 						    hwrate);
486 	else
487 		rt2x00queue_create_tx_descriptor_plcp(rt2x00dev, skb, txdesc,
488 						      hwrate);
489 }
490 
rt2x00queue_write_tx_data(struct queue_entry * entry,struct txentry_desc * txdesc)491 static int rt2x00queue_write_tx_data(struct queue_entry *entry,
492 				     struct txentry_desc *txdesc)
493 {
494 	struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
495 
496 	/*
497 	 * This should not happen, we already checked the entry
498 	 * was ours. When the hardware disagrees there has been
499 	 * a queue corruption!
500 	 */
501 	if (unlikely(rt2x00dev->ops->lib->get_entry_state &&
502 		     rt2x00dev->ops->lib->get_entry_state(entry))) {
503 		ERROR(rt2x00dev,
504 		      "Corrupt queue %d, accessing entry which is not ours.\n"
505 		      "Please file bug report to %s.\n",
506 		      entry->queue->qid, DRV_PROJECT);
507 		return -EINVAL;
508 	}
509 
510 	/*
511 	 * Add the requested extra tx headroom in front of the skb.
512 	 */
513 	skb_push(entry->skb, rt2x00dev->ops->extra_tx_headroom);
514 	memset(entry->skb->data, 0, rt2x00dev->ops->extra_tx_headroom);
515 
516 	/*
517 	 * Call the driver's write_tx_data function, if it exists.
518 	 */
519 	if (rt2x00dev->ops->lib->write_tx_data)
520 		rt2x00dev->ops->lib->write_tx_data(entry, txdesc);
521 
522 	/*
523 	 * Map the skb to DMA.
524 	 */
525 	if (test_bit(REQUIRE_DMA, &rt2x00dev->cap_flags))
526 		rt2x00queue_map_txskb(entry);
527 
528 	return 0;
529 }
530 
rt2x00queue_write_tx_descriptor(struct queue_entry * entry,struct txentry_desc * txdesc)531 static void rt2x00queue_write_tx_descriptor(struct queue_entry *entry,
532 					    struct txentry_desc *txdesc)
533 {
534 	struct data_queue *queue = entry->queue;
535 
536 	queue->rt2x00dev->ops->lib->write_tx_desc(entry, txdesc);
537 
538 	/*
539 	 * All processing on the frame has been completed, this means
540 	 * it is now ready to be dumped to userspace through debugfs.
541 	 */
542 	rt2x00debug_dump_frame(queue->rt2x00dev, DUMP_FRAME_TX, entry->skb);
543 }
544 
rt2x00queue_kick_tx_queue(struct data_queue * queue,struct txentry_desc * txdesc)545 static void rt2x00queue_kick_tx_queue(struct data_queue *queue,
546 				      struct txentry_desc *txdesc)
547 {
548 	/*
549 	 * Check if we need to kick the queue, there are however a few rules
550 	 *	1) Don't kick unless this is the last in frame in a burst.
551 	 *	   When the burst flag is set, this frame is always followed
552 	 *	   by another frame which in some way are related to eachother.
553 	 *	   This is true for fragments, RTS or CTS-to-self frames.
554 	 *	2) Rule 1 can be broken when the available entries
555 	 *	   in the queue are less then a certain threshold.
556 	 */
557 	if (rt2x00queue_threshold(queue) ||
558 	    !test_bit(ENTRY_TXD_BURST, &txdesc->flags))
559 		queue->rt2x00dev->ops->lib->kick_queue(queue);
560 }
561 
rt2x00queue_write_tx_frame(struct data_queue * queue,struct sk_buff * skb,bool local)562 int rt2x00queue_write_tx_frame(struct data_queue *queue, struct sk_buff *skb,
563 			       bool local)
564 {
565 	struct ieee80211_tx_info *tx_info;
566 	struct queue_entry *entry;
567 	struct txentry_desc txdesc;
568 	struct skb_frame_desc *skbdesc;
569 	u8 rate_idx, rate_flags;
570 	int ret = 0;
571 
572 	/*
573 	 * Copy all TX descriptor information into txdesc,
574 	 * after that we are free to use the skb->cb array
575 	 * for our information.
