1 /*
2 	Copyright (C) 2010 Willow Garage <http://www.willowgarage.com>
3 	Copyright (C) 2004 - 2010 Ivo van Doorn <IvDoorn@gmail.com>
4 	<http://rt2x00.serialmonkey.com>
5 
6 	This program is free software; you can redistribute it and/or modify
7 	it under the terms of the GNU General Public License as published by
8 	the Free Software Foundation; either version 2 of the License, or
9 	(at your option) any later version.
10 
11 	This program is distributed in the hope that it will be useful,
12 	but WITHOUT ANY WARRANTY; without even the implied warranty of
13 	MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 	GNU General Public License for more details.
15 
16 	You should have received a copy of the GNU General Public License
17 	along with this program; if not, write to the
18 	Free Software Foundation, Inc.,
19 	59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
20  */
21 
22 /*
23 	Module: rt2x00lib
24 	Abstract: rt2x00 generic device routines.
25  */
26 
27 #include <linux/kernel.h>
28 #include <linux/module.h>
29 #include <linux/slab.h>
30 
31 #include "rt2x00.h"
32 #include "rt2x00lib.h"
33 
34 /*
35  * Radio control handlers.
36  */
rt2x00lib_enable_radio(struct rt2x00_dev * rt2x00dev)37 int rt2x00lib_enable_radio(struct rt2x00_dev *rt2x00dev)
38 {
39 	int status;
40 
41 	/*
42 	 * Don't enable the radio twice.
43 	 * And check if the hardware button has been disabled.
44 	 */
45 	if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
46 		return 0;
47 
48 	/*
49 	 * Initialize all data queues.
50 	 */
51 	rt2x00queue_init_queues(rt2x00dev);
52 
53 	/*
54 	 * Enable radio.
55 	 */
56 	status =
57 	    rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_ON);
58 	if (status)
59 		return status;
60 
61 	rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_IRQ_ON);
62 
63 	rt2x00leds_led_radio(rt2x00dev, true);
64 	rt2x00led_led_activity(rt2x00dev, true);
65 
66 	set_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags);
67 
68 	/*
69 	 * Enable queues.
70 	 */
71 	rt2x00queue_start_queues(rt2x00dev);
72 	rt2x00link_start_tuner(rt2x00dev);
73 
74 	/*
75 	 * Start watchdog monitoring.
76 	 */
77 	rt2x00link_start_watchdog(rt2x00dev);
78 
79 	return 0;
80 }
81 
rt2x00lib_disable_radio(struct rt2x00_dev * rt2x00dev)82 void rt2x00lib_disable_radio(struct rt2x00_dev *rt2x00dev)
83 {
84 	if (!test_and_clear_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
85 		return;
86 
87 	/*
88 	 * Stop watchdog monitoring.
89 	 */
90 	rt2x00link_stop_watchdog(rt2x00dev);
91 
92 	/*
93 	 * Stop all queues
94 	 */
95 	rt2x00link_stop_tuner(rt2x00dev);
96 	rt2x00queue_stop_queues(rt2x00dev);
97 	rt2x00queue_flush_queues(rt2x00dev, true);
98 
99 	/*
100 	 * Disable radio.
101 	 */
102 	rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_OFF);
103 	rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_IRQ_OFF);
104 	rt2x00led_led_activity(rt2x00dev, false);
105 	rt2x00leds_led_radio(rt2x00dev, false);
106 }
107 
rt2x00lib_intf_scheduled_iter(void * data,u8 * mac,struct ieee80211_vif * vif)108 static void rt2x00lib_intf_scheduled_iter(void *data, u8 *mac,
109 					  struct ieee80211_vif *vif)
110 {
111 	struct rt2x00_dev *rt2x00dev = data;
112 	struct rt2x00_intf *intf = vif_to_intf(vif);
113 
114 	/*
115 	 * It is possible the radio was disabled while the work had been
116 	 * scheduled. If that happens we should return here immediately,
117 	 * note that in the spinlock protected area above the delayed_flags
118 	 * have been cleared correctly.
119 	 */
120 	if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
121 		return;
122 
123 	if (test_and_clear_bit(DELAYED_UPDATE_BEACON, &intf->delayed_flags))
124 		rt2x00queue_update_beacon(rt2x00dev, vif);
125 }
126 
rt2x00lib_intf_scheduled(struct work_struct * work)127 static void rt2x00lib_intf_scheduled(struct work_struct *work)
128 {
129 	struct rt2x00_dev *rt2x00dev =
130 	    container_of(work, struct rt2x00_dev, intf_work);
131 
132 	/*
133 	 * Iterate over each interface and perform the
134 	 * requested configurations.
135 	 */
136 	ieee80211_iterate_active_interfaces(rt2x00dev->hw,
137 					    rt2x00lib_intf_scheduled_iter,
138 					    rt2x00dev);
139 }
140 
141 /*
142  * Interrupt context handlers.
143  */
rt2x00lib_bc_buffer_iter(void * data,u8 * mac,struct ieee80211_vif * vif)144 static void rt2x00lib_bc_buffer_iter(void *data, u8 *mac,
145 				     struct ieee80211_vif *vif)
146 {
147 	struct rt2x00_dev *rt2x00dev = data;
148 	struct sk_buff *skb;
149 
150 	/*
151 	 * Only AP mode interfaces do broad- and multicast buffering
152 	 */
153 	if (vif->type != NL80211_IFTYPE_AP)
154 		return;
155 
156 	/*
157 	 * Send out buffered broad- and multicast frames
158 	 */
159 	skb = ieee80211_get_buffered_bc(rt2x00dev->hw, vif);
160 	while (skb) {
161 		rt2x00mac_tx(rt2x00dev->hw, skb);
162 		skb = ieee80211_get_buffered_bc(rt2x00dev->hw, vif);
163 	}
164 }
165 
rt2x00lib_beaconupdate_iter(void * data,u8 * mac,struct ieee80211_vif * vif)166 static void rt2x00lib_beaconupdate_iter(void *data, u8 *mac,
167 					struct ieee80211_vif *vif)
168 {
169 	struct rt2x00_dev *rt2x00dev = data;
170 
171 	if (vif->type != NL80211_IFTYPE_AP &&
172 	    vif->type != NL80211_IFTYPE_ADHOC &&
173 	    vif->type != NL80211_IFTYPE_MESH_POINT &&
174 	    vif->type != NL80211_IFTYPE_WDS)
175 		return;
176 
177 	/*
178 	 * Update the beacon without locking. This is safe on PCI devices
179 	 * as they only update the beacon periodically here. This should
180 	 * never be called for USB devices.
