1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3 * Scheduler internal types and methods:
4 */
5 #ifndef _KERNEL_SCHED_SCHED_H
6 #define _KERNEL_SCHED_SCHED_H
7
8 #include <linux/sched/affinity.h>
9 #include <linux/sched/autogroup.h>
10 #include <linux/sched/cpufreq.h>
11 #include <linux/sched/deadline.h>
12 #include <linux/sched.h>
13 #include <linux/sched/loadavg.h>
14 #include <linux/sched/mm.h>
15 #include <linux/sched/rseq_api.h>
16 #include <linux/sched/signal.h>
17 #include <linux/sched/smt.h>
18 #include <linux/sched/stat.h>
19 #include <linux/sched/sysctl.h>
20 #include <linux/sched/task_flags.h>
21 #include <linux/sched/task.h>
22 #include <linux/sched/topology.h>
23
24 #include <linux/atomic.h>
25 #include <linux/bitmap.h>
26 #include <linux/bug.h>
27 #include <linux/capability.h>
28 #include <linux/cgroup_api.h>
29 #include <linux/cgroup.h>
30 #include <linux/context_tracking.h>
31 #include <linux/cpufreq.h>
32 #include <linux/cpumask_api.h>
33 #include <linux/ctype.h>
34 #include <linux/file.h>
35 #include <linux/fs_api.h>
36 #include <linux/hrtimer_api.h>
37 #include <linux/interrupt.h>
38 #include <linux/irq_work.h>
39 #include <linux/jiffies.h>
40 #include <linux/kref_api.h>
41 #include <linux/kthread.h>
42 #include <linux/ktime_api.h>
43 #include <linux/lockdep_api.h>
44 #include <linux/lockdep.h>
45 #include <linux/minmax.h>
46 #include <linux/mm.h>
47 #include <linux/module.h>
48 #include <linux/mutex_api.h>
49 #include <linux/plist.h>
50 #include <linux/poll.h>
51 #include <linux/proc_fs.h>
52 #include <linux/profile.h>
53 #include <linux/psi.h>
54 #include <linux/rcupdate.h>
55 #include <linux/seq_file.h>
56 #include <linux/seqlock.h>
57 #include <linux/softirq.h>
58 #include <linux/spinlock_api.h>
59 #include <linux/static_key.h>
60 #include <linux/stop_machine.h>
61 #include <linux/syscalls_api.h>
62 #include <linux/syscalls.h>
63 #include <linux/tick.h>
64 #include <linux/topology.h>
65 #include <linux/types.h>
66 #include <linux/u64_stats_sync_api.h>
67 #include <linux/uaccess.h>
68 #include <linux/wait_api.h>
69 #include <linux/wait_bit.h>
70 #include <linux/workqueue_api.h>
71
72 #include <trace/events/power.h>
73 #include <trace/events/sched.h>
74
75 #include "../workqueue_internal.h"
76
77 #ifdef CONFIG_CGROUP_SCHED
78 #include <linux/cgroup.h>
79 #include <linux/psi.h>
80 #endif
81
82 #ifdef CONFIG_SCHED_DEBUG
83 # include <linux/static_key.h>
84 #endif
85
86 #ifdef CONFIG_PARAVIRT
87 # include <asm/paravirt.h>
88 # include <asm/paravirt_api_clock.h>
89 #endif
90
91 #include "cpupri.h"
92 #include "cpudeadline.h"
93
94 #ifdef CONFIG_SCHED_DEBUG
95 # define SCHED_WARN_ON(x) WARN_ONCE(x, #x)
96 #else
97 # define SCHED_WARN_ON(x) ({ (void)(x), 0; })
98 #endif
99
100 struct rq;
101 struct cpuidle_state;
102
103 /* task_struct::on_rq states: */
104 #define TASK_ON_RQ_QUEUED 1
105 #define TASK_ON_RQ_MIGRATING 2
106
107 extern __read_mostly int scheduler_running;
108
109 extern unsigned long calc_load_update;
110 extern atomic_long_t calc_load_tasks;
111
112 extern unsigned int sysctl_sched_child_runs_first;
113
114 extern void calc_global_load_tick(struct rq *this_rq);
115 extern long calc_load_fold_active(struct rq *this_rq, long adjust);
116
117 extern void call_trace_sched_update_nr_running(struct rq *rq, int count);
118
119 extern unsigned int sysctl_sched_rt_period;
120 extern int sysctl_sched_rt_runtime;
121 extern int sched_rr_timeslice;
122
123 /*
124 * Helpers for converting nanosecond timing to jiffy resolution
125 */
126 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
127
128 /*
129 * Increase resolution of nice-level calculations for 64-bit architectures.
130 * The extra resolution improves shares distribution and load balancing of
131 * low-weight task groups (eg. nice +19 on an autogroup), deeper taskgroup
132 * hierarchies, especially on larger systems. This is not a user-visible change
133 * and does not change the user-interface for setting shares/weights.
134 *
135 * We increase resolution only if we have enough bits to allow this increased
136 * resolution (i.e. 64-bit). The costs for increasing resolution when 32-bit
137 * are pretty high and the returns do not justify the increased costs.
138 *
139 * Really only required when CONFIG_FAIR_GROUP_SCHED=y is also set, but to
140 * increase coverage and consistency always enable it on 64-bit platforms.
141 */
142 #ifdef CONFIG_64BIT
143 # define NICE_0_LOAD_SHIFT (SCHED_FIXEDPOINT_SHIFT + SCHED_FIXEDPOINT_SHIFT)
144 # define scale_load(w) ((w) << SCHED_FIXEDPOINT_SHIFT)
145 # define scale_load_down(w) \
146 ({ \
147 unsigned long __w = (w); \
148 if (__w) \
149 __w = max(2UL, __w >> SCHED_FIXEDPOINT_SHIFT); \
150 __w; \
151 })
152 #else
153 # define NICE_0_LOAD_SHIFT (SCHED_FIXEDPOINT_SHIFT)
154 # define scale_load(w) (w)
155 # define scale_load_down(w) (w)
156 #endif
157
158 /*
159 * Task weight (visible to users) and its load (invisible to users) have
160 * independent resolution, but they should be well calibrated. We use
161 * scale_load() and scale_load_down(w) to convert between them. The
162 * following must be true:
163 *
164 * scale_load(sched_prio_to_weight[NICE_TO_PRIO(0)-MAX_RT_PRIO]) == NICE_0_LOAD
165 *
166 */
167 #define NICE_0_LOAD (1L << NICE_0_LOAD_SHIFT)
168
169 /*
170 * Single value that decides SCHED_DEADLINE internal math precision.
171 * 10 -> just above 1us
172 * 9 -> just above 0.5us
173 */
174 #define DL_SCALE 10
175
176 /*
177 * Single value that denotes runtime == period, ie unlimited time.
178 */
179 #define RUNTIME_INF ((u64)~0ULL)
180
idle_policy(int policy)181 static inline int idle_policy(int policy)
182 {
183 return policy == SCHED_IDLE;
184 }
fair_policy(int policy)185 static inline int fair_policy(int policy)
186 {
187 return policy == SCHED_NORMAL || policy == SCHED_BATCH;
188 }
189
rt_policy(int policy)190 static inline int rt_policy(int policy)
191 {
192 return policy == SCHED_FIFO || policy == SCHED_RR;
193 }
194
dl_policy(int policy)195 static inline int dl_policy(int policy)
196 {
197 return policy == SCHED_DEADLINE;
198 }
valid_policy(int policy)199 static inline bool valid_policy(int policy)
200 {
201 return idle_policy(policy) || fair_policy(policy) ||
202 rt_policy(policy) || dl_policy(policy);
203 }
204
task_has_idle_policy(struct task_struct * p)205 static inline int task_has_idle_policy(struct task_struct *p)
206 {
207 return idle_policy(p->policy);
208 }
209
task_has_rt_policy(struct task_struct * p)210 static inline int task_has_rt_policy(struct task_struct *p)
211 {
212 return rt_policy(p->policy);
213 }
214
task_has_dl_policy(struct task_struct * p)215 static inline int task_has_dl_policy(struct task_struct *p)
216 {
217 return dl_policy(p->policy);
218 }
219
220 #define cap_scale(v, s) ((v)*(s) >> SCHED_CAPACITY_SHIFT)
221
update_avg(u64 * avg,u64 sample)222 static inline void update_avg(u64 *avg, u64 sample)
223 {
224 s64 diff = sample - *avg;
225 *avg += diff / 8;
226 }
227
228 /*
229 * Shifting a value by an exponent greater *or equal* to the size of said value
230 * is UB; cap at size-1.
231 */
232 #define shr_bound(val, shift) \
233 (val >> min_t(typeof(shift), shift, BITS_PER_TYPE(typeof(val)) - 1))
234
235 /*
236 * !! For sched_setattr_nocheck() (kernel) only !!
237 *
238 * This is actually gross. :(
239 *
240 * It is used to make schedutil kworker(s) higher priority than SCHED_DEADLINE
241 * tasks, but still be able to sleep. We need this on platforms that cannot
242 * atomically change clock frequency. Remove once fast switching will be
243 * available on such platforms.
244 *
245 * SUGOV stands for SchedUtil GOVernor.
246 */
247 #define SCHED_FLAG_SUGOV 0x10000000
248
249 #define SCHED_DL_FLAGS (SCHED_FLAG_RECLAIM | SCHED_FLAG_DL_OVERRUN | SCHED_FLAG_SUGOV)
250
dl_entity_is_special(struct sched_dl_entity * dl_se)251 static inline bool dl_entity_is_special(struct sched_dl_entity *dl_se)
252 {
253 #ifdef CONFIG_CPU_FREQ_GOV_SCHEDUTIL
254 return unlikely(dl_se->flags & SCHED_FLAG_SUGOV);
255 #else
256 return false;
257 #endif
258 }
259
260 /*
261 * Tells if entity @a should preempt entity @b.
262 */
263 static inline bool
dl_entity_preempt(struct sched_dl_entity * a,struct sched_dl_entity * b)264 dl_entity_preempt(struct sched_dl_entity *a, struct sched_dl_entity *b)
265 {
266 return dl_entity_is_special(a) ||
267 dl_time_before(a->deadline, b->deadline);
268 }
269
270 /*
271 * This is the priority-queue data structure of the RT scheduling class:
272 */
273 struct rt_prio_array {
274 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
275 struct list_head queue[MAX_RT_PRIO];
276 };
277
278 struct rt_bandwidth {
279 /* nests inside the rq lock: */
280 raw_spinlock_t rt_runtime_lock;
281 ktime_t rt_period;
282 u64 rt_runtime;
283 struct hrtimer rt_period_timer;
284 unsigned int rt_period_active;
285 };
286
287 void __dl_clear_params(struct task_struct *p);
288
289 struct dl_bandwidth {
290 raw_spinlock_t dl_runtime_lock;
291 u64 dl_runtime;
292 u64 dl_period;
293 };
294
dl_bandwidth_enabled(void)295 static inline int dl_bandwidth_enabled(void)
296 {
297 return sysctl_sched_rt_runtime >= 0;
298 }
299
300 /*
301 * To keep the bandwidth of -deadline tasks under control
302 * we need some place where:
303 * - store the maximum -deadline bandwidth of each cpu;
304 * - cache the fraction of bandwidth that is currently allocated in
305 * each root domain;
306 *
307 * This is all done in the data structure below. It is similar to the
308 * one used for RT-throttling (rt_bandwidth), with the main difference
309 * that, since here we are only interested in admission control, we
310 * do not decrease any runtime while the group "executes", neither we
311 * need a timer to replenish it.
312 *
313 * With respect to SMP, bandwidth is given on a per root domain basis,
314 * meaning that:
315 * - bw (< 100%) is the deadline bandwidth of each CPU;
316 * - total_bw is the currently allocated bandwidth in each root domain;
317 */
318 struct dl_bw {
319 raw_spinlock_t lock;
320 u64 bw;
321 u64 total_bw;
322 };
323
324 extern void init_dl_bw(struct dl_bw *dl_b);
325 extern int sched_dl_global_validate(void);
326 extern void sched_dl_do_global(void);
327 extern int sched_dl_overflow(struct task_struct *p, int policy, const struct sched_attr *attr);
328 extern void __setparam_dl(struct task_struct *p, const struct sched_attr *attr);
329 extern void __getparam_dl(struct task_struct *p, struct sched_attr *attr);
330 extern bool __checkparam_dl(const struct sched_attr *attr);
331 extern bool dl_param_changed(struct task_struct *p, const struct sched_attr *attr);
332 extern int dl_cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial);
333 extern int dl_cpu_busy(int cpu, struct task_struct *p);
334
335 #ifdef CONFIG_CGROUP_SCHED
336
337 struct cfs_rq;
338 struct rt_rq;
339
340 extern struct list_head task_groups;
341
342 struct cfs_bandwidth {
343 #ifdef CONFIG_CFS_BANDWIDTH
344 raw_spinlock_t lock;
345 ktime_t period;
346 u64 quota;
347 u64 runtime;
348 u64 burst;
349 u64 runtime_snap;
350 s64 hierarchical_quota;
351
352 u8 idle;
353 u8 period_active;
354 u8 slack_started;
355 struct hrtimer period_timer;
356 struct hrtimer slack_timer;
357 struct list_head throttled_cfs_rq;
358
359 /* Statistics: */
360 int nr_periods;
361 int nr_throttled;
362 int nr_burst;
363 u64 throttled_time;
364 u64 burst_time;
365 #endif
366 };
367
368 /* Task group related information */
369 struct task_group {
370 struct cgroup_subsys_state css;
371
372 #ifdef CONFIG_FAIR_GROUP_SCHED
373 /* schedulable entities of this group on each CPU */
374 struct sched_entity **se;
375 /* runqueue "owned" by this group on each CPU */
376 struct cfs_rq **cfs_rq;
377 unsigned long shares;
378
379 /* A positive value indicates that this is a SCHED_IDLE group. */
380 int idle;
381
382 #ifdef CONFIG_SMP
383 /*
384 * load_avg can be heavily contended at clock tick time, so put
385 * it in its own cacheline separated from the fields above which
386 * will also be accessed at each tick.
387 */
388 atomic_long_t load_avg ____cacheline_aligned;
389 #endif
390 #endif
391
392 #ifdef CONFIG_RT_GROUP_SCHED
393 struct sched_rt_entity **rt_se;
394 struct rt_rq **rt_rq;
395
396 struct rt_bandwidth rt_bandwidth;
397 #endif
398
399 struct rcu_head rcu;
400 struct list_head list;
401
402 struct task_group *parent;
403 struct list_head siblings;
404 struct list_head children;
405
406 #ifdef CONFIG_SCHED_AUTOGROUP
407 struct autogroup *autogroup;
408 #endif
409
410 struct cfs_bandwidth cfs_bandwidth;
411
412 #ifdef CONFIG_UCLAMP_TASK_GROUP
413 /* The two decimal precision [%] value requested from user-space */
414 unsigned int uclamp_pct[UCLAMP_CNT];
415 /* Clamp values requested for a task group */
416 struct uclamp_se uclamp_req[UCLAMP_CNT];
417 /* Effective clamp values used for a task group */
418 struct uclamp_se uclamp[UCLAMP_CNT];
419 #endif
420
421 };
422
423 #ifdef CONFIG_FAIR_GROUP_SCHED
424 #define ROOT_TASK_GROUP_LOAD NICE_0_LOAD
425
426 /*
427 * A weight of 0 or 1 can cause arithmetics problems.
