1 /*
2 	Copyright (C) 2010 Willow Garage <http://www.willowgarage.com>
3 	Copyright (C) 2004 - 2010 Ivo van Doorn <IvDoorn@gmail.com>
4 	Copyright (C) 2004 - 2009 Gertjan van Wingerde <gwingerde@gmail.com>
5 	<http://rt2x00.serialmonkey.com>
6 
7 	This program is free software; you can redistribute it and/or modify
8 	it under the terms of the GNU General Public License as published by
9 	the Free Software Foundation; either version 2 of the License, or
10 	(at your option) any later version.
11 
12 	This program is distributed in the hope that it will be useful,
13 	but WITHOUT ANY WARRANTY; without even the implied warranty of
14 	MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 	GNU General Public License for more details.
16 
17 	You should have received a copy of the GNU General Public License
18 	along with this program; if not, write to the
19 	Free Software Foundation, Inc.,
20 	59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
21  */
22 
23 /*
24 	Module: rt2x00lib
25 	Abstract: rt2x00 queue specific routines.
26  */
27 
28 #include <linux/slab.h>
29 #include <linux/kernel.h>
30 #include <linux/module.h>
31 #include <linux/dma-mapping.h>
32 
33 #include "rt2x00.h"
34 #include "rt2x00lib.h"
35 
rt2x00queue_alloc_rxskb(struct queue_entry * entry)36 struct sk_buff *rt2x00queue_alloc_rxskb(struct queue_entry *entry)
37 {
38 	struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
39 	struct sk_buff *skb;
40 	struct skb_frame_desc *skbdesc;
41 	unsigned int frame_size;
42 	unsigned int head_size = 0;
43 	unsigned int tail_size = 0;
44 
45 	/*
46 	 * The frame size includes descriptor size, because the
47 	 * hardware directly receive the frame into the skbuffer.
48 	 */
49 	frame_size = entry->queue->data_size + entry->queue->desc_size;
50 
51 	/*
52 	 * The payload should be aligned to a 4-byte boundary,
53 	 * this means we need at least 3 bytes for moving the frame
54 	 * into the correct offset.
55 	 */
56 	head_size = 4;
57 
58 	/*
59 	 * For IV/EIV/ICV assembly we must make sure there is
60 	 * at least 8 bytes bytes available in headroom for IV/EIV
61 	 * and 8 bytes for ICV data as tailroon.
62 	 */
63 	if (test_bit(CONFIG_SUPPORT_HW_CRYPTO, &rt2x00dev->flags)) {
64 		head_size += 8;
65 		tail_size += 8;
66 	}
67 
68 	/*
69 	 * Allocate skbuffer.
70 	 */
71 	skb = dev_alloc_skb(frame_size + head_size + tail_size);
72 	if (!skb)
73 		return NULL;
74 
75 	/*
76 	 * Make sure we not have a frame with the requested bytes
77 	 * available in the head and tail.
78 	 */
79 	skb_reserve(skb, head_size);
80 	skb_put(skb, frame_size);
81 
82 	/*
83 	 * Populate skbdesc.
84 	 */
85 	skbdesc = get_skb_frame_desc(skb);
86 	memset(skbdesc, 0, sizeof(*skbdesc));
87 	skbdesc->entry = entry;
88 
89 	if (test_bit(DRIVER_REQUIRE_DMA, &rt2x00dev->flags)) {
90 		skbdesc->skb_dma = dma_map_single(rt2x00dev->dev,
91 						  skb->data,
92 						  skb->len,
93 						  DMA_FROM_DEVICE);
94 		skbdesc->flags |= SKBDESC_DMA_MAPPED_RX;
95 	}
96 
97 	return skb;
98 }
99 
rt2x00queue_map_txskb(struct queue_entry * entry)100 void rt2x00queue_map_txskb(struct queue_entry *entry)
101 {
102 	struct device *dev = entry->queue->rt2x00dev->dev;
103 	struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
104 
105 	skbdesc->skb_dma =
106 	    dma_map_single(dev, entry->skb->data, entry->skb->len, DMA_TO_DEVICE);
107 	skbdesc->flags |= SKBDESC_DMA_MAPPED_TX;
108 }
109 EXPORT_SYMBOL_GPL(rt2x00queue_map_txskb);
110 
rt2x00queue_unmap_skb(struct queue_entry * entry)111 void rt2x00queue_unmap_skb(struct queue_entry *entry)
112 {
113 	struct device *dev = entry->queue->rt2x00dev->dev;
114 	struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
115 
116 	if (skbdesc->flags & SKBDESC_DMA_MAPPED_RX) {
117 		dma_unmap_single(dev, skbdesc->skb_dma, entry->skb->len,
118 				 DMA_FROM_DEVICE);
119 		skbdesc->flags &= ~SKBDESC_DMA_MAPPED_RX;
120 	} else if (skbdesc->flags & SKBDESC_DMA_MAPPED_TX) {
121 		dma_unmap_single(dev, skbdesc->skb_dma, entry->skb->len,
122 				 DMA_TO_DEVICE);
123 		skbdesc->flags &= ~SKBDESC_DMA_MAPPED_TX;
124 	}
125 }
126 EXPORT_SYMBOL_GPL(rt2x00queue_unmap_skb);
127 
rt2x00queue_free_skb(struct queue_entry * entry)128 void rt2x00queue_free_skb(struct queue_entry *entry)
129 {
130 	if (!entry->skb)
131 		return;
132 
133 	rt2x00queue_unmap_skb(entry);
134 	dev_kfree_skb_any(entry->skb);
135 	entry->skb = NULL;
136 }
137 
rt2x00queue_align_frame(struct sk_buff * skb)138 void rt2x00queue_align_frame(struct sk_buff *skb)
139 {
140 	unsigned int frame_length = skb->len;
141 	unsigned int align = ALIGN_SIZE(skb, 0);
142 
143 	if (!align)
144 		return;
145 
146 	skb_push(skb, align);
147 	memmove(skb->data, skb->data + align, frame_length);
148 	skb_trim(skb, frame_length);
149 }
150 
rt2x00queue_align_payload(struct sk_buff * skb,unsigned int header_length)151 void rt2x00queue_align_payload(struct sk_buff *skb, unsigned int header_length)
152 {
153 	unsigned int frame_length = skb->len;
154 	unsigned int align = ALIGN_SIZE(skb, header_length);
155 
156 	if (!align)
157 		return;
158 
159 	skb_push(skb, align);
160 	memmove(skb->data, skb->data + align, frame_length);
161 	skb_trim(skb, frame_length);
162 }
163 
rt2x00queue_insert_l2pad(struct sk_buff * skb,unsigned int header_length)164 void rt2x00queue_insert_l2pad(struct sk_buff *skb, unsigned int header_length)
165 {
166 	unsigned int payload_length = skb->len - header_length;
167 	unsigned int header_align = ALIGN_SIZE(skb, 0);
168 	unsigned int payload_align = ALIGN_SIZE(skb, header_length);
169 	unsigned int l2pad = payload_length ? L2PAD_SIZE(header_length) : 0;
170 
171 	/*
172 	 * Adjust the header alignment if the payload needs to be moved more
173 	 * than the header.
