1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3 	Copyright (C) 2010 Willow Garage <http://www.willowgarage.com>
4 	Copyright (C) 2004 - 2010 Ivo van Doorn <IvDoorn@gmail.com>
5 	Copyright (C) 2004 - 2009 Gertjan van Wingerde <gwingerde@gmail.com>
6 	<http://rt2x00.serialmonkey.com>
7 
8  */
9 
10 /*
11 	Module: rt2x00
12 	Abstract: rt2x00 global information.
13  */
14 
15 #ifndef RT2X00_H
16 #define RT2X00_H
17 
18 #include <linux/bitops.h>
19 #include <linux/interrupt.h>
20 #include <linux/skbuff.h>
21 #include <linux/workqueue.h>
22 #include <linux/firmware.h>
23 #include <linux/leds.h>
24 #include <linux/mutex.h>
25 #include <linux/etherdevice.h>
26 #include <linux/kfifo.h>
27 #include <linux/hrtimer.h>
28 #include <linux/average.h>
29 #include <linux/usb.h>
30 #include <linux/clk.h>
31 
32 #include <net/mac80211.h>
33 
34 #include "rt2x00debug.h"
35 #include "rt2x00dump.h"
36 #include "rt2x00leds.h"
37 #include "rt2x00reg.h"
38 #include "rt2x00queue.h"
39 
40 /*
41  * Module information.
42  */
43 #define DRV_VERSION	"2.3.0"
44 #define DRV_PROJECT	"http://rt2x00.serialmonkey.com"
45 
46 /* Debug definitions.
47  * Debug output has to be enabled during compile time.
48  */
49 #ifdef CONFIG_RT2X00_DEBUG
50 #define DEBUG
51 #endif /* CONFIG_RT2X00_DEBUG */
52 
53 /* Utility printing macros
54  * rt2x00_probe_err is for messages when rt2x00_dev is uninitialized
55  */
56 #define rt2x00_probe_err(fmt, ...)					\
57 	printk(KERN_ERR KBUILD_MODNAME ": %s: Error - " fmt,		\
58 	       __func__, ##__VA_ARGS__)
59 #define rt2x00_err(dev, fmt, ...)					\
60 	wiphy_err_ratelimited((dev)->hw->wiphy, "%s: Error - " fmt,	\
61 		  __func__, ##__VA_ARGS__)
62 #define rt2x00_warn(dev, fmt, ...)					\
63 	wiphy_warn_ratelimited((dev)->hw->wiphy, "%s: Warning - " fmt,	\
64 		   __func__, ##__VA_ARGS__)
65 #define rt2x00_info(dev, fmt, ...)					\
66 	wiphy_info((dev)->hw->wiphy, "%s: Info - " fmt,			\
67 		   __func__, ##__VA_ARGS__)
68 
69 /* Various debug levels */
70 #define rt2x00_dbg(dev, fmt, ...)					\
71 	wiphy_dbg((dev)->hw->wiphy, "%s: Debug - " fmt,			\
72 		  __func__, ##__VA_ARGS__)
73 #define rt2x00_eeprom_dbg(dev, fmt, ...)				\
74 	wiphy_dbg((dev)->hw->wiphy, "%s: EEPROM recovery - " fmt,	\
75 		  __func__, ##__VA_ARGS__)
76 
77 /*
78  * Duration calculations
79  * The rate variable passed is: 100kbs.
80  * To convert from bytes to bits we multiply size with 8,
81  * then the size is multiplied with 10 to make the
82  * real rate -> rate argument correction.
83  */
84 #define GET_DURATION(__size, __rate)	(((__size) * 8 * 10) / (__rate))
85 #define GET_DURATION_RES(__size, __rate)(((__size) * 8 * 10) % (__rate))
86 
87 /*
88  * Determine the number of L2 padding bytes required between the header and
89  * the payload.
90  */
91 #define L2PAD_SIZE(__hdrlen)	(-(__hdrlen) & 3)
92 
93 /*
94  * Determine the alignment requirement,
95  * to make sure the 802.11 payload is padded to a 4-byte boundrary
96  * we must determine the address of the payload and calculate the
97  * amount of bytes needed to move the data.
98  */
99 #define ALIGN_SIZE(__skb, __header) \
100 	(((unsigned long)((__skb)->data + (__header))) & 3)
101 
102 /*
103  * Constants for extra TX headroom for alignment purposes.
104  */
105 #define RT2X00_ALIGN_SIZE	4 /* Only whole frame needs alignment */
106 #define RT2X00_L2PAD_SIZE	8 /* Both header & payload need alignment */
107 
108 /*
109  * Standard timing and size defines.
110  * These values should follow the ieee80211 specifications.
111  */
112 #define ACK_SIZE		14
113 #define IEEE80211_HEADER	24
114 #define PLCP			48
115 #define BEACON			100
116 #define PREAMBLE		144
117 #define SHORT_PREAMBLE		72
118 #define SLOT_TIME		20
119 #define SHORT_SLOT_TIME		9
120 #define SIFS			10
121 #define PIFS			(SIFS + SLOT_TIME)
122 #define SHORT_PIFS		(SIFS + SHORT_SLOT_TIME)
123 #define DIFS			(PIFS + SLOT_TIME)
124 #define SHORT_DIFS		(SHORT_PIFS + SHORT_SLOT_TIME)
125 #define EIFS			(SIFS + DIFS + \
126 				  GET_DURATION(IEEE80211_HEADER + ACK_SIZE, 10))
127 #define SHORT_EIFS		(SIFS + SHORT_DIFS + \
128 				  GET_DURATION(IEEE80211_HEADER + ACK_SIZE, 10))
129 
130 enum rt2x00_chip_intf {
131 	RT2X00_CHIP_INTF_PCI,
132 	RT2X00_CHIP_INTF_PCIE,
133 	RT2X00_CHIP_INTF_USB,
134 	RT2X00_CHIP_INTF_SOC,
135 };
136 
137 /*
138  * Chipset identification
139  * The chipset on the device is composed of a RT and RF chip.
140  * The chipset combination is important for determining device capabilities.
141  */
142 struct rt2x00_chip {
143 	u16 rt;
144 #define RT2460		0x2460
145 #define RT2560		0x2560
146 #define RT2570		0x2570
147 #define RT2661		0x2661
148 #define RT2573		0x2573
149 #define RT2860		0x2860	/* 2.4GHz */
150 #define RT2872		0x2872	/* WSOC */
151 #define RT2883		0x2883	/* WSOC */
152 #define RT3070		0x3070
153 #define RT3071		0x3071
154 #define RT3090		0x3090	/* 2.4GHz PCIe */
155 #define RT3290		0x3290
156 #define RT3352		0x3352  /* WSOC */
157 #define RT3390		0x3390
158 #define RT3572		0x3572
159 #define RT3593		0x3593
160 #define RT3883		0x3883	/* WSOC */
161 #define RT5350		0x5350  /* WSOC 2.4GHz */
162 #define RT5390		0x5390  /* 2.4GHz */
163 #define RT5392		0x5392  /* 2.4GHz */
164 #define RT5592		0x5592
165 #define RT6352		0x6352  /* WSOC 2.4GHz */
166 
167 	u16 rf;
168 	u16 rev;
169 
170 	enum rt2x00_chip_intf intf;
171 };
172 
173 /*
174  * RF register values that belong to a particular channel.
175  */
176 struct rf_channel {
177 	int channel;
178 	u32 rf1;
179 	u32 rf2;
180 	u32 rf3;
181 	u32 rf4;
182 };
183 
184 /*
185  * Information structure for channel survey.
