1 #![allow(dead_code)]
2 // 目前仅支持单主桥单Segment
3
4 use crate::arch::{PciArch, TraitPciArch};
5 use crate::include::bindings::bindings::{
6 initial_mm, mm_map, mm_struct, PAGE_2M_SIZE, VM_DONTCOPY, VM_IO,
7 };
8 use crate::libs::rwlock::{RwLock, RwLockReadGuard, RwLockWriteGuard};
9 use crate::mm::mmio_buddy::MMIO_POOL;
10 use crate::{kdebug, kerror, kinfo, kwarn};
11 use alloc::vec::Vec;
12 use alloc::{boxed::Box, collections::LinkedList};
13 use bitflags::bitflags;
14
15 use core::{
16 convert::TryFrom,
17 fmt::{self, Debug, Display, Formatter},
18 };
19
20 // PCI_DEVICE_LINKEDLIST 添加了读写锁的全局链表,里面存储了检索到的PCI设备结构体
21 // PCI_ROOT_0 Segment为0的全局PciRoot
22 lazy_static! {
23 pub static ref PCI_DEVICE_LINKEDLIST: PciDeviceLinkedList = PciDeviceLinkedList::new();
24 pub static ref PCI_ROOT_0: Option<PciRoot> = {
25 match PciRoot::new(0) {
26 Ok(root) => Some(root),
27 Err(err) => {
28 kerror!("Pci_root init failed because of error: {}", err);
29 None
30 }
31 }
32 };
33 }
34 /// PCI域地址
35 #[derive(Clone, Copy, Eq, Ord, PartialEq, PartialOrd)]
36 #[repr(transparent)]
37 pub struct PciAddr(usize);
38
39 impl PciAddr {
40 #[inline(always)]
new(address: usize) -> Self41 pub const fn new(address: usize) -> Self {
42 Self(address)
43 }
44
45 /// @brief 获取PCI域地址的值
46 #[inline(always)]
data(&self) -> usize47 pub fn data(&self) -> usize {
48 self.0
49 }
50
51 /// @brief 将PCI域地址加上一个偏移量
52 #[inline(always)]
add(self, offset: usize) -> Self53 pub fn add(self, offset: usize) -> Self {
54 Self(self.0 + offset)
55 }
56
57 /// @brief 判断PCI域地址是否按照指定要求对齐
58 #[inline(always)]
check_aligned(&self, align: usize) -> bool59 pub fn check_aligned(&self, align: usize) -> bool {
60 return self.0 & (align - 1) == 0;
61 }
62 }
63 impl Debug for PciAddr {
fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result64 fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
65 write!(f, "PciAddr({:#x})", self.0)
66 }
67 }
68
69 /// 添加了读写锁的链表,存储PCI设备结构体
70 pub struct PciDeviceLinkedList {
71 list: RwLock<LinkedList<Box<dyn PciDeviceStructure>>>,
72 }
73
74 impl PciDeviceLinkedList {
75 /// @brief 初始化结构体
new() -> Self76 fn new() -> Self {
77 PciDeviceLinkedList {
78 list: RwLock::new(LinkedList::new()),
79 }
80 }
81 /// @brief 获取可读的linkedlist(读锁守卫)
82 /// @return RwLockReadGuard<LinkedList<Box<dyn PciDeviceStructure>>> 读锁守卫
read(&self) -> RwLockReadGuard<LinkedList<Box<dyn PciDeviceStructure>>>83 pub fn read(&self) -> RwLockReadGuard<LinkedList<Box<dyn PciDeviceStructure>>> {
84 self.list.read()
85 }
86 /// @brief 获取可写的linkedlist(写锁守卫)
87 /// @return RwLockWriteGuard<LinkedList<Box<dyn PciDeviceStructure>>> 写锁守卫
write(&self) -> RwLockWriteGuard<LinkedList<Box<dyn PciDeviceStructure>>>88 pub fn write(&self) -> RwLockWriteGuard<LinkedList<Box<dyn PciDeviceStructure>>> {
89 self.list.write()
90 }
91 /// @brief 获取链表中PCI结构体数目
92 /// @return usize 链表中PCI结构体数目
num(&self) -> usize93 pub fn num(&self) -> usize {
94 let list = self.list.read();
95 list.len()
96 }
97 /// @brief 添加Pci设备结构体到链表中
add(&self, device: Box<dyn PciDeviceStructure>)98 pub fn add(&self, device: Box<dyn PciDeviceStructure>) {
99 let mut list = self.list.write();
100 list.push_back(device);
101 }
102 }
103
104 /// @brief 在链表中寻找满足条件的PCI设备结构体并返回其可变引用
105 /// @param list 链表的写锁守卫
106 /// @param class_code 寄存器值
107 /// @param subclass 寄存器值,与class_code一起确定设备类型
108 /// @return Vec<&'a mut Box<(dyn PciDeviceStructure) 包含链表中所有满足条件的PCI结构体的可变引用的容器
get_pci_device_structure_mut<'a>( list: &'a mut RwLockWriteGuard<'_, LinkedList<Box<dyn PciDeviceStructure>>>, class_code: u8, subclass: u8, ) -> Vec<&'a mut Box<(dyn PciDeviceStructure)>>109 pub fn get_pci_device_structure_mut<'a>(
110 list: &'a mut RwLockWriteGuard<'_, LinkedList<Box<dyn PciDeviceStructure>>>,
111 class_code: u8,
112 subclass: u8,
113 ) -> Vec<&'a mut Box<(dyn PciDeviceStructure)>> {
114 let mut result = Vec::new();
115 for box_pci_device_structure in list.iter_mut() {
116 let common_header = (*box_pci_device_structure).common_header();
117 if (common_header.class_code == class_code) && (common_header.subclass == subclass) {
118 result.push(box_pci_device_structure);
119 }
120 }
121 result
122 }
123 /// @brief 在链表中寻找满足条件的PCI设备结构体并返回其不可变引用
124 /// @param list 链表的读锁守卫
125 /// @param class_code 寄存器值
126 /// @param subclass 寄存器值,与class_code一起确定设备类型
127 /// @return Vec<&'a Box<(dyn PciDeviceStructure) 包含链表中所有满足条件的PCI结构体的不可变引用的容器
get_pci_device_structure<'a>( list: &'a mut RwLockReadGuard<'_, LinkedList<Box<dyn PciDeviceStructure>>>, class_code: u8, subclass: u8, ) -> Vec<&'a Box<(dyn PciDeviceStructure)>>128 pub fn get_pci_device_structure<'a>(
129 list: &'a mut RwLockReadGuard<'_, LinkedList<Box<dyn PciDeviceStructure>>>,
130 class_code: u8,
131 subclass: u8,
132 ) -> Vec<&'a Box<(dyn PciDeviceStructure)>> {
133 let mut result = Vec::new();
134 for box_pci_device_structure in list.iter() {
135 let common_header = (*box_pci_device_structure).common_header();
136 if (common_header.class_code == class_code) && (common_header.subclass == subclass) {
137 result.push(box_pci_device_structure);
138 }
139 }
140 result
141 }
142
143 //Bar0寄存器的offset
144 const BAR0_OFFSET: u8 = 0x10;
145 //Status、Command寄存器的offset
146 const STATUS_COMMAND_OFFSET: u8 = 0x04;
147 /// ID for vendor-specific PCI capabilities.(Virtio Capabilities)
148 pub const PCI_CAP_ID_VNDR: u8 = 0x09;
149 pub const PORT_PCI_CONFIG_ADDRESS: u16 = 0xcf8;
150 pub const PORT_PCI_CONFIG_DATA: u16 = 0xcfc;
151 // pci设备分组的id
152 pub type SegmentGroupNumber = u16; //理论上最多支持65535个Segment_Group
153
154 bitflags! {
155 /// The status register in PCI configuration space.
156 pub struct Status: u16 {
157 // Bits 0-2 are reserved.
158 /// The state of the device's INTx# signal.
159 const INTERRUPT_STATUS = 1 << 3;
160 /// The device has a linked list of capabilities.
161 const CAPABILITIES_LIST = 1 << 4;
162 /// The device is capabile of running at 66 MHz rather than 33 MHz.
163 const MHZ_66_CAPABLE = 1 << 5;
164 // Bit 6 is reserved.
165 /// The device can accept fast back-to-back transactions not from the same agent.
166 const FAST_BACK_TO_BACK_CAPABLE = 1 << 7;
167 /// The bus agent observed a parity error (if parity error handling is enabled).
168 const MASTER_DATA_PARITY_ERROR = 1 << 8;
169 // Bits 9-10 are DEVSEL timing.
170 /// A target device terminated a transaction with target-abort.
171 const SIGNALED_TARGET_ABORT = 1 << 11;
172 /// A master device transaction was terminated with target-abort.
173 const RECEIVED_TARGET_ABORT = 1 << 12;
174 /// A master device transaction was terminated with master-abort.