174 	 */
175 	if (payload_align > header_align)
176 		header_align += 4;
177 
178 	/* There is nothing to do if no alignment is needed */
179 	if (!header_align)
180 		return;
181 
182 	/* Reserve the amount of space needed in front of the frame */
183 	skb_push(skb, header_align);
184 
185 	/*
186 	 * Move the header.
187 	 */
188 	memmove(skb->data, skb->data + header_align, header_length);
189 
190 	/* Move the payload, if present and if required */
191 	if (payload_length && payload_align)
192 		memmove(skb->data + header_length + l2pad,
193 			skb->data + header_length + l2pad + payload_align,
194 			payload_length);
195 
196 	/* Trim the skb to the correct size */
197 	skb_trim(skb, header_length + l2pad + payload_length);
198 }
199 
rt2x00queue_remove_l2pad(struct sk_buff * skb,unsigned int header_length)200 void rt2x00queue_remove_l2pad(struct sk_buff *skb, unsigned int header_length)
201 {
202 	/*
203 	 * L2 padding is only present if the skb contains more than just the
204 	 * IEEE 802.11 header.
205 	 */
206 	unsigned int l2pad = (skb->len > header_length) ?
207 				L2PAD_SIZE(header_length) : 0;
208 
209 	if (!l2pad)
210 		return;
211 
212 	memmove(skb->data + l2pad, skb->data, header_length);
213 	skb_pull(skb, l2pad);
214 }
215 
rt2x00queue_create_tx_descriptor_seq(struct queue_entry * entry,struct txentry_desc * txdesc)216 static void rt2x00queue_create_tx_descriptor_seq(struct queue_entry *entry,
217 						 struct txentry_desc *txdesc)
218 {
219 	struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(entry->skb);
220 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)entry->skb->data;
221 	struct rt2x00_intf *intf = vif_to_intf(tx_info->control.vif);
222 	unsigned long irqflags;
223 
224 	if (!(tx_info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ))
225 		return;
226 
227 	__set_bit(ENTRY_TXD_GENERATE_SEQ, &txdesc->flags);
228 
229 	if (!test_bit(DRIVER_REQUIRE_SW_SEQNO, &entry->queue->rt2x00dev->flags))
230 		return;
231 
232 	/*
233 	 * The hardware is not able to insert a sequence number. Assign a
234 	 * software generated one here.
235 	 *
236 	 * This is wrong because beacons are not getting sequence
237 	 * numbers assigned properly.
238 	 *
239 	 * A secondary problem exists for drivers that cannot toggle
240 	 * sequence counting per-frame, since those will override the
241 	 * sequence counter given by mac80211.
242 	 */
243 	spin_lock_irqsave(&intf->seqlock, irqflags);
244 
245 	if (test_bit(ENTRY_TXD_FIRST_FRAGMENT, &txdesc->flags))
246 		intf->seqno += 0x10;
247 	hdr->seq_ctrl &= cpu_to_le16(IEEE80211_SCTL_FRAG);
248 	hdr->seq_ctrl |= cpu_to_le16(intf->seqno);
249 
250 	spin_unlock_irqrestore(&intf->seqlock, irqflags);
251 
252 }
253 
rt2x00queue_create_tx_descriptor_plcp(struct queue_entry * entry,struct txentry_desc * txdesc,const struct rt2x00_rate * hwrate)254 static void rt2x00queue_create_tx_descriptor_plcp(struct queue_entry *entry,
255 						  struct txentry_desc *txdesc,
256 						  const struct rt2x00_rate *hwrate)
257 {
258 	struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
259 	struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(entry->skb);
260 	struct ieee80211_tx_rate *txrate = &tx_info->control.rates[0];
261 	unsigned int data_length;
262 	unsigned int duration;
263 	unsigned int residual;
264 
265 	/*
266 	 * Determine with what IFS priority this frame should be send.
267 	 * Set ifs to IFS_SIFS when the this is not the first fragment,
268 	 * or this fragment came after RTS/CTS.
269 	 */
270 	if (test_bit(ENTRY_TXD_FIRST_FRAGMENT, &txdesc->flags))
271 		txdesc->u.plcp.ifs = IFS_BACKOFF;
272 	else
273 		txdesc->u.plcp.ifs = IFS_SIFS;
274 
275 	/* Data length + CRC + Crypto overhead (IV/EIV/ICV/MIC) */
276 	data_length = entry->skb->len + 4;
277 	data_length += rt2x00crypto_tx_overhead(rt2x00dev, entry->skb);
278 
279 	/*
280 	 * PLCP setup
281 	 * Length calculation depends on OFDM/CCK rate.
282 	 */
283 	txdesc->u.plcp.signal = hwrate->plcp;
284 	txdesc->u.plcp.service = 0x04;
285 
286 	if (hwrate->flags & DEV_RATE_OFDM) {
287 		txdesc->u.plcp.length_high = (data_length >> 6) & 0x3f;
288 		txdesc->u.plcp.length_low = data_length & 0x3f;
289 	} else {
290 		/*
291 		 * Convert length to microseconds.
