1 // SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
2 /*
3 * Copyright (c) 2014-2017 Oracle. All rights reserved.
4 * Copyright (c) 2003-2007 Network Appliance, Inc. All rights reserved.
5 *
6 * This software is available to you under a choice of one of two
7 * licenses. You may choose to be licensed under the terms of the GNU
8 * General Public License (GPL) Version 2, available from the file
9 * COPYING in the main directory of this source tree, or the BSD-type
10 * license below:
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 *
16 * Redistributions of source code must retain the above copyright
17 * notice, this list of conditions and the following disclaimer.
18 *
19 * Redistributions in binary form must reproduce the above
20 * copyright notice, this list of conditions and the following
21 * disclaimer in the documentation and/or other materials provided
22 * with the distribution.
23 *
24 * Neither the name of the Network Appliance, Inc. nor the names of
25 * its contributors may be used to endorse or promote products
26 * derived from this software without specific prior written
27 * permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
30 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
31 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
32 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
33 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
34 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
35 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
36 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
37 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
38 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
39 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
40 */
41
42 /*
43 * verbs.c
44 *
45 * Encapsulates the major functions managing:
46 * o adapters
47 * o endpoints
48 * o connections
49 * o buffer memory
50 */
51
52 #include <linux/interrupt.h>
53 #include <linux/slab.h>
54 #include <linux/sunrpc/addr.h>
55 #include <linux/sunrpc/svc_rdma.h>
56 #include <linux/log2.h>
57
58 #include <asm-generic/barrier.h>
59 #include <asm/bitops.h>
60
61 #include <rdma/ib_cm.h>
62
63 #include "xprt_rdma.h"
64 #include <trace/events/rpcrdma.h>
65
66 static int rpcrdma_sendctxs_create(struct rpcrdma_xprt *r_xprt);
67 static void rpcrdma_sendctxs_destroy(struct rpcrdma_xprt *r_xprt);
68 static void rpcrdma_sendctx_put_locked(struct rpcrdma_xprt *r_xprt,
69 struct rpcrdma_sendctx *sc);
70 static int rpcrdma_reqs_setup(struct rpcrdma_xprt *r_xprt);
71 static void rpcrdma_reqs_reset(struct rpcrdma_xprt *r_xprt);
72 static void rpcrdma_rep_destroy(struct rpcrdma_rep *rep);
73 static void rpcrdma_reps_unmap(struct rpcrdma_xprt *r_xprt);
74 static void rpcrdma_mrs_create(struct rpcrdma_xprt *r_xprt);
75 static void rpcrdma_mrs_destroy(struct rpcrdma_xprt *r_xprt);
76 static void rpcrdma_ep_get(struct rpcrdma_ep *ep);
77 static int rpcrdma_ep_put(struct rpcrdma_ep *ep);
78 static struct rpcrdma_regbuf *
79 rpcrdma_regbuf_alloc(size_t size, enum dma_data_direction direction,
80 gfp_t flags);
81 static void rpcrdma_regbuf_dma_unmap(struct rpcrdma_regbuf *rb);
82 static void rpcrdma_regbuf_free(struct rpcrdma_regbuf *rb);
83
84 /* Wait for outstanding transport work to finish. ib_drain_qp
85 * handles the drains in the wrong order for us, so open code
86 * them here.
87 */
rpcrdma_xprt_drain(struct rpcrdma_xprt * r_xprt)88 static void rpcrdma_xprt_drain(struct rpcrdma_xprt *r_xprt)
89 {
90 struct rpcrdma_ep *ep = r_xprt->rx_ep;
91 struct rdma_cm_id *id = ep->re_id;
92
93 /* Wait for rpcrdma_post_recvs() to leave its critical
94 * section.
95 */
96 if (atomic_inc_return(&ep->re_receiving) > 1)
97 wait_for_completion(&ep->re_done);
98
99 /* Flush Receives, then wait for deferred Reply work
100 * to complete.
101 */
102 ib_drain_rq(id->qp);
103
104 /* Deferred Reply processing might have scheduled
105 * local invalidations.
106 */
107 ib_drain_sq(id->qp);
108
109 rpcrdma_ep_put(ep);
110 }
111
112 /* Ensure xprt_force_disconnect() is invoked exactly once when a
113 * connection is closed or lost. (The important thing is it needs
114 * to be invoked "at least" once).
115 */
rpcrdma_force_disconnect(struct rpcrdma_ep * ep)116 void rpcrdma_force_disconnect(struct rpcrdma_ep *ep)
117 {
118 if (atomic_add_unless(&ep->re_force_disconnect, 1, 1))
119 xprt_force_disconnect(ep->re_xprt);
120 }
121
122 /**
123 * rpcrdma_flush_disconnect - Disconnect on flushed completion
124 * @r_xprt: transport to disconnect
125 * @wc: work completion entry
126 *
127 * Must be called in process context.
128 */
rpcrdma_flush_disconnect(struct rpcrdma_xprt * r_xprt,struct ib_wc * wc)129 void rpcrdma_flush_disconnect(struct rpcrdma_xprt *r_xprt, struct ib_wc *wc)
130 {
131 if (wc->status != IB_WC_SUCCESS)
132 rpcrdma_force_disconnect(r_xprt->rx_ep);
133 }
134
135 /**
136 * rpcrdma_wc_send - Invoked by RDMA provider for each polled Send WC
137 * @cq: completion queue
138 * @wc: WCE for a completed Send WR
139 *
140 */
rpcrdma_wc_send(struct ib_cq * cq,struct ib_wc * wc)141 static void rpcrdma_wc_send(struct ib_cq *cq, struct ib_wc *wc)
142 {
143 struct ib_cqe *cqe = wc->wr_cqe;
144 struct rpcrdma_sendctx *sc =
145 container_of(cqe, struct rpcrdma_sendctx, sc_cqe);
146 struct rpcrdma_xprt *r_xprt = cq->cq_context;
147
148 /* WARNING: Only wr_cqe and status are reliable at this point */
149 trace_xprtrdma_wc_send(wc, &sc->sc_cid);
150 rpcrdma_sendctx_put_locked(r_xprt, sc);
151 rpcrdma_flush_disconnect(r_xprt, wc);
152 }
153
154 /**
155 * rpcrdma_wc_receive - Invoked by RDMA provider for each polled Receive WC
156 * @cq: completion queue
157 * @wc: WCE for a completed Receive WR
158 *
159 */
rpcrdma_wc_receive(struct ib_cq * cq,struct ib_wc * wc)160 static void rpcrdma_wc_receive(struct ib_cq *cq, struct ib_wc *wc)
161 {
162 struct ib_cqe *cqe = wc->wr_cqe;
163 struct rpcrdma_rep *rep = container_of(cqe, struct rpcrdma_rep,
164 rr_cqe);
165 struct rpcrdma_xprt *r_xprt = cq->cq_context;
166
167 /* WARNING: Only wr_cqe and status are reliable at this point */
168 trace_xprtrdma_wc_receive(wc, &rep->rr_cid);
169 --r_xprt->rx_ep->re_receive_count;
170 if (wc->status != IB_WC_SUCCESS)
171 goto out_flushed;
172
173 /* status == SUCCESS means all fields in wc are trustworthy */
174 rpcrdma_set_xdrlen(&rep->rr_hdrbuf, wc->byte_len);
175 rep->rr_wc_flags = wc->wc_flags;
176 rep->rr_inv_rkey = wc->ex.invalidate_rkey;
177
178 ib_dma_sync_single_for_cpu(rdmab_device(rep->rr_rdmabuf),
179 rdmab_addr(rep->rr_rdmabuf),
180 wc->byte_len, DMA_FROM_DEVICE);
181
182 rpcrdma_reply_handler(rep);
183 return;
184
185 out_flushed:
186 rpcrdma_flush_disconnect(r_xprt, wc);
187 rpcrdma_rep_put(&r_xprt->rx_buf, rep);
188 }
189
rpcrdma_update_cm_private(struct rpcrdma_ep * ep,struct rdma_conn_param * param)190 static void rpcrdma_update_cm_private(struct rpcrdma_ep *ep,
191 struct rdma_conn_param *param)
192 {
193 const struct rpcrdma_connect_private *pmsg = param->private_data;
194 unsigned int rsize, wsize;
195
196 /* Default settings for RPC-over-RDMA Version One */
197 rsize = RPCRDMA_V1_DEF_INLINE_SIZE;
198 wsize = RPCRDMA_V1_DEF_INLINE_SIZE;
199
200 if (pmsg &&
201 pmsg->cp_magic == rpcrdma_cmp_magic &&
202 pmsg->cp_version == RPCRDMA_CMP_VERSION) {
203 rsize = rpcrdma_decode_buffer_size(pmsg->cp_send_size);
204 wsize = rpcrdma_decode_buffer_size(pmsg->cp_recv_size);
205 }
206
207 if (rsize < ep->re_inline_recv)
208 ep->re_inline_recv = rsize;
209 if (wsize < ep->re_inline_send)
210 ep->re_inline_send = wsize;
211
212 rpcrdma_set_max_header_sizes(ep);
213 }
214
215 /**
216 * rpcrdma_cm_event_handler - Handle RDMA CM events
217 * @id: rdma_cm_id on which an event has occurred
218 * @event: details of the event
219 *
220 * Called with @id's mutex held. Returns 1 if caller should
221 * destroy @id, otherwise 0.
