1 /*
2 * linux/net/sunrpc/sched.c
3 *
4 * Scheduling for synchronous and asynchronous RPC requests.
5 *
6 * Copyright (C) 1996 Olaf Kirch, <okir@monad.swb.de>
7 *
8 * TCP NFS related read + write fixes
9 * (C) 1999 Dave Airlie, University of Limerick, Ireland <airlied@linux.ie>
10 */
11
12 #include <linux/module.h>
13
14 #include <linux/sched.h>
15 #include <linux/interrupt.h>
16 #include <linux/slab.h>
17 #include <linux/mempool.h>
18 #include <linux/smp.h>
19 #include <linux/spinlock.h>
20 #include <linux/mutex.h>
21 #include <linux/freezer.h>
22
23 #include <linux/sunrpc/clnt.h>
24
25 #include "sunrpc.h"
26
27 #ifdef RPC_DEBUG
28 #define RPCDBG_FACILITY RPCDBG_SCHED
29 #endif
30
31 #define CREATE_TRACE_POINTS
32 #include <trace/events/sunrpc.h>
33
34 /*
35 * RPC slabs and memory pools
36 */
37 #define RPC_BUFFER_MAXSIZE (2048)
38 #define RPC_BUFFER_POOLSIZE (8)
39 #define RPC_TASK_POOLSIZE (8)
40 static struct kmem_cache *rpc_task_slabp __read_mostly;
41 static struct kmem_cache *rpc_buffer_slabp __read_mostly;
42 static mempool_t *rpc_task_mempool __read_mostly;
43 static mempool_t *rpc_buffer_mempool __read_mostly;
44
45 static void rpc_async_schedule(struct work_struct *);
46 static void rpc_release_task(struct rpc_task *task);
47 static void __rpc_queue_timer_fn(unsigned long ptr);
48
49 /*
50 * RPC tasks sit here while waiting for conditions to improve.
51 */
52 static struct rpc_wait_queue delay_queue;
53
54 /*
55 * rpciod-related stuff
56 */
57 struct workqueue_struct *rpciod_workqueue;
58
59 /*
60 * Disable the timer for a given RPC task. Should be called with
61 * queue->lock and bh_disabled in order to avoid races within
62 * rpc_run_timer().
63 */
64 static void
__rpc_disable_timer(struct rpc_wait_queue * queue,struct rpc_task * task)65 __rpc_disable_timer(struct rpc_wait_queue *queue, struct rpc_task *task)
66 {
67 if (task->tk_timeout == 0)
68 return;
69 dprintk("RPC: %5u disabling timer\n", task->tk_pid);
70 task->tk_timeout = 0;
71 list_del(&task->u.tk_wait.timer_list);
72 if (list_empty(&queue->timer_list.list))
73 del_timer(&queue->timer_list.timer);
74 }
75
76 static void
rpc_set_queue_timer(struct rpc_wait_queue * queue,unsigned long expires)77 rpc_set_queue_timer(struct rpc_wait_queue *queue, unsigned long expires)
78 {
79 queue->timer_list.expires = expires;
80 mod_timer(&queue->timer_list.timer, expires);
81 }
82
83 /*
84 * Set up a timer for the current task.
85 */
86 static void
__rpc_add_timer(struct rpc_wait_queue * queue,struct rpc_task * task)87 __rpc_add_timer(struct rpc_wait_queue *queue, struct rpc_task *task)
88 {
89 if (!task->tk_timeout)
90 return;
91
92 dprintk("RPC: %5u setting alarm for %lu ms\n",
93 task->tk_pid, task->tk_timeout * 1000 / HZ);
94
95 task->u.tk_wait.expires = jiffies + task->tk_timeout;
96 if (list_empty(&queue->timer_list.list) || time_before(task->u.tk_wait.expires, queue->timer_list.expires))
97 rpc_set_queue_timer(queue, task->u.tk_wait.expires);
98 list_add(&task->u.tk_wait.timer_list, &queue->timer_list.list);
99 }
100
101 /*
102 * Add new request to a priority queue.
103 */
__rpc_add_wait_queue_priority(struct rpc_wait_queue * queue,struct rpc_task * task,unsigned char queue_priority)104 static void __rpc_add_wait_queue_priority(struct rpc_wait_queue *queue,
105 struct rpc_task *task,
106 unsigned char queue_priority)
107 {
108 struct list_head *q;
109 struct rpc_task *t;
110
111 INIT_LIST_HEAD(&task->u.tk_wait.links);
112 q = &queue->tasks[queue_priority];
113 if (unlikely(queue_priority > queue->maxpriority))
114 q = &queue->tasks[queue->maxpriority];
115 list_for_each_entry(t, q, u.tk_wait.list) {
116 if (t->tk_owner == task->tk_owner) {
117 list_add_tail(&task->u.tk_wait.list, &t->u.tk_wait.links);
118 return;
119 }
120 }
121 list_add_tail(&task->u.tk_wait.list, q);
122 }
123
124 /*
125 * Add new request to wait queue.
126 *
127 * Swapper tasks always get inserted at the head of the queue.
128 * This should avoid many nasty memory deadlocks and hopefully
129 * improve overall performance.
130 * Everyone else gets appended to the queue to ensure proper FIFO behavior.
