1 /*
2 * Copyright (c) 2005 Voltaire Inc. All rights reserved.
3 * Copyright (c) 2002-2005, Network Appliance, Inc. All rights reserved.
4 * Copyright (c) 1999-2005, Mellanox Technologies, Inc. All rights reserved.
5 * Copyright (c) 2005 Intel Corporation. All rights reserved.
6 *
7 * This software is available to you under a choice of one of two
8 * licenses. You may choose to be licensed under the terms of the GNU
9 * General Public License (GPL) Version 2, available from the file
10 * COPYING in the main directory of this source tree, or the
11 * OpenIB.org BSD license below:
12 *
13 * Redistribution and use in source and binary forms, with or
14 * without modification, are permitted provided that the following
15 * conditions are met:
16 *
17 * - Redistributions of source code must retain the above
18 * copyright notice, this list of conditions and the following
19 * disclaimer.
20 *
21 * - Redistributions in binary form must reproduce the above
22 * copyright notice, this list of conditions and the following
23 * disclaimer in the documentation and/or other materials
24 * provided with the distribution.
25 *
26 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
27 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
28 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
29 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
30 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
31 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
32 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
33 * SOFTWARE.
34 */
35
36 #include <linux/mutex.h>
37 #include <linux/inetdevice.h>
38 #include <linux/slab.h>
39 #include <linux/workqueue.h>
40 #include <net/arp.h>
41 #include <net/neighbour.h>
42 #include <net/route.h>
43 #include <net/netevent.h>
44 #include <net/ipv6_stubs.h>
45 #include <net/ip6_route.h>
46 #include <rdma/ib_addr.h>
47 #include <rdma/ib_cache.h>
48 #include <rdma/ib_sa.h>
49 #include <rdma/ib.h>
50 #include <rdma/rdma_netlink.h>
51 #include <net/netlink.h>
52
53 #include "core_priv.h"
54
55 struct addr_req {
56 struct list_head list;
57 struct sockaddr_storage src_addr;
58 struct sockaddr_storage dst_addr;
59 struct rdma_dev_addr *addr;
60 void *context;
61 void (*callback)(int status, struct sockaddr *src_addr,
62 struct rdma_dev_addr *addr, void *context);
63 unsigned long timeout;
64 struct delayed_work work;
65 bool resolve_by_gid_attr; /* Consider gid attr in resolve phase */
66 int status;
67 u32 seq;
68 };
69
70 static atomic_t ib_nl_addr_request_seq = ATOMIC_INIT(0);
71
72 static DEFINE_SPINLOCK(lock);
73 static LIST_HEAD(req_list);
74 static struct workqueue_struct *addr_wq;
75
76 static const struct nla_policy ib_nl_addr_policy[LS_NLA_TYPE_MAX] = {
77 [LS_NLA_TYPE_DGID] = {.type = NLA_BINARY,
78 .len = sizeof(struct rdma_nla_ls_gid),
79 .validation_type = NLA_VALIDATE_MIN,
80 .min = sizeof(struct rdma_nla_ls_gid)},
81 };
82
ib_nl_is_good_ip_resp(const struct nlmsghdr * nlh)83 static inline bool ib_nl_is_good_ip_resp(const struct nlmsghdr *nlh)
84 {
85 struct nlattr *tb[LS_NLA_TYPE_MAX] = {};
86 int ret;
87
88 if (nlh->nlmsg_flags & RDMA_NL_LS_F_ERR)
89 return false;
90
91 ret = nla_parse_deprecated(tb, LS_NLA_TYPE_MAX - 1, nlmsg_data(nlh),
92 nlmsg_len(nlh), ib_nl_addr_policy, NULL);
93 if (ret)
94 return false;
95
96 return true;
97 }
98
ib_nl_process_good_ip_rsep(const struct nlmsghdr * nlh)99 static void ib_nl_process_good_ip_rsep(const struct nlmsghdr *nlh)
100 {
101 const struct nlattr *head, *curr;
102 union ib_gid gid;
103 struct addr_req *req;
104 int len, rem;
105 int found = 0;
106
107 head = (const struct nlattr *)nlmsg_data(nlh);
