1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * rrunner.c: Linux driver for the Essential RoadRunner HIPPI board.
4 *
5 * Copyright (C) 1998-2002 by Jes Sorensen, <jes@wildopensource.com>.
6 *
7 * Thanks to Essential Communication for providing us with hardware
8 * and very comprehensive documentation without which I would not have
9 * been able to write this driver. A special thank you to John Gibbon
10 * for sorting out the legal issues, with the NDA, allowing the code to
11 * be released under the GPL.
12 *
13 * Thanks to Jayaram Bhat from ODS/Essential for fixing some of the
14 * stupid bugs in my code.
15 *
16 * Softnet support and various other patches from Val Henson of
17 * ODS/Essential.
18 *
19 * PCI DMA mapping code partly based on work by Francois Romieu.
20 */
21
22
23 #define DEBUG 1
24 #define RX_DMA_SKBUFF 1
25 #define PKT_COPY_THRESHOLD 512
26
27 #include <linux/module.h>
28 #include <linux/types.h>
29 #include <linux/errno.h>
30 #include <linux/ioport.h>
31 #include <linux/pci.h>
32 #include <linux/kernel.h>
33 #include <linux/netdevice.h>
34 #include <linux/hippidevice.h>
35 #include <linux/skbuff.h>
36 #include <linux/delay.h>
37 #include <linux/mm.h>
38 #include <linux/slab.h>
39 #include <net/sock.h>
40
41 #include <asm/cache.h>
42 #include <asm/byteorder.h>
43 #include <asm/io.h>
44 #include <asm/irq.h>
45 #include <linux/uaccess.h>
46
47 #define rr_if_busy(dev) netif_queue_stopped(dev)
48 #define rr_if_running(dev) netif_running(dev)
49
50 #include "rrunner.h"
51
52 #define RUN_AT(x) (jiffies + (x))
53
54
55 MODULE_AUTHOR("Jes Sorensen <jes@wildopensource.com>");
56 MODULE_DESCRIPTION("Essential RoadRunner HIPPI driver");
57 MODULE_LICENSE("GPL");
58
59 static const char version[] =
60 "rrunner.c: v0.50 11/11/2002 Jes Sorensen (jes@wildopensource.com)\n";
61
62
63 static const struct net_device_ops rr_netdev_ops = {
64 .ndo_open = rr_open,
65 .ndo_stop = rr_close,
66 .ndo_siocdevprivate = rr_siocdevprivate,
67 .ndo_start_xmit = rr_start_xmit,
68 .ndo_set_mac_address = hippi_mac_addr,
69 };
70
71 /*
72 * Implementation notes:
73 *
74 * The DMA engine only allows for DMA within physical 64KB chunks of
75 * memory. The current approach of the driver (and stack) is to use
76 * linear blocks of memory for the skbuffs. However, as the data block
77 * is always the first part of the skb and skbs are 2^n aligned so we
78 * are guarantted to get the whole block within one 64KB align 64KB
79 * chunk.
80 *
81 * On the long term, relying on being able to allocate 64KB linear
82 * chunks of memory is not feasible and the skb handling code and the
83 * stack will need to know about I/O vectors or something similar.
84 */
85
rr_init_one(struct pci_dev * pdev,const struct pci_device_id * ent)86 static int rr_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
87 {
88 struct net_device *dev;
89 static int version_disp;
90 u8 pci_latency;
91 struct rr_private *rrpriv;
92 void *tmpptr;
93 dma_addr_t ring_dma;
94 int ret = -ENOMEM;
95
96 dev = alloc_hippi_dev(sizeof(struct rr_private));
97 if (!dev)
98 goto out3;
99
100 ret = pci_enable_device(pdev);
101 if (ret) {
102 ret = -ENODEV;
103 goto out2;
104 }
105
106 rrpriv = netdev_priv(dev);
107
108 SET_NETDEV_DEV(dev, &pdev->dev);
109
110 ret = pci_request_regions(pdev, "rrunner");
111 if (ret < 0)
112 goto out;
113
114 pci_set_drvdata(pdev, dev);
115
116 rrpriv->pci_dev = pdev;
117
118 spin_lock_init(&rrpriv->lock);
119
120 dev->netdev_ops = &rr_netdev_ops;
121
122 /* display version info if adapter is found */
123 if (!version_disp) {
124 /* set display flag to TRUE so that */
125 /* we only display this string ONCE */
126 version_disp = 1;
127 printk(version);
128 }
129
130 pci_read_config_byte(pdev, PCI_LATENCY_TIMER, &pci_latency);
131 if (pci_latency <= 0x58){
132 pci_latency = 0x58;
133 pci_write_config_byte(pdev, PCI_LATENCY_TIMER, pci_latency);
134 }
135
136 pci_set_master(pdev);
137
138 printk(KERN_INFO "%s: Essential RoadRunner serial HIPPI "
139 "at 0x%llx, irq %i, PCI latency %i\n", dev->name,
140 (unsigned long long)pci_resource_start(pdev, 0),
141 pdev->irq, pci_latency);
142
143 /*
144 * Remap the MMIO regs into kernel space.
145 */
146 rrpriv->regs = pci_iomap(pdev, 0, 0x1000);
147 if (!rrpriv->regs) {
148 printk(KERN_ERR "%s: Unable to map I/O register, "
149 "RoadRunner will be disabled.\n", dev->name);
150 ret = -EIO;
151 goto out;
152 }
153
154 tmpptr = dma_alloc_coherent(&pdev->dev, TX_TOTAL_SIZE, &ring_dma,
155 GFP_KERNEL);
156 rrpriv->tx_ring = tmpptr;
157 rrpriv->tx_ring_dma = ring_dma;
158
159 if (!tmpptr) {
160 ret = -ENOMEM;
161 goto out;
162 }
163
164 tmpptr = dma_alloc_coherent(&pdev->dev, RX_TOTAL_SIZE, &ring_dma,
165 GFP_KERNEL);
166 rrpriv->rx_ring = tmpptr;
167 rrpriv->rx_ring_dma = ring_dma;
168
169 if (!tmpptr) {
170 ret = -ENOMEM;
171 goto out;
172 }
173
174 tmpptr = dma_alloc_coherent(&pdev->dev, EVT_RING_SIZE, &ring_dma,
175 GFP_KERNEL);
176 rrpriv->evt_ring = tmpptr;
177 rrpriv->evt_ring_dma = ring_dma;
178
179 if (!tmpptr) {
180 ret = -ENOMEM;
181 goto out;
182 }
183
184 /*
185 * Don't access any register before this point!
186 */
187 #ifdef __BIG_ENDIAN
188 writel(readl(&rrpriv->regs->HostCtrl) | NO_SWAP,
189 &rrpriv->regs->HostCtrl);
190 #endif
191 /*
192 * Need to add a case for little-endian 64-bit hosts here.
193 */
194
195 rr_init(dev);
196
197 ret = register_netdev(dev);
198 if (ret)
199 goto out;
200 return 0;
201
202 out:
203 if (rrpriv->evt_ring)
204 dma_free_coherent(&pdev->dev, EVT_RING_SIZE, rrpriv->evt_ring,
205 rrpriv->evt_ring_dma);
206 if (rrpriv->rx_ring)
207 dma_free_coherent(&pdev->dev, RX_TOTAL_SIZE, rrpriv->rx_ring,
208 rrpriv->rx_ring_dma);
209 if (rrpriv->tx_ring)
210 dma_free_coherent(&pdev->dev, TX_TOTAL_SIZE, rrpriv->tx_ring,
211 rrpriv->tx_ring_dma);
212 if (rrpriv->regs)
213 pci_iounmap(pdev, rrpriv->regs);
214 if (pdev)
215 pci_release_regions(pdev);
216 out2:
217 free_netdev(dev);
218 out3:
219 return ret;
220 }
221
rr_remove_one(struct pci_dev * pdev)222 static void rr_remove_one(struct pci_dev *pdev)
223 {
224 struct net_device *dev = pci_get_drvdata(pdev);
225 struct rr_private *rr = netdev_priv(dev);
226
227 if (!(readl(&rr->regs->HostCtrl) & NIC_HALTED)) {
228 printk(KERN_ERR "%s: trying to unload running NIC\n",
229 dev->name);
230 writel(HALT_NIC, &rr->regs->HostCtrl);
231 }
232
233 unregister_netdev(dev);
234 dma_free_coherent(&pdev->dev, EVT_RING_SIZE, rr->evt_ring,
235 rr->evt_ring_dma);
236 dma_free_coherent(&pdev->dev, RX_TOTAL_SIZE, rr->rx_ring,
237 rr->rx_ring_dma);
238 dma_free_coherent(&pdev->dev, TX_TOTAL_SIZE, rr->tx_ring,
239 rr->tx_ring_dma);
240 pci_iounmap(pdev, rr->regs);
241 pci_release_regions(pdev);
242 pci_disable_device(pdev);
243 free_netdev(dev);
244 }
245
246
247 /*
248 * Commands are considered to be slow, thus there is no reason to
249 * inline this.