428 * A weight of a cfs_rq is the sum of weights of which entities
429 * are queued on this cfs_rq, so a weight of a entity should not be
430 * too large, so as the shares value of a task group.
431 * (The default weight is 1024 - so there's no practical
432 * limitation from this.)
433 */
434 #define MIN_SHARES (1UL << 1)
435 #define MAX_SHARES (1UL << 18)
436 #endif
437
438 typedef int (*tg_visitor)(struct task_group *, void *);
439
440 extern int walk_tg_tree_from(struct task_group *from,
441 tg_visitor down, tg_visitor up, void *data);
442
443 /*
444 * Iterate the full tree, calling @down when first entering a node and @up when
445 * leaving it for the final time.
446 *
447 * Caller must hold rcu_lock or sufficient equivalent.
448 */
walk_tg_tree(tg_visitor down,tg_visitor up,void * data)449 static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
450 {
451 return walk_tg_tree_from(&root_task_group, down, up, data);
452 }
453
454 extern int tg_nop(struct task_group *tg, void *data);
455
456 extern void free_fair_sched_group(struct task_group *tg);
457 extern int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent);
458 extern void online_fair_sched_group(struct task_group *tg);
459 extern void unregister_fair_sched_group(struct task_group *tg);
460 extern void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
461 struct sched_entity *se, int cpu,
462 struct sched_entity *parent);
463 extern void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
464
465 extern void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b);
466 extern void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
467 extern void unthrottle_cfs_rq(struct cfs_rq *cfs_rq);
468
469 extern void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
470 struct sched_rt_entity *rt_se, int cpu,
471 struct sched_rt_entity *parent);
472 extern int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us);
473 extern int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us);
474 extern long sched_group_rt_runtime(struct task_group *tg);
475 extern long sched_group_rt_period(struct task_group *tg);
476 extern int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk);
477
478 extern struct task_group *sched_create_group(struct task_group *parent);
479 extern void sched_online_group(struct task_group *tg,
480 struct task_group *parent);
481 extern void sched_destroy_group(struct task_group *tg);
482 extern void sched_release_group(struct task_group *tg);
483
484 extern void sched_move_task(struct task_struct *tsk);
485
486 #ifdef CONFIG_FAIR_GROUP_SCHED
487 extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
488
489 extern int sched_group_set_idle(struct task_group *tg, long idle);
490
491 #ifdef CONFIG_SMP
492 extern void set_task_rq_fair(struct sched_entity *se,
493 struct cfs_rq *prev, struct cfs_rq *next);
494 #else /* !CONFIG_SMP */
set_task_rq_fair(struct sched_entity * se,struct cfs_rq * prev,struct cfs_rq * next)495 static inline void set_task_rq_fair(struct sched_entity *se,
496 struct cfs_rq *prev, struct cfs_rq *next) { }
497 #endif /* CONFIG_SMP */
498 #endif /* CONFIG_FAIR_GROUP_SCHED */
499
500 #else /* CONFIG_CGROUP_SCHED */
501
502 struct cfs_bandwidth { };
503
504 #endif /* CONFIG_CGROUP_SCHED */
505
506 extern void unregister_rt_sched_group(struct task_group *tg);
507 extern void free_rt_sched_group(struct task_group *tg);
508 extern int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent);
509
510 /*
511 * u64_u32_load/u64_u32_store
512 *
513 * Use a copy of a u64 value to protect against data race. This is only
514 * applicable for 32-bits architectures.
515 */
516 #ifdef CONFIG_64BIT
517 # define u64_u32_load_copy(var, copy) var
518 # define u64_u32_store_copy(var, copy, val) (var = val)
519 #else
520 # define u64_u32_load_copy(var, copy) \
521 ({ \
522 u64 __val, __val_copy; \
523 do { \
524 __val_copy = copy; \
525 /* \
526 * paired with u64_u32_store_copy(), ordering access \
527 * to var and copy. \
528 */ \
529 smp_rmb(); \
530 __val = var; \
531 } while (__val != __val_copy); \
532 __val; \
533 })
534 # define u64_u32_store_copy(var, copy, val) \
535 do { \
536 typeof(val) __val = (val); \
537 var = __val; \
538 /* \
539 * paired with u64_u32_load_copy(), ordering access to var and \
540 * copy. \
541 */ \
542 smp_wmb(); \
543 copy = __val; \
544 } while (0)
545 #endif
546 # define u64_u32_load(var) u64_u32_load_copy(var, var##_copy)
547 # define u64_u32_store(var, val) u64_u32_store_copy(var, var##_copy, val)
548
549 /* CFS-related fields in a runqueue */
550 struct cfs_rq {
551 struct load_weight load;
552 unsigned int nr_running;
553 unsigned int h_nr_running; /* SCHED_{NORMAL,BATCH,IDLE} */
554 unsigned int idle_nr_running; /* SCHED_IDLE */
555 unsigned int idle_h_nr_running; /* SCHED_IDLE */
556
557 u64 exec_clock;
558 u64 min_vruntime;
559 #ifdef CONFIG_SCHED_CORE
560 unsigned int forceidle_seq;
561 u64 min_vruntime_fi;
562 #endif
563
564 #ifndef CONFIG_64BIT
565 u64 min_vruntime_copy;
566 #endif
567
568 struct rb_root_cached tasks_timeline;
569
570 /*
571 * 'curr' points to currently running entity on this cfs_rq.
572 * It is set to NULL otherwise (i.e when none are currently running).
573 */
574 struct sched_entity *curr;
575 struct sched_entity *next;
576 struct sched_entity *last;
577 struct sched_entity *skip;
578
579 #ifdef CONFIG_SCHED_DEBUG
580 unsigned int nr_spread_over;
581 #endif
582
583 #ifdef CONFIG_SMP
584 /*
585 * CFS load tracking
586 */
587 struct sched_avg avg;
588 #ifndef CONFIG_64BIT
589 u64 last_update_time_copy;
590 #endif
591 struct {
592 raw_spinlock_t lock ____cacheline_aligned;
593 int nr;
594 unsigned long load_avg;
595 unsigned long util_avg;
596 unsigned long runnable_avg;
597 } removed;
598
599 #ifdef CONFIG_FAIR_GROUP_SCHED
600 unsigned long tg_load_avg_contrib;
601 long propagate;
602 long prop_runnable_sum;
603
604 /*
605 * h_load = weight * f(tg)
606 *
607 * Where f(tg) is the recursive weight fraction assigned to
608 * this group.
609 */
610 unsigned long h_load;
611 u64 last_h_load_update;
612 struct sched_entity *h_load_next;
613 #endif /* CONFIG_FAIR_GROUP_SCHED */
614 #endif /* CONFIG_SMP */
615
616 #ifdef CONFIG_FAIR_GROUP_SCHED
617 struct rq *rq; /* CPU runqueue to which this cfs_rq is attached */
618
619 /*
620 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
621 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
622 * (like users, containers etc.)
623 *
624 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a CPU.
625 * This list is used during load balance.
626 */
627 int on_list;
628 struct list_head leaf_cfs_rq_list;
629 struct task_group *tg; /* group that "owns" this runqueue */
630
631 /* Locally cached copy of our task_group's idle value */
632 int idle;
633
634 #ifdef CONFIG_CFS_BANDWIDTH
635 int runtime_enabled;
636 s64 runtime_remaining;
637
638 u64 throttled_pelt_idle;
639 #ifndef CONFIG_64BIT
640 u64 throttled_pelt_idle_copy;
641 #endif
642 u64 throttled_clock;
643 u64 throttled_clock_pelt;
644 u64 throttled_clock_pelt_time;
645 int throttled;
646 int throttle_count;
647 struct list_head throttled_list;
648 #endif /* CONFIG_CFS_BANDWIDTH */
649 #endif /* CONFIG_FAIR_GROUP_SCHED */
650 };
651
rt_bandwidth_enabled(void)652 static inline int rt_bandwidth_enabled(void)
653 {
654 return sysctl_sched_rt_runtime >= 0;
655 }
656
657 /* RT IPI pull logic requires IRQ_WORK */
658 #if defined(CONFIG_IRQ_WORK) && defined(CONFIG_SMP)
659 # define HAVE_RT_PUSH_IPI
660 #endif
661
662 /* Real-Time classes' related field in a runqueue: */
663 struct rt_rq {
664 struct rt_prio_array active;
665 unsigned int rt_nr_running;
666 unsigned int rr_nr_running;
667 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
668 struct {
669 int curr; /* highest queued rt task prio */
670 #ifdef CONFIG_SMP
671 int next; /* next highest */
672 #endif
673 } highest_prio;
674 #endif
675 #ifdef CONFIG_SMP
676 unsigned int rt_nr_migratory;
677 unsigned int rt_nr_total;
678 int overloaded;
679 struct plist_head pushable_tasks;
680
681 #endif /* CONFIG_SMP */
682 int rt_queued;
683
684 int rt_throttled;
685 u64 rt_time;
686 u64 rt_runtime;
687 /* Nests inside the rq lock: */
688 raw_spinlock_t rt_runtime_lock;
689
690 #ifdef CONFIG_RT_GROUP_SCHED
691 unsigned int rt_nr_boosted;
692
693 struct rq *rq;
694 struct task_group *tg;
695 #endif
696 };
697
rt_rq_is_runnable(struct rt_rq * rt_rq)698 static inline bool rt_rq_is_runnable(struct rt_rq *rt_rq)
699 {
700 return rt_rq->rt_queued && rt_rq->rt_nr_running;
701 }
702
703 /* Deadline class' related fields in a runqueue */
704 struct dl_rq {
705 /* runqueue is an rbtree, ordered by deadline */
706 struct rb_root_cached root;
707
708 unsigned int dl_nr_running;
709
710 #ifdef CONFIG_SMP
711 /*
712 * Deadline values of the currently executing and the
713 * earliest ready task on this rq. Caching these facilitates
714 * the decision whether or not a ready but not running task
715 * should migrate somewhere else.
716 */
717 struct {
718 u64 curr;
719 u64 next;
720 } earliest_dl;
721
722 unsigned int dl_nr_migratory;
723 int overloaded;
724
725 /*
726 * Tasks on this rq that can be pushed away. They are kept in
727 * an rb-tree, ordered by tasks' deadlines, with caching
728 * of the leftmost (earliest deadline) element.
729 */
730 struct rb_root_cached pushable_dl_tasks_root;
731 #else
732 struct dl_bw dl_bw;
733 #endif
734 /*
735 * "Active utilization" for this runqueue: increased when a
736 * task wakes up (becomes TASK_RUNNING) and decreased when a
737 * task blocks
738 */
739 u64 running_bw;
740
741 /*
742 * Utilization of the tasks "assigned" to this runqueue (including
743 * the tasks that are in runqueue and the tasks that executed on this
744 * CPU and blocked). Increased when a task moves to this runqueue, and
745 * decreased when the task moves away (migrates, changes scheduling
746 * policy, or terminates).
747 * This is needed to compute the "inactive utilization" for the
748 * runqueue (inactive utilization = this_bw - running_bw).
749 */
750 u64 this_bw;
751 u64 extra_bw;
752
753 /*
754 * Inverse of the fraction of CPU utilization that can be reclaimed
755 * by the GRUB algorithm.
756 */
757 u64 bw_ratio;
758 };
759
760 #ifdef CONFIG_FAIR_GROUP_SCHED
761 /* An entity is a task if it doesn't "own" a runqueue */
762 #define entity_is_task(se) (!se->my_q)
763
se_update_runnable(struct sched_entity * se)764 static inline void se_update_runnable(struct sched_entity *se)
765 {
766 if (!entity_is_task(se))
767 se->runnable_weight = se->my_q->h_nr_running;
768 }
769
se_runnable(struct sched_entity * se)770 static inline long se_runnable(struct sched_entity *se)
771 {
772 if (entity_is_task(se))
773 return !!se->on_rq;
774 else
775 return se->runnable_weight;
776 }
777
778 #else
779 #define entity_is_task(se) 1
780
se_update_runnable(struct sched_entity * se)781 static inline void se_update_runnable(struct sched_entity *se) {}
782
se_runnable(struct sched_entity * se)783 static inline long se_runnable(struct sched_entity *se)
784 {
785 return !!se->on_rq;
786 }
787 #endif
788
789 #ifdef CONFIG_SMP
790 /*
791 * XXX we want to get rid of these helpers and use the full load resolution.
792 */
se_weight(struct sched_entity * se)793 static inline long se_weight(struct sched_entity *se)
794 {
795 return scale_load_down(se->load.weight);
796 }
797
798
sched_asym_prefer(int a,int b)799 static inline bool sched_asym_prefer(int a, int b)
800 {
801 return arch_asym_cpu_priority(a) > arch_asym_cpu_priority(b);
802 }
803
804 struct perf_domain {
805 struct em_perf_domain *em_pd;
806 struct perf_domain *next;
807 struct rcu_head rcu;
808 };
809
810 /* Scheduling group status flags */
811 #define SG_OVERLOAD 0x1 /* More than one runnable task on a CPU. */
812 #define SG_OVERUTILIZED 0x2 /* One or more CPUs are over-utilized. */
813
814 /*
815 * We add the notion of a root-domain which will be used to define per-domain
816 * variables. Each exclusive cpuset essentially defines an island domain by
817 * fully partitioning the member CPUs from any other cpuset. Whenever a new
818 * exclusive cpuset is created, we also create and attach a new root-domain
819 * object.
820 *
821 */
822 struct root_domain {
823 atomic_t refcount;
824 atomic_t rto_count;
825 struct rcu_head rcu;
826 cpumask_var_t span;
827 cpumask_var_t online;
828
829 /*
830 * Indicate pullable load on at least one CPU, e.g:
831 * - More than one runnable task
832 * - Running task is misfit
833 */
834 int overload;
835
836 /* Indicate one or more cpus over-utilized (tipping point) */
837 int overutilized;
838
839 /*
840 * The bit corresponding to a CPU gets set here if such CPU has more
841 * than one runnable -deadline task (as it is below for RT tasks).
842 */
843 cpumask_var_t dlo_mask;
844 atomic_t dlo_count;
845 struct dl_bw dl_bw;
846 struct cpudl cpudl;
847
848 /*
849 * Indicate whether a root_domain's dl_bw has been checked or
850 * updated. It's monotonously increasing value.
851 *
852 * Also, some corner cases, like 'wrap around' is dangerous, but given
853 * that u64 is 'big enough'. So that shouldn't be a concern.
854 */
855 u64 visit_gen;
856
857 #ifdef HAVE_RT_PUSH_IPI
858 /*
859 * For IPI pull requests, loop across the rto_mask.
860 */
861 struct irq_work rto_push_work;
862 raw_spinlock_t rto_lock;
863 /* These are only updated and read within rto_lock */
864 int rto_loop;
865 int rto_cpu;
866 /* These atomics are updated outside of a lock */
867 atomic_t rto_loop_next;
868 atomic_t rto_loop_start;
869 #endif
870 /*
871 * The "RT overload" flag: it gets set if a CPU has more than
872 * one runnable RT task.
873 */
874 cpumask_var_t rto_mask;
875 struct cpupri cpupri;
876
877 unsigned long max_cpu_capacity;
878
879 /*
880 * NULL-terminated list of performance domains intersecting with the
881 * CPUs of the rd. Protected by RCU.