292 		 */
293 		residual = GET_DURATION_RES(data_length, hwrate->bitrate);
294 		duration = GET_DURATION(data_length, hwrate->bitrate);
295 
296 		if (residual != 0) {
297 			duration++;
298 
299 			/*
300 			 * Check if we need to set the Length Extension
301 			 */
302 			if (hwrate->bitrate == 110 && residual <= 30)
303 				txdesc->u.plcp.service |= 0x80;
304 		}
305 
306 		txdesc->u.plcp.length_high = (duration >> 8) & 0xff;
307 		txdesc->u.plcp.length_low = duration & 0xff;
308 
309 		/*
310 		 * When preamble is enabled we should set the
311 		 * preamble bit for the signal.
312 		 */
313 		if (txrate->flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE)
314 			txdesc->u.plcp.signal |= 0x08;
315 	}
316 }
317 
rt2x00queue_create_tx_descriptor(struct queue_entry * entry,struct txentry_desc * txdesc)318 static void rt2x00queue_create_tx_descriptor(struct queue_entry *entry,
319 					     struct txentry_desc *txdesc)
320 {
321 	struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
322 	struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(entry->skb);
323 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)entry->skb->data;
324 	struct ieee80211_tx_rate *txrate = &tx_info->control.rates[0];
325 	struct ieee80211_rate *rate;
326 	const struct rt2x00_rate *hwrate = NULL;
327 
328 	memset(txdesc, 0, sizeof(*txdesc));
329 
330 	/*
331 	 * Header and frame information.
332 	 */
333 	txdesc->length = entry->skb->len;
334 	txdesc->header_length = ieee80211_get_hdrlen_from_skb(entry->skb);
335 
336 	/*
337 	 * Check whether this frame is to be acked.
338 	 */
339 	if (!(tx_info->flags & IEEE80211_TX_CTL_NO_ACK))
340 		__set_bit(ENTRY_TXD_ACK, &txdesc->flags);
341 
342 	/*
343 	 * Check if this is a RTS/CTS frame
344 	 */
345 	if (ieee80211_is_rts(hdr->frame_control) ||
346 	    ieee80211_is_cts(hdr->frame_control)) {
347 		__set_bit(ENTRY_TXD_BURST, &txdesc->flags);
348 		if (ieee80211_is_rts(hdr->frame_control))
349 			__set_bit(ENTRY_TXD_RTS_FRAME, &txdesc->flags);
350 		else
351 			__set_bit(ENTRY_TXD_CTS_FRAME, &txdesc->flags);
352 		if (tx_info->control.rts_cts_rate_idx >= 0)
353 			rate =
354 			    ieee80211_get_rts_cts_rate(rt2x00dev->hw, tx_info);
355 	}
356 
357 	/*
358 	 * Determine retry information.
359 	 */
360 	txdesc->retry_limit = tx_info->control.rates[0].count - 1;
361 	if (txdesc->retry_limit >= rt2x00dev->long_retry)
362 		__set_bit(ENTRY_TXD_RETRY_MODE, &txdesc->flags);
363 
364 	/*
365 	 * Check if more fragments are pending
366 	 */
367 	if (ieee80211_has_morefrags(hdr->frame_control)) {
368 		__set_bit(ENTRY_TXD_BURST, &txdesc->flags);
369 		__set_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags);
370 	}
371 
372 	/*
373 	 * Check if more frames (!= fragments) are pending
374 	 */
375 	if (tx_info->flags & IEEE80211_TX_CTL_MORE_FRAMES)
376 		__set_bit(ENTRY_TXD_BURST, &txdesc->flags);
377 
378 	/*
379 	 * Beacons and probe responses require the tsf timestamp
380 	 * to be inserted into the frame.
381 	 */
382 	if (ieee80211_is_beacon(hdr->frame_control) ||
383 	    ieee80211_is_probe_resp(hdr->frame_control))
384 		__set_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags);
385 
386 	if ((tx_info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT) &&
387 	    !test_bit(ENTRY_TXD_RTS_FRAME, &txdesc->flags))
388 		__set_bit(ENTRY_TXD_FIRST_FRAGMENT, &txdesc->flags);
389 
390 	/*
391 	 * Determine rate modulation.
392 	 */
393 	if (txrate->flags & IEEE80211_TX_RC_GREEN_FIELD)
394 		txdesc->rate_mode = RATE_MODE_HT_GREENFIELD;
395 	else if (txrate->flags & IEEE80211_TX_RC_MCS)
396 		txdesc->rate_mode = RATE_MODE_HT_MIX;
397 	else {
398 		rate = ieee80211_get_tx_rate(rt2x00dev->hw, tx_info);
399 		hwrate = rt2x00_get_rate(rate->hw_value);
400 		if (hwrate->flags & DEV_RATE_OFDM)
401 			txdesc->rate_mode = RATE_MODE_OFDM;
402 		else
403 			txdesc->rate_mode = RATE_MODE_CCK;
404 	}
405 
406 	/*
407 	 * Apply TX descriptor handling by components
408 	 */
409 	rt2x00crypto_create_tx_descriptor(entry, txdesc);
410 	rt2x00queue_create_tx_descriptor_seq(entry, txdesc);
411 
412 	if (test_bit(DRIVER_REQUIRE_HT_TX_DESC, &rt2x00dev->flags))
413 		rt2x00ht_create_tx_descriptor(entry, txdesc, hwrate);
414 	else
415 		rt2x00queue_create_tx_descriptor_plcp(entry, txdesc, hwrate);
416 }
417 
rt2x00queue_write_tx_data(struct queue_entry * entry,struct txentry_desc * txdesc)418 static int rt2x00queue_write_tx_data(struct queue_entry *entry,
419 				     struct txentry_desc *txdesc)
420 {
421 	struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
422 
423 	/*
424 	 * This should not happen, we already checked the entry
425 	 * was ours. When the hardware disagrees there has been
426 	 * a queue corruption!
427 	 */
428 	if (unlikely(rt2x00dev->ops->lib->get_entry_state &&
429 		     rt2x00dev->ops->lib->get_entry_state(entry))) {
430 		ERROR(rt2x00dev,
431 		      "Corrupt queue %d, accessing entry which is not ours.\n"
432 		      "Please file bug report to %s.\n",
433 		      entry->queue->qid, DRV_PROJECT);
434 		return -EINVAL;
435 	}
436 
437 	/*
438 	 * Add the requested extra tx headroom in front of the skb.
439 	 */
440 	skb_push(entry->skb, rt2x00dev->ops->extra_tx_headroom);
441 	memset(entry->skb->data, 0, rt2x00dev->ops->extra_tx_headroom);
442 
443 	/*
444 	 * Call the driver's write_tx_data function, if it exists.