222 */
223 static int
rpcrdma_cm_event_handler(struct rdma_cm_id * id,struct rdma_cm_event * event)224 rpcrdma_cm_event_handler(struct rdma_cm_id *id, struct rdma_cm_event *event)
225 {
226 struct sockaddr *sap = (struct sockaddr *)&id->route.addr.dst_addr;
227 struct rpcrdma_ep *ep = id->context;
228
229 might_sleep();
230
231 switch (event->event) {
232 case RDMA_CM_EVENT_ADDR_RESOLVED:
233 case RDMA_CM_EVENT_ROUTE_RESOLVED:
234 ep->re_async_rc = 0;
235 complete(&ep->re_done);
236 return 0;
237 case RDMA_CM_EVENT_ADDR_ERROR:
238 ep->re_async_rc = -EPROTO;
239 complete(&ep->re_done);
240 return 0;
241 case RDMA_CM_EVENT_ROUTE_ERROR:
242 ep->re_async_rc = -ENETUNREACH;
243 complete(&ep->re_done);
244 return 0;
245 case RDMA_CM_EVENT_DEVICE_REMOVAL:
246 pr_info("rpcrdma: removing device %s for %pISpc\n",
247 ep->re_id->device->name, sap);
248 fallthrough;
249 case RDMA_CM_EVENT_ADDR_CHANGE:
250 ep->re_connect_status = -ENODEV;
251 goto disconnected;
252 case RDMA_CM_EVENT_ESTABLISHED:
253 rpcrdma_ep_get(ep);
254 ep->re_connect_status = 1;
255 rpcrdma_update_cm_private(ep, &event->param.conn);
256 trace_xprtrdma_inline_thresh(ep);
257 wake_up_all(&ep->re_connect_wait);
258 break;
259 case RDMA_CM_EVENT_CONNECT_ERROR:
260 ep->re_connect_status = -ENOTCONN;
261 goto wake_connect_worker;
262 case RDMA_CM_EVENT_UNREACHABLE:
263 ep->re_connect_status = -ENETUNREACH;
264 goto wake_connect_worker;
265 case RDMA_CM_EVENT_REJECTED:
266 ep->re_connect_status = -ECONNREFUSED;
267 if (event->status == IB_CM_REJ_STALE_CONN)
268 ep->re_connect_status = -ENOTCONN;
269 wake_connect_worker:
270 wake_up_all(&ep->re_connect_wait);
271 return 0;
272 case RDMA_CM_EVENT_DISCONNECTED:
273 ep->re_connect_status = -ECONNABORTED;
274 disconnected:
275 rpcrdma_force_disconnect(ep);
276 return rpcrdma_ep_put(ep);
277 default:
278 break;
279 }
280
281 return 0;
282 }
283
rpcrdma_create_id(struct rpcrdma_xprt * r_xprt,struct rpcrdma_ep * ep)284 static struct rdma_cm_id *rpcrdma_create_id(struct rpcrdma_xprt *r_xprt,
285 struct rpcrdma_ep *ep)
286 {
287 unsigned long wtimeout = msecs_to_jiffies(RDMA_RESOLVE_TIMEOUT) + 1;
288 struct rpc_xprt *xprt = &r_xprt->rx_xprt;
289 struct rdma_cm_id *id;
290 int rc;
291
292 init_completion(&ep->re_done);
293
294 id = rdma_create_id(xprt->xprt_net, rpcrdma_cm_event_handler, ep,
295 RDMA_PS_TCP, IB_QPT_RC);
296 if (IS_ERR(id))
297 return id;
298
299 ep->re_async_rc = -ETIMEDOUT;
300 rc = rdma_resolve_addr(id, NULL, (struct sockaddr *)&xprt->addr,
301 RDMA_RESOLVE_TIMEOUT);
302 if (rc)
303 goto out;
304 rc = wait_for_completion_interruptible_timeout(&ep->re_done, wtimeout);
305 if (rc < 0)
306 goto out;
307
308 rc = ep->re_async_rc;
309 if (rc)
310 goto out;
311
312 ep->re_async_rc = -ETIMEDOUT;
313 rc = rdma_resolve_route(id, RDMA_RESOLVE_TIMEOUT);
314 if (rc)
315 goto out;
316 rc = wait_for_completion_interruptible_timeout(&ep->re_done, wtimeout);
317 if (rc < 0)
318 goto out;
319 rc = ep->re_async_rc;
320 if (rc)
321 goto out;
322
323 return id;
324
325 out:
326 rdma_destroy_id(id);
327 return ERR_PTR(rc);
328 }
329
rpcrdma_ep_destroy(struct kref * kref)330 static void rpcrdma_ep_destroy(struct kref *kref)
331 {
332 struct rpcrdma_ep *ep = container_of(kref, struct rpcrdma_ep, re_kref);
333
334 if (ep->re_id->qp) {
335 rdma_destroy_qp(ep->re_id);
336 ep->re_id->qp = NULL;
337 }
338
339 if (ep->re_attr.recv_cq)
340 ib_free_cq(ep->re_attr.recv_cq);
341 ep->re_attr.recv_cq = NULL;
342 if (ep->re_attr.send_cq)
343 ib_free_cq(ep->re_attr.send_cq);
344 ep->re_attr.send_cq = NULL;
345
346 if (ep->re_pd)
347 ib_dealloc_pd(ep->re_pd);
348 ep->re_pd = NULL;
349
350 kfree(ep);
351 module_put(THIS_MODULE);
352 }
353
rpcrdma_ep_get(struct rpcrdma_ep * ep)354 static noinline void rpcrdma_ep_get(struct rpcrdma_ep *ep)
355 {
356 kref_get(&ep->re_kref);
357 }
358
359 /* Returns:
360 * %0 if @ep still has a positive kref count, or
361 * %1 if @ep was destroyed successfully.
