1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Remote Processor Framework
4 *
5 * Copyright (C) 2011 Texas Instruments, Inc.
6 * Copyright (C) 2011 Google, Inc.
7 *
8 * Ohad Ben-Cohen <ohad@wizery.com>
9 * Brian Swetland <swetland@google.com>
10 * Mark Grosen <mgrosen@ti.com>
11 * Fernando Guzman Lugo <fernando.lugo@ti.com>
12 * Suman Anna <s-anna@ti.com>
13 * Robert Tivy <rtivy@ti.com>
14 * Armando Uribe De Leon <x0095078@ti.com>
15 */
16
17 #define pr_fmt(fmt) "%s: " fmt, __func__
18
19 #include <linux/delay.h>
20 #include <linux/kernel.h>
21 #include <linux/module.h>
22 #include <linux/device.h>
23 #include <linux/panic_notifier.h>
24 #include <linux/slab.h>
25 #include <linux/mutex.h>
26 #include <linux/dma-mapping.h>
27 #include <linux/firmware.h>
28 #include <linux/string.h>
29 #include <linux/debugfs.h>
30 #include <linux/rculist.h>
31 #include <linux/remoteproc.h>
32 #include <linux/iommu.h>
33 #include <linux/idr.h>
34 #include <linux/elf.h>
35 #include <linux/crc32.h>
36 #include <linux/of_reserved_mem.h>
37 #include <linux/virtio_ids.h>
38 #include <linux/virtio_ring.h>
39 #include <asm/byteorder.h>
40 #include <linux/platform_device.h>
41
42 #include "remoteproc_internal.h"
43
44 #define HIGH_BITS_MASK 0xFFFFFFFF00000000ULL
45
46 static DEFINE_MUTEX(rproc_list_mutex);
47 static LIST_HEAD(rproc_list);
48 static struct notifier_block rproc_panic_nb;
49
50 typedef int (*rproc_handle_resource_t)(struct rproc *rproc,
51 void *, int offset, int avail);
52
53 static int rproc_alloc_carveout(struct rproc *rproc,
54 struct rproc_mem_entry *mem);
55 static int rproc_release_carveout(struct rproc *rproc,
56 struct rproc_mem_entry *mem);
57
58 /* Unique indices for remoteproc devices */
59 static DEFINE_IDA(rproc_dev_index);
60 static struct workqueue_struct *rproc_recovery_wq;
61
62 static const char * const rproc_crash_names[] = {
63 [RPROC_MMUFAULT] = "mmufault",
64 [RPROC_WATCHDOG] = "watchdog",
65 [RPROC_FATAL_ERROR] = "fatal error",
66 };
67
68 /* translate rproc_crash_type to string */
rproc_crash_to_string(enum rproc_crash_type type)69 static const char *rproc_crash_to_string(enum rproc_crash_type type)
70 {
71 if (type < ARRAY_SIZE(rproc_crash_names))
72 return rproc_crash_names[type];
73 return "unknown";
74 }
75
76 /*
77 * This is the IOMMU fault handler we register with the IOMMU API
78 * (when relevant; not all remote processors access memory through
79 * an IOMMU).
80 *
81 * IOMMU core will invoke this handler whenever the remote processor
82 * will try to access an unmapped device address.
83 */
rproc_iommu_fault(struct iommu_domain * domain,struct device * dev,unsigned long iova,int flags,void * token)84 static int rproc_iommu_fault(struct iommu_domain *domain, struct device *dev,
85 unsigned long iova, int flags, void *token)
86 {
87 struct rproc *rproc = token;
88
89 dev_err(dev, "iommu fault: da 0x%lx flags 0x%x\n", iova, flags);
90
91 rproc_report_crash(rproc, RPROC_MMUFAULT);
92
93 /*
94 * Let the iommu core know we're not really handling this fault;
95 * we just used it as a recovery trigger.
96 */
97 return -ENOSYS;
98 }
99
rproc_enable_iommu(struct rproc * rproc)100 static int rproc_enable_iommu(struct rproc *rproc)
101 {
102 struct iommu_domain *domain;
103 struct device *dev = rproc->dev.parent;
104 int ret;
105
106 if (!rproc->has_iommu) {
107 dev_dbg(dev, "iommu not present\n");
108 return 0;
109 }
110
111 domain = iommu_domain_alloc(dev->bus);
112 if (!domain) {
113 dev_err(dev, "can't alloc iommu domain\n");
114 return -ENOMEM;
115 }
116
117 iommu_set_fault_handler(domain, rproc_iommu_fault, rproc);
118
119 ret = iommu_attach_device(domain, dev);
120 if (ret) {
121 dev_err(dev, "can't attach iommu device: %d\n", ret);
122 goto free_domain;
123 }
124
125 rproc->domain = domain;
126
127 return 0;
128
129 free_domain:
130 iommu_domain_free(domain);
131 return ret;
132 }
133
rproc_disable_iommu(struct rproc * rproc)134 static void rproc_disable_iommu(struct rproc *rproc)
135 {
136 struct iommu_domain *domain = rproc->domain;
137 struct device *dev = rproc->dev.parent;
138
139 if (!domain)
140 return;
141
142 iommu_detach_device(domain, dev);
143 iommu_domain_free(domain);
144 }
145
rproc_va_to_pa(void * cpu_addr)146 phys_addr_t rproc_va_to_pa(void *cpu_addr)
147 {
148 /*
149 * Return physical address according to virtual address location
150 * - in vmalloc: if region ioremapped or defined as dma_alloc_coherent
151 * - in kernel: if region allocated in generic dma memory pool
152 */
153 if (is_vmalloc_addr(cpu_addr)) {
154 return page_to_phys(vmalloc_to_page(cpu_addr)) +
155 offset_in_page(cpu_addr);
156 }
157
158 WARN_ON(!virt_addr_valid(cpu_addr));
159 return virt_to_phys(cpu_addr);
160 }
161 EXPORT_SYMBOL(rproc_va_to_pa);
162
163 /**
164 * rproc_da_to_va() - lookup the kernel virtual address for a remoteproc address
165 * @rproc: handle of a remote processor
166 * @da: remoteproc device address to translate
167 * @len: length of the memory region @da is pointing to
168 * @is_iomem: optional pointer filled in to indicate if @da is iomapped memory
169 *
170 * Some remote processors will ask us to allocate them physically contiguous
171 * memory regions (which we call "carveouts"), and map them to specific
172 * device addresses (which are hardcoded in the firmware). They may also have
173 * dedicated memory regions internal to the processors, and use them either
174 * exclusively or alongside carveouts.
175 *
176 * They may then ask us to copy objects into specific device addresses (e.g.
177 * code/data sections) or expose us certain symbols in other device address
178 * (e.g. their trace buffer).
179 *
180 * This function is a helper function with which we can go over the allocated
181 * carveouts and translate specific device addresses to kernel virtual addresses
182 * so we can access the referenced memory. This function also allows to perform
183 * translations on the internal remoteproc memory regions through a platform
184 * implementation specific da_to_va ops, if present.
185 *
186 * Note: phys_to_virt(iommu_iova_to_phys(rproc->domain, da)) will work too,
187 * but only on kernel direct mapped RAM memory. Instead, we're just using
188 * here the output of the DMA API for the carveouts, which should be more
189 * correct.
190 *
191 * Return: a valid kernel address on success or NULL on failure
192 */
rproc_da_to_va(struct rproc * rproc,u64 da,size_t len,bool * is_iomem)193 void *rproc_da_to_va(struct rproc *rproc, u64 da, size_t len, bool *is_iomem)
194 {
195 struct rproc_mem_entry *carveout;
196 void *ptr = NULL;
197
198 if (rproc->ops->da_to_va) {
199 ptr = rproc->ops->da_to_va(rproc, da, len, is_iomem);
200 if (ptr)
201 goto out;
202 }
203
204 list_for_each_entry(carveout, &rproc->carveouts, node) {
205 int offset = da - carveout->da;
206
207 /* Verify that carveout is allocated */
208 if (!carveout->va)
209 continue;
210
211 /* try next carveout if da is too small */
212 if (offset < 0)
213 continue;
214
215 /* try next carveout if da is too large */
216 if (offset + len > carveout->len)
217 continue;
218
219 ptr = carveout->va + offset;
220
221 if (is_iomem)
222 *is_iomem = carveout->is_iomem;
223
224 break;
225 }
226
227 out:
228 return ptr;
229 }
230 EXPORT_SYMBOL(rproc_da_to_va);
231
232 /**
233 * rproc_find_carveout_by_name() - lookup the carveout region by a name
234 * @rproc: handle of a remote processor
235 * @name: carveout name to find (format string)
236 * @...: optional parameters matching @name string
237 *
238 * Platform driver has the capability to register some pre-allacoted carveout
239 * (physically contiguous memory regions) before rproc firmware loading and
240 * associated resource table analysis. These regions may be dedicated memory
241 * regions internal to the coprocessor or specified DDR region with specific
242 * attributes
243 *
244 * This function is a helper function with which we can go over the
245 * allocated carveouts and return associated region characteristics like
246 * coprocessor address, length or processor virtual address.
247 *
248 * Return: a valid pointer on carveout entry on success or NULL on failure.
249 */
250 __printf(2, 3)
251 struct rproc_mem_entry *
rproc_find_carveout_by_name(struct rproc * rproc,const char * name,...)252 rproc_find_carveout_by_name(struct rproc *rproc, const char *name, ...)
253 {
254 va_list args;
255 char _name[32];
256 struct rproc_mem_entry *carveout, *mem = NULL;
257
258 if (!name)
259 return NULL;
260
261 va_start(args, name);
262 vsnprintf(_name, sizeof(_name), name, args);
263 va_end(args);
264
265 list_for_each_entry(carveout, &rproc->carveouts, node) {
266 /* Compare carveout and requested names */
267 if (!strcmp(carveout->name, _name)) {
268 mem = carveout;
269 break;
270 }
271 }
272
273 return mem;
274 }
275
276 /**
277 * rproc_check_carveout_da() - Check specified carveout da configuration
278 * @rproc: handle of a remote processor
279 * @mem: pointer on carveout to check
280 * @da: area device address
281 * @len: associated area size
282 *
283 * This function is a helper function to verify requested device area (couple
284 * da, len) is part of specified carveout.
285 * If da is not set (defined as FW_RSC_ADDR_ANY), only requested length is
286 * checked.