186  */
187 struct rt2x00_chan_survey {
188 	u64 time_idle;
189 	u64 time_busy;
190 	u64 time_ext_busy;
191 };
192 
193 /*
194  * Channel information structure
195  */
196 struct channel_info {
197 	unsigned int flags;
198 #define GEOGRAPHY_ALLOWED	0x00000001
199 
200 	short max_power;
201 	short default_power1;
202 	short default_power2;
203 	short default_power3;
204 };
205 
206 /*
207  * Antenna setup values.
208  */
209 struct antenna_setup {
210 	enum antenna rx;
211 	enum antenna tx;
212 	u8 rx_chain_num;
213 	u8 tx_chain_num;
214 };
215 
216 /*
217  * Quality statistics about the currently active link.
218  */
219 struct link_qual {
220 	/*
221 	 * Statistics required for Link tuning by driver
222 	 * The rssi value is provided by rt2x00lib during the
223 	 * link_tuner() callback function.
224 	 * The false_cca field is filled during the link_stats()
225 	 * callback function and could be used during the
226 	 * link_tuner() callback function.
227 	 */
228 	int rssi;
229 	int false_cca;
230 
231 	/*
232 	 * VGC levels
233 	 * Hardware driver will tune the VGC level during each call
234 	 * to the link_tuner() callback function. This vgc_level is
235 	 * is determined based on the link quality statistics like
236 	 * average RSSI and the false CCA count.
237 	 *
238 	 * In some cases the drivers need to differentiate between
239 	 * the currently "desired" VGC level and the level configured
240 	 * in the hardware. The latter is important to reduce the
241 	 * number of BBP register reads to reduce register access
242 	 * overhead. For this reason we store both values here.
243 	 */
244 	u8 vgc_level;
245 	u8 vgc_level_reg;
246 
247 	/*
248 	 * Statistics required for Signal quality calculation.
249 	 * These fields might be changed during the link_stats()
250 	 * callback function.
251 	 */
252 	int rx_success;
253 	int rx_failed;
254 	int tx_success;
255 	int tx_failed;
256 };
257 
258 DECLARE_EWMA(rssi, 10, 8)
259 
260 /*
261  * Antenna settings about the currently active link.
262  */
263 struct link_ant {
264 	/*
265 	 * Antenna flags
266 	 */
267 	unsigned int flags;
268 #define ANTENNA_RX_DIVERSITY	0x00000001
269 #define ANTENNA_TX_DIVERSITY	0x00000002
270 #define ANTENNA_MODE_SAMPLE	0x00000004
271 
272 	/*
273 	 * Currently active TX/RX antenna setup.
274 	 * When software diversity is used, this will indicate
275 	 * which antenna is actually used at this time.
276 	 */
277 	struct antenna_setup active;
278 
279 	/*
280 	 * RSSI history information for the antenna.
281 	 * Used to determine when to switch antenna
282 	 * when using software diversity.
283 	 */
284 	int rssi_history;
285 
286 	/*
287 	 * Current RSSI average of the currently active antenna.
288 	 * Similar to the avg_rssi in the link_qual structure
289 	 * this value is updated by using the walking average.
290 	 */
291 	struct ewma_rssi rssi_ant;
292 };
293 
294 /*
295  * To optimize the quality of the link we need to store
296  * the quality of received frames and periodically
297  * optimize the link.
298  */
299 struct link {
300 	/*
301 	 * Link tuner counter
302 	 * The number of times the link has been tuned
303 	 * since the radio has been switched on.
304 	 */
305 	u32 count;
306 
307 	/*
308 	 * Quality measurement values.
309 	 */
310 	struct link_qual qual;
311 
312 	/*
313 	 * TX/RX antenna setup.
314 	 */
315 	struct link_ant ant;
316 
317 	/*
318 	 * Currently active average RSSI value
319 	 */
320 	struct ewma_rssi avg_rssi;
321 
322 	/*
323 	 * Work structure for scheduling periodic link tuning.
324 	 */
325 	struct delayed_work work;
326 
327 	/*
328 	 * Work structure for scheduling periodic watchdog monitoring.
329 	 * This work must be scheduled on the kernel workqueue, while
330 	 * all other work structures must be queued on the mac80211
331 	 * workqueue. This guarantees that the watchdog can schedule
332 	 * other work structures and wait for their completion in order
333 	 * to bring the device/driver back into the desired state.
334 	 */
335 	struct delayed_work watchdog_work;
336 	unsigned int watchdog_interval;
337 	bool watchdog_disabled;
338 
339 	/*
340 	 * Work structure for scheduling periodic AGC adjustments.
341 	 */
342 	struct delayed_work agc_work;
343 
344 	/*
345 	 * Work structure for scheduling periodic VCO calibration.
346 	 */
347 	struct delayed_work vco_work;
348 };
349 
350 enum rt2x00_delayed_flags {
351 	DELAYED_UPDATE_BEACON,
352 };
353 
354 /*
355  * Interface structure
356  * Per interface configuration details, this structure
357  * is allocated as the private data for ieee80211_vif.
358  */
359 struct rt2x00_intf {
360 	/*
361 	 * beacon->skb must be protected with the mutex.
362 	 */
363 	struct mutex beacon_skb_mutex;
364 
365 	/*
366 	 * Entry in the beacon queue which belongs to
367 	 * this interface. Each interface has its own
368 	 * dedicated beacon entry.
369 	 */
370 	struct queue_entry *beacon;
371 	bool enable_beacon;
372 
373 	/*
374 	 * Actions that needed rescheduling.
375 	 */
376 	unsigned long delayed_flags;
377 
378 	/*
379 	 * Software sequence counter, this is only required
380 	 * for hardware which doesn't support hardware
381 	 * sequence counting.
382 	 */
383 	atomic_t seqno;
384 };
385 
vif_to_intf(struct ieee80211_vif * vif)386 static inline struct rt2x00_intf* vif_to_intf(struct ieee80211_vif *vif)
387 {
388 	return (struct rt2x00_intf *)vif->drv_priv;
389 }
390 
391 /**
392  * struct hw_mode_spec: Hardware specifications structure
393  *
394  * Details about the supported modes, rates and channels
395  * of a particular chipset. This is used by rt2x00lib
396  * to build the ieee80211_hw_mode array for mac80211.
397  *
398  * @supported_bands: Bitmask contained the supported bands (2.4GHz, 5.2GHz).
399  * @supported_rates: Rate types which are supported (CCK, OFDM).
400  * @num_channels: Number of supported channels. This is used as array size
401  *	for @tx_power_a, @tx_power_bg and @channels.
402  * @channels: Device/chipset specific channel values (See &struct rf_channel).
403  * @channels_info: Additional information for channels (See &struct channel_info).
404  * @ht: Driver HT Capabilities (See &ieee80211_sta_ht_cap).
405  */
406 struct hw_mode_spec {
407 	unsigned int supported_bands;
408 #define SUPPORT_BAND_2GHZ	0x00000001
409 #define SUPPORT_BAND_5GHZ	0x00000002
410 
411 	unsigned int supported_rates;
412 #define SUPPORT_RATE_CCK	0x00000001
413 #define SUPPORT_RATE_OFDM	0x00000002
414 
415 	unsigned int num_channels;
416 	const struct rf_channel *channels;
417 	const struct channel_info *channels_info;
418 
419 	struct ieee80211_sta_ht_cap ht;
420 };
421 
422 /*
423  * Configuration structure wrapper around the
424  * mac80211 configuration structure.