181 	 */
182 	WARN_ON(rt2x00_is_usb(rt2x00dev));
183 	rt2x00queue_update_beacon_locked(rt2x00dev, vif);
184 }
185 
rt2x00lib_beacondone(struct rt2x00_dev * rt2x00dev)186 void rt2x00lib_beacondone(struct rt2x00_dev *rt2x00dev)
187 {
188 	if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
189 		return;
190 
191 	/* send buffered bc/mc frames out for every bssid */
192 	ieee80211_iterate_active_interfaces_atomic(rt2x00dev->hw,
193 						   rt2x00lib_bc_buffer_iter,
194 						   rt2x00dev);
195 	/*
196 	 * Devices with pre tbtt interrupt don't need to update the beacon
197 	 * here as they will fetch the next beacon directly prior to
198 	 * transmission.
199 	 */
200 	if (test_bit(DRIVER_SUPPORT_PRE_TBTT_INTERRUPT, &rt2x00dev->flags))
201 		return;
202 
203 	/* fetch next beacon */
204 	ieee80211_iterate_active_interfaces_atomic(rt2x00dev->hw,
205 						   rt2x00lib_beaconupdate_iter,
206 						   rt2x00dev);
207 }
208 EXPORT_SYMBOL_GPL(rt2x00lib_beacondone);
209 
rt2x00lib_pretbtt(struct rt2x00_dev * rt2x00dev)210 void rt2x00lib_pretbtt(struct rt2x00_dev *rt2x00dev)
211 {
212 	if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
213 		return;
214 
215 	/* fetch next beacon */
216 	ieee80211_iterate_active_interfaces_atomic(rt2x00dev->hw,
217 						   rt2x00lib_beaconupdate_iter,
218 						   rt2x00dev);
219 }
220 EXPORT_SYMBOL_GPL(rt2x00lib_pretbtt);
221 
rt2x00lib_dmastart(struct queue_entry * entry)222 void rt2x00lib_dmastart(struct queue_entry *entry)
223 {
224 	set_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags);
225 	rt2x00queue_index_inc(entry->queue, Q_INDEX);
226 }
227 EXPORT_SYMBOL_GPL(rt2x00lib_dmastart);
228 
rt2x00lib_dmadone(struct queue_entry * entry)229 void rt2x00lib_dmadone(struct queue_entry *entry)
230 {
231 	set_bit(ENTRY_DATA_STATUS_PENDING, &entry->flags);
232 	clear_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags);
233 	rt2x00queue_index_inc(entry->queue, Q_INDEX_DMA_DONE);
234 }
235 EXPORT_SYMBOL_GPL(rt2x00lib_dmadone);
236 
rt2x00lib_txdone(struct queue_entry * entry,struct txdone_entry_desc * txdesc)237 void rt2x00lib_txdone(struct queue_entry *entry,
238 		      struct txdone_entry_desc *txdesc)
239 {
240 	struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
241 	struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(entry->skb);
242 	struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
243 	unsigned int header_length, i;
244 	u8 rate_idx, rate_flags, retry_rates;
245 	u8 skbdesc_flags = skbdesc->flags;
246 	bool success;
247 
248 	/*
249 	 * Unmap the skb.
250 	 */
251 	rt2x00queue_unmap_skb(entry);
252 
253 	/*
254 	 * Remove the extra tx headroom from the skb.
255 	 */
256 	skb_pull(entry->skb, rt2x00dev->ops->extra_tx_headroom);
257 
258 	/*
259 	 * Signal that the TX descriptor is no longer in the skb.
260 	 */
261 	skbdesc->flags &= ~SKBDESC_DESC_IN_SKB;
262 
263 	/*
264 	 * Determine the length of 802.11 header.
265 	 */
266 	header_length = ieee80211_get_hdrlen_from_skb(entry->skb);
267 
268 	/*
269 	 * Remove L2 padding which was added during
270 	 */
271 	if (test_bit(DRIVER_REQUIRE_L2PAD, &rt2x00dev->flags))
272 		rt2x00queue_remove_l2pad(entry->skb, header_length);
273 
274 	/*
275 	 * If the IV/EIV data was stripped from the frame before it was
276 	 * passed to the hardware, we should now reinsert it again because
277 	 * mac80211 will expect the same data to be present it the
278 	 * frame as it was passed to us.
279 	 */
280 	if (test_bit(CONFIG_SUPPORT_HW_CRYPTO, &rt2x00dev->flags))
281 		rt2x00crypto_tx_insert_iv(entry->skb, header_length);
282 
283 	/*
284 	 * Send frame to debugfs immediately, after this call is completed
285 	 * we are going to overwrite the skb->cb array.
286 	 */
287 	rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_TXDONE, entry->skb);
288 
289 	/*
290 	 * Determine if the frame has been successfully transmitted.
291 	 */
292 	success =
293 	    test_bit(TXDONE_SUCCESS, &txdesc->flags) ||
294 	    test_bit(TXDONE_UNKNOWN, &txdesc->flags);
295 
296 	/*
297 	 * Update TX statistics.
298 	 */
299 	rt2x00dev->link.qual.tx_success += success;
300 	rt2x00dev->link.qual.tx_failed += !success;
301 
302 	rate_idx = skbdesc->tx_rate_idx;
303 	rate_flags = skbdesc->tx_rate_flags;
304 	retry_rates = test_bit(TXDONE_FALLBACK, &txdesc->flags) ?