362 */
rpcrdma_ep_put(struct rpcrdma_ep * ep)363 static noinline int rpcrdma_ep_put(struct rpcrdma_ep *ep)
364 {
365 return kref_put(&ep->re_kref, rpcrdma_ep_destroy);
366 }
367
rpcrdma_ep_create(struct rpcrdma_xprt * r_xprt)368 static int rpcrdma_ep_create(struct rpcrdma_xprt *r_xprt)
369 {
370 struct rpcrdma_connect_private *pmsg;
371 struct ib_device *device;
372 struct rdma_cm_id *id;
373 struct rpcrdma_ep *ep;
374 int rc;
375
376 ep = kzalloc(sizeof(*ep), GFP_KERNEL);
377 if (!ep)
378 return -ENOTCONN;
379 ep->re_xprt = &r_xprt->rx_xprt;
380 kref_init(&ep->re_kref);
381
382 id = rpcrdma_create_id(r_xprt, ep);
383 if (IS_ERR(id)) {
384 kfree(ep);
385 return PTR_ERR(id);
386 }
387 __module_get(THIS_MODULE);
388 device = id->device;
389 ep->re_id = id;
390 reinit_completion(&ep->re_done);
391
392 ep->re_max_requests = r_xprt->rx_xprt.max_reqs;
393 ep->re_inline_send = xprt_rdma_max_inline_write;
394 ep->re_inline_recv = xprt_rdma_max_inline_read;
395 rc = frwr_query_device(ep, device);
396 if (rc)
397 goto out_destroy;
398
399 r_xprt->rx_buf.rb_max_requests = cpu_to_be32(ep->re_max_requests);
400
401 ep->re_attr.srq = NULL;
402 ep->re_attr.cap.max_inline_data = 0;
403 ep->re_attr.sq_sig_type = IB_SIGNAL_REQ_WR;
404 ep->re_attr.qp_type = IB_QPT_RC;
405 ep->re_attr.port_num = ~0;
406
407 ep->re_send_batch = ep->re_max_requests >> 3;
408 ep->re_send_count = ep->re_send_batch;
409 init_waitqueue_head(&ep->re_connect_wait);
410
411 ep->re_attr.send_cq = ib_alloc_cq_any(device, r_xprt,
412 ep->re_attr.cap.max_send_wr,
413 IB_POLL_WORKQUEUE);
414 if (IS_ERR(ep->re_attr.send_cq)) {
415 rc = PTR_ERR(ep->re_attr.send_cq);
416 ep->re_attr.send_cq = NULL;
417 goto out_destroy;
418 }
419
420 ep->re_attr.recv_cq = ib_alloc_cq_any(device, r_xprt,
421 ep->re_attr.cap.max_recv_wr,
422 IB_POLL_WORKQUEUE);
423 if (IS_ERR(ep->re_attr.recv_cq)) {
424 rc = PTR_ERR(ep->re_attr.recv_cq);
425 ep->re_attr.recv_cq = NULL;
426 goto out_destroy;
427 }
428 ep->re_receive_count = 0;
429
430 /* Initialize cma parameters */
431 memset(&ep->re_remote_cma, 0, sizeof(ep->re_remote_cma));
432
433 /* Prepare RDMA-CM private message */
434 pmsg = &ep->re_cm_private;
435 pmsg->cp_magic = rpcrdma_cmp_magic;
436 pmsg->cp_version = RPCRDMA_CMP_VERSION;
437 pmsg->cp_flags |= RPCRDMA_CMP_F_SND_W_INV_OK;
438 pmsg->cp_send_size = rpcrdma_encode_buffer_size(ep->re_inline_send);
439 pmsg->cp_recv_size = rpcrdma_encode_buffer_size(ep->re_inline_recv);
440 ep->re_remote_cma.private_data = pmsg;
441 ep->re_remote_cma.private_data_len = sizeof(*pmsg);
442
443 /* Client offers RDMA Read but does not initiate */
444 ep->re_remote_cma.initiator_depth = 0;
445 ep->re_remote_cma.responder_resources =
446 min_t(int, U8_MAX, device->attrs.max_qp_rd_atom);
447
448 /* Limit transport retries so client can detect server
449 * GID changes quickly. RPC layer handles re-establishing
450 * transport connection and retransmission.
451 */
452 ep->re_remote_cma.retry_count = 6;
453
454 /* RPC-over-RDMA handles its own flow control. In addition,
455 * make all RNR NAKs visible so we know that RPC-over-RDMA
456 * flow control is working correctly (no NAKs should be seen).
457 */
458 ep->re_remote_cma.flow_control = 0;
459 ep->re_remote_cma.rnr_retry_count = 0;
460
461 ep->re_pd = ib_alloc_pd(device, 0);
462 if (IS_ERR(ep->re_pd)) {
463 rc = PTR_ERR(ep->re_pd);
464 ep->re_pd = NULL;
465 goto out_destroy;
466 }
467
468 rc = rdma_create_qp(id, ep->re_pd, &ep->re_attr);
469 if (rc)
470 goto out_destroy;
471
472 r_xprt->rx_ep = ep;
473 return 0;
474
475 out_destroy:
476 rpcrdma_ep_put(ep);
477 rdma_destroy_id(id);
478 return rc;
479 }
480
481 /**
482 * rpcrdma_xprt_connect - Connect an unconnected transport
483 * @r_xprt: controlling transport instance
484 *
485 * Returns 0 on success or a negative errno.
486 */
rpcrdma_xprt_connect(struct rpcrdma_xprt * r_xprt)487 int rpcrdma_xprt_connect(struct rpcrdma_xprt *r_xprt)
488 {
489 struct rpc_xprt *xprt = &r_xprt->rx_xprt;
490 struct rpcrdma_ep *ep;
491 int rc;
492
493 rc = rpcrdma_ep_create(r_xprt);
494 if (rc)
495 return rc;
496 ep = r_xprt->rx_ep;
497
498 xprt_clear_connected(xprt);
499 rpcrdma_reset_cwnd(r_xprt);
500
501 /* Bump the ep's reference count while there are
502 * outstanding Receives.
503 */
504 rpcrdma_ep_get(ep);
505 rpcrdma_post_recvs(r_xprt, 1, true);
506
507 rc = rdma_connect(ep->re_id, &ep->re_remote_cma);
508 if (rc)
509 goto out;
510
511 if (xprt->reestablish_timeout < RPCRDMA_INIT_REEST_TO)
512 xprt->reestablish_timeout = RPCRDMA_INIT_REEST_TO;
513 wait_event_interruptible(ep->re_connect_wait,
514 ep->re_connect_status != 0);
515 if (ep->re_connect_status <= 0) {
516 rc = ep->re_connect_status;
517 goto out;
518 }
519
520 rc = rpcrdma_sendctxs_create(r_xprt);
521 if (rc) {
522 rc = -ENOTCONN;
523 goto out;
524 }
525
526 rc = rpcrdma_reqs_setup(r_xprt);
527 if (rc) {
528 rc = -ENOTCONN;
529 goto out;
530 }
531 rpcrdma_mrs_create(r_xprt);
532 frwr_wp_create(r_xprt);
533
534 out:
535 trace_xprtrdma_connect(r_xprt, rc);
536 return rc;
537 }
538
539 /**
540 * rpcrdma_xprt_disconnect - Disconnect underlying transport
541 * @r_xprt: controlling transport instance
542 *
543 * Caller serializes. Either the transport send lock is held,
544 * or we're being called to destroy the transport.