108 len = nlmsg_len(nlh);
109
110 nla_for_each_attr(curr, head, len, rem) {
111 if (curr->nla_type == LS_NLA_TYPE_DGID)
112 memcpy(&gid, nla_data(curr), nla_len(curr));
113 }
114
115 spin_lock_bh(&lock);
116 list_for_each_entry(req, &req_list, list) {
117 if (nlh->nlmsg_seq != req->seq)
118 continue;
119 /* We set the DGID part, the rest was set earlier */
120 rdma_addr_set_dgid(req->addr, &gid);
121 req->status = 0;
122 found = 1;
123 break;
124 }
125 spin_unlock_bh(&lock);
126
127 if (!found)
128 pr_info("Couldn't find request waiting for DGID: %pI6\n",
129 &gid);
130 }
131
ib_nl_handle_ip_res_resp(struct sk_buff * skb,struct nlmsghdr * nlh,struct netlink_ext_ack * extack)132 int ib_nl_handle_ip_res_resp(struct sk_buff *skb,
133 struct nlmsghdr *nlh,
134 struct netlink_ext_ack *extack)
135 {
136 if ((nlh->nlmsg_flags & NLM_F_REQUEST) ||
137 !(NETLINK_CB(skb).sk))
138 return -EPERM;
139
140 if (ib_nl_is_good_ip_resp(nlh))
141 ib_nl_process_good_ip_rsep(nlh);
142
143 return 0;
144 }
145
ib_nl_ip_send_msg(struct rdma_dev_addr * dev_addr,const void * daddr,u32 seq,u16 family)146 static int ib_nl_ip_send_msg(struct rdma_dev_addr *dev_addr,
147 const void *daddr,
148 u32 seq, u16 family)
149 {
150 struct sk_buff *skb = NULL;
151 struct nlmsghdr *nlh;
152 struct rdma_ls_ip_resolve_header *header;
153 void *data;
154 size_t size;
155 int attrtype;
156 int len;
157
158 if (family == AF_INET) {
159 size = sizeof(struct in_addr);
160 attrtype = RDMA_NLA_F_MANDATORY | LS_NLA_TYPE_IPV4;
161 } else {
162 size = sizeof(struct in6_addr);
163 attrtype = RDMA_NLA_F_MANDATORY | LS_NLA_TYPE_IPV6;
164 }
165
166 len = nla_total_size(sizeof(size));
167 len += NLMSG_ALIGN(sizeof(*header));
168
169 skb = nlmsg_new(len, GFP_KERNEL);
170 if (!skb)
171 return -ENOMEM;
172
173 data = ibnl_put_msg(skb, &nlh, seq, 0, RDMA_NL_LS,
174 RDMA_NL_LS_OP_IP_RESOLVE, NLM_F_REQUEST);
175 if (!data) {
176 nlmsg_free(skb);
177 return -ENODATA;
178 }
179
180 /* Construct the family header first */
181 header = skb_put(skb, NLMSG_ALIGN(sizeof(*header)));
182 header->ifindex = dev_addr->bound_dev_if;
183 nla_put(skb, attrtype, size, daddr);
184
185 /* Repair the nlmsg header length */
186 nlmsg_end(skb, nlh);
187 rdma_nl_multicast(&init_net, skb, RDMA_NL_GROUP_LS, GFP_KERNEL);
188
189 /* Make the request retry, so when we get the response from userspace
190 * we will have something.
191 */
192 return -ENODATA;
193 }
194
rdma_addr_size(const struct sockaddr * addr)195 int rdma_addr_size(const struct sockaddr *addr)
196 {
197 switch (addr->sa_family) {
198 case AF_INET:
199 return sizeof(struct sockaddr_in);
200 case AF_INET6:
201 return sizeof(struct sockaddr_in6);
202 case AF_IB:
203 return sizeof(struct sockaddr_ib);
204 default:
205 return 0;
206 }
207 }
208 EXPORT_SYMBOL(rdma_addr_size);
209
rdma_addr_size_in6(struct sockaddr_in6 * addr)210 int rdma_addr_size_in6(struct sockaddr_in6 *addr)
211 {
212 int ret = rdma_addr_size((struct sockaddr *) addr);
213
214 return ret <= sizeof(*addr) ? ret : 0;
215 }
216 EXPORT_SYMBOL(rdma_addr_size_in6);
217
rdma_addr_size_kss(struct __kernel_sockaddr_storage * addr)218 int rdma_addr_size_kss(struct __kernel_sockaddr_storage *addr)
219 {
220 int ret = rdma_addr_size((struct sockaddr *) addr);
221
222 return ret <= sizeof(*addr) ? ret : 0;
223 }
224 EXPORT_SYMBOL(rdma_addr_size_kss);
225
226 /**
227 * rdma_copy_src_l2_addr - Copy netdevice source addresses
228 * @dev_addr: Destination address pointer where to copy the addresses
229 * @dev: Netdevice whose source addresses to copy
230 *
231 * rdma_copy_src_l2_addr() copies source addresses from the specified netdevice.