250 */
rr_issue_cmd(struct rr_private * rrpriv,struct cmd * cmd)251 static void rr_issue_cmd(struct rr_private *rrpriv, struct cmd *cmd)
252 {
253 struct rr_regs __iomem *regs;
254 u32 idx;
255
256 regs = rrpriv->regs;
257 /*
258 * This is temporary - it will go away in the final version.
259 * We probably also want to make this function inline.
260 */
261 if (readl(®s->HostCtrl) & NIC_HALTED){
262 printk("issuing command for halted NIC, code 0x%x, "
263 "HostCtrl %08x\n", cmd->code, readl(®s->HostCtrl));
264 if (readl(®s->Mode) & FATAL_ERR)
265 printk("error codes Fail1 %02x, Fail2 %02x\n",
266 readl(®s->Fail1), readl(®s->Fail2));
267 }
268
269 idx = rrpriv->info->cmd_ctrl.pi;
270
271 writel(*(u32*)(cmd), ®s->CmdRing[idx]);
272 wmb();
273
274 idx = (idx - 1) % CMD_RING_ENTRIES;
275 rrpriv->info->cmd_ctrl.pi = idx;
276 wmb();
277
278 if (readl(®s->Mode) & FATAL_ERR)
279 printk("error code %02x\n", readl(®s->Fail1));
280 }
281
282
283 /*
284 * Reset the board in a sensible manner. The NIC is already halted
285 * when we get here and a spin-lock is held.
286 */
rr_reset(struct net_device * dev)287 static int rr_reset(struct net_device *dev)
288 {
289 struct rr_private *rrpriv;
290 struct rr_regs __iomem *regs;
291 u32 start_pc;
292 int i;
293
294 rrpriv = netdev_priv(dev);
295 regs = rrpriv->regs;
296
297 rr_load_firmware(dev);
298
299 writel(0x01000000, ®s->TX_state);
300 writel(0xff800000, ®s->RX_state);
301 writel(0, ®s->AssistState);
302 writel(CLEAR_INTA, ®s->LocalCtrl);
303 writel(0x01, ®s->BrkPt);
304 writel(0, ®s->Timer);
305 writel(0, ®s->TimerRef);
306 writel(RESET_DMA, ®s->DmaReadState);
307 writel(RESET_DMA, ®s->DmaWriteState);
308 writel(0, ®s->DmaWriteHostHi);
309 writel(0, ®s->DmaWriteHostLo);
310 writel(0, ®s->DmaReadHostHi);
311 writel(0, ®s->DmaReadHostLo);
312 writel(0, ®s->DmaReadLen);
313 writel(0, ®s->DmaWriteLen);
314 writel(0, ®s->DmaWriteLcl);
315 writel(0, ®s->DmaWriteIPchecksum);
316 writel(0, ®s->DmaReadLcl);
317 writel(0, ®s->DmaReadIPchecksum);
318 writel(0, ®s->PciState);
319 #if (BITS_PER_LONG == 64) && defined __LITTLE_ENDIAN
320 writel(SWAP_DATA | PTR64BIT | PTR_WD_SWAP, ®s->Mode);
321 #elif (BITS_PER_LONG == 64)
322 writel(SWAP_DATA | PTR64BIT | PTR_WD_NOSWAP, ®s->Mode);
323 #else
324 writel(SWAP_DATA | PTR32BIT | PTR_WD_NOSWAP, ®s->Mode);
325 #endif
326
327 #if 0
328 /*
329 * Don't worry, this is just black magic.
330 */
331 writel(0xdf000, ®s->RxBase);
332 writel(0xdf000, ®s->RxPrd);
333 writel(0xdf000, ®s->RxCon);
334 writel(0xce000, ®s->TxBase);
335 writel(0xce000, ®s->TxPrd);
336 writel(0xce000, ®s->TxCon);
337 writel(0, ®s->RxIndPro);
338 writel(0, ®s->RxIndCon);
339 writel(0, ®s->RxIndRef);
340 writel(0, ®s->TxIndPro);
341 writel(0, ®s->TxIndCon);
342 writel(0, ®s->TxIndRef);
343 writel(0xcc000, ®s->pad10[0]);
344 writel(0, ®s->DrCmndPro);
345 writel(0, ®s->DrCmndCon);
346 writel(0, ®s->DwCmndPro);
347 writel(0, ®s->DwCmndCon);
348 writel(0, ®s->DwCmndRef);
349 writel(0, ®s->DrDataPro);
350 writel(0, ®s->DrDataCon);
351 writel(0, ®s->DrDataRef);
352 writel(0, ®s->DwDataPro);
353 writel(0, ®s->DwDataCon);
354 writel(0, ®s->DwDataRef);
355 #endif
356
357 writel(0xffffffff, ®s->MbEvent);
358 writel(0, ®s->Event);
359
360 writel(0, ®s->TxPi);
361 writel(0, ®s->IpRxPi);
362
363 writel(0, ®s->EvtCon);
364 writel(0, ®s->EvtPrd);
365
366 rrpriv->info->evt_ctrl.pi = 0;
367
368 for (i = 0; i < CMD_RING_ENTRIES; i++)
369 writel(0, ®s->CmdRing[i]);
370
371 /*
372 * Why 32 ? is this not cache line size dependent?
373 */
374 writel(RBURST_64|WBURST_64, ®s->PciState);
375 wmb();
376
377 start_pc = rr_read_eeprom_word(rrpriv,
378 offsetof(struct eeprom, rncd_info.FwStart));
379
380 #if (DEBUG > 1)
381 printk("%s: Executing firmware at address 0x%06x\n",
382 dev->name, start_pc);
383 #endif
384
385 writel(start_pc + 0x800, ®s->Pc);
386 wmb();
387 udelay(5);
388
389 writel(start_pc, ®s->Pc);
390 wmb();
391
392 return 0;
393 }
394
395
396 /*
397 * Read a string from the EEPROM.
398 */
rr_read_eeprom(struct rr_private * rrpriv,unsigned long offset,unsigned char * buf,unsigned long length)399 static unsigned int rr_read_eeprom(struct rr_private *rrpriv,
400 unsigned long offset,
401 unsigned char *buf,
402 unsigned long length)
403 {
404 struct rr_regs __iomem *regs = rrpriv->regs;
405 u32 misc, io, host, i;
406
407 io = readl(®s->ExtIo);
408 writel(0, ®s->ExtIo);
409 misc = readl(®s->LocalCtrl);
410 writel(0, ®s->LocalCtrl);
411 host = readl(®s->HostCtrl);
412 writel(host | HALT_NIC, ®s->HostCtrl);
413 mb();
414
415 for (i = 0; i < length; i++){
416 writel((EEPROM_BASE + ((offset+i) << 3)), ®s->WinBase);
417 mb();
418 buf[i] = (readl(®s->WinData) >> 24) & 0xff;
419 mb();
420 }
421
422 writel(host, ®s->HostCtrl);
423 writel(misc, ®s->LocalCtrl);
424 writel(io, ®s->ExtIo);
425 mb();
426 return i;
427 }
428
429
430 /*
431 * Shortcut to read one word (4 bytes) out of the EEPROM and convert
432 * it to our CPU byte-order.
