1 /*
2 Copyright (C) 2010 Willow Garage <http://www.willowgarage.com>
3 Copyright (C) 2004 - 2010 Ivo van Doorn <IvDoorn@gmail.com>
4 Copyright (C) 2004 - 2009 Gertjan van Wingerde <gwingerde@gmail.com>
5 <http://rt2x00.serialmonkey.com>
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the
19 Free Software Foundation, Inc.,
20 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
21 */
22
23 /*
24 Module: rt2x00lib
25 Abstract: rt2x00 queue specific routines.
26 */
27
28 #include <linux/slab.h>
29 #include <linux/kernel.h>
30 #include <linux/module.h>
31 #include <linux/dma-mapping.h>
32
33 #include "rt2x00.h"
34 #include "rt2x00lib.h"
35
rt2x00queue_alloc_rxskb(struct queue_entry * entry)36 struct sk_buff *rt2x00queue_alloc_rxskb(struct queue_entry *entry)
37 {
38 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
39 struct sk_buff *skb;
40 struct skb_frame_desc *skbdesc;
41 unsigned int frame_size;
42 unsigned int head_size = 0;
43 unsigned int tail_size = 0;
44
45 /*
46 * The frame size includes descriptor size, because the
47 * hardware directly receive the frame into the skbuffer.
48 */
49 frame_size = entry->queue->data_size + entry->queue->desc_size;
50
51 /*
52 * The payload should be aligned to a 4-byte boundary,
53 * this means we need at least 3 bytes for moving the frame
54 * into the correct offset.
55 */
56 head_size = 4;
57
58 /*
59 * For IV/EIV/ICV assembly we must make sure there is
60 * at least 8 bytes bytes available in headroom for IV/EIV
61 * and 8 bytes for ICV data as tailroon.
62 */
63 if (test_bit(CAPABILITY_HW_CRYPTO, &rt2x00dev->cap_flags)) {
64 head_size += 8;
65 tail_size += 8;
66 }
67
68 /*
69 * Allocate skbuffer.
70 */
71 skb = dev_alloc_skb(frame_size + head_size + tail_size);
72 if (!skb)
73 return NULL;
74
75 /*
76 * Make sure we not have a frame with the requested bytes
77 * available in the head and tail.
78 */
79 skb_reserve(skb, head_size);
80 skb_put(skb, frame_size);
81
82 /*
83 * Populate skbdesc.
84 */
85 skbdesc = get_skb_frame_desc(skb);
86 memset(skbdesc, 0, sizeof(*skbdesc));
87 skbdesc->entry = entry;
88
89 if (test_bit(REQUIRE_DMA, &rt2x00dev->cap_flags)) {
90 skbdesc->skb_dma = dma_map_single(rt2x00dev->dev,
91 skb->data,
92 skb->len,
93 DMA_FROM_DEVICE);
94 skbdesc->flags |= SKBDESC_DMA_MAPPED_RX;
95 }
96
97 return skb;
98 }
99
rt2x00queue_map_txskb(struct queue_entry * entry)100 void rt2x00queue_map_txskb(struct queue_entry *entry)
101 {
102 struct device *dev = entry->queue->rt2x00dev->dev;
103 struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
104
105 skbdesc->skb_dma =
106 dma_map_single(dev, entry->skb->data, entry->skb->len, DMA_TO_DEVICE);
107 skbdesc->flags |= SKBDESC_DMA_MAPPED_TX;
108 }
109 EXPORT_SYMBOL_GPL(rt2x00queue_map_txskb);
110
rt2x00queue_unmap_skb(struct queue_entry * entry)111 void rt2x00queue_unmap_skb(struct queue_entry *entry)
112 {
113 struct device *dev = entry->queue->rt2x00dev->dev;
114 struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
115
116 if (skbdesc->flags & SKBDESC_DMA_MAPPED_RX) {
117 dma_unmap_single(dev, skbdesc->skb_dma, entry->skb->len,
118 DMA_FROM_DEVICE);
119 skbdesc->flags &= ~SKBDESC_DMA_MAPPED_RX;
120 } else if (skbdesc->flags & SKBDESC_DMA_MAPPED_TX) {
121 dma_unmap_single(dev, skbdesc->skb_dma, entry->skb->len,
122 DMA_TO_DEVICE);
123 skbdesc->flags &= ~SKBDESC_DMA_MAPPED_TX;
124 }
125 }
126 EXPORT_SYMBOL_GPL(rt2x00queue_unmap_skb);
127
rt2x00queue_free_skb(struct queue_entry * entry)128 void rt2x00queue_free_skb(struct queue_entry *entry)
129 {
130 if (!entry->skb)
131 return;
132
133 rt2x00queue_unmap_skb(entry);
134 dev_kfree_skb_any(entry->skb);
135 entry->skb = NULL;
136 }
137
rt2x00queue_align_frame(struct sk_buff * skb)138 void rt2x00queue_align_frame(struct sk_buff *skb)
139 {
140 unsigned int frame_length = skb->len;
141 unsigned int align = ALIGN_SIZE(skb, 0);
142
143 if (!align)
144 return;
145
146 skb_push(skb, align);
147 memmove(skb->data, skb->data + align, frame_length);
148 skb_trim(skb, frame_length);
149 }
150
rt2x00queue_insert_l2pad(struct sk_buff * skb,unsigned int header_length)151 void rt2x00queue_insert_l2pad(struct sk_buff *skb, unsigned int header_length)
152 {
153 unsigned int payload_length = skb->len - header_length;
154 unsigned int header_align = ALIGN_SIZE(skb, 0);
155 unsigned int payload_align = ALIGN_SIZE(skb, header_length);
156 unsigned int l2pad = payload_length ? L2PAD_SIZE(header_length) : 0;
157
158 /*
159 * Adjust the header alignment if the payload needs to be moved more
160 * than the header.
161 */
162 if (payload_align > header_align)
163 header_align += 4;
164
165 /* There is nothing to do if no alignment is needed */
166 if (!header_align)
167 return;
168
169 /* Reserve the amount of space needed in front of the frame */
170 skb_push(skb, header_align);
171
172 /*
173 * Move the header.