576 	 */
577 	rt2x00queue_create_tx_descriptor(queue->rt2x00dev, skb, &txdesc);
578 
579 	/*
580 	 * All information is retrieved from the skb->cb array,
581 	 * now we should claim ownership of the driver part of that
582 	 * array, preserving the bitrate index and flags.
583 	 */
584 	tx_info = IEEE80211_SKB_CB(skb);
585 	rate_idx = tx_info->control.rates[0].idx;
586 	rate_flags = tx_info->control.rates[0].flags;
587 	skbdesc = get_skb_frame_desc(skb);
588 	memset(skbdesc, 0, sizeof(*skbdesc));
589 	skbdesc->tx_rate_idx = rate_idx;
590 	skbdesc->tx_rate_flags = rate_flags;
591 
592 	if (local)
593 		skbdesc->flags |= SKBDESC_NOT_MAC80211;
594 
595 	/*
596 	 * When hardware encryption is supported, and this frame
597 	 * is to be encrypted, we should strip the IV/EIV data from
598 	 * the frame so we can provide it to the driver separately.
599 	 */
600 	if (test_bit(ENTRY_TXD_ENCRYPT, &txdesc.flags) &&
601 	    !test_bit(ENTRY_TXD_ENCRYPT_IV, &txdesc.flags)) {
602 		if (test_bit(REQUIRE_COPY_IV, &queue->rt2x00dev->cap_flags))
603 			rt2x00crypto_tx_copy_iv(skb, &txdesc);
604 		else
605 			rt2x00crypto_tx_remove_iv(skb, &txdesc);
606 	}
607 
608 	/*
609 	 * When DMA allocation is required we should guarantee to the
610 	 * driver that the DMA is aligned to a 4-byte boundary.
611 	 * However some drivers require L2 padding to pad the payload
612 	 * rather then the header. This could be a requirement for
613 	 * PCI and USB devices, while header alignment only is valid
614 	 * for PCI devices.
615 	 */
616 	if (test_bit(REQUIRE_L2PAD, &queue->rt2x00dev->cap_flags))
617 		rt2x00queue_insert_l2pad(skb, txdesc.header_length);
618 	else if (test_bit(REQUIRE_DMA, &queue->rt2x00dev->cap_flags))
619 		rt2x00queue_align_frame(skb);
620 
621 	/*
622 	 * That function must be called with bh disabled.
623 	 */
624 	spin_lock(&queue->tx_lock);
625 
626 	if (unlikely(rt2x00queue_full(queue))) {
627 		ERROR(queue->rt2x00dev,
628 		      "Dropping frame due to full tx queue %d.\n", queue->qid);
629 		ret = -ENOBUFS;
630 		goto out;
631 	}
632 
633 	entry = rt2x00queue_get_entry(queue, Q_INDEX);
634 
635 	if (unlikely(test_and_set_bit(ENTRY_OWNER_DEVICE_DATA,
636 				      &entry->flags))) {
637 		ERROR(queue->rt2x00dev,
638 		      "Arrived at non-free entry in the non-full queue %d.\n"
639 		      "Please file bug report to %s.\n",
640 		      queue->qid, DRV_PROJECT);
641 		ret = -EINVAL;
642 		goto out;
643 	}
644 
645 	skbdesc->entry = entry;
646 	entry->skb = skb;
647 
648 	/*
649 	 * It could be possible that the queue was corrupted and this
650 	 * call failed. Since we always return NETDEV_TX_OK to mac80211,
651 	 * this frame will simply be dropped.
652 	 */
653 	if (unlikely(rt2x00queue_write_tx_data(entry, &txdesc))) {
654 		clear_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags);
655 		entry->skb = NULL;
656 		ret = -EIO;
657 		goto out;
658 	}
659 
660 	set_bit(ENTRY_DATA_PENDING, &entry->flags);
661 
662 	rt2x00queue_index_inc(entry, Q_INDEX);
663 	rt2x00queue_write_tx_descriptor(entry, &txdesc);
664 	rt2x00queue_kick_tx_queue(queue, &txdesc);
665 
666 out:
667 	spin_unlock(&queue->tx_lock);
668 	return ret;
669 }
670 
rt2x00queue_clear_beacon(struct rt2x00_dev * rt2x00dev,struct ieee80211_vif * vif)671 int rt2x00queue_clear_beacon(struct rt2x00_dev *rt2x00dev,
672 			     struct ieee80211_vif *vif)
673 {
674 	struct rt2x00_intf *intf = vif_to_intf(vif);
675 
676 	if (unlikely(!intf->beacon))
677 		return -ENOBUFS;
678 
679 	mutex_lock(&intf->beacon_skb_mutex);
680 
681 	/*
682 	 * Clean up the beacon skb.