445 	 */
446 	if (rt2x00dev->ops->lib->write_tx_data)
447 		rt2x00dev->ops->lib->write_tx_data(entry, txdesc);
448 
449 	/*
450 	 * Map the skb to DMA.
451 	 */
452 	if (test_bit(DRIVER_REQUIRE_DMA, &rt2x00dev->flags))
453 		rt2x00queue_map_txskb(entry);
454 
455 	return 0;
456 }
457 
rt2x00queue_write_tx_descriptor(struct queue_entry * entry,struct txentry_desc * txdesc)458 static void rt2x00queue_write_tx_descriptor(struct queue_entry *entry,
459 					    struct txentry_desc *txdesc)
460 {
461 	struct data_queue *queue = entry->queue;
462 
463 	queue->rt2x00dev->ops->lib->write_tx_desc(entry, txdesc);
464 
465 	/*
466 	 * All processing on the frame has been completed, this means
467 	 * it is now ready to be dumped to userspace through debugfs.
468 	 */
469 	rt2x00debug_dump_frame(queue->rt2x00dev, DUMP_FRAME_TX, entry->skb);
470 }
471 
rt2x00queue_kick_tx_queue(struct data_queue * queue,struct txentry_desc * txdesc)472 static void rt2x00queue_kick_tx_queue(struct data_queue *queue,
473 				      struct txentry_desc *txdesc)
474 {
475 	/*
476 	 * Check if we need to kick the queue, there are however a few rules
477 	 *	1) Don't kick unless this is the last in frame in a burst.
478 	 *	   When the burst flag is set, this frame is always followed
479 	 *	   by another frame which in some way are related to eachother.
480 	 *	   This is true for fragments, RTS or CTS-to-self frames.
481 	 *	2) Rule 1 can be broken when the available entries
482 	 *	   in the queue are less then a certain threshold.
483 	 */
484 	if (rt2x00queue_threshold(queue) ||
485 	    !test_bit(ENTRY_TXD_BURST, &txdesc->flags))
486 		queue->rt2x00dev->ops->lib->kick_queue(queue);
487 }
488 
rt2x00queue_write_tx_frame(struct data_queue * queue,struct sk_buff * skb,bool local)489 int rt2x00queue_write_tx_frame(struct data_queue *queue, struct sk_buff *skb,
490 			       bool local)
491 {
492 	struct ieee80211_tx_info *tx_info;
493 	struct queue_entry *entry = rt2x00queue_get_entry(queue, Q_INDEX);
494 	struct txentry_desc txdesc;
495 	struct skb_frame_desc *skbdesc;
496 	u8 rate_idx, rate_flags;
497 
498 	if (unlikely(rt2x00queue_full(queue)))
499 		return -ENOBUFS;
500 
501 	if (unlikely(test_and_set_bit(ENTRY_OWNER_DEVICE_DATA,
502 				      &entry->flags))) {
503 		ERROR(queue->rt2x00dev,
504 		      "Arrived at non-free entry in the non-full queue %d.\n"
505 		      "Please file bug report to %s.\n",
506 		      queue->qid, DRV_PROJECT);
507 		return -EINVAL;
508 	}
509 
510 	/*
511 	 * Copy all TX descriptor information into txdesc,
512 	 * after that we are free to use the skb->cb array
513 	 * for our information.
514 	 */
515 	entry->skb = skb;
516 	rt2x00queue_create_tx_descriptor(entry, &txdesc);
517 
518 	/*
519 	 * All information is retrieved from the skb->cb array,
520 	 * now we should claim ownership of the driver part of that
521 	 * array, preserving the bitrate index and flags.
522 	 */
523 	tx_info = IEEE80211_SKB_CB(skb);
524 	rate_idx = tx_info->control.rates[0].idx;
525 	rate_flags = tx_info->control.rates[0].flags;
526 	skbdesc = get_skb_frame_desc(skb);
527 	memset(skbdesc, 0, sizeof(*skbdesc));
528 	skbdesc->entry = entry;
529 	skbdesc->tx_rate_idx = rate_idx;
530 	skbdesc->tx_rate_flags = rate_flags;
531 
532 	if (local)
533 		skbdesc->flags |= SKBDESC_NOT_MAC80211;
534 
535 	/*
536 	 * When hardware encryption is supported, and this frame
537 	 * is to be encrypted, we should strip the IV/EIV data from
538 	 * the frame so we can provide it to the driver separately.
539 	 */
540 	if (test_bit(ENTRY_TXD_ENCRYPT, &txdesc.flags) &&
541 	    !test_bit(ENTRY_TXD_ENCRYPT_IV, &txdesc.flags)) {
542 		if (test_bit(DRIVER_REQUIRE_COPY_IV, &queue->rt2x00dev->flags))
543 			rt2x00crypto_tx_copy_iv(skb, &txdesc);
544 		else
545 			rt2x00crypto_tx_remove_iv(skb, &txdesc);
546 	}
547 
548 	/*
549 	 * When DMA allocation is required we should guarantee to the
550 	 * driver that the DMA is aligned to a 4-byte boundary.
551 	 * However some drivers require L2 padding to pad the payload
552 	 * rather then the header. This could be a requirement for
553 	 * PCI and USB devices, while header alignment only is valid
554 	 * for PCI devices.
555 	 */
556 	if (test_bit(DRIVER_REQUIRE_L2PAD, &queue->rt2x00dev->flags))
557 		rt2x00queue_insert_l2pad(entry->skb, txdesc.header_length);
558 	else if (test_bit(DRIVER_REQUIRE_DMA, &queue->rt2x00dev->flags))
559 		rt2x00queue_align_frame(entry->skb);
560 
561 	/*
562 	 * It could be possible that the queue was corrupted and this
563 	 * call failed. Since we always return NETDEV_TX_OK to mac80211,
564 	 * this frame will simply be dropped.