882 */
883 struct perf_domain __rcu *pd;
884 };
885
886 extern void init_defrootdomain(void);
887 extern int sched_init_domains(const struct cpumask *cpu_map);
888 extern void rq_attach_root(struct rq *rq, struct root_domain *rd);
889 extern void sched_get_rd(struct root_domain *rd);
890 extern void sched_put_rd(struct root_domain *rd);
891
892 #ifdef HAVE_RT_PUSH_IPI
893 extern void rto_push_irq_work_func(struct irq_work *work);
894 #endif
895 #endif /* CONFIG_SMP */
896
897 #ifdef CONFIG_UCLAMP_TASK
898 /*
899 * struct uclamp_bucket - Utilization clamp bucket
900 * @value: utilization clamp value for tasks on this clamp bucket
901 * @tasks: number of RUNNABLE tasks on this clamp bucket
902 *
903 * Keep track of how many tasks are RUNNABLE for a given utilization
904 * clamp value.
905 */
906 struct uclamp_bucket {
907 unsigned long value : bits_per(SCHED_CAPACITY_SCALE);
908 unsigned long tasks : BITS_PER_LONG - bits_per(SCHED_CAPACITY_SCALE);
909 };
910
911 /*
912 * struct uclamp_rq - rq's utilization clamp
913 * @value: currently active clamp values for a rq
914 * @bucket: utilization clamp buckets affecting a rq
915 *
916 * Keep track of RUNNABLE tasks on a rq to aggregate their clamp values.
917 * A clamp value is affecting a rq when there is at least one task RUNNABLE
918 * (or actually running) with that value.
919 *
920 * There are up to UCLAMP_CNT possible different clamp values, currently there
921 * are only two: minimum utilization and maximum utilization.
922 *
923 * All utilization clamping values are MAX aggregated, since:
924 * - for util_min: we want to run the CPU at least at the max of the minimum
925 * utilization required by its currently RUNNABLE tasks.
926 * - for util_max: we want to allow the CPU to run up to the max of the
927 * maximum utilization allowed by its currently RUNNABLE tasks.
928 *
929 * Since on each system we expect only a limited number of different
930 * utilization clamp values (UCLAMP_BUCKETS), use a simple array to track
931 * the metrics required to compute all the per-rq utilization clamp values.
932 */
933 struct uclamp_rq {
934 unsigned int value;
935 struct uclamp_bucket bucket[UCLAMP_BUCKETS];
936 };
937
938 DECLARE_STATIC_KEY_FALSE(sched_uclamp_used);
939 #endif /* CONFIG_UCLAMP_TASK */
940
941 struct rq;
942 struct balance_callback {
943 struct balance_callback *next;
944 void (*func)(struct rq *rq);
945 };
946
947 /*
948 * This is the main, per-CPU runqueue data structure.
949 *
950 * Locking rule: those places that want to lock multiple runqueues
951 * (such as the load balancing or the thread migration code), lock
952 * acquire operations must be ordered by ascending &runqueue.
953 */
954 struct rq {
955 /* runqueue lock: */
956 raw_spinlock_t __lock;
957
958 /*
959 * nr_running and cpu_load should be in the same cacheline because
960 * remote CPUs use both these fields when doing load calculation.
961 */
962 unsigned int nr_running;
963 #ifdef CONFIG_NUMA_BALANCING
964 unsigned int nr_numa_running;
965 unsigned int nr_preferred_running;
966 unsigned int numa_migrate_on;
967 #endif
968 #ifdef CONFIG_NO_HZ_COMMON
969 #ifdef CONFIG_SMP
970 unsigned long last_blocked_load_update_tick;
971 unsigned int has_blocked_load;
972 call_single_data_t nohz_csd;
973 #endif /* CONFIG_SMP */
974 unsigned int nohz_tick_stopped;
975 atomic_t nohz_flags;
976 #endif /* CONFIG_NO_HZ_COMMON */
977
978 #ifdef CONFIG_SMP
979 unsigned int ttwu_pending;
980 #endif
981 u64 nr_switches;
982
983 #ifdef CONFIG_UCLAMP_TASK
984 /* Utilization clamp values based on CPU's RUNNABLE tasks */
985 struct uclamp_rq uclamp[UCLAMP_CNT] ____cacheline_aligned;
986 unsigned int uclamp_flags;
987 #define UCLAMP_FLAG_IDLE 0x01
988 #endif
989
990 struct cfs_rq cfs;
991 struct rt_rq rt;
992 struct dl_rq dl;
993
994 #ifdef CONFIG_FAIR_GROUP_SCHED
995 /* list of leaf cfs_rq on this CPU: */
996 struct list_head leaf_cfs_rq_list;
997 struct list_head *tmp_alone_branch;
998 #endif /* CONFIG_FAIR_GROUP_SCHED */
999
1000 /*
1001 * This is part of a global counter where only the total sum
1002 * over all CPUs matters. A task can increase this counter on
1003 * one CPU and if it got migrated afterwards it may decrease
1004 * it on another CPU. Always updated under the runqueue lock:
1005 */
1006 unsigned int nr_uninterruptible;
1007
1008 struct task_struct __rcu *curr;
1009 struct task_struct *idle;
1010 struct task_struct *stop;
1011 unsigned long next_balance;
1012 struct mm_struct *prev_mm;
1013
1014 unsigned int clock_update_flags;
1015 u64 clock;
1016 /* Ensure that all clocks are in the same cache line */
1017 u64 clock_task ____cacheline_aligned;
1018 u64 clock_pelt;
1019 unsigned long lost_idle_time;
1020 u64 clock_pelt_idle;
1021 u64 clock_idle;
1022 #ifndef CONFIG_64BIT
1023 u64 clock_pelt_idle_copy;
1024 u64 clock_idle_copy;
1025 #endif
1026
1027 atomic_t nr_iowait;
1028
1029 #ifdef CONFIG_SCHED_DEBUG
1030 u64 last_seen_need_resched_ns;
1031 int ticks_without_resched;
1032 #endif
1033
1034 #ifdef CONFIG_MEMBARRIER
1035 int membarrier_state;
1036 #endif
1037
1038 #ifdef CONFIG_SMP
1039 struct root_domain *rd;
1040 struct sched_domain __rcu *sd;
1041
1042 unsigned long cpu_capacity;
1043 unsigned long cpu_capacity_orig;
1044
1045 struct balance_callback *balance_callback;
1046
1047 unsigned char nohz_idle_balance;
1048 unsigned char idle_balance;
1049
1050 unsigned long misfit_task_load;
1051
1052 /* For active balancing */
1053 int active_balance;
1054 int push_cpu;
1055 struct cpu_stop_work active_balance_work;
1056
1057 /* CPU of this runqueue: */
1058 int cpu;
1059 int online;
1060
1061 struct list_head cfs_tasks;
1062
1063 struct sched_avg avg_rt;
1064 struct sched_avg avg_dl;
1065 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
1066 struct sched_avg avg_irq;
1067 #endif
1068 #ifdef CONFIG_SCHED_THERMAL_PRESSURE
1069 struct sched_avg avg_thermal;
1070 #endif
1071 u64 idle_stamp;
1072 u64 avg_idle;
1073
1074 unsigned long wake_stamp;
1075 u64 wake_avg_idle;
1076
1077 /* This is used to determine avg_idle's max value */
1078 u64 max_idle_balance_cost;
1079
1080 #ifdef CONFIG_HOTPLUG_CPU
1081 struct rcuwait hotplug_wait;
1082 #endif
1083 #endif /* CONFIG_SMP */
1084
1085 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
1086 u64 prev_irq_time;
1087 #endif
1088 #ifdef CONFIG_PARAVIRT
1089 u64 prev_steal_time;
1090 #endif
1091 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
1092 u64 prev_steal_time_rq;
1093 #endif
1094
1095 /* calc_load related fields */
1096 unsigned long calc_load_update;
1097 long calc_load_active;
1098
1099 #ifdef CONFIG_SCHED_HRTICK
1100 #ifdef CONFIG_SMP
1101 call_single_data_t hrtick_csd;
1102 #endif
1103 struct hrtimer hrtick_timer;
1104 ktime_t hrtick_time;
1105 #endif
1106
1107 #ifdef CONFIG_SCHEDSTATS
1108 /* latency stats */
1109 struct sched_info rq_sched_info;
1110 unsigned long long rq_cpu_time;
1111 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
1112
1113 /* sys_sched_yield() stats */
1114 unsigned int yld_count;
1115
1116 /* schedule() stats */
1117 unsigned int sched_count;
1118 unsigned int sched_goidle;
1119
1120 /* try_to_wake_up() stats */
1121 unsigned int ttwu_count;
1122 unsigned int ttwu_local;
1123 #endif
1124
1125 #ifdef CONFIG_CPU_IDLE
1126 /* Must be inspected within a rcu lock section */
1127 struct cpuidle_state *idle_state;
1128 #endif
1129
1130 #ifdef CONFIG_SMP
1131 unsigned int nr_pinned;
1132 #endif
1133 unsigned int push_busy;
1134 struct cpu_stop_work push_work;
1135
1136 #ifdef CONFIG_SCHED_CORE
1137 /* per rq */
1138 struct rq *core;
1139 struct task_struct *core_pick;
1140 unsigned int core_enabled;
1141 unsigned int core_sched_seq;
1142 struct rb_root core_tree;
1143
1144 /* shared state -- careful with sched_core_cpu_deactivate() */
1145 unsigned int core_task_seq;
1146 unsigned int core_pick_seq;
1147 unsigned long core_cookie;
1148 unsigned int core_forceidle_count;
1149 unsigned int core_forceidle_seq;
1150 unsigned int core_forceidle_occupation;
1151 u64 core_forceidle_start;
1152 #endif
1153 };
1154
1155 #ifdef CONFIG_FAIR_GROUP_SCHED
1156
1157 /* CPU runqueue to which this cfs_rq is attached */
rq_of(struct cfs_rq * cfs_rq)1158 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
1159 {
1160 return cfs_rq->rq;
1161 }
1162
1163 #else
1164
rq_of(struct cfs_rq * cfs_rq)1165 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
1166 {
1167 return container_of(cfs_rq, struct rq, cfs);
1168 }
1169 #endif
1170
cpu_of(struct rq * rq)1171 static inline int cpu_of(struct rq *rq)
1172 {
1173 #ifdef CONFIG_SMP
1174 return rq->cpu;
1175 #else
1176 return 0;
1177 #endif
1178 }
1179
1180 #define MDF_PUSH 0x01
1181
is_migration_disabled(struct task_struct * p)1182 static inline bool is_migration_disabled(struct task_struct *p)
1183 {
1184 #ifdef CONFIG_SMP
1185 return p->migration_disabled;
1186 #else
1187 return false;
1188 #endif
1189 }
1190
1191 DECLARE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
1192
1193 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
1194 #define this_rq() this_cpu_ptr(&runqueues)
1195 #define task_rq(p) cpu_rq(task_cpu(p))
1196 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
1197 #define raw_rq() raw_cpu_ptr(&runqueues)
1198
1199 struct sched_group;
1200 #ifdef CONFIG_SCHED_CORE
1201 static inline struct cpumask *sched_group_span(struct sched_group *sg);
1202
1203 DECLARE_STATIC_KEY_FALSE(__sched_core_enabled);
1204
sched_core_enabled(struct rq * rq)1205 static inline bool sched_core_enabled(struct rq *rq)
1206 {
1207 return static_branch_unlikely(&__sched_core_enabled) && rq->core_enabled;
1208 }
1209
sched_core_disabled(void)1210 static inline bool sched_core_disabled(void)
1211 {
1212 return !static_branch_unlikely(&__sched_core_enabled);
1213 }
1214
1215 /*
1216 * Be careful with this function; not for general use. The return value isn't
1217 * stable unless you actually hold a relevant rq->__lock.
1218 */
rq_lockp(struct rq * rq)1219 static inline raw_spinlock_t *rq_lockp(struct rq *rq)
1220 {
1221 if (sched_core_enabled(rq))
1222 return &rq->core->__lock;
1223
1224 return &rq->__lock;
1225 }
1226
__rq_lockp(struct rq * rq)1227 static inline raw_spinlock_t *__rq_lockp(struct rq *rq)
1228 {
1229 if (rq->core_enabled)
1230 return &rq->core->__lock;
1231
1232 return &rq->__lock;
1233 }
1234
1235 bool cfs_prio_less(struct task_struct *a, struct task_struct *b, bool fi);
1236
1237 /*
1238 * Helpers to check if the CPU's core cookie matches with the task's cookie
1239 * when core scheduling is enabled.
1240 * A special case is that the task's cookie always matches with CPU's core
1241 * cookie if the CPU is in an idle core.
1242 */
sched_cpu_cookie_match(struct rq * rq,struct task_struct * p)1243 static inline bool sched_cpu_cookie_match(struct rq *rq, struct task_struct *p)
1244 {
1245 /* Ignore cookie match if core scheduler is not enabled on the CPU. */
1246 if (!sched_core_enabled(rq))
1247 return true;
1248
1249 return rq->core->core_cookie == p->core_cookie;
1250 }
1251
sched_core_cookie_match(struct rq * rq,struct task_struct * p)1252 static inline bool sched_core_cookie_match(struct rq *rq, struct task_struct *p)
1253 {
1254 bool idle_core = true;
1255 int cpu;
1256
1257 /* Ignore cookie match if core scheduler is not enabled on the CPU. */
1258 if (!sched_core_enabled(rq))
1259 return true;
1260
1261 for_each_cpu(cpu, cpu_smt_mask(cpu_of(rq))) {
1262 if (!available_idle_cpu(cpu)) {
1263 idle_core = false;
1264 break;
1265 }
1266 }
1267
1268 /*
1269 * A CPU in an idle core is always the best choice for tasks with
1270 * cookies.