433 */
rr_read_eeprom_word(struct rr_private * rrpriv,size_t offset)434 static u32 rr_read_eeprom_word(struct rr_private *rrpriv,
435 size_t offset)
436 {
437 __be32 word;
438
439 if ((rr_read_eeprom(rrpriv, offset,
440 (unsigned char *)&word, 4) == 4))
441 return be32_to_cpu(word);
442 return 0;
443 }
444
445
446 /*
447 * Write a string to the EEPROM.
448 *
449 * This is only called when the firmware is not running.
450 */
write_eeprom(struct rr_private * rrpriv,unsigned long offset,unsigned char * buf,unsigned long length)451 static unsigned int write_eeprom(struct rr_private *rrpriv,
452 unsigned long offset,
453 unsigned char *buf,
454 unsigned long length)
455 {
456 struct rr_regs __iomem *regs = rrpriv->regs;
457 u32 misc, io, data, i, j, ready, error = 0;
458
459 io = readl(®s->ExtIo);
460 writel(0, ®s->ExtIo);
461 misc = readl(®s->LocalCtrl);
462 writel(ENABLE_EEPROM_WRITE, ®s->LocalCtrl);
463 mb();
464
465 for (i = 0; i < length; i++){
466 writel((EEPROM_BASE + ((offset+i) << 3)), ®s->WinBase);
467 mb();
468 data = buf[i] << 24;
469 /*
470 * Only try to write the data if it is not the same
471 * value already.
472 */
473 if ((readl(®s->WinData) & 0xff000000) != data){
474 writel(data, ®s->WinData);
475 ready = 0;
476 j = 0;
477 mb();
478 while(!ready){
479 udelay(20);
480 if ((readl(®s->WinData) & 0xff000000) ==
481 data)
482 ready = 1;
483 mb();
484 if (j++ > 5000){
485 printk("data mismatch: %08x, "
486 "WinData %08x\n", data,
487 readl(®s->WinData));
488 ready = 1;
489 error = 1;
490 }
491 }
492 }
493 }
494
495 writel(misc, ®s->LocalCtrl);
496 writel(io, ®s->ExtIo);
497 mb();
498
499 return error;
500 }
501
502
rr_init(struct net_device * dev)503 static int rr_init(struct net_device *dev)
504 {
505 u8 addr[HIPPI_ALEN] __aligned(4);
506 struct rr_private *rrpriv;
507 struct rr_regs __iomem *regs;
508 u32 sram_size, rev;
509
510 rrpriv = netdev_priv(dev);
511 regs = rrpriv->regs;
512
513 rev = readl(®s->FwRev);
514 rrpriv->fw_rev = rev;
515 if (rev > 0x00020024)
516 printk(" Firmware revision: %i.%i.%i\n", (rev >> 16),
517 ((rev >> 8) & 0xff), (rev & 0xff));
518 else if (rev >= 0x00020000) {
519 printk(" Firmware revision: %i.%i.%i (2.0.37 or "
520 "later is recommended)\n", (rev >> 16),
521 ((rev >> 8) & 0xff), (rev & 0xff));
522 }else{
523 printk(" Firmware revision too old: %i.%i.%i, please "
524 "upgrade to 2.0.37 or later.\n",
525 (rev >> 16), ((rev >> 8) & 0xff), (rev & 0xff));
526 }
527
528 #if (DEBUG > 2)
529 printk(" Maximum receive rings %i\n", readl(®s->MaxRxRng));
530 #endif
531
532 /*
533 * Read the hardware address from the eeprom. The HW address
534 * is not really necessary for HIPPI but awfully convenient.
535 * The pointer arithmetic to put it in dev_addr is ugly, but
536 * Donald Becker does it this way for the GigE version of this
537 * card and it's shorter and more portable than any
538 * other method I've seen. -VAL
539 */
540
541 *(__be16 *)(addr) =
542 htons(rr_read_eeprom_word(rrpriv, offsetof(struct eeprom, manf.BoardULA)));
543 *(__be32 *)(addr+2) =
544 htonl(rr_read_eeprom_word(rrpriv, offsetof(struct eeprom, manf.BoardULA[4])));
545 dev_addr_set(dev, addr);
546
547 printk(" MAC: %pM\n", dev->dev_addr);
548
549 sram_size = rr_read_eeprom_word(rrpriv, 8);
550 printk(" SRAM size 0x%06x\n", sram_size);
551
552 return 0;
553 }
554
555
rr_init1(struct net_device * dev)556 static int rr_init1(struct net_device *dev)
557 {
558 struct rr_private *rrpriv;
559 struct rr_regs __iomem *regs;
560 unsigned long myjif, flags;
561 struct cmd cmd;
562 u32 hostctrl;
563 int ecode = 0;
564 short i;
565
566 rrpriv = netdev_priv(dev);
567 regs = rrpriv->regs;
568
569 spin_lock_irqsave(&rrpriv->lock, flags);
570
571 hostctrl = readl(®s->HostCtrl);
572 writel(hostctrl | HALT_NIC | RR_CLEAR_INT, ®s->HostCtrl);
573 wmb();
574
575 if (hostctrl & PARITY_ERR){
576 printk("%s: Parity error halting NIC - this is serious!\n",
577 dev->name);
578 spin_unlock_irqrestore(&rrpriv->lock, flags);
579 ecode = -EFAULT;
580 goto error;
581 }
582
583 set_rxaddr(regs, rrpriv->rx_ctrl_dma);
584 set_infoaddr(regs, rrpriv->info_dma);
585
586 rrpriv->info->evt_ctrl.entry_size = sizeof(struct event);
587 rrpriv->info->evt_ctrl.entries = EVT_RING_ENTRIES;
588 rrpriv->info->evt_ctrl.mode = 0;
589 rrpriv->info->evt_ctrl.pi = 0;
590 set_rraddr(&rrpriv->info->evt_ctrl.rngptr, rrpriv->evt_ring_dma);
591
592 rrpriv->info->cmd_ctrl.entry_size = sizeof(struct cmd);
593 rrpriv->info->cmd_ctrl.entries = CMD_RING_ENTRIES;
594 rrpriv->info->cmd_ctrl.mode = 0;
595 rrpriv->info->cmd_ctrl.pi = 15;
596
597 for (i = 0; i < CMD_RING_ENTRIES; i++) {
598 writel(0, ®s->CmdRing[i]);
599 }
600
601 for (i = 0; i < TX_RING_ENTRIES; i++) {
602 rrpriv->tx_ring[i].size = 0;
603 set_rraddr(&rrpriv->tx_ring[i].addr, 0);
604 rrpriv->tx_skbuff[i] = NULL;
605 }
606 rrpriv->info->tx_ctrl.entry_size = sizeof(struct tx_desc);
607 rrpriv->info->tx_ctrl.entries = TX_RING_ENTRIES;
608 rrpriv->info->tx_ctrl.mode = 0;
609 rrpriv->info->tx_ctrl.pi = 0;
610 set_rraddr(&rrpriv->info->tx_ctrl.rngptr, rrpriv->tx_ring_dma);
611
612 /*
613 * Set dirty_tx before we start receiving interrupts, otherwise
614 * the interrupt handler might think it is supposed to process
615 * tx ints before we are up and running, which may cause a null
616 * pointer access in the int handler.
617 */
618 rrpriv->tx_full = 0;
619 rrpriv->cur_rx = 0;
620 rrpriv->dirty_rx = rrpriv->dirty_tx = 0;
621
622 rr_reset(dev);
623
624 /* Tuning values */
625 writel(0x5000, ®s->ConRetry);
626 writel(0x100, ®s->ConRetryTmr);
627 writel(0x500000, ®s->ConTmout);
628 writel(0x60, ®s->IntrTmr);
629 writel(0x500000, ®s->TxDataMvTimeout);
630 writel(0x200000, ®s->RxDataMvTimeout);
631 writel(0x80, ®s->WriteDmaThresh);
632 writel(0x80, ®s->ReadDmaThresh);
633
634 rrpriv->fw_running = 0;
635 wmb();
636
637 hostctrl &= ~(HALT_NIC | INVALID_INST_B | PARITY_ERR);
638 writel(hostctrl, ®s->HostCtrl);
639 wmb();
640
641 spin_unlock_irqrestore(&rrpriv->lock, flags);
642
643 for (i = 0; i < RX_RING_ENTRIES; i++) {
644 struct sk_buff *skb;
645 dma_addr_t addr;
646
647 rrpriv->rx_ring[i].mode = 0;
648 skb = alloc_skb(dev->mtu + HIPPI_HLEN, GFP_ATOMIC);
649 if (!skb) {
650 printk(KERN_WARNING "%s: Unable to allocate memory "
651 "for receive ring - halting NIC\n", dev->name);
652 ecode = -ENOMEM;
653 goto error;
654 }
655 rrpriv->rx_skbuff[i] = skb;
656 addr = dma_map_single(&rrpriv->pci_dev->dev, skb->data,
657 dev->mtu + HIPPI_HLEN, DMA_FROM_DEVICE);
658 /*
659 * Sanity test to see if we conflict with the DMA
660 * limitations of the Roadrunner.