565 	 */
566 	if (unlikely(rt2x00queue_write_tx_data(entry, &txdesc))) {
567 		clear_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags);
568 		entry->skb = NULL;
569 		return -EIO;
570 	}
571 
572 	set_bit(ENTRY_DATA_PENDING, &entry->flags);
573 
574 	rt2x00queue_index_inc(queue, Q_INDEX);
575 	rt2x00queue_write_tx_descriptor(entry, &txdesc);
576 	rt2x00queue_kick_tx_queue(queue, &txdesc);
577 
578 	return 0;
579 }
580 
rt2x00queue_clear_beacon(struct rt2x00_dev * rt2x00dev,struct ieee80211_vif * vif)581 int rt2x00queue_clear_beacon(struct rt2x00_dev *rt2x00dev,
582 			     struct ieee80211_vif *vif)
583 {
584 	struct rt2x00_intf *intf = vif_to_intf(vif);
585 
586 	if (unlikely(!intf->beacon))
587 		return -ENOBUFS;
588 
589 	mutex_lock(&intf->beacon_skb_mutex);
590 
591 	/*
592 	 * Clean up the beacon skb.
593 	 */
594 	rt2x00queue_free_skb(intf->beacon);
595 
596 	/*
597 	 * Clear beacon (single bssid devices don't need to clear the beacon
598 	 * since the beacon queue will get stopped anyway).
599 	 */
600 	if (rt2x00dev->ops->lib->clear_beacon)
601 		rt2x00dev->ops->lib->clear_beacon(intf->beacon);
602 
603 	mutex_unlock(&intf->beacon_skb_mutex);
604 
605 	return 0;
606 }
607 
rt2x00queue_update_beacon_locked(struct rt2x00_dev * rt2x00dev,struct ieee80211_vif * vif)608 int rt2x00queue_update_beacon_locked(struct rt2x00_dev *rt2x00dev,
609 				     struct ieee80211_vif *vif)
610 {
611 	struct rt2x00_intf *intf = vif_to_intf(vif);
612 	struct skb_frame_desc *skbdesc;
613 	struct txentry_desc txdesc;
614 
615 	if (unlikely(!intf->beacon))
616 		return -ENOBUFS;
617 
618 	/*
619 	 * Clean up the beacon skb.
620 	 */
621 	rt2x00queue_free_skb(intf->beacon);
622 
623 	intf->beacon->skb = ieee80211_beacon_get(rt2x00dev->hw, vif);
624 	if (!intf->beacon->skb)
625 		return -ENOMEM;
626 
627 	/*
628 	 * Copy all TX descriptor information into txdesc,
629 	 * after that we are free to use the skb->cb array
630 	 * for our information.
631 	 */
632 	rt2x00queue_create_tx_descriptor(intf->beacon, &txdesc);
633 
634 	/*
635 	 * Fill in skb descriptor
636 	 */
637 	skbdesc = get_skb_frame_desc(intf->beacon->skb);
638 	memset(skbdesc, 0, sizeof(*skbdesc));
639 	skbdesc->entry = intf->beacon;
640 
641 	/*
642 	 * Send beacon to hardware.
643 	 */
644 	rt2x00dev->ops->lib->write_beacon(intf->beacon, &txdesc);
645 
646 	return 0;
647 
648 }
649 
rt2x00queue_update_beacon(struct rt2x00_dev * rt2x00dev,struct ieee80211_vif * vif)650 int rt2x00queue_update_beacon(struct rt2x00_dev *rt2x00dev,
651 			      struct ieee80211_vif *vif)
652 {
653 	struct rt2x00_intf *intf = vif_to_intf(vif);
654 	int ret;
655 
656 	mutex_lock(&intf->beacon_skb_mutex);
657 	ret = rt2x00queue_update_beacon_locked(rt2x00dev, vif);
658 	mutex_unlock(&intf->beacon_skb_mutex);
659 
660 	return ret;
661 }
662 
rt2x00queue_for_each_entry(struct data_queue * queue,enum queue_index start,enum queue_index end,void (* fn)(struct queue_entry * entry))663 void rt2x00queue_for_each_entry(struct data_queue *queue,
664 				enum queue_index start,
665 				enum queue_index end,
666 				void (*fn)(struct queue_entry *entry))
667 {
668 	unsigned long irqflags;
669 	unsigned int index_start;
670 	unsigned int index_end;
671 	unsigned int i;
672 
673 	if (unlikely(start >= Q_INDEX_MAX || end >= Q_INDEX_MAX)) {
674 		ERROR(queue->rt2x00dev,
675 		      "Entry requested from invalid index range (%d - %d)\n",
676 		      start, end);
677 		return;
678 	}
679 
680 	/*
681 	 * Only protect the range we are going to loop over,
682 	 * if during our loop a extra entry is set to pending
683 	 * it should not be kicked during this run, since it
684 	 * is part of another TX operation.
685 	 */
686 	spin_lock_irqsave(&queue->index_lock, irqflags);
687 	index_start = queue->index[start];
688 	index_end = queue->index[end];
689 	spin_unlock_irqrestore(&queue->index_lock, irqflags);
690 
691 	/*
692 	 * Start from the TX done pointer, this guarantees that we will
693 	 * send out all frames in the correct order.