131 */
__rpc_add_wait_queue(struct rpc_wait_queue * queue,struct rpc_task * task,unsigned char queue_priority)132 static void __rpc_add_wait_queue(struct rpc_wait_queue *queue,
133 struct rpc_task *task,
134 unsigned char queue_priority)
135 {
136 BUG_ON (RPC_IS_QUEUED(task));
137
138 if (RPC_IS_PRIORITY(queue))
139 __rpc_add_wait_queue_priority(queue, task, queue_priority);
140 else if (RPC_IS_SWAPPER(task))
141 list_add(&task->u.tk_wait.list, &queue->tasks[0]);
142 else
143 list_add_tail(&task->u.tk_wait.list, &queue->tasks[0]);
144 task->tk_waitqueue = queue;
145 queue->qlen++;
146 /* barrier matches the read in rpc_wake_up_task_queue_locked() */
147 smp_wmb();
148 rpc_set_queued(task);
149
150 dprintk("RPC: %5u added to queue %p \"%s\"\n",
151 task->tk_pid, queue, rpc_qname(queue));
152 }
153
154 /*
155 * Remove request from a priority queue.
156 */
__rpc_remove_wait_queue_priority(struct rpc_task * task)157 static void __rpc_remove_wait_queue_priority(struct rpc_task *task)
158 {
159 struct rpc_task *t;
160
161 if (!list_empty(&task->u.tk_wait.links)) {
162 t = list_entry(task->u.tk_wait.links.next, struct rpc_task, u.tk_wait.list);
163 list_move(&t->u.tk_wait.list, &task->u.tk_wait.list);
164 list_splice_init(&task->u.tk_wait.links, &t->u.tk_wait.links);
165 }
166 }
167
168 /*
169 * Remove request from queue.
170 * Note: must be called with spin lock held.
171 */
__rpc_remove_wait_queue(struct rpc_wait_queue * queue,struct rpc_task * task)172 static void __rpc_remove_wait_queue(struct rpc_wait_queue *queue, struct rpc_task *task)
173 {
174 __rpc_disable_timer(queue, task);
175 if (RPC_IS_PRIORITY(queue))
176 __rpc_remove_wait_queue_priority(task);
177 list_del(&task->u.tk_wait.list);
178 queue->qlen--;
179 dprintk("RPC: %5u removed from queue %p \"%s\"\n",
180 task->tk_pid, queue, rpc_qname(queue));
181 }
182
rpc_set_waitqueue_priority(struct rpc_wait_queue * queue,int priority)183 static inline void rpc_set_waitqueue_priority(struct rpc_wait_queue *queue, int priority)
184 {
185 queue->priority = priority;
186 queue->count = 1 << (priority * 2);
187 }
188
rpc_set_waitqueue_owner(struct rpc_wait_queue * queue,pid_t pid)189 static inline void rpc_set_waitqueue_owner(struct rpc_wait_queue *queue, pid_t pid)
190 {
191 queue->owner = pid;
192 queue->nr = RPC_BATCH_COUNT;
193 }
194
rpc_reset_waitqueue_priority(struct rpc_wait_queue * queue)195 static inline void rpc_reset_waitqueue_priority(struct rpc_wait_queue *queue)
196 {
197 rpc_set_waitqueue_priority(queue, queue->maxpriority);
198 rpc_set_waitqueue_owner(queue, 0);
199 }
200
__rpc_init_priority_wait_queue(struct rpc_wait_queue * queue,const char * qname,unsigned char nr_queues)201 static void __rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname, unsigned char nr_queues)
202 {
203 int i;
204
205 spin_lock_init(&queue->lock);
206 for (i = 0; i < ARRAY_SIZE(queue->tasks); i++)
207 INIT_LIST_HEAD(&queue->tasks[i]);
208 queue->maxpriority = nr_queues - 1;
209 rpc_reset_waitqueue_priority(queue);
210 queue->qlen = 0;
211 setup_timer(&queue->timer_list.timer, __rpc_queue_timer_fn, (unsigned long)queue);
212 INIT_LIST_HEAD(&queue->timer_list.list);
213 rpc_assign_waitqueue_name(queue, qname);
214 }
215
rpc_init_priority_wait_queue(struct rpc_wait_queue * queue,const char * qname)216 void rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname)
217 {
218 __rpc_init_priority_wait_queue(queue, qname, RPC_NR_PRIORITY);
219 }
220 EXPORT_SYMBOL_GPL(rpc_init_priority_wait_queue);
221
rpc_init_wait_queue(struct rpc_wait_queue * queue,const char * qname)222 void rpc_init_wait_queue(struct rpc_wait_queue *queue, const char *qname)
223 {
224 __rpc_init_priority_wait_queue(queue, qname, 1);
225 }
226 EXPORT_SYMBOL_GPL(rpc_init_wait_queue);
227
rpc_destroy_wait_queue(struct rpc_wait_queue * queue)228 void rpc_destroy_wait_queue(struct rpc_wait_queue *queue)
229 {
230 del_timer_sync(&queue->timer_list.timer);
231 }
232 EXPORT_SYMBOL_GPL(rpc_destroy_wait_queue);
233
rpc_wait_bit_killable(void * word)234 static int rpc_wait_bit_killable(void *word)
235 {
236 if (fatal_signal_pending(current))
237 return -ERESTARTSYS;
238 freezable_schedule();
239 return 0;
240 }
241
242 #ifdef RPC_DEBUG
rpc_task_set_debuginfo(struct rpc_task * task)243 static void rpc_task_set_debuginfo(struct rpc_task *task)
244 {
245 static atomic_t rpc_pid;
246
247 task->tk_pid = atomic_inc_return(&rpc_pid);
248 }
249 #else
rpc_task_set_debuginfo(struct rpc_task * task)250 static inline void rpc_task_set_debuginfo(struct rpc_task *task)
251 {
252 }
253 #endif
254
rpc_set_active(struct rpc_task * task)255 static void rpc_set_active(struct rpc_task *task)
256 {
257 trace_rpc_task_begin(task->tk_client, task, NULL);
258
259 rpc_task_set_debuginfo(task);
260 set_bit(RPC_TASK_ACTIVE, &task->tk_runstate);
261 }
262
263 /*
264 * Mark an RPC call as having completed by clearing the 'active' bit
265 * and then waking up all tasks that were sleeping.