661 */
662 if ((((unsigned long)skb->data) & 0xfff) > ~65320)
663 printk("skb alloc error\n");
664
665 set_rraddr(&rrpriv->rx_ring[i].addr, addr);
666 rrpriv->rx_ring[i].size = dev->mtu + HIPPI_HLEN;
667 }
668
669 rrpriv->rx_ctrl[4].entry_size = sizeof(struct rx_desc);
670 rrpriv->rx_ctrl[4].entries = RX_RING_ENTRIES;
671 rrpriv->rx_ctrl[4].mode = 8;
672 rrpriv->rx_ctrl[4].pi = 0;
673 wmb();
674 set_rraddr(&rrpriv->rx_ctrl[4].rngptr, rrpriv->rx_ring_dma);
675
676 udelay(1000);
677
678 /*
679 * Now start the FirmWare.
680 */
681 cmd.code = C_START_FW;
682 cmd.ring = 0;
683 cmd.index = 0;
684
685 rr_issue_cmd(rrpriv, &cmd);
686
687 /*
688 * Give the FirmWare time to chew on the `get running' command.
689 */
690 myjif = jiffies + 5 * HZ;
691 while (time_before(jiffies, myjif) && !rrpriv->fw_running)
692 cpu_relax();
693
694 netif_start_queue(dev);
695
696 return ecode;
697
698 error:
699 /*
700 * We might have gotten here because we are out of memory,
701 * make sure we release everything we allocated before failing
702 */
703 for (i = 0; i < RX_RING_ENTRIES; i++) {
704 struct sk_buff *skb = rrpriv->rx_skbuff[i];
705
706 if (skb) {
707 dma_unmap_single(&rrpriv->pci_dev->dev,
708 rrpriv->rx_ring[i].addr.addrlo,
709 dev->mtu + HIPPI_HLEN,
710 DMA_FROM_DEVICE);
711 rrpriv->rx_ring[i].size = 0;
712 set_rraddr(&rrpriv->rx_ring[i].addr, 0);
713 dev_kfree_skb(skb);
714 rrpriv->rx_skbuff[i] = NULL;
715 }
716 }
717 return ecode;
718 }
719
720
721 /*
722 * All events are considered to be slow (RX/TX ints do not generate
723 * events) and are handled here, outside the main interrupt handler,
724 * to reduce the size of the handler.
725 */
rr_handle_event(struct net_device * dev,u32 prodidx,u32 eidx)726 static u32 rr_handle_event(struct net_device *dev, u32 prodidx, u32 eidx)
727 {
728 struct rr_private *rrpriv;
729 struct rr_regs __iomem *regs;
730 u32 tmp;
731
732 rrpriv = netdev_priv(dev);
733 regs = rrpriv->regs;
734
735 while (prodidx != eidx){
736 switch (rrpriv->evt_ring[eidx].code){
737 case E_NIC_UP:
738 tmp = readl(®s->FwRev);
739 printk(KERN_INFO "%s: Firmware revision %i.%i.%i "
740 "up and running\n", dev->name,
741 (tmp >> 16), ((tmp >> 8) & 0xff), (tmp & 0xff));
742 rrpriv->fw_running = 1;
743 writel(RX_RING_ENTRIES - 1, ®s->IpRxPi);
744 wmb();
745 break;
746 case E_LINK_ON:
747 printk(KERN_INFO "%s: Optical link ON\n", dev->name);
748 break;
749 case E_LINK_OFF:
750 printk(KERN_INFO "%s: Optical link OFF\n", dev->name);
751 break;
752 case E_RX_IDLE:
753 printk(KERN_WARNING "%s: RX data not moving\n",
754 dev->name);
755 goto drop;
756 case E_WATCHDOG:
757 printk(KERN_INFO "%s: The watchdog is here to see "
758 "us\n", dev->name);
759 break;
760 case E_INTERN_ERR:
761 printk(KERN_ERR "%s: HIPPI Internal NIC error\n",
762 dev->name);
763 writel(readl(®s->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
764 ®s->HostCtrl);
765 wmb();
766 break;
767 case E_HOST_ERR:
768 printk(KERN_ERR "%s: Host software error\n",
769 dev->name);
770 writel(readl(®s->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
771 ®s->HostCtrl);
772 wmb();
773 break;
774 /*
775 * TX events.
776 */
777 case E_CON_REJ:
778 printk(KERN_WARNING "%s: Connection rejected\n",
779 dev->name);
780 dev->stats.tx_aborted_errors++;
781 break;
782 case E_CON_TMOUT:
783 printk(KERN_WARNING "%s: Connection timeout\n",
784 dev->name);
785 break;
786 case E_DISC_ERR:
787 printk(KERN_WARNING "%s: HIPPI disconnect error\n",
788 dev->name);
789 dev->stats.tx_aborted_errors++;
790 break;
791 case E_INT_PRTY:
792 printk(KERN_ERR "%s: HIPPI Internal Parity error\n",
793 dev->name);
794 writel(readl(®s->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
795 ®s->HostCtrl);
796 wmb();
797 break;
798 case E_TX_IDLE:
799 printk(KERN_WARNING "%s: Transmitter idle\n",
800 dev->name);
801 break;
802 case E_TX_LINK_DROP:
803 printk(KERN_WARNING "%s: Link lost during transmit\n",
804 dev->name);
805 dev->stats.tx_aborted_errors++;
806 writel(readl(®s->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
807 ®s->HostCtrl);
808 wmb();
809 break;
810 case E_TX_INV_RNG:
811 printk(KERN_ERR "%s: Invalid send ring block\n",
812 dev->name);
813 writel(readl(®s->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
814 ®s->HostCtrl);
815 wmb();
816 break;
817 case E_TX_INV_BUF:
818 printk(KERN_ERR "%s: Invalid send buffer address\n",
819 dev->name);
820 writel(readl(®s->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
821 ®s->HostCtrl);
822 wmb();
823 break;
824 case E_TX_INV_DSC:
825 printk(KERN_ERR "%s: Invalid descriptor address\n",
826 dev->name);
827 writel(readl(®s->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
828 ®s->HostCtrl);
829 wmb();
830 break;
831 /*
832 * RX events.
833 */
834 case E_RX_RNG_OUT:
835 printk(KERN_INFO "%s: Receive ring full\n", dev->name);
836 break;
837
838 case E_RX_PAR_ERR:
839 printk(KERN_WARNING "%s: Receive parity error\n",
840 dev->name);
841 goto drop;
842 case E_RX_LLRC_ERR:
843 printk(KERN_WARNING "%s: Receive LLRC error\n",
844 dev->name);
845 goto drop;
846 case E_PKT_LN_ERR:
847 printk(KERN_WARNING "%s: Receive packet length "
848 "error\n", dev->name);
849 goto drop;
850 case E_DTA_CKSM_ERR:
851 printk(KERN_WARNING "%s: Data checksum error\n",
852 dev->name);
853 goto drop;
854 case E_SHT_BST:
855 printk(KERN_WARNING "%s: Unexpected short burst "
856 "error\n", dev->name);
857 goto drop;
858 case E_STATE_ERR:
859 printk(KERN_WARNING "%s: Recv. state transition"
860 " error\n", dev->name);
861 goto drop;
862 case E_UNEXP_DATA:
863 printk(KERN_WARNING "%s: Unexpected data error\n",
864 dev->name);
865 goto drop;
866 case E_LST_LNK_ERR:
867 printk(KERN_WARNING "%s: Link lost error\n",
868 dev->name);
869 goto drop;
870 case E_FRM_ERR:
871 printk(KERN_WARNING "%s: Framing Error\n",
872 dev->name);
873 goto drop;
874 case E_FLG_SYN_ERR:
875 printk(KERN_WARNING "%s: Flag sync. lost during "
876 "packet\n", dev->name);
877 goto drop;
878 case E_RX_INV_BUF:
879 printk(KERN_ERR "%s: Invalid receive buffer "
880 "address\n", dev->name);
881 writel(readl(®s->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
882 ®s->HostCtrl);
883 wmb();
884 break;
885 case E_RX_INV_DSC:
886 printk(KERN_ERR "%s: Invalid receive descriptor "
887 "address\n", dev->name);
888 writel(readl(®s->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
889 ®s->HostCtrl);
890 wmb();
891 break;
892 case E_RNG_BLK:
893 printk(KERN_ERR "%s: Invalid ring block\n",
894 dev->name);
895 writel(readl(®s->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
896 ®s->HostCtrl);
897 wmb();
898 break;
899 drop:
900 /* Label packet to be dropped.