694 	 */
695 	if (index_start < index_end) {
696 		for (i = index_start; i < index_end; i++)
697 			fn(&queue->entries[i]);
698 	} else {
699 		for (i = index_start; i < queue->limit; i++)
700 			fn(&queue->entries[i]);
701 
702 		for (i = 0; i < index_end; i++)
703 			fn(&queue->entries[i]);
704 	}
705 }
706 EXPORT_SYMBOL_GPL(rt2x00queue_for_each_entry);
707 
rt2x00queue_get_entry(struct data_queue * queue,enum queue_index index)708 struct queue_entry *rt2x00queue_get_entry(struct data_queue *queue,
709 					  enum queue_index index)
710 {
711 	struct queue_entry *entry;
712 	unsigned long irqflags;
713 
714 	if (unlikely(index >= Q_INDEX_MAX)) {
715 		ERROR(queue->rt2x00dev,
716 		      "Entry requested from invalid index type (%d)\n", index);
717 		return NULL;
718 	}
719 
720 	spin_lock_irqsave(&queue->index_lock, irqflags);
721 
722 	entry = &queue->entries[queue->index[index]];
723 
724 	spin_unlock_irqrestore(&queue->index_lock, irqflags);
725 
726 	return entry;
727 }
728 EXPORT_SYMBOL_GPL(rt2x00queue_get_entry);
729 
rt2x00queue_index_inc(struct data_queue * queue,enum queue_index index)730 void rt2x00queue_index_inc(struct data_queue *queue, enum queue_index index)
731 {
732 	unsigned long irqflags;
733 
734 	if (unlikely(index >= Q_INDEX_MAX)) {
735 		ERROR(queue->rt2x00dev,
736 		      "Index change on invalid index type (%d)\n", index);
737 		return;
738 	}
739 
740 	spin_lock_irqsave(&queue->index_lock, irqflags);
741 
742 	queue->index[index]++;
743 	if (queue->index[index] >= queue->limit)
744 		queue->index[index] = 0;
745 
746 	queue->last_action[index] = jiffies;
747 
748 	if (index == Q_INDEX) {
749 		queue->length++;
750 	} else if (index == Q_INDEX_DONE) {
751 		queue->length--;
752 		queue->count++;
753 	}
754 
755 	spin_unlock_irqrestore(&queue->index_lock, irqflags);
756 }
757 
rt2x00queue_pause_queue(struct data_queue * queue)758 void rt2x00queue_pause_queue(struct data_queue *queue)
759 {
760 	if (!test_bit(DEVICE_STATE_PRESENT, &queue->rt2x00dev->flags) ||
761 	    !test_bit(QUEUE_STARTED, &queue->flags) ||
762 	    test_and_set_bit(QUEUE_PAUSED, &queue->flags))
763 		return;
764 
765 	switch (queue->qid) {
766 	case QID_AC_VO:
767 	case QID_AC_VI:
768 	case QID_AC_BE:
769 	case QID_AC_BK:
770 		/*
771 		 * For TX queues, we have to disable the queue
772 		 * inside mac80211.
773 		 */
774 		ieee80211_stop_queue(queue->rt2x00dev->hw, queue->qid);
775 		break;
776 	default:
777 		break;
778 	}
779 }
780 EXPORT_SYMBOL_GPL(rt2x00queue_pause_queue);
781 
rt2x00queue_unpause_queue(struct data_queue * queue)782 void rt2x00queue_unpause_queue(struct data_queue *queue)
783 {
784 	if (!test_bit(DEVICE_STATE_PRESENT, &queue->rt2x00dev->flags) ||
785 	    !test_bit(QUEUE_STARTED, &queue->flags) ||
786 	    !test_and_clear_bit(QUEUE_PAUSED, &queue->flags))
787 		return;
788 
789 	switch (queue->qid) {
790 	case QID_AC_VO:
791 	case QID_AC_VI:
792 	case QID_AC_BE:
793 	case QID_AC_BK:
794 		/*
795 		 * For TX queues, we have to enable the queue
796 		 * inside mac80211.
797 		 */
798 		ieee80211_wake_queue(queue->rt2x00dev->hw, queue->qid);
799 		break;
800 	case QID_RX:
801 		/*
802 		 * For RX we need to kick the queue now in order to
803 		 * receive frames.
804 		 */
805 		queue->rt2x00dev->ops->lib->kick_queue(queue);
806 	default:
807 		break;
808 	}
809 }
810 EXPORT_SYMBOL_GPL(rt2x00queue_unpause_queue);
811 
rt2x00queue_start_queue(struct data_queue * queue)812 void rt2x00queue_start_queue(struct data_queue *queue)
813 {
814 	mutex_lock(&queue->status_lock);
815 
816 	if (!test_bit(DEVICE_STATE_PRESENT, &queue->rt2x00dev->flags) ||
817 	    test_and_set_bit(QUEUE_STARTED, &queue->flags)) {
818 		mutex_unlock(&queue->status_lock);
819 		return;
820 	}
821 
822 	set_bit(QUEUE_PAUSED, &queue->flags);
823 
824 	queue->rt2x00dev->ops->lib->start_queue(queue);
825 
826 	rt2x00queue_unpause_queue(queue);
827 
828 	mutex_unlock(&queue->status_lock);
829 }
830 EXPORT_SYMBOL_GPL(rt2x00queue_start_queue);
831 
rt2x00queue_stop_queue(struct data_queue * queue)832 void rt2x00queue_stop_queue(struct data_queue *queue)
833 {
834 	mutex_lock(&queue->status_lock);
835 
836 	if (!test_and_clear_bit(QUEUE_STARTED, &queue->flags)) {
837 		mutex_unlock(&queue->status_lock);
838 		return;
839 	}
840 
841 	rt2x00queue_pause_queue(queue);
842 
843 	queue->rt2x00dev->ops->lib->stop_queue(queue);
844 
845 	mutex_unlock(&queue->status_lock);
846 }
847 EXPORT_SYMBOL_GPL(rt2x00queue_stop_queue);
848 
rt2x00queue_flush_queue(struct data_queue * queue,bool drop)849 void rt2x00queue_flush_queue(struct data_queue *queue, bool drop)
850 {
851 	unsigned int i;
852 	bool started;
853 	bool tx_queue =
854 		(queue->qid == QID_AC_VO) ||
855 		(queue->qid == QID_AC_VI) ||
856 		(queue->qid == QID_AC_BE) ||
857 		(queue->qid == QID_AC_BK);
858 
859 	mutex_lock(&queue->status_lock);
860 
861 	/*
862 	 * If the queue has been started, we must stop it temporarily
863 	 * to prevent any new frames to be queued on the device. If
864 	 * we are not dropping the pending frames, the queue must
865 	 * only be stopped in the software and not the hardware,
866 	 * otherwise the queue will never become empty on its own.
867 	 */
868 	started = test_bit(QUEUE_STARTED, &queue->flags);
869 	if (started) {
870 		/*
871 		 * Pause the queue
872 		 */
873 		rt2x00queue_pause_queue(queue);
874 
875 		/*
876 		 * If we are not supposed to drop any pending
877 		 * frames, this means we must force a start (=kick)
878 		 * to the queue to make sure the hardware will
879 		 * start transmitting.
880 		 */
881 		if (!drop && tx_queue)
882 			queue->rt2x00dev->ops->lib->kick_queue(queue);
883 	}
884 
885 	/*
886 	 * Check if driver supports flushing, we can only guarantee
887 	 * full support for flushing if the driver is able
888 	 * to cancel all pending frames (drop = true).
889 	 */
890 	if (drop && queue->rt2x00dev->ops->lib->flush_queue)
891 		queue->rt2x00dev->ops->lib->flush_queue(queue);
892 
893 	/*
894 	 * When we don't want to drop any frames, or when
895 	 * the driver doesn't fully flush the queue correcly,
896 	 * we must wait for the queue to become empty.