1271 */
1272 return idle_core || rq->core->core_cookie == p->core_cookie;
1273 }
1274
sched_group_cookie_match(struct rq * rq,struct task_struct * p,struct sched_group * group)1275 static inline bool sched_group_cookie_match(struct rq *rq,
1276 struct task_struct *p,
1277 struct sched_group *group)
1278 {
1279 int cpu;
1280
1281 /* Ignore cookie match if core scheduler is not enabled on the CPU. */
1282 if (!sched_core_enabled(rq))
1283 return true;
1284
1285 for_each_cpu_and(cpu, sched_group_span(group), p->cpus_ptr) {
1286 if (sched_core_cookie_match(cpu_rq(cpu), p))
1287 return true;
1288 }
1289 return false;
1290 }
1291
sched_core_enqueued(struct task_struct * p)1292 static inline bool sched_core_enqueued(struct task_struct *p)
1293 {
1294 return !RB_EMPTY_NODE(&p->core_node);
1295 }
1296
1297 extern void sched_core_enqueue(struct rq *rq, struct task_struct *p);
1298 extern void sched_core_dequeue(struct rq *rq, struct task_struct *p, int flags);
1299
1300 extern void sched_core_get(void);
1301 extern void sched_core_put(void);
1302
1303 #else /* !CONFIG_SCHED_CORE */
1304
sched_core_enabled(struct rq * rq)1305 static inline bool sched_core_enabled(struct rq *rq)
1306 {
1307 return false;
1308 }
1309
sched_core_disabled(void)1310 static inline bool sched_core_disabled(void)
1311 {
1312 return true;
1313 }
1314
rq_lockp(struct rq * rq)1315 static inline raw_spinlock_t *rq_lockp(struct rq *rq)
1316 {
1317 return &rq->__lock;
1318 }
1319
__rq_lockp(struct rq * rq)1320 static inline raw_spinlock_t *__rq_lockp(struct rq *rq)
1321 {
1322 return &rq->__lock;
1323 }
1324
sched_cpu_cookie_match(struct rq * rq,struct task_struct * p)1325 static inline bool sched_cpu_cookie_match(struct rq *rq, struct task_struct *p)
1326 {
1327 return true;
1328 }
1329
sched_core_cookie_match(struct rq * rq,struct task_struct * p)1330 static inline bool sched_core_cookie_match(struct rq *rq, struct task_struct *p)
1331 {
1332 return true;
1333 }
1334
sched_group_cookie_match(struct rq * rq,struct task_struct * p,struct sched_group * group)1335 static inline bool sched_group_cookie_match(struct rq *rq,
1336 struct task_struct *p,
1337 struct sched_group *group)
1338 {
1339 return true;
1340 }
1341 #endif /* CONFIG_SCHED_CORE */
1342
lockdep_assert_rq_held(struct rq * rq)1343 static inline void lockdep_assert_rq_held(struct rq *rq)
1344 {
1345 lockdep_assert_held(__rq_lockp(rq));
1346 }
1347
1348 extern void raw_spin_rq_lock_nested(struct rq *rq, int subclass);
1349 extern bool raw_spin_rq_trylock(struct rq *rq);
1350 extern void raw_spin_rq_unlock(struct rq *rq);
1351
raw_spin_rq_lock(struct rq * rq)1352 static inline void raw_spin_rq_lock(struct rq *rq)
1353 {
1354 raw_spin_rq_lock_nested(rq, 0);
1355 }
1356
raw_spin_rq_lock_irq(struct rq * rq)1357 static inline void raw_spin_rq_lock_irq(struct rq *rq)
1358 {
1359 local_irq_disable();
1360 raw_spin_rq_lock(rq);
1361 }
1362
raw_spin_rq_unlock_irq(struct rq * rq)1363 static inline void raw_spin_rq_unlock_irq(struct rq *rq)
1364 {
1365 raw_spin_rq_unlock(rq);
1366 local_irq_enable();
1367 }
1368
_raw_spin_rq_lock_irqsave(struct rq * rq)1369 static inline unsigned long _raw_spin_rq_lock_irqsave(struct rq *rq)
1370 {
1371 unsigned long flags;
1372 local_irq_save(flags);
1373 raw_spin_rq_lock(rq);
1374 return flags;
1375 }
1376
raw_spin_rq_unlock_irqrestore(struct rq * rq,unsigned long flags)1377 static inline void raw_spin_rq_unlock_irqrestore(struct rq *rq, unsigned long flags)
1378 {
1379 raw_spin_rq_unlock(rq);
1380 local_irq_restore(flags);
1381 }
1382
1383 #define raw_spin_rq_lock_irqsave(rq, flags) \
1384 do { \
1385 flags = _raw_spin_rq_lock_irqsave(rq); \
1386 } while (0)
1387
1388 #ifdef CONFIG_SCHED_SMT
1389 extern void __update_idle_core(struct rq *rq);
1390
update_idle_core(struct rq * rq)1391 static inline void update_idle_core(struct rq *rq)
1392 {
1393 if (static_branch_unlikely(&sched_smt_present))
1394 __update_idle_core(rq);
1395 }
1396
1397 #else
update_idle_core(struct rq * rq)1398 static inline void update_idle_core(struct rq *rq) { }
1399 #endif
1400
1401 #ifdef CONFIG_FAIR_GROUP_SCHED
task_of(struct sched_entity * se)1402 static inline struct task_struct *task_of(struct sched_entity *se)
1403 {
1404 SCHED_WARN_ON(!entity_is_task(se));
1405 return container_of(se, struct task_struct, se);
1406 }
1407
task_cfs_rq(struct task_struct * p)1408 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
1409 {
1410 return p->se.cfs_rq;
1411 }
1412
1413 /* runqueue on which this entity is (to be) queued */
cfs_rq_of(struct sched_entity * se)1414 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
1415 {
1416 return se->cfs_rq;
1417 }
1418
1419 /* runqueue "owned" by this group */
group_cfs_rq(struct sched_entity * grp)1420 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
1421 {
1422 return grp->my_q;
1423 }
1424
1425 #else
1426
task_of(struct sched_entity * se)1427 static inline struct task_struct *task_of(struct sched_entity *se)
1428 {
1429 return container_of(se, struct task_struct, se);
1430 }
1431
task_cfs_rq(struct task_struct * p)1432 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
1433 {
1434 return &task_rq(p)->cfs;
1435 }
1436
cfs_rq_of(struct sched_entity * se)1437 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
1438 {
1439 struct task_struct *p = task_of(se);
1440 struct rq *rq = task_rq(p);
1441
1442 return &rq->cfs;
1443 }
1444
1445 /* runqueue "owned" by this group */
group_cfs_rq(struct sched_entity * grp)1446 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
1447 {
1448 return NULL;
1449 }
1450 #endif
1451
1452 extern void update_rq_clock(struct rq *rq);
1453
1454 /*
1455 * rq::clock_update_flags bits
1456 *
1457 * %RQCF_REQ_SKIP - will request skipping of clock update on the next
1458 * call to __schedule(). This is an optimisation to avoid
1459 * neighbouring rq clock updates.
1460 *
1461 * %RQCF_ACT_SKIP - is set from inside of __schedule() when skipping is
1462 * in effect and calls to update_rq_clock() are being ignored.
1463 *
1464 * %RQCF_UPDATED - is a debug flag that indicates whether a call has been
1465 * made to update_rq_clock() since the last time rq::lock was pinned.
1466 *
1467 * If inside of __schedule(), clock_update_flags will have been
1468 * shifted left (a left shift is a cheap operation for the fast path
1469 * to promote %RQCF_REQ_SKIP to %RQCF_ACT_SKIP), so you must use,
1470 *
1471 * if (rq-clock_update_flags >= RQCF_UPDATED)
1472 *
1473 * to check if %RQCF_UPDATED is set. It'll never be shifted more than
1474 * one position though, because the next rq_unpin_lock() will shift it
1475 * back.
1476 */
1477 #define RQCF_REQ_SKIP 0x01
1478 #define RQCF_ACT_SKIP 0x02
1479 #define RQCF_UPDATED 0x04
1480
assert_clock_updated(struct rq * rq)1481 static inline void assert_clock_updated(struct rq *rq)
1482 {
1483 /*
1484 * The only reason for not seeing a clock update since the
1485 * last rq_pin_lock() is if we're currently skipping updates.
1486 */
1487 SCHED_WARN_ON(rq->clock_update_flags < RQCF_ACT_SKIP);
1488 }
1489
rq_clock(struct rq * rq)1490 static inline u64 rq_clock(struct rq *rq)
1491 {
1492 lockdep_assert_rq_held(rq);
1493 assert_clock_updated(rq);
1494
1495 return rq->clock;
1496 }
1497
rq_clock_task(struct rq * rq)1498 static inline u64 rq_clock_task(struct rq *rq)
1499 {
1500 lockdep_assert_rq_held(rq);
1501 assert_clock_updated(rq);
1502
1503 return rq->clock_task;
1504 }
1505
1506 /**
1507 * By default the decay is the default pelt decay period.
1508 * The decay shift can change the decay period in
1509 * multiples of 32.
1510 * Decay shift Decay period(ms)
1511 * 0 32
1512 * 1 64
1513 * 2 128
1514 * 3 256
1515 * 4 512
1516 */
1517 extern int sched_thermal_decay_shift;
1518
rq_clock_thermal(struct rq * rq)1519 static inline u64 rq_clock_thermal(struct rq *rq)
1520 {
1521 return rq_clock_task(rq) >> sched_thermal_decay_shift;
1522 }
1523
rq_clock_skip_update(struct rq * rq)1524 static inline void rq_clock_skip_update(struct rq *rq)
1525 {
1526 lockdep_assert_rq_held(rq);
1527 rq->clock_update_flags |= RQCF_REQ_SKIP;
1528 }
1529
1530 /*
1531 * See rt task throttling, which is the only time a skip
1532 * request is canceled.
1533 */
rq_clock_cancel_skipupdate(struct rq * rq)1534 static inline void rq_clock_cancel_skipupdate(struct rq *rq)
1535 {
1536 lockdep_assert_rq_held(rq);
1537 rq->clock_update_flags &= ~RQCF_REQ_SKIP;
1538 }
1539
1540 struct rq_flags {
1541 unsigned long flags;
1542 struct pin_cookie cookie;
1543 #ifdef CONFIG_SCHED_DEBUG
1544 /*
1545 * A copy of (rq::clock_update_flags & RQCF_UPDATED) for the
1546 * current pin context is stashed here in case it needs to be
1547 * restored in rq_repin_lock().
1548 */
1549 unsigned int clock_update_flags;
1550 #endif
1551 };
1552
1553 extern struct balance_callback balance_push_callback;
1554
1555 /*
1556 * Lockdep annotation that avoids accidental unlocks; it's like a
1557 * sticky/continuous lockdep_assert_held().
1558 *
1559 * This avoids code that has access to 'struct rq *rq' (basically everything in
1560 * the scheduler) from accidentally unlocking the rq if they do not also have a
1561 * copy of the (on-stack) 'struct rq_flags rf'.
1562 *
1563 * Also see Documentation/locking/lockdep-design.rst.
1564 */
rq_pin_lock(struct rq * rq,struct rq_flags * rf)1565 static inline void rq_pin_lock(struct rq *rq, struct rq_flags *rf)
1566 {
1567 rf->cookie = lockdep_pin_lock(__rq_lockp(rq));
1568
1569 #ifdef CONFIG_SCHED_DEBUG
1570 rq->clock_update_flags &= (RQCF_REQ_SKIP|RQCF_ACT_SKIP);
1571 rf->clock_update_flags = 0;
1572 #ifdef CONFIG_SMP
1573 SCHED_WARN_ON(rq->balance_callback && rq->balance_callback != &balance_push_callback);
1574 #endif
1575 #endif
1576 }
1577
rq_unpin_lock(struct rq * rq,struct rq_flags * rf)1578 static inline void rq_unpin_lock(struct rq *rq, struct rq_flags *rf)
1579 {
1580 #ifdef CONFIG_SCHED_DEBUG
1581 if (rq->clock_update_flags > RQCF_ACT_SKIP)
1582 rf->clock_update_flags = RQCF_UPDATED;
1583 #endif
1584
1585 lockdep_unpin_lock(__rq_lockp(rq), rf->cookie);
1586 }
1587
rq_repin_lock(struct rq * rq,struct rq_flags * rf)1588 static inline void rq_repin_lock(struct rq *rq, struct rq_flags *rf)
1589 {
1590 lockdep_repin_lock(__rq_lockp(rq), rf->cookie);
1591
1592 #ifdef CONFIG_SCHED_DEBUG
1593 /*
1594 * Restore the value we stashed in @rf for this pin context.
1595 */
1596 rq->clock_update_flags |= rf->clock_update_flags;
1597 #endif
1598 }
1599
1600 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
1601 __acquires(rq->lock);
1602
1603 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
1604 __acquires(p->pi_lock)
1605 __acquires(rq->lock);
1606
__task_rq_unlock(struct rq * rq,struct rq_flags * rf)1607 static inline void __task_rq_unlock(struct rq *rq, struct rq_flags *rf)
1608 __releases(rq->lock)
1609 {
1610 rq_unpin_lock(rq, rf);
1611 raw_spin_rq_unlock(rq);
1612 }
1613
1614 static inline void
task_rq_unlock(struct rq * rq,struct task_struct * p,struct rq_flags * rf)1615 task_rq_unlock(struct rq *rq, struct task_struct *p, struct rq_flags *rf)
1616 __releases(rq->lock)
1617 __releases(p->pi_lock)
1618 {
1619 rq_unpin_lock(rq, rf);
1620 raw_spin_rq_unlock(rq);
1621 raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
1622 }
1623
1624 static inline void
rq_lock_irqsave(struct rq * rq,struct rq_flags * rf)1625 rq_lock_irqsave(struct rq *rq, struct rq_flags *rf)
1626 __acquires(rq->lock)
1627 {
1628 raw_spin_rq_lock_irqsave(rq, rf->flags);
1629 rq_pin_lock(rq, rf);
1630 }
1631
1632 static inline void
rq_lock_irq(struct rq * rq,struct rq_flags * rf)1633 rq_lock_irq(struct rq *rq, struct rq_flags *rf)
1634 __acquires(rq->lock)
1635 {
1636 raw_spin_rq_lock_irq(rq);
1637 rq_pin_lock(rq, rf);
1638 }
1639
1640 static inline void
rq_lock(struct rq * rq,struct rq_flags * rf)1641 rq_lock(struct rq *rq, struct rq_flags *rf)
1642 __acquires(rq->lock)
1643 {
1644 raw_spin_rq_lock(rq);
1645 rq_pin_lock(rq, rf);
1646 }
1647
1648 static inline void
rq_unlock_irqrestore(struct rq * rq,struct rq_flags * rf)1649 rq_unlock_irqrestore(struct rq *rq, struct rq_flags *rf)
1650 __releases(rq->lock)
1651 {
1652 rq_unpin_lock(rq, rf);
1653 raw_spin_rq_unlock_irqrestore(rq, rf->flags);
1654 }
1655
1656 static inline void
rq_unlock_irq(struct rq * rq,struct rq_flags * rf)1657 rq_unlock_irq(struct rq *rq, struct rq_flags *rf)
1658 __releases(rq->lock)
1659 {
1660 rq_unpin_lock(rq, rf);
1661 raw_spin_rq_unlock_irq(rq);
1662 }
1663
1664 static inline void
rq_unlock(struct rq * rq,struct rq_flags * rf)1665 rq_unlock(struct rq *rq, struct rq_flags *rf)
1666 __releases(rq->lock)
1667 {
1668 rq_unpin_lock(rq, rf);
1669 raw_spin_rq_unlock(rq);
1670 }
1671
1672 static inline struct rq *
this_rq_lock_irq(struct rq_flags * rf)1673 this_rq_lock_irq(struct rq_flags *rf)
1674 __acquires(rq->lock)
1675 {
1676 struct rq *rq;
1677
1678 local_irq_disable();
1679 rq = this_rq();
1680 rq_lock(rq, rf);
1681 return rq;
1682 }
1683
1684 #ifdef CONFIG_NUMA
1685 enum numa_topology_type {
1686 NUMA_DIRECT,
1687 NUMA_GLUELESS_MESH,
1688 NUMA_BACKPLANE,
1689 };
1690 extern enum numa_topology_type sched_numa_topology_type;
1691 extern int sched_max_numa_distance;
1692 extern bool find_numa_distance(int distance);
1693 extern void sched_init_numa(int offline_node);
1694 extern void sched_update_numa(int cpu, bool online);
1695 extern void sched_domains_numa_masks_set(unsigned int cpu);
1696 extern void sched_domains_numa_masks_clear(unsigned int cpu);
1697 extern int sched_numa_find_closest(const struct cpumask *cpus, int cpu);
1698 #else
sched_init_numa(int offline_node)1699 static inline void sched_init_numa(int offline_node) { }
sched_update_numa(int cpu,bool online)1700 static inline void sched_update_numa(int cpu, bool online) { }
sched_domains_numa_masks_set(unsigned int cpu)1701 static inline void sched_domains_numa_masks_set(unsigned int cpu) { }
sched_domains_numa_masks_clear(unsigned int cpu)1702 static inline void sched_domains_numa_masks_clear(unsigned int cpu) { }
sched_numa_find_closest(const struct cpumask * cpus,int cpu)1703 static inline int sched_numa_find_closest(const struct cpumask *cpus, int cpu)
1704 {
1705 return nr_cpu_ids;
1706 }
1707 #endif
1708
1709 #ifdef CONFIG_NUMA_BALANCING
1710 /* The regions in numa_faults array from task_struct */
1711 enum numa_faults_stats {
1712 NUMA_MEM = 0,
1713 NUMA_CPU,
1714 NUMA_MEMBUF,
1715 NUMA_CPUBUF
1716 };
1717 extern void sched_setnuma(struct task_struct *p, int node);
1718 extern int migrate_task_to(struct task_struct *p, int cpu);
1719 extern int migrate_swap(struct task_struct *p, struct task_struct *t,
1720 int cpu, int scpu);
1721 extern void init_numa_balancing(unsigned long clone_flags, struct task_struct *p);
1722 #else
1723 static inline void
init_numa_balancing(unsigned long clone_flags,struct task_struct * p)1724 init_numa_balancing(unsigned long clone_flags, struct task_struct *p)
1725 {
1726 }
1727 #endif /* CONFIG_NUMA_BALANCING */
1728
1729 #ifdef CONFIG_SMP
1730
1731 static inline void
queue_balance_callback(struct rq * rq,struct balance_callback * head,void (* func)(struct rq * rq))1732 queue_balance_callback(struct rq *rq,
1733 struct balance_callback *head,
1734 void (*func)(struct rq *rq))
1735 {
1736 lockdep_assert_rq_held(rq);
1737
1738 /*
1739 * Don't (re)queue an already queued item; nor queue anything when
1740 * balance_push() is active, see the comment with
1741 * balance_push_callback.