266 */
rpc_complete_task(struct rpc_task * task)267 static int rpc_complete_task(struct rpc_task *task)
268 {
269 void *m = &task->tk_runstate;
270 wait_queue_head_t *wq = bit_waitqueue(m, RPC_TASK_ACTIVE);
271 struct wait_bit_key k = __WAIT_BIT_KEY_INITIALIZER(m, RPC_TASK_ACTIVE);
272 unsigned long flags;
273 int ret;
274
275 trace_rpc_task_complete(task->tk_client, task, NULL);
276
277 spin_lock_irqsave(&wq->lock, flags);
278 clear_bit(RPC_TASK_ACTIVE, &task->tk_runstate);
279 ret = atomic_dec_and_test(&task->tk_count);
280 if (waitqueue_active(wq))
281 __wake_up_locked_key(wq, TASK_NORMAL, &k);
282 spin_unlock_irqrestore(&wq->lock, flags);
283 return ret;
284 }
285
286 /*
287 * Allow callers to wait for completion of an RPC call
288 *
289 * Note the use of out_of_line_wait_on_bit() rather than wait_on_bit()
290 * to enforce taking of the wq->lock and hence avoid races with
291 * rpc_complete_task().
292 */
__rpc_wait_for_completion_task(struct rpc_task * task,int (* action)(void *))293 int __rpc_wait_for_completion_task(struct rpc_task *task, int (*action)(void *))
294 {
295 if (action == NULL)
296 action = rpc_wait_bit_killable;
297 return out_of_line_wait_on_bit(&task->tk_runstate, RPC_TASK_ACTIVE,
298 action, TASK_KILLABLE);
299 }
300 EXPORT_SYMBOL_GPL(__rpc_wait_for_completion_task);
301
302 /*
303 * Make an RPC task runnable.
304 *
305 * Note: If the task is ASYNC, and is being made runnable after sitting on an
306 * rpc_wait_queue, this must be called with the queue spinlock held to protect
307 * the wait queue operation.
308 * Note the ordering of rpc_test_and_set_running() and rpc_clear_queued(),
309 * which is needed to ensure that __rpc_execute() doesn't loop (due to the
310 * lockless RPC_IS_QUEUED() test) before we've had a chance to test
311 * the RPC_TASK_RUNNING flag.
312 */
rpc_make_runnable(struct rpc_task * task)313 static void rpc_make_runnable(struct rpc_task *task)
314 {
315 bool need_wakeup = !rpc_test_and_set_running(task);
316
317 rpc_clear_queued(task);
318 if (!need_wakeup)
319 return;
320 if (RPC_IS_ASYNC(task)) {
321 INIT_WORK(&task->u.tk_work, rpc_async_schedule);
322 queue_work(rpciod_workqueue, &task->u.tk_work);
323 } else
324 wake_up_bit(&task->tk_runstate, RPC_TASK_QUEUED);
325 }
326
327 /*
328 * Prepare for sleeping on a wait queue.
329 * By always appending tasks to the list we ensure FIFO behavior.
330 * NB: An RPC task will only receive interrupt-driven events as long
331 * as it's on a wait queue.
332 */
__rpc_sleep_on_priority(struct rpc_wait_queue * q,struct rpc_task * task,rpc_action action,unsigned char queue_priority)333 static void __rpc_sleep_on_priority(struct rpc_wait_queue *q,
334 struct rpc_task *task,
335 rpc_action action,
336 unsigned char queue_priority)
337 {
338 dprintk("RPC: %5u sleep_on(queue \"%s\" time %lu)\n",
339 task->tk_pid, rpc_qname(q), jiffies);
340
341 trace_rpc_task_sleep(task->tk_client, task, q);
342
343 __rpc_add_wait_queue(q, task, queue_priority);
344
345 BUG_ON(task->tk_callback != NULL);
346 task->tk_callback = action;
347 __rpc_add_timer(q, task);
348 }
349
rpc_sleep_on(struct rpc_wait_queue * q,struct rpc_task * task,rpc_action action)350 void rpc_sleep_on(struct rpc_wait_queue *q, struct rpc_task *task,
351 rpc_action action)
352 {
353 /* We shouldn't ever put an inactive task to sleep */
354 BUG_ON(!RPC_IS_ACTIVATED(task));
355
356 /*
357 * Protect the queue operations.
358 */
359 spin_lock_bh(&q->lock);
360 __rpc_sleep_on_priority(q, task, action, task->tk_priority);
361 spin_unlock_bh(&q->lock);
362 }
363 EXPORT_SYMBOL_GPL(rpc_sleep_on);
364
rpc_sleep_on_priority(struct rpc_wait_queue * q,struct rpc_task * task,rpc_action action,int priority)365 void rpc_sleep_on_priority(struct rpc_wait_queue *q, struct rpc_task *task,
366 rpc_action action, int priority)
367 {
368 /* We shouldn't ever put an inactive task to sleep */
369 BUG_ON(!RPC_IS_ACTIVATED(task));
370
371 /*
372 * Protect the queue operations.
373 */
374 spin_lock_bh(&q->lock);
375 __rpc_sleep_on_priority(q, task, action, priority - RPC_PRIORITY_LOW);
376 spin_unlock_bh(&q->lock);
377 }
378
379 /**
380 * __rpc_do_wake_up_task - wake up a single rpc_task
381 * @queue: wait queue
382 * @task: task to be woken up
383 *
384 * Caller must hold queue->lock, and have cleared the task queued flag.