175 const RECEIVED_MASTER_ABORT = 1 << 13;
176 /// A device asserts SERR#.
177 const SIGNALED_SYSTEM_ERROR = 1 << 14;
178 /// The device detects a parity error, even if parity error handling is disabled.
179 const DETECTED_PARITY_ERROR = 1 << 15;
180 }
181 }
182
183 bitflags! {
184 /// The command register in PCI configuration space.
185 pub struct Command: u16 {
186 /// The device can respond to I/O Space accesses.
187 const IO_SPACE = 1 << 0;
188 /// The device can respond to Memory Space accesses.
189 const MEMORY_SPACE = 1 << 1;
190 /// The device can behave as a bus master.
191 const BUS_MASTER = 1 << 2;
192 /// The device can monitor Special Cycle operations.
193 const SPECIAL_CYCLES = 1 << 3;
194 /// The device can generate the Memory Write and Invalidate command.
195 const MEMORY_WRITE_AND_INVALIDATE_ENABLE = 1 << 4;
196 /// The device will snoop palette register data.
197 const VGA_PALETTE_SNOOP = 1 << 5;
198 /// The device should take its normal action when a parity error is detected.
199 const PARITY_ERROR_RESPONSE = 1 << 6;
200 // Bit 7 is reserved.
201 /// The SERR# driver is enabled.
202 const SERR_ENABLE = 1 << 8;
203 /// The device is allowed to generate fast back-to-back transactions.
204 const FAST_BACK_TO_BACK_ENABLE = 1 << 9;
205 /// Assertion of the device's INTx# signal is disabled.
206 const INTERRUPT_DISABLE = 1 << 10;
207 }
208 }
209
210 /// The type of a PCI device function header.
211 /// 标头类型/设备类型
212 #[derive(Copy, Clone, Debug, Eq, PartialEq)]
213 pub enum HeaderType {
214 /// A normal PCI device.
215 Standard,
216 /// A PCI to PCI bridge.
217 PciPciBridge,
218 /// A PCI to CardBus bridge.
219 PciCardbusBridge,
220 /// Unrecognised header type.
221 Unrecognised(u8),
222 }
223 /// u8到HeaderType的转换
224 impl From<u8> for HeaderType {
from(value: u8) -> Self225 fn from(value: u8) -> Self {
226 match value {
227 0x00 => Self::Standard,
228 0x01 => Self::PciPciBridge,
229 0x02 => Self::PciCardbusBridge,
230 _ => Self::Unrecognised(value),
231 }
232 }
233 }
234 /// Pci可能触发的各种错误
235 #[derive(Copy, Clone, Debug, Eq, PartialEq)]
236 pub enum PciError {
237 /// The device reported an invalid BAR type.
238 InvalidBarType,
239 CreateMmioError,
240 InvalidBusDeviceFunction,
241 SegmentNotFound,
242 GetWrongHeader,
243 UnrecognisedHeaderType,
244 PciDeviceStructureTransformError,
245 }
246 ///实现PciError的Display trait,使其可以直接输出
247 impl Display for PciError {
fmt(&self, f: &mut Formatter) -> fmt::Result248 fn fmt(&self, f: &mut Formatter) -> fmt::Result {
249 match self {
250 Self::InvalidBarType => write!(f, "Invalid PCI BAR type."),
251 Self::CreateMmioError => write!(f, "Error occurred while creating mmio."),
252 Self::InvalidBusDeviceFunction => write!(f, "Found invalid BusDeviceFunction."),
253 Self::SegmentNotFound => write!(f, "Target segment not found"),
254 Self::GetWrongHeader => write!(f, "GetWrongHeader with vendor id 0xffff"),
255 Self::UnrecognisedHeaderType => write!(f, "Found device with unrecognised header type"),
256 Self::PciDeviceStructureTransformError => {
257 write!(f, "Found None When transform Pci device structure")
258 }
259 }
260 }
261 }
262
263 /// trait类型Pci_Device_Structure表示pci设备,动态绑定三种具体设备类型:Pci_Device_Structure_General_Device、Pci_Device_Structure_Pci_to_Pci_Bridge、Pci_Device_Structure_Pci_to_Cardbus_Bridge
264 pub trait PciDeviceStructure: Send + Sync {
265 /// @brief 获取设备类型
266 /// @return HeaderType 设备类型
header_type(&self) -> HeaderType267 fn header_type(&self) -> HeaderType;
268 /// @brief 当其为standard设备时返回&Pci_Device_Structure_General_Device,其余情况返回None
as_standard_device(&self) -> Option<&PciDeviceStructureGeneralDevice>269 fn as_standard_device(&self) -> Option<&PciDeviceStructureGeneralDevice> {
270 None
271 }
272 /// @brief 当其为pci to pci bridge设备时返回&Pci_Device_Structure_Pci_to_Pci_Bridge,其余情况返回None
as_pci_to_pci_bridge_device(&self) -> Option<&PciDeviceStructurePciToPciBridge>273 fn as_pci_to_pci_bridge_device(&self) -> Option<&PciDeviceStructurePciToPciBridge> {
274 None
275 }
276 /// @brief 当其为pci to cardbus bridge设备时返回&Pci_Device_Structure_Pci_to_Cardbus_Bridge,其余情况返回None
as_pci_to_carbus_bridge_device(&self) -> Option<&PciDeviceStructurePciToCardbusBridge>277 fn as_pci_to_carbus_bridge_device(&self) -> Option<&PciDeviceStructurePciToCardbusBridge> {
278 None
279 }
280 /// @brief 获取Pci设备共有的common_header
281 /// @return 返回其不可变引用
common_header(&self) -> &PciDeviceStructureHeader282 fn common_header(&self) -> &PciDeviceStructureHeader;
283 /// @brief 当其为standard设备时返回&mut Pci_Device_Structure_General_Device,其余情况返回None
as_standard_device_mut(&mut self) -> Option<&mut PciDeviceStructureGeneralDevice>284 fn as_standard_device_mut(&mut self) -> Option<&mut PciDeviceStructureGeneralDevice> {
285 None
286 }
287 /// @brief 当其为pci to pci bridge设备时返回&mut Pci_Device_Structure_Pci_to_Pci_Bridge,其余情况返回None
as_pci_to_pci_bridge_device_mut(&mut self) -> Option<&mut PciDeviceStructurePciToPciBridge>288 fn as_pci_to_pci_bridge_device_mut(&mut self) -> Option<&mut PciDeviceStructurePciToPciBridge> {
289 None
290 }
291 /// @brief 当其为pci to cardbus bridge设备时返回&mut Pci_Device_Structure_Pci_to_Cardbus_Bridge,其余情况返回None
as_pci_to_carbus_bridge_device_mut( &mut self, ) -> Option<&mut PciDeviceStructurePciToCardbusBridge>292 fn as_pci_to_carbus_bridge_device_mut(
293 &mut self,
294 ) -> Option<&mut PciDeviceStructurePciToCardbusBridge> {
295 None
296 }
297 /// @brief 返回迭代器,遍历capabilities
capabilities(&self) -> Option<CapabilityIterator>298 fn capabilities(&self) -> Option<CapabilityIterator> {
299 None
300 }
301 /// @brief 获取Status、Command寄存器的值
status_command(&self) -> (Status, Command)302 fn status_command(&self) -> (Status, Command) {
303 let common_header = self.common_header();
304 let status = Status::from_bits_truncate(common_header.status);
305 let command = Command::from_bits_truncate(common_header.command);
306 (status, command)
307 }
308 /// @brief 设置Command寄存器的值
set_command(&mut self, command: Command)309 fn set_command(&mut self, command: Command) {
310 let common_header = self.common_header_mut();
311 let command = command.bits();
312 common_header.command = command;
313 PciArch::write_config(
314 &common_header.bus_device_function,
315 STATUS_COMMAND_OFFSET,
316 command as u32,
317 );
318 }
319 /// @brief 获取Pci设备共有的common_header
320 /// @return 返回其可变引用
common_header_mut(&mut self) -> &mut PciDeviceStructureHeader321 fn common_header_mut(&mut self) -> &mut PciDeviceStructureHeader;
322 /// @brief 读取standard设备的bar寄存器,映射后将结果加入结构体的standard_device_bar变量
323 /// @return 只有standard设备才返回成功或者错误,其余返回None
bar_init(&mut self) -> Option<Result<u8, PciError>>324 fn bar_init(&mut self) -> Option<Result<u8, PciError>> {
325 None
326 }
327 /// todo
msix_init(&mut self) -> Option<Result<u8, PciError>>328 fn msix_init(&mut self) -> Option<Result<u8, PciError>> {
329 None
330 }
enable_master(&mut self)331 fn enable_master(&mut self) {
332 self.set_command(Command::IO_SPACE | Command::MEMORY_SPACE | Command::BUS_MASTER);
333 }
334 }
335
336 /// Pci_Device_Structure_Header PCI设备结构体共有的头部
337 #[derive(Clone, Debug)]
338 pub struct PciDeviceStructureHeader {
339 // 包含msix table地址的bar的mmio基地址 todo:以下四个作为一个结构体统一管理
340 pub msix_mmio_vaddr: u64,
341 pub msix_mmio_size: u64, // msix映射长度
342 pub msix_offset: u32, // msix表的offset
343 pub msix_table_size: u16, // msix表的表项数量
344 // ==== busdevicefunction变量表示该结构体所处的位置
345 pub bus_device_function: BusDeviceFunction,
346 pub vendor_id: u16, // 供应商ID 0xffff是一个无效值,在读取访问不存在的设备的配置空间寄存器时返回
347 pub device_id: u16, // 设备ID,标志特定设备
348 pub command: u16, // 提供对设备生成和响应pci周期的能力的控制 向该寄存器写入0时,设备与pci总线断开除配置空间访问以外的所有连接
349 pub status: u16, // 用于记录pci总线相关时间的状态信息寄存器
350 pub revision_id: u8, // 修订ID,指定特定设备的修订标志符
351 pub prog_if: u8, // 编程接口字节,一个只读寄存器,指定设备具有的寄存器级别的编程接口(如果有的话)
352 pub subclass: u8, // 子类。指定设备执行的特定功能的只读寄存器
353 pub class_code: u8, // 类代码,一个只读寄存器,指定设备执行的功能类型
354 pub cache_line_size: u8, // 缓存线大小:以 32 位为单位指定系统缓存线大小。设备可以限制它可以支持的缓存线大小的数量,如果不支持的值写入该字段,设备将表现得好像写入了 0 值
355 pub latency_timer: u8, // 延迟计时器:以 PCI 总线时钟为单位指定延迟计时器。
356 pub header_type: u8, // 标头类型 a value of 0x0 specifies a general device, a value of 0x1 specifies a PCI-to-PCI bridge, and a value of 0x2 specifies a CardBus bridge. If bit 7 of this register is set, the device has multiple functions; otherwise, it is a single function device.