305 	    (txdesc->retry + 1) : 1;
306 
307 	/*
308 	 * Initialize TX status
309 	 */
310 	memset(&tx_info->status, 0, sizeof(tx_info->status));
311 	tx_info->status.ack_signal = 0;
312 
313 	/*
314 	 * Frame was send with retries, hardware tried
315 	 * different rates to send out the frame, at each
316 	 * retry it lowered the rate 1 step except when the
317 	 * lowest rate was used.
318 	 */
319 	for (i = 0; i < retry_rates && i < IEEE80211_TX_MAX_RATES; i++) {
320 		tx_info->status.rates[i].idx = rate_idx - i;
321 		tx_info->status.rates[i].flags = rate_flags;
322 
323 		if (rate_idx - i == 0) {
324 			/*
325 			 * The lowest rate (index 0) was used until the
326 			 * number of max retries was reached.
327 			 */
328 			tx_info->status.rates[i].count = retry_rates - i;
329 			i++;
330 			break;
331 		}
332 		tx_info->status.rates[i].count = 1;
333 	}
334 	if (i < (IEEE80211_TX_MAX_RATES - 1))
335 		tx_info->status.rates[i].idx = -1; /* terminate */
336 
337 	if (!(tx_info->flags & IEEE80211_TX_CTL_NO_ACK)) {
338 		if (success)
339 			tx_info->flags |= IEEE80211_TX_STAT_ACK;
340 		else
341 			rt2x00dev->low_level_stats.dot11ACKFailureCount++;
342 	}
343 
344 	/*
345 	 * Every single frame has it's own tx status, hence report
346 	 * every frame as ampdu of size 1.
347 	 *
348 	 * TODO: if we can find out how many frames were aggregated
349 	 * by the hw we could provide the real ampdu_len to mac80211
350 	 * which would allow the rc algorithm to better decide on
351 	 * which rates are suitable.
352 	 */
353 	if (tx_info->flags & IEEE80211_TX_CTL_AMPDU) {
354 		tx_info->flags |= IEEE80211_TX_STAT_AMPDU;
355 		tx_info->status.ampdu_len = 1;
356 		tx_info->status.ampdu_ack_len = success ? 1 : 0;
357 	}
358 
359 	if (rate_flags & IEEE80211_TX_RC_USE_RTS_CTS) {
360 		if (success)
361 			rt2x00dev->low_level_stats.dot11RTSSuccessCount++;
362 		else
363 			rt2x00dev->low_level_stats.dot11RTSFailureCount++;
364 	}
365 
366 	/*
367 	 * Only send the status report to mac80211 when it's a frame
368 	 * that originated in mac80211. If this was a extra frame coming
369 	 * through a mac80211 library call (RTS/CTS) then we should not
370 	 * send the status report back.
371 	 */
372 	if (!(skbdesc_flags & SKBDESC_NOT_MAC80211)) {
373 		if (test_bit(DRIVER_REQUIRE_TASKLET_CONTEXT, &rt2x00dev->flags))
374 			ieee80211_tx_status(rt2x00dev->hw, entry->skb);
375 		else
376 			ieee80211_tx_status_ni(rt2x00dev->hw, entry->skb);
377 	} else
378 		dev_kfree_skb_any(entry->skb);
379 
380 	/*
381 	 * Make this entry available for reuse.
382 	 */
383 	entry->skb = NULL;
384 	entry->flags = 0;
385 
386 	rt2x00dev->ops->lib->clear_entry(entry);
387 
388 	rt2x00queue_index_inc(entry->queue, Q_INDEX_DONE);
389 
390 	/*
391 	 * If the data queue was below the threshold before the txdone
392 	 * handler we must make sure the packet queue in the mac80211 stack
393 	 * is reenabled when the txdone handler has finished.
394 	 */
395 	if (!rt2x00queue_threshold(entry->queue))
396 		rt2x00queue_unpause_queue(entry->queue);
397 }
398 EXPORT_SYMBOL_GPL(rt2x00lib_txdone);
399 
rt2x00lib_txdone_noinfo(struct queue_entry * entry,u32 status)400 void rt2x00lib_txdone_noinfo(struct queue_entry *entry, u32 status)
401 {
402 	struct txdone_entry_desc txdesc;
403 
404 	txdesc.flags = 0;
405 	__set_bit(status, &txdesc.flags);
406 	txdesc.retry = 0;
407 
408 	rt2x00lib_txdone(entry, &txdesc);
409 }
410 EXPORT_SYMBOL_GPL(rt2x00lib_txdone_noinfo);
411 
rt2x00lib_rxdone_read_signal(struct rt2x00_dev * rt2x00dev,struct rxdone_entry_desc * rxdesc)412 static int rt2x00lib_rxdone_read_signal(struct rt2x00_dev *rt2x00dev,
413 					struct rxdone_entry_desc *rxdesc)
414 {
415 	struct ieee80211_supported_band *sband;
416 	const struct rt2x00_rate *rate;
417 	unsigned int i;
418 	int signal = rxdesc->signal;
419 	int type = (rxdesc->dev_flags & RXDONE_SIGNAL_MASK);
420 
421 	switch (rxdesc->rate_mode) {
422 	case RATE_MODE_CCK:
423 	case RATE_MODE_OFDM:
424 		/*
425 		 * For non-HT rates the MCS value needs to contain the
426 		 * actually used rate modulation (CCK or OFDM).