385 */
__rpc_do_wake_up_task(struct rpc_wait_queue * queue,struct rpc_task * task)386 static void __rpc_do_wake_up_task(struct rpc_wait_queue *queue, struct rpc_task *task)
387 {
388 dprintk("RPC: %5u __rpc_wake_up_task (now %lu)\n",
389 task->tk_pid, jiffies);
390
391 /* Has the task been executed yet? If not, we cannot wake it up! */
392 if (!RPC_IS_ACTIVATED(task)) {
393 printk(KERN_ERR "RPC: Inactive task (%p) being woken up!\n", task);
394 return;
395 }
396
397 trace_rpc_task_wakeup(task->tk_client, task, queue);
398
399 __rpc_remove_wait_queue(queue, task);
400
401 rpc_make_runnable(task);
402
403 dprintk("RPC: __rpc_wake_up_task done\n");
404 }
405
406 /*
407 * Wake up a queued task while the queue lock is being held
408 */
rpc_wake_up_task_queue_locked(struct rpc_wait_queue * queue,struct rpc_task * task)409 static void rpc_wake_up_task_queue_locked(struct rpc_wait_queue *queue, struct rpc_task *task)
410 {
411 if (RPC_IS_QUEUED(task)) {
412 smp_rmb();
413 if (task->tk_waitqueue == queue)
414 __rpc_do_wake_up_task(queue, task);
415 }
416 }
417
418 /*
419 * Tests whether rpc queue is empty
420 */
rpc_queue_empty(struct rpc_wait_queue * queue)421 int rpc_queue_empty(struct rpc_wait_queue *queue)
422 {
423 int res;
424
425 spin_lock_bh(&queue->lock);
426 res = queue->qlen;
427 spin_unlock_bh(&queue->lock);
428 return res == 0;
429 }
430 EXPORT_SYMBOL_GPL(rpc_queue_empty);
431
432 /*
433 * Wake up a task on a specific queue
434 */
rpc_wake_up_queued_task(struct rpc_wait_queue * queue,struct rpc_task * task)435 void rpc_wake_up_queued_task(struct rpc_wait_queue *queue, struct rpc_task *task)
436 {
437 spin_lock_bh(&queue->lock);
438 rpc_wake_up_task_queue_locked(queue, task);
439 spin_unlock_bh(&queue->lock);
440 }
441 EXPORT_SYMBOL_GPL(rpc_wake_up_queued_task);
442
443 /*
444 * Wake up the next task on a priority queue.
445 */
__rpc_find_next_queued_priority(struct rpc_wait_queue * queue)446 static struct rpc_task *__rpc_find_next_queued_priority(struct rpc_wait_queue *queue)
447 {
448 struct list_head *q;
449 struct rpc_task *task;
450
451 /*
452 * Service a batch of tasks from a single owner.
453 */
454 q = &queue->tasks[queue->priority];
455 if (!list_empty(q)) {
456 task = list_entry(q->next, struct rpc_task, u.tk_wait.list);
457 if (queue->owner == task->tk_owner) {
458 if (--queue->nr)
459 goto out;
460 list_move_tail(&task->u.tk_wait.list, q);
461 }
462 /*
463 * Check if we need to switch queues.
464 */
465 if (--queue->count)
466 goto new_owner;
467 }
468
469 /*
470 * Service the next queue.
471 */
472 do {
473 if (q == &queue->tasks[0])
474 q = &queue->tasks[queue->maxpriority];
475 else
476 q = q - 1;
477 if (!list_empty(q)) {
478 task = list_entry(q->next, struct rpc_task, u.tk_wait.list);
479 goto new_queue;
480 }
481 } while (q != &queue->tasks[queue->priority]);
482
483 rpc_reset_waitqueue_priority(queue);
484 return NULL;
485
486 new_queue:
487 rpc_set_waitqueue_priority(queue, (unsigned int)(q - &queue->tasks[0]));
488 new_owner:
489 rpc_set_waitqueue_owner(queue, task->tk_owner);
490 out:
491 return task;
492 }
493
__rpc_find_next_queued(struct rpc_wait_queue * queue)494 static struct rpc_task *__rpc_find_next_queued(struct rpc_wait_queue *queue)
495 {
496 if (RPC_IS_PRIORITY(queue))
497 return __rpc_find_next_queued_priority(queue);
498 if (!list_empty(&queue->tasks[0]))
499 return list_first_entry(&queue->tasks[0], struct rpc_task, u.tk_wait.list);
500 return NULL;
501 }
502
503 /*
504 * Wake up the first task on the wait queue.
505 */
rpc_wake_up_first(struct rpc_wait_queue * queue,bool (* func)(struct rpc_task *,void *),void * data)506 struct rpc_task *rpc_wake_up_first(struct rpc_wait_queue *queue,
507 bool (*func)(struct rpc_task *, void *), void *data)
508 {
509 struct rpc_task *task = NULL;
510
511 dprintk("RPC: wake_up_first(%p \"%s\")\n",
512 queue, rpc_qname(queue));
513 spin_lock_bh(&queue->lock);
514 task = __rpc_find_next_queued(queue);
515 if (task != NULL) {
516 if (func(task, data))
517 rpc_wake_up_task_queue_locked(queue, task);
518 else
519 task = NULL;
520 }
521 spin_unlock_bh(&queue->lock);
522
523 return task;
524 }
525 EXPORT_SYMBOL_GPL(rpc_wake_up_first);
526
rpc_wake_up_next_func(struct rpc_task * task,void * data)527 static bool rpc_wake_up_next_func(struct rpc_task *task, void *data)
528 {
529 return true;
530 }
531
532 /*
533 * Wake up the next task on the wait queue.