357 pub bist: u8, // Represents that status and allows control of a devices BIST (built-in self test).
358 // Here is the layout of the BIST register:
359 // | bit7 | bit6 | Bits 5-4 | Bits 3-0 |
360 // | BIST Capable | Start BIST | Reserved | Completion Code |
361 // for more details, please visit https://wiki.osdev.org/PCI
362 }
363
364 /// Pci_Device_Structure_General_Device PCI标准设备结构体
365 #[derive(Clone, Debug)]
366 pub struct PciDeviceStructureGeneralDevice {
367 pub common_header: PciDeviceStructureHeader,
368 pub standard_device_bar: PciStandardDeviceBar,
369 pub cardbus_cis_pointer: u32, // 指向卡信息结构,供在 CardBus 和 PCI 之间共享芯片的设备使用。
370 pub subsystem_vendor_id: u16,
371 pub subsystem_id: u16,
372 pub expansion_rom_base_address: u32,
373 pub capabilities_pointer: u8,
374 pub reserved0: u8,
375 pub reserved1: u16,
376 pub reserved2: u32,
377 pub interrupt_line: u8, // 指定设备的中断引脚连接到系统中断控制器的哪个输入,并由任何使用中断引脚的设备实现。对于 x86 架构,此寄存器对应于 PIC IRQ 编号 0-15(而不是 I/O APIC IRQ 编号),并且值0xFF定义为无连接。
378 pub interrupt_pin: u8, // 指定设备使用的中断引脚。其中值为0x1INTA#、0x2INTB#、0x3INTC#、0x4INTD#,0x0表示设备不使用中断引脚。
379 pub min_grant: u8, // 一个只读寄存器,用于指定设备所需的突发周期长度(以 1/4 微秒为单位)(假设时钟速率为 33 MHz)
380 pub max_latency: u8, // 一个只读寄存器,指定设备需要多长时间访问一次 PCI 总线(以 1/4 微秒为单位)。
381 }
382 impl PciDeviceStructure for PciDeviceStructureGeneralDevice {
header_type(&self) -> HeaderType383 fn header_type(&self) -> HeaderType {
384 HeaderType::Standard
385 }
as_standard_device(&self) -> Option<&PciDeviceStructureGeneralDevice>386 fn as_standard_device(&self) -> Option<&PciDeviceStructureGeneralDevice> {
387 Some(self)
388 }
as_standard_device_mut(&mut self) -> Option<&mut PciDeviceStructureGeneralDevice>389 fn as_standard_device_mut(&mut self) -> Option<&mut PciDeviceStructureGeneralDevice> {
390 Some(self)
391 }
common_header(&self) -> &PciDeviceStructureHeader392 fn common_header(&self) -> &PciDeviceStructureHeader {
393 &self.common_header
394 }
395
common_header_mut(&mut self) -> &mut PciDeviceStructureHeader396 fn common_header_mut(&mut self) -> &mut PciDeviceStructureHeader {
397 &mut self.common_header
398 }
capabilities(&self) -> Option<CapabilityIterator>399 fn capabilities(&self) -> Option<CapabilityIterator> {
400 Some(CapabilityIterator {
401 bus_device_function: self.common_header.bus_device_function,
402 next_capability_offset: Some(self.capabilities_pointer),
403 })
404 }
bar_init(&mut self) -> Option<Result<u8, PciError>>405 fn bar_init(&mut self) -> Option<Result<u8, PciError>> {
406 let common_header = &self.common_header;
407 match pci_bar_init(common_header.bus_device_function) {
408 Ok(bar) => {
409 self.standard_device_bar = bar;
410 Some(Ok(0))
411 }
412 Err(e) => Some(Err(e)),
413 }
414 }
415 }
416 /// Pci_Device_Structure_Pci_to_Pci_Bridge pci-to-pci桥设备结构体
417 #[derive(Clone, Debug)]
418 pub struct PciDeviceStructurePciToPciBridge {
419 pub common_header: PciDeviceStructureHeader,
420 pub bar0: u32,
421 pub bar1: u32,
422 pub primary_bus_number: u8,
423 pub secondary_bus_number: u8,
424 pub subordinate_bus_number: u8,
425 pub secondary_latency_timer: u8,
426 pub io_base: u8,
427 pub io_limit: u8,
428 pub secondary_status: u16,
429 pub memory_base: u16,
430 pub memory_limit: u16,
431 pub prefetchable_memory_base: u16,
432 pub prefetchable_memory_limit: u16,
433 pub prefetchable_base_upper_32_bits: u32,
434 pub prefetchable_limit_upper_32_bits: u32,
435 pub io_base_upper_16_bits: u16,
436 pub io_limit_upper_16_bits: u16,
437 pub capability_pointer: u8,
438 pub reserved0: u8,
439 pub reserved1: u16,
440 pub expansion_rom_base_address: u32,
441 pub interrupt_line: u8,
442 pub interrupt_pin: u8,
443 pub bridge_control: u16,
444 }
445 impl PciDeviceStructure for PciDeviceStructurePciToPciBridge {
header_type(&self) -> HeaderType446 fn header_type(&self) -> HeaderType {
447 HeaderType::PciPciBridge
448 }
as_pci_to_pci_bridge_device(&self) -> Option<&PciDeviceStructurePciToPciBridge>449 fn as_pci_to_pci_bridge_device(&self) -> Option<&PciDeviceStructurePciToPciBridge> {
450 Some(self)
451 }
as_pci_to_pci_bridge_device_mut(&mut self) -> Option<&mut PciDeviceStructurePciToPciBridge>452 fn as_pci_to_pci_bridge_device_mut(&mut self) -> Option<&mut PciDeviceStructurePciToPciBridge> {
453 Some(self)
454 }
common_header(&self) -> &PciDeviceStructureHeader455 fn common_header(&self) -> &PciDeviceStructureHeader {
456 &self.common_header
457 }
458
common_header_mut(&mut self) -> &mut PciDeviceStructureHeader459 fn common_header_mut(&mut self) -> &mut PciDeviceStructureHeader {
460 &mut self.common_header
461 }
462 }
463 /// Pci_Device_Structure_Pci_to_Cardbus_Bridge Pci_to_Cardbus桥设备结构体
464 #[derive(Clone, Debug)]
465 pub struct PciDeviceStructurePciToCardbusBridge {
466 pub common_header: PciDeviceStructureHeader,
467 pub cardbus_socket_ex_ca_base_address: u32,
468 pub offset_of_capabilities_list: u8,
469 pub reserved: u8,
470 pub secondary_status: u16,
471 pub pci_bus_number: u8,
472 pub card_bus_bus_number: u8,
473 pub subordinate_bus_number: u8,
474 pub card_bus_latency_timer: u8,
475 pub memory_base_address0: u32,
476 pub memory_limit0: u32,
477 pub memory_base_address1: u32,
478 pub memory_limit1: u32,
479 pub io_base_address0: u32,
480 pub io_limit0: u32,
481 pub io_base_address1: u32,
482 pub io_limit1: u32,
483 pub interrupt_line: u8,
484 pub interrupt_pin: u8,
485 pub bridge_control: u16,
486 pub subsystem_device_id: u16,
487 pub subsystem_vendor_id: u16,
488 pub pc_card_legacy_mode_base_address_16_bit: u32,
489 }
490 impl PciDeviceStructure for PciDeviceStructurePciToCardbusBridge {
header_type(&self) -> HeaderType491 fn header_type(&self) -> HeaderType {
492 HeaderType::PciCardbusBridge
493 }
as_pci_to_carbus_bridge_device(&self) -> Option<&PciDeviceStructurePciToCardbusBridge>494 fn as_pci_to_carbus_bridge_device(&self) -> Option<&PciDeviceStructurePciToCardbusBridge> {
495 Some(&self)
496 }
as_pci_to_carbus_bridge_device_mut( &mut self, ) -> Option<&mut PciDeviceStructurePciToCardbusBridge>497 fn as_pci_to_carbus_bridge_device_mut(
498 &mut self,
499 ) -> Option<&mut PciDeviceStructurePciToCardbusBridge> {
500 Some(self)
501 }
common_header(&self) -> &PciDeviceStructureHeader502 fn common_header(&self) -> &PciDeviceStructureHeader {
503 &self.common_header
504 }
505
common_header_mut(&mut self) -> &mut PciDeviceStructureHeader506 fn common_header_mut(&mut self) -> &mut PciDeviceStructureHeader {
507 &mut self.common_header
508 }
509 }
510
511 /// 代表一个PCI segement greoup.