1742 */
1743 if (unlikely(head->next || rq->balance_callback == &balance_push_callback))
1744 return;
1745
1746 head->func = func;
1747 head->next = rq->balance_callback;
1748 rq->balance_callback = head;
1749 }
1750
1751 #define rcu_dereference_check_sched_domain(p) \
1752 rcu_dereference_check((p), \
1753 lockdep_is_held(&sched_domains_mutex))
1754
1755 /*
1756 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1757 * See destroy_sched_domains: call_rcu for details.
1758 *
1759 * The domain tree of any CPU may only be accessed from within
1760 * preempt-disabled sections.
1761 */
1762 #define for_each_domain(cpu, __sd) \
1763 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); \
1764 __sd; __sd = __sd->parent)
1765
1766 /**
1767 * highest_flag_domain - Return highest sched_domain containing flag.
1768 * @cpu: The CPU whose highest level of sched domain is to
1769 * be returned.
1770 * @flag: The flag to check for the highest sched_domain
1771 * for the given CPU.
1772 *
1773 * Returns the highest sched_domain of a CPU which contains the given flag.
1774 */
highest_flag_domain(int cpu,int flag)1775 static inline struct sched_domain *highest_flag_domain(int cpu, int flag)
1776 {
1777 struct sched_domain *sd, *hsd = NULL;
1778
1779 for_each_domain(cpu, sd) {
1780 if (!(sd->flags & flag))
1781 break;
1782 hsd = sd;
1783 }
1784
1785 return hsd;
1786 }
1787
lowest_flag_domain(int cpu,int flag)1788 static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
1789 {
1790 struct sched_domain *sd;
1791
1792 for_each_domain(cpu, sd) {
1793 if (sd->flags & flag)
1794 break;
1795 }
1796
1797 return sd;
1798 }
1799
1800 DECLARE_PER_CPU(struct sched_domain __rcu *, sd_llc);
1801 DECLARE_PER_CPU(int, sd_llc_size);
1802 DECLARE_PER_CPU(int, sd_llc_id);
1803 DECLARE_PER_CPU(struct sched_domain_shared __rcu *, sd_llc_shared);
1804 DECLARE_PER_CPU(struct sched_domain __rcu *, sd_numa);
1805 DECLARE_PER_CPU(struct sched_domain __rcu *, sd_asym_packing);
1806 DECLARE_PER_CPU(struct sched_domain __rcu *, sd_asym_cpucapacity);
1807 extern struct static_key_false sched_asym_cpucapacity;
1808
sched_asym_cpucap_active(void)1809 static __always_inline bool sched_asym_cpucap_active(void)
1810 {
1811 return static_branch_unlikely(&sched_asym_cpucapacity);
1812 }
1813
1814 struct sched_group_capacity {
1815 atomic_t ref;
1816 /*
1817 * CPU capacity of this group, SCHED_CAPACITY_SCALE being max capacity
1818 * for a single CPU.
1819 */
1820 unsigned long capacity;
1821 unsigned long min_capacity; /* Min per-CPU capacity in group */
1822 unsigned long max_capacity; /* Max per-CPU capacity in group */
1823 unsigned long next_update;
1824 int imbalance; /* XXX unrelated to capacity but shared group state */
1825
1826 #ifdef CONFIG_SCHED_DEBUG
1827 int id;
1828 #endif
1829
1830 unsigned long cpumask[]; /* Balance mask */
1831 };
1832
1833 struct sched_group {
1834 struct sched_group *next; /* Must be a circular list */
1835 atomic_t ref;
1836
1837 unsigned int group_weight;
1838 struct sched_group_capacity *sgc;
1839 int asym_prefer_cpu; /* CPU of highest priority in group */
1840 int flags;
1841
1842 /*
1843 * The CPUs this group covers.
1844 *
1845 * NOTE: this field is variable length. (Allocated dynamically
1846 * by attaching extra space to the end of the structure,
1847 * depending on how many CPUs the kernel has booted up with)
1848 */
1849 unsigned long cpumask[];
1850 };
1851
sched_group_span(struct sched_group * sg)1852 static inline struct cpumask *sched_group_span(struct sched_group *sg)
1853 {
1854 return to_cpumask(sg->cpumask);
1855 }
1856
1857 /*
1858 * See build_balance_mask().
1859 */
group_balance_mask(struct sched_group * sg)1860 static inline struct cpumask *group_balance_mask(struct sched_group *sg)
1861 {
1862 return to_cpumask(sg->sgc->cpumask);
1863 }
1864
1865 extern int group_balance_cpu(struct sched_group *sg);
1866
1867 #ifdef CONFIG_SCHED_DEBUG
1868 void update_sched_domain_debugfs(void);
1869 void dirty_sched_domain_sysctl(int cpu);
1870 #else
update_sched_domain_debugfs(void)1871 static inline void update_sched_domain_debugfs(void)
1872 {
1873 }
dirty_sched_domain_sysctl(int cpu)1874 static inline void dirty_sched_domain_sysctl(int cpu)
1875 {
1876 }
1877 #endif
1878
1879 extern int sched_update_scaling(void);
1880 #endif /* CONFIG_SMP */
1881
1882 #include "stats.h"
1883
1884 #if defined(CONFIG_SCHED_CORE) && defined(CONFIG_SCHEDSTATS)
1885
1886 extern void __sched_core_account_forceidle(struct rq *rq);
1887
sched_core_account_forceidle(struct rq * rq)1888 static inline void sched_core_account_forceidle(struct rq *rq)
1889 {
1890 if (schedstat_enabled())
1891 __sched_core_account_forceidle(rq);
1892 }
1893
1894 extern void __sched_core_tick(struct rq *rq);
1895
sched_core_tick(struct rq * rq)1896 static inline void sched_core_tick(struct rq *rq)
1897 {
1898 if (sched_core_enabled(rq) && schedstat_enabled())
1899 __sched_core_tick(rq);
1900 }
1901
1902 #else
1903
sched_core_account_forceidle(struct rq * rq)1904 static inline void sched_core_account_forceidle(struct rq *rq) {}
1905
sched_core_tick(struct rq * rq)1906 static inline void sched_core_tick(struct rq *rq) {}
1907
1908 #endif /* CONFIG_SCHED_CORE && CONFIG_SCHEDSTATS */
1909
1910 #ifdef CONFIG_CGROUP_SCHED
1911
1912 /*
1913 * Return the group to which this tasks belongs.
1914 *
1915 * We cannot use task_css() and friends because the cgroup subsystem
1916 * changes that value before the cgroup_subsys::attach() method is called,
1917 * therefore we cannot pin it and might observe the wrong value.
1918 *
1919 * The same is true for autogroup's p->signal->autogroup->tg, the autogroup
1920 * core changes this before calling sched_move_task().
1921 *
1922 * Instead we use a 'copy' which is updated from sched_move_task() while
1923 * holding both task_struct::pi_lock and rq::lock.
1924 */
task_group(struct task_struct * p)1925 static inline struct task_group *task_group(struct task_struct *p)
1926 {
1927 return p->sched_task_group;
1928 }
1929
1930 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
set_task_rq(struct task_struct * p,unsigned int cpu)1931 static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
1932 {
1933 #if defined(CONFIG_FAIR_GROUP_SCHED) || defined(CONFIG_RT_GROUP_SCHED)
1934 struct task_group *tg = task_group(p);
1935 #endif
1936
1937 #ifdef CONFIG_FAIR_GROUP_SCHED
1938 set_task_rq_fair(&p->se, p->se.cfs_rq, tg->cfs_rq[cpu]);
1939 p->se.cfs_rq = tg->cfs_rq[cpu];
1940 p->se.parent = tg->se[cpu];
1941 p->se.depth = tg->se[cpu] ? tg->se[cpu]->depth + 1 : 0;
1942 #endif
1943
1944 #ifdef CONFIG_RT_GROUP_SCHED
1945 p->rt.rt_rq = tg->rt_rq[cpu];
1946 p->rt.parent = tg->rt_se[cpu];
1947 #endif
1948 }
1949
1950 #else /* CONFIG_CGROUP_SCHED */
1951
set_task_rq(struct task_struct * p,unsigned int cpu)1952 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
task_group(struct task_struct * p)1953 static inline struct task_group *task_group(struct task_struct *p)
1954 {
1955 return NULL;
1956 }
1957
1958 #endif /* CONFIG_CGROUP_SCHED */
1959
__set_task_cpu(struct task_struct * p,unsigned int cpu)1960 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1961 {
1962 set_task_rq(p, cpu);
1963 #ifdef CONFIG_SMP
1964 /*
1965 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1966 * successfully executed on another CPU. We must ensure that updates of
1967 * per-task data have been completed by this moment.
1968 */
1969 smp_wmb();
1970 WRITE_ONCE(task_thread_info(p)->cpu, cpu);
1971 p->wake_cpu = cpu;
1972 #endif
1973 }
1974
1975 /*
1976 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
1977 */
1978 #ifdef CONFIG_SCHED_DEBUG
1979 # define const_debug __read_mostly
1980 #else
1981 # define const_debug const
1982 #endif
1983
1984 #define SCHED_FEAT(name, enabled) \
1985 __SCHED_FEAT_##name ,
1986
1987 enum {
1988 #include "features.h"
1989 __SCHED_FEAT_NR,
1990 };
1991
1992 #undef SCHED_FEAT
1993
1994 #ifdef CONFIG_SCHED_DEBUG
1995
1996 /*
1997 * To support run-time toggling of sched features, all the translation units
1998 * (but core.c) reference the sysctl_sched_features defined in core.c.
1999 */
2000 extern const_debug unsigned int sysctl_sched_features;
2001
2002 #ifdef CONFIG_JUMP_LABEL
2003 #define SCHED_FEAT(name, enabled) \
2004 static __always_inline bool static_branch_##name(struct static_key *key) \
2005 { \
2006 return static_key_##enabled(key); \
2007 }
2008
2009 #include "features.h"
2010 #undef SCHED_FEAT
2011
2012 extern struct static_key sched_feat_keys[__SCHED_FEAT_NR];
2013 #define sched_feat(x) (static_branch_##x(&sched_feat_keys[__SCHED_FEAT_##x]))
2014
2015 #else /* !CONFIG_JUMP_LABEL */
2016
2017 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
2018
2019 #endif /* CONFIG_JUMP_LABEL */
2020
2021 #else /* !SCHED_DEBUG */
2022
2023 /*
2024 * Each translation unit has its own copy of sysctl_sched_features to allow
2025 * constants propagation at compile time and compiler optimization based on
2026 * features default.
2027 */
2028 #define SCHED_FEAT(name, enabled) \
2029 (1UL << __SCHED_FEAT_##name) * enabled |
2030 static const_debug __maybe_unused unsigned int sysctl_sched_features =
2031 #include "features.h"
2032 0;
2033 #undef SCHED_FEAT
2034
2035 #define sched_feat(x) !!(sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
2036
2037 #endif /* SCHED_DEBUG */
2038
2039 extern struct static_key_false sched_numa_balancing;
2040 extern struct static_key_false sched_schedstats;
2041
global_rt_period(void)2042 static inline u64 global_rt_period(void)
2043 {
2044 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
2045 }
2046
global_rt_runtime(void)2047 static inline u64 global_rt_runtime(void)
2048 {
2049 if (sysctl_sched_rt_runtime < 0)
2050 return RUNTIME_INF;
2051
2052 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
2053 }
2054
task_current(struct rq * rq,struct task_struct * p)2055 static inline int task_current(struct rq *rq, struct task_struct *p)
2056 {
2057 return rq->curr == p;
2058 }
2059
task_on_cpu(struct rq * rq,struct task_struct * p)2060 static inline int task_on_cpu(struct rq *rq, struct task_struct *p)
2061 {
2062 #ifdef CONFIG_SMP
2063 return p->on_cpu;
2064 #else
2065 return task_current(rq, p);
2066 #endif
2067 }
2068
task_on_rq_queued(struct task_struct * p)2069 static inline int task_on_rq_queued(struct task_struct *p)
2070 {
2071 return p->on_rq == TASK_ON_RQ_QUEUED;
2072 }
2073
task_on_rq_migrating(struct task_struct * p)2074 static inline int task_on_rq_migrating(struct task_struct *p)
2075 {
2076 return READ_ONCE(p->on_rq) == TASK_ON_RQ_MIGRATING;
2077 }
2078
2079 /* Wake flags. The first three directly map to some SD flag value */
2080 #define WF_EXEC 0x02 /* Wakeup after exec; maps to SD_BALANCE_EXEC */
2081 #define WF_FORK 0x04 /* Wakeup after fork; maps to SD_BALANCE_FORK */
2082 #define WF_TTWU 0x08 /* Wakeup; maps to SD_BALANCE_WAKE */
2083
2084 #define WF_SYNC 0x10 /* Waker goes to sleep after wakeup */
2085 #define WF_MIGRATED 0x20 /* Internal use, task got migrated */
2086
2087 #ifdef CONFIG_SMP
2088 static_assert(WF_EXEC == SD_BALANCE_EXEC);
2089 static_assert(WF_FORK == SD_BALANCE_FORK);
2090 static_assert(WF_TTWU == SD_BALANCE_WAKE);
2091 #endif
2092
2093 /*
2094 * To aid in avoiding the subversion of "niceness" due to uneven distribution
2095 * of tasks with abnormal "nice" values across CPUs the contribution that
2096 * each task makes to its run queue's load is weighted according to its
2097 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
2098 * scaled version of the new time slice allocation that they receive on time
2099 * slice expiry etc.
2100 */
2101
2102 #define WEIGHT_IDLEPRIO 3
2103 #define WMULT_IDLEPRIO 1431655765
2104
2105 extern const int sched_prio_to_weight[40];
2106 extern const u32 sched_prio_to_wmult[40];
2107
2108 /*
2109 * {de,en}queue flags:
2110 *
2111 * DEQUEUE_SLEEP - task is no longer runnable
2112 * ENQUEUE_WAKEUP - task just became runnable
2113 *
2114 * SAVE/RESTORE - an otherwise spurious dequeue/enqueue, done to ensure tasks
2115 * are in a known state which allows modification. Such pairs
2116 * should preserve as much state as possible.