425  * When mac80211 configures the driver, rt2x00lib
426  * can precalculate values which are equal for all
427  * rt2x00 drivers. Those values can be stored in here.
428  */
429 struct rt2x00lib_conf {
430 	struct ieee80211_conf *conf;
431 
432 	struct rf_channel rf;
433 	struct channel_info channel;
434 };
435 
436 /*
437  * Configuration structure for erp settings.
438  */
439 struct rt2x00lib_erp {
440 	int short_preamble;
441 	int cts_protection;
442 
443 	u32 basic_rates;
444 
445 	int slot_time;
446 
447 	short sifs;
448 	short pifs;
449 	short difs;
450 	short eifs;
451 
452 	u16 beacon_int;
453 	u16 ht_opmode;
454 };
455 
456 /*
457  * Configuration structure for hardware encryption.
458  */
459 struct rt2x00lib_crypto {
460 	enum cipher cipher;
461 
462 	enum set_key_cmd cmd;
463 	const u8 *address;
464 
465 	u32 bssidx;
466 
467 	u8 key[16];
468 	u8 tx_mic[8];
469 	u8 rx_mic[8];
470 
471 	int wcid;
472 };
473 
474 /*
475  * Configuration structure wrapper around the
476  * rt2x00 interface configuration handler.
477  */
478 struct rt2x00intf_conf {
479 	/*
480 	 * Interface type
481 	 */
482 	enum nl80211_iftype type;
483 
484 	/*
485 	 * TSF sync value, this is dependent on the operation type.
486 	 */
487 	enum tsf_sync sync;
488 
489 	/*
490 	 * The MAC and BSSID addresses are simple array of bytes,
491 	 * these arrays are little endian, so when sending the addresses
492 	 * to the drivers, copy the it into a endian-signed variable.
493 	 *
494 	 * Note that all devices (except rt2500usb) have 32 bits
495 	 * register word sizes. This means that whatever variable we
496 	 * pass _must_ be a multiple of 32 bits. Otherwise the device
497 	 * might not accept what we are sending to it.
498 	 * This will also make it easier for the driver to write
499 	 * the data to the device.
500 	 */
501 	__le32 mac[2];
502 	__le32 bssid[2];
503 };
504 
505 /*
506  * Private structure for storing STA details
507  * wcid: Wireless Client ID
508  */
509 struct rt2x00_sta {
510 	int wcid;
511 };
512 
sta_to_rt2x00_sta(struct ieee80211_sta * sta)513 static inline struct rt2x00_sta* sta_to_rt2x00_sta(struct ieee80211_sta *sta)
514 {
515 	return (struct rt2x00_sta *)sta->drv_priv;
516 }
517 
518 /*
519  * rt2x00lib callback functions.
520  */
521 struct rt2x00lib_ops {
522 	/*
523 	 * Interrupt handlers.
524 	 */
525 	irq_handler_t irq_handler;
526 
527 	/*
528 	 * TX status tasklet handler.
529 	 */
530 	void (*txstatus_tasklet) (struct tasklet_struct *t);
531 	void (*pretbtt_tasklet) (struct tasklet_struct *t);
532 	void (*tbtt_tasklet) (struct tasklet_struct *t);
533 	void (*rxdone_tasklet) (struct tasklet_struct *t);
534 	void (*autowake_tasklet) (struct tasklet_struct *t);
535 
536 	/*
537 	 * Device init handlers.
538 	 */
539 	int (*probe_hw) (struct rt2x00_dev *rt2x00dev);
540 	char *(*get_firmware_name) (struct rt2x00_dev *rt2x00dev);
541 	int (*check_firmware) (struct rt2x00_dev *rt2x00dev,
542 			       const u8 *data, const size_t len);
543 	int (*load_firmware) (struct rt2x00_dev *rt2x00dev,
544 			      const u8 *data, const size_t len);
545 
546 	/*
547 	 * Device initialization/deinitialization handlers.
548 	 */
549 	int (*initialize) (struct rt2x00_dev *rt2x00dev);
550 	void (*uninitialize) (struct rt2x00_dev *rt2x00dev);
551 
552 	/*
553 	 * queue initialization handlers
554 	 */
555 	bool (*get_entry_state) (struct queue_entry *entry);
556 	void (*clear_entry) (struct queue_entry *entry);
557 
558 	/*
559 	 * Radio control handlers.
560 	 */
561 	int (*set_device_state) (struct rt2x00_dev *rt2x00dev,
562 				 enum dev_state state);
563 	int (*rfkill_poll) (struct rt2x00_dev *rt2x00dev);
564 	void (*link_stats) (struct rt2x00_dev *rt2x00dev,
565 			    struct link_qual *qual);
566 	void (*reset_tuner) (struct rt2x00_dev *rt2x00dev,
567 			     struct link_qual *qual);
568 	void (*link_tuner) (struct rt2x00_dev *rt2x00dev,
569 			    struct link_qual *qual, const u32 count);
570 	void (*gain_calibration) (struct rt2x00_dev *rt2x00dev);
571 	void (*vco_calibration) (struct rt2x00_dev *rt2x00dev);
572 
573 	/*
574 	 * Data queue handlers.
575 	 */
576 	void (*watchdog) (struct rt2x00_dev *rt2x00dev);
577 	void (*start_queue) (struct data_queue *queue);
578 	void (*kick_queue) (struct data_queue *queue);
579 	void (*stop_queue) (struct data_queue *queue);
580 	void (*flush_queue) (struct data_queue *queue, bool drop);
581 	void (*tx_dma_done) (struct queue_entry *entry);
582 
583 	/*
584 	 * TX control handlers
585 	 */
586 	void (*write_tx_desc) (struct queue_entry *entry,
587 			       struct txentry_desc *txdesc);
588 	void (*write_tx_data) (struct queue_entry *entry,
589 			       struct txentry_desc *txdesc);
590 	void (*write_beacon) (struct queue_entry *entry,
591 			      struct txentry_desc *txdesc);
592 	void (*clear_beacon) (struct queue_entry *entry);
593 	int (*get_tx_data_len) (struct queue_entry *entry);
594 
595 	/*
596 	 * RX control handlers
597 	 */
598 	void (*fill_rxdone) (struct queue_entry *entry,
599 			     struct rxdone_entry_desc *rxdesc);
600 
601 	/*
602 	 * Configuration handlers.
603 	 */
604 	int (*config_shared_key) (struct rt2x00_dev *rt2x00dev,
605 				  struct rt2x00lib_crypto *crypto,
606 				  struct ieee80211_key_conf *key);
607 	int (*config_pairwise_key) (struct rt2x00_dev *rt2x00dev,
608 				    struct rt2x00lib_crypto *crypto,
609 				    struct ieee80211_key_conf *key);
610 	void (*config_filter) (struct rt2x00_dev *rt2x00dev,
611 			       const unsigned int filter_flags);
612 	void (*config_intf) (struct rt2x00_dev *rt2x00dev,
613 			     struct rt2x00_intf *intf,
614 			     struct rt2x00intf_conf *conf,
615 			     const unsigned int flags);
616 #define CONFIG_UPDATE_TYPE		( 1 << 1 )
617 #define CONFIG_UPDATE_MAC		( 1 << 2 )
618 #define CONFIG_UPDATE_BSSID		( 1 << 3 )
619 
620 	void (*config_erp) (struct rt2x00_dev *rt2x00dev,
621 			    struct rt2x00lib_erp *erp,
622 			    u32 changed);
623 	void (*config_ant) (struct rt2x00_dev *rt2x00dev,
624 			    struct antenna_setup *ant);
625 	void (*config) (struct rt2x00_dev *rt2x00dev,
626 			struct rt2x00lib_conf *libconf,
627 			const unsigned int changed_flags);
628 	void (*pre_reset_hw) (struct rt2x00_dev *rt2x00dev);
629 	int (*sta_add) (struct rt2x00_dev *rt2x00dev,
630 			struct ieee80211_vif *vif,
631 			struct ieee80211_sta *sta);
632 	int (*sta_remove) (struct rt2x00_dev *rt2x00dev,
633 			   struct ieee80211_sta *sta);
634 };
635 
636 /*
637  * rt2x00 driver callback operation structure.