512 #[derive(Copy, Clone, Debug, PartialEq)]
513 pub struct PciRoot {
514 pub physical_address_base: u64, //物理地址,acpi获取
515 pub mmio_base: Option<*mut u32>, //映射后的虚拟地址,为方便访问数据这里转化成指针
516 pub segement_group_number: SegmentGroupNumber, //segement greoup的id
517 pub bus_begin: u8, //该分组中的最小bus
518 pub bus_end: u8, //该分组中的最大bus
519 }
520 ///线程间共享需要,该结构体只需要在初始化时写入数据,无需读写锁保证线程安全
521 unsafe impl Send for PciRoot {}
522 unsafe impl Sync for PciRoot {}
523 ///实现PciRoot的Display trait,自定义输出
524 impl Display for PciRoot {
fmt(&self, f: &mut Formatter<'_>) -> fmt::Result525 fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result {
526 write!(
527 f,
528 "PCI Root with segement:{}, bus begin at {}, bus end at {}, physical address at {:#x},mapped at {:#x}",
529 self.segement_group_number, self.bus_begin, self.bus_end, self.physical_address_base, self.mmio_base.unwrap() as usize
530 )
531 }
532 }
533
534 impl PciRoot {
535 /// @brief 初始化结构体,获取ecam root所在物理地址后map到虚拟地址,再将该虚拟地址加入mmio_base变量
536 /// @return 成功返回结果,错误返回错误类型
new(segment_group_number: SegmentGroupNumber) -> Result<Self, PciError>537 pub fn new(segment_group_number: SegmentGroupNumber) -> Result<Self, PciError> {
538 let mut pci_root = PciArch::ecam_root(segment_group_number)?;
539 pci_root.map()?;
540 Ok(pci_root)
541 }
542 /// @brief 完成物理地址到虚拟地址的映射,并将虚拟地址加入mmio_base变量
543 /// @return 返回错误或Ok(0)
map(&mut self) -> Result<u8, PciError>544 fn map(&mut self) -> Result<u8, PciError> {
545 //kdebug!("bus_begin={},bus_end={}", self.bus_begin,self.bus_end);
546 let bus_number = (self.bus_end - self.bus_begin) as u32 + 1;
547 let bus_number_double = (bus_number - 1) / 2 + 1; //一个bus占据1MB空间,计算全部bus占据空间相对于2MB空间的个数
548 let mut virtaddress: u64 = 0;
549 let vaddr_ptr = &mut virtaddress as *mut u64;
550 let mut virtsize: u64 = 0;
551 let virtsize_ptr = &mut virtsize as *mut u64;
552 let size = bus_number_double * PAGE_2M_SIZE;
553 unsafe {
554 let initial_mm_ptr = &mut initial_mm as *mut mm_struct;
555 if let Err(_) =
556 MMIO_POOL.create_mmio(size, (VM_IO | VM_DONTCOPY) as u64, vaddr_ptr, virtsize_ptr)
557 {
558 kerror!("Create mmio failed when initing ecam");
559 return Err(PciError::CreateMmioError);
560 };
561 //kdebug!("virtaddress={:#x},virtsize={:#x}",virtaddress,virtsize);
562 mm_map(
563 initial_mm_ptr,
564 virtaddress,
565 size as u64,
566 self.physical_address_base,
567 );
568 }
569 self.mmio_base = Some(virtaddress as *mut u32);
570 Ok(0)
571 }
572 /// @brief 获得要操作的寄存器相对于mmio_offset的偏移量
573 /// @param bus_device_function 在同一个group中pci设备的唯一标识符
574 /// @param register_offset 寄存器在设备中的offset
575 /// @return u32 要操作的寄存器相对于mmio_offset的偏移量
cam_offset(&self, bus_device_function: BusDeviceFunction, register_offset: u16) -> u32576 fn cam_offset(&self, bus_device_function: BusDeviceFunction, register_offset: u16) -> u32 {
577 assert!(bus_device_function.valid());
578 let bdf = ((bus_device_function.bus - self.bus_begin) as u32) << 8
579 | (bus_device_function.device as u32) << 3
580 | bus_device_function.function as u32;
581 let address = bdf << 12 | register_offset as u32;
582 // Ensure that address is word-aligned.
583 assert!(address & 0x3 == 0);
584 address
585 }
586 /// @brief 通过bus_device_function和offset读取相应位置寄存器的值(32位)
587 /// @param bus_device_function 在同一个group中pci设备的唯一标识符
588 /// @param register_offset 寄存器在设备中的offset
589 /// @return u32 寄存器读值结果
read_config(&self, bus_device_function: BusDeviceFunction, register_offset: u16) -> u32590 pub fn read_config(&self, bus_device_function: BusDeviceFunction, register_offset: u16) -> u32 {
591 let address = self.cam_offset(bus_device_function, register_offset);
592 unsafe {
593 // Right shift to convert from byte offset to word offset.
594 (self.mmio_base.unwrap().add((address >> 2) as usize)).read_volatile()
595 }
596 }
597
598 /// @brief 通过bus_device_function和offset写入相应位置寄存器值(32位)
599 /// @param bus_device_function 在同一个group中pci设备的唯一标识符
600 /// @param register_offset 寄存器在设备中的offset
601 /// @param data 要写入的值
write_config( &mut self, bus_device_function: BusDeviceFunction, register_offset: u16, data: u32, )602 pub fn write_config(
603 &mut self,
604 bus_device_function: BusDeviceFunction,
605 register_offset: u16,
606 data: u32,
607 ) {
608 let address = self.cam_offset(bus_device_function, register_offset);
609 // Safe because both the `mmio_base` and the address offset are properly aligned, and the
610 // resulting pointer is within the MMIO range of the CAM.
611 unsafe {
612 // Right shift to convert from byte offset to word offset.
613 (self.mmio_base.unwrap().add((address >> 2) as usize)).write_volatile(data)
614 }
615 }
616 /// @brief 返回迭代器,遍历pcie设备的external_capabilities
external_capabilities( &self, bus_device_function: BusDeviceFunction, ) -> ExternalCapabilityIterator617 pub fn external_capabilities(
618 &self,
619 bus_device_function: BusDeviceFunction,
620 ) -> ExternalCapabilityIterator {
621 ExternalCapabilityIterator {
622 root: self,
623 bus_device_function,
624 next_capability_offset: Some(0x100),
625 }
626 }
627 }
628 /// Gets the capabilities 'pointer' for the device function, if any.