174 */
175 memmove(skb->data, skb->data + header_align, header_length);
176
177 /* Move the payload, if present and if required */
178 if (payload_length && payload_align)
179 memmove(skb->data + header_length + l2pad,
180 skb->data + header_length + l2pad + payload_align,
181 payload_length);
182
183 /* Trim the skb to the correct size */
184 skb_trim(skb, header_length + l2pad + payload_length);
185 }
186
rt2x00queue_remove_l2pad(struct sk_buff * skb,unsigned int header_length)187 void rt2x00queue_remove_l2pad(struct sk_buff *skb, unsigned int header_length)
188 {
189 /*
190 * L2 padding is only present if the skb contains more than just the
191 * IEEE 802.11 header.
192 */
193 unsigned int l2pad = (skb->len > header_length) ?
194 L2PAD_SIZE(header_length) : 0;
195
196 if (!l2pad)
197 return;
198
199 memmove(skb->data + l2pad, skb->data, header_length);
200 skb_pull(skb, l2pad);
201 }
202
rt2x00queue_create_tx_descriptor_seq(struct rt2x00_dev * rt2x00dev,struct sk_buff * skb,struct txentry_desc * txdesc)203 static void rt2x00queue_create_tx_descriptor_seq(struct rt2x00_dev *rt2x00dev,
204 struct sk_buff *skb,
205 struct txentry_desc *txdesc)
206 {
207 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
208 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
209 struct rt2x00_intf *intf = vif_to_intf(tx_info->control.vif);
210 u16 seqno;
211
212 if (!(tx_info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ))
213 return;
214
215 __set_bit(ENTRY_TXD_GENERATE_SEQ, &txdesc->flags);
216
217 if (!test_bit(REQUIRE_SW_SEQNO, &rt2x00dev->cap_flags))
218 return;
219
220 /*
221 * The hardware is not able to insert a sequence number. Assign a
222 * software generated one here.
223 *
224 * This is wrong because beacons are not getting sequence
225 * numbers assigned properly.
226 *
227 * A secondary problem exists for drivers that cannot toggle
228 * sequence counting per-frame, since those will override the
229 * sequence counter given by mac80211.
230 */
231 if (test_bit(ENTRY_TXD_FIRST_FRAGMENT, &txdesc->flags))
232 seqno = atomic_add_return(0x10, &intf->seqno);
233 else
234 seqno = atomic_read(&intf->seqno);
235
236 hdr->seq_ctrl &= cpu_to_le16(IEEE80211_SCTL_FRAG);
237 hdr->seq_ctrl |= cpu_to_le16(seqno);
238 }
239
rt2x00queue_create_tx_descriptor_plcp(struct rt2x00_dev * rt2x00dev,struct sk_buff * skb,struct txentry_desc * txdesc,const struct rt2x00_rate * hwrate)240 static void rt2x00queue_create_tx_descriptor_plcp(struct rt2x00_dev *rt2x00dev,
241 struct sk_buff *skb,
242 struct txentry_desc *txdesc,
243 const struct rt2x00_rate *hwrate)
244 {
245 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
246 struct ieee80211_tx_rate *txrate = &tx_info->control.rates[0];
247 unsigned int data_length;
248 unsigned int duration;
249 unsigned int residual;
250
251 /*
252 * Determine with what IFS priority this frame should be send.
253 * Set ifs to IFS_SIFS when the this is not the first fragment,
254 * or this fragment came after RTS/CTS.
255 */
256 if (test_bit(ENTRY_TXD_FIRST_FRAGMENT, &txdesc->flags))
257 txdesc->u.plcp.ifs = IFS_BACKOFF;
258 else
259 txdesc->u.plcp.ifs = IFS_SIFS;
260
261 /* Data length + CRC + Crypto overhead (IV/EIV/ICV/MIC) */
262 data_length = skb->len + 4;
263 data_length += rt2x00crypto_tx_overhead(rt2x00dev, skb);
264
265 /*
266 * PLCP setup
267 * Length calculation depends on OFDM/CCK rate.
268 */
269 txdesc->u.plcp.signal = hwrate->plcp;
270 txdesc->u.plcp.service = 0x04;
271
272 if (hwrate->flags & DEV_RATE_OFDM) {
273 txdesc->u.plcp.length_high = (data_length >> 6) & 0x3f;
274 txdesc->u.plcp.length_low = data_length & 0x3f;
275 } else {
276 /*
277 * Convert length to microseconds.
278 */
279 residual = GET_DURATION_RES(data_length, hwrate->bitrate);
280 duration = GET_DURATION(data_length, hwrate->bitrate);
281
282 if (residual != 0) {
283 duration++;
284
285 /*
286 * Check if we need to set the Length Extension
287 */
288 if (hwrate->bitrate == 110 && residual <= 30)
289 txdesc->u.plcp.service |= 0x80;
290 }
291
292 txdesc->u.plcp.length_high = (duration >> 8) & 0xff;
293 txdesc->u.plcp.length_low = duration & 0xff;
294
295 /*
296 * When preamble is enabled we should set the
297 * preamble bit for the signal.
298 */
299 if (txrate->flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE)
300 txdesc->u.plcp.signal |= 0x08;
301 }
302 }
303
rt2x00queue_create_tx_descriptor_ht(struct rt2x00_dev * rt2x00dev,struct sk_buff * skb,struct txentry_desc * txdesc,const struct rt2x00_rate * hwrate)304 static void rt2x00queue_create_tx_descriptor_ht(struct rt2x00_dev *rt2x00dev,
305 struct sk_buff *skb,
306 struct txentry_desc *txdesc,
307 const struct rt2x00_rate *hwrate)
308 {
309 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
310 struct ieee80211_tx_rate *txrate = &tx_info->control.rates[0];
311 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
312 struct rt2x00_sta *sta_priv = NULL;
313
314 if (tx_info->control.sta) {
315 txdesc->u.ht.mpdu_density =
316 tx_info->control.sta->ht_cap.ampdu_density;
317
318 sta_priv = sta_to_rt2x00_sta(tx_info->control.sta);
319 txdesc->u.ht.wcid = sta_priv->wcid;
320 }
321
322 txdesc->u.ht.ba_size = 7; /* FIXME: What value is needed? */
323
324 /*
325 * Only one STBC stream is supported for now.
326 */
327 if (tx_info->flags & IEEE80211_TX_CTL_STBC)
328 txdesc->u.ht.stbc = 1;
329
330 /*
331 * If IEEE80211_TX_RC_MCS is set txrate->idx just contains the
332 * mcs rate to be used
333 */
334 if (txrate->flags & IEEE80211_TX_RC_MCS) {
335 txdesc->u.ht.mcs = txrate->idx;
336
337 /*
338 * MIMO PS should be set to 1 for STA's using dynamic SM PS
339 * when using more then one tx stream (>MCS7).