638  */
639 struct rt2x00_ops {
640 	const char *name;
641 	const unsigned int drv_data_size;
642 	const unsigned int max_ap_intf;
643 	const unsigned int eeprom_size;
644 	const unsigned int rf_size;
645 	const unsigned int tx_queues;
646 	void (*queue_init)(struct data_queue *queue);
647 	const struct rt2x00lib_ops *lib;
648 	const void *drv;
649 	const struct ieee80211_ops *hw;
650 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
651 	const struct rt2x00debug *debugfs;
652 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
653 };
654 
655 /*
656  * rt2x00 state flags
657  */
658 enum rt2x00_state_flags {
659 	/*
660 	 * Device flags
661 	 */
662 	DEVICE_STATE_PRESENT,
663 	DEVICE_STATE_REGISTERED_HW,
664 	DEVICE_STATE_INITIALIZED,
665 	DEVICE_STATE_STARTED,
666 	DEVICE_STATE_ENABLED_RADIO,
667 	DEVICE_STATE_SCANNING,
668 	DEVICE_STATE_FLUSHING,
669 	DEVICE_STATE_RESET,
670 
671 	/*
672 	 * Driver configuration
673 	 */
674 	CONFIG_CHANNEL_HT40,
675 	CONFIG_POWERSAVING,
676 	CONFIG_HT_DISABLED,
677 	CONFIG_MONITORING,
678 
679 	/*
680 	 * Mark we currently are sequentially reading TX_STA_FIFO register
681 	 * FIXME: this is for only rt2800usb, should go to private data
682 	 */
683 	TX_STATUS_READING,
684 };
685 
686 /*
687  * rt2x00 capability flags
688  */
689 enum rt2x00_capability_flags {
690 	/*
691 	 * Requirements
692 	 */
693 	REQUIRE_FIRMWARE,
694 	REQUIRE_BEACON_GUARD,
695 	REQUIRE_ATIM_QUEUE,
696 	REQUIRE_DMA,
697 	REQUIRE_COPY_IV,
698 	REQUIRE_L2PAD,
699 	REQUIRE_TXSTATUS_FIFO,
700 	REQUIRE_TASKLET_CONTEXT,
701 	REQUIRE_SW_SEQNO,
702 	REQUIRE_HT_TX_DESC,
703 	REQUIRE_PS_AUTOWAKE,
704 	REQUIRE_DELAYED_RFKILL,
705 
706 	/*
707 	 * Capabilities
708 	 */
709 	CAPABILITY_HW_BUTTON,
710 	CAPABILITY_HW_CRYPTO,
711 	CAPABILITY_POWER_LIMIT,
712 	CAPABILITY_CONTROL_FILTERS,
713 	CAPABILITY_CONTROL_FILTER_PSPOLL,
714 	CAPABILITY_PRE_TBTT_INTERRUPT,
715 	CAPABILITY_LINK_TUNING,
716 	CAPABILITY_FRAME_TYPE,
717 	CAPABILITY_RF_SEQUENCE,
718 	CAPABILITY_EXTERNAL_LNA_A,
719 	CAPABILITY_EXTERNAL_LNA_BG,
720 	CAPABILITY_DOUBLE_ANTENNA,
721 	CAPABILITY_BT_COEXIST,
722 	CAPABILITY_VCO_RECALIBRATION,
723 	CAPABILITY_EXTERNAL_PA_TX0,
724 	CAPABILITY_EXTERNAL_PA_TX1,
725 	CAPABILITY_RESTART_HW,
726 };
727 
728 /*
729  * Interface combinations
730  */
731 enum {
732 	IF_COMB_AP = 0,
733 	NUM_IF_COMB,
734 };
735 
736 /*
737  * rt2x00 device structure.
738  */
739 struct rt2x00_dev {
740 	/*
741 	 * Device structure.
742 	 * The structure stored in here depends on the
743 	 * system bus (PCI or USB).
744 	 * When accessing this variable, the rt2x00dev_{pci,usb}
745 	 * macros should be used for correct typecasting.
746 	 */
747 	struct device *dev;
748 
749 	/*
750 	 * Callback functions.
751 	 */
752 	const struct rt2x00_ops *ops;
753 
754 	/*
755 	 * Driver data.
756 	 */
757 	void *drv_data;
758 
759 	/*
760 	 * IEEE80211 control structure.
761 	 */
762 	struct ieee80211_hw *hw;
763 	struct ieee80211_supported_band bands[NUM_NL80211_BANDS];
764 	struct rt2x00_chan_survey *chan_survey;
765 	enum nl80211_band curr_band;
766 	int curr_freq;
767 
768 	/*
769 	 * If enabled, the debugfs interface structures
770 	 * required for deregistration of debugfs.
771 	 */
772 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
773 	struct rt2x00debug_intf *debugfs_intf;
774 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
775 
776 	/*
777 	 * LED structure for changing the LED status
778 	 * by mac8011 or the kernel.
779 	 */
780 #ifdef CONFIG_RT2X00_LIB_LEDS
781 	struct rt2x00_led led_radio;
782 	struct rt2x00_led led_assoc;
783 	struct rt2x00_led led_qual;
784 	u16 led_mcu_reg;
785 #endif /* CONFIG_RT2X00_LIB_LEDS */
786 
787 	/*
788 	 * Device state flags.
789 	 * In these flags the current status is stored.
790 	 * Access to these flags should occur atomically.
791 	 */
792 	unsigned long flags;
793 
794 	/*
795 	 * Device capabiltiy flags.
796 	 * In these flags the device/driver capabilities are stored.
797 	 * Access to these flags should occur non-atomically.
798 	 */
799 	unsigned long cap_flags;
800 
801 	/*
802 	 * Device information, Bus IRQ and name (PCI, SoC)
803 	 */
804 	int irq;
805 	const char *name;
806 
807 	/*
808 	 * Chipset identification.
809 	 */
810 	struct rt2x00_chip chip;
811 
812 	/*
813 	 * hw capability specifications.
814 	 */
815 	struct hw_mode_spec spec;
816 
817 	/*
818 	 * This is the default TX/RX antenna setup as indicated
819 	 * by the device's EEPROM.
820 	 */
821 	struct antenna_setup default_ant;
822 
823 	/*
824 	 * Register pointers
825 	 * csr.base: CSR base register address. (PCI)
826 	 * csr.cache: CSR cache for usb_control_msg. (USB)
827 	 */
828 	union csr {
829 		void __iomem *base;
830 		void *cache;
831 	} csr;
832 
833 	/*
834 	 * Mutex to protect register accesses.
835 	 * For PCI and USB devices it protects against concurrent indirect
836 	 * register access (BBP, RF, MCU) since accessing those
837 	 * registers require multiple calls to the CSR registers.
838 	 * For USB devices it also protects the csr_cache since that
839 	 * field is used for normal CSR access and it cannot support
840 	 * multiple callers simultaneously.