629 /// @brief 获取第一个capability 的offset
630 /// @param bus_device_function PCI设备的唯一标识
631 /// @return Option<u8> offset
capabilities_offset(bus_device_function: BusDeviceFunction) -> Option<u8>632 pub fn capabilities_offset(bus_device_function: BusDeviceFunction) -> Option<u8> {
633 let result = PciArch::read_config(&bus_device_function, STATUS_COMMAND_OFFSET);
634 let status: Status = Status::from_bits_truncate((result >> 16) as u16);
635 if status.contains(Status::CAPABILITIES_LIST) {
636 let cap_pointer = PciArch::read_config(&bus_device_function, 0x34) as u8 & 0xFC;
637 Some(cap_pointer)
638 } else {
639 None
640 }
641 }
642
643 /// @brief 读取pci设备头部
644 /// @param bus_device_function PCI设备的唯一标识
645 /// @param add_to_list 是否添加到链表
646 /// @return 返回的header(trait 类型)
pci_read_header( bus_device_function: BusDeviceFunction, add_to_list: bool, ) -> Result<Box<dyn PciDeviceStructure>, PciError>647 fn pci_read_header(
648 bus_device_function: BusDeviceFunction,
649 add_to_list: bool,
650 ) -> Result<Box<dyn PciDeviceStructure>, PciError> {
651 // 先读取公共header
652 let result = PciArch::read_config(&bus_device_function, 0x00);
653 let vendor_id = result as u16;
654 let device_id = (result >> 16) as u16;
655
656 let result = PciArch::read_config(&bus_device_function, 0x04);
657 let command = result as u16;
658 let status = (result >> 16) as u16;
659
660 let result = PciArch::read_config(&bus_device_function, 0x08);
661 let revision_id = result as u8;
662 let prog_if = (result >> 8) as u8;
663 let subclass = (result >> 16) as u8;
664 let class_code = (result >> 24) as u8;
665
666 let result = PciArch::read_config(&bus_device_function, 0x0c);
667 let cache_line_size = result as u8;
668 let latency_timer = (result >> 8) as u8;
669 let header_type = (result >> 16) as u8;
670 let bist = (result >> 24) as u8;
671 if vendor_id == 0xffff {
672 return Err(PciError::GetWrongHeader);
673 }
674 let header = PciDeviceStructureHeader {
675 msix_mmio_vaddr: 0,
676 msix_mmio_size: 0,
677 msix_offset: 0,
678 msix_table_size: 0,
679 bus_device_function,
680 vendor_id,
681 device_id,
682 command,
683 status,
684 revision_id,
685 prog_if,
686 subclass,
687 class_code,
688 cache_line_size,
689 latency_timer,
690 header_type,
691 bist,
692 };
693 match HeaderType::from(header_type & 0x7f) {
694 HeaderType::Standard => {
695 let general_device = pci_read_general_device_header(header, &bus_device_function);
696 let box_general_device = Box::new(general_device);
697 let box_general_device_clone = box_general_device.clone();
698 if add_to_list {
699 PCI_DEVICE_LINKEDLIST.add(box_general_device);
700 }
701 Ok(box_general_device_clone)
702 }
703 HeaderType::PciPciBridge => {
704 let pci_to_pci_bridge = pci_read_pci_to_pci_bridge_header(header, &bus_device_function);
705 let box_pci_to_pci_bridge = Box::new(pci_to_pci_bridge);
706 let box_pci_to_pci_bridge_clone = box_pci_to_pci_bridge.clone();
707 if add_to_list {
708 PCI_DEVICE_LINKEDLIST.add(box_pci_to_pci_bridge);
709 }
710 Ok(box_pci_to_pci_bridge_clone)
711 }
712 HeaderType::PciCardbusBridge => {
713 let pci_cardbus_bridge =
714 pci_read_pci_to_cardbus_bridge_header(header, &bus_device_function);
715 let box_pci_cardbus_bridge = Box::new(pci_cardbus_bridge);
716 let box_pci_cardbus_bridge_clone = box_pci_cardbus_bridge.clone();
717 if add_to_list {
718 PCI_DEVICE_LINKEDLIST.add(box_pci_cardbus_bridge);
719 }
720 Ok(box_pci_cardbus_bridge_clone)
721 }
722 HeaderType::Unrecognised(_) => Err(PciError::UnrecognisedHeaderType),
723 }
724 }
725
726 /// @brief 读取type为0x0的pci设备的header
727 /// 本函数只应被 pci_read_header()调用
728 /// @param common_header 共有头部
729 /// @param bus_device_function PCI设备的唯一标识
730 /// @return Pci_Device_Structure_General_Device 标准设备头部
pci_read_general_device_header( common_header: PciDeviceStructureHeader, bus_device_function: &BusDeviceFunction, ) -> PciDeviceStructureGeneralDevice731 fn pci_read_general_device_header(
732 common_header: PciDeviceStructureHeader,
733 bus_device_function: &BusDeviceFunction,
734 ) -> PciDeviceStructureGeneralDevice {
735 let standard_device_bar = PciStandardDeviceBar::default();
736 let cardbus_cis_pointer = PciArch::read_config(bus_device_function, 0x28);
737
738 let result = PciArch::read_config(bus_device_function, 0x2c);
739 let subsystem_vendor_id = result as u16;
740 let subsystem_id = (result >> 16) as u16;
741
742 let expansion_rom_base_address = PciArch::read_config(bus_device_function, 0x30);
743
744 let result = PciArch::read_config(bus_device_function, 0x34);
745 let capabilities_pointer = result as u8;
746 let reserved0 = (result >> 8) as u8;
747 let reserved1 = (result >> 16) as u16;
748
749 let reserved2 = PciArch::read_config(bus_device_function, 0x38);
750
751 let result = PciArch::read_config(bus_device_function, 0x3c);
752 let interrupt_line = result as u8;
753 let interrupt_pin = (result >> 8) as u8;
754 let min_grant = (result >> 16) as u8;
755 let max_latency = (result >> 24) as u8;
756 PciDeviceStructureGeneralDevice {
757 common_header,
758 standard_device_bar,
759 cardbus_cis_pointer,
760 subsystem_vendor_id,
761 subsystem_id,
762 expansion_rom_base_address,
763 capabilities_pointer,
764 reserved0,
765 reserved1,
766 reserved2,
767 interrupt_line,
768 interrupt_pin,
769 min_grant,
770 max_latency,
771 }
772 }
773
774 /// @brief 读取type为0x1的pci设备的header
775 /// 本函数只应被 pci_read_header()调用
776 /// @param common_header 共有头部
777 /// @param bus_device_function PCI设备的唯一标识
778 /// @return Pci_Device_Structure_Pci_to_Pci_Bridge pci-to-pci 桥设备头部
pci_read_pci_to_pci_bridge_header( common_header: PciDeviceStructureHeader, bus_device_function: &BusDeviceFunction, ) -> PciDeviceStructurePciToPciBridge779 fn pci_read_pci_to_pci_bridge_header(
780 common_header: PciDeviceStructureHeader,
781 bus_device_function: &BusDeviceFunction,
782 ) -> PciDeviceStructurePciToPciBridge {
783 let bar0 = PciArch::read_config(bus_device_function, 0x10);
784 let bar1 = PciArch::read_config(bus_device_function, 0x14);
785
786 let result = PciArch::read_config(bus_device_function, 0x18);
787
788 let primary_bus_number = result as u8;
789 let secondary_bus_number = (result >> 8) as u8;
790 let subordinate_bus_number = (result >> 16) as u8;
791 let secondary_latency_timer = (result >> 24) as u8;
792
793 let result = PciArch::read_config(bus_device_function, 0x1c);
794 let io_base = result as u8;
795 let io_limit = (result >> 8) as u8;
796 let secondary_status = (result >> 16) as u16;
797
798 let result = PciArch::read_config(bus_device_function, 0x20);
799 let memory_base = result as u16;
800 let memory_limit = (result >> 16) as u16;
801
802 let result = PciArch::read_config(bus_device_function, 0x24);
803 let prefetchable_memory_base = result as u16;
804 let prefetchable_memory_limit = (result >> 16) as u16;
805
806 let prefetchable_base_upper_32_bits = PciArch::read_config(bus_device_function, 0x28);
807 let prefetchable_limit_upper_32_bits = PciArch::read_config(bus_device_function, 0x2c);
808
809 let result = PciArch::read_config(bus_device_function, 0x30);
810 let io_base_upper_16_bits = result as u16;
811 let io_limit_upper_16_bits = (result >> 16) as u16;
812
813 let result = PciArch::read_config(bus_device_function, 0x34);
814 let capability_pointer = result as u8;
815 let reserved0 = (result >> 8) as u8;
816 let reserved1 = (result >> 16) as u16;
817
818 let expansion_rom_base_address = PciArch::read_config(bus_device_function, 0x38);
819
820 let result = PciArch::read_config(bus_device_function, 0x3c);
821 let interrupt_line = result as u8;
822 let interrupt_pin = (result >> 8) as u8;
823 let bridge_control = (result >> 16) as u16;
824 PciDeviceStructurePciToPciBridge {
825 common_header,
826 bar0,
827 bar1,
828 primary_bus_number,
829 secondary_bus_number,
830 subordinate_bus_number,
831 secondary_latency_timer,
832 io_base,
833 io_limit,
834 secondary_status,
835 memory_base,
836 memory_limit,
837 prefetchable_memory_base,
838 prefetchable_memory_limit,
839 prefetchable_base_upper_32_bits,
840 prefetchable_limit_upper_32_bits,
841 io_base_upper_16_bits,
842 io_limit_upper_16_bits,
843 capability_pointer,
844 reserved0,
845 reserved1,
846 expansion_rom_base_address,
847 interrupt_line,
848 interrupt_pin,
849 bridge_control,
850 }
851 }
852
853 /// @brief 读取type为0x2的pci设备的header