287 *
288 * Return: 0 if carveout matches request else error
289 */
rproc_check_carveout_da(struct rproc * rproc,struct rproc_mem_entry * mem,u32 da,u32 len)290 static int rproc_check_carveout_da(struct rproc *rproc,
291 struct rproc_mem_entry *mem, u32 da, u32 len)
292 {
293 struct device *dev = &rproc->dev;
294 int delta;
295
296 /* Check requested resource length */
297 if (len > mem->len) {
298 dev_err(dev, "Registered carveout doesn't fit len request\n");
299 return -EINVAL;
300 }
301
302 if (da != FW_RSC_ADDR_ANY && mem->da == FW_RSC_ADDR_ANY) {
303 /* Address doesn't match registered carveout configuration */
304 return -EINVAL;
305 } else if (da != FW_RSC_ADDR_ANY && mem->da != FW_RSC_ADDR_ANY) {
306 delta = da - mem->da;
307
308 /* Check requested resource belongs to registered carveout */
309 if (delta < 0) {
310 dev_err(dev,
311 "Registered carveout doesn't fit da request\n");
312 return -EINVAL;
313 }
314
315 if (delta + len > mem->len) {
316 dev_err(dev,
317 "Registered carveout doesn't fit len request\n");
318 return -EINVAL;
319 }
320 }
321
322 return 0;
323 }
324
rproc_alloc_vring(struct rproc_vdev * rvdev,int i)325 int rproc_alloc_vring(struct rproc_vdev *rvdev, int i)
326 {
327 struct rproc *rproc = rvdev->rproc;
328 struct device *dev = &rproc->dev;
329 struct rproc_vring *rvring = &rvdev->vring[i];
330 struct fw_rsc_vdev *rsc;
331 int ret, notifyid;
332 struct rproc_mem_entry *mem;
333 size_t size;
334
335 /* actual size of vring (in bytes) */
336 size = PAGE_ALIGN(vring_size(rvring->num, rvring->align));
337
338 rsc = (void *)rproc->table_ptr + rvdev->rsc_offset;
339
340 /* Search for pre-registered carveout */
341 mem = rproc_find_carveout_by_name(rproc, "vdev%dvring%d", rvdev->index,
342 i);
343 if (mem) {
344 if (rproc_check_carveout_da(rproc, mem, rsc->vring[i].da, size))
345 return -ENOMEM;
346 } else {
347 /* Register carveout in list */
348 mem = rproc_mem_entry_init(dev, NULL, 0,
349 size, rsc->vring[i].da,
350 rproc_alloc_carveout,
351 rproc_release_carveout,
352 "vdev%dvring%d",
353 rvdev->index, i);
354 if (!mem) {
355 dev_err(dev, "Can't allocate memory entry structure\n");
356 return -ENOMEM;
357 }
358
359 rproc_add_carveout(rproc, mem);
360 }
361
362 /*
363 * Assign an rproc-wide unique index for this vring
364 * TODO: assign a notifyid for rvdev updates as well
365 * TODO: support predefined notifyids (via resource table)
366 */
367 ret = idr_alloc(&rproc->notifyids, rvring, 0, 0, GFP_KERNEL);
368 if (ret < 0) {
369 dev_err(dev, "idr_alloc failed: %d\n", ret);
370 return ret;
371 }
372 notifyid = ret;
373
374 /* Potentially bump max_notifyid */
375 if (notifyid > rproc->max_notifyid)
376 rproc->max_notifyid = notifyid;
377
378 rvring->notifyid = notifyid;
379
380 /* Let the rproc know the notifyid of this vring.*/
381 rsc->vring[i].notifyid = notifyid;
382 return 0;
383 }
384
385 int
rproc_parse_vring(struct rproc_vdev * rvdev,struct fw_rsc_vdev * rsc,int i)386 rproc_parse_vring(struct rproc_vdev *rvdev, struct fw_rsc_vdev *rsc, int i)
387 {
388 struct rproc *rproc = rvdev->rproc;
389 struct device *dev = &rproc->dev;
390 struct fw_rsc_vdev_vring *vring = &rsc->vring[i];
391 struct rproc_vring *rvring = &rvdev->vring[i];
392
393 dev_dbg(dev, "vdev rsc: vring%d: da 0x%x, qsz %d, align %d\n",
394 i, vring->da, vring->num, vring->align);
395
396 /* verify queue size and vring alignment are sane */
397 if (!vring->num || !vring->align) {
398 dev_err(dev, "invalid qsz (%d) or alignment (%d)\n",
399 vring->num, vring->align);
400 return -EINVAL;
401 }
402
403 rvring->num = vring->num;
404 rvring->align = vring->align;
405 rvring->rvdev = rvdev;
406
407 return 0;
408 }
409
rproc_free_vring(struct rproc_vring * rvring)410 void rproc_free_vring(struct rproc_vring *rvring)
411 {
412 struct rproc *rproc = rvring->rvdev->rproc;
413 int idx = rvring - rvring->rvdev->vring;
414 struct fw_rsc_vdev *rsc;
415
416 idr_remove(&rproc->notifyids, rvring->notifyid);
417
418 /*
419 * At this point rproc_stop() has been called and the installed resource
420 * table in the remote processor memory may no longer be accessible. As
421 * such and as per rproc_stop(), rproc->table_ptr points to the cached
422 * resource table (rproc->cached_table). The cached resource table is
423 * only available when a remote processor has been booted by the
424 * remoteproc core, otherwise it is NULL.
425 *
426 * Based on the above, reset the virtio device section in the cached
427 * resource table only if there is one to work with.
428 */
429 if (rproc->table_ptr) {
430 rsc = (void *)rproc->table_ptr + rvring->rvdev->rsc_offset;
431 rsc->vring[idx].da = 0;
432 rsc->vring[idx].notifyid = -1;
433 }
434 }
435
rproc_add_rvdev(struct rproc * rproc,struct rproc_vdev * rvdev)436 void rproc_add_rvdev(struct rproc *rproc, struct rproc_vdev *rvdev)
437 {
438 if (rvdev && rproc)
439 list_add_tail(&rvdev->node, &rproc->rvdevs);
440 }
441
rproc_remove_rvdev(struct rproc_vdev * rvdev)442 void rproc_remove_rvdev(struct rproc_vdev *rvdev)
443 {
444 if (rvdev)
445 list_del(&rvdev->node);
446 }
447 /**
448 * rproc_handle_vdev() - handle a vdev fw resource
449 * @rproc: the remote processor
450 * @ptr: the vring resource descriptor
451 * @offset: offset of the resource entry
452 * @avail: size of available data (for sanity checking the image)
453 *
454 * This resource entry requests the host to statically register a virtio
455 * device (vdev), and setup everything needed to support it. It contains
456 * everything needed to make it possible: the virtio device id, virtio
457 * device features, vrings information, virtio config space, etc...
458 *
459 * Before registering the vdev, the vrings are allocated from non-cacheable
460 * physically contiguous memory. Currently we only support two vrings per
461 * remote processor (temporary limitation). We might also want to consider
462 * doing the vring allocation only later when ->find_vqs() is invoked, and
463 * then release them upon ->del_vqs().
464 *
465 * Note: @da is currently not really handled correctly: we dynamically
466 * allocate it using the DMA API, ignoring requested hard coded addresses,
467 * and we don't take care of any required IOMMU programming. This is all
468 * going to be taken care of when the generic iommu-based DMA API will be
469 * merged. Meanwhile, statically-addressed iommu-based firmware images should
470 * use RSC_DEVMEM resource entries to map their required @da to the physical
471 * address of their base CMA region (ouch, hacky!).
472 *
473 * Return: 0 on success, or an appropriate error code otherwise
474 */
rproc_handle_vdev(struct rproc * rproc,void * ptr,int offset,int avail)475 static int rproc_handle_vdev(struct rproc *rproc, void *ptr,
476 int offset, int avail)
477 {
478 struct fw_rsc_vdev *rsc = ptr;
479 struct device *dev = &rproc->dev;
480 struct rproc_vdev *rvdev;
481 size_t rsc_size;
482 struct rproc_vdev_data rvdev_data;
483 struct platform_device *pdev;
484
485 /* make sure resource isn't truncated */
486 rsc_size = struct_size(rsc, vring, rsc->num_of_vrings);
487 if (size_add(rsc_size, rsc->config_len) > avail) {
488 dev_err(dev, "vdev rsc is truncated\n");
489 return -EINVAL;
490 }
491
492 /* make sure reserved bytes are zeroes */
493 if (rsc->reserved[0] || rsc->reserved[1]) {
494 dev_err(dev, "vdev rsc has non zero reserved bytes\n");
495 return -EINVAL;
496 }
497
498 dev_dbg(dev, "vdev rsc: id %d, dfeatures 0x%x, cfg len %d, %d vrings\n",
499 rsc->id, rsc->dfeatures, rsc->config_len, rsc->num_of_vrings);
500
501 /* we currently support only two vrings per rvdev */
502 if (rsc->num_of_vrings > ARRAY_SIZE(rvdev->vring)) {
503 dev_err(dev, "too many vrings: %d\n", rsc->num_of_vrings);
504 return -EINVAL;
505 }
506
507 rvdev_data.id = rsc->id;
508 rvdev_data.index = rproc->nb_vdev++;
509 rvdev_data.rsc_offset = offset;
510 rvdev_data.rsc = rsc;
511
512 /*
513 * When there is more than one remote processor, rproc->nb_vdev number is
514 * same for each separate instances of "rproc". If rvdev_data.index is used
515 * as device id, then we get duplication in sysfs, so need to use
516 * PLATFORM_DEVID_AUTO to auto select device id.
517 */
518 pdev = platform_device_register_data(dev, "rproc-virtio", PLATFORM_DEVID_AUTO, &rvdev_data,
519 sizeof(rvdev_data));
520 if (IS_ERR(pdev)) {
521 dev_err(dev, "failed to create rproc-virtio device\n");
522 return PTR_ERR(pdev);
523 }
524
525 return 0;
526 }
527
528 /**
529 * rproc_handle_trace() - handle a shared trace buffer resource
530 * @rproc: the remote processor
531 * @ptr: the trace resource descriptor
532 * @offset: offset of the resource entry
533 * @avail: size of available data (for sanity checking the image)
534 *
535 * In case the remote processor dumps trace logs into memory,
536 * export it via debugfs.
537 *
538 * Currently, the 'da' member of @rsc should contain the device address
539 * where the remote processor is dumping the traces. Later we could also
540 * support dynamically allocating this address using the generic
541 * DMA API (but currently there isn't a use case for that).
542 *
543 * Return: 0 on success, or an appropriate error code otherwise
544 */
rproc_handle_trace(struct rproc * rproc,void * ptr,int offset,int avail)545 static int rproc_handle_trace(struct rproc *rproc, void *ptr,
546 int offset, int avail)
547 {
548 struct fw_rsc_trace *rsc = ptr;
549 struct rproc_debug_trace *trace;
550 struct device *dev = &rproc->dev;
551 char name[15];
552
553 if (sizeof(*rsc) > avail) {
554 dev_err(dev, "trace rsc is truncated\n");
555 return -EINVAL;
556 }
557
558 /* make sure reserved bytes are zeroes */
559 if (rsc->reserved) {
560 dev_err(dev, "trace rsc has non zero reserved bytes\n");
561 return -EINVAL;
562 }
563
564 trace = kzalloc(sizeof(*trace), GFP_KERNEL);
565 if (!trace)
566 return -ENOMEM;
567
568 /* set the trace buffer dma properties */
569 trace->trace_mem.len = rsc->len;
570 trace->trace_mem.da = rsc->da;
571
572 /* set pointer on rproc device */
573 trace->rproc = rproc;
574
575 /* make sure snprintf always null terminates, even if truncating */
576 snprintf(name, sizeof(name), "trace%d", rproc->num_traces);
577
578 /* create the debugfs entry */
579 trace->tfile = rproc_create_trace_file(name, rproc, trace);
580
581 list_add_tail(&trace->node, &rproc->traces);
582
583 rproc->num_traces++;
584
585 dev_dbg(dev, "%s added: da 0x%x, len 0x%x\n",
586 name, rsc->da, rsc->len);
587
588 return 0;
589 }
590
591 /**
592 * rproc_handle_devmem() - handle devmem resource entry
593 * @rproc: remote processor handle
594 * @ptr: the devmem resource entry
595 * @offset: offset of the resource entry
596 * @avail: size of available data (for sanity checking the image)
597 *
598 * Remote processors commonly need to access certain on-chip peripherals.
599 *
600 * Some of these remote processors access memory via an iommu device,
601 * and might require us to configure their iommu before they can access
602 * the on-chip peripherals they need.
603 *
604 * This resource entry is a request to map such a peripheral device.
605 *
606 * These devmem entries will contain the physical address of the device in
607 * the 'pa' member. If a specific device address is expected, then 'da' will
608 * contain it (currently this is the only use case supported). 'len' will
609 * contain the size of the physical region we need to map.
610 *
611 * Currently we just "trust" those devmem entries to contain valid physical
612 * addresses, but this is going to change: we want the implementations to
613 * tell us ranges of physical addresses the firmware is allowed to request,
614 * and not allow firmwares to request access to physical addresses that
615 * are outside those ranges.
616 *
617 * Return: 0 on success, or an appropriate error code otherwise
618 */
rproc_handle_devmem(struct rproc * rproc,void * ptr,int offset,int avail)619 static int rproc_handle_devmem(struct rproc *rproc, void *ptr,
620 int offset, int avail)
621 {
622 struct fw_rsc_devmem *rsc = ptr;
623 struct rproc_mem_entry *mapping;
624 struct device *dev = &rproc->dev;
625 int ret;
626
627 /* no point in handling this resource without a valid iommu domain */
628 if (!rproc->domain)
629 return -EINVAL;
630
631 if (sizeof(*rsc) > avail) {
632 dev_err(dev, "devmem rsc is truncated\n");
633 return -EINVAL;
634 }
635
636 /* make sure reserved bytes are zeroes */
637 if (rsc->reserved) {
638 dev_err(dev, "devmem rsc has non zero reserved bytes\n");
639 return -EINVAL;
640 }
641
642 mapping = kzalloc(sizeof(*mapping), GFP_KERNEL);
643 if (!mapping)
644 return -ENOMEM;
645
646 ret = iommu_map(rproc->domain, rsc->da, rsc->pa, rsc->len, rsc->flags);
647 if (ret) {
648 dev_err(dev, "failed to map devmem: %d\n", ret);
649 goto out;
650 }
651
652 /*
653 * We'll need this info later when we'll want to unmap everything
654 * (e.g. on shutdown).
655 *
656 * We can't trust the remote processor not to change the resource
657 * table, so we must maintain this info independently.