340 */
341 if (tx_info->control.sta && txdesc->u.ht.mcs > 7 &&
342 ((tx_info->control.sta->ht_cap.cap &
343 IEEE80211_HT_CAP_SM_PS) >>
344 IEEE80211_HT_CAP_SM_PS_SHIFT) ==
345 WLAN_HT_CAP_SM_PS_DYNAMIC)
346 __set_bit(ENTRY_TXD_HT_MIMO_PS, &txdesc->flags);
347 } else {
348 txdesc->u.ht.mcs = rt2x00_get_rate_mcs(hwrate->mcs);
349 if (txrate->flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE)
350 txdesc->u.ht.mcs |= 0x08;
351 }
352
353 /*
354 * This frame is eligible for an AMPDU, however, don't aggregate
355 * frames that are intended to probe a specific tx rate.
356 */
357 if (tx_info->flags & IEEE80211_TX_CTL_AMPDU &&
358 !(tx_info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE))
359 __set_bit(ENTRY_TXD_HT_AMPDU, &txdesc->flags);
360
361 /*
362 * Set 40Mhz mode if necessary (for legacy rates this will
363 * duplicate the frame to both channels).
364 */
365 if (txrate->flags & IEEE80211_TX_RC_40_MHZ_WIDTH ||
366 txrate->flags & IEEE80211_TX_RC_DUP_DATA)
367 __set_bit(ENTRY_TXD_HT_BW_40, &txdesc->flags);
368 if (txrate->flags & IEEE80211_TX_RC_SHORT_GI)
369 __set_bit(ENTRY_TXD_HT_SHORT_GI, &txdesc->flags);
370
371 /*
372 * Determine IFS values
373 * - Use TXOP_BACKOFF for management frames except beacons
374 * - Use TXOP_SIFS for fragment bursts
375 * - Use TXOP_HTTXOP for everything else
376 *
377 * Note: rt2800 devices won't use CTS protection (if used)
378 * for frames not transmitted with TXOP_HTTXOP
379 */
380 if (ieee80211_is_mgmt(hdr->frame_control) &&
381 !ieee80211_is_beacon(hdr->frame_control))
382 txdesc->u.ht.txop = TXOP_BACKOFF;
383 else if (!(tx_info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT))
384 txdesc->u.ht.txop = TXOP_SIFS;
385 else
386 txdesc->u.ht.txop = TXOP_HTTXOP;
387 }
388
rt2x00queue_create_tx_descriptor(struct rt2x00_dev * rt2x00dev,struct sk_buff * skb,struct txentry_desc * txdesc)389 static void rt2x00queue_create_tx_descriptor(struct rt2x00_dev *rt2x00dev,
390 struct sk_buff *skb,
391 struct txentry_desc *txdesc)
392 {
393 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
394 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
395 struct ieee80211_tx_rate *txrate = &tx_info->control.rates[0];
396 struct ieee80211_rate *rate;
397 const struct rt2x00_rate *hwrate = NULL;
398
399 memset(txdesc, 0, sizeof(*txdesc));
400
401 /*
402 * Header and frame information.
403 */
404 txdesc->length = skb->len;
405 txdesc->header_length = ieee80211_get_hdrlen_from_skb(skb);
406
407 /*
408 * Check whether this frame is to be acked.
409 */
410 if (!(tx_info->flags & IEEE80211_TX_CTL_NO_ACK))
411 __set_bit(ENTRY_TXD_ACK, &txdesc->flags);
412
413 /*
414 * Check if this is a RTS/CTS frame
415 */
416 if (ieee80211_is_rts(hdr->frame_control) ||
417 ieee80211_is_cts(hdr->frame_control)) {
418 __set_bit(ENTRY_TXD_BURST, &txdesc->flags);
419 if (ieee80211_is_rts(hdr->frame_control))
420 __set_bit(ENTRY_TXD_RTS_FRAME, &txdesc->flags);
421 else
422 __set_bit(ENTRY_TXD_CTS_FRAME, &txdesc->flags);
423 if (tx_info->control.rts_cts_rate_idx >= 0)
424 rate =
425 ieee80211_get_rts_cts_rate(rt2x00dev->hw, tx_info);
426 }
427
428 /*
429 * Determine retry information.
430 */
431 txdesc->retry_limit = tx_info->control.rates[0].count - 1;
432 if (txdesc->retry_limit >= rt2x00dev->long_retry)
433 __set_bit(ENTRY_TXD_RETRY_MODE, &txdesc->flags);
434
435 /*
436 * Check if more fragments are pending
437 */
438 if (ieee80211_has_morefrags(hdr->frame_control)) {
439 __set_bit(ENTRY_TXD_BURST, &txdesc->flags);
440 __set_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags);
441 }
442
443 /*
444 * Check if more frames (!= fragments) are pending
445 */
446 if (tx_info->flags & IEEE80211_TX_CTL_MORE_FRAMES)
447 __set_bit(ENTRY_TXD_BURST, &txdesc->flags);
448
449 /*
450 * Beacons and probe responses require the tsf timestamp
451 * to be inserted into the frame.
452 */
453 if (ieee80211_is_beacon(hdr->frame_control) ||
454 ieee80211_is_probe_resp(hdr->frame_control))
455 __set_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags);
456
457 if ((tx_info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT) &&
458 !test_bit(ENTRY_TXD_RTS_FRAME, &txdesc->flags))
459 __set_bit(ENTRY_TXD_FIRST_FRAGMENT, &txdesc->flags);
460
461 /*
462 * Determine rate modulation.