427 		 */
428 		if (rxdesc->dev_flags & RXDONE_SIGNAL_MCS)
429 			signal = RATE_MCS(rxdesc->rate_mode, signal);
430 
431 		sband = &rt2x00dev->bands[rt2x00dev->curr_band];
432 		for (i = 0; i < sband->n_bitrates; i++) {
433 			rate = rt2x00_get_rate(sband->bitrates[i].hw_value);
434 			if (((type == RXDONE_SIGNAL_PLCP) &&
435 			     (rate->plcp == signal)) ||
436 			    ((type == RXDONE_SIGNAL_BITRATE) &&
437 			      (rate->bitrate == signal)) ||
438 			    ((type == RXDONE_SIGNAL_MCS) &&
439 			      (rate->mcs == signal))) {
440 				return i;
441 			}
442 		}
443 		break;
444 	case RATE_MODE_HT_MIX:
445 	case RATE_MODE_HT_GREENFIELD:
446 		if (signal >= 0 && signal <= 76)
447 			return signal;
448 		break;
449 	default:
450 		break;
451 	}
452 
453 	WARNING(rt2x00dev, "Frame received with unrecognized signal, "
454 		"mode=0x%.4x, signal=0x%.4x, type=%d.\n",
455 		rxdesc->rate_mode, signal, type);
456 	return 0;
457 }
458 
rt2x00lib_rxdone(struct queue_entry * entry)459 void rt2x00lib_rxdone(struct queue_entry *entry)
460 {
461 	struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
462 	struct rxdone_entry_desc rxdesc;
463 	struct sk_buff *skb;
464 	struct ieee80211_rx_status *rx_status;
465 	unsigned int header_length;
466 	int rate_idx;
467 
468 	if (!test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags) ||
469 	    !test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
470 		goto submit_entry;
471 
472 	if (test_bit(ENTRY_DATA_IO_FAILED, &entry->flags))
473 		goto submit_entry;
474 
475 	/*
476 	 * Allocate a new sk_buffer. If no new buffer available, drop the
477 	 * received frame and reuse the existing buffer.
478 	 */
479 	skb = rt2x00queue_alloc_rxskb(entry);
480 	if (!skb)
481 		goto submit_entry;
482 
483 	/*
484 	 * Unmap the skb.
485 	 */
486 	rt2x00queue_unmap_skb(entry);
487 
488 	/*
489 	 * Extract the RXD details.
490 	 */
491 	memset(&rxdesc, 0, sizeof(rxdesc));
492 	rt2x00dev->ops->lib->fill_rxdone(entry, &rxdesc);
493 
494 	/*
495 	 * The data behind the ieee80211 header must be
496 	 * aligned on a 4 byte boundary.
497 	 */
498 	header_length = ieee80211_get_hdrlen_from_skb(entry->skb);
499 
500 	/*
501 	 * Hardware might have stripped the IV/EIV/ICV data,
502 	 * in that case it is possible that the data was
503 	 * provided separately (through hardware descriptor)
504 	 * in which case we should reinsert the data into the frame.
505 	 */
506 	if ((rxdesc.dev_flags & RXDONE_CRYPTO_IV) &&
507 	    (rxdesc.flags & RX_FLAG_IV_STRIPPED))
508 		rt2x00crypto_rx_insert_iv(entry->skb, header_length,
509 					  &rxdesc);
510 	else if (header_length &&
511 		 (rxdesc.size > header_length) &&
512 		 (rxdesc.dev_flags & RXDONE_L2PAD))
513 		rt2x00queue_remove_l2pad(entry->skb, header_length);
514 	else
515 		rt2x00queue_align_payload(entry->skb, header_length);
516 
517 	/* Trim buffer to correct size */
518 	skb_trim(entry->skb, rxdesc.size);
519 
520 	/*
521 	 * Translate the signal to the correct bitrate index.
522 	 */
523 	rate_idx = rt2x00lib_rxdone_read_signal(rt2x00dev, &rxdesc);
524 	if (rxdesc.rate_mode == RATE_MODE_HT_MIX ||
525 	    rxdesc.rate_mode == RATE_MODE_HT_GREENFIELD)
526 		rxdesc.flags |= RX_FLAG_HT;
527 
528 	/*
529 	 * Update extra components
530 	 */
531 	rt2x00link_update_stats(rt2x00dev, entry->skb, &rxdesc);
532 	rt2x00debug_update_crypto(rt2x00dev, &rxdesc);
533 	rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_RXDONE, entry->skb);
534 
535 	/*
536 	 * Initialize RX status information, and send frame
537 	 * to mac80211.
538 	 */
539 	rx_status = IEEE80211_SKB_RXCB(entry->skb);
540 	rx_status->mactime = rxdesc.timestamp;
541 	rx_status->band = rt2x00dev->curr_band;
542 	rx_status->freq = rt2x00dev->curr_freq;
543 	rx_status->rate_idx = rate_idx;
544 	rx_status->signal = rxdesc.rssi;
545 	rx_status->flag = rxdesc.flags;
546 	rx_status->antenna = rt2x00dev->link.ant.active.rx;
547 
548 	ieee80211_rx_ni(rt2x00dev->hw, entry->skb);
549 
550 	/*
551 	 * Replace the skb with the freshly allocated one.
552 	 */
553 	entry->skb = skb;
554 
555 submit_entry:
556 	entry->flags = 0;
557 	rt2x00queue_index_inc(entry->queue, Q_INDEX_DONE);
558 	if (test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags) &&
559 	    test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
560 		rt2x00dev->ops->lib->clear_entry(entry);
561 }
562 EXPORT_SYMBOL_GPL(rt2x00lib_rxdone);
563 
564 /*
565  * Driver initialization handlers.