683 	 */
684 	rt2x00queue_free_skb(intf->beacon);
685 
686 	/*
687 	 * Clear beacon (single bssid devices don't need to clear the beacon
688 	 * since the beacon queue will get stopped anyway).
689 	 */
690 	if (rt2x00dev->ops->lib->clear_beacon)
691 		rt2x00dev->ops->lib->clear_beacon(intf->beacon);
692 
693 	mutex_unlock(&intf->beacon_skb_mutex);
694 
695 	return 0;
696 }
697 
rt2x00queue_update_beacon_locked(struct rt2x00_dev * rt2x00dev,struct ieee80211_vif * vif)698 int rt2x00queue_update_beacon_locked(struct rt2x00_dev *rt2x00dev,
699 				     struct ieee80211_vif *vif)
700 {
701 	struct rt2x00_intf *intf = vif_to_intf(vif);
702 	struct skb_frame_desc *skbdesc;
703 	struct txentry_desc txdesc;
704 
705 	if (unlikely(!intf->beacon))
706 		return -ENOBUFS;
707 
708 	/*
709 	 * Clean up the beacon skb.
710 	 */
711 	rt2x00queue_free_skb(intf->beacon);
712 
713 	intf->beacon->skb = ieee80211_beacon_get(rt2x00dev->hw, vif);
714 	if (!intf->beacon->skb)
715 		return -ENOMEM;
716 
717 	/*
718 	 * Copy all TX descriptor information into txdesc,
719 	 * after that we are free to use the skb->cb array
720 	 * for our information.
721 	 */
722 	rt2x00queue_create_tx_descriptor(rt2x00dev, intf->beacon->skb, &txdesc);
723 
724 	/*
725 	 * Fill in skb descriptor
726 	 */
727 	skbdesc = get_skb_frame_desc(intf->beacon->skb);
728 	memset(skbdesc, 0, sizeof(*skbdesc));
729 	skbdesc->entry = intf->beacon;
730 
731 	/*
732 	 * Send beacon to hardware.
733 	 */
734 	rt2x00dev->ops->lib->write_beacon(intf->beacon, &txdesc);
735 
736 	return 0;
737 
738 }
739 
rt2x00queue_update_beacon(struct rt2x00_dev * rt2x00dev,struct ieee80211_vif * vif)740 int rt2x00queue_update_beacon(struct rt2x00_dev *rt2x00dev,
741 			      struct ieee80211_vif *vif)
742 {
743 	struct rt2x00_intf *intf = vif_to_intf(vif);
744 	int ret;
745 
746 	mutex_lock(&intf->beacon_skb_mutex);
747 	ret = rt2x00queue_update_beacon_locked(rt2x00dev, vif);
748 	mutex_unlock(&intf->beacon_skb_mutex);
749 
750 	return ret;
751 }
752 
rt2x00queue_for_each_entry(struct data_queue * queue,enum queue_index start,enum queue_index end,void * data,bool (* fn)(struct queue_entry * entry,void * data))753 bool rt2x00queue_for_each_entry(struct data_queue *queue,
754 				enum queue_index start,
755 				enum queue_index end,
756 				void *data,
757 				bool (*fn)(struct queue_entry *entry,
758 					   void *data))
759 {
760 	unsigned long irqflags;
761 	unsigned int index_start;
762 	unsigned int index_end;
763 	unsigned int i;
764 
765 	if (unlikely(start >= Q_INDEX_MAX || end >= Q_INDEX_MAX)) {
766 		ERROR(queue->rt2x00dev,
767 		      "Entry requested from invalid index range (%d - %d)\n",
768 		      start, end);
769 		return true;
770 	}
771 
772 	/*
773 	 * Only protect the range we are going to loop over,
774 	 * if during our loop a extra entry is set to pending
775 	 * it should not be kicked during this run, since it
776 	 * is part of another TX operation.