463 */
464 if (txrate->flags & IEEE80211_TX_RC_GREEN_FIELD)
465 txdesc->rate_mode = RATE_MODE_HT_GREENFIELD;
466 else if (txrate->flags & IEEE80211_TX_RC_MCS)
467 txdesc->rate_mode = RATE_MODE_HT_MIX;
468 else {
469 rate = ieee80211_get_tx_rate(rt2x00dev->hw, tx_info);
470 hwrate = rt2x00_get_rate(rate->hw_value);
471 if (hwrate->flags & DEV_RATE_OFDM)
472 txdesc->rate_mode = RATE_MODE_OFDM;
473 else
474 txdesc->rate_mode = RATE_MODE_CCK;
475 }
476
477 /*
478 * Apply TX descriptor handling by components
479 */
480 rt2x00crypto_create_tx_descriptor(rt2x00dev, skb, txdesc);
481 rt2x00queue_create_tx_descriptor_seq(rt2x00dev, skb, txdesc);
482
483 if (test_bit(REQUIRE_HT_TX_DESC, &rt2x00dev->cap_flags))
484 rt2x00queue_create_tx_descriptor_ht(rt2x00dev, skb, txdesc,
485 hwrate);
486 else
487 rt2x00queue_create_tx_descriptor_plcp(rt2x00dev, skb, txdesc,
488 hwrate);
489 }
490
rt2x00queue_write_tx_data(struct queue_entry * entry,struct txentry_desc * txdesc)491 static int rt2x00queue_write_tx_data(struct queue_entry *entry,
492 struct txentry_desc *txdesc)
493 {
494 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
495
496 /*
497 * This should not happen, we already checked the entry
498 * was ours. When the hardware disagrees there has been
499 * a queue corruption!
500 */
501 if (unlikely(rt2x00dev->ops->lib->get_entry_state &&
502 rt2x00dev->ops->lib->get_entry_state(entry))) {
503 ERROR(rt2x00dev,
504 "Corrupt queue %d, accessing entry which is not ours.\n"
505 "Please file bug report to %s.\n",
506 entry->queue->qid, DRV_PROJECT);
507 return -EINVAL;
508 }
509
510 /*
511 * Add the requested extra tx headroom in front of the skb.
512 */
513 skb_push(entry->skb, rt2x00dev->ops->extra_tx_headroom);
514 memset(entry->skb->data, 0, rt2x00dev->ops->extra_tx_headroom);
515
516 /*
517 * Call the driver's write_tx_data function, if it exists.
518 */
519 if (rt2x00dev->ops->lib->write_tx_data)
520 rt2x00dev->ops->lib->write_tx_data(entry, txdesc);
521
522 /*
523 * Map the skb to DMA.
524 */
525 if (test_bit(REQUIRE_DMA, &rt2x00dev->cap_flags))
526 rt2x00queue_map_txskb(entry);
527
528 return 0;
529 }
530
rt2x00queue_write_tx_descriptor(struct queue_entry * entry,struct txentry_desc * txdesc)531 static void rt2x00queue_write_tx_descriptor(struct queue_entry *entry,
532 struct txentry_desc *txdesc)
533 {
534 struct data_queue *queue = entry->queue;
535
536 queue->rt2x00dev->ops->lib->write_tx_desc(entry, txdesc);
537
538 /*
539 * All processing on the frame has been completed, this means
540 * it is now ready to be dumped to userspace through debugfs.
541 */
542 rt2x00debug_dump_frame(queue->rt2x00dev, DUMP_FRAME_TX, entry->skb);
543 }
544
rt2x00queue_kick_tx_queue(struct data_queue * queue,struct txentry_desc * txdesc)545 static void rt2x00queue_kick_tx_queue(struct data_queue *queue,
546 struct txentry_desc *txdesc)
547 {
548 /*
549 * Check if we need to kick the queue, there are however a few rules
550 * 1) Don't kick unless this is the last in frame in a burst.
551 * When the burst flag is set, this frame is always followed
552 * by another frame which in some way are related to eachother.
553 * This is true for fragments, RTS or CTS-to-self frames.
554 * 2) Rule 1 can be broken when the available entries
555 * in the queue are less then a certain threshold.
556 */
557 if (rt2x00queue_threshold(queue) ||
558 !test_bit(ENTRY_TXD_BURST, &txdesc->flags))
559 queue->rt2x00dev->ops->lib->kick_queue(queue);
560 }
561
rt2x00queue_write_tx_frame(struct data_queue * queue,struct sk_buff * skb,bool local)562 int rt2x00queue_write_tx_frame(struct data_queue *queue, struct sk_buff *skb,
563 bool local)
564 {
565 struct ieee80211_tx_info *tx_info;
566 struct queue_entry *entry;
567 struct txentry_desc txdesc;
568 struct skb_frame_desc *skbdesc;
569 u8 rate_idx, rate_flags;
570 int ret = 0;
571
572 /*
573 * Copy all TX descriptor information into txdesc,
574 * after that we are free to use the skb->cb array
575 * for our information.
576 */
577 rt2x00queue_create_tx_descriptor(queue->rt2x00dev, skb, &txdesc);
578
579 /*
580 * All information is retrieved from the skb->cb array,
581 * now we should claim ownership of the driver part of that
582 * array, preserving the bitrate index and flags.
583 */
584 tx_info = IEEE80211_SKB_CB(skb);
585 rate_idx = tx_info->control.rates[0].idx;
586 rate_flags = tx_info->control.rates[0].flags;
587 skbdesc = get_skb_frame_desc(skb);
588 memset(skbdesc, 0, sizeof(*skbdesc));
589 skbdesc->tx_rate_idx = rate_idx;
590 skbdesc->tx_rate_flags = rate_flags;
591
592 if (local)
593 skbdesc->flags |= SKBDESC_NOT_MAC80211;
594
595 /*
596 * When hardware encryption is supported, and this frame
597 * is to be encrypted, we should strip the IV/EIV data from
598 * the frame so we can provide it to the driver separately.
599 */
600 if (test_bit(ENTRY_TXD_ENCRYPT, &txdesc.flags) &&
601 !test_bit(ENTRY_TXD_ENCRYPT_IV, &txdesc.flags)) {
602 if (test_bit(REQUIRE_COPY_IV, &queue->rt2x00dev->cap_flags))
603 rt2x00crypto_tx_copy_iv(skb, &txdesc);
604 else
605 rt2x00crypto_tx_remove_iv(skb, &txdesc);
606 }
607
608 /*
609 * When DMA allocation is required we should guarantee to the
610 * driver that the DMA is aligned to a 4-byte boundary.
611 * However some drivers require L2 padding to pad the payload
612 * rather then the header. This could be a requirement for
613 * PCI and USB devices, while header alignment only is valid
614 * for PCI devices.
615 */
616 if (test_bit(REQUIRE_L2PAD, &queue->rt2x00dev->cap_flags))
617 rt2x00queue_insert_l2pad(skb, txdesc.header_length);
618 else if (test_bit(REQUIRE_DMA, &queue->rt2x00dev->cap_flags))
619 rt2x00queue_align_frame(skb);
620
621 /*
622 * That function must be called with bh disabled.