658 */
659 mapping->da = rsc->da;
660 mapping->len = rsc->len;
661 list_add_tail(&mapping->node, &rproc->mappings);
662
663 dev_dbg(dev, "mapped devmem pa 0x%x, da 0x%x, len 0x%x\n",
664 rsc->pa, rsc->da, rsc->len);
665
666 return 0;
667
668 out:
669 kfree(mapping);
670 return ret;
671 }
672
673 /**
674 * rproc_alloc_carveout() - allocated specified carveout
675 * @rproc: rproc handle
676 * @mem: the memory entry to allocate
677 *
678 * This function allocate specified memory entry @mem using
679 * dma_alloc_coherent() as default allocator
680 *
681 * Return: 0 on success, or an appropriate error code otherwise
682 */
rproc_alloc_carveout(struct rproc * rproc,struct rproc_mem_entry * mem)683 static int rproc_alloc_carveout(struct rproc *rproc,
684 struct rproc_mem_entry *mem)
685 {
686 struct rproc_mem_entry *mapping = NULL;
687 struct device *dev = &rproc->dev;
688 dma_addr_t dma;
689 void *va;
690 int ret;
691
692 va = dma_alloc_coherent(dev->parent, mem->len, &dma, GFP_KERNEL);
693 if (!va) {
694 dev_err(dev->parent,
695 "failed to allocate dma memory: len 0x%zx\n",
696 mem->len);
697 return -ENOMEM;
698 }
699
700 dev_dbg(dev, "carveout va %pK, dma %pad, len 0x%zx\n",
701 va, &dma, mem->len);
702
703 if (mem->da != FW_RSC_ADDR_ANY && !rproc->domain) {
704 /*
705 * Check requested da is equal to dma address
706 * and print a warn message in case of missalignment.
707 * Don't stop rproc_start sequence as coprocessor may
708 * build pa to da translation on its side.
709 */
710 if (mem->da != (u32)dma)
711 dev_warn(dev->parent,
712 "Allocated carveout doesn't fit device address request\n");
713 }
714
715 /*
716 * Ok, this is non-standard.
717 *
718 * Sometimes we can't rely on the generic iommu-based DMA API
719 * to dynamically allocate the device address and then set the IOMMU
720 * tables accordingly, because some remote processors might
721 * _require_ us to use hard coded device addresses that their
722 * firmware was compiled with.
723 *
724 * In this case, we must use the IOMMU API directly and map
725 * the memory to the device address as expected by the remote
726 * processor.
727 *
728 * Obviously such remote processor devices should not be configured
729 * to use the iommu-based DMA API: we expect 'dma' to contain the
730 * physical address in this case.
731 */
732 if (mem->da != FW_RSC_ADDR_ANY && rproc->domain) {
733 mapping = kzalloc(sizeof(*mapping), GFP_KERNEL);
734 if (!mapping) {
735 ret = -ENOMEM;
736 goto dma_free;
737 }
738
739 ret = iommu_map(rproc->domain, mem->da, dma, mem->len,
740 mem->flags);
741 if (ret) {
742 dev_err(dev, "iommu_map failed: %d\n", ret);
743 goto free_mapping;
744 }
745
746 /*
747 * We'll need this info later when we'll want to unmap
748 * everything (e.g. on shutdown).
749 *
750 * We can't trust the remote processor not to change the
751 * resource table, so we must maintain this info independently.
752 */
753 mapping->da = mem->da;
754 mapping->len = mem->len;
755 list_add_tail(&mapping->node, &rproc->mappings);
756
757 dev_dbg(dev, "carveout mapped 0x%x to %pad\n",
758 mem->da, &dma);
759 }
760
761 if (mem->da == FW_RSC_ADDR_ANY) {
762 /* Update device address as undefined by requester */
763 if ((u64)dma & HIGH_BITS_MASK)
764 dev_warn(dev, "DMA address cast in 32bit to fit resource table format\n");
765
766 mem->da = (u32)dma;
767 }
768
769 mem->dma = dma;
770 mem->va = va;
771
772 return 0;
773
774 free_mapping:
775 kfree(mapping);
776 dma_free:
777 dma_free_coherent(dev->parent, mem->len, va, dma);
778 return ret;
779 }
780
781 /**
782 * rproc_release_carveout() - release acquired carveout
783 * @rproc: rproc handle
784 * @mem: the memory entry to release
785 *
786 * This function releases specified memory entry @mem allocated via
787 * rproc_alloc_carveout() function by @rproc.
788 *
789 * Return: 0 on success, or an appropriate error code otherwise
790 */
rproc_release_carveout(struct rproc * rproc,struct rproc_mem_entry * mem)791 static int rproc_release_carveout(struct rproc *rproc,
792 struct rproc_mem_entry *mem)
793 {
794 struct device *dev = &rproc->dev;
795
796 /* clean up carveout allocations */
797 dma_free_coherent(dev->parent, mem->len, mem->va, mem->dma);
798 return 0;
799 }
800
801 /**
802 * rproc_handle_carveout() - handle phys contig memory allocation requests
803 * @rproc: rproc handle
804 * @ptr: the resource entry
805 * @offset: offset of the resource entry
806 * @avail: size of available data (for image validation)
807 *
808 * This function will handle firmware requests for allocation of physically
809 * contiguous memory regions.
810 *
811 * These request entries should come first in the firmware's resource table,
812 * as other firmware entries might request placing other data objects inside
813 * these memory regions (e.g. data/code segments, trace resource entries, ...).
814 *
815 * Allocating memory this way helps utilizing the reserved physical memory
816 * (e.g. CMA) more efficiently, and also minimizes the number of TLB entries
817 * needed to map it (in case @rproc is using an IOMMU). Reducing the TLB
818 * pressure is important; it may have a substantial impact on performance.
819 *
820 * Return: 0 on success, or an appropriate error code otherwise
821 */
rproc_handle_carveout(struct rproc * rproc,void * ptr,int offset,int avail)822 static int rproc_handle_carveout(struct rproc *rproc,
823 void *ptr, int offset, int avail)
824 {
825 struct fw_rsc_carveout *rsc = ptr;
826 struct rproc_mem_entry *carveout;
827 struct device *dev = &rproc->dev;
828
829 if (sizeof(*rsc) > avail) {
830 dev_err(dev, "carveout rsc is truncated\n");
831 return -EINVAL;
832 }
833
834 /* make sure reserved bytes are zeroes */
835 if (rsc->reserved) {
836 dev_err(dev, "carveout rsc has non zero reserved bytes\n");
837 return -EINVAL;
838 }
839
840 dev_dbg(dev, "carveout rsc: name: %s, da 0x%x, pa 0x%x, len 0x%x, flags 0x%x\n",
841 rsc->name, rsc->da, rsc->pa, rsc->len, rsc->flags);
842
843 /*
844 * Check carveout rsc already part of a registered carveout,
845 * Search by name, then check the da and length
846 */
847 carveout = rproc_find_carveout_by_name(rproc, rsc->name);
848
849 if (carveout) {
850 if (carveout->rsc_offset != FW_RSC_ADDR_ANY) {
851 dev_err(dev,
852 "Carveout already associated to resource table\n");
853 return -ENOMEM;
854 }
855
856 if (rproc_check_carveout_da(rproc, carveout, rsc->da, rsc->len))
857 return -ENOMEM;
858
859 /* Update memory carveout with resource table info */
860 carveout->rsc_offset = offset;
861 carveout->flags = rsc->flags;
862
863 return 0;
864 }
865
866 /* Register carveout in list */
867 carveout = rproc_mem_entry_init(dev, NULL, 0, rsc->len, rsc->da,
868 rproc_alloc_carveout,
869 rproc_release_carveout, rsc->name);
870 if (!carveout) {
871 dev_err(dev, "Can't allocate memory entry structure\n");
872 return -ENOMEM;
873 }
874
875 carveout->flags = rsc->flags;
876 carveout->rsc_offset = offset;
877 rproc_add_carveout(rproc, carveout);
878
879 return 0;
880 }
881
882 /**
883 * rproc_add_carveout() - register an allocated carveout region
884 * @rproc: rproc handle
885 * @mem: memory entry to register
886 *
887 * This function registers specified memory entry in @rproc carveouts list.
888 * Specified carveout should have been allocated before registering.
889 */
rproc_add_carveout(struct rproc * rproc,struct rproc_mem_entry * mem)890 void rproc_add_carveout(struct rproc *rproc, struct rproc_mem_entry *mem)
891 {
892 list_add_tail(&mem->node, &rproc->carveouts);
893 }
894 EXPORT_SYMBOL(rproc_add_carveout);
895
896 /**
897 * rproc_mem_entry_init() - allocate and initialize rproc_mem_entry struct
898 * @dev: pointer on device struct
899 * @va: virtual address
900 * @dma: dma address
901 * @len: memory carveout length
902 * @da: device address
903 * @alloc: memory carveout allocation function
904 * @release: memory carveout release function
905 * @name: carveout name
906 *
907 * This function allocates a rproc_mem_entry struct and fill it with parameters
908 * provided by client.
909 *
910 * Return: a valid pointer on success, or NULL on failure
911 */
912 __printf(8, 9)
913 struct rproc_mem_entry *
rproc_mem_entry_init(struct device * dev,void * va,dma_addr_t dma,size_t len,u32 da,int (* alloc)(struct rproc *,struct rproc_mem_entry *),int (* release)(struct rproc *,struct rproc_mem_entry *),const char * name,...)914 rproc_mem_entry_init(struct device *dev,
915 void *va, dma_addr_t dma, size_t len, u32 da,
916 int (*alloc)(struct rproc *, struct rproc_mem_entry *),
917 int (*release)(struct rproc *, struct rproc_mem_entry *),
918 const char *name, ...)
919 {
920 struct rproc_mem_entry *mem;
921 va_list args;
922
923 mem = kzalloc(sizeof(*mem), GFP_KERNEL);
924 if (!mem)
925 return mem;
926
927 mem->va = va;
928 mem->dma = dma;
929 mem->da = da;
930 mem->len = len;
931 mem->alloc = alloc;
932 mem->release = release;
933 mem->rsc_offset = FW_RSC_ADDR_ANY;
934 mem->of_resm_idx = -1;
935
936 va_start(args, name);
937 vsnprintf(mem->name, sizeof(mem->name), name, args);
938 va_end(args);
939
940 return mem;
941 }
942 EXPORT_SYMBOL(rproc_mem_entry_init);
943
944 /**
945 * rproc_of_resm_mem_entry_init() - allocate and initialize rproc_mem_entry struct
946 * from a reserved memory phandle
947 * @dev: pointer on device struct
948 * @of_resm_idx: reserved memory phandle index in "memory-region"
949 * @len: memory carveout length
950 * @da: device address
951 * @name: carveout name
952 *
953 * This function allocates a rproc_mem_entry struct and fill it with parameters
954 * provided by client.
955 *
956 * Return: a valid pointer on success, or NULL on failure
957 */
958 __printf(5, 6)
959 struct rproc_mem_entry *
rproc_of_resm_mem_entry_init(struct device * dev,u32 of_resm_idx,size_t len,u32 da,const char * name,...)960 rproc_of_resm_mem_entry_init(struct device *dev, u32 of_resm_idx, size_t len,
961 u32 da, const char *name, ...)
962 {
963 struct rproc_mem_entry *mem;
964 va_list args;
965
966 mem = kzalloc(sizeof(*mem), GFP_KERNEL);
967 if (!mem)
968 return mem;
969
970 mem->da = da;
971 mem->len = len;
972 mem->rsc_offset = FW_RSC_ADDR_ANY;
973 mem->of_resm_idx = of_resm_idx;
974
975 va_start(args, name);
976 vsnprintf(mem->name, sizeof(mem->name), name, args);
977 va_end(args);
978
979 return mem;
980 }
981 EXPORT_SYMBOL(rproc_of_resm_mem_entry_init);
982
983 /**
984 * rproc_of_parse_firmware() - parse and return the firmware-name
985 * @dev: pointer on device struct representing a rproc
986 * @index: index to use for the firmware-name retrieval
987 * @fw_name: pointer to a character string, in which the firmware
988 * name is returned on success and unmodified otherwise.
989 *
990 * This is an OF helper function that parses a device's DT node for
991 * the "firmware-name" property and returns the firmware name pointer
992 * in @fw_name on success.
993 *
994 * Return: 0 on success, or an appropriate failure.
995 */
rproc_of_parse_firmware(struct device * dev,int index,const char ** fw_name)996 int rproc_of_parse_firmware(struct device *dev, int index, const char **fw_name)
997 {
998 int ret;
999
1000 ret = of_property_read_string_index(dev->of_node, "firmware-name",
1001 index, fw_name);
1002 return ret ? ret : 0;
1003 }
1004 EXPORT_SYMBOL(rproc_of_parse_firmware);
1005
1006 /*
1007 * A lookup table for resource handlers. The indices are defined in
1008 * enum fw_resource_type.