897 	 */
898 	for (i = 0; !rt2x00queue_empty(queue) && i < 100; i++)
899 		msleep(10);
900 
901 	/*
902 	 * The queue flush has failed...
903 	 */
904 	if (unlikely(!rt2x00queue_empty(queue)))
905 		WARNING(queue->rt2x00dev, "Queue %d failed to flush\n", queue->qid);
906 
907 	/*
908 	 * Restore the queue to the previous status
909 	 */
910 	if (started)
911 		rt2x00queue_unpause_queue(queue);
912 
913 	mutex_unlock(&queue->status_lock);
914 }
915 EXPORT_SYMBOL_GPL(rt2x00queue_flush_queue);
916 
rt2x00queue_start_queues(struct rt2x00_dev * rt2x00dev)917 void rt2x00queue_start_queues(struct rt2x00_dev *rt2x00dev)
918 {
919 	struct data_queue *queue;
920 
921 	/*
922 	 * rt2x00queue_start_queue will call ieee80211_wake_queue
923 	 * for each queue after is has been properly initialized.
924 	 */
925 	tx_queue_for_each(rt2x00dev, queue)
926 		rt2x00queue_start_queue(queue);
927 
928 	rt2x00queue_start_queue(rt2x00dev->rx);
929 }
930 EXPORT_SYMBOL_GPL(rt2x00queue_start_queues);
931 
rt2x00queue_stop_queues(struct rt2x00_dev * rt2x00dev)932 void rt2x00queue_stop_queues(struct rt2x00_dev *rt2x00dev)
933 {
934 	struct data_queue *queue;
935 
936 	/*
937 	 * rt2x00queue_stop_queue will call ieee80211_stop_queue
938 	 * as well, but we are completely shutting doing everything
939 	 * now, so it is much safer to stop all TX queues at once,
940 	 * and use rt2x00queue_stop_queue for cleaning up.
941 	 */
942 	ieee80211_stop_queues(rt2x00dev->hw);
943 
944 	tx_queue_for_each(rt2x00dev, queue)
945 		rt2x00queue_stop_queue(queue);
946 
947 	rt2x00queue_stop_queue(rt2x00dev->rx);
948 }
949 EXPORT_SYMBOL_GPL(rt2x00queue_stop_queues);
950 
rt2x00queue_flush_queues(struct rt2x00_dev * rt2x00dev,bool drop)951 void rt2x00queue_flush_queues(struct rt2x00_dev *rt2x00dev, bool drop)
952 {
953 	struct data_queue *queue;
954 
955 	tx_queue_for_each(rt2x00dev, queue)
956 		rt2x00queue_flush_queue(queue, drop);
957 
958 	rt2x00queue_flush_queue(rt2x00dev->rx, drop);
959 }
960 EXPORT_SYMBOL_GPL(rt2x00queue_flush_queues);
961 
rt2x00queue_reset(struct data_queue * queue)962 static void rt2x00queue_reset(struct data_queue *queue)
963 {
964 	unsigned long irqflags;
965 	unsigned int i;
966 
967 	spin_lock_irqsave(&queue->index_lock, irqflags);
968 
969 	queue->count = 0;
970 	queue->length = 0;
971 
972 	for (i = 0; i < Q_INDEX_MAX; i++) {
973 		queue->index[i] = 0;
974 		queue->last_action[i] = jiffies;
975 	}
976 
977 	spin_unlock_irqrestore(&queue->index_lock, irqflags);
978 }
979 
rt2x00queue_init_queues(struct rt2x00_dev * rt2x00dev)980 void rt2x00queue_init_queues(struct rt2x00_dev *rt2x00dev)
981 {
982 	struct data_queue *queue;
983 	unsigned int i;
984 
985 	queue_for_each(rt2x00dev, queue) {
986 		rt2x00queue_reset(queue);
987 
988 		for (i = 0; i < queue->limit; i++)
989 			rt2x00dev->ops->lib->clear_entry(&queue->entries[i]);
990 	}
991 }
992 
rt2x00queue_alloc_entries(struct data_queue * queue,const struct data_queue_desc * qdesc)993 static int rt2x00queue_alloc_entries(struct data_queue *queue,
994 				     const struct data_queue_desc *qdesc)
995 {
996 	struct queue_entry *entries;
997 	unsigned int entry_size;
998 	unsigned int i;
999 
1000 	rt2x00queue_reset(queue);
1001 
1002 	queue->limit = qdesc->entry_num;
1003 	queue->threshold = DIV_ROUND_UP(qdesc->entry_num, 10);
1004 	queue->data_size = qdesc->data_size;
1005 	queue->desc_size = qdesc->desc_size;
1006 
1007 	/*
1008 	 * Allocate all queue entries.