232 * This includes unicast address, broadcast address, device type and
233 * interface index.
234 */
rdma_copy_src_l2_addr(struct rdma_dev_addr * dev_addr,const struct net_device * dev)235 void rdma_copy_src_l2_addr(struct rdma_dev_addr *dev_addr,
236 const struct net_device *dev)
237 {
238 dev_addr->dev_type = dev->type;
239 memcpy(dev_addr->src_dev_addr, dev->dev_addr, MAX_ADDR_LEN);
240 memcpy(dev_addr->broadcast, dev->broadcast, MAX_ADDR_LEN);
241 dev_addr->bound_dev_if = dev->ifindex;
242 }
243 EXPORT_SYMBOL(rdma_copy_src_l2_addr);
244
245 static struct net_device *
rdma_find_ndev_for_src_ip_rcu(struct net * net,const struct sockaddr * src_in)246 rdma_find_ndev_for_src_ip_rcu(struct net *net, const struct sockaddr *src_in)
247 {
248 struct net_device *dev = NULL;
249 int ret = -EADDRNOTAVAIL;
250
251 switch (src_in->sa_family) {
252 case AF_INET:
253 dev = __ip_dev_find(net,
254 ((const struct sockaddr_in *)src_in)->sin_addr.s_addr,
255 false);
256 if (dev)
257 ret = 0;
258 break;
259 #if IS_ENABLED(CONFIG_IPV6)
260 case AF_INET6:
261 for_each_netdev_rcu(net, dev) {
262 if (ipv6_chk_addr(net,
263 &((const struct sockaddr_in6 *)src_in)->sin6_addr,
264 dev, 1)) {
265 ret = 0;
266 break;
267 }
268 }
269 break;
270 #endif
271 }
272 return ret ? ERR_PTR(ret) : dev;
273 }
274
rdma_translate_ip(const struct sockaddr * addr,struct rdma_dev_addr * dev_addr)275 int rdma_translate_ip(const struct sockaddr *addr,
276 struct rdma_dev_addr *dev_addr)
277 {
278 struct net_device *dev;
279
280 if (dev_addr->bound_dev_if) {
281 dev = dev_get_by_index(dev_addr->net, dev_addr->bound_dev_if);
282 if (!dev)
283 return -ENODEV;
284 rdma_copy_src_l2_addr(dev_addr, dev);
285 dev_put(dev);
286 return 0;
287 }
288
289 rcu_read_lock();
290 dev = rdma_find_ndev_for_src_ip_rcu(dev_addr->net, addr);
291 if (!IS_ERR(dev))
292 rdma_copy_src_l2_addr(dev_addr, dev);
293 rcu_read_unlock();
294 return PTR_ERR_OR_ZERO(dev);
295 }
296 EXPORT_SYMBOL(rdma_translate_ip);
297
set_timeout(struct addr_req * req,unsigned long time)298 static void set_timeout(struct addr_req *req, unsigned long time)
299 {
300 unsigned long delay;
301
302 delay = time - jiffies;
303 if ((long)delay < 0)
304 delay = 0;
305
306 mod_delayed_work(addr_wq, &req->work, delay);
307 }
308
queue_req(struct addr_req * req)309 static void queue_req(struct addr_req *req)
310 {
311 spin_lock_bh(&lock);
312 list_add_tail(&req->list, &req_list);
313 set_timeout(req, req->timeout);
314 spin_unlock_bh(&lock);
315 }
316
ib_nl_fetch_ha(struct rdma_dev_addr * dev_addr,const void * daddr,u32 seq,u16 family)317 static int ib_nl_fetch_ha(struct rdma_dev_addr *dev_addr,
318 const void *daddr, u32 seq, u16 family)
319 {
320 if (!rdma_nl_chk_listeners(RDMA_NL_GROUP_LS))
321 return -EADDRNOTAVAIL;
322
323 return ib_nl_ip_send_msg(dev_addr, daddr, seq, family);
324 }
325
dst_fetch_ha(const struct dst_entry * dst,struct rdma_dev_addr * dev_addr,const void * daddr)326 static int dst_fetch_ha(const struct dst_entry *dst,
327 struct rdma_dev_addr *dev_addr,
328 const void *daddr)
329 {
330 struct neighbour *n;