1009 */
1010 static rproc_handle_resource_t rproc_loading_handlers[RSC_LAST] = {
1011 [RSC_CARVEOUT] = rproc_handle_carveout,
1012 [RSC_DEVMEM] = rproc_handle_devmem,
1013 [RSC_TRACE] = rproc_handle_trace,
1014 [RSC_VDEV] = rproc_handle_vdev,
1015 };
1016
1017 /* handle firmware resource entries before booting the remote processor */
rproc_handle_resources(struct rproc * rproc,rproc_handle_resource_t handlers[RSC_LAST])1018 static int rproc_handle_resources(struct rproc *rproc,
1019 rproc_handle_resource_t handlers[RSC_LAST])
1020 {
1021 struct device *dev = &rproc->dev;
1022 rproc_handle_resource_t handler;
1023 int ret = 0, i;
1024
1025 if (!rproc->table_ptr)
1026 return 0;
1027
1028 for (i = 0; i < rproc->table_ptr->num; i++) {
1029 int offset = rproc->table_ptr->offset[i];
1030 struct fw_rsc_hdr *hdr = (void *)rproc->table_ptr + offset;
1031 int avail = rproc->table_sz - offset - sizeof(*hdr);
1032 void *rsc = (void *)hdr + sizeof(*hdr);
1033
1034 /* make sure table isn't truncated */
1035 if (avail < 0) {
1036 dev_err(dev, "rsc table is truncated\n");
1037 return -EINVAL;
1038 }
1039
1040 dev_dbg(dev, "rsc: type %d\n", hdr->type);
1041
1042 if (hdr->type >= RSC_VENDOR_START &&
1043 hdr->type <= RSC_VENDOR_END) {
1044 ret = rproc_handle_rsc(rproc, hdr->type, rsc,
1045 offset + sizeof(*hdr), avail);
1046 if (ret == RSC_HANDLED)
1047 continue;
1048 else if (ret < 0)
1049 break;
1050
1051 dev_warn(dev, "unsupported vendor resource %d\n",
1052 hdr->type);
1053 continue;
1054 }
1055
1056 if (hdr->type >= RSC_LAST) {
1057 dev_warn(dev, "unsupported resource %d\n", hdr->type);
1058 continue;
1059 }
1060
1061 handler = handlers[hdr->type];
1062 if (!handler)
1063 continue;
1064
1065 ret = handler(rproc, rsc, offset + sizeof(*hdr), avail);
1066 if (ret)
1067 break;
1068 }
1069
1070 return ret;
1071 }
1072
rproc_prepare_subdevices(struct rproc * rproc)1073 static int rproc_prepare_subdevices(struct rproc *rproc)
1074 {
1075 struct rproc_subdev *subdev;
1076 int ret;
1077
1078 list_for_each_entry(subdev, &rproc->subdevs, node) {
1079 if (subdev->prepare) {
1080 ret = subdev->prepare(subdev);
1081 if (ret)
1082 goto unroll_preparation;
1083 }
1084 }
1085
1086 return 0;
1087
1088 unroll_preparation:
1089 list_for_each_entry_continue_reverse(subdev, &rproc->subdevs, node) {
1090 if (subdev->unprepare)
1091 subdev->unprepare(subdev);
1092 }
1093
1094 return ret;
1095 }
1096
rproc_start_subdevices(struct rproc * rproc)1097 static int rproc_start_subdevices(struct rproc *rproc)
1098 {
1099 struct rproc_subdev *subdev;
1100 int ret;
1101
1102 list_for_each_entry(subdev, &rproc->subdevs, node) {
1103 if (subdev->start) {
1104 ret = subdev->start(subdev);
1105 if (ret)
1106 goto unroll_registration;
1107 }
1108 }
1109
1110 return 0;
1111
1112 unroll_registration:
1113 list_for_each_entry_continue_reverse(subdev, &rproc->subdevs, node) {
1114 if (subdev->stop)
1115 subdev->stop(subdev, true);
1116 }
1117
1118 return ret;
1119 }
1120
rproc_stop_subdevices(struct rproc * rproc,bool crashed)1121 static void rproc_stop_subdevices(struct rproc *rproc, bool crashed)
1122 {
1123 struct rproc_subdev *subdev;
1124
1125 list_for_each_entry_reverse(subdev, &rproc->subdevs, node) {
1126 if (subdev->stop)
1127 subdev->stop(subdev, crashed);
1128 }
1129 }
1130
rproc_unprepare_subdevices(struct rproc * rproc)1131 static void rproc_unprepare_subdevices(struct rproc *rproc)
1132 {
1133 struct rproc_subdev *subdev;
1134
1135 list_for_each_entry_reverse(subdev, &rproc->subdevs, node) {
1136 if (subdev->unprepare)
1137 subdev->unprepare(subdev);
1138 }
1139 }
1140
1141 /**
1142 * rproc_alloc_registered_carveouts() - allocate all carveouts registered
1143 * in the list
1144 * @rproc: the remote processor handle
1145 *
1146 * This function parses registered carveout list, performs allocation
1147 * if alloc() ops registered and updates resource table information
1148 * if rsc_offset set.
1149 *
1150 * Return: 0 on success
1151 */
rproc_alloc_registered_carveouts(struct rproc * rproc)1152 static int rproc_alloc_registered_carveouts(struct rproc *rproc)
1153 {
1154 struct rproc_mem_entry *entry, *tmp;
1155 struct fw_rsc_carveout *rsc;
1156 struct device *dev = &rproc->dev;
1157 u64 pa;
1158 int ret;
1159
1160 list_for_each_entry_safe(entry, tmp, &rproc->carveouts, node) {
1161 if (entry->alloc) {
1162 ret = entry->alloc(rproc, entry);
1163 if (ret) {
1164 dev_err(dev, "Unable to allocate carveout %s: %d\n",
1165 entry->name, ret);
1166 return -ENOMEM;
1167 }
1168 }
1169
1170 if (entry->rsc_offset != FW_RSC_ADDR_ANY) {
1171 /* update resource table */
1172 rsc = (void *)rproc->table_ptr + entry->rsc_offset;
1173
1174 /*
1175 * Some remote processors might need to know the pa
1176 * even though they are behind an IOMMU. E.g., OMAP4's
1177 * remote M3 processor needs this so it can control
1178 * on-chip hardware accelerators that are not behind
1179 * the IOMMU, and therefor must know the pa.
1180 *
1181 * Generally we don't want to expose physical addresses
1182 * if we don't have to (remote processors are generally
1183 * _not_ trusted), so we might want to do this only for
1184 * remote processor that _must_ have this (e.g. OMAP4's
1185 * dual M3 subsystem).
1186 *
1187 * Non-IOMMU processors might also want to have this info.
1188 * In this case, the device address and the physical address
1189 * are the same.
1190 */
1191
1192 /* Use va if defined else dma to generate pa */
1193 if (entry->va)
1194 pa = (u64)rproc_va_to_pa(entry->va);
1195 else
1196 pa = (u64)entry->dma;
1197
1198 if (((u64)pa) & HIGH_BITS_MASK)
1199 dev_warn(dev,
1200 "Physical address cast in 32bit to fit resource table format\n");
1201
1202 rsc->pa = (u32)pa;
1203 rsc->da = entry->da;
1204 rsc->len = entry->len;
1205 }
1206 }
1207
1208 return 0;
1209 }
1210
1211
1212 /**
1213 * rproc_resource_cleanup() - clean up and free all acquired resources
1214 * @rproc: rproc handle
1215 *
1216 * This function will free all resources acquired for @rproc, and it
1217 * is called whenever @rproc either shuts down or fails to boot.
1218 */
rproc_resource_cleanup(struct rproc * rproc)1219 void rproc_resource_cleanup(struct rproc *rproc)
1220 {
1221 struct rproc_mem_entry *entry, *tmp;
1222 struct rproc_debug_trace *trace, *ttmp;
1223 struct rproc_vdev *rvdev, *rvtmp;
1224 struct device *dev = &rproc->dev;
1225
1226 /* clean up debugfs trace entries */
1227 list_for_each_entry_safe(trace, ttmp, &rproc->traces, node) {
1228 rproc_remove_trace_file(trace->tfile);
1229 rproc->num_traces--;
1230 list_del(&trace->node);
1231 kfree(trace);
1232 }
1233
1234 /* clean up iommu mapping entries */
1235 list_for_each_entry_safe(entry, tmp, &rproc->mappings, node) {
1236 size_t unmapped;
1237
1238 unmapped = iommu_unmap(rproc->domain, entry->da, entry->len);
1239 if (unmapped != entry->len) {
1240 /* nothing much to do besides complaining */
1241 dev_err(dev, "failed to unmap %zx/%zu\n", entry->len,
1242 unmapped);
1243 }
1244
1245 list_del(&entry->node);
1246 kfree(entry);
1247 }
1248
1249 /* clean up carveout allocations */
1250 list_for_each_entry_safe(entry, tmp, &rproc->carveouts, node) {
1251 if (entry->release)
1252 entry->release(rproc, entry);
1253 list_del(&entry->node);
1254 kfree(entry);
1255 }
1256
1257 /* clean up remote vdev entries */
1258 list_for_each_entry_safe(rvdev, rvtmp, &rproc->rvdevs, node)
1259 platform_device_unregister(rvdev->pdev);
1260
1261 rproc_coredump_cleanup(rproc);
1262 }
1263 EXPORT_SYMBOL(rproc_resource_cleanup);
1264
rproc_start(struct rproc * rproc,const struct firmware * fw)1265 static int rproc_start(struct rproc *rproc, const struct firmware *fw)
1266 {
1267 struct resource_table *loaded_table;
1268 struct device *dev = &rproc->dev;
1269 int ret;
1270
1271 /* load the ELF segments to memory */
1272 ret = rproc_load_segments(rproc, fw);
1273 if (ret) {
1274 dev_err(dev, "Failed to load program segments: %d\n", ret);
1275 return ret;
1276 }
1277
1278 /*
1279 * The starting device has been given the rproc->cached_table as the
1280 * resource table. The address of the vring along with the other
1281 * allocated resources (carveouts etc) is stored in cached_table.
1282 * In order to pass this information to the remote device we must copy
1283 * this information to device memory. We also update the table_ptr so
1284 * that any subsequent changes will be applied to the loaded version.
1285 */
1286 loaded_table = rproc_find_loaded_rsc_table(rproc, fw);
1287 if (loaded_table) {
1288 memcpy(loaded_table, rproc->cached_table, rproc->table_sz);
1289 rproc->table_ptr = loaded_table;
1290 }
1291
1292 ret = rproc_prepare_subdevices(rproc);
1293 if (ret) {
1294 dev_err(dev, "failed to prepare subdevices for %s: %d\n",
1295 rproc->name, ret);
1296 goto reset_table_ptr;
1297 }
1298
1299 /* power up the remote processor */
1300 ret = rproc->ops->start(rproc);
1301 if (ret) {
1302 dev_err(dev, "can't start rproc %s: %d\n", rproc->name, ret);
1303 goto unprepare_subdevices;
1304 }
1305
1306 /* Start any subdevices for the remote processor */
1307 ret = rproc_start_subdevices(rproc);
1308 if (ret) {
1309 dev_err(dev, "failed to probe subdevices for %s: %d\n",
1310 rproc->name, ret);
1311 goto stop_rproc;
1312 }
1313
1314 rproc->state = RPROC_RUNNING;
1315
1316 dev_info(dev, "remote processor %s is now up\n", rproc->name);
1317
1318 return 0;
1319
1320 stop_rproc:
1321 rproc->ops->stop(rproc);
1322 unprepare_subdevices:
1323 rproc_unprepare_subdevices(rproc);
1324 reset_table_ptr:
1325 rproc->table_ptr = rproc->cached_table;
1326
1327 return ret;
1328 }
1329
__rproc_attach(struct rproc * rproc)1330 static int __rproc_attach(struct rproc *rproc)
1331 {
1332 struct device *dev = &rproc->dev;
1333 int ret;
1334
1335 ret = rproc_prepare_subdevices(rproc);
1336 if (ret) {
1337 dev_err(dev, "failed to prepare subdevices for %s: %d\n",
1338 rproc->name, ret);
1339 goto out;
1340 }
1341
1342 /* Attach to the remote processor */
1343 ret = rproc_attach_device(rproc);
1344 if (ret) {
1345 dev_err(dev, "can't attach to rproc %s: %d\n",
1346 rproc->name, ret);
1347 goto unprepare_subdevices;
1348 }
1349
1350 /* Start any subdevices for the remote processor */
1351 ret = rproc_start_subdevices(rproc);
1352 if (ret) {
1353 dev_err(dev, "failed to probe subdevices for %s: %d\n",
1354 rproc->name, ret);
1355 goto stop_rproc;
1356 }
1357
1358 rproc->state = RPROC_ATTACHED;
1359
1360 dev_info(dev, "remote processor %s is now attached\n", rproc->name);
1361
1362 return 0;
1363
1364 stop_rproc:
1365 rproc->ops->stop(rproc);
1366 unprepare_subdevices:
1367 rproc_unprepare_subdevices(rproc);
1368 out:
1369 return ret;
1370 }
1371
1372 /*
1373 * take a firmware and boot a remote processor with it.