841 	 */
842 	struct mutex csr_mutex;
843 
844 	/*
845 	 * Mutex to synchronize config and link tuner.
846 	 */
847 	struct mutex conf_mutex;
848 	/*
849 	 * Current packet filter configuration for the device.
850 	 * This contains all currently active FIF_* flags send
851 	 * to us by mac80211 during configure_filter().
852 	 */
853 	unsigned int packet_filter;
854 
855 	/*
856 	 * Interface details:
857 	 *  - Open ap interface count.
858 	 *  - Open sta interface count.
859 	 *  - Association count.
860 	 *  - Beaconing enabled count.
861 	 */
862 	unsigned int intf_ap_count;
863 	unsigned int intf_sta_count;
864 	unsigned int intf_associated;
865 	unsigned int intf_beaconing;
866 
867 	/*
868 	 * Interface combinations
869 	 */
870 	struct ieee80211_iface_limit if_limits_ap;
871 	struct ieee80211_iface_combination if_combinations[NUM_IF_COMB];
872 
873 	/*
874 	 * Link quality
875 	 */
876 	struct link link;
877 
878 	/*
879 	 * EEPROM data.
880 	 */
881 	__le16 *eeprom;
882 
883 	/*
884 	 * Active RF register values.
885 	 * These are stored here so we don't need
886 	 * to read the rf registers and can directly
887 	 * use this value instead.
888 	 * This field should be accessed by using
889 	 * rt2x00_rf_read() and rt2x00_rf_write().
890 	 */
891 	u32 *rf;
892 
893 	/*
894 	 * LNA gain
895 	 */
896 	short lna_gain;
897 
898 	/*
899 	 * Current TX power value.
900 	 */
901 	u16 tx_power;
902 
903 	/*
904 	 * Current retry values.
905 	 */
906 	u8 short_retry;
907 	u8 long_retry;
908 
909 	/*
910 	 * Rssi <-> Dbm offset
911 	 */
912 	u8 rssi_offset;
913 
914 	/*
915 	 * Frequency offset.
916 	 */
917 	u8 freq_offset;
918 
919 	/*
920 	 * Association id.
921 	 */
922 	u16 aid;
923 
924 	/*
925 	 * Beacon interval.
926 	 */
927 	u16 beacon_int;
928 
929 	/**
930 	 * Timestamp of last received beacon
931 	 */
932 	unsigned long last_beacon;
933 
934 	/*
935 	 * Low level statistics which will have
936 	 * to be kept up to date while device is running.
937 	 */
938 	struct ieee80211_low_level_stats low_level_stats;
939 
940 	/**
941 	 * Work queue for all work which should not be placed
942 	 * on the mac80211 workqueue (because of dependencies
943 	 * between various work structures).
944 	 */
945 	struct workqueue_struct *workqueue;
946 
947 	/*
948 	 * Scheduled work.
949 	 * NOTE: intf_work will use ieee80211_iterate_active_interfaces()
950 	 * which means it cannot be placed on the hw->workqueue
951 	 * due to RTNL locking requirements.
952 	 */
953 	struct work_struct intf_work;
954 
955 	/**
956 	 * Scheduled work for TX/RX done handling (USB devices)
957 	 */
958 	struct work_struct rxdone_work;
959 	struct work_struct txdone_work;
960 
961 	/*
962 	 * Powersaving work
963 	 */
964 	struct delayed_work autowakeup_work;
965 	struct work_struct sleep_work;
966 
967 	/*
968 	 * Data queue arrays for RX, TX, Beacon and ATIM.
969 	 */
970 	unsigned int data_queues;
971 	struct data_queue *rx;
972 	struct data_queue *tx;
973 	struct data_queue *bcn;
974 	struct data_queue *atim;
975 
976 	/*
977 	 * Firmware image.
978 	 */
979 	const struct firmware *fw;
980 
981 	/*
982 	 * FIFO for storing tx status reports between isr and tasklet.
983 	 */
984 	DECLARE_KFIFO_PTR(txstatus_fifo, u32);
985 
986 	/*
987 	 * Timer to ensure tx status reports are read (rt2800usb).
988 	 */
989 	struct hrtimer txstatus_timer;
990 
991 	/*
992 	 * Tasklet for processing tx status reports (rt2800pci).
993 	 */
994 	struct tasklet_struct txstatus_tasklet;
995 	struct tasklet_struct pretbtt_tasklet;
996 	struct tasklet_struct tbtt_tasklet;
997 	struct tasklet_struct rxdone_tasklet;
998 	struct tasklet_struct autowake_tasklet;
999 
1000 	/*
1001 	 * Used for VCO periodic calibration.
1002 	 */
1003 	int rf_channel;
1004 
1005 	/*
1006 	 * Protect the interrupt mask register.
1007 	 */
1008 	spinlock_t irqmask_lock;
1009 
1010 	/*
1011 	 * List of BlockAckReq TX entries that need driver BlockAck processing.
1012 	 */
1013 	struct list_head bar_list;
1014 	spinlock_t bar_list_lock;
1015 
1016 	/* Extra TX headroom required for alignment purposes. */
1017 	unsigned int extra_tx_headroom;
1018 
1019 	struct usb_anchor *anchor;
1020 	unsigned int num_proto_errs;
1021 
1022 	/* Clock for System On Chip devices. */
1023 	struct clk *clk;
1024 };
1025 
1026 struct rt2x00_bar_list_entry {
1027 	struct list_head list;
1028 	struct rcu_head head;
1029 
1030 	struct queue_entry *entry;
1031 	int block_acked;
1032 
1033 	/* Relevant parts of the IEEE80211 BAR header */
1034 	__u8 ra[6];
1035 	__u8 ta[6];
1036 	__le16 control;
1037 	__le16 start_seq_num;
1038 };
1039 
1040 /*
1041  * Register defines.
1042  * Some registers require multiple attempts before success,
1043  * in those cases REGISTER_BUSY_COUNT attempts should be
1044  * taken with a REGISTER_BUSY_DELAY interval. Due to USB
1045  * bus delays, we do not have to loop so many times to wait
1046  * for valid register value on that bus.
1047  */
1048 #define REGISTER_BUSY_COUNT	100
1049 #define REGISTER_USB_BUSY_COUNT 20
1050 #define REGISTER_BUSY_DELAY	100
1051 
1052 /*
1053  * Generic RF access.
1054  * The RF is being accessed by word index.
1055  */
rt2x00_rf_read(struct rt2x00_dev * rt2x00dev,const unsigned int word)1056 static inline u32 rt2x00_rf_read(struct rt2x00_dev *rt2x00dev,
1057 				 const unsigned int word)
1058 {
1059 	BUG_ON(word < 1 || word > rt2x00dev->ops->rf_size / sizeof(u32));
1060 	return rt2x00dev->rf[word - 1];
1061 }
1062 
rt2x00_rf_write(struct rt2x00_dev * rt2x00dev,const unsigned int word,u32 data)1063 static inline void rt2x00_rf_write(struct rt2x00_dev *rt2x00dev,
1064 				   const unsigned int word, u32 data)
1065 {
1066 	BUG_ON(word < 1 || word > rt2x00dev->ops->rf_size / sizeof(u32));
1067 	rt2x00dev->rf[word - 1] = data;
1068 }
1069 
1070 /*
1071  * Generic EEPROM access. The EEPROM is being accessed by word or byte index.