2117 *
2118 * MOVE - paired with SAVE/RESTORE, explicitly does not preserve the location
2119 * in the runqueue.
2120 *
2121 * ENQUEUE_HEAD - place at front of runqueue (tail if not specified)
2122 * ENQUEUE_REPLENISH - CBS (replenish runtime and postpone deadline)
2123 * ENQUEUE_MIGRATED - the task was migrated during wakeup
2124 *
2125 */
2126
2127 #define DEQUEUE_SLEEP 0x01
2128 #define DEQUEUE_SAVE 0x02 /* Matches ENQUEUE_RESTORE */
2129 #define DEQUEUE_MOVE 0x04 /* Matches ENQUEUE_MOVE */
2130 #define DEQUEUE_NOCLOCK 0x08 /* Matches ENQUEUE_NOCLOCK */
2131
2132 #define ENQUEUE_WAKEUP 0x01
2133 #define ENQUEUE_RESTORE 0x02
2134 #define ENQUEUE_MOVE 0x04
2135 #define ENQUEUE_NOCLOCK 0x08
2136
2137 #define ENQUEUE_HEAD 0x10
2138 #define ENQUEUE_REPLENISH 0x20
2139 #ifdef CONFIG_SMP
2140 #define ENQUEUE_MIGRATED 0x40
2141 #else
2142 #define ENQUEUE_MIGRATED 0x00
2143 #endif
2144
2145 #define RETRY_TASK ((void *)-1UL)
2146
2147 struct sched_class {
2148
2149 #ifdef CONFIG_UCLAMP_TASK
2150 int uclamp_enabled;
2151 #endif
2152
2153 void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags);
2154 void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags);
2155 void (*yield_task) (struct rq *rq);
2156 bool (*yield_to_task)(struct rq *rq, struct task_struct *p);
2157
2158 void (*check_preempt_curr)(struct rq *rq, struct task_struct *p, int flags);
2159
2160 struct task_struct *(*pick_next_task)(struct rq *rq);
2161
2162 void (*put_prev_task)(struct rq *rq, struct task_struct *p);
2163 void (*set_next_task)(struct rq *rq, struct task_struct *p, bool first);
2164
2165 #ifdef CONFIG_SMP
2166 int (*balance)(struct rq *rq, struct task_struct *prev, struct rq_flags *rf);
2167 int (*select_task_rq)(struct task_struct *p, int task_cpu, int flags);
2168
2169 struct task_struct * (*pick_task)(struct rq *rq);
2170
2171 void (*migrate_task_rq)(struct task_struct *p, int new_cpu);
2172
2173 void (*task_woken)(struct rq *this_rq, struct task_struct *task);
2174
2175 void (*set_cpus_allowed)(struct task_struct *p,
2176 const struct cpumask *newmask,
2177 u32 flags);
2178
2179 void (*rq_online)(struct rq *rq);
2180 void (*rq_offline)(struct rq *rq);
2181
2182 struct rq *(*find_lock_rq)(struct task_struct *p, struct rq *rq);
2183 #endif
2184
2185 void (*task_tick)(struct rq *rq, struct task_struct *p, int queued);
2186 void (*task_fork)(struct task_struct *p);
2187 void (*task_dead)(struct task_struct *p);
2188
2189 /*
2190 * The switched_from() call is allowed to drop rq->lock, therefore we
2191 * cannot assume the switched_from/switched_to pair is serialized by
2192 * rq->lock. They are however serialized by p->pi_lock.
2193 */
2194 void (*switched_from)(struct rq *this_rq, struct task_struct *task);
2195 void (*switched_to) (struct rq *this_rq, struct task_struct *task);
2196 void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
2197 int oldprio);
2198
2199 unsigned int (*get_rr_interval)(struct rq *rq,
2200 struct task_struct *task);
2201
2202 void (*update_curr)(struct rq *rq);
2203
2204 #ifdef CONFIG_FAIR_GROUP_SCHED
2205 void (*task_change_group)(struct task_struct *p);
2206 #endif
2207 };
2208
put_prev_task(struct rq * rq,struct task_struct * prev)2209 static inline void put_prev_task(struct rq *rq, struct task_struct *prev)
2210 {
2211 WARN_ON_ONCE(rq->curr != prev);
2212 prev->sched_class->put_prev_task(rq, prev);
2213 }
2214
set_next_task(struct rq * rq,struct task_struct * next)2215 static inline void set_next_task(struct rq *rq, struct task_struct *next)
2216 {
2217 next->sched_class->set_next_task(rq, next, false);
2218 }
2219
2220
2221 /*
2222 * Helper to define a sched_class instance; each one is placed in a separate
2223 * section which is ordered by the linker script:
2224 *
2225 * include/asm-generic/vmlinux.lds.h
2226 *
2227 * *CAREFUL* they are laid out in *REVERSE* order!!!
2228 *
2229 * Also enforce alignment on the instance, not the type, to guarantee layout.
2230 */
2231 #define DEFINE_SCHED_CLASS(name) \
2232 const struct sched_class name##_sched_class \
2233 __aligned(__alignof__(struct sched_class)) \
2234 __section("__" #name "_sched_class")
2235
2236 /* Defined in include/asm-generic/vmlinux.lds.h */
2237 extern struct sched_class __sched_class_highest[];
2238 extern struct sched_class __sched_class_lowest[];
2239
2240 #define for_class_range(class, _from, _to) \
2241 for (class = (_from); class < (_to); class++)
2242
2243 #define for_each_class(class) \
2244 for_class_range(class, __sched_class_highest, __sched_class_lowest)
2245
2246 #define sched_class_above(_a, _b) ((_a) < (_b))
2247
2248 extern const struct sched_class stop_sched_class;
2249 extern const struct sched_class dl_sched_class;
2250 extern const struct sched_class rt_sched_class;
2251 extern const struct sched_class fair_sched_class;
2252 extern const struct sched_class idle_sched_class;
2253
sched_stop_runnable(struct rq * rq)2254 static inline bool sched_stop_runnable(struct rq *rq)
2255 {
2256 return rq->stop && task_on_rq_queued(rq->stop);
2257 }
2258
sched_dl_runnable(struct rq * rq)2259 static inline bool sched_dl_runnable(struct rq *rq)
2260 {
2261 return rq->dl.dl_nr_running > 0;
2262 }
2263
sched_rt_runnable(struct rq * rq)2264 static inline bool sched_rt_runnable(struct rq *rq)
2265 {
2266 return rq->rt.rt_queued > 0;
2267 }
2268
sched_fair_runnable(struct rq * rq)2269 static inline bool sched_fair_runnable(struct rq *rq)
2270 {
2271 return rq->cfs.nr_running > 0;
2272 }
2273
2274 extern struct task_struct *pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf);
2275 extern struct task_struct *pick_next_task_idle(struct rq *rq);
2276
2277 #define SCA_CHECK 0x01
2278 #define SCA_MIGRATE_DISABLE 0x02
2279 #define SCA_MIGRATE_ENABLE 0x04
2280 #define SCA_USER 0x08
2281
2282 #ifdef CONFIG_SMP
2283
2284 extern void update_group_capacity(struct sched_domain *sd, int cpu);
2285
2286 extern void trigger_load_balance(struct rq *rq);
2287
2288 extern void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask, u32 flags);
2289
get_push_task(struct rq * rq)2290 static inline struct task_struct *get_push_task(struct rq *rq)
2291 {
2292 struct task_struct *p = rq->curr;
2293
2294 lockdep_assert_rq_held(rq);
2295
2296 if (rq->push_busy)
2297 return NULL;
2298
2299 if (p->nr_cpus_allowed == 1)
2300 return NULL;
2301
2302 if (p->migration_disabled)
2303 return NULL;
2304
2305 rq->push_busy = true;
2306 return get_task_struct(p);
2307 }
2308
2309 extern int push_cpu_stop(void *arg);
2310
2311 #endif
2312
2313 #ifdef CONFIG_CPU_IDLE
idle_set_state(struct rq * rq,struct cpuidle_state * idle_state)2314 static inline void idle_set_state(struct rq *rq,
2315 struct cpuidle_state *idle_state)
2316 {
2317 rq->idle_state = idle_state;
2318 }
2319
idle_get_state(struct rq * rq)2320 static inline struct cpuidle_state *idle_get_state(struct rq *rq)
2321 {
2322 SCHED_WARN_ON(!rcu_read_lock_held());
2323
2324 return rq->idle_state;
2325 }
2326 #else
idle_set_state(struct rq * rq,struct cpuidle_state * idle_state)2327 static inline void idle_set_state(struct rq *rq,
2328 struct cpuidle_state *idle_state)
2329 {
2330 }
2331
idle_get_state(struct rq * rq)2332 static inline struct cpuidle_state *idle_get_state(struct rq *rq)
2333 {
2334 return NULL;
2335 }
2336 #endif
2337
2338 extern void schedule_idle(void);
2339
2340 extern void sysrq_sched_debug_show(void);
2341 extern void sched_init_granularity(void);
2342 extern void update_max_interval(void);
2343
2344 extern void init_sched_dl_class(void);
2345 extern void init_sched_rt_class(void);
2346 extern void init_sched_fair_class(void);
2347
2348 extern void reweight_task(struct task_struct *p, int prio);
2349
2350 extern void resched_curr(struct rq *rq);
2351 extern void resched_cpu(int cpu);
2352
2353 extern struct rt_bandwidth def_rt_bandwidth;
2354 extern void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime);
2355 extern bool sched_rt_bandwidth_account(struct rt_rq *rt_rq);
2356
2357 extern void init_dl_bandwidth(struct dl_bandwidth *dl_b, u64 period, u64 runtime);
2358 extern void init_dl_task_timer(struct sched_dl_entity *dl_se);
2359 extern void init_dl_inactive_task_timer(struct sched_dl_entity *dl_se);
2360
2361 #define BW_SHIFT 20
2362 #define BW_UNIT (1 << BW_SHIFT)
2363 #define RATIO_SHIFT 8
2364 #define MAX_BW_BITS (64 - BW_SHIFT)
2365 #define MAX_BW ((1ULL << MAX_BW_BITS) - 1)
2366 unsigned long to_ratio(u64 period, u64 runtime);
2367
2368 extern void init_entity_runnable_average(struct sched_entity *se);
2369 extern void post_init_entity_util_avg(struct task_struct *p);
2370
2371 #ifdef CONFIG_NO_HZ_FULL
2372 extern bool sched_can_stop_tick(struct rq *rq);
2373 extern int __init sched_tick_offload_init(void);
2374
2375 /*
2376 * Tick may be needed by tasks in the runqueue depending on their policy and
2377 * requirements. If tick is needed, lets send the target an IPI to kick it out of
2378 * nohz mode if necessary.
2379 */
sched_update_tick_dependency(struct rq * rq)2380 static inline void sched_update_tick_dependency(struct rq *rq)
2381 {
2382 int cpu = cpu_of(rq);
2383
2384 if (!tick_nohz_full_cpu(cpu))
2385 return;
2386
2387 if (sched_can_stop_tick(rq))
2388 tick_nohz_dep_clear_cpu(cpu, TICK_DEP_BIT_SCHED);
2389 else
2390 tick_nohz_dep_set_cpu(cpu, TICK_DEP_BIT_SCHED);
2391 }
2392 #else
sched_tick_offload_init(void)2393 static inline int sched_tick_offload_init(void) { return 0; }
sched_update_tick_dependency(struct rq * rq)2394 static inline void sched_update_tick_dependency(struct rq *rq) { }
2395 #endif
2396
add_nr_running(struct rq * rq,unsigned count)2397 static inline void add_nr_running(struct rq *rq, unsigned count)
2398 {
2399 unsigned prev_nr = rq->nr_running;
2400
2401 rq->nr_running = prev_nr + count;
2402 if (trace_sched_update_nr_running_tp_enabled()) {
2403 call_trace_sched_update_nr_running(rq, count);
2404 }
2405
2406 #ifdef CONFIG_SMP
2407 if (prev_nr < 2 && rq->nr_running >= 2) {
2408 if (!READ_ONCE(rq->rd->overload))
2409 WRITE_ONCE(rq->rd->overload, 1);
2410 }
2411 #endif
2412
2413 sched_update_tick_dependency(rq);
2414 }
2415
sub_nr_running(struct rq * rq,unsigned count)2416 static inline void sub_nr_running(struct rq *rq, unsigned count)
2417 {
2418 rq->nr_running -= count;
2419 if (trace_sched_update_nr_running_tp_enabled()) {
2420 call_trace_sched_update_nr_running(rq, -count);
2421 }
2422
2423 /* Check if we still need preemption */
2424 sched_update_tick_dependency(rq);
2425 }
2426
2427 extern void activate_task(struct rq *rq, struct task_struct *p, int flags);
2428 extern void deactivate_task(struct rq *rq, struct task_struct *p, int flags);
2429
2430 extern void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
2431
2432 #ifdef CONFIG_PREEMPT_RT
2433 #define SCHED_NR_MIGRATE_BREAK 8
2434 #else
2435 #define SCHED_NR_MIGRATE_BREAK 32
2436 #endif
2437
2438 extern const_debug unsigned int sysctl_sched_nr_migrate;
2439 extern const_debug unsigned int sysctl_sched_migration_cost;
2440
2441 #ifdef CONFIG_SCHED_DEBUG
2442 extern unsigned int sysctl_sched_latency;
2443 extern unsigned int sysctl_sched_min_granularity;
2444 extern unsigned int sysctl_sched_idle_min_granularity;
2445 extern unsigned int sysctl_sched_wakeup_granularity;
2446 extern int sysctl_resched_latency_warn_ms;
2447 extern int sysctl_resched_latency_warn_once;
2448
2449 extern unsigned int sysctl_sched_tunable_scaling;
2450
2451 extern unsigned int sysctl_numa_balancing_scan_delay;
2452 extern unsigned int sysctl_numa_balancing_scan_period_min;
2453 extern unsigned int sysctl_numa_balancing_scan_period_max;
2454 extern unsigned int sysctl_numa_balancing_scan_size;
2455 extern unsigned int sysctl_numa_balancing_hot_threshold;
2456 #endif
2457
2458 #ifdef CONFIG_SCHED_HRTICK
2459
2460 /*
2461 * Use hrtick when:
2462 * - enabled by features
2463 * - hrtimer is actually high res
2464 */
hrtick_enabled(struct rq * rq)2465 static inline int hrtick_enabled(struct rq *rq)
2466 {
2467 if (!cpu_active(cpu_of(rq)))
2468 return 0;
2469 return hrtimer_is_hres_active(&rq->hrtick_timer);
2470 }
2471
hrtick_enabled_fair(struct rq * rq)2472 static inline int hrtick_enabled_fair(struct rq *rq)
2473 {
2474 if (!sched_feat(HRTICK))
2475 return 0;
2476 return hrtick_enabled(rq);
2477 }
2478
hrtick_enabled_dl(struct rq * rq)2479 static inline int hrtick_enabled_dl(struct rq *rq)
2480 {
2481 if (!sched_feat(HRTICK_DL))
2482 return 0;
2483 return hrtick_enabled(rq);
2484 }
2485
2486 void hrtick_start(struct rq *rq, u64 delay);
2487
2488 #else
2489
hrtick_enabled_fair(struct rq * rq)2490 static inline int hrtick_enabled_fair(struct rq *rq)
2491 {
2492 return 0;
2493 }
2494
hrtick_enabled_dl(struct rq * rq)2495 static inline int hrtick_enabled_dl(struct rq *rq)
2496 {
2497 return 0;
2498 }
2499
hrtick_enabled(struct rq * rq)2500 static inline int hrtick_enabled(struct rq *rq)
2501 {
2502 return 0;
2503 }
2504
2505 #endif /* CONFIG_SCHED_HRTICK */
2506
2507 #ifndef arch_scale_freq_tick
2508 static __always_inline
arch_scale_freq_tick(void)2509 void arch_scale_freq_tick(void)
2510 {
2511 }
2512 #endif
2513
2514 #ifndef arch_scale_freq_capacity
2515 /**
2516 * arch_scale_freq_capacity - get the frequency scale factor of a given CPU.