1374 */
rproc_fw_boot(struct rproc * rproc,const struct firmware * fw)1375 static int rproc_fw_boot(struct rproc *rproc, const struct firmware *fw)
1376 {
1377 struct device *dev = &rproc->dev;
1378 const char *name = rproc->firmware;
1379 int ret;
1380
1381 ret = rproc_fw_sanity_check(rproc, fw);
1382 if (ret)
1383 return ret;
1384
1385 dev_info(dev, "Booting fw image %s, size %zd\n", name, fw->size);
1386
1387 /*
1388 * if enabling an IOMMU isn't relevant for this rproc, this is
1389 * just a nop
1390 */
1391 ret = rproc_enable_iommu(rproc);
1392 if (ret) {
1393 dev_err(dev, "can't enable iommu: %d\n", ret);
1394 return ret;
1395 }
1396
1397 /* Prepare rproc for firmware loading if needed */
1398 ret = rproc_prepare_device(rproc);
1399 if (ret) {
1400 dev_err(dev, "can't prepare rproc %s: %d\n", rproc->name, ret);
1401 goto disable_iommu;
1402 }
1403
1404 rproc->bootaddr = rproc_get_boot_addr(rproc, fw);
1405
1406 /* Load resource table, core dump segment list etc from the firmware */
1407 ret = rproc_parse_fw(rproc, fw);
1408 if (ret)
1409 goto unprepare_rproc;
1410
1411 /* reset max_notifyid */
1412 rproc->max_notifyid = -1;
1413
1414 /* reset handled vdev */
1415 rproc->nb_vdev = 0;
1416
1417 /* handle fw resources which are required to boot rproc */
1418 ret = rproc_handle_resources(rproc, rproc_loading_handlers);
1419 if (ret) {
1420 dev_err(dev, "Failed to process resources: %d\n", ret);
1421 goto clean_up_resources;
1422 }
1423
1424 /* Allocate carveout resources associated to rproc */
1425 ret = rproc_alloc_registered_carveouts(rproc);
1426 if (ret) {
1427 dev_err(dev, "Failed to allocate associated carveouts: %d\n",
1428 ret);
1429 goto clean_up_resources;
1430 }
1431
1432 ret = rproc_start(rproc, fw);
1433 if (ret)
1434 goto clean_up_resources;
1435
1436 return 0;
1437
1438 clean_up_resources:
1439 rproc_resource_cleanup(rproc);
1440 kfree(rproc->cached_table);
1441 rproc->cached_table = NULL;
1442 rproc->table_ptr = NULL;
1443 unprepare_rproc:
1444 /* release HW resources if needed */
1445 rproc_unprepare_device(rproc);
1446 disable_iommu:
1447 rproc_disable_iommu(rproc);
1448 return ret;
1449 }
1450
rproc_set_rsc_table(struct rproc * rproc)1451 static int rproc_set_rsc_table(struct rproc *rproc)
1452 {
1453 struct resource_table *table_ptr;
1454 struct device *dev = &rproc->dev;
1455 size_t table_sz;
1456 int ret;
1457
1458 table_ptr = rproc_get_loaded_rsc_table(rproc, &table_sz);
1459 if (!table_ptr) {
1460 /* Not having a resource table is acceptable */
1461 return 0;
1462 }
1463
1464 if (IS_ERR(table_ptr)) {
1465 ret = PTR_ERR(table_ptr);
1466 dev_err(dev, "can't load resource table: %d\n", ret);
1467 return ret;
1468 }
1469
1470 /*
1471 * If it is possible to detach the remote processor, keep an untouched
1472 * copy of the resource table. That way we can start fresh again when
1473 * the remote processor is re-attached, that is:
1474 *
1475 * DETACHED -> ATTACHED -> DETACHED -> ATTACHED
1476 *
1477 * Free'd in rproc_reset_rsc_table_on_detach() and
1478 * rproc_reset_rsc_table_on_stop().
1479 */
1480 if (rproc->ops->detach) {
1481 rproc->clean_table = kmemdup(table_ptr, table_sz, GFP_KERNEL);
1482 if (!rproc->clean_table)
1483 return -ENOMEM;
1484 } else {
1485 rproc->clean_table = NULL;
1486 }
1487
1488 rproc->cached_table = NULL;
1489 rproc->table_ptr = table_ptr;
1490 rproc->table_sz = table_sz;
1491
1492 return 0;
1493 }
1494
rproc_reset_rsc_table_on_detach(struct rproc * rproc)1495 static int rproc_reset_rsc_table_on_detach(struct rproc *rproc)
1496 {
1497 struct resource_table *table_ptr;
1498
1499 /* A resource table was never retrieved, nothing to do here */
1500 if (!rproc->table_ptr)
1501 return 0;
1502
1503 /*
1504 * If we made it to this point a clean_table _must_ have been
1505 * allocated in rproc_set_rsc_table(). If one isn't present
1506 * something went really wrong and we must complain.
1507 */
1508 if (WARN_ON(!rproc->clean_table))
1509 return -EINVAL;
1510
1511 /* Remember where the external entity installed the resource table */
1512 table_ptr = rproc->table_ptr;
1513
1514 /*
1515 * If we made it here the remote processor was started by another
1516 * entity and a cache table doesn't exist. As such make a copy of
1517 * the resource table currently used by the remote processor and
1518 * use that for the rest of the shutdown process. The memory
1519 * allocated here is free'd in rproc_detach().
1520 */
1521 rproc->cached_table = kmemdup(rproc->table_ptr,
1522 rproc->table_sz, GFP_KERNEL);
1523 if (!rproc->cached_table)
1524 return -ENOMEM;
1525
1526 /*
1527 * Use a copy of the resource table for the remainder of the
1528 * shutdown process.
1529 */
1530 rproc->table_ptr = rproc->cached_table;
1531
1532 /*
1533 * Reset the memory area where the firmware loaded the resource table
1534 * to its original value. That way when we re-attach the remote
1535 * processor the resource table is clean and ready to be used again.
1536 */
1537 memcpy(table_ptr, rproc->clean_table, rproc->table_sz);
1538
1539 /*
1540 * The clean resource table is no longer needed. Allocated in
1541 * rproc_set_rsc_table().
1542 */
1543 kfree(rproc->clean_table);
1544
1545 return 0;
1546 }
1547
rproc_reset_rsc_table_on_stop(struct rproc * rproc)1548 static int rproc_reset_rsc_table_on_stop(struct rproc *rproc)
1549 {
1550 /* A resource table was never retrieved, nothing to do here */
1551 if (!rproc->table_ptr)
1552 return 0;
1553
1554 /*
1555 * If a cache table exists the remote processor was started by
1556 * the remoteproc core. That cache table should be used for
1557 * the rest of the shutdown process.
1558 */
1559 if (rproc->cached_table)
1560 goto out;
1561
1562 /*
1563 * If we made it here the remote processor was started by another
1564 * entity and a cache table doesn't exist. As such make a copy of
1565 * the resource table currently used by the remote processor and
1566 * use that for the rest of the shutdown process. The memory
1567 * allocated here is free'd in rproc_shutdown().
1568 */
1569 rproc->cached_table = kmemdup(rproc->table_ptr,
1570 rproc->table_sz, GFP_KERNEL);
1571 if (!rproc->cached_table)
1572 return -ENOMEM;
1573
1574 /*
1575 * Since the remote processor is being switched off the clean table
1576 * won't be needed. Allocated in rproc_set_rsc_table().
1577 */
1578 kfree(rproc->clean_table);
1579
1580 out:
1581 /*
1582 * Use a copy of the resource table for the remainder of the
1583 * shutdown process.
1584 */
1585 rproc->table_ptr = rproc->cached_table;
1586 return 0;
1587 }
1588
1589 /*
1590 * Attach to remote processor - similar to rproc_fw_boot() but without
1591 * the steps that deal with the firmware image.
1592 */
rproc_attach(struct rproc * rproc)1593 static int rproc_attach(struct rproc *rproc)
1594 {
1595 struct device *dev = &rproc->dev;
1596 int ret;
1597
1598 /*
1599 * if enabling an IOMMU isn't relevant for this rproc, this is
1600 * just a nop
1601 */
1602 ret = rproc_enable_iommu(rproc);
1603 if (ret) {
1604 dev_err(dev, "can't enable iommu: %d\n", ret);
1605 return ret;
1606 }
1607
1608 /* Do anything that is needed to boot the remote processor */
1609 ret = rproc_prepare_device(rproc);
1610 if (ret) {
1611 dev_err(dev, "can't prepare rproc %s: %d\n", rproc->name, ret);
1612 goto disable_iommu;
1613 }
1614
1615 ret = rproc_set_rsc_table(rproc);
1616 if (ret) {
1617 dev_err(dev, "can't load resource table: %d\n", ret);
1618 goto unprepare_device;
1619 }
1620
1621 /* reset max_notifyid */
1622 rproc->max_notifyid = -1;
1623
1624 /* reset handled vdev */
1625 rproc->nb_vdev = 0;
1626
1627 /*
1628 * Handle firmware resources required to attach to a remote processor.
1629 * Because we are attaching rather than booting the remote processor,
1630 * we expect the platform driver to properly set rproc->table_ptr.
1631 */
1632 ret = rproc_handle_resources(rproc, rproc_loading_handlers);
1633 if (ret) {
1634 dev_err(dev, "Failed to process resources: %d\n", ret);
1635 goto unprepare_device;
1636 }
1637
1638 /* Allocate carveout resources associated to rproc */
1639 ret = rproc_alloc_registered_carveouts(rproc);
1640 if (ret) {
1641 dev_err(dev, "Failed to allocate associated carveouts: %d\n",
1642 ret);
1643 goto clean_up_resources;
1644 }
1645
1646 ret = __rproc_attach(rproc);
1647 if (ret)
1648 goto clean_up_resources;
1649
1650 return 0;
1651
1652 clean_up_resources:
1653 rproc_resource_cleanup(rproc);
1654 unprepare_device:
1655 /* release HW resources if needed */
1656 rproc_unprepare_device(rproc);
1657 disable_iommu:
1658 rproc_disable_iommu(rproc);
1659 return ret;
1660 }
1661
1662 /*
1663 * take a firmware and boot it up.
1664 *
1665 * Note: this function is called asynchronously upon registration of the
1666 * remote processor (so we must wait until it completes before we try
1667 * to unregister the device. one other option is just to use kref here,
1668 * that might be cleaner).
1669 */
rproc_auto_boot_callback(const struct firmware * fw,void * context)1670 static void rproc_auto_boot_callback(const struct firmware *fw, void *context)
1671 {
1672 struct rproc *rproc = context;
1673
1674 rproc_boot(rproc);
1675
1676 release_firmware(fw);
1677 }
1678
rproc_trigger_auto_boot(struct rproc * rproc)1679 static int rproc_trigger_auto_boot(struct rproc *rproc)
1680 {
1681 int ret;
1682
1683 /*
1684 * Since the remote processor is in a detached state, it has already
1685 * been booted by another entity. As such there is no point in waiting
1686 * for a firmware image to be loaded, we can simply initiate the process
1687 * of attaching to it immediately.
1688 */
1689 if (rproc->state == RPROC_DETACHED)
1690 return rproc_boot(rproc);
1691
1692 /*
1693 * We're initiating an asynchronous firmware loading, so we can
1694 * be built-in kernel code, without hanging the boot process.