777 	 */
778 	spin_lock_irqsave(&queue->index_lock, irqflags);
779 	index_start = queue->index[start];
780 	index_end = queue->index[end];
781 	spin_unlock_irqrestore(&queue->index_lock, irqflags);
782 
783 	/*
784 	 * Start from the TX done pointer, this guarantees that we will
785 	 * send out all frames in the correct order.
786 	 */
787 	if (index_start < index_end) {
788 		for (i = index_start; i < index_end; i++) {
789 			if (fn(&queue->entries[i], data))
790 				return true;
791 		}
792 	} else {
793 		for (i = index_start; i < queue->limit; i++) {
794 			if (fn(&queue->entries[i], data))
795 				return true;
796 		}
797 
798 		for (i = 0; i < index_end; i++) {
799 			if (fn(&queue->entries[i], data))
800 				return true;
801 		}
802 	}
803 
804 	return false;
805 }
806 EXPORT_SYMBOL_GPL(rt2x00queue_for_each_entry);
807 
rt2x00queue_get_entry(struct data_queue * queue,enum queue_index index)808 struct queue_entry *rt2x00queue_get_entry(struct data_queue *queue,
809 					  enum queue_index index)
810 {
811 	struct queue_entry *entry;
812 	unsigned long irqflags;
813 
814 	if (unlikely(index >= Q_INDEX_MAX)) {
815 		ERROR(queue->rt2x00dev,
816 		      "Entry requested from invalid index type (%d)\n", index);
817 		return NULL;
818 	}
819 
820 	spin_lock_irqsave(&queue->index_lock, irqflags);
821 
822 	entry = &queue->entries[queue->index[index]];
823 
824 	spin_unlock_irqrestore(&queue->index_lock, irqflags);
825 
826 	return entry;
827 }
828 EXPORT_SYMBOL_GPL(rt2x00queue_get_entry);
829 
rt2x00queue_index_inc(struct queue_entry * entry,enum queue_index index)830 void rt2x00queue_index_inc(struct queue_entry *entry, enum queue_index index)
831 {
832 	struct data_queue *queue = entry->queue;
833 	unsigned long irqflags;
834 
835 	if (unlikely(index >= Q_INDEX_MAX)) {
836 		ERROR(queue->rt2x00dev,
837 		      "Index change on invalid index type (%d)\n", index);
838 		return;
839 	}
840 
841 	spin_lock_irqsave(&queue->index_lock, irqflags);
842 
843 	queue->index[index]++;
844 	if (queue->index[index] >= queue->limit)
845 		queue->index[index] = 0;
846 
847 	entry->last_action = jiffies;
848 
849 	if (index == Q_INDEX) {
850 		queue->length++;
851 	} else if (index == Q_INDEX_DONE) {
852 		queue->length--;
853 		queue->count++;
854 	}
855 
856 	spin_unlock_irqrestore(&queue->index_lock, irqflags);
857 }
858 
rt2x00queue_pause_queue_nocheck(struct data_queue * queue)859 void rt2x00queue_pause_queue_nocheck(struct data_queue *queue)
860 {
861 	switch (queue->qid) {
862 	case QID_AC_VO:
863 	case QID_AC_VI:
864 	case QID_AC_BE:
865 	case QID_AC_BK:
866 		/*
867 		 * For TX queues, we have to disable the queue
868 		 * inside mac80211.
869 		 */
870 		ieee80211_stop_queue(queue->rt2x00dev->hw, queue->qid);
871 		break;
872 	default:
873 		break;
874 	}
875 }
rt2x00queue_pause_queue(struct data_queue * queue)876 void rt2x00queue_pause_queue(struct data_queue *queue)
877 {
878 	if (!test_bit(DEVICE_STATE_PRESENT, &queue->rt2x00dev->flags) ||
879 	    !test_bit(QUEUE_STARTED, &queue->flags) ||
880 	    test_and_set_bit(QUEUE_PAUSED, &queue->flags))
881 		return;
882 
883 	rt2x00queue_pause_queue_nocheck(queue);
884 }
885 EXPORT_SYMBOL_GPL(rt2x00queue_pause_queue);
886 
rt2x00queue_unpause_queue(struct data_queue * queue)887 void rt2x00queue_unpause_queue(struct data_queue *queue)
888 {
889 	if (!test_bit(DEVICE_STATE_PRESENT, &queue->rt2x00dev->flags) ||
890 	    !test_bit(QUEUE_STARTED, &queue->flags) ||
891 	    !test_and_clear_bit(QUEUE_PAUSED, &queue->flags))
892 		return;
893 
894 	switch (queue->qid) {
895 	case QID_AC_VO:
896 	case QID_AC_VI:
897 	case QID_AC_BE:
898 	case QID_AC_BK:
899 		/*
900 		 * For TX queues, we have to enable the queue
901 		 * inside mac80211.