2517 * @cpu: the CPU in question.
2518 *
2519 * Return: the frequency scale factor normalized against SCHED_CAPACITY_SCALE, i.e.
2520 *
2521 * f_curr
2522 * ------ * SCHED_CAPACITY_SCALE
2523 * f_max
2524 */
2525 static __always_inline
arch_scale_freq_capacity(int cpu)2526 unsigned long arch_scale_freq_capacity(int cpu)
2527 {
2528 return SCHED_CAPACITY_SCALE;
2529 }
2530 #endif
2531
2532 #ifdef CONFIG_SCHED_DEBUG
2533 /*
2534 * In double_lock_balance()/double_rq_lock(), we use raw_spin_rq_lock() to
2535 * acquire rq lock instead of rq_lock(). So at the end of these two functions
2536 * we need to call double_rq_clock_clear_update() to clear RQCF_UPDATED of
2537 * rq->clock_update_flags to avoid the WARN_DOUBLE_CLOCK warning.
2538 */
double_rq_clock_clear_update(struct rq * rq1,struct rq * rq2)2539 static inline void double_rq_clock_clear_update(struct rq *rq1, struct rq *rq2)
2540 {
2541 rq1->clock_update_flags &= (RQCF_REQ_SKIP|RQCF_ACT_SKIP);
2542 /* rq1 == rq2 for !CONFIG_SMP, so just clear RQCF_UPDATED once. */
2543 #ifdef CONFIG_SMP
2544 rq2->clock_update_flags &= (RQCF_REQ_SKIP|RQCF_ACT_SKIP);
2545 #endif
2546 }
2547 #else
double_rq_clock_clear_update(struct rq * rq1,struct rq * rq2)2548 static inline void double_rq_clock_clear_update(struct rq *rq1, struct rq *rq2) {}
2549 #endif
2550
2551 #ifdef CONFIG_SMP
2552
rq_order_less(struct rq * rq1,struct rq * rq2)2553 static inline bool rq_order_less(struct rq *rq1, struct rq *rq2)
2554 {
2555 #ifdef CONFIG_SCHED_CORE
2556 /*
2557 * In order to not have {0,2},{1,3} turn into into an AB-BA,
2558 * order by core-id first and cpu-id second.
2559 *
2560 * Notably:
2561 *
2562 * double_rq_lock(0,3); will take core-0, core-1 lock
2563 * double_rq_lock(1,2); will take core-1, core-0 lock
2564 *
2565 * when only cpu-id is considered.
2566 */
2567 if (rq1->core->cpu < rq2->core->cpu)
2568 return true;
2569 if (rq1->core->cpu > rq2->core->cpu)
2570 return false;
2571
2572 /*
2573 * __sched_core_flip() relies on SMT having cpu-id lock order.
2574 */
2575 #endif
2576 return rq1->cpu < rq2->cpu;
2577 }
2578
2579 extern void double_rq_lock(struct rq *rq1, struct rq *rq2);
2580
2581 #ifdef CONFIG_PREEMPTION
2582
2583 /*
2584 * fair double_lock_balance: Safely acquires both rq->locks in a fair
2585 * way at the expense of forcing extra atomic operations in all
2586 * invocations. This assures that the double_lock is acquired using the
2587 * same underlying policy as the spinlock_t on this architecture, which
2588 * reduces latency compared to the unfair variant below. However, it
2589 * also adds more overhead and therefore may reduce throughput.
2590 */
_double_lock_balance(struct rq * this_rq,struct rq * busiest)2591 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
2592 __releases(this_rq->lock)
2593 __acquires(busiest->lock)
2594 __acquires(this_rq->lock)
2595 {
2596 raw_spin_rq_unlock(this_rq);
2597 double_rq_lock(this_rq, busiest);
2598
2599 return 1;
2600 }
2601
2602 #else
2603 /*
2604 * Unfair double_lock_balance: Optimizes throughput at the expense of
2605 * latency by eliminating extra atomic operations when the locks are
2606 * already in proper order on entry. This favors lower CPU-ids and will
2607 * grant the double lock to lower CPUs over higher ids under contention,
2608 * regardless of entry order into the function.
2609 */
_double_lock_balance(struct rq * this_rq,struct rq * busiest)2610 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
2611 __releases(this_rq->lock)
2612 __acquires(busiest->lock)
2613 __acquires(this_rq->lock)
2614 {
2615 if (__rq_lockp(this_rq) == __rq_lockp(busiest) ||
2616 likely(raw_spin_rq_trylock(busiest))) {
2617 double_rq_clock_clear_update(this_rq, busiest);
2618 return 0;
2619 }
2620
2621 if (rq_order_less(this_rq, busiest)) {
2622 raw_spin_rq_lock_nested(busiest, SINGLE_DEPTH_NESTING);
2623 double_rq_clock_clear_update(this_rq, busiest);
2624 return 0;
2625 }
2626
2627 raw_spin_rq_unlock(this_rq);
2628 double_rq_lock(this_rq, busiest);
2629
2630 return 1;
2631 }
2632
2633 #endif /* CONFIG_PREEMPTION */
2634
2635 /*
2636 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
2637 */
double_lock_balance(struct rq * this_rq,struct rq * busiest)2638 static inline int double_lock_balance(struct rq *this_rq, struct rq *busiest)
2639 {
2640 lockdep_assert_irqs_disabled();
2641
2642 return _double_lock_balance(this_rq, busiest);
2643 }
2644
double_unlock_balance(struct rq * this_rq,struct rq * busiest)2645 static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
2646 __releases(busiest->lock)
2647 {
2648 if (__rq_lockp(this_rq) != __rq_lockp(busiest))
2649 raw_spin_rq_unlock(busiest);
2650 lock_set_subclass(&__rq_lockp(this_rq)->dep_map, 0, _RET_IP_);
2651 }
2652
double_lock(spinlock_t * l1,spinlock_t * l2)2653 static inline void double_lock(spinlock_t *l1, spinlock_t *l2)
2654 {
2655 if (l1 > l2)
2656 swap(l1, l2);
2657
2658 spin_lock(l1);
2659 spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
2660 }
2661
double_lock_irq(spinlock_t * l1,spinlock_t * l2)2662 static inline void double_lock_irq(spinlock_t *l1, spinlock_t *l2)
2663 {
2664 if (l1 > l2)
2665 swap(l1, l2);
2666
2667 spin_lock_irq(l1);
2668 spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
2669 }
2670
double_raw_lock(raw_spinlock_t * l1,raw_spinlock_t * l2)2671 static inline void double_raw_lock(raw_spinlock_t *l1, raw_spinlock_t *l2)
2672 {
2673 if (l1 > l2)
2674 swap(l1, l2);
2675
2676 raw_spin_lock(l1);
2677 raw_spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
2678 }
2679
2680 /*
2681 * double_rq_unlock - safely unlock two runqueues
2682 *
2683 * Note this does not restore interrupts like task_rq_unlock,
2684 * you need to do so manually after calling.
2685 */
double_rq_unlock(struct rq * rq1,struct rq * rq2)2686 static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
2687 __releases(rq1->lock)
2688 __releases(rq2->lock)
2689 {
2690 if (__rq_lockp(rq1) != __rq_lockp(rq2))
2691 raw_spin_rq_unlock(rq2);
2692 else
2693 __release(rq2->lock);
2694 raw_spin_rq_unlock(rq1);
2695 }
2696
2697 extern void set_rq_online (struct rq *rq);
2698 extern void set_rq_offline(struct rq *rq);
2699 extern bool sched_smp_initialized;
2700
2701 #else /* CONFIG_SMP */
2702
2703 /*
2704 * double_rq_lock - safely lock two runqueues
2705 *
2706 * Note this does not disable interrupts like task_rq_lock,
2707 * you need to do so manually before calling.
2708 */
double_rq_lock(struct rq * rq1,struct rq * rq2)2709 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
2710 __acquires(rq1->lock)
2711 __acquires(rq2->lock)
2712 {
2713 WARN_ON_ONCE(!irqs_disabled());
2714 WARN_ON_ONCE(rq1 != rq2);
2715 raw_spin_rq_lock(rq1);
2716 __acquire(rq2->lock); /* Fake it out ;) */
2717 double_rq_clock_clear_update(rq1, rq2);
2718 }
2719
2720 /*
2721 * double_rq_unlock - safely unlock two runqueues
2722 *
2723 * Note this does not restore interrupts like task_rq_unlock,
2724 * you need to do so manually after calling.
2725 */
double_rq_unlock(struct rq * rq1,struct rq * rq2)2726 static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
2727 __releases(rq1->lock)
2728 __releases(rq2->lock)
2729 {
2730 WARN_ON_ONCE(rq1 != rq2);
2731 raw_spin_rq_unlock(rq1);
2732 __release(rq2->lock);
2733 }
2734
2735 #endif
2736
2737 extern struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq);
2738 extern struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq);
2739
2740 #ifdef CONFIG_SCHED_DEBUG
2741 extern bool sched_debug_verbose;
2742
2743 extern void print_cfs_stats(struct seq_file *m, int cpu);
2744 extern void print_rt_stats(struct seq_file *m, int cpu);
2745 extern void print_dl_stats(struct seq_file *m, int cpu);
2746 extern void print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
2747 extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq);
2748 extern void print_dl_rq(struct seq_file *m, int cpu, struct dl_rq *dl_rq);
2749
2750 extern void resched_latency_warn(int cpu, u64 latency);
2751 #ifdef CONFIG_NUMA_BALANCING
2752 extern void
2753 show_numa_stats(struct task_struct *p, struct seq_file *m);
2754 extern void
2755 print_numa_stats(struct seq_file *m, int node, unsigned long tsf,
2756 unsigned long tpf, unsigned long gsf, unsigned long gpf);
2757 #endif /* CONFIG_NUMA_BALANCING */
2758 #else
resched_latency_warn(int cpu,u64 latency)2759 static inline void resched_latency_warn(int cpu, u64 latency) {}
2760 #endif /* CONFIG_SCHED_DEBUG */
2761
2762 extern void init_cfs_rq(struct cfs_rq *cfs_rq);
2763 extern void init_rt_rq(struct rt_rq *rt_rq);
2764 extern void init_dl_rq(struct dl_rq *dl_rq);
2765
2766 extern void cfs_bandwidth_usage_inc(void);
2767 extern void cfs_bandwidth_usage_dec(void);
2768
2769 #ifdef CONFIG_NO_HZ_COMMON
2770 #define NOHZ_BALANCE_KICK_BIT 0
2771 #define NOHZ_STATS_KICK_BIT 1
2772 #define NOHZ_NEWILB_KICK_BIT 2
2773 #define NOHZ_NEXT_KICK_BIT 3
2774
2775 /* Run rebalance_domains() */
2776 #define NOHZ_BALANCE_KICK BIT(NOHZ_BALANCE_KICK_BIT)
2777 /* Update blocked load */
2778 #define NOHZ_STATS_KICK BIT(NOHZ_STATS_KICK_BIT)
2779 /* Update blocked load when entering idle */
2780 #define NOHZ_NEWILB_KICK BIT(NOHZ_NEWILB_KICK_BIT)
2781 /* Update nohz.next_balance */
2782 #define NOHZ_NEXT_KICK BIT(NOHZ_NEXT_KICK_BIT)
2783
2784 #define NOHZ_KICK_MASK (NOHZ_BALANCE_KICK | NOHZ_STATS_KICK | NOHZ_NEXT_KICK)
2785
2786 #define nohz_flags(cpu) (&cpu_rq(cpu)->nohz_flags)
2787
2788 extern void nohz_balance_exit_idle(struct rq *rq);
2789 #else
nohz_balance_exit_idle(struct rq * rq)2790 static inline void nohz_balance_exit_idle(struct rq *rq) { }
2791 #endif
2792
2793 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
2794 extern void nohz_run_idle_balance(int cpu);
2795 #else
nohz_run_idle_balance(int cpu)2796 static inline void nohz_run_idle_balance(int cpu) { }
2797 #endif
2798
2799 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
2800 struct irqtime {
2801 u64 total;
2802 u64 tick_delta;
2803 u64 irq_start_time;
2804 struct u64_stats_sync sync;
2805 };
2806
2807 DECLARE_PER_CPU(struct irqtime, cpu_irqtime);
2808
2809 /*
2810 * Returns the irqtime minus the softirq time computed by ksoftirqd.
2811 * Otherwise ksoftirqd's sum_exec_runtime is subtracted its own runtime
2812 * and never move forward.
2813 */
irq_time_read(int cpu)2814 static inline u64 irq_time_read(int cpu)
2815 {
2816 struct irqtime *irqtime = &per_cpu(cpu_irqtime, cpu);
2817 unsigned int seq;
2818 u64 total;
2819
2820 do {
2821 seq = __u64_stats_fetch_begin(&irqtime->sync);
2822 total = irqtime->total;
2823 } while (__u64_stats_fetch_retry(&irqtime->sync, seq));
2824
2825 return total;
2826 }
2827 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
2828
2829 #ifdef CONFIG_CPU_FREQ
2830 DECLARE_PER_CPU(struct update_util_data __rcu *, cpufreq_update_util_data);
2831
2832 /**
2833 * cpufreq_update_util - Take a note about CPU utilization changes.
2834 * @rq: Runqueue to carry out the update for.
2835 * @flags: Update reason flags.
2836 *
2837 * This function is called by the scheduler on the CPU whose utilization is
2838 * being updated.
2839 *
2840 * It can only be called from RCU-sched read-side critical sections.
2841 *
2842 * The way cpufreq is currently arranged requires it to evaluate the CPU
2843 * performance state (frequency/voltage) on a regular basis to prevent it from
2844 * being stuck in a completely inadequate performance level for too long.
2845 * That is not guaranteed to happen if the updates are only triggered from CFS
2846 * and DL, though, because they may not be coming in if only RT tasks are
2847 * active all the time (or there are RT tasks only).
2848 *
2849 * As a workaround for that issue, this function is called periodically by the
2850 * RT sched class to trigger extra cpufreq updates to prevent it from stalling,
2851 * but that really is a band-aid. Going forward it should be replaced with
2852 * solutions targeted more specifically at RT tasks.
2853 */
cpufreq_update_util(struct rq * rq,unsigned int flags)2854 static inline void cpufreq_update_util(struct rq *rq, unsigned int flags)
2855 {
2856 struct update_util_data *data;
2857
2858 data = rcu_dereference_sched(*per_cpu_ptr(&cpufreq_update_util_data,
2859 cpu_of(rq)));
2860 if (data)
2861 data->func(data, rq_clock(rq), flags);
2862 }
2863 #else
cpufreq_update_util(struct rq * rq,unsigned int flags)2864 static inline void cpufreq_update_util(struct rq *rq, unsigned int flags) {}
2865 #endif /* CONFIG_CPU_FREQ */
2866
2867 #ifdef arch_scale_freq_capacity
2868 # ifndef arch_scale_freq_invariant
2869 # define arch_scale_freq_invariant() true
2870 # endif
2871 #else
2872 # define arch_scale_freq_invariant() false
2873 #endif
2874
2875 #ifdef CONFIG_SMP
capacity_orig_of(int cpu)2876 static inline unsigned long capacity_orig_of(int cpu)
2877 {
2878 return cpu_rq(cpu)->cpu_capacity_orig;
2879 }
2880
2881 /**
2882 * enum cpu_util_type - CPU utilization type
2883 * @FREQUENCY_UTIL: Utilization used to select frequency
2884 * @ENERGY_UTIL: Utilization used during energy calculation
2885 *
2886 * The utilization signals of all scheduling classes (CFS/RT/DL) and IRQ time
2887 * need to be aggregated differently depending on the usage made of them. This
2888 * enum is used within effective_cpu_util() to differentiate the types of
2889 * utilization expected by the callers, and adjust the aggregation accordingly.