331 int ret = 0;
332
333 n = dst_neigh_lookup(dst, daddr);
334 if (!n)
335 return -ENODATA;
336
337 if (!(n->nud_state & NUD_VALID)) {
338 neigh_event_send(n, NULL);
339 ret = -ENODATA;
340 } else {
341 neigh_ha_snapshot(dev_addr->dst_dev_addr, n, dst->dev);
342 }
343
344 neigh_release(n);
345
346 return ret;
347 }
348
has_gateway(const struct dst_entry * dst,sa_family_t family)349 static bool has_gateway(const struct dst_entry *dst, sa_family_t family)
350 {
351 struct rtable *rt;
352 struct rt6_info *rt6;
353
354 if (family == AF_INET) {
355 rt = container_of(dst, struct rtable, dst);
356 return rt->rt_uses_gateway;
357 }
358
359 rt6 = container_of(dst, struct rt6_info, dst);
360 return rt6->rt6i_flags & RTF_GATEWAY;
361 }
362
fetch_ha(const struct dst_entry * dst,struct rdma_dev_addr * dev_addr,const struct sockaddr * dst_in,u32 seq)363 static int fetch_ha(const struct dst_entry *dst, struct rdma_dev_addr *dev_addr,
364 const struct sockaddr *dst_in, u32 seq)
365 {
366 const struct sockaddr_in *dst_in4 =
367 (const struct sockaddr_in *)dst_in;
368 const struct sockaddr_in6 *dst_in6 =
369 (const struct sockaddr_in6 *)dst_in;
370 const void *daddr = (dst_in->sa_family == AF_INET) ?
371 (const void *)&dst_in4->sin_addr.s_addr :
372 (const void *)&dst_in6->sin6_addr;
373 sa_family_t family = dst_in->sa_family;
374
375 might_sleep();
376
377 /* If we have a gateway in IB mode then it must be an IB network */
378 if (has_gateway(dst, family) && dev_addr->network == RDMA_NETWORK_IB)
379 return ib_nl_fetch_ha(dev_addr, daddr, seq, family);
380 else
381 return dst_fetch_ha(dst, dev_addr, daddr);
382 }
383
addr4_resolve(struct sockaddr * src_sock,const struct sockaddr * dst_sock,struct rdma_dev_addr * addr,struct rtable ** prt)384 static int addr4_resolve(struct sockaddr *src_sock,
385 const struct sockaddr *dst_sock,
386 struct rdma_dev_addr *addr,
387 struct rtable **prt)
388 {
389 struct sockaddr_in *src_in = (struct sockaddr_in *)src_sock;
390 const struct sockaddr_in *dst_in =
391 (const struct sockaddr_in *)dst_sock;
392
393 __be32 src_ip = src_in->sin_addr.s_addr;
394 __be32 dst_ip = dst_in->sin_addr.s_addr;
395 struct rtable *rt;
396 struct flowi4 fl4;
397 int ret;
398
399 memset(&fl4, 0, sizeof(fl4));
400 fl4.daddr = dst_ip;
401 fl4.saddr = src_ip;
402 fl4.flowi4_oif = addr->bound_dev_if;
403 rt = ip_route_output_key(addr->net, &fl4);
404 ret = PTR_ERR_OR_ZERO(rt);
405 if (ret)
406 return ret;
407
408 src_in->sin_addr.s_addr = fl4.saddr;
409
410 addr->hoplimit = ip4_dst_hoplimit(&rt->dst);
411
412 *prt = rt;
413 return 0;
414 }
415
416 #if IS_ENABLED(CONFIG_IPV6)
addr6_resolve(struct sockaddr * src_sock,const struct sockaddr * dst_sock,struct rdma_dev_addr * addr,struct dst_entry ** pdst)417 static int addr6_resolve(struct sockaddr *src_sock,
418 const struct sockaddr *dst_sock,
419 struct rdma_dev_addr *addr,
420 struct dst_entry **pdst)
421 {
422 struct sockaddr_in6 *src_in = (struct sockaddr_in6 *)src_sock;
423 const struct sockaddr_in6 *dst_in =
424 (const struct sockaddr_in6 *)dst_sock;
425 struct flowi6 fl6;