566  */
567 const struct rt2x00_rate rt2x00_supported_rates[12] = {
568 	{
569 		.flags = DEV_RATE_CCK,
570 		.bitrate = 10,
571 		.ratemask = BIT(0),
572 		.plcp = 0x00,
573 		.mcs = RATE_MCS(RATE_MODE_CCK, 0),
574 	},
575 	{
576 		.flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE,
577 		.bitrate = 20,
578 		.ratemask = BIT(1),
579 		.plcp = 0x01,
580 		.mcs = RATE_MCS(RATE_MODE_CCK, 1),
581 	},
582 	{
583 		.flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE,
584 		.bitrate = 55,
585 		.ratemask = BIT(2),
586 		.plcp = 0x02,
587 		.mcs = RATE_MCS(RATE_MODE_CCK, 2),
588 	},
589 	{
590 		.flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE,
591 		.bitrate = 110,
592 		.ratemask = BIT(3),
593 		.plcp = 0x03,
594 		.mcs = RATE_MCS(RATE_MODE_CCK, 3),
595 	},
596 	{
597 		.flags = DEV_RATE_OFDM,
598 		.bitrate = 60,
599 		.ratemask = BIT(4),
600 		.plcp = 0x0b,
601 		.mcs = RATE_MCS(RATE_MODE_OFDM, 0),
602 	},
603 	{
604 		.flags = DEV_RATE_OFDM,
605 		.bitrate = 90,
606 		.ratemask = BIT(5),
607 		.plcp = 0x0f,
608 		.mcs = RATE_MCS(RATE_MODE_OFDM, 1),
609 	},
610 	{
611 		.flags = DEV_RATE_OFDM,
612 		.bitrate = 120,
613 		.ratemask = BIT(6),
614 		.plcp = 0x0a,
615 		.mcs = RATE_MCS(RATE_MODE_OFDM, 2),
616 	},
617 	{
618 		.flags = DEV_RATE_OFDM,
619 		.bitrate = 180,
620 		.ratemask = BIT(7),
621 		.plcp = 0x0e,
622 		.mcs = RATE_MCS(RATE_MODE_OFDM, 3),
623 	},
624 	{
625 		.flags = DEV_RATE_OFDM,
626 		.bitrate = 240,
627 		.ratemask = BIT(8),
628 		.plcp = 0x09,
629 		.mcs = RATE_MCS(RATE_MODE_OFDM, 4),
630 	},
631 	{
632 		.flags = DEV_RATE_OFDM,
633 		.bitrate = 360,
634 		.ratemask = BIT(9),
635 		.plcp = 0x0d,
636 		.mcs = RATE_MCS(RATE_MODE_OFDM, 5),
637 	},
638 	{
639 		.flags = DEV_RATE_OFDM,
640 		.bitrate = 480,
641 		.ratemask = BIT(10),
642 		.plcp = 0x08,
643 		.mcs = RATE_MCS(RATE_MODE_OFDM, 6),
644 	},
645 	{
646 		.flags = DEV_RATE_OFDM,
647 		.bitrate = 540,
648 		.ratemask = BIT(11),
649 		.plcp = 0x0c,
650 		.mcs = RATE_MCS(RATE_MODE_OFDM, 7),
651 	},
652 };
653 
rt2x00lib_channel(struct ieee80211_channel * entry,const int channel,const int tx_power,const int value)654 static void rt2x00lib_channel(struct ieee80211_channel *entry,
655 			      const int channel, const int tx_power,
656 			      const int value)
657 {
658 	/* XXX: this assumption about the band is wrong for 802.11j */
659 	entry->band = channel <= 14 ? IEEE80211_BAND_2GHZ : IEEE80211_BAND_5GHZ;
660 	entry->center_freq = ieee80211_channel_to_frequency(channel,
661 							    entry->band);
662 	entry->hw_value = value;
663 	entry->max_power = tx_power;
664 	entry->max_antenna_gain = 0xff;
665 }
666 
rt2x00lib_rate(struct ieee80211_rate * entry,const u16 index,const struct rt2x00_rate * rate)667 static void rt2x00lib_rate(struct ieee80211_rate *entry,
668 			   const u16 index, const struct rt2x00_rate *rate)
669 {
670 	entry->flags = 0;
671 	entry->bitrate = rate->bitrate;
672 	entry->hw_value = index;
673 	entry->hw_value_short = index;
674 
675 	if (rate->flags & DEV_RATE_SHORT_PREAMBLE)
676 		entry->flags |= IEEE80211_RATE_SHORT_PREAMBLE;
677 }
678 
rt2x00lib_probe_hw_modes(struct rt2x00_dev * rt2x00dev,struct hw_mode_spec * spec)679 static int rt2x00lib_probe_hw_modes(struct rt2x00_dev *rt2x00dev,
680 				    struct hw_mode_spec *spec)
681 {
682 	struct ieee80211_hw *hw = rt2x00dev->hw;
683 	struct ieee80211_channel *channels;
684 	struct ieee80211_rate *rates;
685 	unsigned int num_rates;
686 	unsigned int i;
687 
688 	num_rates = 0;
689 	if (spec->supported_rates & SUPPORT_RATE_CCK)
690 		num_rates += 4;
691 	if (spec->supported_rates & SUPPORT_RATE_OFDM)
692 		num_rates += 8;
693 
694 	channels = kzalloc(sizeof(*channels) * spec->num_channels, GFP_KERNEL);
695 	if (!channels)
696 		return -ENOMEM;
697 
698 	rates = kzalloc(sizeof(*rates) * num_rates, GFP_KERNEL);
699 	if (!rates)
700 		goto exit_free_channels;
701 
702 	/*
703 	 * Initialize Rate list.
704 	 */
705 	for (i = 0; i < num_rates; i++)
706 		rt2x00lib_rate(&rates[i], i, rt2x00_get_rate(i));
707 
708 	/*
709 	 * Initialize Channel list.
710 	 */
711 	for (i = 0; i < spec->num_channels; i++) {
712 		rt2x00lib_channel(&channels[i],
713 				  spec->channels[i].channel,
714 				  spec->channels_info[i].max_power, i);
715 	}
716 
717 	/*
718 	 * Intitialize 802.11b, 802.11g
719 	 * Rates: CCK, OFDM.