545 *
546 * On return, @r_xprt is completely divested of all hardware
547 * resources and prepared for the next ->connect operation.
548 */
rpcrdma_xprt_disconnect(struct rpcrdma_xprt * r_xprt)549 void rpcrdma_xprt_disconnect(struct rpcrdma_xprt *r_xprt)
550 {
551 struct rpcrdma_ep *ep = r_xprt->rx_ep;
552 struct rdma_cm_id *id;
553 int rc;
554
555 if (!ep)
556 return;
557
558 id = ep->re_id;
559 rc = rdma_disconnect(id);
560 trace_xprtrdma_disconnect(r_xprt, rc);
561
562 rpcrdma_xprt_drain(r_xprt);
563 rpcrdma_reps_unmap(r_xprt);
564 rpcrdma_reqs_reset(r_xprt);
565 rpcrdma_mrs_destroy(r_xprt);
566 rpcrdma_sendctxs_destroy(r_xprt);
567
568 if (rpcrdma_ep_put(ep))
569 rdma_destroy_id(id);
570
571 r_xprt->rx_ep = NULL;
572 }
573
574 /* Fixed-size circular FIFO queue. This implementation is wait-free and
575 * lock-free.
576 *
577 * Consumer is the code path that posts Sends. This path dequeues a
578 * sendctx for use by a Send operation. Multiple consumer threads
579 * are serialized by the RPC transport lock, which allows only one
580 * ->send_request call at a time.
581 *
582 * Producer is the code path that handles Send completions. This path
583 * enqueues a sendctx that has been completed. Multiple producer
584 * threads are serialized by the ib_poll_cq() function.
585 */
586
587 /* rpcrdma_sendctxs_destroy() assumes caller has already quiesced
588 * queue activity, and rpcrdma_xprt_drain has flushed all remaining
589 * Send requests.
590 */
rpcrdma_sendctxs_destroy(struct rpcrdma_xprt * r_xprt)591 static void rpcrdma_sendctxs_destroy(struct rpcrdma_xprt *r_xprt)
592 {
593 struct rpcrdma_buffer *buf = &r_xprt->rx_buf;
594 unsigned long i;
595
596 if (!buf->rb_sc_ctxs)
597 return;
598 for (i = 0; i <= buf->rb_sc_last; i++)
599 kfree(buf->rb_sc_ctxs[i]);
600 kfree(buf->rb_sc_ctxs);
601 buf->rb_sc_ctxs = NULL;
602 }
603
rpcrdma_sendctx_create(struct rpcrdma_ep * ep)604 static struct rpcrdma_sendctx *rpcrdma_sendctx_create(struct rpcrdma_ep *ep)
605 {
606 struct rpcrdma_sendctx *sc;
607
608 sc = kzalloc(struct_size(sc, sc_sges, ep->re_attr.cap.max_send_sge),
609 GFP_KERNEL);
610 if (!sc)
611 return NULL;
612
613 sc->sc_cqe.done = rpcrdma_wc_send;
614 sc->sc_cid.ci_queue_id = ep->re_attr.send_cq->res.id;
615 sc->sc_cid.ci_completion_id =
616 atomic_inc_return(&ep->re_completion_ids);
617 return sc;
618 }
619
rpcrdma_sendctxs_create(struct rpcrdma_xprt * r_xprt)620 static int rpcrdma_sendctxs_create(struct rpcrdma_xprt *r_xprt)
621 {
622 struct rpcrdma_buffer *buf = &r_xprt->rx_buf;
623 struct rpcrdma_sendctx *sc;
624 unsigned long i;
625
626 /* Maximum number of concurrent outstanding Send WRs. Capping
627 * the circular queue size stops Send Queue overflow by causing
628 * the ->send_request call to fail temporarily before too many
629 * Sends are posted.
630 */
631 i = r_xprt->rx_ep->re_max_requests + RPCRDMA_MAX_BC_REQUESTS;
632 buf->rb_sc_ctxs = kcalloc(i, sizeof(sc), GFP_KERNEL);
633 if (!buf->rb_sc_ctxs)
634 return -ENOMEM;
635
636 buf->rb_sc_last = i - 1;
637 for (i = 0; i <= buf->rb_sc_last; i++) {
638 sc = rpcrdma_sendctx_create(r_xprt->rx_ep);
639 if (!sc)
640 return -ENOMEM;
641
642 buf->rb_sc_ctxs[i] = sc;
643 }
644
645 buf->rb_sc_head = 0;
646 buf->rb_sc_tail = 0;
647 return 0;
648 }
649
650 /* The sendctx queue is not guaranteed to have a size that is a
651 * power of two, thus the helpers in circ_buf.h cannot be used.
652 * The other option is to use modulus (%), which can be expensive.
653 */
rpcrdma_sendctx_next(struct rpcrdma_buffer * buf,unsigned long item)654 static unsigned long rpcrdma_sendctx_next(struct rpcrdma_buffer *buf,
655 unsigned long item)
656 {
657 return likely(item < buf->rb_sc_last) ? item + 1 : 0;
658 }
659
660 /**
661 * rpcrdma_sendctx_get_locked - Acquire a send context
662 * @r_xprt: controlling transport instance
663 *
664 * Returns pointer to a free send completion context; or NULL if
665 * the queue is empty.
666 *
667 * Usage: Called to acquire an SGE array before preparing a Send WR.
668 *
669 * The caller serializes calls to this function (per transport), and
670 * provides an effective memory barrier that flushes the new value
671 * of rb_sc_head.
672 */
rpcrdma_sendctx_get_locked(struct rpcrdma_xprt * r_xprt)673 struct rpcrdma_sendctx *rpcrdma_sendctx_get_locked(struct rpcrdma_xprt *r_xprt)
674 {
675 struct rpcrdma_buffer *buf = &r_xprt->rx_buf;
676 struct rpcrdma_sendctx *sc;
677 unsigned long next_head;
678
679 next_head = rpcrdma_sendctx_next(buf, buf->rb_sc_head);
680
681 if (next_head == READ_ONCE(buf->rb_sc_tail))
682 goto out_emptyq;
683
684 /* ORDER: item must be accessed _before_ head is updated */
685 sc = buf->rb_sc_ctxs[next_head];
686
687 /* Releasing the lock in the caller acts as a memory
688 * barrier that flushes rb_sc_head.
689 */
690 buf->rb_sc_head = next_head;
691
692 return sc;
693
694 out_emptyq:
695 /* The queue is "empty" if there have not been enough Send
696 * completions recently. This is a sign the Send Queue is
697 * backing up. Cause the caller to pause and try again.
698 */
699 xprt_wait_for_buffer_space(&r_xprt->rx_xprt);
700 r_xprt->rx_stats.empty_sendctx_q++;
701 return NULL;
702 }
703
704 /**
705 * rpcrdma_sendctx_put_locked - Release a send context
706 * @r_xprt: controlling transport instance
707 * @sc: send context to release
708 *
709 * Usage: Called from Send completion to return a sendctxt
710 * to the queue.