854 /// 本函数只应被 pci_read_header()调用
855 /// @param common_header 共有头部
856 /// @param bus_device_function PCI设备的唯一标识
857 /// @return ) -> Pci_Device_Structure_Pci_to_Cardbus_Bridge pci-to-cardbus 桥设备头部
pci_read_pci_to_cardbus_bridge_header( common_header: PciDeviceStructureHeader, busdevicefunction: &BusDeviceFunction, ) -> PciDeviceStructurePciToCardbusBridge858 fn pci_read_pci_to_cardbus_bridge_header(
859 common_header: PciDeviceStructureHeader,
860 busdevicefunction: &BusDeviceFunction,
861 ) -> PciDeviceStructurePciToCardbusBridge {
862 let cardbus_socket_ex_ca_base_address = PciArch::read_config(busdevicefunction, 0x10);
863
864 let result = PciArch::read_config(busdevicefunction, 0x14);
865 let offset_of_capabilities_list = result as u8;
866 let reserved = (result >> 8) as u8;
867 let secondary_status = (result >> 16) as u16;
868
869 let result = PciArch::read_config(busdevicefunction, 0x18);
870 let pci_bus_number = result as u8;
871 let card_bus_bus_number = (result >> 8) as u8;
872 let subordinate_bus_number = (result >> 16) as u8;
873 let card_bus_latency_timer = (result >> 24) as u8;
874
875 let memory_base_address0 = PciArch::read_config(busdevicefunction, 0x1c);
876 let memory_limit0 = PciArch::read_config(busdevicefunction, 0x20);
877 let memory_base_address1 = PciArch::read_config(busdevicefunction, 0x24);
878 let memory_limit1 = PciArch::read_config(busdevicefunction, 0x28);
879
880 let io_base_address0 = PciArch::read_config(busdevicefunction, 0x2c);
881 let io_limit0 = PciArch::read_config(busdevicefunction, 0x30);
882 let io_base_address1 = PciArch::read_config(busdevicefunction, 0x34);
883 let io_limit1 = PciArch::read_config(busdevicefunction, 0x38);
884 let result = PciArch::read_config(busdevicefunction, 0x3c);
885 let interrupt_line = result as u8;
886 let interrupt_pin = (result >> 8) as u8;
887 let bridge_control = (result >> 16) as u16;
888
889 let result = PciArch::read_config(busdevicefunction, 0x40);
890 let subsystem_device_id = result as u16;
891 let subsystem_vendor_id = (result >> 16) as u16;
892
893 let pc_card_legacy_mode_base_address_16_bit = PciArch::read_config(busdevicefunction, 0x44);
894 PciDeviceStructurePciToCardbusBridge {
895 common_header,
896 cardbus_socket_ex_ca_base_address,
897 offset_of_capabilities_list,
898 reserved,
899 secondary_status,
900 pci_bus_number,
901 card_bus_bus_number,
902 subordinate_bus_number,
903 card_bus_latency_timer,
904 memory_base_address0,
905 memory_limit0,
906 memory_base_address1,
907 memory_limit1,
908 io_base_address0,
909 io_limit0,
910 io_base_address1,
911 io_limit1,
912 interrupt_line,
913 interrupt_pin,
914 bridge_control,
915 subsystem_device_id,
916 subsystem_vendor_id,
917 pc_card_legacy_mode_base_address_16_bit,
918 }
919 }
920
921 /// @brief 检查所有bus上的设备并将其加入链表
922 /// @return 成功返回ok(),失败返回失败原因
pci_check_all_buses() -> Result<u8, PciError>923 fn pci_check_all_buses() -> Result<u8, PciError> {
924 kinfo!("Checking all devices in PCI bus...");
925 let busdevicefunction = BusDeviceFunction {
926 bus: 0,
927 device: 0,
928 function: 0,
929 };
930 let header = pci_read_header(busdevicefunction, false)?;
931 let common_header = header.common_header();
932 pci_check_bus(0)?;
933 if common_header.header_type & 0x80 != 0 {
934 for function in 1..8 {
935 pci_check_bus(function)?;
936 }
937 }
938 Ok(0)
939 }
940 /// @brief 检查特定设备并将其加入链表
941 /// @return 成功返回ok(),失败返回失败原因
pci_check_function(busdevicefunction: BusDeviceFunction) -> Result<u8, PciError>942 fn pci_check_function(busdevicefunction: BusDeviceFunction) -> Result<u8, PciError> {
943 //kdebug!("PCI check function {}", busdevicefunction.function);
944 let header = match pci_read_header(busdevicefunction, true) {
945 Ok(header) => header,
946 Err(PciError::GetWrongHeader) => {
947 return Ok(255);
948 }
949 Err(e) => {
950 return Err(e);
951 }
952 };
953 let common_header = header.common_header();
954 if (common_header.class_code == 0x06)
955 && (common_header.subclass == 0x04 || common_header.subclass == 0x09)
956 {
957 let pci_to_pci_bridge = header
958 .as_pci_to_pci_bridge_device()
959 .ok_or(PciError::PciDeviceStructureTransformError)?;
960 let secondary_bus = pci_to_pci_bridge.secondary_bus_number;
961 pci_check_bus(secondary_bus)?;
962 }
963 Ok(0)
964 }
965
966 /// @brief 检查device上的设备并将其加入链表
967 /// @return 成功返回ok(),失败返回失败原因
pci_check_device(bus: u8, device: u8) -> Result<u8, PciError>968 fn pci_check_device(bus: u8, device: u8) -> Result<u8, PciError> {
969 //kdebug!("PCI check device {}", device);
970 let busdevicefunction = BusDeviceFunction {
971 bus,
972 device,
973 function: 0,
974 };
975 let header = match pci_read_header(busdevicefunction, false) {
976 Ok(header) => header,
977 Err(PciError::GetWrongHeader) => {
978 //设备不存在,直接返回即可,不用终止遍历
979 return Ok(255);
980 }
981 Err(e) => {
982 return Err(e);
983 }
984 };
985 pci_check_function(busdevicefunction)?;
986 let common_header = header.common_header();
987 if common_header.header_type & 0x80 != 0 {
988 kdebug!(
989 "Detected multi func device in bus{},device{}",
990 busdevicefunction.bus,
991 busdevicefunction.device
992 );
993 // 这是一个多function的设备,因此查询剩余的function
994 for function in 1..8 {
995 let busdevicefunction = BusDeviceFunction {
996 bus,
997 device,
998 function,
999 };
1000 pci_check_function(busdevicefunction)?;
1001 }
1002 }
1003 Ok(0)
1004 }
1005 /// @brief 检查该bus上的设备并将其加入链表
1006 /// @return 成功返回ok(),失败返回失败原因
pci_check_bus(bus: u8) -> Result<u8, PciError>1007 fn pci_check_bus(bus: u8) -> Result<u8, PciError> {
1008 //kdebug!("PCI check bus {}", bus);
1009 for device in 0..32 {
1010 pci_check_device(bus, device)?;
1011 }
1012 Ok(0)
1013 }
1014 /// @brief pci初始化函数(for c)
1015 #[no_mangle]
rs_pci_init()1016 pub extern "C" fn rs_pci_init() {
1017 pci_init();
1018 if PCI_ROOT_0.is_some() {
1019 kdebug!("{}", PCI_ROOT_0.unwrap());
1020 //以下为ecam的读取寄存器值测试,经测试可正常读取
1021 // let bus_device_function = BusDeviceFunction {
1022 // bus: 0,
1023 // device: 2,
1024 // function: 0,
1025 // };
1026 // kdebug!(
1027 // "Ecam read virtio-net device status={:#x}",
1028 // (PCI_ROOT_0.unwrap().read_config(bus_device_function, 4)>>16) as u16
1029 // );
1030 }
1031 }
1032 /// @brief pci初始化函数
pci_init()1033 pub fn pci_init() {
1034 kinfo!("Initializing PCI bus...");
1035 if let Err(e) = pci_check_all_buses() {
1036 kerror!("pci init failed when checking bus because of error: {}", e);
1037 return;
1038 }
1039 kinfo!(
1040 "Total pci device and function num = {}",
1041 PCI_DEVICE_LINKEDLIST.num()
1042 );
1043 let list = PCI_DEVICE_LINKEDLIST.read();
1044 for box_pci_device in list.iter() {
1045 let common_header = box_pci_device.common_header();
1046 match box_pci_device.header_type() {
1047 HeaderType::Standard if common_header.status & 0x10 != 0 => {
1048 kinfo!("Found pci standard device with class code ={} subclass={} status={:#x} cap_pointer={:#x} vendor={:#x}, device id={:#x},bdf={}", common_header.class_code, common_header.subclass, common_header.status, box_pci_device.as_standard_device().unwrap().capabilities_pointer,common_header.vendor_id, common_header.device_id,common_header.bus_device_function);
1049 }
1050 HeaderType::Standard => {
1051 kinfo!(
1052 "Found pci standard device with class code ={} subclass={} status={:#x} ",
1053 common_header.class_code,
1054 common_header.subclass,
1055 common_header.status
1056 );
1057 }
1058 HeaderType::PciPciBridge if common_header.status & 0x10 != 0 => {
1059 kinfo!("Found pci-to-pci bridge device with class code ={} subclass={} status={:#x} cap_pointer={:#x}", common_header.class_code, common_header.subclass, common_header.status, box_pci_device.as_standard_device().unwrap().capabilities_pointer);
1060 }
1061 HeaderType::PciPciBridge => {
1062 kinfo!(
1063 "Found pci-to-pci bridge device with class code ={} subclass={} status={:#x} ",
1064 common_header.class_code,
1065 common_header.subclass,
1066 common_header.status
1067 );
1068 }
1069 HeaderType::PciCardbusBridge => {
1070 kinfo!(
1071 "Found pcicardbus bridge device with class code ={} subclass={} status={:#x} ",
1072 common_header.class_code,
1073 common_header.subclass,
1074 common_header.status
1075 );
1076 }
1077 HeaderType::Unrecognised(_) => {}
1078 }
1079 }
1080 kinfo!("PCI bus initialized.");
1081 }
1082
1083 /// An identifier for a PCI bus, device and function.