720 	 * Channels: 2.4 GHz
721 	 */
722 	if (spec->supported_bands & SUPPORT_BAND_2GHZ) {
723 		rt2x00dev->bands[IEEE80211_BAND_2GHZ].n_channels = 14;
724 		rt2x00dev->bands[IEEE80211_BAND_2GHZ].n_bitrates = num_rates;
725 		rt2x00dev->bands[IEEE80211_BAND_2GHZ].channels = channels;
726 		rt2x00dev->bands[IEEE80211_BAND_2GHZ].bitrates = rates;
727 		hw->wiphy->bands[IEEE80211_BAND_2GHZ] =
728 		    &rt2x00dev->bands[IEEE80211_BAND_2GHZ];
729 		memcpy(&rt2x00dev->bands[IEEE80211_BAND_2GHZ].ht_cap,
730 		       &spec->ht, sizeof(spec->ht));
731 	}
732 
733 	/*
734 	 * Intitialize 802.11a
735 	 * Rates: OFDM.
736 	 * Channels: OFDM, UNII, HiperLAN2.
737 	 */
738 	if (spec->supported_bands & SUPPORT_BAND_5GHZ) {
739 		rt2x00dev->bands[IEEE80211_BAND_5GHZ].n_channels =
740 		    spec->num_channels - 14;
741 		rt2x00dev->bands[IEEE80211_BAND_5GHZ].n_bitrates =
742 		    num_rates - 4;
743 		rt2x00dev->bands[IEEE80211_BAND_5GHZ].channels = &channels[14];
744 		rt2x00dev->bands[IEEE80211_BAND_5GHZ].bitrates = &rates[4];
745 		hw->wiphy->bands[IEEE80211_BAND_5GHZ] =
746 		    &rt2x00dev->bands[IEEE80211_BAND_5GHZ];
747 		memcpy(&rt2x00dev->bands[IEEE80211_BAND_5GHZ].ht_cap,
748 		       &spec->ht, sizeof(spec->ht));
749 	}
750 
751 	return 0;
752 
753  exit_free_channels:
754 	kfree(channels);
755 	ERROR(rt2x00dev, "Allocation ieee80211 modes failed.\n");
756 	return -ENOMEM;
757 }
758 
rt2x00lib_remove_hw(struct rt2x00_dev * rt2x00dev)759 static void rt2x00lib_remove_hw(struct rt2x00_dev *rt2x00dev)
760 {
761 	if (test_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags))
762 		ieee80211_unregister_hw(rt2x00dev->hw);
763 
764 	if (likely(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ])) {
765 		kfree(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ]->channels);
766 		kfree(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ]->bitrates);
767 		rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ] = NULL;
768 		rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_5GHZ] = NULL;
769 	}
770 
771 	kfree(rt2x00dev->spec.channels_info);
772 }
773 
rt2x00lib_probe_hw(struct rt2x00_dev * rt2x00dev)774 static int rt2x00lib_probe_hw(struct rt2x00_dev *rt2x00dev)
775 {
776 	struct hw_mode_spec *spec = &rt2x00dev->spec;
777 	int status;
778 
779 	if (test_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags))
780 		return 0;
781 
782 	/*
783 	 * Initialize HW modes.
784 	 */
785 	status = rt2x00lib_probe_hw_modes(rt2x00dev, spec);
786 	if (status)
787 		return status;
788 
789 	/*
790 	 * Initialize HW fields.
791 	 */
792 	rt2x00dev->hw->queues = rt2x00dev->ops->tx_queues;
793 
794 	/*
795 	 * Initialize extra TX headroom required.
796 	 */
797 	rt2x00dev->hw->extra_tx_headroom =
798 		max_t(unsigned int, IEEE80211_TX_STATUS_HEADROOM,
799 		      rt2x00dev->ops->extra_tx_headroom);
800 
801 	/*
802 	 * Take TX headroom required for alignment into account.
803 	 */
804 	if (test_bit(DRIVER_REQUIRE_L2PAD, &rt2x00dev->flags))
805 		rt2x00dev->hw->extra_tx_headroom += RT2X00_L2PAD_SIZE;
806 	else if (test_bit(DRIVER_REQUIRE_DMA, &rt2x00dev->flags))
807 		rt2x00dev->hw->extra_tx_headroom += RT2X00_ALIGN_SIZE;
808 
809 	/*
810 	 * Allocate tx status FIFO for driver use.
811 	 */
812 	if (test_bit(DRIVER_REQUIRE_TXSTATUS_FIFO, &rt2x00dev->flags)) {
813 		/*
814 		 * Allocate txstatus fifo and tasklet, we use a size of 512
815 		 * for the kfifo which is big enough to store 512/4=128 tx
816 		 * status reports. In the worst case (tx status for all tx
817 		 * queues gets reported before we've got a chance to handle
818 		 * them) 24*4=384 tx status reports need to be cached.
819 		 */
820 		status = kfifo_alloc(&rt2x00dev->txstatus_fifo, 512,
821 				     GFP_KERNEL);
822 		if (status)
823 			return status;
824 	}
825 
826 	/*
827 	 * Initialize tasklets if used by the driver. Tasklets are
828 	 * disabled until the interrupts are turned on. The driver
829 	 * has to handle that.
830 	 */
831 #define RT2X00_TASKLET_INIT(taskletname) \
832 	if (rt2x00dev->ops->lib->taskletname) { \
833 		tasklet_init(&rt2x00dev->taskletname, \
834 			     rt2x00dev->ops->lib->taskletname, \
835 			     (unsigned long)rt2x00dev); \
836 		tasklet_disable(&rt2x00dev->taskletname); \
837 	}
838 
839 	RT2X00_TASKLET_INIT(txstatus_tasklet);
840 	RT2X00_TASKLET_INIT(pretbtt_tasklet);
841 	RT2X00_TASKLET_INIT(tbtt_tasklet);
842 	RT2X00_TASKLET_INIT(rxdone_tasklet);
843 	RT2X00_TASKLET_INIT(autowake_tasklet);
844 
845 #undef RT2X00_TASKLET_INIT
846 
847 	/*
848 	 * Register HW.