711 *
712 * The caller serializes calls to this function (per transport).
713 */
rpcrdma_sendctx_put_locked(struct rpcrdma_xprt * r_xprt,struct rpcrdma_sendctx * sc)714 static void rpcrdma_sendctx_put_locked(struct rpcrdma_xprt *r_xprt,
715 struct rpcrdma_sendctx *sc)
716 {
717 struct rpcrdma_buffer *buf = &r_xprt->rx_buf;
718 unsigned long next_tail;
719
720 /* Unmap SGEs of previously completed but unsignaled
721 * Sends by walking up the queue until @sc is found.
722 */
723 next_tail = buf->rb_sc_tail;
724 do {
725 next_tail = rpcrdma_sendctx_next(buf, next_tail);
726
727 /* ORDER: item must be accessed _before_ tail is updated */
728 rpcrdma_sendctx_unmap(buf->rb_sc_ctxs[next_tail]);
729
730 } while (buf->rb_sc_ctxs[next_tail] != sc);
731
732 /* Paired with READ_ONCE */
733 smp_store_release(&buf->rb_sc_tail, next_tail);
734
735 xprt_write_space(&r_xprt->rx_xprt);
736 }
737
738 static void
rpcrdma_mrs_create(struct rpcrdma_xprt * r_xprt)739 rpcrdma_mrs_create(struct rpcrdma_xprt *r_xprt)
740 {
741 struct rpcrdma_buffer *buf = &r_xprt->rx_buf;
742 struct rpcrdma_ep *ep = r_xprt->rx_ep;
743 unsigned int count;
744
745 for (count = 0; count < ep->re_max_rdma_segs; count++) {
746 struct rpcrdma_mr *mr;
747 int rc;
748
749 mr = kzalloc(sizeof(*mr), GFP_KERNEL);
750 if (!mr)
751 break;
752
753 rc = frwr_mr_init(r_xprt, mr);
754 if (rc) {
755 kfree(mr);
756 break;
757 }
758
759 spin_lock(&buf->rb_lock);
760 rpcrdma_mr_push(mr, &buf->rb_mrs);
761 list_add(&mr->mr_all, &buf->rb_all_mrs);
762 spin_unlock(&buf->rb_lock);
763 }
764
765 r_xprt->rx_stats.mrs_allocated += count;
766 trace_xprtrdma_createmrs(r_xprt, count);
767 }
768
769 static void
rpcrdma_mr_refresh_worker(struct work_struct * work)770 rpcrdma_mr_refresh_worker(struct work_struct *work)
771 {
772 struct rpcrdma_buffer *buf = container_of(work, struct rpcrdma_buffer,
773 rb_refresh_worker);
774 struct rpcrdma_xprt *r_xprt = container_of(buf, struct rpcrdma_xprt,
775 rx_buf);
776
777 rpcrdma_mrs_create(r_xprt);
778 xprt_write_space(&r_xprt->rx_xprt);
779 }
780
781 /**
782 * rpcrdma_mrs_refresh - Wake the MR refresh worker
783 * @r_xprt: controlling transport instance
784 *
785 */
rpcrdma_mrs_refresh(struct rpcrdma_xprt * r_xprt)786 void rpcrdma_mrs_refresh(struct rpcrdma_xprt *r_xprt)
787 {
788 struct rpcrdma_buffer *buf = &r_xprt->rx_buf;
789 struct rpcrdma_ep *ep = r_xprt->rx_ep;
790
791 /* If there is no underlying connection, it's no use
792 * to wake the refresh worker.
793 */
794 if (ep->re_connect_status == 1) {
795 /* The work is scheduled on a WQ_MEM_RECLAIM
796 * workqueue in order to prevent MR allocation
797 * from recursing into NFS during direct reclaim.
798 */
799 queue_work(xprtiod_workqueue, &buf->rb_refresh_worker);
800 }
801 }
802
803 /**
804 * rpcrdma_req_create - Allocate an rpcrdma_req object
805 * @r_xprt: controlling r_xprt
806 * @size: initial size, in bytes, of send and receive buffers
807 * @flags: GFP flags passed to memory allocators
808 *
809 * Returns an allocated and fully initialized rpcrdma_req or NULL.
810 */
rpcrdma_req_create(struct rpcrdma_xprt * r_xprt,size_t size,gfp_t flags)811 struct rpcrdma_req *rpcrdma_req_create(struct rpcrdma_xprt *r_xprt, size_t size,
812 gfp_t flags)
813 {
814 struct rpcrdma_buffer *buffer = &r_xprt->rx_buf;
815 struct rpcrdma_req *req;
816
817 req = kzalloc(sizeof(*req), flags);
818 if (req == NULL)
819 goto out1;
820
821 req->rl_sendbuf = rpcrdma_regbuf_alloc(size, DMA_TO_DEVICE, flags);
822 if (!req->rl_sendbuf)
823 goto out2;
824
825 req->rl_recvbuf = rpcrdma_regbuf_alloc(size, DMA_NONE, flags);
826 if (!req->rl_recvbuf)
827 goto out3;
828
829 INIT_LIST_HEAD(&req->rl_free_mrs);
830 INIT_LIST_HEAD(&req->rl_registered);
831 spin_lock(&buffer->rb_lock);
832 list_add(&req->rl_all, &buffer->rb_allreqs);
833 spin_unlock(&buffer->rb_lock);
834 return req;
835
836 out3:
837 kfree(req->rl_sendbuf);
838 out2:
839 kfree(req);
840 out1:
841 return NULL;
842 }
843
844 /**
845 * rpcrdma_req_setup - Per-connection instance setup of an rpcrdma_req object
846 * @r_xprt: controlling transport instance
847 * @req: rpcrdma_req object to set up
848 *
849 * Returns zero on success, and a negative errno on failure.
850 */
rpcrdma_req_setup(struct rpcrdma_xprt * r_xprt,struct rpcrdma_req * req)851 int rpcrdma_req_setup(struct rpcrdma_xprt *r_xprt, struct rpcrdma_req *req)
852 {
853 struct rpcrdma_regbuf *rb;
854 size_t maxhdrsize;
855
856 /* Compute maximum header buffer size in bytes */
857 maxhdrsize = rpcrdma_fixed_maxsz + 3 +
858 r_xprt->rx_ep->re_max_rdma_segs * rpcrdma_readchunk_maxsz;
859 maxhdrsize *= sizeof(__be32);
860 rb = rpcrdma_regbuf_alloc(__roundup_pow_of_two(maxhdrsize),
861 DMA_TO_DEVICE, GFP_KERNEL);
862 if (!rb)
863 goto out;
864
865 if (!__rpcrdma_regbuf_dma_map(r_xprt, rb))
866 goto out_free;
867
868 req->rl_rdmabuf = rb;
869 xdr_buf_init(&req->rl_hdrbuf, rdmab_data(rb), rdmab_length(rb));
870 return 0;
871
872 out_free:
873 rpcrdma_regbuf_free(rb);
874 out:
875 return -ENOMEM;
876 }
877
878 /* ASSUMPTION: the rb_allreqs list is stable for the duration,
879 * and thus can be walked without holding rb_lock. Eg. the
880 * caller is holding the transport send lock to exclude
881 * device removal or disconnection.