623 */
624 spin_lock(&queue->tx_lock);
625
626 if (unlikely(rt2x00queue_full(queue))) {
627 ERROR(queue->rt2x00dev,
628 "Dropping frame due to full tx queue %d.\n", queue->qid);
629 ret = -ENOBUFS;
630 goto out;
631 }
632
633 entry = rt2x00queue_get_entry(queue, Q_INDEX);
634
635 if (unlikely(test_and_set_bit(ENTRY_OWNER_DEVICE_DATA,
636 &entry->flags))) {
637 ERROR(queue->rt2x00dev,
638 "Arrived at non-free entry in the non-full queue %d.\n"
639 "Please file bug report to %s.\n",
640 queue->qid, DRV_PROJECT);
641 ret = -EINVAL;
642 goto out;
643 }
644
645 skbdesc->entry = entry;
646 entry->skb = skb;
647
648 /*
649 * It could be possible that the queue was corrupted and this
650 * call failed. Since we always return NETDEV_TX_OK to mac80211,
651 * this frame will simply be dropped.
652 */
653 if (unlikely(rt2x00queue_write_tx_data(entry, &txdesc))) {
654 clear_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags);
655 entry->skb = NULL;
656 ret = -EIO;
657 goto out;
658 }
659
660 set_bit(ENTRY_DATA_PENDING, &entry->flags);
661
662 rt2x00queue_index_inc(entry, Q_INDEX);
663 rt2x00queue_write_tx_descriptor(entry, &txdesc);
664 rt2x00queue_kick_tx_queue(queue, &txdesc);
665
666 out:
667 spin_unlock(&queue->tx_lock);
668 return ret;
669 }
670
rt2x00queue_clear_beacon(struct rt2x00_dev * rt2x00dev,struct ieee80211_vif * vif)671 int rt2x00queue_clear_beacon(struct rt2x00_dev *rt2x00dev,
672 struct ieee80211_vif *vif)
673 {
674 struct rt2x00_intf *intf = vif_to_intf(vif);
675
676 if (unlikely(!intf->beacon))
677 return -ENOBUFS;
678
679 mutex_lock(&intf->beacon_skb_mutex);
680
681 /*
682 * Clean up the beacon skb.
683 */
684 rt2x00queue_free_skb(intf->beacon);
685
686 /*
687 * Clear beacon (single bssid devices don't need to clear the beacon
688 * since the beacon queue will get stopped anyway).
689 */
690 if (rt2x00dev->ops->lib->clear_beacon)
691 rt2x00dev->ops->lib->clear_beacon(intf->beacon);
692
693 mutex_unlock(&intf->beacon_skb_mutex);
694
695 return 0;
696 }
697
rt2x00queue_update_beacon_locked(struct rt2x00_dev * rt2x00dev,struct ieee80211_vif * vif)698 int rt2x00queue_update_beacon_locked(struct rt2x00_dev *rt2x00dev,
699 struct ieee80211_vif *vif)
700 {
701 struct rt2x00_intf *intf = vif_to_intf(vif);
702 struct skb_frame_desc *skbdesc;
703 struct txentry_desc txdesc;
704
705 if (unlikely(!intf->beacon))
706 return -ENOBUFS;
707
708 /*
709 * Clean up the beacon skb.
710 */
711 rt2x00queue_free_skb(intf->beacon);
712
713 intf->beacon->skb = ieee80211_beacon_get(rt2x00dev->hw, vif);
714 if (!intf->beacon->skb)
715 return -ENOMEM;
716
717 /*
718 * Copy all TX descriptor information into txdesc,
719 * after that we are free to use the skb->cb array
720 * for our information.
721 */
722 rt2x00queue_create_tx_descriptor(rt2x00dev, intf->beacon->skb, &txdesc);
723
724 /*
725 * Fill in skb descriptor
726 */
727 skbdesc = get_skb_frame_desc(intf->beacon->skb);
728 memset(skbdesc, 0, sizeof(*skbdesc));
729 skbdesc->entry = intf->beacon;
730
731 /*
732 * Send beacon to hardware.
733 */
734 rt2x00dev->ops->lib->write_beacon(intf->beacon, &txdesc);
735
736 return 0;
737
738 }
739
rt2x00queue_update_beacon(struct rt2x00_dev * rt2x00dev,struct ieee80211_vif * vif)740 int rt2x00queue_update_beacon(struct rt2x00_dev *rt2x00dev,
741 struct ieee80211_vif *vif)
742 {
743 struct rt2x00_intf *intf = vif_to_intf(vif);
744 int ret;
745
746 mutex_lock(&intf->beacon_skb_mutex);
747 ret = rt2x00queue_update_beacon_locked(rt2x00dev, vif);
748 mutex_unlock(&intf->beacon_skb_mutex);
749
750 return ret;
751 }
752
rt2x00queue_for_each_entry(struct data_queue * queue,enum queue_index start,enum queue_index end,void * data,bool (* fn)(struct queue_entry * entry,void * data))753 bool rt2x00queue_for_each_entry(struct data_queue *queue,
754 enum queue_index start,
755 enum queue_index end,
756 void *data,
757 bool (*fn)(struct queue_entry *entry,
758 void *data))
759 {
760 unsigned long irqflags;
761 unsigned int index_start;
762 unsigned int index_end;
763 unsigned int i;
764
765 if (unlikely(start >= Q_INDEX_MAX || end >= Q_INDEX_MAX)) {
766 ERROR(queue->rt2x00dev,
767 "Entry requested from invalid index range (%d - %d)\n",
768 start, end);
769 return true;
770 }
771
772 /*
773 * Only protect the range we are going to loop over,
774 * if during our loop a extra entry is set to pending
775 * it should not be kicked during this run, since it
776 * is part of another TX operation.
777 */
778 spin_lock_irqsave(&queue->index_lock, irqflags);
779 index_start = queue->index[start];
780 index_end = queue->index[end];
781 spin_unlock_irqrestore(&queue->index_lock, irqflags);
782
783 /*
784 * Start from the TX done pointer, this guarantees that we will
785 * send out all frames in the correct order.