534 */
rpc_wake_up_next(struct rpc_wait_queue * queue)535 struct rpc_task *rpc_wake_up_next(struct rpc_wait_queue *queue)
536 {
537 return rpc_wake_up_first(queue, rpc_wake_up_next_func, NULL);
538 }
539 EXPORT_SYMBOL_GPL(rpc_wake_up_next);
540
541 /**
542 * rpc_wake_up - wake up all rpc_tasks
543 * @queue: rpc_wait_queue on which the tasks are sleeping
544 *
545 * Grabs queue->lock
546 */
rpc_wake_up(struct rpc_wait_queue * queue)547 void rpc_wake_up(struct rpc_wait_queue *queue)
548 {
549 struct list_head *head;
550
551 spin_lock_bh(&queue->lock);
552 head = &queue->tasks[queue->maxpriority];
553 for (;;) {
554 while (!list_empty(head)) {
555 struct rpc_task *task;
556 task = list_first_entry(head,
557 struct rpc_task,
558 u.tk_wait.list);
559 rpc_wake_up_task_queue_locked(queue, task);
560 }
561 if (head == &queue->tasks[0])
562 break;
563 head--;
564 }
565 spin_unlock_bh(&queue->lock);
566 }
567 EXPORT_SYMBOL_GPL(rpc_wake_up);
568
569 /**
570 * rpc_wake_up_status - wake up all rpc_tasks and set their status value.
571 * @queue: rpc_wait_queue on which the tasks are sleeping
572 * @status: status value to set
573 *
574 * Grabs queue->lock
575 */
rpc_wake_up_status(struct rpc_wait_queue * queue,int status)576 void rpc_wake_up_status(struct rpc_wait_queue *queue, int status)
577 {
578 struct list_head *head;
579
580 spin_lock_bh(&queue->lock);
581 head = &queue->tasks[queue->maxpriority];
582 for (;;) {
583 while (!list_empty(head)) {
584 struct rpc_task *task;
585 task = list_first_entry(head,
586 struct rpc_task,
587 u.tk_wait.list);
588 task->tk_status = status;
589 rpc_wake_up_task_queue_locked(queue, task);
590 }
591 if (head == &queue->tasks[0])
592 break;
593 head--;
594 }
595 spin_unlock_bh(&queue->lock);
596 }
597 EXPORT_SYMBOL_GPL(rpc_wake_up_status);
598
__rpc_queue_timer_fn(unsigned long ptr)599 static void __rpc_queue_timer_fn(unsigned long ptr)
600 {
601 struct rpc_wait_queue *queue = (struct rpc_wait_queue *)ptr;
602 struct rpc_task *task, *n;
603 unsigned long expires, now, timeo;
604
605 spin_lock(&queue->lock);
606 expires = now = jiffies;
607 list_for_each_entry_safe(task, n, &queue->timer_list.list, u.tk_wait.timer_list) {
608 timeo = task->u.tk_wait.expires;
609 if (time_after_eq(now, timeo)) {
610 dprintk("RPC: %5u timeout\n", task->tk_pid);
611 task->tk_status = -ETIMEDOUT;
612 rpc_wake_up_task_queue_locked(queue, task);
613 continue;
614 }
615 if (expires == now || time_after(expires, timeo))
616 expires = timeo;
617 }
618 if (!list_empty(&queue->timer_list.list))
619 rpc_set_queue_timer(queue, expires);
620 spin_unlock(&queue->lock);
621 }
622
__rpc_atrun(struct rpc_task * task)623 static void __rpc_atrun(struct rpc_task *task)
624 {
625 task->tk_status = 0;
626 }
627
628 /*
629 * Run a task at a later time
630 */
rpc_delay(struct rpc_task * task,unsigned long delay)631 void rpc_delay(struct rpc_task *task, unsigned long delay)
632 {
633 task->tk_timeout = delay;
634 rpc_sleep_on(&delay_queue, task, __rpc_atrun);
635 }
636 EXPORT_SYMBOL_GPL(rpc_delay);
637
638 /*
639 * Helper to call task->tk_ops->rpc_call_prepare
640 */
rpc_prepare_task(struct rpc_task * task)641 void rpc_prepare_task(struct rpc_task *task)
642 {
643 task->tk_ops->rpc_call_prepare(task, task->tk_calldata);
644 }
645
646 static void
rpc_init_task_statistics(struct rpc_task * task)647 rpc_init_task_statistics(struct rpc_task *task)
648 {
649 /* Initialize retry counters */
650 task->tk_garb_retry = 2;
651 task->tk_cred_retry = 2;
652 task->tk_rebind_retry = 2;
653
654 /* starting timestamp */
655 task->tk_start = ktime_get();
656 }
657
658 static void
rpc_reset_task_statistics(struct rpc_task * task)659 rpc_reset_task_statistics(struct rpc_task *task)
660 {
661 task->tk_timeouts = 0;
662 task->tk_flags &= ~(RPC_CALL_MAJORSEEN|RPC_TASK_KILLED|RPC_TASK_SENT);
663
664 rpc_init_task_statistics(task);
665 }
666
667 /*
668 * Helper that calls task->tk_ops->rpc_call_done if it exists
669 */
rpc_exit_task(struct rpc_task * task)670 void rpc_exit_task(struct rpc_task *task)
671 {
672 task->tk_action = NULL;
673 if (task->tk_ops->rpc_call_done != NULL) {
674 task->tk_ops->rpc_call_done(task, task->tk_calldata);
675 if (task->tk_action != NULL) {
676 WARN_ON(RPC_ASSASSINATED(task));
677 /* Always release the RPC slot and buffer memory */
678 xprt_release(task);
679 rpc_reset_task_statistics(task);
680 }
681 }
682 }
683
rpc_exit(struct rpc_task * task,int status)684 void rpc_exit(struct rpc_task *task, int status)
685 {
686 task->tk_status = status;
687 task->tk_action = rpc_exit_task;
688 if (RPC_IS_QUEUED(task))
689 rpc_wake_up_queued_task(task->tk_waitqueue, task);
690 }
691 EXPORT_SYMBOL_GPL(rpc_exit);
692
rpc_release_calldata(const struct rpc_call_ops * ops,void * calldata)693 void rpc_release_calldata(const struct rpc_call_ops *ops, void *calldata)
694 {
695 if (ops->rpc_release != NULL)
696 ops->rpc_release(calldata);
697 }
698
699 /*
700 * This is the RPC `scheduler' (or rather, the finite state machine).