901 * Actual dropping occurs in rx
902 * handling.
903 *
904 * The index of packet we get to drop is
905 * the index of the packet following
906 * the bad packet. -kbf
907 */
908 {
909 u16 index = rrpriv->evt_ring[eidx].index;
910 index = (index + (RX_RING_ENTRIES - 1)) %
911 RX_RING_ENTRIES;
912 rrpriv->rx_ring[index].mode |=
913 (PACKET_BAD | PACKET_END);
914 }
915 break;
916 default:
917 printk(KERN_WARNING "%s: Unhandled event 0x%02x\n",
918 dev->name, rrpriv->evt_ring[eidx].code);
919 }
920 eidx = (eidx + 1) % EVT_RING_ENTRIES;
921 }
922
923 rrpriv->info->evt_ctrl.pi = eidx;
924 wmb();
925 return eidx;
926 }
927
928
rx_int(struct net_device * dev,u32 rxlimit,u32 index)929 static void rx_int(struct net_device *dev, u32 rxlimit, u32 index)
930 {
931 struct rr_private *rrpriv = netdev_priv(dev);
932 struct rr_regs __iomem *regs = rrpriv->regs;
933
934 do {
935 struct rx_desc *desc;
936 u32 pkt_len;
937
938 desc = &(rrpriv->rx_ring[index]);
939 pkt_len = desc->size;
940 #if (DEBUG > 2)
941 printk("index %i, rxlimit %i\n", index, rxlimit);
942 printk("len %x, mode %x\n", pkt_len, desc->mode);
943 #endif
944 if ( (rrpriv->rx_ring[index].mode & PACKET_BAD) == PACKET_BAD){
945 dev->stats.rx_dropped++;
946 goto defer;
947 }
948
949 if (pkt_len > 0){
950 struct sk_buff *skb, *rx_skb;
951
952 rx_skb = rrpriv->rx_skbuff[index];
953
954 if (pkt_len < PKT_COPY_THRESHOLD) {
955 skb = alloc_skb(pkt_len, GFP_ATOMIC);
956 if (skb == NULL){
957 printk(KERN_WARNING "%s: Unable to allocate skb (%i bytes), deferring packet\n", dev->name, pkt_len);
958 dev->stats.rx_dropped++;
959 goto defer;
960 } else {
961 dma_sync_single_for_cpu(&rrpriv->pci_dev->dev,
962 desc->addr.addrlo,
963 pkt_len,
964 DMA_FROM_DEVICE);
965
966 skb_put_data(skb, rx_skb->data,
967 pkt_len);
968
969 dma_sync_single_for_device(&rrpriv->pci_dev->dev,
970 desc->addr.addrlo,
971 pkt_len,
972 DMA_FROM_DEVICE);
973 }
974 }else{
975 struct sk_buff *newskb;
976
977 newskb = alloc_skb(dev->mtu + HIPPI_HLEN,
978 GFP_ATOMIC);
979 if (newskb){
980 dma_addr_t addr;
981
982 dma_unmap_single(&rrpriv->pci_dev->dev,
983 desc->addr.addrlo,
984 dev->mtu + HIPPI_HLEN,
985 DMA_FROM_DEVICE);
986 skb = rx_skb;
987 skb_put(skb, pkt_len);
988 rrpriv->rx_skbuff[index] = newskb;
989 addr = dma_map_single(&rrpriv->pci_dev->dev,
990 newskb->data,
991 dev->mtu + HIPPI_HLEN,
992 DMA_FROM_DEVICE);
993 set_rraddr(&desc->addr, addr);
994 } else {
995 printk("%s: Out of memory, deferring "
996 "packet\n", dev->name);
997 dev->stats.rx_dropped++;
998 goto defer;
999 }
1000 }
1001 skb->protocol = hippi_type_trans(skb, dev);
1002
1003 netif_rx(skb); /* send it up */
1004
1005 dev->stats.rx_packets++;
1006 dev->stats.rx_bytes += pkt_len;
1007 }
1008 defer:
1009 desc->mode = 0;
1010 desc->size = dev->mtu + HIPPI_HLEN;
1011
1012 if ((index & 7) == 7)
1013 writel(index, ®s->IpRxPi);
1014
1015 index = (index + 1) % RX_RING_ENTRIES;
1016 } while(index != rxlimit);
1017
1018 rrpriv->cur_rx = index;
1019 wmb();
1020 }
1021
1022
rr_interrupt(int irq,void * dev_id)1023 static irqreturn_t rr_interrupt(int irq, void *dev_id)
1024 {
1025 struct rr_private *rrpriv;
1026 struct rr_regs __iomem *regs;
1027 struct net_device *dev = (struct net_device *)dev_id;
1028 u32 prodidx, rxindex, eidx, txcsmr, rxlimit, txcon;
1029
1030 rrpriv = netdev_priv(dev);
1031 regs = rrpriv->regs;
1032
1033 if (!(readl(®s->HostCtrl) & RR_INT))
1034 return IRQ_NONE;
1035
1036 spin_lock(&rrpriv->lock);
1037
1038 prodidx = readl(®s->EvtPrd);
1039 txcsmr = (prodidx >> 8) & 0xff;
1040 rxlimit = (prodidx >> 16) & 0xff;
1041 prodidx &= 0xff;
1042
1043 #if (DEBUG > 2)
1044 printk("%s: interrupt, prodidx = %i, eidx = %i\n", dev->name,
1045 prodidx, rrpriv->info->evt_ctrl.pi);
1046 #endif
1047 /*
1048 * Order here is important. We must handle events
1049 * before doing anything else in order to catch
1050 * such things as LLRC errors, etc -kbf
1051 */
1052
1053 eidx = rrpriv->info->evt_ctrl.pi;
1054 if (prodidx != eidx)
1055 eidx = rr_handle_event(dev, prodidx, eidx);
1056
1057 rxindex = rrpriv->cur_rx;
1058 if (rxindex != rxlimit)
1059 rx_int(dev, rxlimit, rxindex);
1060
1061 txcon = rrpriv->dirty_tx;
1062 if (txcsmr != txcon) {
1063 do {
1064 /* Due to occational firmware TX producer/consumer out
1065 * of sync. error need to check entry in ring -kbf
1066 */
1067 if(rrpriv->tx_skbuff[txcon]){
1068 struct tx_desc *desc;
1069 struct sk_buff *skb;
1070
1071 desc = &(rrpriv->tx_ring[txcon]);
1072 skb = rrpriv->tx_skbuff[txcon];
1073
1074 dev->stats.tx_packets++;
1075 dev->stats.tx_bytes += skb->len;
1076
1077 dma_unmap_single(&rrpriv->pci_dev->dev,
1078 desc->addr.addrlo, skb->len,
1079 DMA_TO_DEVICE);
1080 dev_kfree_skb_irq(skb);
1081
1082 rrpriv->tx_skbuff[txcon] = NULL;
1083 desc->size = 0;
1084 set_rraddr(&rrpriv->tx_ring[txcon].addr, 0);
1085 desc->mode = 0;
1086 }
1087 txcon = (txcon + 1) % TX_RING_ENTRIES;
1088 } while (txcsmr != txcon);
1089 wmb();
1090
1091 rrpriv->dirty_tx = txcon;
1092 if (rrpriv->tx_full && rr_if_busy(dev) &&
1093 (((rrpriv->info->tx_ctrl.pi + 1) % TX_RING_ENTRIES)
1094 != rrpriv->dirty_tx)){
1095 rrpriv->tx_full = 0;
1096 netif_wake_queue(dev);
1097 }
1098 }
1099
1100 eidx |= ((txcsmr << 8) | (rxlimit << 16));
1101 writel(eidx, ®s->EvtCon);
1102 wmb();
1103
1104 spin_unlock(&rrpriv->lock);
1105 return IRQ_HANDLED;