786 */
787 if (index_start < index_end) {
788 for (i = index_start; i < index_end; i++) {
789 if (fn(&queue->entries[i], data))
790 return true;
791 }
792 } else {
793 for (i = index_start; i < queue->limit; i++) {
794 if (fn(&queue->entries[i], data))
795 return true;
796 }
797
798 for (i = 0; i < index_end; i++) {
799 if (fn(&queue->entries[i], data))
800 return true;
801 }
802 }
803
804 return false;
805 }
806 EXPORT_SYMBOL_GPL(rt2x00queue_for_each_entry);
807
rt2x00queue_get_entry(struct data_queue * queue,enum queue_index index)808 struct queue_entry *rt2x00queue_get_entry(struct data_queue *queue,
809 enum queue_index index)
810 {
811 struct queue_entry *entry;
812 unsigned long irqflags;
813
814 if (unlikely(index >= Q_INDEX_MAX)) {
815 ERROR(queue->rt2x00dev,
816 "Entry requested from invalid index type (%d)\n", index);
817 return NULL;
818 }
819
820 spin_lock_irqsave(&queue->index_lock, irqflags);
821
822 entry = &queue->entries[queue->index[index]];
823
824 spin_unlock_irqrestore(&queue->index_lock, irqflags);
825
826 return entry;
827 }
828 EXPORT_SYMBOL_GPL(rt2x00queue_get_entry);
829
rt2x00queue_index_inc(struct queue_entry * entry,enum queue_index index)830 void rt2x00queue_index_inc(struct queue_entry *entry, enum queue_index index)
831 {
832 struct data_queue *queue = entry->queue;
833 unsigned long irqflags;
834
835 if (unlikely(index >= Q_INDEX_MAX)) {
836 ERROR(queue->rt2x00dev,
837 "Index change on invalid index type (%d)\n", index);
838 return;
839 }
840
841 spin_lock_irqsave(&queue->index_lock, irqflags);
842
843 queue->index[index]++;
844 if (queue->index[index] >= queue->limit)
845 queue->index[index] = 0;
846
847 entry->last_action = jiffies;
848
849 if (index == Q_INDEX) {
850 queue->length++;
851 } else if (index == Q_INDEX_DONE) {
852 queue->length--;
853 queue->count++;
854 }
855
856 spin_unlock_irqrestore(&queue->index_lock, irqflags);
857 }
858
rt2x00queue_pause_queue_nocheck(struct data_queue * queue)859 void rt2x00queue_pause_queue_nocheck(struct data_queue *queue)
860 {
861 switch (queue->qid) {
862 case QID_AC_VO:
863 case QID_AC_VI:
864 case QID_AC_BE:
865 case QID_AC_BK:
866 /*
867 * For TX queues, we have to disable the queue
868 * inside mac80211.
869 */
870 ieee80211_stop_queue(queue->rt2x00dev->hw, queue->qid);
871 break;
872 default:
873 break;
874 }
875 }
rt2x00queue_pause_queue(struct data_queue * queue)876 void rt2x00queue_pause_queue(struct data_queue *queue)
877 {
878 if (!test_bit(DEVICE_STATE_PRESENT, &queue->rt2x00dev->flags) ||
879 !test_bit(QUEUE_STARTED, &queue->flags) ||
880 test_and_set_bit(QUEUE_PAUSED, &queue->flags))
881 return;
882
883 rt2x00queue_pause_queue_nocheck(queue);
884 }
885 EXPORT_SYMBOL_GPL(rt2x00queue_pause_queue);
886
rt2x00queue_unpause_queue(struct data_queue * queue)887 void rt2x00queue_unpause_queue(struct data_queue *queue)
888 {
889 if (!test_bit(DEVICE_STATE_PRESENT, &queue->rt2x00dev->flags) ||
890 !test_bit(QUEUE_STARTED, &queue->flags) ||
891 !test_and_clear_bit(QUEUE_PAUSED, &queue->flags))
892 return;
893
894 switch (queue->qid) {
895 case QID_AC_VO:
896 case QID_AC_VI:
897 case QID_AC_BE:
898 case QID_AC_BK:
899 /*
900 * For TX queues, we have to enable the queue
901 * inside mac80211.
902 */
903 ieee80211_wake_queue(queue->rt2x00dev->hw, queue->qid);
904 break;
905 case QID_RX:
906 /*
907 * For RX we need to kick the queue now in order to
908 * receive frames.
909 */
910 queue->rt2x00dev->ops->lib->kick_queue(queue);
911 default:
912 break;
913 }
914 }
915 EXPORT_SYMBOL_GPL(rt2x00queue_unpause_queue);
916
rt2x00queue_start_queue(struct data_queue * queue)917 void rt2x00queue_start_queue(struct data_queue *queue)
918 {
919 mutex_lock(&queue->status_lock);
920
921 if (!test_bit(DEVICE_STATE_PRESENT, &queue->rt2x00dev->flags) ||
922 test_and_set_bit(QUEUE_STARTED, &queue->flags)) {
923 mutex_unlock(&queue->status_lock);
924 return;
925 }
926
927 set_bit(QUEUE_PAUSED, &queue->flags);
928
929 queue->rt2x00dev->ops->lib->start_queue(queue);
930
931 rt2x00queue_unpause_queue(queue);
932
933 mutex_unlock(&queue->status_lock);
934 }
935 EXPORT_SYMBOL_GPL(rt2x00queue_start_queue);
936
rt2x00queue_stop_queue(struct data_queue * queue)937 void rt2x00queue_stop_queue(struct data_queue *queue)
938 {
939 mutex_lock(&queue->status_lock);
940
941 if (!test_and_clear_bit(QUEUE_STARTED, &queue->flags)) {
942 mutex_unlock(&queue->status_lock);
943 return;
944 }
945
946 rt2x00queue_pause_queue_nocheck(queue);
947
948 queue->rt2x00dev->ops->lib->stop_queue(queue);
949
950 mutex_unlock(&queue->status_lock);
951 }
952 EXPORT_SYMBOL_GPL(rt2x00queue_stop_queue);
953
rt2x00queue_flush_queue(struct data_queue * queue,bool drop)954 void rt2x00queue_flush_queue(struct data_queue *queue, bool drop)
955 {
956 bool started;
957 bool tx_queue =
958 (queue->qid == QID_AC_VO) ||
959 (queue->qid == QID_AC_VI) ||
960 (queue->qid == QID_AC_BE) ||
961 (queue->qid == QID_AC_BK);
962
963 mutex_lock(&queue->status_lock);
964
965 /*
966 * If the queue has been started, we must stop it temporarily
967 * to prevent any new frames to be queued on the device. If
968 * we are not dropping the pending frames, the queue must
969 * only be stopped in the software and not the hardware,
970 * otherwise the queue will never become empty on its own.