902 		 */
903 		ieee80211_wake_queue(queue->rt2x00dev->hw, queue->qid);
904 		break;
905 	case QID_RX:
906 		/*
907 		 * For RX we need to kick the queue now in order to
908 		 * receive frames.
909 		 */
910 		queue->rt2x00dev->ops->lib->kick_queue(queue);
911 	default:
912 		break;
913 	}
914 }
915 EXPORT_SYMBOL_GPL(rt2x00queue_unpause_queue);
916 
rt2x00queue_start_queue(struct data_queue * queue)917 void rt2x00queue_start_queue(struct data_queue *queue)
918 {
919 	mutex_lock(&queue->status_lock);
920 
921 	if (!test_bit(DEVICE_STATE_PRESENT, &queue->rt2x00dev->flags) ||
922 	    test_and_set_bit(QUEUE_STARTED, &queue->flags)) {
923 		mutex_unlock(&queue->status_lock);
924 		return;
925 	}
926 
927 	set_bit(QUEUE_PAUSED, &queue->flags);
928 
929 	queue->rt2x00dev->ops->lib->start_queue(queue);
930 
931 	rt2x00queue_unpause_queue(queue);
932 
933 	mutex_unlock(&queue->status_lock);
934 }
935 EXPORT_SYMBOL_GPL(rt2x00queue_start_queue);
936 
rt2x00queue_stop_queue(struct data_queue * queue)937 void rt2x00queue_stop_queue(struct data_queue *queue)
938 {
939 	mutex_lock(&queue->status_lock);
940 
941 	if (!test_and_clear_bit(QUEUE_STARTED, &queue->flags)) {
942 		mutex_unlock(&queue->status_lock);
943 		return;
944 	}
945 
946 	rt2x00queue_pause_queue_nocheck(queue);
947 
948 	queue->rt2x00dev->ops->lib->stop_queue(queue);
949 
950 	mutex_unlock(&queue->status_lock);
951 }
952 EXPORT_SYMBOL_GPL(rt2x00queue_stop_queue);
953 
rt2x00queue_flush_queue(struct data_queue * queue,bool drop)954 void rt2x00queue_flush_queue(struct data_queue *queue, bool drop)
955 {
956 	bool started;
957 	bool tx_queue =
958 		(queue->qid == QID_AC_VO) ||
959 		(queue->qid == QID_AC_VI) ||
960 		(queue->qid == QID_AC_BE) ||
961 		(queue->qid == QID_AC_BK);
962 
963 	mutex_lock(&queue->status_lock);
964 
965 	/*
966 	 * If the queue has been started, we must stop it temporarily
967 	 * to prevent any new frames to be queued on the device. If
968 	 * we are not dropping the pending frames, the queue must
969 	 * only be stopped in the software and not the hardware,
970 	 * otherwise the queue will never become empty on its own.
971 	 */
972 	started = test_bit(QUEUE_STARTED, &queue->flags);
973 	if (started) {
974 		/*
975 		 * Pause the queue
976 		 */
977 		rt2x00queue_pause_queue(queue);
978 
979 		/*
980 		 * If we are not supposed to drop any pending
981 		 * frames, this means we must force a start (=kick)
982 		 * to the queue to make sure the hardware will
983 		 * start transmitting.
984 		 */
985 		if (!drop && tx_queue)
986 			queue->rt2x00dev->ops->lib->kick_queue(queue);
987 	}
988 
989 	/*
990 	 * Check if driver supports flushing, if that is the case we can
991 	 * defer the flushing to the driver. Otherwise we must use the
992 	 * alternative which just waits for the queue to become empty.