701 */
__rpc_execute(struct rpc_task * task)702 static void __rpc_execute(struct rpc_task *task)
703 {
704 struct rpc_wait_queue *queue;
705 int task_is_async = RPC_IS_ASYNC(task);
706 int status = 0;
707
708 dprintk("RPC: %5u __rpc_execute flags=0x%x\n",
709 task->tk_pid, task->tk_flags);
710
711 BUG_ON(RPC_IS_QUEUED(task));
712
713 for (;;) {
714 void (*do_action)(struct rpc_task *);
715
716 /*
717 * Execute any pending callback first.
718 */
719 do_action = task->tk_callback;
720 task->tk_callback = NULL;
721 if (do_action == NULL) {
722 /*
723 * Perform the next FSM step.
724 * tk_action may be NULL if the task has been killed.
725 * In particular, note that rpc_killall_tasks may
726 * do this at any time, so beware when dereferencing.
727 */
728 do_action = task->tk_action;
729 if (do_action == NULL)
730 break;
731 }
732 trace_rpc_task_run_action(task->tk_client, task, task->tk_action);
733 do_action(task);
734
735 /*
736 * Lockless check for whether task is sleeping or not.
737 */
738 if (!RPC_IS_QUEUED(task))
739 continue;
740 /*
741 * The queue->lock protects against races with
742 * rpc_make_runnable().
743 *
744 * Note that once we clear RPC_TASK_RUNNING on an asynchronous
745 * rpc_task, rpc_make_runnable() can assign it to a
746 * different workqueue. We therefore cannot assume that the
747 * rpc_task pointer may still be dereferenced.
748 */
749 queue = task->tk_waitqueue;
750 spin_lock_bh(&queue->lock);
751 if (!RPC_IS_QUEUED(task)) {
752 spin_unlock_bh(&queue->lock);
753 continue;
754 }
755 rpc_clear_running(task);
756 spin_unlock_bh(&queue->lock);
757 if (task_is_async)
758 return;
759
760 /* sync task: sleep here */
761 dprintk("RPC: %5u sync task going to sleep\n", task->tk_pid);
762 status = out_of_line_wait_on_bit(&task->tk_runstate,
763 RPC_TASK_QUEUED, rpc_wait_bit_killable,
764 TASK_KILLABLE);
765 if (status == -ERESTARTSYS) {
766 /*
767 * When a sync task receives a signal, it exits with
768 * -ERESTARTSYS. In order to catch any callbacks that
769 * clean up after sleeping on some queue, we don't
770 * break the loop here, but go around once more.
771 */
772 dprintk("RPC: %5u got signal\n", task->tk_pid);
773 task->tk_flags |= RPC_TASK_KILLED;
774 rpc_exit(task, -ERESTARTSYS);
775 }
776 rpc_set_running(task);
777 dprintk("RPC: %5u sync task resuming\n", task->tk_pid);
778 }
779
780 dprintk("RPC: %5u return %d, status %d\n", task->tk_pid, status,
781 task->tk_status);
782 /* Release all resources associated with the task */
783 rpc_release_task(task);
784 }
785
786 /*
787 * User-visible entry point to the scheduler.
788 *
789 * This may be called recursively if e.g. an async NFS task updates
790 * the attributes and finds that dirty pages must be flushed.
791 * NOTE: Upon exit of this function the task is guaranteed to be
792 * released. In particular note that tk_release() will have
793 * been called, so your task memory may have been freed.
794 */
rpc_execute(struct rpc_task * task)795 void rpc_execute(struct rpc_task *task)
796 {
797 rpc_set_active(task);
798 rpc_make_runnable(task);
799 if (!RPC_IS_ASYNC(task))
800 __rpc_execute(task);
801 }
802
rpc_async_schedule(struct work_struct * work)803 static void rpc_async_schedule(struct work_struct *work)
804 {
805 current->flags |= PF_FSTRANS;
806 __rpc_execute(container_of(work, struct rpc_task, u.tk_work));
807 current->flags &= ~PF_FSTRANS;
808 }
809
810 /**
811 * rpc_malloc - allocate an RPC buffer
812 * @task: RPC task that will use this buffer
813 * @size: requested byte size
814 *
815 * To prevent rpciod from hanging, this allocator never sleeps,
816 * returning NULL if the request cannot be serviced immediately.
817 * The caller can arrange to sleep in a way that is safe for rpciod.
818 *
819 * Most requests are 'small' (under 2KiB) and can be serviced from a
820 * mempool, ensuring that NFS reads and writes can always proceed,
821 * and that there is good locality of reference for these buffers.
822 *
823 * In order to avoid memory starvation triggering more writebacks of
824 * NFS requests, we avoid using GFP_KERNEL.