426 struct dst_entry *dst;
427
428 memset(&fl6, 0, sizeof fl6);
429 fl6.daddr = dst_in->sin6_addr;
430 fl6.saddr = src_in->sin6_addr;
431 fl6.flowi6_oif = addr->bound_dev_if;
432
433 dst = ipv6_stub->ipv6_dst_lookup_flow(addr->net, NULL, &fl6, NULL);
434 if (IS_ERR(dst))
435 return PTR_ERR(dst);
436
437 if (ipv6_addr_any(&src_in->sin6_addr))
438 src_in->sin6_addr = fl6.saddr;
439
440 addr->hoplimit = ip6_dst_hoplimit(dst);
441
442 *pdst = dst;
443 return 0;
444 }
445 #else
addr6_resolve(struct sockaddr * src_sock,const struct sockaddr * dst_sock,struct rdma_dev_addr * addr,struct dst_entry ** pdst)446 static int addr6_resolve(struct sockaddr *src_sock,
447 const struct sockaddr *dst_sock,
448 struct rdma_dev_addr *addr,
449 struct dst_entry **pdst)
450 {
451 return -EADDRNOTAVAIL;
452 }
453 #endif
454
addr_resolve_neigh(const struct dst_entry * dst,const struct sockaddr * dst_in,struct rdma_dev_addr * addr,unsigned int ndev_flags,u32 seq)455 static int addr_resolve_neigh(const struct dst_entry *dst,
456 const struct sockaddr *dst_in,
457 struct rdma_dev_addr *addr,
458 unsigned int ndev_flags,
459 u32 seq)
460 {
461 int ret = 0;
462
463 if (ndev_flags & IFF_LOOPBACK) {
464 memcpy(addr->dst_dev_addr, addr->src_dev_addr, MAX_ADDR_LEN);
465 } else {
466 if (!(ndev_flags & IFF_NOARP)) {
467 /* If the device doesn't do ARP internally */
468 ret = fetch_ha(dst, addr, dst_in, seq);
469 }
470 }
471 return ret;
472 }
473
copy_src_l2_addr(struct rdma_dev_addr * dev_addr,const struct sockaddr * dst_in,const struct dst_entry * dst,const struct net_device * ndev)474 static int copy_src_l2_addr(struct rdma_dev_addr *dev_addr,
475 const struct sockaddr *dst_in,
476 const struct dst_entry *dst,
477 const struct net_device *ndev)
478 {
479 int ret = 0;
480
481 if (dst->dev->flags & IFF_LOOPBACK)
482 ret = rdma_translate_ip(dst_in, dev_addr);
483 else
484 rdma_copy_src_l2_addr(dev_addr, dst->dev);
485
486 /*
487 * If there's a gateway and type of device not ARPHRD_INFINIBAND,
488 * we're definitely in RoCE v2 (as RoCE v1 isn't routable) set the
489 * network type accordingly.
490 */
491 if (has_gateway(dst, dst_in->sa_family) &&
492 ndev->type != ARPHRD_INFINIBAND)
493 dev_addr->network = dst_in->sa_family == AF_INET ?
494 RDMA_NETWORK_IPV4 :
495 RDMA_NETWORK_IPV6;
496 else
497 dev_addr->network = RDMA_NETWORK_IB;
498
499 return ret;
500 }
501
rdma_set_src_addr_rcu(struct rdma_dev_addr * dev_addr,unsigned int * ndev_flags,const struct sockaddr * dst_in,const struct dst_entry * dst)502 static int rdma_set_src_addr_rcu(struct rdma_dev_addr *dev_addr,
503 unsigned int *ndev_flags,
504 const struct sockaddr *dst_in,
505 const struct dst_entry *dst)
506 {
507 struct net_device *ndev = READ_ONCE(dst->dev);
508
509 *ndev_flags = ndev->flags;
510 /* A physical device must be the RDMA device to use */
511 if (ndev->flags & IFF_LOOPBACK) {
512 /*
513 * RDMA (IB/RoCE, iWarp) doesn't run on lo interface or
514 * loopback IP address. So if route is resolved to loopback
515 * interface, translate that to a real ndev based on non
516 * loopback IP address.