882 */
rpcrdma_reqs_setup(struct rpcrdma_xprt * r_xprt)883 static int rpcrdma_reqs_setup(struct rpcrdma_xprt *r_xprt)
884 {
885 struct rpcrdma_buffer *buf = &r_xprt->rx_buf;
886 struct rpcrdma_req *req;
887 int rc;
888
889 list_for_each_entry(req, &buf->rb_allreqs, rl_all) {
890 rc = rpcrdma_req_setup(r_xprt, req);
891 if (rc)
892 return rc;
893 }
894 return 0;
895 }
896
rpcrdma_req_reset(struct rpcrdma_req * req)897 static void rpcrdma_req_reset(struct rpcrdma_req *req)
898 {
899 /* Credits are valid for only one connection */
900 req->rl_slot.rq_cong = 0;
901
902 rpcrdma_regbuf_free(req->rl_rdmabuf);
903 req->rl_rdmabuf = NULL;
904
905 rpcrdma_regbuf_dma_unmap(req->rl_sendbuf);
906 rpcrdma_regbuf_dma_unmap(req->rl_recvbuf);
907
908 frwr_reset(req);
909 }
910
911 /* ASSUMPTION: the rb_allreqs list is stable for the duration,
912 * and thus can be walked without holding rb_lock. Eg. the
913 * caller is holding the transport send lock to exclude
914 * device removal or disconnection.
915 */
rpcrdma_reqs_reset(struct rpcrdma_xprt * r_xprt)916 static void rpcrdma_reqs_reset(struct rpcrdma_xprt *r_xprt)
917 {
918 struct rpcrdma_buffer *buf = &r_xprt->rx_buf;
919 struct rpcrdma_req *req;
920
921 list_for_each_entry(req, &buf->rb_allreqs, rl_all)
922 rpcrdma_req_reset(req);
923 }
924
925 static noinline
rpcrdma_rep_create(struct rpcrdma_xprt * r_xprt,bool temp)926 struct rpcrdma_rep *rpcrdma_rep_create(struct rpcrdma_xprt *r_xprt,
927 bool temp)
928 {
929 struct rpcrdma_buffer *buf = &r_xprt->rx_buf;
930 struct rpcrdma_rep *rep;
931
932 rep = kzalloc(sizeof(*rep), GFP_KERNEL);
933 if (rep == NULL)
934 goto out;
935
936 rep->rr_rdmabuf = rpcrdma_regbuf_alloc(r_xprt->rx_ep->re_inline_recv,
937 DMA_FROM_DEVICE, GFP_KERNEL);
938 if (!rep->rr_rdmabuf)
939 goto out_free;
940
941 if (!rpcrdma_regbuf_dma_map(r_xprt, rep->rr_rdmabuf))
942 goto out_free_regbuf;
943
944 rep->rr_cid.ci_completion_id =
945 atomic_inc_return(&r_xprt->rx_ep->re_completion_ids);
946
947 xdr_buf_init(&rep->rr_hdrbuf, rdmab_data(rep->rr_rdmabuf),
948 rdmab_length(rep->rr_rdmabuf));
949 rep->rr_cqe.done = rpcrdma_wc_receive;
950 rep->rr_rxprt = r_xprt;
951 rep->rr_recv_wr.next = NULL;
952 rep->rr_recv_wr.wr_cqe = &rep->rr_cqe;
953 rep->rr_recv_wr.sg_list = &rep->rr_rdmabuf->rg_iov;
954 rep->rr_recv_wr.num_sge = 1;
955 rep->rr_temp = temp;
956
957 spin_lock(&buf->rb_lock);
958 list_add(&rep->rr_all, &buf->rb_all_reps);
959 spin_unlock(&buf->rb_lock);
960 return rep;
961
962 out_free_regbuf:
963 rpcrdma_regbuf_free(rep->rr_rdmabuf);
964 out_free:
965 kfree(rep);
966 out:
967 return NULL;
968 }
969
rpcrdma_rep_free(struct rpcrdma_rep * rep)970 static void rpcrdma_rep_free(struct rpcrdma_rep *rep)
971 {
972 rpcrdma_regbuf_free(rep->rr_rdmabuf);
973 kfree(rep);
974 }
975
rpcrdma_rep_destroy(struct rpcrdma_rep * rep)976 static void rpcrdma_rep_destroy(struct rpcrdma_rep *rep)
977 {
978 struct rpcrdma_buffer *buf = &rep->rr_rxprt->rx_buf;
979
980 spin_lock(&buf->rb_lock);
981 list_del(&rep->rr_all);
982 spin_unlock(&buf->rb_lock);
983
984 rpcrdma_rep_free(rep);
985 }
986
rpcrdma_rep_get_locked(struct rpcrdma_buffer * buf)987 static struct rpcrdma_rep *rpcrdma_rep_get_locked(struct rpcrdma_buffer *buf)
988 {
989 struct llist_node *node;
990
991 /* Calls to llist_del_first are required to be serialized */
992 node = llist_del_first(&buf->rb_free_reps);
993 if (!node)
994 return NULL;
995 return llist_entry(node, struct rpcrdma_rep, rr_node);
996 }
997
998 /**
999 * rpcrdma_rep_put - Release rpcrdma_rep back to free list
1000 * @buf: buffer pool
1001 * @rep: rep to release
1002 *
1003 */
rpcrdma_rep_put(struct rpcrdma_buffer * buf,struct rpcrdma_rep * rep)1004 void rpcrdma_rep_put(struct rpcrdma_buffer *buf, struct rpcrdma_rep *rep)
1005 {
1006 llist_add(&rep->rr_node, &buf->rb_free_reps);
1007 }
1008
1009 /* Caller must ensure the QP is quiescent (RQ is drained) before
1010 * invoking this function, to guarantee rb_all_reps is not
1011 * changing.
1012 */
rpcrdma_reps_unmap(struct rpcrdma_xprt * r_xprt)1013 static void rpcrdma_reps_unmap(struct rpcrdma_xprt *r_xprt)
1014 {
1015 struct rpcrdma_buffer *buf = &r_xprt->rx_buf;
1016 struct rpcrdma_rep *rep;
1017
1018 list_for_each_entry(rep, &buf->rb_all_reps, rr_all) {
1019 rpcrdma_regbuf_dma_unmap(rep->rr_rdmabuf);
1020 rep->rr_temp = true; /* Mark this rep for destruction */
1021 }
1022 }
1023
rpcrdma_reps_destroy(struct rpcrdma_buffer * buf)1024 static void rpcrdma_reps_destroy(struct rpcrdma_buffer *buf)
1025 {
1026 struct rpcrdma_rep *rep;
1027
1028 spin_lock(&buf->rb_lock);
1029 while ((rep = list_first_entry_or_null(&buf->rb_all_reps,
1030 struct rpcrdma_rep,
1031 rr_all)) != NULL) {
1032 list_del(&rep->rr_all);
1033 spin_unlock(&buf->rb_lock);
1034
1035 rpcrdma_rep_free(rep);
1036
1037 spin_lock(&buf->rb_lock);
1038 }
1039 spin_unlock(&buf->rb_lock);
1040 }
1041
1042 /**
1043 * rpcrdma_buffer_create - Create initial set of req/rep objects
1044 * @r_xprt: transport instance to (re)initialize
1045 *
1046 * Returns zero on success, otherwise a negative errno.