1106 }
1107
rr_raz_tx(struct rr_private * rrpriv,struct net_device * dev)1108 static inline void rr_raz_tx(struct rr_private *rrpriv,
1109 struct net_device *dev)
1110 {
1111 int i;
1112
1113 for (i = 0; i < TX_RING_ENTRIES; i++) {
1114 struct sk_buff *skb = rrpriv->tx_skbuff[i];
1115
1116 if (skb) {
1117 struct tx_desc *desc = &(rrpriv->tx_ring[i]);
1118
1119 dma_unmap_single(&rrpriv->pci_dev->dev,
1120 desc->addr.addrlo, skb->len,
1121 DMA_TO_DEVICE);
1122 desc->size = 0;
1123 set_rraddr(&desc->addr, 0);
1124 dev_kfree_skb(skb);
1125 rrpriv->tx_skbuff[i] = NULL;
1126 }
1127 }
1128 }
1129
1130
rr_raz_rx(struct rr_private * rrpriv,struct net_device * dev)1131 static inline void rr_raz_rx(struct rr_private *rrpriv,
1132 struct net_device *dev)
1133 {
1134 int i;
1135
1136 for (i = 0; i < RX_RING_ENTRIES; i++) {
1137 struct sk_buff *skb = rrpriv->rx_skbuff[i];
1138
1139 if (skb) {
1140 struct rx_desc *desc = &(rrpriv->rx_ring[i]);
1141
1142 dma_unmap_single(&rrpriv->pci_dev->dev,
1143 desc->addr.addrlo,
1144 dev->mtu + HIPPI_HLEN,
1145 DMA_FROM_DEVICE);
1146 desc->size = 0;
1147 set_rraddr(&desc->addr, 0);
1148 dev_kfree_skb(skb);
1149 rrpriv->rx_skbuff[i] = NULL;
1150 }
1151 }
1152 }
1153
rr_timer(struct timer_list * t)1154 static void rr_timer(struct timer_list *t)
1155 {
1156 struct rr_private *rrpriv = from_timer(rrpriv, t, timer);
1157 struct net_device *dev = pci_get_drvdata(rrpriv->pci_dev);
1158 struct rr_regs __iomem *regs = rrpriv->regs;
1159 unsigned long flags;
1160
1161 if (readl(®s->HostCtrl) & NIC_HALTED){
1162 printk("%s: Restarting nic\n", dev->name);
1163 memset(rrpriv->rx_ctrl, 0, 256 * sizeof(struct ring_ctrl));
1164 memset(rrpriv->info, 0, sizeof(struct rr_info));
1165 wmb();
1166
1167 rr_raz_tx(rrpriv, dev);
1168 rr_raz_rx(rrpriv, dev);
1169
1170 if (rr_init1(dev)) {
1171 spin_lock_irqsave(&rrpriv->lock, flags);
1172 writel(readl(®s->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
1173 ®s->HostCtrl);
1174 spin_unlock_irqrestore(&rrpriv->lock, flags);
1175 }
1176 }
1177 rrpriv->timer.expires = RUN_AT(5*HZ);
1178 add_timer(&rrpriv->timer);
1179 }
1180
1181
rr_open(struct net_device * dev)1182 static int rr_open(struct net_device *dev)
1183 {
1184 struct rr_private *rrpriv = netdev_priv(dev);
1185 struct pci_dev *pdev = rrpriv->pci_dev;
1186 struct rr_regs __iomem *regs;
1187 int ecode = 0;
1188 unsigned long flags;
1189 dma_addr_t dma_addr;
1190
1191 regs = rrpriv->regs;
1192
1193 if (rrpriv->fw_rev < 0x00020000) {
1194 printk(KERN_WARNING "%s: trying to configure device with "
1195 "obsolete firmware\n", dev->name);
1196 ecode = -EBUSY;
1197 goto error;
1198 }
1199
1200 rrpriv->rx_ctrl = dma_alloc_coherent(&pdev->dev,
1201 256 * sizeof(struct ring_ctrl),
1202 &dma_addr, GFP_KERNEL);
1203 if (!rrpriv->rx_ctrl) {
1204 ecode = -ENOMEM;
1205 goto error;
1206 }
1207 rrpriv->rx_ctrl_dma = dma_addr;
1208
1209 rrpriv->info = dma_alloc_coherent(&pdev->dev, sizeof(struct rr_info),
1210 &dma_addr, GFP_KERNEL);
1211 if (!rrpriv->info) {
1212 ecode = -ENOMEM;
1213 goto error;
1214 }
1215 rrpriv->info_dma = dma_addr;
1216 wmb();
1217
1218 spin_lock_irqsave(&rrpriv->lock, flags);
1219 writel(readl(®s->HostCtrl)|HALT_NIC|RR_CLEAR_INT, ®s->HostCtrl);
1220 readl(®s->HostCtrl);
1221 spin_unlock_irqrestore(&rrpriv->lock, flags);
1222
1223 if (request_irq(pdev->irq, rr_interrupt, IRQF_SHARED, dev->name, dev)) {
1224 printk(KERN_WARNING "%s: Requested IRQ %d is busy\n",
1225 dev->name, pdev->irq);
1226 ecode = -EAGAIN;
1227 goto error;
1228 }
1229
1230 if ((ecode = rr_init1(dev)))
1231 goto error;
1232
1233 /* Set the timer to switch to check for link beat and perhaps switch
1234 to an alternate media type. */
1235 timer_setup(&rrpriv->timer, rr_timer, 0);
1236 rrpriv->timer.expires = RUN_AT(5*HZ); /* 5 sec. watchdog */
1237 add_timer(&rrpriv->timer);
1238
1239 netif_start_queue(dev);
1240
1241 return ecode;
1242
1243 error:
1244 spin_lock_irqsave(&rrpriv->lock, flags);
1245 writel(readl(®s->HostCtrl)|HALT_NIC|RR_CLEAR_INT, ®s->HostCtrl);
1246 spin_unlock_irqrestore(&rrpriv->lock, flags);
1247
1248 if (rrpriv->info) {
1249 dma_free_coherent(&pdev->dev, sizeof(struct rr_info),
1250 rrpriv->info, rrpriv->info_dma);
1251 rrpriv->info = NULL;
1252 }
1253 if (rrpriv->rx_ctrl) {
1254 dma_free_coherent(&pdev->dev, 256 * sizeof(struct ring_ctrl),
1255 rrpriv->rx_ctrl, rrpriv->rx_ctrl_dma);
1256 rrpriv->rx_ctrl = NULL;
1257 }
1258
1259 netif_stop_queue(dev);
1260
1261 return ecode;
1262 }
1263
1264
rr_dump(struct net_device * dev)1265 static void rr_dump(struct net_device *dev)
1266 {
1267 struct rr_private *rrpriv;
1268 struct rr_regs __iomem *regs;
1269 u32 index, cons;
1270 short i;
1271 int len;
1272
1273 rrpriv = netdev_priv(dev);
1274 regs = rrpriv->regs;
1275
1276 printk("%s: dumping NIC TX rings\n", dev->name);
1277
1278 printk("RxPrd %08x, TxPrd %02x, EvtPrd %08x, TxPi %02x, TxCtrlPi %02x\n",
1279 readl(®s->RxPrd), readl(®s->TxPrd),
1280 readl(®s->EvtPrd), readl(®s->TxPi),
1281 rrpriv->info->tx_ctrl.pi);
1282
1283 printk("Error code 0x%x\n", readl(®s->Fail1));
1284
1285 index = (((readl(®s->EvtPrd) >> 8) & 0xff) - 1) % TX_RING_ENTRIES;
1286 cons = rrpriv->dirty_tx;
1287 printk("TX ring index %i, TX consumer %i\n",
1288 index, cons);
1289
1290 if (rrpriv->tx_skbuff[index]){
1291 len = min_t(int, 0x80, rrpriv->tx_skbuff[index]->len);