1695 */
1696 ret = request_firmware_nowait(THIS_MODULE, FW_ACTION_UEVENT,
1697 rproc->firmware, &rproc->dev, GFP_KERNEL,
1698 rproc, rproc_auto_boot_callback);
1699 if (ret < 0)
1700 dev_err(&rproc->dev, "request_firmware_nowait err: %d\n", ret);
1701
1702 return ret;
1703 }
1704
rproc_stop(struct rproc * rproc,bool crashed)1705 static int rproc_stop(struct rproc *rproc, bool crashed)
1706 {
1707 struct device *dev = &rproc->dev;
1708 int ret;
1709
1710 /* No need to continue if a stop() operation has not been provided */
1711 if (!rproc->ops->stop)
1712 return -EINVAL;
1713
1714 /* Stop any subdevices for the remote processor */
1715 rproc_stop_subdevices(rproc, crashed);
1716
1717 /* the installed resource table is no longer accessible */
1718 ret = rproc_reset_rsc_table_on_stop(rproc);
1719 if (ret) {
1720 dev_err(dev, "can't reset resource table: %d\n", ret);
1721 return ret;
1722 }
1723
1724
1725 /* power off the remote processor */
1726 ret = rproc->ops->stop(rproc);
1727 if (ret) {
1728 dev_err(dev, "can't stop rproc: %d\n", ret);
1729 return ret;
1730 }
1731
1732 rproc_unprepare_subdevices(rproc);
1733
1734 rproc->state = RPROC_OFFLINE;
1735
1736 dev_info(dev, "stopped remote processor %s\n", rproc->name);
1737
1738 return 0;
1739 }
1740
1741 /*
1742 * __rproc_detach(): Does the opposite of __rproc_attach()
1743 */
__rproc_detach(struct rproc * rproc)1744 static int __rproc_detach(struct rproc *rproc)
1745 {
1746 struct device *dev = &rproc->dev;
1747 int ret;
1748
1749 /* No need to continue if a detach() operation has not been provided */
1750 if (!rproc->ops->detach)
1751 return -EINVAL;
1752
1753 /* Stop any subdevices for the remote processor */
1754 rproc_stop_subdevices(rproc, false);
1755
1756 /* the installed resource table is no longer accessible */
1757 ret = rproc_reset_rsc_table_on_detach(rproc);
1758 if (ret) {
1759 dev_err(dev, "can't reset resource table: %d\n", ret);
1760 return ret;
1761 }
1762
1763 /* Tell the remote processor the core isn't available anymore */
1764 ret = rproc->ops->detach(rproc);
1765 if (ret) {
1766 dev_err(dev, "can't detach from rproc: %d\n", ret);
1767 return ret;
1768 }
1769
1770 rproc_unprepare_subdevices(rproc);
1771
1772 rproc->state = RPROC_DETACHED;
1773
1774 dev_info(dev, "detached remote processor %s\n", rproc->name);
1775
1776 return 0;
1777 }
1778
rproc_attach_recovery(struct rproc * rproc)1779 static int rproc_attach_recovery(struct rproc *rproc)
1780 {
1781 int ret;
1782
1783 ret = __rproc_detach(rproc);
1784 if (ret)
1785 return ret;
1786
1787 return __rproc_attach(rproc);
1788 }
1789
rproc_boot_recovery(struct rproc * rproc)1790 static int rproc_boot_recovery(struct rproc *rproc)
1791 {
1792 const struct firmware *firmware_p;
1793 struct device *dev = &rproc->dev;
1794 int ret;
1795
1796 ret = rproc_stop(rproc, true);
1797 if (ret)
1798 return ret;
1799
1800 /* generate coredump */
1801 rproc->ops->coredump(rproc);
1802
1803 /* load firmware */
1804 ret = request_firmware(&firmware_p, rproc->firmware, dev);
1805 if (ret < 0) {
1806 dev_err(dev, "request_firmware failed: %d\n", ret);
1807 return ret;
1808 }
1809
1810 /* boot the remote processor up again */
1811 ret = rproc_start(rproc, firmware_p);
1812
1813 release_firmware(firmware_p);
1814
1815 return ret;
1816 }
1817
1818 /**
1819 * rproc_trigger_recovery() - recover a remoteproc
1820 * @rproc: the remote processor
1821 *
1822 * The recovery is done by resetting all the virtio devices, that way all the
1823 * rpmsg drivers will be reseted along with the remote processor making the
1824 * remoteproc functional again.
1825 *
1826 * This function can sleep, so it cannot be called from atomic context.
1827 *
1828 * Return: 0 on success or a negative value upon failure
1829 */
rproc_trigger_recovery(struct rproc * rproc)1830 int rproc_trigger_recovery(struct rproc *rproc)
1831 {
1832 struct device *dev = &rproc->dev;
1833 int ret;
1834
1835 ret = mutex_lock_interruptible(&rproc->lock);
1836 if (ret)
1837 return ret;
1838
1839 /* State could have changed before we got the mutex */
1840 if (rproc->state != RPROC_CRASHED)
1841 goto unlock_mutex;
1842
1843 dev_err(dev, "recovering %s\n", rproc->name);
1844
1845 if (rproc_has_feature(rproc, RPROC_FEAT_ATTACH_ON_RECOVERY))
1846 ret = rproc_attach_recovery(rproc);
1847 else
1848 ret = rproc_boot_recovery(rproc);
1849
1850 unlock_mutex:
1851 mutex_unlock(&rproc->lock);
1852 return ret;
1853 }
1854
1855 /**
1856 * rproc_crash_handler_work() - handle a crash
1857 * @work: work treating the crash
1858 *
1859 * This function needs to handle everything related to a crash, like cpu
1860 * registers and stack dump, information to help to debug the fatal error, etc.
1861 */
rproc_crash_handler_work(struct work_struct * work)1862 static void rproc_crash_handler_work(struct work_struct *work)
1863 {
1864 struct rproc *rproc = container_of(work, struct rproc, crash_handler);
1865 struct device *dev = &rproc->dev;
1866
1867 dev_dbg(dev, "enter %s\n", __func__);
1868
1869 mutex_lock(&rproc->lock);
1870
1871 if (rproc->state == RPROC_CRASHED) {
1872 /* handle only the first crash detected */
1873 mutex_unlock(&rproc->lock);
1874 return;
1875 }
1876
1877 if (rproc->state == RPROC_OFFLINE) {
1878 /* Don't recover if the remote processor was stopped */
1879 mutex_unlock(&rproc->lock);
1880 goto out;
1881 }
1882
1883 rproc->state = RPROC_CRASHED;
1884 dev_err(dev, "handling crash #%u in %s\n", ++rproc->crash_cnt,
1885 rproc->name);
1886
1887 mutex_unlock(&rproc->lock);
1888
1889 if (!rproc->recovery_disabled)
1890 rproc_trigger_recovery(rproc);
1891
1892 out:
1893 pm_relax(rproc->dev.parent);
1894 }
1895
1896 /**
1897 * rproc_boot() - boot a remote processor
1898 * @rproc: handle of a remote processor
1899 *
1900 * Boot a remote processor (i.e. load its firmware, power it on, ...).
1901 *
1902 * If the remote processor is already powered on, this function immediately
1903 * returns (successfully).
1904 *
1905 * Return: 0 on success, and an appropriate error value otherwise
1906 */
rproc_boot(struct rproc * rproc)1907 int rproc_boot(struct rproc *rproc)
1908 {
1909 const struct firmware *firmware_p;
1910 struct device *dev;
1911 int ret;
1912
1913 if (!rproc) {
1914 pr_err("invalid rproc handle\n");
1915 return -EINVAL;
1916 }
1917
1918 dev = &rproc->dev;
1919
1920 ret = mutex_lock_interruptible(&rproc->lock);
1921 if (ret) {
1922 dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret);
1923 return ret;
1924 }
1925
1926 if (rproc->state == RPROC_DELETED) {
1927 ret = -ENODEV;
1928 dev_err(dev, "can't boot deleted rproc %s\n", rproc->name);
1929 goto unlock_mutex;
1930 }
1931
1932 /* skip the boot or attach process if rproc is already powered up */
1933 if (atomic_inc_return(&rproc->power) > 1) {
1934 ret = 0;
1935 goto unlock_mutex;
1936 }
1937
1938 if (rproc->state == RPROC_DETACHED) {
1939 dev_info(dev, "attaching to %s\n", rproc->name);
1940
1941 ret = rproc_attach(rproc);
1942 } else {
1943 dev_info(dev, "powering up %s\n", rproc->name);
1944
1945 /* load firmware */
1946 ret = request_firmware(&firmware_p, rproc->firmware, dev);
1947 if (ret < 0) {
1948 dev_err(dev, "request_firmware failed: %d\n", ret);
1949 goto downref_rproc;
1950 }
1951
1952 ret = rproc_fw_boot(rproc, firmware_p);
1953
1954 release_firmware(firmware_p);
1955 }
1956
1957 downref_rproc:
1958 if (ret)
1959 atomic_dec(&rproc->power);
1960 unlock_mutex:
1961 mutex_unlock(&rproc->lock);
1962 return ret;
1963 }
1964 EXPORT_SYMBOL(rproc_boot);
1965
1966 /**
1967 * rproc_shutdown() - power off the remote processor
1968 * @rproc: the remote processor
1969 *
1970 * Power off a remote processor (previously booted with rproc_boot()).
1971 *
1972 * In case @rproc is still being used by an additional user(s), then
1973 * this function will just decrement the power refcount and exit,
1974 * without really powering off the device.
1975 *
1976 * Every call to rproc_boot() must (eventually) be accompanied by a call
1977 * to rproc_shutdown(). Calling rproc_shutdown() redundantly is a bug.
1978 *
1979 * Notes:
1980 * - we're not decrementing the rproc's refcount, only the power refcount.
1981 * which means that the @rproc handle stays valid even after rproc_shutdown()
1982 * returns, and users can still use it with a subsequent rproc_boot(), if
1983 * needed.
1984 *
1985 * Return: 0 on success, and an appropriate error value otherwise
1986 */
rproc_shutdown(struct rproc * rproc)1987 int rproc_shutdown(struct rproc *rproc)
1988 {
1989 struct device *dev = &rproc->dev;
1990 int ret = 0;
1991
1992 ret = mutex_lock_interruptible(&rproc->lock);
1993 if (ret) {
1994 dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret);
1995 return ret;
1996 }
1997
1998 if (rproc->state != RPROC_RUNNING &&
1999 rproc->state != RPROC_ATTACHED) {
2000 ret = -EINVAL;
2001 goto out;
2002 }
2003
2004 /* if the remote proc is still needed, bail out */
2005 if (!atomic_dec_and_test(&rproc->power))
2006 goto out;
2007
2008 ret = rproc_stop(rproc, false);
2009 if (ret) {
2010 atomic_inc(&rproc->power);
2011 goto out;
2012 }
2013
2014 /* clean up all acquired resources */
2015 rproc_resource_cleanup(rproc);
2016
2017 /* release HW resources if needed */
2018 rproc_unprepare_device(rproc);
2019
2020 rproc_disable_iommu(rproc);
2021
2022 /* Free the copy of the resource table */
2023 kfree(rproc->cached_table);
2024 rproc->cached_table = NULL;
2025 rproc->table_ptr = NULL;
2026 out:
2027 mutex_unlock(&rproc->lock);
2028 return ret;
2029 }
2030 EXPORT_SYMBOL(rproc_shutdown);
2031
2032 /**
2033 * rproc_detach() - Detach the remote processor from the
2034 * remoteproc core
2035 *
2036 * @rproc: the remote processor
2037 *
2038 * Detach a remote processor (previously attached to with rproc_attach()).
2039 *
2040 * In case @rproc is still being used by an additional user(s), then
2041 * this function will just decrement the power refcount and exit,
2042 * without disconnecting the device.
2043 *
2044 * Function rproc_detach() calls __rproc_detach() in order to let a remote
2045 * processor know that services provided by the application processor are
2046 * no longer available. From there it should be possible to remove the
2047 * platform driver and even power cycle the application processor (if the HW
2048 * supports it) without needing to switch off the remote processor.
2049 *
2050 * Return: 0 on success, and an appropriate error value otherwise
2051 */
rproc_detach(struct rproc * rproc)2052 int rproc_detach(struct rproc *rproc)
2053 {
2054 struct device *dev = &rproc->dev;
2055 int ret;
2056
2057 ret = mutex_lock_interruptible(&rproc->lock);
2058 if (ret) {
2059 dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret);
2060 return ret;
2061 }
2062
2063 if (rproc->state != RPROC_ATTACHED) {
2064 ret = -EINVAL;
2065 goto out;
2066 }
2067
2068 /* if the remote proc is still needed, bail out */
2069 if (!atomic_dec_and_test(&rproc->power)) {
2070 ret = 0;
2071 goto out;
2072 }
2073
2074 ret = __rproc_detach(rproc);
2075 if (ret) {
2076 atomic_inc(&rproc->power);
2077 goto out;
2078 }
2079
2080 /* clean up all acquired resources */
2081 rproc_resource_cleanup(rproc);
2082
2083 /* release HW resources if needed */
2084 rproc_unprepare_device(rproc);
2085
2086 rproc_disable_iommu(rproc);
2087
2088 /* Free the copy of the resource table */
2089 kfree(rproc->cached_table);
2090 rproc->cached_table = NULL;
2091 rproc->table_ptr = NULL;
2092 out:
2093 mutex_unlock(&rproc->lock);
2094 return ret;
2095 }
2096 EXPORT_SYMBOL(rproc_detach);
2097
2098 /**
2099 * rproc_get_by_phandle() - find a remote processor by phandle
2100 * @phandle: phandle to the rproc
2101 *
2102 * Finds an rproc handle using the remote processor's phandle, and then
2103 * return a handle to the rproc.