517 */
518 ndev = rdma_find_ndev_for_src_ip_rcu(dev_net(ndev), dst_in);
519 if (IS_ERR(ndev))
520 return -ENODEV;
521 }
522
523 return copy_src_l2_addr(dev_addr, dst_in, dst, ndev);
524 }
525
set_addr_netns_by_gid_rcu(struct rdma_dev_addr * addr)526 static int set_addr_netns_by_gid_rcu(struct rdma_dev_addr *addr)
527 {
528 struct net_device *ndev;
529
530 ndev = rdma_read_gid_attr_ndev_rcu(addr->sgid_attr);
531 if (IS_ERR(ndev))
532 return PTR_ERR(ndev);
533
534 /*
535 * Since we are holding the rcu, reading net and ifindex
536 * are safe without any additional reference; because
537 * change_net_namespace() in net/core/dev.c does rcu sync
538 * after it changes the state to IFF_DOWN and before
539 * updating netdev fields {net, ifindex}.
540 */
541 addr->net = dev_net(ndev);
542 addr->bound_dev_if = ndev->ifindex;
543 return 0;
544 }
545
rdma_addr_set_net_defaults(struct rdma_dev_addr * addr)546 static void rdma_addr_set_net_defaults(struct rdma_dev_addr *addr)
547 {
548 addr->net = &init_net;
549 addr->bound_dev_if = 0;
550 }
551
addr_resolve(struct sockaddr * src_in,const struct sockaddr * dst_in,struct rdma_dev_addr * addr,bool resolve_neigh,bool resolve_by_gid_attr,u32 seq)552 static int addr_resolve(struct sockaddr *src_in,
553 const struct sockaddr *dst_in,
554 struct rdma_dev_addr *addr,
555 bool resolve_neigh,
556 bool resolve_by_gid_attr,
557 u32 seq)
558 {
559 struct dst_entry *dst = NULL;
560 unsigned int ndev_flags = 0;
561 struct rtable *rt = NULL;
562 int ret;
563
564 if (!addr->net) {
565 pr_warn_ratelimited("%s: missing namespace\n", __func__);
566 return -EINVAL;
567 }
568
569 rcu_read_lock();
570 if (resolve_by_gid_attr) {
571 if (!addr->sgid_attr) {
572 rcu_read_unlock();
573 pr_warn_ratelimited("%s: missing gid_attr\n", __func__);
574 return -EINVAL;
575 }
576 /*
577 * If the request is for a specific gid attribute of the
578 * rdma_dev_addr, derive net from the netdevice of the
579 * GID attribute.
580 */
581 ret = set_addr_netns_by_gid_rcu(addr);
582 if (ret) {
583 rcu_read_unlock();
584 return ret;
585 }
586 }
587 if (src_in->sa_family == AF_INET) {
588 ret = addr4_resolve(src_in, dst_in, addr, &rt);
589 dst = &rt->dst;
590 } else {
591 ret = addr6_resolve(src_in, dst_in, addr, &dst);
592 }
593 if (ret) {
594 rcu_read_unlock();
595 goto done;
596 }
597 ret = rdma_set_src_addr_rcu(addr, &ndev_flags, dst_in, dst);
598 rcu_read_unlock();
599
600 /*
601 * Resolve neighbor destination address if requested and
602 * only if src addr translation didn't fail.
603 */
604 if (!ret && resolve_neigh)
605 ret = addr_resolve_neigh(dst, dst_in, addr, ndev_flags, seq);
606
607 if (src_in->sa_family == AF_INET)
608 ip_rt_put(rt);
609 else
610 dst_release(dst);
611 done:
612 /*
613 * Clear the addr net to go back to its original state, only if it was
614 * derived from GID attribute in this context.