1009 	 */
1010 	entry_size = sizeof(*entries) + qdesc->priv_size;
1011 	entries = kcalloc(queue->limit, entry_size, GFP_KERNEL);
1012 	if (!entries)
1013 		return -ENOMEM;
1014 
1015 #define QUEUE_ENTRY_PRIV_OFFSET(__base, __index, __limit, __esize, __psize) \
1016 	(((char *)(__base)) + ((__limit) * (__esize)) + \
1017 	    ((__index) * (__psize)))
1018 
1019 	for (i = 0; i < queue->limit; i++) {
1020 		entries[i].flags = 0;
1021 		entries[i].queue = queue;
1022 		entries[i].skb = NULL;
1023 		entries[i].entry_idx = i;
1024 		entries[i].priv_data =
1025 		    QUEUE_ENTRY_PRIV_OFFSET(entries, i, queue->limit,
1026 					    sizeof(*entries), qdesc->priv_size);
1027 	}
1028 
1029 #undef QUEUE_ENTRY_PRIV_OFFSET
1030 
1031 	queue->entries = entries;
1032 
1033 	return 0;
1034 }
1035 
rt2x00queue_free_skbs(struct data_queue * queue)1036 static void rt2x00queue_free_skbs(struct data_queue *queue)
1037 {
1038 	unsigned int i;
1039 
1040 	if (!queue->entries)
1041 		return;
1042 
1043 	for (i = 0; i < queue->limit; i++) {
1044 		rt2x00queue_free_skb(&queue->entries[i]);
1045 	}
1046 }
1047 
rt2x00queue_alloc_rxskbs(struct data_queue * queue)1048 static int rt2x00queue_alloc_rxskbs(struct data_queue *queue)
1049 {
1050 	unsigned int i;
1051 	struct sk_buff *skb;
1052 
1053 	for (i = 0; i < queue->limit; i++) {
1054 		skb = rt2x00queue_alloc_rxskb(&queue->entries[i]);
1055 		if (!skb)
1056 			return -ENOMEM;
1057 		queue->entries[i].skb = skb;
1058 	}
1059 
1060 	return 0;
1061 }
1062 
rt2x00queue_initialize(struct rt2x00_dev * rt2x00dev)1063 int rt2x00queue_initialize(struct rt2x00_dev *rt2x00dev)
1064 {
1065 	struct data_queue *queue;
1066 	int status;
1067 
1068 	status = rt2x00queue_alloc_entries(rt2x00dev->rx, rt2x00dev->ops->rx);
1069 	if (status)
1070 		goto exit;
1071 
1072 	tx_queue_for_each(rt2x00dev, queue) {
1073 		status = rt2x00queue_alloc_entries(queue, rt2x00dev->ops->tx);
1074 		if (status)
1075 			goto exit;
1076 	}
1077 
1078 	status = rt2x00queue_alloc_entries(rt2x00dev->bcn, rt2x00dev->ops->bcn);
1079 	if (status)
1080 		goto exit;
1081 
1082 	if (test_bit(DRIVER_REQUIRE_ATIM_QUEUE, &rt2x00dev->flags)) {
1083 		status = rt2x00queue_alloc_entries(rt2x00dev->atim,
1084 						   rt2x00dev->ops->atim);
1085 		if (status)
1086 			goto exit;
1087 	}
1088 
1089 	status = rt2x00queue_alloc_rxskbs(rt2x00dev->rx);
1090 	if (status)
1091 		goto exit;
1092 
1093 	return 0;
1094 
1095 exit:
1096 	ERROR(rt2x00dev, "Queue entries allocation failed.\n");
1097 
1098 	rt2x00queue_uninitialize(rt2x00dev);
1099 
1100 	return status;
1101 }
1102 
rt2x00queue_uninitialize(struct rt2x00_dev * rt2x00dev)1103 void rt2x00queue_uninitialize(struct rt2x00_dev *rt2x00dev)
1104 {
1105 	struct data_queue *queue;
1106 
1107 	rt2x00queue_free_skbs(rt2x00dev->rx);
1108 
1109 	queue_for_each(rt2x00dev, queue) {
1110 		kfree(queue->entries);
1111 		queue->entries = NULL;
1112 	}
1113 }
1114 
rt2x00queue_init(struct rt2x00_dev * rt2x00dev,struct data_queue * queue,enum data_queue_qid qid)1115 static void rt2x00queue_init(struct rt2x00_dev *rt2x00dev,
1116 			     struct data_queue *queue, enum data_queue_qid qid)
1117 {
1118 	mutex_init(&queue->status_lock);
1119 	spin_lock_init(&queue->index_lock);
1120 
1121 	queue->rt2x00dev = rt2x00dev;
1122 	queue->qid = qid;
1123 	queue->txop = 0;
1124 	queue->aifs = 2;
1125 	queue->cw_min = 5;
1126 	queue->cw_max = 10;
1127 }
1128 
rt2x00queue_allocate(struct rt2x00_dev * rt2x00dev)1129 int rt2x00queue_allocate(struct rt2x00_dev *rt2x00dev)
1130 {
1131 	struct data_queue *queue;
1132 	enum data_queue_qid qid;
1133 	unsigned int req_atim =
1134 	    !!test_bit(DRIVER_REQUIRE_ATIM_QUEUE, &rt2x00dev->flags);
1135 
1136 	/*
1137 	 * We need the following queues:
1138 	 * RX: 1
1139 	 * TX: ops->tx_queues
1140 	 * Beacon: 1
1141 	 * Atim: 1 (if required)
1142 	 */
1143 	rt2x00dev->data_queues = 2 + rt2x00dev->ops->tx_queues + req_atim;
1144 
1145 	queue = kcalloc(rt2x00dev->data_queues, sizeof(*queue), GFP_KERNEL);
1146 	if (!queue) {
1147 		ERROR(rt2x00dev, "Queue allocation failed.\n");
1148 		return -ENOMEM;
1149 	}
1150 
1151 	/*
1152 	 * Initialize pointers
1153 	 */
1154 	rt2x00dev->rx = queue;
1155 	rt2x00dev->tx = &queue[1];
1156 	rt2x00dev->bcn = &queue[1 + rt2x00dev->ops->tx_queues];
1157 	rt2x00dev->atim = req_atim ? &queue[2 + rt2x00dev->ops->tx_queues] : NULL;
1158 
1159 	/*
1160 	 * Initialize queue parameters.
1161 	 * RX: qid = QID_RX
1162 	 * TX: qid = QID_AC_VO + index
1163 	 * TX: cw_min: 2^5 = 32.
1164 	 * TX: cw_max: 2^10 = 1024.
1165 	 * BCN: qid = QID_BEACON
1166 	 * ATIM: qid = QID_ATIM
1167 	 */
1168 	rt2x00queue_init(rt2x00dev, rt2x00dev->rx, QID_RX);
1169 
1170 	qid = QID_AC_VO;
1171 	tx_queue_for_each(rt2x00dev, queue)
1172 		rt2x00queue_init(rt2x00dev, queue, qid++);
1173 
1174 	rt2x00queue_init(rt2x00dev, rt2x00dev->bcn, QID_BEACON);
1175 	if (req_atim)
1176 		rt2x00queue_init(rt2x00dev, rt2x00dev->atim, QID_ATIM);
1177 
1178 	return 0;
1179 }
1180 
rt2x00queue_free(struct rt2x00_dev * rt2x00dev)1181 void rt2x00queue_free(struct rt2x00_dev *rt2x00dev)
1182 {
1183 	kfree(rt2x00dev->rx);
1184 	rt2x00dev->rx = NULL;
1185 	rt2x00dev->tx = NULL;
1186 	rt2x00dev->bcn = NULL;
1187 }
1188