2104 *
2105 * This function increments the remote processor's refcount, so always
2106 * use rproc_put() to decrement it back once rproc isn't needed anymore.
2107 *
2108 * Return: rproc handle on success, and NULL on failure
2109 */
2110 #ifdef CONFIG_OF
rproc_get_by_phandle(phandle phandle)2111 struct rproc *rproc_get_by_phandle(phandle phandle)
2112 {
2113 struct rproc *rproc = NULL, *r;
2114 struct device_node *np;
2115
2116 np = of_find_node_by_phandle(phandle);
2117 if (!np)
2118 return NULL;
2119
2120 rcu_read_lock();
2121 list_for_each_entry_rcu(r, &rproc_list, node) {
2122 if (r->dev.parent && r->dev.parent->of_node == np) {
2123 /* prevent underlying implementation from being removed */
2124 if (!try_module_get(r->dev.parent->driver->owner)) {
2125 dev_err(&r->dev, "can't get owner\n");
2126 break;
2127 }
2128
2129 rproc = r;
2130 get_device(&rproc->dev);
2131 break;
2132 }
2133 }
2134 rcu_read_unlock();
2135
2136 of_node_put(np);
2137
2138 return rproc;
2139 }
2140 #else
rproc_get_by_phandle(phandle phandle)2141 struct rproc *rproc_get_by_phandle(phandle phandle)
2142 {
2143 return NULL;
2144 }
2145 #endif
2146 EXPORT_SYMBOL(rproc_get_by_phandle);
2147
2148 /**
2149 * rproc_set_firmware() - assign a new firmware
2150 * @rproc: rproc handle to which the new firmware is being assigned
2151 * @fw_name: new firmware name to be assigned
2152 *
2153 * This function allows remoteproc drivers or clients to configure a custom
2154 * firmware name that is different from the default name used during remoteproc
2155 * registration. The function does not trigger a remote processor boot,
2156 * only sets the firmware name used for a subsequent boot. This function
2157 * should also be called only when the remote processor is offline.
2158 *
2159 * This allows either the userspace to configure a different name through
2160 * sysfs or a kernel-level remoteproc or a remoteproc client driver to set
2161 * a specific firmware when it is controlling the boot and shutdown of the
2162 * remote processor.
2163 *
2164 * Return: 0 on success or a negative value upon failure
2165 */
rproc_set_firmware(struct rproc * rproc,const char * fw_name)2166 int rproc_set_firmware(struct rproc *rproc, const char *fw_name)
2167 {
2168 struct device *dev;
2169 int ret, len;
2170 char *p;
2171
2172 if (!rproc || !fw_name)
2173 return -EINVAL;
2174
2175 dev = rproc->dev.parent;
2176
2177 ret = mutex_lock_interruptible(&rproc->lock);
2178 if (ret) {
2179 dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret);
2180 return -EINVAL;
2181 }
2182
2183 if (rproc->state != RPROC_OFFLINE) {
2184 dev_err(dev, "can't change firmware while running\n");
2185 ret = -EBUSY;
2186 goto out;
2187 }
2188
2189 len = strcspn(fw_name, "\n");
2190 if (!len) {
2191 dev_err(dev, "can't provide empty string for firmware name\n");
2192 ret = -EINVAL;
2193 goto out;
2194 }
2195
2196 p = kstrndup(fw_name, len, GFP_KERNEL);
2197 if (!p) {
2198 ret = -ENOMEM;
2199 goto out;
2200 }
2201
2202 kfree_const(rproc->firmware);
2203 rproc->firmware = p;
2204
2205 out:
2206 mutex_unlock(&rproc->lock);
2207 return ret;
2208 }
2209 EXPORT_SYMBOL(rproc_set_firmware);
2210
rproc_validate(struct rproc * rproc)2211 static int rproc_validate(struct rproc *rproc)
2212 {
2213 switch (rproc->state) {
2214 case RPROC_OFFLINE:
2215 /*
2216 * An offline processor without a start()
2217 * function makes no sense.
2218 */
2219 if (!rproc->ops->start)
2220 return -EINVAL;
2221 break;
2222 case RPROC_DETACHED:
2223 /*
2224 * A remote processor in a detached state without an
2225 * attach() function makes not sense.
2226 */
2227 if (!rproc->ops->attach)
2228 return -EINVAL;
2229 /*
2230 * When attaching to a remote processor the device memory
2231 * is already available and as such there is no need to have a
2232 * cached table.
2233 */
2234 if (rproc->cached_table)
2235 return -EINVAL;
2236 break;
2237 default:
2238 /*
2239 * When adding a remote processor, the state of the device
2240 * can be offline or detached, nothing else.
2241 */
2242 return -EINVAL;
2243 }
2244
2245 return 0;
2246 }
2247
2248 /**
2249 * rproc_add() - register a remote processor
2250 * @rproc: the remote processor handle to register
2251 *
2252 * Registers @rproc with the remoteproc framework, after it has been
2253 * allocated with rproc_alloc().
2254 *
2255 * This is called by the platform-specific rproc implementation, whenever
2256 * a new remote processor device is probed.
2257 *
2258 * Note: this function initiates an asynchronous firmware loading
2259 * context, which will look for virtio devices supported by the rproc's
2260 * firmware.
2261 *
2262 * If found, those virtio devices will be created and added, so as a result
2263 * of registering this remote processor, additional virtio drivers might be
2264 * probed.
2265 *
2266 * Return: 0 on success and an appropriate error code otherwise
2267 */
rproc_add(struct rproc * rproc)2268 int rproc_add(struct rproc *rproc)
2269 {
2270 struct device *dev = &rproc->dev;
2271 int ret;
2272
2273 ret = rproc_validate(rproc);
2274 if (ret < 0)
2275 return ret;
2276
2277 /* add char device for this remoteproc */
2278 ret = rproc_char_device_add(rproc);
2279 if (ret < 0)
2280 return ret;
2281
2282 ret = device_add(dev);
2283 if (ret < 0) {
2284 put_device(dev);
2285 goto rproc_remove_cdev;
2286 }
2287
2288 dev_info(dev, "%s is available\n", rproc->name);
2289
2290 /* create debugfs entries */
2291 rproc_create_debug_dir(rproc);
2292
2293 /* if rproc is marked always-on, request it to boot */
2294 if (rproc->auto_boot) {
2295 ret = rproc_trigger_auto_boot(rproc);
2296 if (ret < 0)
2297 goto rproc_remove_dev;
2298 }
2299
2300 /* expose to rproc_get_by_phandle users */
2301 mutex_lock(&rproc_list_mutex);
2302 list_add_rcu(&rproc->node, &rproc_list);
2303 mutex_unlock(&rproc_list_mutex);
2304
2305 return 0;
2306
2307 rproc_remove_dev:
2308 rproc_delete_debug_dir(rproc);
2309 device_del(dev);
2310 rproc_remove_cdev:
2311 rproc_char_device_remove(rproc);
2312 return ret;
2313 }
2314 EXPORT_SYMBOL(rproc_add);
2315
devm_rproc_remove(void * rproc)2316 static void devm_rproc_remove(void *rproc)
2317 {
2318 rproc_del(rproc);
2319 }
2320
2321 /**
2322 * devm_rproc_add() - resource managed rproc_add()
2323 * @dev: the underlying device
2324 * @rproc: the remote processor handle to register
2325 *
2326 * This function performs like rproc_add() but the registered rproc device will
2327 * automatically be removed on driver detach.
2328 *
2329 * Return: 0 on success, negative errno on failure
2330 */
devm_rproc_add(struct device * dev,struct rproc * rproc)2331 int devm_rproc_add(struct device *dev, struct rproc *rproc)
2332 {
2333 int err;
2334
2335 err = rproc_add(rproc);
2336 if (err)
2337 return err;
2338
2339 return devm_add_action_or_reset(dev, devm_rproc_remove, rproc);
2340 }
2341 EXPORT_SYMBOL(devm_rproc_add);
2342
2343 /**
2344 * rproc_type_release() - release a remote processor instance
2345 * @dev: the rproc's device
2346 *
2347 * This function should _never_ be called directly.
2348 *
2349 * It will be called by the driver core when no one holds a valid pointer
2350 * to @dev anymore.
2351 */
rproc_type_release(struct device * dev)2352 static void rproc_type_release(struct device *dev)
2353 {
2354 struct rproc *rproc = container_of(dev, struct rproc, dev);
2355
2356 dev_info(&rproc->dev, "releasing %s\n", rproc->name);
2357
2358 idr_destroy(&rproc->notifyids);
2359
2360 if (rproc->index >= 0)
2361 ida_free(&rproc_dev_index, rproc->index);
2362
2363 kfree_const(rproc->firmware);
2364 kfree_const(rproc->name);
2365 kfree(rproc->ops);
2366 kfree(rproc);
2367 }
2368
2369 static const struct device_type rproc_type = {
2370 .name = "remoteproc",
2371 .release = rproc_type_release,
2372 };
2373
rproc_alloc_firmware(struct rproc * rproc,const char * name,const char * firmware)2374 static int rproc_alloc_firmware(struct rproc *rproc,
2375 const char *name, const char *firmware)
2376 {
2377 const char *p;
2378
2379 /*
2380 * Allocate a firmware name if the caller gave us one to work
2381 * with. Otherwise construct a new one using a default pattern.
2382 */
2383 if (firmware)
2384 p = kstrdup_const(firmware, GFP_KERNEL);
2385 else
2386 p = kasprintf(GFP_KERNEL, "rproc-%s-fw", name);
2387
2388 if (!p)
2389 return -ENOMEM;
2390
2391 rproc->firmware = p;
2392
2393 return 0;
2394 }
2395
rproc_alloc_ops(struct rproc * rproc,const struct rproc_ops * ops)2396 static int rproc_alloc_ops(struct rproc *rproc, const struct rproc_ops *ops)
2397 {
2398 rproc->ops = kmemdup(ops, sizeof(*ops), GFP_KERNEL);
2399 if (!rproc->ops)
2400 return -ENOMEM;
2401
2402 /* Default to rproc_coredump if no coredump function is specified */
2403 if (!rproc->ops->coredump)
2404 rproc->ops->coredump = rproc_coredump;
2405
2406 if (rproc->ops->load)
2407 return 0;
2408
2409 /* Default to ELF loader if no load function is specified */
2410 rproc->ops->load = rproc_elf_load_segments;
2411 rproc->ops->parse_fw = rproc_elf_load_rsc_table;
2412 rproc->ops->find_loaded_rsc_table = rproc_elf_find_loaded_rsc_table;
2413 rproc->ops->sanity_check = rproc_elf_sanity_check;
2414 rproc->ops->get_boot_addr = rproc_elf_get_boot_addr;
2415
2416 return 0;
2417 }
2418
2419 /**
2420 * rproc_alloc() - allocate a remote processor handle
2421 * @dev: the underlying device
2422 * @name: name of this remote processor
2423 * @ops: platform-specific handlers (mainly start/stop)
2424 * @firmware: name of firmware file to load, can be NULL
2425 * @len: length of private data needed by the rproc driver (in bytes)
2426 *
2427 * Allocates a new remote processor handle, but does not register
2428 * it yet. if @firmware is NULL, a default name is used.
2429 *
2430 * This function should be used by rproc implementations during initialization
2431 * of the remote processor.
2432 *
2433 * After creating an rproc handle using this function, and when ready,
2434 * implementations should then call rproc_add() to complete
2435 * the registration of the remote processor.
2436 *
2437 * Note: _never_ directly deallocate @rproc, even if it was not registered
2438 * yet. Instead, when you need to unroll rproc_alloc(), use rproc_free().