993 	 */
994 	if (likely(queue->rt2x00dev->ops->lib->flush_queue))
995 		queue->rt2x00dev->ops->lib->flush_queue(queue, drop);
996 
997 	/*
998 	 * The queue flush has failed...
999 	 */
1000 	if (unlikely(!rt2x00queue_empty(queue)))
1001 		WARNING(queue->rt2x00dev, "Queue %d failed to flush\n", queue->qid);
1002 
1003 	/*
1004 	 * Restore the queue to the previous status
1005 	 */
1006 	if (started)
1007 		rt2x00queue_unpause_queue(queue);
1008 
1009 	mutex_unlock(&queue->status_lock);
1010 }
1011 EXPORT_SYMBOL_GPL(rt2x00queue_flush_queue);
1012 
rt2x00queue_start_queues(struct rt2x00_dev * rt2x00dev)1013 void rt2x00queue_start_queues(struct rt2x00_dev *rt2x00dev)
1014 {
1015 	struct data_queue *queue;
1016 
1017 	/*
1018 	 * rt2x00queue_start_queue will call ieee80211_wake_queue
1019 	 * for each queue after is has been properly initialized.
1020 	 */
1021 	tx_queue_for_each(rt2x00dev, queue)
1022 		rt2x00queue_start_queue(queue);
1023 
1024 	rt2x00queue_start_queue(rt2x00dev->rx);
1025 }
1026 EXPORT_SYMBOL_GPL(rt2x00queue_start_queues);
1027 
rt2x00queue_stop_queues(struct rt2x00_dev * rt2x00dev)1028 void rt2x00queue_stop_queues(struct rt2x00_dev *rt2x00dev)
1029 {
1030 	struct data_queue *queue;
1031 
1032 	/*
1033 	 * rt2x00queue_stop_queue will call ieee80211_stop_queue
1034 	 * as well, but we are completely shutting doing everything
1035 	 * now, so it is much safer to stop all TX queues at once,
1036 	 * and use rt2x00queue_stop_queue for cleaning up.
1037 	 */
1038 	ieee80211_stop_queues(rt2x00dev->hw);
1039 
1040 	tx_queue_for_each(rt2x00dev, queue)
1041 		rt2x00queue_stop_queue(queue);
1042 
1043 	rt2x00queue_stop_queue(rt2x00dev->rx);
1044 }
1045 EXPORT_SYMBOL_GPL(rt2x00queue_stop_queues);
1046 
rt2x00queue_flush_queues(struct rt2x00_dev * rt2x00dev,bool drop)1047 void rt2x00queue_flush_queues(struct rt2x00_dev *rt2x00dev, bool drop)
1048 {
1049 	struct data_queue *queue;
1050 
1051 	tx_queue_for_each(rt2x00dev, queue)
1052 		rt2x00queue_flush_queue(queue, drop);
1053 
1054 	rt2x00queue_flush_queue(rt2x00dev->rx, drop);
1055 }
1056 EXPORT_SYMBOL_GPL(rt2x00queue_flush_queues);
1057 
rt2x00queue_reset(struct data_queue * queue)1058 static void rt2x00queue_reset(struct data_queue *queue)
1059 {
1060 	unsigned long irqflags;
1061 	unsigned int i;
1062 
1063 	spin_lock_irqsave(&queue->index_lock, irqflags);
1064 
1065 	queue->count = 0;
1066 	queue->length = 0;
1067 
1068 	for (i = 0; i < Q_INDEX_MAX; i++)
1069 		queue->index[i] = 0;
1070 
1071 	spin_unlock_irqrestore(&queue->index_lock, irqflags);
1072 }
1073 
rt2x00queue_init_queues(struct rt2x00_dev * rt2x00dev)1074 void rt2x00queue_init_queues(struct rt2x00_dev *rt2x00dev)
1075 {
1076 	struct data_queue *queue;
1077 	unsigned int i;
1078 
1079 	queue_for_each(rt2x00dev, queue) {
1080 		rt2x00queue_reset(queue);
1081 
1082 		for (i = 0; i < queue->limit; i++)
1083 			rt2x00dev->ops->lib->clear_entry(&queue->entries[i]);
1084 	}
1085 }
1086 
rt2x00queue_alloc_entries(struct data_queue * queue,const struct data_queue_desc * qdesc)1087 static int rt2x00queue_alloc_entries(struct data_queue *queue,
1088 				     const struct data_queue_desc *qdesc)
1089 {
1090 	struct queue_entry *entries;
1091 	unsigned int entry_size;
1092 	unsigned int i;
1093 
1094 	rt2x00queue_reset(queue);
1095 
1096 	queue->limit = qdesc->entry_num;
1097 	queue->threshold = DIV_ROUND_UP(qdesc->entry_num, 10);
1098 	queue->data_size = qdesc->data_size;
1099 	queue->desc_size = qdesc->desc_size;
1100 
1101 	/*
1102 	 * Allocate all queue entries.