615 */
616 if (resolve_by_gid_attr)
617 rdma_addr_set_net_defaults(addr);
618 return ret;
619 }
620
process_one_req(struct work_struct * _work)621 static void process_one_req(struct work_struct *_work)
622 {
623 struct addr_req *req;
624 struct sockaddr *src_in, *dst_in;
625
626 req = container_of(_work, struct addr_req, work.work);
627
628 if (req->status == -ENODATA) {
629 src_in = (struct sockaddr *)&req->src_addr;
630 dst_in = (struct sockaddr *)&req->dst_addr;
631 req->status = addr_resolve(src_in, dst_in, req->addr,
632 true, req->resolve_by_gid_attr,
633 req->seq);
634 if (req->status && time_after_eq(jiffies, req->timeout)) {
635 req->status = -ETIMEDOUT;
636 } else if (req->status == -ENODATA) {
637 /* requeue the work for retrying again */
638 spin_lock_bh(&lock);
639 if (!list_empty(&req->list))
640 set_timeout(req, req->timeout);
641 spin_unlock_bh(&lock);
642 return;
643 }
644 }
645
646 req->callback(req->status, (struct sockaddr *)&req->src_addr,
647 req->addr, req->context);
648 req->callback = NULL;
649
650 spin_lock_bh(&lock);
651 /*
652 * Although the work will normally have been canceled by the workqueue,
653 * it can still be requeued as long as it is on the req_list.
654 */
655 cancel_delayed_work(&req->work);
656 if (!list_empty(&req->list)) {
657 list_del_init(&req->list);
658 kfree(req);
659 }
660 spin_unlock_bh(&lock);
661 }
662
rdma_resolve_ip(struct sockaddr * src_addr,const struct sockaddr * dst_addr,struct rdma_dev_addr * addr,unsigned long timeout_ms,void (* callback)(int status,struct sockaddr * src_addr,struct rdma_dev_addr * addr,void * context),bool resolve_by_gid_attr,void * context)663 int rdma_resolve_ip(struct sockaddr *src_addr, const struct sockaddr *dst_addr,
664 struct rdma_dev_addr *addr, unsigned long timeout_ms,
665 void (*callback)(int status, struct sockaddr *src_addr,
666 struct rdma_dev_addr *addr, void *context),
667 bool resolve_by_gid_attr, void *context)
668 {
669 struct sockaddr *src_in, *dst_in;
670 struct addr_req *req;
671 int ret = 0;
672
673 req = kzalloc(sizeof *req, GFP_KERNEL);
674 if (!req)
675 return -ENOMEM;
676
677 src_in = (struct sockaddr *) &req->src_addr;
678 dst_in = (struct sockaddr *) &req->dst_addr;
679
680 if (src_addr) {
681 if (src_addr->sa_family != dst_addr->sa_family) {
682 ret = -EINVAL;
683 goto err;
684 }
685
686 memcpy(src_in, src_addr, rdma_addr_size(src_addr));
687 } else {
688 src_in->sa_family = dst_addr->sa_family;
689 }
690
691 memcpy(dst_in, dst_addr, rdma_addr_size(dst_addr));
692 req->addr = addr;
693 req->callback = callback;
694 req->context = context;
695 req->resolve_by_gid_attr = resolve_by_gid_attr;
696 INIT_DELAYED_WORK(&req->work, process_one_req);
697 req->seq = (u32)atomic_inc_return(&ib_nl_addr_request_seq);
698
699 req->status = addr_resolve(src_in, dst_in, addr, true,
700 req->resolve_by_gid_attr, req->seq);
701 switch (req->status) {
702 case 0:
703 req->timeout = jiffies;
704 queue_req(req);
705 break;
706 case -ENODATA:
707 req->timeout = msecs_to_jiffies(timeout_ms) + jiffies;
708 queue_req(req);
709 break;
710 default:
711 ret = req->status;
712 goto err;
713 }
714 return ret;
715 err:
716 kfree(req);
717 return ret;
718 }
719 EXPORT_SYMBOL(rdma_resolve_ip);
720
roce_resolve_route_from_path(struct sa_path_rec * rec,const struct ib_gid_attr * attr)721 int roce_resolve_route_from_path(struct sa_path_rec *rec,
722 const struct ib_gid_attr *attr)
723 {
724 union {
725 struct sockaddr _sockaddr;
726 struct sockaddr_in _sockaddr_in;
727 struct sockaddr_in6 _sockaddr_in6;
728 } sgid, dgid;
729 struct rdma_dev_addr dev_addr = {};
730 int ret;
731
732 might_sleep();
733
734 if (rec->roce.route_resolved)
735 return 0;
736
737 rdma_gid2ip((struct sockaddr *)&sgid, &rec->sgid);
738 rdma_gid2ip((struct sockaddr *)&dgid, &rec->dgid);
739
740 if (sgid._sockaddr.sa_family != dgid._sockaddr.sa_family)
741 return -EINVAL;
742
743 if (!attr || !attr->ndev)
744 return -EINVAL;
745
746 dev_addr.net = &init_net;
747 dev_addr.sgid_attr = attr;
748
749 ret = addr_resolve((struct sockaddr *)&sgid, (struct sockaddr *)&dgid,
750 &dev_addr, false, true, 0);
751 if (ret)
752 return ret;
753
754 if ((dev_addr.network == RDMA_NETWORK_IPV4 ||
755 dev_addr.network == RDMA_NETWORK_IPV6) &&
756 rec->rec_type != SA_PATH_REC_TYPE_ROCE_V2)
757 return -EINVAL;
758
759 rec->roce.route_resolved = true;
760 return 0;
761 }
762
763 /**
764 * rdma_addr_cancel - Cancel resolve ip request
765 * @addr: Pointer to address structure given previously
766 * during rdma_resolve_ip().