1292 printk("skbuff for index %i is valid - dumping data (0x%x bytes - DMA len 0x%x)\n", index, len, rrpriv->tx_ring[index].size);
1293 for (i = 0; i < len; i++){
1294 if (!(i & 7))
1295 printk("\n");
1296 printk("%02x ", (unsigned char) rrpriv->tx_skbuff[index]->data[i]);
1297 }
1298 printk("\n");
1299 }
1300
1301 if (rrpriv->tx_skbuff[cons]){
1302 len = min_t(int, 0x80, rrpriv->tx_skbuff[cons]->len);
1303 printk("skbuff for cons %i is valid - dumping data (0x%x bytes - skbuff len 0x%x)\n", cons, len, rrpriv->tx_skbuff[cons]->len);
1304 printk("mode 0x%x, size 0x%x,\n phys %08Lx, skbuff-addr %p, truesize 0x%x\n",
1305 rrpriv->tx_ring[cons].mode,
1306 rrpriv->tx_ring[cons].size,
1307 (unsigned long long) rrpriv->tx_ring[cons].addr.addrlo,
1308 rrpriv->tx_skbuff[cons]->data,
1309 (unsigned int)rrpriv->tx_skbuff[cons]->truesize);
1310 for (i = 0; i < len; i++){
1311 if (!(i & 7))
1312 printk("\n");
1313 printk("%02x ", (unsigned char)rrpriv->tx_ring[cons].size);
1314 }
1315 printk("\n");
1316 }
1317
1318 printk("dumping TX ring info:\n");
1319 for (i = 0; i < TX_RING_ENTRIES; i++)
1320 printk("mode 0x%x, size 0x%x, phys-addr %08Lx\n",
1321 rrpriv->tx_ring[i].mode,
1322 rrpriv->tx_ring[i].size,
1323 (unsigned long long) rrpriv->tx_ring[i].addr.addrlo);
1324
1325 }
1326
1327
rr_close(struct net_device * dev)1328 static int rr_close(struct net_device *dev)
1329 {
1330 struct rr_private *rrpriv = netdev_priv(dev);
1331 struct rr_regs __iomem *regs = rrpriv->regs;
1332 struct pci_dev *pdev = rrpriv->pci_dev;
1333 unsigned long flags;
1334 u32 tmp;
1335 short i;
1336
1337 netif_stop_queue(dev);
1338
1339
1340 /*
1341 * Lock to make sure we are not cleaning up while another CPU
1342 * is handling interrupts.
1343 */
1344 spin_lock_irqsave(&rrpriv->lock, flags);
1345
1346 tmp = readl(®s->HostCtrl);
1347 if (tmp & NIC_HALTED){
1348 printk("%s: NIC already halted\n", dev->name);
1349 rr_dump(dev);
1350 }else{
1351 tmp |= HALT_NIC | RR_CLEAR_INT;
1352 writel(tmp, ®s->HostCtrl);
1353 readl(®s->HostCtrl);
1354 }
1355
1356 rrpriv->fw_running = 0;
1357
1358 spin_unlock_irqrestore(&rrpriv->lock, flags);
1359 del_timer_sync(&rrpriv->timer);
1360 spin_lock_irqsave(&rrpriv->lock, flags);
1361
1362 writel(0, ®s->TxPi);
1363 writel(0, ®s->IpRxPi);
1364
1365 writel(0, ®s->EvtCon);
1366 writel(0, ®s->EvtPrd);
1367
1368 for (i = 0; i < CMD_RING_ENTRIES; i++)
1369 writel(0, ®s->CmdRing[i]);
1370
1371 rrpriv->info->tx_ctrl.entries = 0;
1372 rrpriv->info->cmd_ctrl.pi = 0;
1373 rrpriv->info->evt_ctrl.pi = 0;
1374 rrpriv->rx_ctrl[4].entries = 0;
1375
1376 rr_raz_tx(rrpriv, dev);
1377 rr_raz_rx(rrpriv, dev);
1378
1379 dma_free_coherent(&pdev->dev, 256 * sizeof(struct ring_ctrl),
1380 rrpriv->rx_ctrl, rrpriv->rx_ctrl_dma);
1381 rrpriv->rx_ctrl = NULL;
1382
1383 dma_free_coherent(&pdev->dev, sizeof(struct rr_info), rrpriv->info,
1384 rrpriv->info_dma);
1385 rrpriv->info = NULL;
1386
1387 spin_unlock_irqrestore(&rrpriv->lock, flags);
1388 free_irq(pdev->irq, dev);
1389
1390 return 0;
1391 }
1392
1393
rr_start_xmit(struct sk_buff * skb,struct net_device * dev)1394 static netdev_tx_t rr_start_xmit(struct sk_buff *skb,
1395 struct net_device *dev)
1396 {
1397 struct rr_private *rrpriv = netdev_priv(dev);
1398 struct rr_regs __iomem *regs = rrpriv->regs;
1399 struct hippi_cb *hcb = (struct hippi_cb *) skb->cb;
1400 struct ring_ctrl *txctrl;
1401 unsigned long flags;
1402 u32 index, len = skb->len;
1403 u32 *ifield;
1404 struct sk_buff *new_skb;
1405
1406 if (readl(®s->Mode) & FATAL_ERR)
1407 printk("error codes Fail1 %02x, Fail2 %02x\n",
1408 readl(®s->Fail1), readl(®s->Fail2));
1409
1410 /*
1411 * We probably need to deal with tbusy here to prevent overruns.
1412 */
1413
1414 if (skb_headroom(skb) < 8){
1415 printk("incoming skb too small - reallocating\n");
1416 if (!(new_skb = dev_alloc_skb(len + 8))) {
1417 dev_kfree_skb(skb);
1418 netif_wake_queue(dev);
1419 return NETDEV_TX_OK;
1420 }
1421 skb_reserve(new_skb, 8);
1422 skb_put(new_skb, len);
1423 skb_copy_from_linear_data(skb, new_skb->data, len);
1424 dev_kfree_skb(skb);
1425 skb = new_skb;
1426 }
1427
1428 ifield = skb_push(skb, 8);
1429
1430 ifield[0] = 0;
1431 ifield[1] = hcb->ifield;
1432
1433 /*
1434 * We don't need the lock before we are actually going to start
1435 * fiddling with the control blocks.
1436 */
1437 spin_lock_irqsave(&rrpriv->lock, flags);
1438
1439 txctrl = &rrpriv->info->tx_ctrl;
1440
1441 index = txctrl->pi;
1442
1443 rrpriv->tx_skbuff[index] = skb;
1444 set_rraddr(&rrpriv->tx_ring[index].addr,
1445 dma_map_single(&rrpriv->pci_dev->dev, skb->data, len + 8, DMA_TO_DEVICE));
1446 rrpriv->tx_ring[index].size = len + 8; /* include IFIELD */
1447 rrpriv->tx_ring[index].mode = PACKET_START | PACKET_END;
1448 txctrl->pi = (index + 1) % TX_RING_ENTRIES;
1449 wmb();
1450 writel(txctrl->pi, ®s->TxPi);
1451
1452 if (txctrl->pi == rrpriv->dirty_tx){
1453 rrpriv->tx_full = 1;
1454 netif_stop_queue(dev);
1455 }
1456
1457 spin_unlock_irqrestore(&rrpriv->lock, flags);
1458
1459 return NETDEV_TX_OK;
1460 }
1461
1462
1463 /*
1464 * Read the firmware out of the EEPROM and put it into the SRAM
1465 * (or from user space - later)
1466 *
1467 * This operation requires the NIC to be halted and is performed with
1468 * interrupts disabled and with the spinlock hold.