1103 	 */
1104 	entry_size = sizeof(*entries) + qdesc->priv_size;
1105 	entries = kcalloc(queue->limit, entry_size, GFP_KERNEL);
1106 	if (!entries)
1107 		return -ENOMEM;
1108 
1109 #define QUEUE_ENTRY_PRIV_OFFSET(__base, __index, __limit, __esize, __psize) \
1110 	(((char *)(__base)) + ((__limit) * (__esize)) + \
1111 	    ((__index) * (__psize)))
1112 
1113 	for (i = 0; i < queue->limit; i++) {
1114 		entries[i].flags = 0;
1115 		entries[i].queue = queue;
1116 		entries[i].skb = NULL;
1117 		entries[i].entry_idx = i;
1118 		entries[i].priv_data =
1119 		    QUEUE_ENTRY_PRIV_OFFSET(entries, i, queue->limit,
1120 					    sizeof(*entries), qdesc->priv_size);
1121 	}
1122 
1123 #undef QUEUE_ENTRY_PRIV_OFFSET
1124 
1125 	queue->entries = entries;
1126 
1127 	return 0;
1128 }
1129 
rt2x00queue_free_skbs(struct data_queue * queue)1130 static void rt2x00queue_free_skbs(struct data_queue *queue)
1131 {
1132 	unsigned int i;
1133 
1134 	if (!queue->entries)
1135 		return;
1136 
1137 	for (i = 0; i < queue->limit; i++) {
1138 		rt2x00queue_free_skb(&queue->entries[i]);
1139 	}
1140 }
1141 
rt2x00queue_alloc_rxskbs(struct data_queue * queue)1142 static int rt2x00queue_alloc_rxskbs(struct data_queue *queue)
1143 {
1144 	unsigned int i;
1145 	struct sk_buff *skb;
1146 
1147 	for (i = 0; i < queue->limit; i++) {
1148 		skb = rt2x00queue_alloc_rxskb(&queue->entries[i]);
1149 		if (!skb)
1150 			return -ENOMEM;
1151 		queue->entries[i].skb = skb;
1152 	}
1153 
1154 	return 0;
1155 }
1156 
rt2x00queue_initialize(struct rt2x00_dev * rt2x00dev)1157 int rt2x00queue_initialize(struct rt2x00_dev *rt2x00dev)
1158 {
1159 	struct data_queue *queue;
1160 	int status;
1161 
1162 	status = rt2x00queue_alloc_entries(rt2x00dev->rx, rt2x00dev->ops->rx);
1163 	if (status)
1164 		goto exit;
1165 
1166 	tx_queue_for_each(rt2x00dev, queue) {
1167 		status = rt2x00queue_alloc_entries(queue, rt2x00dev->ops->tx);
1168 		if (status)
1169 			goto exit;
1170 	}
1171 
1172 	status = rt2x00queue_alloc_entries(rt2x00dev->bcn, rt2x00dev->ops->bcn);
1173 	if (status)
1174 		goto exit;
1175 
1176 	if (test_bit(REQUIRE_ATIM_QUEUE, &rt2x00dev->cap_flags)) {
1177 		status = rt2x00queue_alloc_entries(rt2x00dev->atim,
1178 						   rt2x00dev->ops->atim);
1179 		if (status)
1180 			goto exit;
1181 	}
1182 
1183 	status = rt2x00queue_alloc_rxskbs(rt2x00dev->rx);
1184 	if (status)
1185 		goto exit;
1186 
1187 	return 0;
1188 
1189 exit:
1190 	ERROR(rt2x00dev, "Queue entries allocation failed.\n");
1191 
1192 	rt2x00queue_uninitialize(rt2x00dev);
1193 
1194 	return status;
1195 }
1196 