1084 /// PCI设备的唯一标识
1085 #[derive(Copy, Clone, Debug, Eq, PartialEq)]
1086 pub struct BusDeviceFunction {
1087 /// The PCI bus number, between 0 and 255.
1088 pub bus: u8,
1089 /// The device number on the bus, between 0 and 31.
1090 pub device: u8,
1091 /// The function number of the device, between 0 and 7.
1092 pub function: u8,
1093 }
1094 impl BusDeviceFunction {
1095 /// Returns whether the device and function numbers are valid, i.e. the device is between 0 and
1096 ///@brief 检测BusDeviceFunction实例是否有效
1097 ///@param self
1098 ///@return bool 是否有效
1099 #[allow(dead_code)]
valid(&self) -> bool1100 pub fn valid(&self) -> bool {
1101 self.device < 32 && self.function < 8
1102 }
1103 }
1104 ///实现BusDeviceFunction的Display trait,使其可以直接输出
1105 impl Display for BusDeviceFunction {
fmt(&self, f: &mut Formatter) -> fmt::Result1106 fn fmt(&self, f: &mut Formatter) -> fmt::Result {
1107 write!(
1108 f,
1109 "bus {} device {} function{}",
1110 self.bus, self.device, self.function
1111 )
1112 }
1113 }
1114 /// The location allowed for a memory BAR.
1115 /// memory BAR的三种情况
1116 #[derive(Copy, Clone, Debug, Eq, PartialEq)]
1117 pub enum MemoryBarType {
1118 /// The BAR has a 32-bit address and can be mapped anywhere in 32-bit address space.
1119 Width32,
1120 /// The BAR must be mapped below 1MiB.
1121 Below1MiB,
1122 /// The BAR has a 64-bit address and can be mapped anywhere in 64-bit address space.
1123 Width64,
1124 }
1125 ///实现MemoryBarType与u8的类型转换
1126 impl From<MemoryBarType> for u8 {
from(bar_type: MemoryBarType) -> Self1127 fn from(bar_type: MemoryBarType) -> Self {
1128 match bar_type {
1129 MemoryBarType::Width32 => 0,
1130 MemoryBarType::Below1MiB => 1,
1131 MemoryBarType::Width64 => 2,
1132 }
1133 }
1134 }
1135 ///实现MemoryBarType与u8的类型转换
1136 impl TryFrom<u8> for MemoryBarType {
1137 type Error = PciError;
try_from(value: u8) -> Result<Self, Self::Error>1138 fn try_from(value: u8) -> Result<Self, Self::Error> {
1139 match value {
1140 0 => Ok(Self::Width32),
1141 1 => Ok(Self::Below1MiB),
1142 2 => Ok(Self::Width64),
1143 _ => Err(PciError::InvalidBarType),
1144 }
1145 }
1146 }
1147
1148 /// Information about a PCI Base Address Register.
1149 /// BAR的三种类型 Memory/IO/Unused
1150 #[derive(Clone, Debug, Eq, PartialEq)]
1151 pub enum BarInfo {
1152 /// The BAR is for a memory region.
1153 Memory {
1154 /// The size of the BAR address and where it can be located.
1155 address_type: MemoryBarType,
1156 /// If true, then reading from the region doesn't have side effects. The CPU may cache reads
1157 /// and merge repeated stores.
1158 prefetchable: bool,
1159 /// The memory address, always 16-byte aligned.
1160 address: u64,
1161 /// The size of the BAR in bytes.
1162 size: u32,
1163 /// The virtaddress for a memory bar(mapped).
1164 virtaddress: u64,
1165 },
1166 /// The BAR is for an I/O region.
1167 IO {
1168 /// The I/O address, always 4-byte aligned.
1169 address: u32,
1170 /// The size of the BAR in bytes.
1171 size: u32,
1172 },
1173 Unused,
1174 }
1175
1176 impl BarInfo {
1177 /// Returns the address and size of this BAR if it is a memory bar, or `None` if it is an IO
1178 /// BAR.
1179 ///@brief 得到某个bar的memory_address与size(前提是他的类型为Memory Bar)
1180 ///@param self
1181 ///@return Option<(u64, u32) 是Memory Bar返回内存地址与大小,不是则返回None
memory_address_size(&self) -> Option<(u64, u32)>1182 pub fn memory_address_size(&self) -> Option<(u64, u32)> {
1183 if let Self::Memory { address, size, .. } = self {
1184 Some((*address, *size))
1185 } else {
1186 None
1187 }
1188 }
1189 ///@brief 得到某个bar的virtaddress(前提是他的类型为Memory Bar)
1190 ///@param self
1191 ///@return Option<(u64) 是Memory Bar返回映射的虚拟地址,不是则返回None
virtual_address(&self) -> Option<u64>1192 pub fn virtual_address(&self) -> Option<u64> {
1193 if let Self::Memory { virtaddress, .. } = self {
1194 Some(*virtaddress)
1195 } else {
1196 None
1197 }
1198 }
1199 }
1200 ///实现BarInfo的Display trait,自定义输出
1201 impl Display for BarInfo {
fmt(&self, f: &mut Formatter<'_>) -> fmt::Result1202 fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result {
1203 match self {
1204 Self::Memory {
1205 address_type,
1206 prefetchable,
1207 address,
1208 size,
1209 virtaddress,
1210 } => write!(
1211 f,
1212 "Memory space at {:#010x}, size {}, type {:?}, prefetchable {},mapped at {:#x}",
1213 address, size, address_type, prefetchable, virtaddress
1214 ),
1215 Self::IO { address, size } => {
1216 write!(f, "I/O space at {:#010x}, size {}", address, size)
1217 }
1218 Self::Unused => {
1219 write!(f, "Unused bar")
1220 }
1221 }
1222 }
1223 }
1224 ///一个普通PCI设备(非桥)有6个BAR寄存器,PciStandardDeviceBar存储其全部信息
1225 #[derive(Clone, Debug, Eq, PartialEq)]
1226 pub struct PciStandardDeviceBar {
1227 bar0: BarInfo,
1228 bar1: BarInfo,
1229 bar2: BarInfo,
1230 bar3: BarInfo,
1231 bar4: BarInfo,
1232 bar5: BarInfo,
1233 }
1234
1235 impl PciStandardDeviceBar {
1236 ///@brief 得到某个bar的barinfo
1237 ///@param self ,bar_index(0-5)
1238 ///@return Result<&BarInfo, PciError> bar_index在0-5则返回对应的bar_info结构体,超出范围则返回错误
get_bar(&self, bar_index: u8) -> Result<&BarInfo, PciError>1239 pub fn get_bar(&self, bar_index: u8) -> Result<&BarInfo, PciError> {
1240 match bar_index {
1241 0 => Ok(&self.bar0),
1242 1 => Ok(&self.bar1),
1243 2 => Ok(&self.bar2),
1244 3 => Ok(&self.bar3),
1245 4 => Ok(&self.bar4),
1246 5 => Ok(&self.bar5),
1247 _ => Err(PciError::InvalidBarType),
1248 }
1249 }
1250 }
1251 ///实现PciStandardDeviceBar的Display trait,使其可以直接输出
1252 impl Display for PciStandardDeviceBar {
fmt(&self, f: &mut Formatter<'_>) -> fmt::Result1253 fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result {
1254 write!(
1255 f,
1256 "\r\nBar0:{}\r\n Bar1:{}\r\n Bar2:{}\r\n Bar3:{}\r\nBar4:{}\r\nBar5:{}",
1257 self.bar0, self.bar1, self.bar2, self.bar3, self.bar4, self.bar5
1258 )
1259 }
1260 }
1261 ///实现PciStandardDeviceBar的Default trait,使其可以简单初始化
1262 impl Default for PciStandardDeviceBar {
default() -> Self1263 fn default() -> Self {
1264 PciStandardDeviceBar {
1265 bar0: BarInfo::Unused,
1266 bar1: BarInfo::Unused,
1267 bar2: BarInfo::Unused,
1268 bar3: BarInfo::Unused,
1269 bar4: BarInfo::Unused,
1270 bar5: BarInfo::Unused,
1271 }
1272 }
1273 }
1274
1275 ///@brief 将某个pci设备的bar寄存器读取值后映射到虚拟地址
1276 ///@param self ,bus_device_function PCI设备的唯一标识符
1277 ///@return Result<PciStandardDeviceBar, PciError> 成功则返回对应的PciStandardDeviceBar结构体,失败则返回错误类型
pci_bar_init( bus_device_function: BusDeviceFunction, ) -> Result<PciStandardDeviceBar, PciError>1278 pub fn pci_bar_init(
1279 bus_device_function: BusDeviceFunction,
1280 ) -> Result<PciStandardDeviceBar, PciError> {
1281 let mut device_bar: PciStandardDeviceBar = PciStandardDeviceBar::default();
1282 let mut bar_index_ignore: u8 = 255;
1283 for bar_index in 0..6 {
1284 if bar_index == bar_index_ignore {
1285 continue;
1286 }
1287 let bar_info;
1288 let mut virtaddress: u64 = 0;
1289 let bar_orig = PciArch::read_config(&bus_device_function, BAR0_OFFSET + 4 * bar_index);
1290 PciArch::write_config(
1291 &bus_device_function,
1292 BAR0_OFFSET + 4 * bar_index,
1293 0xffffffff,
1294 );
1295 let size_mask = PciArch::read_config(&bus_device_function, BAR0_OFFSET + 4 * bar_index);
1296 // A wrapping add is necessary to correctly handle the case of unused BARs, which read back
1297 // as 0, and should be treated as size 0.