2439 *
2440 * Return: new rproc pointer on success, and NULL on failure
2441 */
rproc_alloc(struct device * dev,const char * name,const struct rproc_ops * ops,const char * firmware,int len)2442 struct rproc *rproc_alloc(struct device *dev, const char *name,
2443 const struct rproc_ops *ops,
2444 const char *firmware, int len)
2445 {
2446 struct rproc *rproc;
2447
2448 if (!dev || !name || !ops)
2449 return NULL;
2450
2451 rproc = kzalloc(sizeof(struct rproc) + len, GFP_KERNEL);
2452 if (!rproc)
2453 return NULL;
2454
2455 rproc->priv = &rproc[1];
2456 rproc->auto_boot = true;
2457 rproc->elf_class = ELFCLASSNONE;
2458 rproc->elf_machine = EM_NONE;
2459
2460 device_initialize(&rproc->dev);
2461 rproc->dev.parent = dev;
2462 rproc->dev.type = &rproc_type;
2463 rproc->dev.class = &rproc_class;
2464 rproc->dev.driver_data = rproc;
2465 idr_init(&rproc->notifyids);
2466
2467 rproc->name = kstrdup_const(name, GFP_KERNEL);
2468 if (!rproc->name)
2469 goto put_device;
2470
2471 if (rproc_alloc_firmware(rproc, name, firmware))
2472 goto put_device;
2473
2474 if (rproc_alloc_ops(rproc, ops))
2475 goto put_device;
2476
2477 /* Assign a unique device index and name */
2478 rproc->index = ida_alloc(&rproc_dev_index, GFP_KERNEL);
2479 if (rproc->index < 0) {
2480 dev_err(dev, "ida_alloc failed: %d\n", rproc->index);
2481 goto put_device;
2482 }
2483
2484 dev_set_name(&rproc->dev, "remoteproc%d", rproc->index);
2485
2486 atomic_set(&rproc->power, 0);
2487
2488 mutex_init(&rproc->lock);
2489
2490 INIT_LIST_HEAD(&rproc->carveouts);
2491 INIT_LIST_HEAD(&rproc->mappings);
2492 INIT_LIST_HEAD(&rproc->traces);
2493 INIT_LIST_HEAD(&rproc->rvdevs);
2494 INIT_LIST_HEAD(&rproc->subdevs);
2495 INIT_LIST_HEAD(&rproc->dump_segments);
2496
2497 INIT_WORK(&rproc->crash_handler, rproc_crash_handler_work);
2498
2499 rproc->state = RPROC_OFFLINE;
2500
2501 return rproc;
2502
2503 put_device:
2504 put_device(&rproc->dev);
2505 return NULL;
2506 }
2507 EXPORT_SYMBOL(rproc_alloc);
2508
2509 /**
2510 * rproc_free() - unroll rproc_alloc()
2511 * @rproc: the remote processor handle
2512 *
2513 * This function decrements the rproc dev refcount.
2514 *
2515 * If no one holds any reference to rproc anymore, then its refcount would
2516 * now drop to zero, and it would be freed.
2517 */
rproc_free(struct rproc * rproc)2518 void rproc_free(struct rproc *rproc)
2519 {
2520 put_device(&rproc->dev);
2521 }
2522 EXPORT_SYMBOL(rproc_free);
2523
2524 /**
2525 * rproc_put() - release rproc reference
2526 * @rproc: the remote processor handle
2527 *
2528 * This function decrements the rproc dev refcount.
2529 *
2530 * If no one holds any reference to rproc anymore, then its refcount would
2531 * now drop to zero, and it would be freed.
2532 */
rproc_put(struct rproc * rproc)2533 void rproc_put(struct rproc *rproc)
2534 {
2535 module_put(rproc->dev.parent->driver->owner);
2536 put_device(&rproc->dev);
2537 }
2538 EXPORT_SYMBOL(rproc_put);
2539
2540 /**
2541 * rproc_del() - unregister a remote processor
2542 * @rproc: rproc handle to unregister
2543 *
2544 * This function should be called when the platform specific rproc
2545 * implementation decides to remove the rproc device. it should
2546 * _only_ be called if a previous invocation of rproc_add()
2547 * has completed successfully.
2548 *
2549 * After rproc_del() returns, @rproc isn't freed yet, because
2550 * of the outstanding reference created by rproc_alloc. To decrement that
2551 * one last refcount, one still needs to call rproc_free().
2552 *
2553 * Return: 0 on success and -EINVAL if @rproc isn't valid
2554 */
rproc_del(struct rproc * rproc)2555 int rproc_del(struct rproc *rproc)
2556 {
2557 if (!rproc)
2558 return -EINVAL;
2559
2560 /* TODO: make sure this works with rproc->power > 1 */
2561 rproc_shutdown(rproc);
2562
2563 mutex_lock(&rproc->lock);
2564 rproc->state = RPROC_DELETED;
2565 mutex_unlock(&rproc->lock);
2566
2567 rproc_delete_debug_dir(rproc);
2568
2569 /* the rproc is downref'ed as soon as it's removed from the klist */
2570 mutex_lock(&rproc_list_mutex);
2571 list_del_rcu(&rproc->node);
2572 mutex_unlock(&rproc_list_mutex);
2573
2574 /* Ensure that no readers of rproc_list are still active */
2575 synchronize_rcu();
2576
2577 device_del(&rproc->dev);
2578 rproc_char_device_remove(rproc);
2579
2580 return 0;
2581 }
2582 EXPORT_SYMBOL(rproc_del);
2583
devm_rproc_free(struct device * dev,void * res)2584 static void devm_rproc_free(struct device *dev, void *res)
2585 {
2586 rproc_free(*(struct rproc **)res);
2587 }
2588
2589 /**
2590 * devm_rproc_alloc() - resource managed rproc_alloc()
2591 * @dev: the underlying device
2592 * @name: name of this remote processor
2593 * @ops: platform-specific handlers (mainly start/stop)
2594 * @firmware: name of firmware file to load, can be NULL
2595 * @len: length of private data needed by the rproc driver (in bytes)
2596 *
2597 * This function performs like rproc_alloc() but the acquired rproc device will
2598 * automatically be released on driver detach.
2599 *
2600 * Return: new rproc instance, or NULL on failure
2601 */
devm_rproc_alloc(struct device * dev,const char * name,const struct rproc_ops * ops,const char * firmware,int len)2602 struct rproc *devm_rproc_alloc(struct device *dev, const char *name,
2603 const struct rproc_ops *ops,
2604 const char *firmware, int len)
2605 {
2606 struct rproc **ptr, *rproc;
2607
2608 ptr = devres_alloc(devm_rproc_free, sizeof(*ptr), GFP_KERNEL);
2609 if (!ptr)
2610 return NULL;
2611
2612 rproc = rproc_alloc(dev, name, ops, firmware, len);
2613 if (rproc) {
2614 *ptr = rproc;
2615 devres_add(dev, ptr);
2616 } else {
2617 devres_free(ptr);
2618 }
2619
2620 return rproc;
2621 }
2622 EXPORT_SYMBOL(devm_rproc_alloc);
2623
2624 /**
2625 * rproc_add_subdev() - add a subdevice to a remoteproc
2626 * @rproc: rproc handle to add the subdevice to
2627 * @subdev: subdev handle to register
2628 *
2629 * Caller is responsible for populating optional subdevice function pointers.
2630 */
rproc_add_subdev(struct rproc * rproc,struct rproc_subdev * subdev)2631 void rproc_add_subdev(struct rproc *rproc, struct rproc_subdev *subdev)
2632 {
2633 list_add_tail(&subdev->node, &rproc->subdevs);
2634 }
2635 EXPORT_SYMBOL(rproc_add_subdev);
2636
2637 /**
2638 * rproc_remove_subdev() - remove a subdevice from a remoteproc
2639 * @rproc: rproc handle to remove the subdevice from
2640 * @subdev: subdev handle, previously registered with rproc_add_subdev()
2641 */
rproc_remove_subdev(struct rproc * rproc,struct rproc_subdev * subdev)2642 void rproc_remove_subdev(struct rproc *rproc, struct rproc_subdev *subdev)
2643 {
2644 list_del(&subdev->node);
2645 }
2646 EXPORT_SYMBOL(rproc_remove_subdev);
2647
2648 /**
2649 * rproc_get_by_child() - acquire rproc handle of @dev's ancestor
2650 * @dev: child device to find ancestor of
2651 *
2652 * Return: the ancestor rproc instance, or NULL if not found
2653 */
rproc_get_by_child(struct device * dev)2654 struct rproc *rproc_get_by_child(struct device *dev)
2655 {
2656 for (dev = dev->parent; dev; dev = dev->parent) {
2657 if (dev->type == &rproc_type)
2658 return dev->driver_data;
2659 }
2660
2661 return NULL;
2662 }
2663 EXPORT_SYMBOL(rproc_get_by_child);
2664
2665 /**
2666 * rproc_report_crash() - rproc crash reporter function
2667 * @rproc: remote processor
2668 * @type: crash type
2669 *
2670 * This function must be called every time a crash is detected by the low-level
2671 * drivers implementing a specific remoteproc. This should not be called from a
2672 * non-remoteproc driver.
2673 *
2674 * This function can be called from atomic/interrupt context.
2675 */
rproc_report_crash(struct rproc * rproc,enum rproc_crash_type type)2676 void rproc_report_crash(struct rproc *rproc, enum rproc_crash_type type)
2677 {
2678 if (!rproc) {
2679 pr_err("NULL rproc pointer\n");
2680 return;
2681 }
2682
2683 /* Prevent suspend while the remoteproc is being recovered */
2684 pm_stay_awake(rproc->dev.parent);
2685
2686 dev_err(&rproc->dev, "crash detected in %s: type %s\n",
2687 rproc->name, rproc_crash_to_string(type));
2688
2689 queue_work(rproc_recovery_wq, &rproc->crash_handler);
2690 }
2691 EXPORT_SYMBOL(rproc_report_crash);
2692
rproc_panic_handler(struct notifier_block * nb,unsigned long event,void * ptr)2693 static int rproc_panic_handler(struct notifier_block *nb, unsigned long event,
2694 void *ptr)
2695 {
2696 unsigned int longest = 0;
2697 struct rproc *rproc;
2698 unsigned int d;
2699
2700 rcu_read_lock();
2701 list_for_each_entry_rcu(rproc, &rproc_list, node) {
2702 if (!rproc->ops->panic)
2703 continue;
2704
2705 if (rproc->state != RPROC_RUNNING &&
2706 rproc->state != RPROC_ATTACHED)
2707 continue;
2708
2709 d = rproc->ops->panic(rproc);
2710 longest = max(longest, d);
2711 }
2712 rcu_read_unlock();
2713
2714 /*
2715 * Delay for the longest requested duration before returning. This can
2716 * be used by the remoteproc drivers to give the remote processor time
2717 * to perform any requested operations (such as flush caches), when
2718 * it's not possible to signal the Linux side due to the panic.
2719 */
2720 mdelay(longest);
2721
2722 return NOTIFY_DONE;
2723 }
2724
rproc_init_panic(void)2725 static void __init rproc_init_panic(void)
2726 {
2727 rproc_panic_nb.notifier_call = rproc_panic_handler;
2728 atomic_notifier_chain_register(&panic_notifier_list, &rproc_panic_nb);
2729 }
2730
rproc_exit_panic(void)2731 static void __exit rproc_exit_panic(void)
2732 {
2733 atomic_notifier_chain_unregister(&panic_notifier_list, &rproc_panic_nb);
2734 }
2735
remoteproc_init(void)2736 static int __init remoteproc_init(void)
2737 {
2738 rproc_recovery_wq = alloc_workqueue("rproc_recovery_wq",
2739 WQ_UNBOUND | WQ_FREEZABLE, 0);
2740 if (!rproc_recovery_wq) {
2741 pr_err("remoteproc: creation of rproc_recovery_wq failed\n");
2742 return -ENOMEM;
2743 }
2744
2745 rproc_init_sysfs();
2746 rproc_init_debugfs();
2747 rproc_init_cdev();
2748 rproc_init_panic();
2749
2750 return 0;
2751 }
2752 subsys_initcall(remoteproc_init);
2753
remoteproc_exit(void)2754 static void __exit remoteproc_exit(void)
2755 {
2756 ida_destroy(&rproc_dev_index);
2757
2758 if (!rproc_recovery_wq)
2759 return;
2760
2761 rproc_exit_panic();
2762 rproc_exit_debugfs();
2763 rproc_exit_sysfs();
2764 destroy_workqueue(rproc_recovery_wq);
2765 }
2766 module_exit(remoteproc_exit);
2767
2768 MODULE_LICENSE("GPL v2");
2769 MODULE_DESCRIPTION("Generic Remote Processor Framework");
2770