rt2x00queue_uninitialize(struct rt2x00_dev * rt2x00dev)1197 void rt2x00queue_uninitialize(struct rt2x00_dev *rt2x00dev)
1198 {
1199 	struct data_queue *queue;
1200 
1201 	rt2x00queue_free_skbs(rt2x00dev->rx);
1202 
1203 	queue_for_each(rt2x00dev, queue) {
1204 		kfree(queue->entries);
1205 		queue->entries = NULL;
1206 	}
1207 }
1208 
rt2x00queue_init(struct rt2x00_dev * rt2x00dev,struct data_queue * queue,enum data_queue_qid qid)1209 static void rt2x00queue_init(struct rt2x00_dev *rt2x00dev,
1210 			     struct data_queue *queue, enum data_queue_qid qid)
1211 {
1212 	mutex_init(&queue->status_lock);
1213 	spin_lock_init(&queue->tx_lock);
1214 	spin_lock_init(&queue->index_lock);
1215 
1216 	queue->rt2x00dev = rt2x00dev;
1217 	queue->qid = qid;
1218 	queue->txop = 0;
1219 	queue->aifs = 2;
1220 	queue->cw_min = 5;
1221 	queue->cw_max = 10;
1222 }
1223 
rt2x00queue_allocate(struct rt2x00_dev * rt2x00dev)1224 int rt2x00queue_allocate(struct rt2x00_dev *rt2x00dev)
1225 {
1226 	struct data_queue *queue;
1227 	enum data_queue_qid qid;
1228 	unsigned int req_atim =
1229 	    !!test_bit(REQUIRE_ATIM_QUEUE, &rt2x00dev->cap_flags);
1230 
1231 	/*
1232 	 * We need the following queues:
1233 	 * RX: 1
1234 	 * TX: ops->tx_queues
1235 	 * Beacon: 1
1236 	 * Atim: 1 (if required)
1237 	 */
1238 	rt2x00dev->data_queues = 2 + rt2x00dev->ops->tx_queues + req_atim;
1239 
1240 	queue = kcalloc(rt2x00dev->data_queues, sizeof(*queue), GFP_KERNEL);
1241 	if (!queue) {
1242 		ERROR(rt2x00dev, "Queue allocation failed.\n");
1243 		return -ENOMEM;
1244 	}
1245 
1246 	/*
1247 	 * Initialize pointers
1248 	 */
1249 	rt2x00dev->rx = queue;
1250 	rt2x00dev->tx = &queue[1];
1251 	rt2x00dev->bcn = &queue[1 + rt2x00dev->ops->tx_queues];
1252 	rt2x00dev->atim = req_atim ? &queue[2 + rt2x00dev->ops->tx_queues] : NULL;
1253 
1254 	/*
1255 	 * Initialize queue parameters.
1256 	 * RX: qid = QID_RX
1257 	 * TX: qid = QID_AC_VO + index
1258 	 * TX: cw_min: 2^5 = 32.
1259 	 * TX: cw_max: 2^10 = 1024.
1260 	 * BCN: qid = QID_BEACON
1261 	 * ATIM: qid = QID_ATIM
1262 	 */
1263 	rt2x00queue_init(rt2x00dev, rt2x00dev->rx, QID_RX);
1264 
1265 	qid = QID_AC_VO;
1266 	tx_queue_for_each(rt2x00dev, queue)
1267 		rt2x00queue_init(rt2x00dev, queue, qid++);
1268 
1269 	rt2x00queue_init(rt2x00dev, rt2x00dev->bcn, QID_BEACON);
1270 	if (req_atim)
1271 		rt2x00queue_init(rt2x00dev, rt2x00dev->atim, QID_ATIM);
1272 
1273 	return 0;
1274 }
1275 
rt2x00queue_free(struct rt2x00_dev * rt2x00dev)1276 void rt2x00queue_free(struct rt2x00_dev *rt2x00dev)
1277 {
1278 	kfree(rt2x00dev->rx);
1279 	rt2x00dev->rx = NULL;
1280 	rt2x00dev->tx = NULL;
1281 	rt2x00dev->bcn = NULL;
1282 }
1283