2890 */
2891 enum cpu_util_type {
2892 FREQUENCY_UTIL,
2893 ENERGY_UTIL,
2894 };
2895
2896 unsigned long effective_cpu_util(int cpu, unsigned long util_cfs,
2897 enum cpu_util_type type,
2898 struct task_struct *p);
2899
2900 /*
2901 * Verify the fitness of task @p to run on @cpu taking into account the
2902 * CPU original capacity and the runtime/deadline ratio of the task.
2903 *
2904 * The function will return true if the original capacity of @cpu is
2905 * greater than or equal to task's deadline density right shifted by
2906 * (BW_SHIFT - SCHED_CAPACITY_SHIFT) and false otherwise.
2907 */
dl_task_fits_capacity(struct task_struct * p,int cpu)2908 static inline bool dl_task_fits_capacity(struct task_struct *p, int cpu)
2909 {
2910 unsigned long cap = arch_scale_cpu_capacity(cpu);
2911
2912 return cap >= p->dl.dl_density >> (BW_SHIFT - SCHED_CAPACITY_SHIFT);
2913 }
2914
cpu_bw_dl(struct rq * rq)2915 static inline unsigned long cpu_bw_dl(struct rq *rq)
2916 {
2917 return (rq->dl.running_bw * SCHED_CAPACITY_SCALE) >> BW_SHIFT;
2918 }
2919
cpu_util_dl(struct rq * rq)2920 static inline unsigned long cpu_util_dl(struct rq *rq)
2921 {
2922 return READ_ONCE(rq->avg_dl.util_avg);
2923 }
2924
2925 /**
2926 * cpu_util_cfs() - Estimates the amount of CPU capacity used by CFS tasks.
2927 * @cpu: the CPU to get the utilization for.
2928 *
2929 * The unit of the return value must be the same as the one of CPU capacity
2930 * so that CPU utilization can be compared with CPU capacity.
2931 *
2932 * CPU utilization is the sum of running time of runnable tasks plus the
2933 * recent utilization of currently non-runnable tasks on that CPU.
2934 * It represents the amount of CPU capacity currently used by CFS tasks in
2935 * the range [0..max CPU capacity] with max CPU capacity being the CPU
2936 * capacity at f_max.
2937 *
2938 * The estimated CPU utilization is defined as the maximum between CPU
2939 * utilization and sum of the estimated utilization of the currently
2940 * runnable tasks on that CPU. It preserves a utilization "snapshot" of
2941 * previously-executed tasks, which helps better deduce how busy a CPU will
2942 * be when a long-sleeping task wakes up. The contribution to CPU utilization
2943 * of such a task would be significantly decayed at this point of time.
2944 *
2945 * CPU utilization can be higher than the current CPU capacity
2946 * (f_curr/f_max * max CPU capacity) or even the max CPU capacity because
2947 * of rounding errors as well as task migrations or wakeups of new tasks.
2948 * CPU utilization has to be capped to fit into the [0..max CPU capacity]
2949 * range. Otherwise a group of CPUs (CPU0 util = 121% + CPU1 util = 80%)
2950 * could be seen as over-utilized even though CPU1 has 20% of spare CPU
2951 * capacity. CPU utilization is allowed to overshoot current CPU capacity
2952 * though since this is useful for predicting the CPU capacity required
2953 * after task migrations (scheduler-driven DVFS).
2954 *
2955 * Return: (Estimated) utilization for the specified CPU.
2956 */
cpu_util_cfs(int cpu)2957 static inline unsigned long cpu_util_cfs(int cpu)
2958 {
2959 struct cfs_rq *cfs_rq;
2960 unsigned long util;
2961
2962 cfs_rq = &cpu_rq(cpu)->cfs;
2963 util = READ_ONCE(cfs_rq->avg.util_avg);
2964
2965 if (sched_feat(UTIL_EST)) {
2966 util = max_t(unsigned long, util,
2967 READ_ONCE(cfs_rq->avg.util_est.enqueued));
2968 }
2969
2970 return min(util, capacity_orig_of(cpu));
2971 }
2972
cpu_util_rt(struct rq * rq)2973 static inline unsigned long cpu_util_rt(struct rq *rq)
2974 {
2975 return READ_ONCE(rq->avg_rt.util_avg);
2976 }
2977 #endif
2978
2979 #ifdef CONFIG_UCLAMP_TASK
2980 unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id);
2981
uclamp_rq_get(struct rq * rq,enum uclamp_id clamp_id)2982 static inline unsigned long uclamp_rq_get(struct rq *rq,
2983 enum uclamp_id clamp_id)
2984 {
2985 return READ_ONCE(rq->uclamp[clamp_id].value);
2986 }
2987
uclamp_rq_set(struct rq * rq,enum uclamp_id clamp_id,unsigned int value)2988 static inline void uclamp_rq_set(struct rq *rq, enum uclamp_id clamp_id,
2989 unsigned int value)
2990 {
2991 WRITE_ONCE(rq->uclamp[clamp_id].value, value);
2992 }
2993
uclamp_rq_is_idle(struct rq * rq)2994 static inline bool uclamp_rq_is_idle(struct rq *rq)
2995 {
2996 return rq->uclamp_flags & UCLAMP_FLAG_IDLE;
2997 }
2998
2999 /**
3000 * uclamp_rq_util_with - clamp @util with @rq and @p effective uclamp values.
3001 * @rq: The rq to clamp against. Must not be NULL.
3002 * @util: The util value to clamp.
3003 * @p: The task to clamp against. Can be NULL if you want to clamp
3004 * against @rq only.
3005 *
3006 * Clamps the passed @util to the max(@rq, @p) effective uclamp values.
3007 *
3008 * If sched_uclamp_used static key is disabled, then just return the util
3009 * without any clamping since uclamp aggregation at the rq level in the fast
3010 * path is disabled, rendering this operation a NOP.
3011 *
3012 * Use uclamp_eff_value() if you don't care about uclamp values at rq level. It
3013 * will return the correct effective uclamp value of the task even if the
3014 * static key is disabled.
3015 */
3016 static __always_inline
uclamp_rq_util_with(struct rq * rq,unsigned long util,struct task_struct * p)3017 unsigned long uclamp_rq_util_with(struct rq *rq, unsigned long util,
3018 struct task_struct *p)
3019 {
3020 unsigned long min_util = 0;
3021 unsigned long max_util = 0;
3022
3023 if (!static_branch_likely(&sched_uclamp_used))
3024 return util;
3025
3026 if (p) {
3027 min_util = uclamp_eff_value(p, UCLAMP_MIN);
3028 max_util = uclamp_eff_value(p, UCLAMP_MAX);
3029
3030 /*
3031 * Ignore last runnable task's max clamp, as this task will
3032 * reset it. Similarly, no need to read the rq's min clamp.
3033 */
3034 if (uclamp_rq_is_idle(rq))
3035 goto out;
3036 }
3037
3038 min_util = max_t(unsigned long, min_util, uclamp_rq_get(rq, UCLAMP_MIN));
3039 max_util = max_t(unsigned long, max_util, uclamp_rq_get(rq, UCLAMP_MAX));
3040 out:
3041 /*
3042 * Since CPU's {min,max}_util clamps are MAX aggregated considering
3043 * RUNNABLE tasks with _different_ clamps, we can end up with an
3044 * inversion. Fix it now when the clamps are applied.
3045 */
3046 if (unlikely(min_util >= max_util))
3047 return min_util;
3048
3049 return clamp(util, min_util, max_util);
3050 }
3051
3052 /* Is the rq being capped/throttled by uclamp_max? */
uclamp_rq_is_capped(struct rq * rq)3053 static inline bool uclamp_rq_is_capped(struct rq *rq)
3054 {
3055 unsigned long rq_util;
3056 unsigned long max_util;
3057
3058 if (!static_branch_likely(&sched_uclamp_used))
3059 return false;
3060
3061 rq_util = cpu_util_cfs(cpu_of(rq)) + cpu_util_rt(rq);
3062 max_util = READ_ONCE(rq->uclamp[UCLAMP_MAX].value);
3063
3064 return max_util != SCHED_CAPACITY_SCALE && rq_util >= max_util;
3065 }
3066
3067 /*
3068 * When uclamp is compiled in, the aggregation at rq level is 'turned off'
3069 * by default in the fast path and only gets turned on once userspace performs
3070 * an operation that requires it.
3071 *
3072 * Returns true if userspace opted-in to use uclamp and aggregation at rq level
3073 * hence is active.
3074 */
uclamp_is_used(void)3075 static inline bool uclamp_is_used(void)
3076 {
3077 return static_branch_likely(&sched_uclamp_used);
3078 }
3079 #else /* CONFIG_UCLAMP_TASK */
uclamp_eff_value(struct task_struct * p,enum uclamp_id clamp_id)3080 static inline unsigned long uclamp_eff_value(struct task_struct *p,
3081 enum uclamp_id clamp_id)
3082 {
3083 if (clamp_id == UCLAMP_MIN)
3084 return 0;
3085
3086 return SCHED_CAPACITY_SCALE;
3087 }
3088
3089 static inline
uclamp_rq_util_with(struct rq * rq,unsigned long util,struct task_struct * p)3090 unsigned long uclamp_rq_util_with(struct rq *rq, unsigned long util,
3091 struct task_struct *p)
3092 {
3093 return util;
3094 }
3095
uclamp_rq_is_capped(struct rq * rq)3096 static inline bool uclamp_rq_is_capped(struct rq *rq) { return false; }
3097
uclamp_is_used(void)3098 static inline bool uclamp_is_used(void)
3099 {
3100 return false;
3101 }
3102
uclamp_rq_get(struct rq * rq,enum uclamp_id clamp_id)3103 static inline unsigned long uclamp_rq_get(struct rq *rq,
3104 enum uclamp_id clamp_id)
3105 {
3106 if (clamp_id == UCLAMP_MIN)
3107 return 0;
3108
3109 return SCHED_CAPACITY_SCALE;
3110 }
3111
uclamp_rq_set(struct rq * rq,enum uclamp_id clamp_id,unsigned int value)3112 static inline void uclamp_rq_set(struct rq *rq, enum uclamp_id clamp_id,
3113 unsigned int value)
3114 {
3115 }
3116
uclamp_rq_is_idle(struct rq * rq)3117 static inline bool uclamp_rq_is_idle(struct rq *rq)
3118 {
3119 return false;
3120 }
3121 #endif /* CONFIG_UCLAMP_TASK */
3122
3123 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
cpu_util_irq(struct rq * rq)3124 static inline unsigned long cpu_util_irq(struct rq *rq)
3125 {
3126 return rq->avg_irq.util_avg;
3127 }
3128
3129 static inline
scale_irq_capacity(unsigned long util,unsigned long irq,unsigned long max)3130 unsigned long scale_irq_capacity(unsigned long util, unsigned long irq, unsigned long max)
3131 {
3132 util *= (max - irq);
3133 util /= max;
3134
3135 return util;
3136
3137 }
3138 #else
cpu_util_irq(struct rq * rq)3139 static inline unsigned long cpu_util_irq(struct rq *rq)
3140 {
3141 return 0;
3142 }
3143
3144 static inline
scale_irq_capacity(unsigned long util,unsigned long irq,unsigned long max)3145 unsigned long scale_irq_capacity(unsigned long util, unsigned long irq, unsigned long max)
3146 {
3147 return util;
3148 }
3149 #endif
3150
3151 #if defined(CONFIG_ENERGY_MODEL) && defined(CONFIG_CPU_FREQ_GOV_SCHEDUTIL)
3152
3153 #define perf_domain_span(pd) (to_cpumask(((pd)->em_pd->cpus)))
3154
3155 DECLARE_STATIC_KEY_FALSE(sched_energy_present);
3156
sched_energy_enabled(void)3157 static inline bool sched_energy_enabled(void)
3158 {
3159 return static_branch_unlikely(&sched_energy_present);
3160 }
3161
3162 #else /* ! (CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL) */
3163
3164 #define perf_domain_span(pd) NULL
sched_energy_enabled(void)3165 static inline bool sched_energy_enabled(void) { return false; }
3166
3167 #endif /* CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL */
3168
3169 #ifdef CONFIG_MEMBARRIER
3170 /*
3171 * The scheduler provides memory barriers required by membarrier between:
3172 * - prior user-space memory accesses and store to rq->membarrier_state,
3173 * - store to rq->membarrier_state and following user-space memory accesses.
3174 * In the same way it provides those guarantees around store to rq->curr.
3175 */
membarrier_switch_mm(struct rq * rq,struct mm_struct * prev_mm,struct mm_struct * next_mm)3176 static inline void membarrier_switch_mm(struct rq *rq,
3177 struct mm_struct *prev_mm,
3178 struct mm_struct *next_mm)
3179 {
3180 int membarrier_state;
3181
3182 if (prev_mm == next_mm)
3183 return;
3184
3185 membarrier_state = atomic_read(&next_mm->membarrier_state);
3186 if (READ_ONCE(rq->membarrier_state) == membarrier_state)
3187 return;
3188
3189 WRITE_ONCE(rq->membarrier_state, membarrier_state);
3190 }
3191 #else
membarrier_switch_mm(struct rq * rq,struct mm_struct * prev_mm,struct mm_struct * next_mm)3192 static inline void membarrier_switch_mm(struct rq *rq,
3193 struct mm_struct *prev_mm,
3194 struct mm_struct *next_mm)
3195 {
3196 }
3197 #endif
3198
3199 #ifdef CONFIG_SMP
is_per_cpu_kthread(struct task_struct * p)3200 static inline bool is_per_cpu_kthread(struct task_struct *p)
3201 {
3202 if (!(p->flags & PF_KTHREAD))
3203 return false;
3204
3205 if (p->nr_cpus_allowed != 1)
3206 return false;
3207
3208 return true;
3209 }
3210 #endif
3211
3212 extern void swake_up_all_locked(struct swait_queue_head *q);
3213 extern void __prepare_to_swait(struct swait_queue_head *q, struct swait_queue *wait);
3214
3215 #ifdef CONFIG_PREEMPT_DYNAMIC
3216 extern int preempt_dynamic_mode;
3217 extern int sched_dynamic_mode(const char *str);
3218 extern void sched_dynamic_update(int mode);
3219 #endif
3220
update_current_exec_runtime(struct task_struct * curr,u64 now,u64 delta_exec)3221 static inline void update_current_exec_runtime(struct task_struct *curr,
3222 u64 now, u64 delta_exec)
3223 {
3224 curr->se.sum_exec_runtime += delta_exec;
3225 account_group_exec_runtime(curr, delta_exec);
3226
3227 curr->se.exec_start = now;
3228 cgroup_account_cputime(curr, delta_exec);
3229 }
3230
3231 #endif /* _KERNEL_SCHED_SCHED_H */
3232