971 */
972 started = test_bit(QUEUE_STARTED, &queue->flags);
973 if (started) {
974 /*
975 * Pause the queue
976 */
977 rt2x00queue_pause_queue(queue);
978
979 /*
980 * If we are not supposed to drop any pending
981 * frames, this means we must force a start (=kick)
982 * to the queue to make sure the hardware will
983 * start transmitting.
984 */
985 if (!drop && tx_queue)
986 queue->rt2x00dev->ops->lib->kick_queue(queue);
987 }
988
989 /*
990 * Check if driver supports flushing, if that is the case we can
991 * defer the flushing to the driver. Otherwise we must use the
992 * alternative which just waits for the queue to become empty.
993 */
994 if (likely(queue->rt2x00dev->ops->lib->flush_queue))
995 queue->rt2x00dev->ops->lib->flush_queue(queue, drop);
996
997 /*
998 * The queue flush has failed...
999 */
1000 if (unlikely(!rt2x00queue_empty(queue)))
1001 WARNING(queue->rt2x00dev, "Queue %d failed to flush\n", queue->qid);
1002
1003 /*
1004 * Restore the queue to the previous status
1005 */
1006 if (started)
1007 rt2x00queue_unpause_queue(queue);
1008
1009 mutex_unlock(&queue->status_lock);
1010 }
1011 EXPORT_SYMBOL_GPL(rt2x00queue_flush_queue);
1012
rt2x00queue_start_queues(struct rt2x00_dev * rt2x00dev)1013 void rt2x00queue_start_queues(struct rt2x00_dev *rt2x00dev)
1014 {
1015 struct data_queue *queue;
1016
1017 /*
1018 * rt2x00queue_start_queue will call ieee80211_wake_queue
1019 * for each queue after is has been properly initialized.
1020 */
1021 tx_queue_for_each(rt2x00dev, queue)
1022 rt2x00queue_start_queue(queue);
1023
1024 rt2x00queue_start_queue(rt2x00dev->rx);
1025 }
1026 EXPORT_SYMBOL_GPL(rt2x00queue_start_queues);
1027
rt2x00queue_stop_queues(struct rt2x00_dev * rt2x00dev)1028 void rt2x00queue_stop_queues(struct rt2x00_dev *rt2x00dev)
1029 {
1030 struct data_queue *queue;
1031
1032 /*
1033 * rt2x00queue_stop_queue will call ieee80211_stop_queue
1034 * as well, but we are completely shutting doing everything
1035 * now, so it is much safer to stop all TX queues at once,
1036 * and use rt2x00queue_stop_queue for cleaning up.
1037 */
1038 ieee80211_stop_queues(rt2x00dev->hw);
1039
1040 tx_queue_for_each(rt2x00dev, queue)
1041 rt2x00queue_stop_queue(queue);
1042
1043 rt2x00queue_stop_queue(rt2x00dev->rx);
1044 }
1045 EXPORT_SYMBOL_GPL(rt2x00queue_stop_queues);
1046
rt2x00queue_flush_queues(struct rt2x00_dev * rt2x00dev,bool drop)1047 void rt2x00queue_flush_queues(struct rt2x00_dev *rt2x00dev, bool drop)
1048 {
1049 struct data_queue *queue;
1050
1051 tx_queue_for_each(rt2x00dev, queue)
1052 rt2x00queue_flush_queue(queue, drop);
1053
1054 rt2x00queue_flush_queue(rt2x00dev->rx, drop);
1055 }
1056 EXPORT_SYMBOL_GPL(rt2x00queue_flush_queues);
1057
rt2x00queue_reset(struct data_queue * queue)1058 static void rt2x00queue_reset(struct data_queue *queue)
1059 {
1060 unsigned long irqflags;
1061 unsigned int i;
1062
1063 spin_lock_irqsave(&queue->index_lock, irqflags);
1064
1065 queue->count = 0;
1066 queue->length = 0;
1067
1068 for (i = 0; i < Q_INDEX_MAX; i++)
1069 queue->index[i] = 0;
1070
1071 spin_unlock_irqrestore(&queue->index_lock, irqflags);
1072 }
1073
rt2x00queue_init_queues(struct rt2x00_dev * rt2x00dev)1074 void rt2x00queue_init_queues(struct rt2x00_dev *rt2x00dev)
1075 {
1076 struct data_queue *queue;
1077 unsigned int i;
1078
1079 queue_for_each(rt2x00dev, queue) {
1080 rt2x00queue_reset(queue);
1081
1082 for (i = 0; i < queue->limit; i++)
1083 rt2x00dev->ops->lib->clear_entry(&queue->entries[i]);
1084 }
1085 }
1086
rt2x00queue_alloc_entries(struct data_queue * queue,const struct data_queue_desc * qdesc)1087 static int rt2x00queue_alloc_entries(struct data_queue *queue,
1088 const struct data_queue_desc *qdesc)
1089 {
1090 struct queue_entry *entries;
1091 unsigned int entry_size;
1092 unsigned int i;
1093
1094 rt2x00queue_reset(queue);
1095
1096 queue->limit = qdesc->entry_num;
1097 queue->threshold = DIV_ROUND_UP(qdesc->entry_num, 10);
1098 queue->data_size = qdesc->data_size;
1099 queue->desc_size = qdesc->desc_size;
1100
1101 /*
1102 * Allocate all queue entries.