1072  */
rt2x00_eeprom_addr(struct rt2x00_dev * rt2x00dev,const unsigned int word)1073 static inline void *rt2x00_eeprom_addr(struct rt2x00_dev *rt2x00dev,
1074 				       const unsigned int word)
1075 {
1076 	return (void *)&rt2x00dev->eeprom[word];
1077 }
1078 
rt2x00_eeprom_read(struct rt2x00_dev * rt2x00dev,const unsigned int word)1079 static inline u16 rt2x00_eeprom_read(struct rt2x00_dev *rt2x00dev,
1080 				     const unsigned int word)
1081 {
1082 	return le16_to_cpu(rt2x00dev->eeprom[word]);
1083 }
1084 
rt2x00_eeprom_write(struct rt2x00_dev * rt2x00dev,const unsigned int word,u16 data)1085 static inline void rt2x00_eeprom_write(struct rt2x00_dev *rt2x00dev,
1086 				       const unsigned int word, u16 data)
1087 {
1088 	rt2x00dev->eeprom[word] = cpu_to_le16(data);
1089 }
1090 
rt2x00_eeprom_byte(struct rt2x00_dev * rt2x00dev,const unsigned int byte)1091 static inline u8 rt2x00_eeprom_byte(struct rt2x00_dev *rt2x00dev,
1092 				    const unsigned int byte)
1093 {
1094 	return *(((u8 *)rt2x00dev->eeprom) + byte);
1095 }
1096 
1097 /*
1098  * Chipset handlers
1099  */
rt2x00_set_chip(struct rt2x00_dev * rt2x00dev,const u16 rt,const u16 rf,const u16 rev)1100 static inline void rt2x00_set_chip(struct rt2x00_dev *rt2x00dev,
1101 				   const u16 rt, const u16 rf, const u16 rev)
1102 {
1103 	rt2x00dev->chip.rt = rt;
1104 	rt2x00dev->chip.rf = rf;
1105 	rt2x00dev->chip.rev = rev;
1106 
1107 	rt2x00_info(rt2x00dev, "Chipset detected - rt: %04x, rf: %04x, rev: %04x\n",
1108 		    rt2x00dev->chip.rt, rt2x00dev->chip.rf,
1109 		    rt2x00dev->chip.rev);
1110 }
1111 
rt2x00_set_rt(struct rt2x00_dev * rt2x00dev,const u16 rt,const u16 rev)1112 static inline void rt2x00_set_rt(struct rt2x00_dev *rt2x00dev,
1113 				 const u16 rt, const u16 rev)
1114 {
1115 	rt2x00dev->chip.rt = rt;
1116 	rt2x00dev->chip.rev = rev;
1117 
1118 	rt2x00_info(rt2x00dev, "RT chipset %04x, rev %04x detected\n",
1119 		    rt2x00dev->chip.rt, rt2x00dev->chip.rev);
1120 }
1121 
rt2x00_set_rf(struct rt2x00_dev * rt2x00dev,const u16 rf)1122 static inline void rt2x00_set_rf(struct rt2x00_dev *rt2x00dev, const u16 rf)
1123 {
1124 	rt2x00dev->chip.rf = rf;
1125 
1126 	rt2x00_info(rt2x00dev, "RF chipset %04x detected\n",
1127 		    rt2x00dev->chip.rf);
1128 }
1129 
rt2x00_rt(struct rt2x00_dev * rt2x00dev,const u16 rt)1130 static inline bool rt2x00_rt(struct rt2x00_dev *rt2x00dev, const u16 rt)
1131 {
1132 	return (rt2x00dev->chip.rt == rt);
1133 }
1134 
rt2x00_rf(struct rt2x00_dev * rt2x00dev,const u16 rf)1135 static inline bool rt2x00_rf(struct rt2x00_dev *rt2x00dev, const u16 rf)
1136 {
1137 	return (rt2x00dev->chip.rf == rf);
1138 }
1139 
rt2x00_rev(struct rt2x00_dev * rt2x00dev)1140 static inline u16 rt2x00_rev(struct rt2x00_dev *rt2x00dev)
1141 {
1142 	return rt2x00dev->chip.rev;
1143 }
1144 
rt2x00_rt_rev(struct rt2x00_dev * rt2x00dev,const u16 rt,const u16 rev)1145 static inline bool rt2x00_rt_rev(struct rt2x00_dev *rt2x00dev,
1146 				 const u16 rt, const u16 rev)
1147 {
1148 	return (rt2x00_rt(rt2x00dev, rt) && rt2x00_rev(rt2x00dev) == rev);
1149 }
1150 
rt2x00_rt_rev_lt(struct rt2x00_dev * rt2x00dev,const u16 rt,const u16 rev)1151 static inline bool rt2x00_rt_rev_lt(struct rt2x00_dev *rt2x00dev,
1152 				    const u16 rt, const u16 rev)
1153 {
1154 	return (rt2x00_rt(rt2x00dev, rt) && rt2x00_rev(rt2x00dev) < rev);
1155 }
1156 
rt2x00_rt_rev_gte(struct rt2x00_dev * rt2x00dev,const u16 rt,const u16 rev)1157 static inline bool rt2x00_rt_rev_gte(struct rt2x00_dev *rt2x00dev,
1158 				     const u16 rt, const u16 rev)
1159 {
1160 	return (rt2x00_rt(rt2x00dev, rt) && rt2x00_rev(rt2x00dev) >= rev);
1161 }
1162 
rt2x00_set_chip_intf(struct rt2x00_dev * rt2x00dev,enum rt2x00_chip_intf intf)1163 static inline void rt2x00_set_chip_intf(struct rt2x00_dev *rt2x00dev,
1164 					enum rt2x00_chip_intf intf)
1165 {
1166 	rt2x00dev->chip.intf = intf;
1167 }
1168 
rt2x00_intf(struct rt2x00_dev * rt2x00dev,enum rt2x00_chip_intf intf)1169 static inline bool rt2x00_intf(struct rt2x00_dev *rt2x00dev,
1170 			       enum rt2x00_chip_intf intf)
1171 {
1172 	return (rt2x00dev->chip.intf == intf);
1173 }
1174 
rt2x00_is_pci(struct rt2x00_dev * rt2x00dev)1175 static inline bool rt2x00_is_pci(struct rt2x00_dev *rt2x00dev)
1176 {
1177 	return rt2x00_intf(rt2x00dev, RT2X00_CHIP_INTF_PCI) ||
1178 	       rt2x00_intf(rt2x00dev, RT2X00_CHIP_INTF_PCIE);
1179 }
1180 
rt2x00_is_pcie(struct rt2x00_dev * rt2x00dev)1181 static inline bool rt2x00_is_pcie(struct rt2x00_dev *rt2x00dev)
1182 {
1183 	return rt2x00_intf(rt2x00dev, RT2X00_CHIP_INTF_PCIE);
1184 }
1185 
rt2x00_is_usb(struct rt2x00_dev * rt2x00dev)1186 static inline bool rt2x00_is_usb(struct rt2x00_dev *rt2x00dev)
1187 {
1188 	return rt2x00_intf(rt2x00dev, RT2X00_CHIP_INTF_USB);
1189 }
1190 
rt2x00_is_soc(struct rt2x00_dev * rt2x00dev)1191 static inline bool rt2x00_is_soc(struct rt2x00_dev *rt2x00dev)
1192 {
1193 	return rt2x00_intf(rt2x00dev, RT2X00_CHIP_INTF_SOC);
1194 }
1195 
1196 /* Helpers for capability flags */
1197 
1198 static inline bool
rt2x00_has_cap_flag(struct rt2x00_dev * rt2x00dev,enum rt2x00_capability_flags cap_flag)1199 rt2x00_has_cap_flag(struct rt2x00_dev *rt2x00dev,
1200 		    enum rt2x00_capability_flags cap_flag)
1201 {
1202 	return test_bit(cap_flag, &rt2x00dev->cap_flags);
1203 }
1204 
1205 static inline bool
rt2x00_has_cap_hw_crypto(struct rt2x00_dev * rt2x00dev)1206 rt2x00_has_cap_hw_crypto(struct rt2x00_dev *rt2x00dev)
1207 {
1208 	return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_HW_CRYPTO);
1209 }
1210 
1211 static inline bool
rt2x00_has_cap_power_limit(struct rt2x00_dev * rt2x00dev)1212 rt2x00_has_cap_power_limit(struct rt2x00_dev *rt2x00dev)
1213 {