849 	 */
850 	status = ieee80211_register_hw(rt2x00dev->hw);
851 	if (status)
852 		return status;
853 
854 	set_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags);
855 
856 	return 0;
857 }
858 
859 /*
860  * Initialization/uninitialization handlers.
861  */
rt2x00lib_uninitialize(struct rt2x00_dev * rt2x00dev)862 static void rt2x00lib_uninitialize(struct rt2x00_dev *rt2x00dev)
863 {
864 	if (!test_and_clear_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags))
865 		return;
866 
867 	/*
868 	 * Unregister extra components.
869 	 */
870 	rt2x00rfkill_unregister(rt2x00dev);
871 
872 	/*
873 	 * Allow the HW to uninitialize.
874 	 */
875 	rt2x00dev->ops->lib->uninitialize(rt2x00dev);
876 
877 	/*
878 	 * Free allocated queue entries.
879 	 */
880 	rt2x00queue_uninitialize(rt2x00dev);
881 }
882 
rt2x00lib_initialize(struct rt2x00_dev * rt2x00dev)883 static int rt2x00lib_initialize(struct rt2x00_dev *rt2x00dev)
884 {
885 	int status;
886 
887 	if (test_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags))
888 		return 0;
889 
890 	/*
891 	 * Allocate all queue entries.
892 	 */
893 	status = rt2x00queue_initialize(rt2x00dev);
894 	if (status)
895 		return status;
896 
897 	/*
898 	 * Initialize the device.
899 	 */
900 	status = rt2x00dev->ops->lib->initialize(rt2x00dev);
901 	if (status) {
902 		rt2x00queue_uninitialize(rt2x00dev);
903 		return status;
904 	}
905 
906 	set_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags);
907 
908 	/*
909 	 * Register the extra components.
910 	 */
911 	rt2x00rfkill_register(rt2x00dev);
912 
913 	return 0;
914 }
915 
rt2x00lib_start(struct rt2x00_dev * rt2x00dev)916 int rt2x00lib_start(struct rt2x00_dev *rt2x00dev)
917 {
918 	int retval;
919 
920 	if (test_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags))
921 		return 0;
922 
923 	/*
924 	 * If this is the first interface which is added,
925 	 * we should load the firmware now.
926 	 */
927 	retval = rt2x00lib_load_firmware(rt2x00dev);
928 	if (retval)
929 		return retval;
930 
931 	/*
932 	 * Initialize the device.
933 	 */
934 	retval = rt2x00lib_initialize(rt2x00dev);
935 	if (retval)
936 		return retval;
937 
938 	rt2x00dev->intf_ap_count = 0;
939 	rt2x00dev->intf_sta_count = 0;
940 	rt2x00dev->intf_associated = 0;
941 
942 	/* Enable the radio */
943 	retval = rt2x00lib_enable_radio(rt2x00dev);
944 	if (retval)
945 		return retval;
946 
947 	set_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags);
948 
949 	return 0;
950 }
951 
rt2x00lib_stop(struct rt2x00_dev * rt2x00dev)952 void rt2x00lib_stop(struct rt2x00_dev *rt2x00dev)
953 {
954 	if (!test_and_clear_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags))
955 		return;
956 
957 	/*
958 	 * Perhaps we can add something smarter here,
959 	 * but for now just disabling the radio should do.
960 	 */
961 	rt2x00lib_disable_radio(rt2x00dev);
962 
963 	rt2x00dev->intf_ap_count = 0;
964 	rt2x00dev->intf_sta_count = 0;
965 	rt2x00dev->intf_associated = 0;
966 }
967 
968 /*
969  * driver allocation handlers.
970  */
rt2x00lib_probe_dev(struct rt2x00_dev * rt2x00dev)971 int rt2x00lib_probe_dev(struct rt2x00_dev *rt2x00dev)
972 {
973 	int retval = -ENOMEM;
974 
975 	spin_lock_init(&rt2x00dev->irqmask_lock);
976 	mutex_init(&rt2x00dev->csr_mutex);
977 
978 	set_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags);
979 
980 	/*
981 	 * Make room for rt2x00_intf inside the per-interface
982 	 * structure ieee80211_vif.
983 	 */
984 	rt2x00dev->hw->vif_data_size = sizeof(struct rt2x00_intf);
985 
986 	/*
987 	 * Determine which operating modes are supported, all modes
988 	 * which require beaconing, depend on the availability of
989 	 * beacon entries.
990 	 */
991 	rt2x00dev->hw->wiphy->interface_modes = BIT(NL80211_IFTYPE_STATION);
992 	if (rt2x00dev->ops->bcn->entry_num > 0)
993 		rt2x00dev->hw->wiphy->interface_modes |=
994 		    BIT(NL80211_IFTYPE_ADHOC) |
995 		    BIT(NL80211_IFTYPE_AP) |
996 		    BIT(NL80211_IFTYPE_MESH_POINT) |
997 		    BIT(NL80211_IFTYPE_WDS);
998 
999 	/*
1000 	 * Initialize work.
1001 	 */
1002 	rt2x00dev->workqueue =
1003 	    alloc_ordered_workqueue(wiphy_name(rt2x00dev->hw->wiphy), 0);
1004 	if (!rt2x00dev->workqueue) {
1005 		retval = -ENOMEM;
1006 		goto exit;
1007 	}
1008 
1009 	INIT_WORK(&rt2x00dev->intf_work, rt2x00lib_intf_scheduled);
1010 
1011 	/*
1012 	 * Let the driver probe the device to detect the capabilities.
1013 	 */
1014 	retval = rt2x00dev->ops->lib->probe_hw(rt2x00dev);
1015 	if (retval) {
1016 		ERROR(rt2x00dev, "Failed to allocate device.\n");
1017 		goto exit;
1018 	}
1019 
1020 	/*
1021 	 * Allocate queue array.
1022 	 */
1023 	retval = rt2x00queue_allocate(rt2x00dev);
1024 	if (retval)
1025 		goto exit;
1026 
1027 	/*
1028 	 * Initialize ieee80211 structure.