1103 */
1104 entry_size = sizeof(*entries) + qdesc->priv_size;
1105 entries = kcalloc(queue->limit, entry_size, GFP_KERNEL);
1106 if (!entries)
1107 return -ENOMEM;
1108
1109 #define QUEUE_ENTRY_PRIV_OFFSET(__base, __index, __limit, __esize, __psize) \
1110 (((char *)(__base)) + ((__limit) * (__esize)) + \
1111 ((__index) * (__psize)))
1112
1113 for (i = 0; i < queue->limit; i++) {
1114 entries[i].flags = 0;
1115 entries[i].queue = queue;
1116 entries[i].skb = NULL;
1117 entries[i].entry_idx = i;
1118 entries[i].priv_data =
1119 QUEUE_ENTRY_PRIV_OFFSET(entries, i, queue->limit,
1120 sizeof(*entries), qdesc->priv_size);
1121 }
1122
1123 #undef QUEUE_ENTRY_PRIV_OFFSET
1124
1125 queue->entries = entries;
1126
1127 return 0;
1128 }
1129
rt2x00queue_free_skbs(struct data_queue * queue)1130 static void rt2x00queue_free_skbs(struct data_queue *queue)
1131 {
1132 unsigned int i;
1133
1134 if (!queue->entries)
1135 return;
1136
1137 for (i = 0; i < queue->limit; i++) {
1138 rt2x00queue_free_skb(&queue->entries[i]);
1139 }
1140 }
1141
rt2x00queue_alloc_rxskbs(struct data_queue * queue)1142 static int rt2x00queue_alloc_rxskbs(struct data_queue *queue)
1143 {
1144 unsigned int i;
1145 struct sk_buff *skb;
1146
1147 for (i = 0; i < queue->limit; i++) {
1148 skb = rt2x00queue_alloc_rxskb(&queue->entries[i]);
1149 if (!skb)
1150 return -ENOMEM;
1151 queue->entries[i].skb = skb;
1152 }
1153
1154 return 0;
1155 }
1156
rt2x00queue_initialize(struct rt2x00_dev * rt2x00dev)1157 int rt2x00queue_initialize(struct rt2x00_dev *rt2x00dev)
1158 {
1159 struct data_queue *queue;
1160 int status;
1161
1162 status = rt2x00queue_alloc_entries(rt2x00dev->rx, rt2x00dev->ops->rx);
1163 if (status)
1164 goto exit;
1165
1166 tx_queue_for_each(rt2x00dev, queue) {
1167 status = rt2x00queue_alloc_entries(queue, rt2x00dev->ops->tx);
1168 if (status)
1169 goto exit;
1170 }
1171
1172 status = rt2x00queue_alloc_entries(rt2x00dev->bcn, rt2x00dev->ops->bcn);
1173 if (status)
1174 goto exit;
1175
1176 if (test_bit(REQUIRE_ATIM_QUEUE, &rt2x00dev->cap_flags)) {
1177 status = rt2x00queue_alloc_entries(rt2x00dev->atim,
1178 rt2x00dev->ops->atim);
1179 if (status)
1180 goto exit;
1181 }
1182
1183 status = rt2x00queue_alloc_rxskbs(rt2x00dev->rx);
1184 if (status)
1185 goto exit;
1186
1187 return 0;
1188
1189 exit:
1190 ERROR(rt2x00dev, "Queue entries allocation failed.\n");
1191
1192 rt2x00queue_uninitialize(rt2x00dev);
1193
1194 return status;
1195 }
1196
rt2x00queue_uninitialize(struct rt2x00_dev * rt2x00dev)1197 void rt2x00queue_uninitialize(struct rt2x00_dev *rt2x00dev)
1198 {
1199 struct data_queue *queue;
1200
1201 rt2x00queue_free_skbs(rt2x00dev->rx);
1202
1203 queue_for_each(rt2x00dev, queue) {
1204 kfree(queue->entries);
1205 queue->entries = NULL;
1206 }
1207 }
1208
rt2x00queue_init(struct rt2x00_dev * rt2x00dev,struct data_queue * queue,enum data_queue_qid qid)1209 static void rt2x00queue_init(struct rt2x00_dev *rt2x00dev,
1210 struct data_queue *queue, enum data_queue_qid qid)
1211 {
1212 mutex_init(&queue->status_lock);
1213 spin_lock_init(&queue->tx_lock);
1214 spin_lock_init(&queue->index_lock);
1215
1216 queue->rt2x00dev = rt2x00dev;
1217 queue->qid = qid;
1218 queue->txop = 0;
1219 queue->aifs = 2;
1220 queue->cw_min = 5;
1221 queue->cw_max = 10;
1222 }
1223
rt2x00queue_allocate(struct rt2x00_dev * rt2x00dev)1224 int rt2x00queue_allocate(struct rt2x00_dev *rt2x00dev)
1225 {
1226 struct data_queue *queue;
1227 enum data_queue_qid qid;
1228 unsigned int req_atim =
1229 !!test_bit(REQUIRE_ATIM_QUEUE, &rt2x00dev->cap_flags);
1230
1231 /*
1232 * We need the following queues:
1233 * RX: 1
1234 * TX: ops->tx_queues
1235 * Beacon: 1
1236 * Atim: 1 (if required)
1237 */
1238 rt2x00dev->data_queues = 2 + rt2x00dev->ops->tx_queues + req_atim;
1239
1240 queue = kcalloc(rt2x00dev->data_queues, sizeof(*queue), GFP_KERNEL);
1241 if (!queue) {
1242 ERROR(rt2x00dev, "Queue allocation failed.\n");
1243 return -ENOMEM;
1244 }
1245
1246 /*
1247 * Initialize pointers
1248 */
1249 rt2x00dev->rx = queue;
1250 rt2x00dev->tx = &queue[1];
1251 rt2x00dev->bcn = &queue[1 + rt2x00dev->ops->tx_queues];
1252 rt2x00dev->atim = req_atim ? &queue[2 + rt2x00dev->ops->tx_queues] : NULL;
1253
1254 /*
1255 * Initialize queue parameters.
1256 * RX: qid = QID_RX
1257 * TX: qid = QID_AC_VO + index
1258 * TX: cw_min: 2^5 = 32.
1259 * TX: cw_max: 2^10 = 1024.
1260 * BCN: qid = QID_BEACON
1261 * ATIM: qid = QID_ATIM
1262 */
1263 rt2x00queue_init(rt2x00dev, rt2x00dev->rx, QID_RX);
1264
1265 qid = QID_AC_VO;
1266 tx_queue_for_each(rt2x00dev, queue)
1267 rt2x00queue_init(rt2x00dev, queue, qid++);
1268
1269 rt2x00queue_init(rt2x00dev, rt2x00dev->bcn, QID_BEACON);
1270 if (req_atim)
1271 rt2x00queue_init(rt2x00dev, rt2x00dev->atim, QID_ATIM);
1272
1273 return 0;
1274 }
1275
rt2x00queue_free(struct rt2x00_dev * rt2x00dev)1276 void rt2x00queue_free(struct rt2x00_dev *rt2x00dev)
1277 {
1278 kfree(rt2x00dev->rx);
1279 rt2x00dev->rx = NULL;
1280 rt2x00dev->tx = NULL;
1281 rt2x00dev->bcn = NULL;
1282 }
1283