1047 */
rpcrdma_buffer_create(struct rpcrdma_xprt * r_xprt)1048 int rpcrdma_buffer_create(struct rpcrdma_xprt *r_xprt)
1049 {
1050 struct rpcrdma_buffer *buf = &r_xprt->rx_buf;
1051 int i, rc;
1052
1053 buf->rb_bc_srv_max_requests = 0;
1054 spin_lock_init(&buf->rb_lock);
1055 INIT_LIST_HEAD(&buf->rb_mrs);
1056 INIT_LIST_HEAD(&buf->rb_all_mrs);
1057 INIT_WORK(&buf->rb_refresh_worker, rpcrdma_mr_refresh_worker);
1058
1059 INIT_LIST_HEAD(&buf->rb_send_bufs);
1060 INIT_LIST_HEAD(&buf->rb_allreqs);
1061 INIT_LIST_HEAD(&buf->rb_all_reps);
1062
1063 rc = -ENOMEM;
1064 for (i = 0; i < r_xprt->rx_xprt.max_reqs; i++) {
1065 struct rpcrdma_req *req;
1066
1067 req = rpcrdma_req_create(r_xprt, RPCRDMA_V1_DEF_INLINE_SIZE * 2,
1068 GFP_KERNEL);
1069 if (!req)
1070 goto out;
1071 list_add(&req->rl_list, &buf->rb_send_bufs);
1072 }
1073
1074 init_llist_head(&buf->rb_free_reps);
1075
1076 return 0;
1077 out:
1078 rpcrdma_buffer_destroy(buf);
1079 return rc;
1080 }
1081
1082 /**
1083 * rpcrdma_req_destroy - Destroy an rpcrdma_req object
1084 * @req: unused object to be destroyed
1085 *
1086 * Relies on caller holding the transport send lock to protect
1087 * removing req->rl_all from buf->rb_all_reqs safely.
1088 */
rpcrdma_req_destroy(struct rpcrdma_req * req)1089 void rpcrdma_req_destroy(struct rpcrdma_req *req)
1090 {
1091 struct rpcrdma_mr *mr;
1092
1093 list_del(&req->rl_all);
1094
1095 while ((mr = rpcrdma_mr_pop(&req->rl_free_mrs))) {
1096 struct rpcrdma_buffer *buf = &mr->mr_xprt->rx_buf;
1097
1098 spin_lock(&buf->rb_lock);
1099 list_del(&mr->mr_all);
1100 spin_unlock(&buf->rb_lock);
1101
1102 frwr_mr_release(mr);
1103 }
1104
1105 rpcrdma_regbuf_free(req->rl_recvbuf);
1106 rpcrdma_regbuf_free(req->rl_sendbuf);
1107 rpcrdma_regbuf_free(req->rl_rdmabuf);
1108 kfree(req);
1109 }
1110
1111 /**
1112 * rpcrdma_mrs_destroy - Release all of a transport's MRs
1113 * @r_xprt: controlling transport instance
1114 *
1115 * Relies on caller holding the transport send lock to protect
1116 * removing mr->mr_list from req->rl_free_mrs safely.
1117 */
rpcrdma_mrs_destroy(struct rpcrdma_xprt * r_xprt)1118 static void rpcrdma_mrs_destroy(struct rpcrdma_xprt *r_xprt)
1119 {
1120 struct rpcrdma_buffer *buf = &r_xprt->rx_buf;
1121 struct rpcrdma_mr *mr;
1122
1123 cancel_work_sync(&buf->rb_refresh_worker);
1124
1125 spin_lock(&buf->rb_lock);
1126 while ((mr = list_first_entry_or_null(&buf->rb_all_mrs,
1127 struct rpcrdma_mr,
1128 mr_all)) != NULL) {
1129 list_del(&mr->mr_list);
1130 list_del(&mr->mr_all);
1131 spin_unlock(&buf->rb_lock);
1132
1133 frwr_mr_release(mr);
1134
1135 spin_lock(&buf->rb_lock);
1136 }
1137 spin_unlock(&buf->rb_lock);
1138 }
1139
1140 /**
1141 * rpcrdma_buffer_destroy - Release all hw resources
1142 * @buf: root control block for resources
1143 *
1144 * ORDERING: relies on a prior rpcrdma_xprt_drain :
1145 * - No more Send or Receive completions can occur
1146 * - All MRs, reps, and reqs are returned to their free lists
1147 */
1148 void
rpcrdma_buffer_destroy(struct rpcrdma_buffer * buf)1149 rpcrdma_buffer_destroy(struct rpcrdma_buffer *buf)
1150 {
1151 rpcrdma_reps_destroy(buf);
1152
1153 while (!list_empty(&buf->rb_send_bufs)) {
1154 struct rpcrdma_req *req;
1155
1156 req = list_first_entry(&buf->rb_send_bufs,
1157 struct rpcrdma_req, rl_list);
1158 list_del(&req->rl_list);
1159 rpcrdma_req_destroy(req);
1160 }
1161 }
1162
1163 /**
1164 * rpcrdma_mr_get - Allocate an rpcrdma_mr object
1165 * @r_xprt: controlling transport
1166 *
1167 * Returns an initialized rpcrdma_mr or NULL if no free
1168 * rpcrdma_mr objects are available.
1169 */
1170 struct rpcrdma_mr *
rpcrdma_mr_get(struct rpcrdma_xprt * r_xprt)1171 rpcrdma_mr_get(struct rpcrdma_xprt *r_xprt)
1172 {
1173 struct rpcrdma_buffer *buf = &r_xprt->rx_buf;
1174 struct rpcrdma_mr *mr;
1175
1176 spin_lock(&buf->rb_lock);
1177 mr = rpcrdma_mr_pop(&buf->rb_mrs);
1178 spin_unlock(&buf->rb_lock);
1179 return mr;
1180 }
1181
1182 /**
1183 * rpcrdma_reply_put - Put reply buffers back into pool
1184 * @buffers: buffer pool
1185 * @req: object to return
1186 *
1187 */
rpcrdma_reply_put(struct rpcrdma_buffer * buffers,struct rpcrdma_req * req)1188 void rpcrdma_reply_put(struct rpcrdma_buffer *buffers, struct rpcrdma_req *req)
1189 {
1190 if (req->rl_reply) {
1191 rpcrdma_rep_put(buffers, req->rl_reply);
1192 req->rl_reply = NULL;
1193 }
1194 }
1195
1196 /**
1197 * rpcrdma_buffer_get - Get a request buffer
1198 * @buffers: Buffer pool from which to obtain a buffer
1199 *
1200 * Returns a fresh rpcrdma_req, or NULL if none are available.
1201 */
1202 struct rpcrdma_req *
rpcrdma_buffer_get(struct rpcrdma_buffer * buffers)1203 rpcrdma_buffer_get(struct rpcrdma_buffer *buffers)
1204 {
1205 struct rpcrdma_req *req;
1206
1207 spin_lock(&buffers->rb_lock);
1208 req = list_first_entry_or_null(&buffers->rb_send_bufs,
1209 struct rpcrdma_req, rl_list);
1210 if (req)
1211 list_del_init(&req->rl_list);
1212 spin_unlock(&buffers->rb_lock);
1213 return req;
1214 }
1215
1216 /**
1217 * rpcrdma_buffer_put - Put request/reply buffers back into pool
1218 * @buffers: buffer pool
1219 * @req: object to return
1220 *
1221 */
rpcrdma_buffer_put(struct rpcrdma_buffer * buffers,struct rpcrdma_req * req)1222 void rpcrdma_buffer_put(struct rpcrdma_buffer *buffers, struct rpcrdma_req *req)
1223 {
1224 rpcrdma_reply_put(buffers, req);
1225
1226 spin_lock(&buffers->rb_lock);
1227 list_add(&req->rl_list, &buffers->rb_send_bufs);
1228 spin_unlock(&buffers->rb_lock);
1229 }
1230
1231 /* Returns a pointer to a rpcrdma_regbuf object, or NULL.