825 */
rpc_malloc(struct rpc_task * task,size_t size)826 void *rpc_malloc(struct rpc_task *task, size_t size)
827 {
828 struct rpc_buffer *buf;
829 gfp_t gfp = RPC_IS_SWAPPER(task) ? GFP_ATOMIC : GFP_NOWAIT;
830
831 size += sizeof(struct rpc_buffer);
832 if (size <= RPC_BUFFER_MAXSIZE)
833 buf = mempool_alloc(rpc_buffer_mempool, gfp);
834 else
835 buf = kmalloc(size, gfp);
836
837 if (!buf)
838 return NULL;
839
840 buf->len = size;
841 dprintk("RPC: %5u allocated buffer of size %zu at %p\n",
842 task->tk_pid, size, buf);
843 return &buf->data;
844 }
845 EXPORT_SYMBOL_GPL(rpc_malloc);
846
847 /**
848 * rpc_free - free buffer allocated via rpc_malloc
849 * @buffer: buffer to free
850 *
851 */
rpc_free(void * buffer)852 void rpc_free(void *buffer)
853 {
854 size_t size;
855 struct rpc_buffer *buf;
856
857 if (!buffer)
858 return;
859
860 buf = container_of(buffer, struct rpc_buffer, data);
861 size = buf->len;
862
863 dprintk("RPC: freeing buffer of size %zu at %p\n",
864 size, buf);
865
866 if (size <= RPC_BUFFER_MAXSIZE)
867 mempool_free(buf, rpc_buffer_mempool);
868 else
869 kfree(buf);
870 }
871 EXPORT_SYMBOL_GPL(rpc_free);
872
873 /*
874 * Creation and deletion of RPC task structures
875 */
rpc_init_task(struct rpc_task * task,const struct rpc_task_setup * task_setup_data)876 static void rpc_init_task(struct rpc_task *task, const struct rpc_task_setup *task_setup_data)
877 {
878 memset(task, 0, sizeof(*task));
879 atomic_set(&task->tk_count, 1);
880 task->tk_flags = task_setup_data->flags;
881 task->tk_ops = task_setup_data->callback_ops;
882 task->tk_calldata = task_setup_data->callback_data;
883 INIT_LIST_HEAD(&task->tk_task);
884
885 task->tk_priority = task_setup_data->priority - RPC_PRIORITY_LOW;
886 task->tk_owner = current->tgid;
887
888 /* Initialize workqueue for async tasks */
889 task->tk_workqueue = task_setup_data->workqueue;
890
891 if (task->tk_ops->rpc_call_prepare != NULL)
892 task->tk_action = rpc_prepare_task;
893
894 rpc_init_task_statistics(task);
895
896 dprintk("RPC: new task initialized, procpid %u\n",
897 task_pid_nr(current));
898 }
899
900 static struct rpc_task *
rpc_alloc_task(void)901 rpc_alloc_task(void)
902 {
903 return (struct rpc_task *)mempool_alloc(rpc_task_mempool, GFP_NOFS);
904 }
905
906 /*
907 * Create a new task for the specified client.
908 */
rpc_new_task(const struct rpc_task_setup * setup_data)909 struct rpc_task *rpc_new_task(const struct rpc_task_setup *setup_data)
910 {
911 struct rpc_task *task = setup_data->task;
912 unsigned short flags = 0;
913
914 if (task == NULL) {
915 task = rpc_alloc_task();
916 if (task == NULL) {
917 rpc_release_calldata(setup_data->callback_ops,
918 setup_data->callback_data);
919 return ERR_PTR(-ENOMEM);
920 }
921 flags = RPC_TASK_DYNAMIC;
922 }
923
924 rpc_init_task(task, setup_data);
925 task->tk_flags |= flags;
926 dprintk("RPC: allocated task %p\n", task);
927 return task;
928 }
929
930 /*
931 * rpc_free_task - release rpc task and perform cleanups
932 *
933 * Note that we free up the rpc_task _after_ rpc_release_calldata()
934 * in order to work around a workqueue dependency issue.
935 *
936 * Tejun Heo states:
937 * "Workqueue currently considers two work items to be the same if they're
938 * on the same address and won't execute them concurrently - ie. it
939 * makes a work item which is queued again while being executed wait
940 * for the previous execution to complete.
941 *
942 * If a work function frees the work item, and then waits for an event
943 * which should be performed by another work item and *that* work item
944 * recycles the freed work item, it can create a false dependency loop.
945 * There really is no reliable way to detect this short of verifying
946 * every memory free."