1214 	return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_POWER_LIMIT);
1215 }
1216 
1217 static inline bool
rt2x00_has_cap_control_filters(struct rt2x00_dev * rt2x00dev)1218 rt2x00_has_cap_control_filters(struct rt2x00_dev *rt2x00dev)
1219 {
1220 	return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_CONTROL_FILTERS);
1221 }
1222 
1223 static inline bool
rt2x00_has_cap_control_filter_pspoll(struct rt2x00_dev * rt2x00dev)1224 rt2x00_has_cap_control_filter_pspoll(struct rt2x00_dev *rt2x00dev)
1225 {
1226 	return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_CONTROL_FILTER_PSPOLL);
1227 }
1228 
1229 static inline bool
rt2x00_has_cap_pre_tbtt_interrupt(struct rt2x00_dev * rt2x00dev)1230 rt2x00_has_cap_pre_tbtt_interrupt(struct rt2x00_dev *rt2x00dev)
1231 {
1232 	return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_PRE_TBTT_INTERRUPT);
1233 }
1234 
1235 static inline bool
rt2x00_has_cap_link_tuning(struct rt2x00_dev * rt2x00dev)1236 rt2x00_has_cap_link_tuning(struct rt2x00_dev *rt2x00dev)
1237 {
1238 	return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_LINK_TUNING);
1239 }
1240 
1241 static inline bool
rt2x00_has_cap_frame_type(struct rt2x00_dev * rt2x00dev)1242 rt2x00_has_cap_frame_type(struct rt2x00_dev *rt2x00dev)
1243 {
1244 	return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_FRAME_TYPE);
1245 }
1246 
1247 static inline bool
rt2x00_has_cap_rf_sequence(struct rt2x00_dev * rt2x00dev)1248 rt2x00_has_cap_rf_sequence(struct rt2x00_dev *rt2x00dev)
1249 {
1250 	return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_RF_SEQUENCE);
1251 }
1252 
1253 static inline bool
rt2x00_has_cap_external_lna_a(struct rt2x00_dev * rt2x00dev)1254 rt2x00_has_cap_external_lna_a(struct rt2x00_dev *rt2x00dev)
1255 {
1256 	return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_EXTERNAL_LNA_A);
1257 }
1258 
1259 static inline bool
rt2x00_has_cap_external_lna_bg(struct rt2x00_dev * rt2x00dev)1260 rt2x00_has_cap_external_lna_bg(struct rt2x00_dev *rt2x00dev)
1261 {
1262 	return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_EXTERNAL_LNA_BG);
1263 }
1264 
1265 static inline bool
rt2x00_has_cap_double_antenna(struct rt2x00_dev * rt2x00dev)1266 rt2x00_has_cap_double_antenna(struct rt2x00_dev *rt2x00dev)
1267 {
1268 	return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_DOUBLE_ANTENNA);
1269 }
1270 
1271 static inline bool
rt2x00_has_cap_bt_coexist(struct rt2x00_dev * rt2x00dev)1272 rt2x00_has_cap_bt_coexist(struct rt2x00_dev *rt2x00dev)
1273 {
1274 	return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_BT_COEXIST);
1275 }
1276 
1277 static inline bool
rt2x00_has_cap_vco_recalibration(struct rt2x00_dev * rt2x00dev)1278 rt2x00_has_cap_vco_recalibration(struct rt2x00_dev *rt2x00dev)
1279 {
1280 	return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_VCO_RECALIBRATION);
1281 }
1282 
1283 static inline bool
rt2x00_has_cap_restart_hw(struct rt2x00_dev * rt2x00dev)1284 rt2x00_has_cap_restart_hw(struct rt2x00_dev *rt2x00dev)
1285 {
1286 	return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_RESTART_HW);
1287 }
1288 
1289 /**
1290  * rt2x00queue_map_txskb - Map a skb into DMA for TX purposes.
1291  * @entry: Pointer to &struct queue_entry
1292  *
1293  * Returns -ENOMEM if mapping fail, 0 otherwise.
1294  */
1295 int rt2x00queue_map_txskb(struct queue_entry *entry);
1296 
1297 /**
1298  * rt2x00queue_unmap_skb - Unmap a skb from DMA.
1299  * @entry: Pointer to &struct queue_entry
1300  */
1301 void rt2x00queue_unmap_skb(struct queue_entry *entry);
1302 
1303 /**
1304  * rt2x00queue_get_tx_queue - Convert tx queue index to queue pointer
1305  * @rt2x00dev: Pointer to &struct rt2x00_dev.
1306  * @queue: rt2x00 queue index (see &enum data_queue_qid).
1307  *
1308  * Returns NULL for non tx queues.
1309  */
1310 static inline struct data_queue *
rt2x00queue_get_tx_queue(struct rt2x00_dev * rt2x00dev,const enum data_queue_qid queue)1311 rt2x00queue_get_tx_queue(struct rt2x00_dev *rt2x00dev,
1312 			 const enum data_queue_qid queue)
1313 {
1314 	if (queue < rt2x00dev->ops->tx_queues && rt2x00dev->tx)
1315 		return &rt2x00dev->tx[queue];
1316 
1317 	if (queue == QID_ATIM)
1318 		return rt2x00dev->atim;
1319 
1320 	return NULL;
1321 }
1322 
1323 /**
1324  * rt2x00queue_get_entry - Get queue entry where the given index points to.
1325  * @queue: Pointer to &struct data_queue from where we obtain the entry.
1326  * @index: Index identifier for obtaining the correct index.
1327  */
1328 struct queue_entry *rt2x00queue_get_entry(struct data_queue *queue,
1329 					  enum queue_index index);
1330 
1331 /**
1332  * rt2x00queue_pause_queue - Pause a data queue
1333  * @queue: Pointer to &struct data_queue.
1334  *
1335  * This function will pause the data queue locally, preventing
1336  * new frames to be added to the queue (while the hardware is
1337  * still allowed to run).
1338  */
1339 void rt2x00queue_pause_queue(struct data_queue *queue);
1340 
1341 /**
1342  * rt2x00queue_unpause_queue - unpause a data queue
1343  * @queue: Pointer to &struct data_queue.
1344  *
1345  * This function will unpause the data queue locally, allowing
1346  * new frames to be added to the queue again.
1347  */
1348 void rt2x00queue_unpause_queue(struct data_queue *queue);
1349 
1350 /**
1351  * rt2x00queue_start_queue - Start a data queue
1352  * @queue: Pointer to &struct data_queue.
1353  *
1354  * This function will start handling all pending frames in the queue.
1355  */
1356 void rt2x00queue_start_queue(struct data_queue *queue);
1357 
1358 /**
1359  * rt2x00queue_stop_queue - Halt a data queue
1360  * @queue: Pointer to &struct data_queue.
1361  *
1362  * This function will stop all pending frames in the queue.