1232 *
1233 * xprtrdma uses a regbuf for posting an outgoing RDMA SEND, or for
1234 * receiving the payload of RDMA RECV operations. During Long Calls
1235 * or Replies they may be registered externally via frwr_map.
1236 */
1237 static struct rpcrdma_regbuf *
rpcrdma_regbuf_alloc(size_t size,enum dma_data_direction direction,gfp_t flags)1238 rpcrdma_regbuf_alloc(size_t size, enum dma_data_direction direction,
1239 gfp_t flags)
1240 {
1241 struct rpcrdma_regbuf *rb;
1242
1243 rb = kmalloc(sizeof(*rb), flags);
1244 if (!rb)
1245 return NULL;
1246 rb->rg_data = kmalloc(size, flags);
1247 if (!rb->rg_data) {
1248 kfree(rb);
1249 return NULL;
1250 }
1251
1252 rb->rg_device = NULL;
1253 rb->rg_direction = direction;
1254 rb->rg_iov.length = size;
1255 return rb;
1256 }
1257
1258 /**
1259 * rpcrdma_regbuf_realloc - re-allocate a SEND/RECV buffer
1260 * @rb: regbuf to reallocate
1261 * @size: size of buffer to be allocated, in bytes
1262 * @flags: GFP flags
1263 *
1264 * Returns true if reallocation was successful. If false is
1265 * returned, @rb is left untouched.
1266 */
rpcrdma_regbuf_realloc(struct rpcrdma_regbuf * rb,size_t size,gfp_t flags)1267 bool rpcrdma_regbuf_realloc(struct rpcrdma_regbuf *rb, size_t size, gfp_t flags)
1268 {
1269 void *buf;
1270
1271 buf = kmalloc(size, flags);
1272 if (!buf)
1273 return false;
1274
1275 rpcrdma_regbuf_dma_unmap(rb);
1276 kfree(rb->rg_data);
1277
1278 rb->rg_data = buf;
1279 rb->rg_iov.length = size;
1280 return true;
1281 }
1282
1283 /**
1284 * __rpcrdma_regbuf_dma_map - DMA-map a regbuf
1285 * @r_xprt: controlling transport instance
1286 * @rb: regbuf to be mapped
1287 *
1288 * Returns true if the buffer is now DMA mapped to @r_xprt's device
1289 */
__rpcrdma_regbuf_dma_map(struct rpcrdma_xprt * r_xprt,struct rpcrdma_regbuf * rb)1290 bool __rpcrdma_regbuf_dma_map(struct rpcrdma_xprt *r_xprt,
1291 struct rpcrdma_regbuf *rb)
1292 {
1293 struct ib_device *device = r_xprt->rx_ep->re_id->device;
1294
1295 if (rb->rg_direction == DMA_NONE)
1296 return false;
1297
1298 rb->rg_iov.addr = ib_dma_map_single(device, rdmab_data(rb),
1299 rdmab_length(rb), rb->rg_direction);
1300 if (ib_dma_mapping_error(device, rdmab_addr(rb))) {
1301 trace_xprtrdma_dma_maperr(rdmab_addr(rb));
1302 return false;
1303 }
1304
1305 rb->rg_device = device;
1306 rb->rg_iov.lkey = r_xprt->rx_ep->re_pd->local_dma_lkey;
1307 return true;
1308 }
1309
rpcrdma_regbuf_dma_unmap(struct rpcrdma_regbuf * rb)1310 static void rpcrdma_regbuf_dma_unmap(struct rpcrdma_regbuf *rb)
1311 {
1312 if (!rb)
1313 return;
1314
1315 if (!rpcrdma_regbuf_is_mapped(rb))
1316 return;
1317
1318 ib_dma_unmap_single(rb->rg_device, rdmab_addr(rb), rdmab_length(rb),
1319 rb->rg_direction);
1320 rb->rg_device = NULL;
1321 }
1322
rpcrdma_regbuf_free(struct rpcrdma_regbuf * rb)1323 static void rpcrdma_regbuf_free(struct rpcrdma_regbuf *rb)
1324 {
1325 rpcrdma_regbuf_dma_unmap(rb);
1326 if (rb)
1327 kfree(rb->rg_data);
1328 kfree(rb);
1329 }
1330
1331 /**
1332 * rpcrdma_post_recvs - Refill the Receive Queue
1333 * @r_xprt: controlling transport instance
1334 * @needed: current credit grant
1335 * @temp: mark Receive buffers to be deleted after one use
1336 *
1337 */
rpcrdma_post_recvs(struct rpcrdma_xprt * r_xprt,int needed,bool temp)1338 void rpcrdma_post_recvs(struct rpcrdma_xprt *r_xprt, int needed, bool temp)
1339 {
1340 struct rpcrdma_buffer *buf = &r_xprt->rx_buf;
1341 struct rpcrdma_ep *ep = r_xprt->rx_ep;
1342 struct ib_recv_wr *wr, *bad_wr;
1343 struct rpcrdma_rep *rep;
1344 int count, rc;
1345
1346 rc = 0;
1347 count = 0;
1348
1349 if (likely(ep->re_receive_count > needed))
1350 goto out;
1351 needed -= ep->re_receive_count;
1352 if (!temp)
1353 needed += RPCRDMA_MAX_RECV_BATCH;
1354
1355 if (atomic_inc_return(&ep->re_receiving) > 1)
1356 goto out;
1357
1358 /* fast path: all needed reps can be found on the free list */
1359 wr = NULL;
1360 while (needed) {
1361 rep = rpcrdma_rep_get_locked(buf);
1362 if (rep && rep->rr_temp) {
1363 rpcrdma_rep_destroy(rep);
1364 continue;
1365 }
1366 if (!rep)
1367 rep = rpcrdma_rep_create(r_xprt, temp);
1368 if (!rep)
1369 break;
1370
1371 rep->rr_cid.ci_queue_id = ep->re_attr.recv_cq->res.id;
1372 trace_xprtrdma_post_recv(rep);
1373 rep->rr_recv_wr.next = wr;
1374 wr = &rep->rr_recv_wr;
1375 --needed;
1376 ++count;
1377 }
1378 if (!wr)
1379 goto out;
1380
1381 rc = ib_post_recv(ep->re_id->qp, wr,
1382 (const struct ib_recv_wr **)&bad_wr);
1383 if (rc) {
1384 trace_xprtrdma_post_recvs_err(r_xprt, rc);
1385 for (wr = bad_wr; wr;) {
1386 struct rpcrdma_rep *rep;
1387
1388 rep = container_of(wr, struct rpcrdma_rep, rr_recv_wr);
1389 wr = wr->next;
1390 rpcrdma_rep_put(buf, rep);
1391 --count;
1392 }
1393 }
1394 if (atomic_dec_return(&ep->re_receiving) > 0)
1395 complete(&ep->re_done);
1396
1397 out:
1398 trace_xprtrdma_post_recvs(r_xprt, count);
1399 ep->re_receive_count += count;
1400 return;
1401 }
1402