947 *
948 */
rpc_free_task(struct rpc_task * task)949 static void rpc_free_task(struct rpc_task *task)
950 {
951 unsigned short tk_flags = task->tk_flags;
952
953 rpc_release_calldata(task->tk_ops, task->tk_calldata);
954
955 if (tk_flags & RPC_TASK_DYNAMIC) {
956 dprintk("RPC: %5u freeing task\n", task->tk_pid);
957 mempool_free(task, rpc_task_mempool);
958 }
959 }
960
rpc_async_release(struct work_struct * work)961 static void rpc_async_release(struct work_struct *work)
962 {
963 rpc_free_task(container_of(work, struct rpc_task, u.tk_work));
964 }
965
rpc_release_resources_task(struct rpc_task * task)966 static void rpc_release_resources_task(struct rpc_task *task)
967 {
968 xprt_release(task);
969 if (task->tk_msg.rpc_cred) {
970 put_rpccred(task->tk_msg.rpc_cred);
971 task->tk_msg.rpc_cred = NULL;
972 }
973 rpc_task_release_client(task);
974 }
975
rpc_final_put_task(struct rpc_task * task,struct workqueue_struct * q)976 static void rpc_final_put_task(struct rpc_task *task,
977 struct workqueue_struct *q)
978 {
979 if (q != NULL) {
980 INIT_WORK(&task->u.tk_work, rpc_async_release);
981 queue_work(q, &task->u.tk_work);
982 } else
983 rpc_free_task(task);
984 }
985
rpc_do_put_task(struct rpc_task * task,struct workqueue_struct * q)986 static void rpc_do_put_task(struct rpc_task *task, struct workqueue_struct *q)
987 {
988 if (atomic_dec_and_test(&task->tk_count)) {
989 rpc_release_resources_task(task);
990 rpc_final_put_task(task, q);
991 }
992 }
993
rpc_put_task(struct rpc_task * task)994 void rpc_put_task(struct rpc_task *task)
995 {
996 rpc_do_put_task(task, NULL);
997 }
998 EXPORT_SYMBOL_GPL(rpc_put_task);
999
rpc_put_task_async(struct rpc_task * task)1000 void rpc_put_task_async(struct rpc_task *task)
1001 {
1002 rpc_do_put_task(task, task->tk_workqueue);
1003 }
1004 EXPORT_SYMBOL_GPL(rpc_put_task_async);
1005
rpc_release_task(struct rpc_task * task)1006 static void rpc_release_task(struct rpc_task *task)
1007 {
1008 dprintk("RPC: %5u release task\n", task->tk_pid);
1009
1010 BUG_ON (RPC_IS_QUEUED(task));
1011
1012 rpc_release_resources_task(task);
1013
1014 /*
1015 * Note: at this point we have been removed from rpc_clnt->cl_tasks,
1016 * so it should be safe to use task->tk_count as a test for whether
1017 * or not any other processes still hold references to our rpc_task.
1018 */
1019 if (atomic_read(&task->tk_count) != 1 + !RPC_IS_ASYNC(task)) {
1020 /* Wake up anyone who may be waiting for task completion */
1021 if (!rpc_complete_task(task))
1022 return;
1023 } else {
1024 if (!atomic_dec_and_test(&task->tk_count))
1025 return;
1026 }
1027 rpc_final_put_task(task, task->tk_workqueue);
1028 }
1029
rpciod_up(void)1030 int rpciod_up(void)
1031 {
1032 return try_module_get(THIS_MODULE) ? 0 : -EINVAL;
1033 }
1034
rpciod_down(void)1035 void rpciod_down(void)
1036 {
1037 module_put(THIS_MODULE);
1038 }
1039
1040 /*
1041 * Start up the rpciod workqueue.
1042 */
rpciod_start(void)1043 static int rpciod_start(void)
1044 {
1045 struct workqueue_struct *wq;
1046
1047 /*
1048 * Create the rpciod thread and wait for it to start.
1049 */
1050 dprintk("RPC: creating workqueue rpciod\n");
1051 wq = alloc_workqueue("rpciod", WQ_MEM_RECLAIM, 0);
1052 rpciod_workqueue = wq;
1053 return rpciod_workqueue != NULL;
1054 }
1055
rpciod_stop(void)1056 static void rpciod_stop(void)
1057 {
1058 struct workqueue_struct *wq = NULL;
1059
1060 if (rpciod_workqueue == NULL)
1061 return;
1062 dprintk("RPC: destroying workqueue rpciod\n");
1063
1064 wq = rpciod_workqueue;
1065 rpciod_workqueue = NULL;
1066 destroy_workqueue(wq);
1067 }
1068
1069 void
rpc_destroy_mempool(void)1070 rpc_destroy_mempool(void)
1071 {
1072 rpciod_stop();
1073 if (rpc_buffer_mempool)
1074 mempool_destroy(rpc_buffer_mempool);
1075 if (rpc_task_mempool)
1076 mempool_destroy(rpc_task_mempool);
1077 if (rpc_task_slabp)
1078 kmem_cache_destroy(rpc_task_slabp);
1079 if (rpc_buffer_slabp)
1080 kmem_cache_destroy(rpc_buffer_slabp);
1081 rpc_destroy_wait_queue(&delay_queue);
1082 }
1083
1084 int
rpc_init_mempool(void)1085 rpc_init_mempool(void)
1086 {
1087 /*
1088 * The following is not strictly a mempool initialisation,
1089 * but there is no harm in doing it here
1090 */
1091 rpc_init_wait_queue(&delay_queue, "delayq");
1092 if (!rpciod_start())
1093 goto err_nomem;
1094
1095 rpc_task_slabp = kmem_cache_create("rpc_tasks",
1096 sizeof(struct rpc_task),
1097 0, SLAB_HWCACHE_ALIGN,
1098 NULL);
1099 if (!rpc_task_slabp)
1100 goto err_nomem;
1101 rpc_buffer_slabp = kmem_cache_create("rpc_buffers",
1102 RPC_BUFFER_MAXSIZE,
1103 0, SLAB_HWCACHE_ALIGN,
1104 NULL);
1105 if (!rpc_buffer_slabp)
1106 goto err_nomem;
1107 rpc_task_mempool = mempool_create_slab_pool(RPC_TASK_POOLSIZE,
1108 rpc_task_slabp);
1109 if (!rpc_task_mempool)
1110 goto err_nomem;
1111 rpc_buffer_mempool = mempool_create_slab_pool(RPC_BUFFER_POOLSIZE,
1112 rpc_buffer_slabp);
1113 if (!rpc_buffer_mempool)
1114 goto err_nomem;
1115 return 0;
1116 err_nomem:
1117 rpc_destroy_mempool();
1118 return -ENOMEM;
1119 }
1120