1469 */
rr_load_firmware(struct net_device * dev)1470 static int rr_load_firmware(struct net_device *dev)
1471 {
1472 struct rr_private *rrpriv;
1473 struct rr_regs __iomem *regs;
1474 size_t eptr, segptr;
1475 int i, j;
1476 u32 localctrl, sptr, len, tmp;
1477 u32 p2len, p2size, nr_seg, revision, io, sram_size;
1478
1479 rrpriv = netdev_priv(dev);
1480 regs = rrpriv->regs;
1481
1482 if (dev->flags & IFF_UP)
1483 return -EBUSY;
1484
1485 if (!(readl(®s->HostCtrl) & NIC_HALTED)){
1486 printk("%s: Trying to load firmware to a running NIC.\n",
1487 dev->name);
1488 return -EBUSY;
1489 }
1490
1491 localctrl = readl(®s->LocalCtrl);
1492 writel(0, ®s->LocalCtrl);
1493
1494 writel(0, ®s->EvtPrd);
1495 writel(0, ®s->RxPrd);
1496 writel(0, ®s->TxPrd);
1497
1498 /*
1499 * First wipe the entire SRAM, otherwise we might run into all
1500 * kinds of trouble ... sigh, this took almost all afternoon
1501 * to track down ;-(
1502 */
1503 io = readl(®s->ExtIo);
1504 writel(0, ®s->ExtIo);
1505 sram_size = rr_read_eeprom_word(rrpriv, 8);
1506
1507 for (i = 200; i < sram_size / 4; i++){
1508 writel(i * 4, ®s->WinBase);
1509 mb();
1510 writel(0, ®s->WinData);
1511 mb();
1512 }
1513 writel(io, ®s->ExtIo);
1514 mb();
1515
1516 eptr = rr_read_eeprom_word(rrpriv,
1517 offsetof(struct eeprom, rncd_info.AddrRunCodeSegs));
1518 eptr = ((eptr & 0x1fffff) >> 3);
1519
1520 p2len = rr_read_eeprom_word(rrpriv, 0x83*4);
1521 p2len = (p2len << 2);
1522 p2size = rr_read_eeprom_word(rrpriv, 0x84*4);
1523 p2size = ((p2size & 0x1fffff) >> 3);
1524
1525 if ((eptr < p2size) || (eptr > (p2size + p2len))){
1526 printk("%s: eptr is invalid\n", dev->name);
1527 goto out;
1528 }
1529
1530 revision = rr_read_eeprom_word(rrpriv,
1531 offsetof(struct eeprom, manf.HeaderFmt));
1532
1533 if (revision != 1){
1534 printk("%s: invalid firmware format (%i)\n",
1535 dev->name, revision);
1536 goto out;
1537 }
1538
1539 nr_seg = rr_read_eeprom_word(rrpriv, eptr);
1540 eptr +=4;
1541 #if (DEBUG > 1)
1542 printk("%s: nr_seg %i\n", dev->name, nr_seg);
1543 #endif
1544
1545 for (i = 0; i < nr_seg; i++){
1546 sptr = rr_read_eeprom_word(rrpriv, eptr);
1547 eptr += 4;
1548 len = rr_read_eeprom_word(rrpriv, eptr);
1549 eptr += 4;
1550 segptr = rr_read_eeprom_word(rrpriv, eptr);
1551 segptr = ((segptr & 0x1fffff) >> 3);
1552 eptr += 4;
1553 #if (DEBUG > 1)
1554 printk("%s: segment %i, sram address %06x, length %04x, segptr %06x\n",
1555 dev->name, i, sptr, len, segptr);
1556 #endif
1557 for (j = 0; j < len; j++){
1558 tmp = rr_read_eeprom_word(rrpriv, segptr);
1559 writel(sptr, ®s->WinBase);
1560 mb();
1561 writel(tmp, ®s->WinData);
1562 mb();
1563 segptr += 4;
1564 sptr += 4;
1565 }
1566 }
1567
1568 out:
1569 writel(localctrl, ®s->LocalCtrl);
1570 mb();
1571 return 0;
1572 }
1573
1574
rr_siocdevprivate(struct net_device * dev,struct ifreq * rq,void __user * data,int cmd)1575 static int rr_siocdevprivate(struct net_device *dev, struct ifreq *rq,
1576 void __user *data, int cmd)
1577 {
1578 struct rr_private *rrpriv;
1579 unsigned char *image, *oldimage;
1580 unsigned long flags;
1581 unsigned int i;
1582 int error = -EOPNOTSUPP;
1583
1584 rrpriv = netdev_priv(dev);
1585
1586 switch(cmd){
1587 case SIOCRRGFW:
1588 if (!capable(CAP_SYS_RAWIO)){
1589 return -EPERM;
1590 }
1591
1592 image = kmalloc_array(EEPROM_WORDS, sizeof(u32), GFP_KERNEL);
1593 if (!image)
1594 return -ENOMEM;
1595
1596 if (rrpriv->fw_running){
1597 printk("%s: Firmware already running\n", dev->name);
1598 error = -EPERM;
1599 goto gf_out;
1600 }
1601
1602 spin_lock_irqsave(&rrpriv->lock, flags);
1603 i = rr_read_eeprom(rrpriv, 0, image, EEPROM_BYTES);
1604 spin_unlock_irqrestore(&rrpriv->lock, flags);
1605 if (i != EEPROM_BYTES){
1606 printk(KERN_ERR "%s: Error reading EEPROM\n",
1607 dev->name);
1608 error = -EFAULT;
1609 goto gf_out;
1610 }
1611 error = copy_to_user(data, image, EEPROM_BYTES);
1612 if (error)
1613 error = -EFAULT;
1614 gf_out:
1615 kfree(image);
1616 return error;
1617
1618 case SIOCRRPFW:
1619 if (!capable(CAP_SYS_RAWIO)){
1620 return -EPERM;
1621 }
1622
1623 image = memdup_user(data, EEPROM_BYTES);
1624 if (IS_ERR(image))
1625 return PTR_ERR(image);
1626
1627 oldimage = kmalloc(EEPROM_BYTES, GFP_KERNEL);
1628 if (!oldimage) {
1629 kfree(image);
1630 return -ENOMEM;
1631 }
1632
1633 if (rrpriv->fw_running){
1634 printk("%s: Firmware already running\n", dev->name);
1635 error = -EPERM;
1636 goto wf_out;
1637 }
1638
1639 printk("%s: Updating EEPROM firmware\n", dev->name);
1640
1641 spin_lock_irqsave(&rrpriv->lock, flags);
1642 error = write_eeprom(rrpriv, 0, image, EEPROM_BYTES);
1643 if (error)
1644 printk(KERN_ERR "%s: Error writing EEPROM\n",
1645 dev->name);
1646
1647 i = rr_read_eeprom(rrpriv, 0, oldimage, EEPROM_BYTES);
1648 spin_unlock_irqrestore(&rrpriv->lock, flags);
1649
1650 if (i != EEPROM_BYTES)
1651 printk(KERN_ERR "%s: Error reading back EEPROM "
1652 "image\n", dev->name);
1653
1654 error = memcmp(image, oldimage, EEPROM_BYTES);
1655 if (error){
1656 printk(KERN_ERR "%s: Error verifying EEPROM image\n",
1657 dev->name);
1658 error = -EFAULT;
1659 }
1660 wf_out:
1661 kfree(oldimage);
1662 kfree(image);
1663 return error;
1664
1665 case SIOCRRID:
1666 return put_user(0x52523032, (int __user *)data);
1667 default:
1668 return error;
1669 }
1670 }
1671
1672 static const struct pci_device_id rr_pci_tbl[] = {
1673 { PCI_VENDOR_ID_ESSENTIAL, PCI_DEVICE_ID_ESSENTIAL_ROADRUNNER,
1674 PCI_ANY_ID, PCI_ANY_ID, },
1675 { 0,}
1676 };
1677 MODULE_DEVICE_TABLE(pci, rr_pci_tbl);
1678
1679 static struct pci_driver rr_driver = {
1680 .name = "rrunner",
1681 .id_table = rr_pci_tbl,
1682 .probe = rr_init_one,
1683 .remove = rr_remove_one,
1684 };
1685
1686 module_pci_driver(rr_driver);
1687