1298 let size = (!(size_mask & 0xfffffff0)).wrapping_add(1);
1299 //kdebug!("bar_orig:{:#x},size: {:#x}", bar_orig,size);
1300 // Restore the original value.
1301 PciArch::write_config(&bus_device_function, BAR0_OFFSET + 4 * bar_index, bar_orig);
1302 if size == 0 {
1303 continue;
1304 }
1305 if bar_orig & 0x00000001 == 0x00000001 {
1306 // I/O space
1307 let address = bar_orig & 0xfffffffc;
1308 bar_info = BarInfo::IO { address, size };
1309 } else {
1310 // Memory space
1311 let mut address = u64::from(bar_orig & 0xfffffff0);
1312 let prefetchable = bar_orig & 0x00000008 != 0;
1313 let address_type = MemoryBarType::try_from(((bar_orig & 0x00000006) >> 1) as u8)?;
1314 if address_type == MemoryBarType::Width64 {
1315 if bar_index >= 5 {
1316 return Err(PciError::InvalidBarType);
1317 }
1318 let address_top =
1319 PciArch::read_config(&bus_device_function, BAR0_OFFSET + 4 * (bar_index + 1));
1320 address |= u64::from(address_top) << 32;
1321 bar_index_ignore = bar_index + 1; //下个bar跳过,因为64位的memory bar覆盖了两个bar
1322 }
1323 let pci_address = PciAddr::new(address as usize);
1324 address = PciArch::address_pci_to_physical(pci_address) as u64; //PCI总线域物理地址转换为存储器域物理地址
1325 unsafe {
1326 let vaddr_ptr = &mut virtaddress as *mut u64;
1327 let mut virtsize: u64 = 0;
1328 let virtsize_ptr = &mut virtsize as *mut u64;
1329 let initial_mm_ptr = &mut initial_mm as *mut mm_struct;
1330 //kdebug!("size want={:#x}", size);
1331 if let Err(_) = MMIO_POOL.create_mmio(
1332 size,
1333 (VM_IO | VM_DONTCOPY) as u64,
1334 vaddr_ptr,
1335 virtsize_ptr,
1336 ) {
1337 kerror!("Create mmio failed when initing pci bar");
1338 return Err(PciError::CreateMmioError);
1339 };
1340 //kdebug!("virtaddress={:#x},virtsize={:#x}",virtaddress,virtsize);
1341 mm_map(initial_mm_ptr, virtaddress, size as u64, address);
1342 }
1343 bar_info = BarInfo::Memory {
1344 address_type,
1345 prefetchable,
1346 address,
1347 size,
1348 virtaddress,
1349 };
1350 }
1351 match bar_index {
1352 0 => {
1353 device_bar.bar0 = bar_info;
1354 }
1355 1 => {
1356 device_bar.bar1 = bar_info;
1357 }
1358 2 => {
1359 device_bar.bar2 = bar_info;
1360 }
1361 3 => {
1362 device_bar.bar3 = bar_info;
1363 }
1364 4 => {
1365 device_bar.bar4 = bar_info;
1366 }
1367 5 => {
1368 device_bar.bar5 = bar_info;
1369 }
1370 _ => {}
1371 }
1372 }
1373 kdebug!("pci_device_bar:{}", device_bar);
1374 return Ok(device_bar);
1375 }
1376
1377 /// Information about a PCI device capability.
1378 /// PCI设备的capability的信息
1379 #[derive(Debug, Copy, Clone, Eq, PartialEq)]
1380 pub struct CapabilityInfo {
1381 /// The offset of the capability in the PCI configuration space of the device function.
1382 pub offset: u8,
1383 /// The ID of the capability.
1384 pub id: u8,
1385 /// The third and fourth bytes of the capability, to save reading them again.
1386 pub private_header: u16,
1387 }
1388
1389 /// Iterator over capabilities for a device.
1390 /// 创建迭代器以遍历PCI设备的capability
1391 #[derive(Debug)]
1392 pub struct CapabilityIterator {
1393 pub bus_device_function: BusDeviceFunction,
1394 pub next_capability_offset: Option<u8>,
1395 }
1396
1397 impl Iterator for CapabilityIterator {
1398 type Item = CapabilityInfo;
next(&mut self) -> Option<Self::Item>1399 fn next(&mut self) -> Option<Self::Item> {
1400 let offset = self.next_capability_offset?;
1401
1402 // Read the first 4 bytes of the capability.
1403 let capability_header = PciArch::read_config(&self.bus_device_function, offset);
1404 let id = capability_header as u8;
1405 let next_offset = (capability_header >> 8) as u8;
1406 let private_header = (capability_header >> 16) as u16;
1407
1408 self.next_capability_offset = if next_offset == 0 {
1409 None
1410 } else if next_offset < 64 || next_offset & 0x3 != 0 {
1411 kwarn!("Invalid next capability offset {:#04x}", next_offset);
1412 None
1413 } else {
1414 Some(next_offset)
1415 };
1416
1417 Some(CapabilityInfo {
1418 offset,
1419 id,
1420 private_header,
1421 })
1422 }
1423 }
1424
1425 /// Information about a PCIe device capability.
1426 /// PCIe设备的external capability的信息
1427 #[derive(Debug, Copy, Clone, Eq, PartialEq)]
1428 pub struct ExternalCapabilityInfo {
1429 /// The offset of the capability in the PCI configuration space of the device function.
1430 pub offset: u16,
1431 /// The ID of the capability.
1432 pub id: u16,
1433 /// The third and fourth bytes of the capability, to save reading them again.
1434 pub capability_version: u8,
1435 }
1436
1437 /// Iterator over capabilities for a device.
1438 /// 创建迭代器以遍历PCIe设备的external capability
1439 #[derive(Debug)]
1440 pub struct ExternalCapabilityIterator<'a> {
1441 pub root: &'a PciRoot,
1442 pub bus_device_function: BusDeviceFunction,
1443 pub next_capability_offset: Option<u16>,
1444 }
1445 impl<'a> Iterator for ExternalCapabilityIterator<'a> {
1446 type Item = ExternalCapabilityInfo;
next(&mut self) -> Option<Self::Item>1447 fn next(&mut self) -> Option<Self::Item> {
1448 let offset = self.next_capability_offset?;
1449
1450 // Read the first 4 bytes of the capability.
1451 let capability_header = self.root.read_config(self.bus_device_function, offset);
1452 let id = capability_header as u16;
1453 let next_offset = (capability_header >> 20) as u16;
1454 let capability_version = ((capability_header >> 16) & 0xf) as u8;
1455
1456 self.next_capability_offset = if next_offset == 0 {
1457 None
1458 } else if next_offset < 0x100 || next_offset & 0x3 != 0 {
1459 kwarn!("Invalid next capability offset {:#04x}", next_offset);
1460 None
1461 } else {
1462 Some(next_offset)
1463 };
1464
1465 Some(ExternalCapabilityInfo {
1466 offset,
1467 id,
1468 capability_version,
1469 })
1470 }
1471 }
1472