1363  */
1364 void rt2x00queue_stop_queue(struct data_queue *queue);
1365 
1366 /**
1367  * rt2x00queue_flush_queue - Flush a data queue
1368  * @queue: Pointer to &struct data_queue.
1369  * @drop: True to drop all pending frames.
1370  *
1371  * This function will flush the queue. After this call
1372  * the queue is guaranteed to be empty.
1373  */
1374 void rt2x00queue_flush_queue(struct data_queue *queue, bool drop);
1375 
1376 /**
1377  * rt2x00queue_start_queues - Start all data queues
1378  * @rt2x00dev: Pointer to &struct rt2x00_dev.
1379  *
1380  * This function will loop through all available queues to start them
1381  */
1382 void rt2x00queue_start_queues(struct rt2x00_dev *rt2x00dev);
1383 
1384 /**
1385  * rt2x00queue_stop_queues - Halt all data queues
1386  * @rt2x00dev: Pointer to &struct rt2x00_dev.
1387  *
1388  * This function will loop through all available queues to stop
1389  * any pending frames.
1390  */
1391 void rt2x00queue_stop_queues(struct rt2x00_dev *rt2x00dev);
1392 
1393 /**
1394  * rt2x00queue_flush_queues - Flush all data queues
1395  * @rt2x00dev: Pointer to &struct rt2x00_dev.
1396  * @drop: True to drop all pending frames.
1397  *
1398  * This function will loop through all available queues to flush
1399  * any pending frames.
1400  */
1401 void rt2x00queue_flush_queues(struct rt2x00_dev *rt2x00dev, bool drop);
1402 
1403 /*
1404  * Debugfs handlers.
1405  */
1406 /**
1407  * rt2x00debug_dump_frame - Dump a frame to userspace through debugfs.
1408  * @rt2x00dev: Pointer to &struct rt2x00_dev.
1409  * @type: The type of frame that is being dumped.
1410  * @entry: The queue entry containing the frame to be dumped.
1411  */
1412 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
1413 void rt2x00debug_dump_frame(struct rt2x00_dev *rt2x00dev,
1414 			    enum rt2x00_dump_type type, struct queue_entry *entry);
1415 #else
rt2x00debug_dump_frame(struct rt2x00_dev * rt2x00dev,enum rt2x00_dump_type type,struct queue_entry * entry)1416 static inline void rt2x00debug_dump_frame(struct rt2x00_dev *rt2x00dev,
1417 					  enum rt2x00_dump_type type,
1418 					  struct queue_entry *entry)
1419 {
1420 }
1421 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
1422 
1423 /*
1424  * Utility functions.
1425  */
1426 u32 rt2x00lib_get_bssidx(struct rt2x00_dev *rt2x00dev,
1427 			 struct ieee80211_vif *vif);
1428 void rt2x00lib_set_mac_address(struct rt2x00_dev *rt2x00dev, u8 *eeprom_mac_addr);
1429 
1430 /*
1431  * Interrupt context handlers.
1432  */
1433 void rt2x00lib_beacondone(struct rt2x00_dev *rt2x00dev);
1434 void rt2x00lib_pretbtt(struct rt2x00_dev *rt2x00dev);
1435 void rt2x00lib_dmastart(struct queue_entry *entry);
1436 void rt2x00lib_dmadone(struct queue_entry *entry);
1437 void rt2x00lib_txdone(struct queue_entry *entry,
1438 		      struct txdone_entry_desc *txdesc);
1439 void rt2x00lib_txdone_nomatch(struct queue_entry *entry,
1440 			      struct txdone_entry_desc *txdesc);
1441 void rt2x00lib_txdone_noinfo(struct queue_entry *entry, u32 status);
1442 void rt2x00lib_rxdone(struct queue_entry *entry, gfp_t gfp);
1443 
1444 /*
1445  * mac80211 handlers.
1446  */
1447 void rt2x00mac_tx(struct ieee80211_hw *hw,
1448 		  struct ieee80211_tx_control *control,
1449 		  struct sk_buff *skb);
1450 int rt2x00mac_start(struct ieee80211_hw *hw);
1451 void rt2x00mac_stop(struct ieee80211_hw *hw);
1452 void rt2x00mac_reconfig_complete(struct ieee80211_hw *hw,
1453 				 enum ieee80211_reconfig_type reconfig_type);
1454 int rt2x00mac_add_interface(struct ieee80211_hw *hw,
1455 			    struct ieee80211_vif *vif);
1456 void rt2x00mac_remove_interface(struct ieee80211_hw *hw,
1457 				struct ieee80211_vif *vif);
1458 int rt2x00mac_config(struct ieee80211_hw *hw, u32 changed);
1459 void rt2x00mac_configure_filter(struct ieee80211_hw *hw,
1460 				unsigned int changed_flags,
1461 				unsigned int *total_flags,
1462 				u64 multicast);
1463 int rt2x00mac_set_tim(struct ieee80211_hw *hw, struct ieee80211_sta *sta,
1464 		      bool set);
1465 #ifdef CONFIG_RT2X00_LIB_CRYPTO
1466 int rt2x00mac_set_key(struct ieee80211_hw *hw, enum set_key_cmd cmd,
1467 		      struct ieee80211_vif *vif, struct ieee80211_sta *sta,
1468 		      struct ieee80211_key_conf *key);
1469 #else
1470 #define rt2x00mac_set_key	NULL
1471 #endif /* CONFIG_RT2X00_LIB_CRYPTO */
1472 void rt2x00mac_sw_scan_start(struct ieee80211_hw *hw,
1473 			     struct ieee80211_vif *vif,
1474 			     const u8 *mac_addr);
1475 void rt2x00mac_sw_scan_complete(struct ieee80211_hw *hw,
1476 				struct ieee80211_vif *vif);
1477 int rt2x00mac_get_stats(struct ieee80211_hw *hw,
1478 			struct ieee80211_low_level_stats *stats);
1479 void rt2x00mac_bss_info_changed(struct ieee80211_hw *hw,
1480 				struct ieee80211_vif *vif,
1481 				struct ieee80211_bss_conf *bss_conf,
1482 				u32 changes);
1483 int rt2x00mac_conf_tx(struct ieee80211_hw *hw,
1484 		      struct ieee80211_vif *vif, u16 queue,
1485 		      const struct ieee80211_tx_queue_params *params);
1486 void rt2x00mac_rfkill_poll(struct ieee80211_hw *hw);
1487 void rt2x00mac_flush(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
1488 		     u32 queues, bool drop);
1489 int rt2x00mac_set_antenna(struct ieee80211_hw *hw, u32 tx_ant, u32 rx_ant);
1490 int rt2x00mac_get_antenna(struct ieee80211_hw *hw, u32 *tx_ant, u32 *rx_ant);
1491 void rt2x00mac_get_ringparam(struct ieee80211_hw *hw,
1492 			     u32 *tx, u32 *tx_max, u32 *rx, u32 *rx_max);
1493 bool rt2x00mac_tx_frames_pending(struct ieee80211_hw *hw);
1494 
1495 /*
1496  * Driver allocation handlers.
1497  */
1498 int rt2x00lib_probe_dev(struct rt2x00_dev *rt2x00dev);
1499 void rt2x00lib_remove_dev(struct rt2x00_dev *rt2x00dev);
1500 
1501 int rt2x00lib_suspend(struct rt2x00_dev *rt2x00dev);
1502 int rt2x00lib_resume(struct rt2x00_dev *rt2x00dev);
1503 
1504 #endif /* RT2X00_H */
1505