1029 	 */
1030 	retval = rt2x00lib_probe_hw(rt2x00dev);
1031 	if (retval) {
1032 		ERROR(rt2x00dev, "Failed to initialize hw.\n");
1033 		goto exit;
1034 	}
1035 
1036 	/*
1037 	 * Register extra components.
1038 	 */
1039 	rt2x00link_register(rt2x00dev);
1040 	rt2x00leds_register(rt2x00dev);
1041 	rt2x00debug_register(rt2x00dev);
1042 
1043 	return 0;
1044 
1045 exit:
1046 	rt2x00lib_remove_dev(rt2x00dev);
1047 
1048 	return retval;
1049 }
1050 EXPORT_SYMBOL_GPL(rt2x00lib_probe_dev);
1051 
rt2x00lib_remove_dev(struct rt2x00_dev * rt2x00dev)1052 void rt2x00lib_remove_dev(struct rt2x00_dev *rt2x00dev)
1053 {
1054 	clear_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags);
1055 
1056 	/*
1057 	 * Disable radio.
1058 	 */
1059 	rt2x00lib_disable_radio(rt2x00dev);
1060 
1061 	/*
1062 	 * Stop all work.
1063 	 */
1064 	cancel_work_sync(&rt2x00dev->intf_work);
1065 	if (rt2x00_is_usb(rt2x00dev)) {
1066 		cancel_work_sync(&rt2x00dev->rxdone_work);
1067 		cancel_work_sync(&rt2x00dev->txdone_work);
1068 	}
1069 	destroy_workqueue(rt2x00dev->workqueue);
1070 
1071 	/*
1072 	 * Free the tx status fifo.
1073 	 */
1074 	kfifo_free(&rt2x00dev->txstatus_fifo);
1075 
1076 	/*
1077 	 * Kill the tx status tasklet.
1078 	 */
1079 	tasklet_kill(&rt2x00dev->txstatus_tasklet);
1080 	tasklet_kill(&rt2x00dev->pretbtt_tasklet);
1081 	tasklet_kill(&rt2x00dev->tbtt_tasklet);
1082 	tasklet_kill(&rt2x00dev->rxdone_tasklet);
1083 	tasklet_kill(&rt2x00dev->autowake_tasklet);
1084 
1085 	/*
1086 	 * Uninitialize device.
1087 	 */
1088 	rt2x00lib_uninitialize(rt2x00dev);
1089 
1090 	/*
1091 	 * Free extra components
1092 	 */
1093 	rt2x00debug_deregister(rt2x00dev);
1094 	rt2x00leds_unregister(rt2x00dev);
1095 
1096 	/*
1097 	 * Free ieee80211_hw memory.
1098 	 */
1099 	rt2x00lib_remove_hw(rt2x00dev);
1100 
1101 	/*
1102 	 * Free firmware image.
1103 	 */
1104 	rt2x00lib_free_firmware(rt2x00dev);
1105 
1106 	/*
1107 	 * Free queue structures.
1108 	 */
1109 	rt2x00queue_free(rt2x00dev);
1110 }
1111 EXPORT_SYMBOL_GPL(rt2x00lib_remove_dev);
1112 
1113 /*
1114  * Device state handlers
1115  */
1116 #ifdef CONFIG_PM
rt2x00lib_suspend(struct rt2x00_dev * rt2x00dev,pm_message_t state)1117 int rt2x00lib_suspend(struct rt2x00_dev *rt2x00dev, pm_message_t state)
1118 {
1119 	NOTICE(rt2x00dev, "Going to sleep.\n");
1120 
1121 	/*
1122 	 * Prevent mac80211 from accessing driver while suspended.
1123 	 */
1124 	if (!test_and_clear_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags))
1125 		return 0;
1126 
1127 	/*
1128 	 * Cleanup as much as possible.
1129 	 */
1130 	rt2x00lib_uninitialize(rt2x00dev);
1131 
1132 	/*
1133 	 * Suspend/disable extra components.
1134 	 */
1135 	rt2x00leds_suspend(rt2x00dev);
1136 	rt2x00debug_deregister(rt2x00dev);
1137 
1138 	/*
1139 	 * Set device mode to sleep for power management,
1140 	 * on some hardware this call seems to consistently fail.
1141 	 * From the specifications it is hard to tell why it fails,
1142 	 * and if this is a "bad thing".
1143 	 * Overall it is safe to just ignore the failure and
1144 	 * continue suspending. The only downside is that the
1145 	 * device will not be in optimal power save mode, but with
1146 	 * the radio and the other components already disabled the
1147 	 * device is as good as disabled.
1148 	 */
1149 	if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_SLEEP))
1150 		WARNING(rt2x00dev, "Device failed to enter sleep state, "
1151 			"continue suspending.\n");
1152 
1153 	return 0;
1154 }
1155 EXPORT_SYMBOL_GPL(rt2x00lib_suspend);
1156 
rt2x00lib_resume(struct rt2x00_dev * rt2x00dev)1157 int rt2x00lib_resume(struct rt2x00_dev *rt2x00dev)
1158 {
1159 	NOTICE(rt2x00dev, "Waking up.\n");
1160 
1161 	/*
1162 	 * Restore/enable extra components.
1163 	 */
1164 	rt2x00debug_register(rt2x00dev);
1165 	rt2x00leds_resume(rt2x00dev);
1166 
1167 	/*
1168 	 * We are ready again to receive requests from mac80211.
1169 	 */
1170 	set_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags);
1171 
1172 	return 0;
1173 }
1174 EXPORT_SYMBOL_GPL(rt2x00lib_resume);
1175 #endif /* CONFIG_PM */
1176 
1177 /*
1178  * rt2x00lib module information.
1179  */
1180 MODULE_AUTHOR(DRV_PROJECT);
1181 MODULE_VERSION(DRV_VERSION);
1182 MODULE_DESCRIPTION("rt2x00 library");
1183 MODULE_LICENSE("GPL");
1184