767 * rdma_addr_cancel() is synchronous function which cancels any pending
768 * request if there is any.
769 */
rdma_addr_cancel(struct rdma_dev_addr * addr)770 void rdma_addr_cancel(struct rdma_dev_addr *addr)
771 {
772 struct addr_req *req, *temp_req;
773 struct addr_req *found = NULL;
774
775 spin_lock_bh(&lock);
776 list_for_each_entry_safe(req, temp_req, &req_list, list) {
777 if (req->addr == addr) {
778 /*
779 * Removing from the list means we take ownership of
780 * the req
781 */
782 list_del_init(&req->list);
783 found = req;
784 break;
785 }
786 }
787 spin_unlock_bh(&lock);
788
789 if (!found)
790 return;
791
792 /*
793 * sync canceling the work after removing it from the req_list
794 * guarentees no work is running and none will be started.
795 */
796 cancel_delayed_work_sync(&found->work);
797 kfree(found);
798 }
799 EXPORT_SYMBOL(rdma_addr_cancel);
800
801 struct resolve_cb_context {
802 struct completion comp;
803 int status;
804 };
805
resolve_cb(int status,struct sockaddr * src_addr,struct rdma_dev_addr * addr,void * context)806 static void resolve_cb(int status, struct sockaddr *src_addr,
807 struct rdma_dev_addr *addr, void *context)
808 {
809 ((struct resolve_cb_context *)context)->status = status;
810 complete(&((struct resolve_cb_context *)context)->comp);
811 }
812
rdma_addr_find_l2_eth_by_grh(const union ib_gid * sgid,const union ib_gid * dgid,u8 * dmac,const struct ib_gid_attr * sgid_attr,int * hoplimit)813 int rdma_addr_find_l2_eth_by_grh(const union ib_gid *sgid,
814 const union ib_gid *dgid,
815 u8 *dmac, const struct ib_gid_attr *sgid_attr,
816 int *hoplimit)
817 {
818 struct rdma_dev_addr dev_addr;
819 struct resolve_cb_context ctx;
820 union {
821 struct sockaddr_in _sockaddr_in;
822 struct sockaddr_in6 _sockaddr_in6;
823 } sgid_addr, dgid_addr;
824 int ret;
825
826 rdma_gid2ip((struct sockaddr *)&sgid_addr, sgid);
827 rdma_gid2ip((struct sockaddr *)&dgid_addr, dgid);
828
829 memset(&dev_addr, 0, sizeof(dev_addr));
830 dev_addr.net = &init_net;
831 dev_addr.sgid_attr = sgid_attr;
832
833 init_completion(&ctx.comp);
834 ret = rdma_resolve_ip((struct sockaddr *)&sgid_addr,
835 (struct sockaddr *)&dgid_addr, &dev_addr, 1000,
836 resolve_cb, true, &ctx);
837 if (ret)
838 return ret;
839
840 wait_for_completion(&ctx.comp);
841
842 ret = ctx.status;
843 if (ret)
844 return ret;
845
846 memcpy(dmac, dev_addr.dst_dev_addr, ETH_ALEN);
847 *hoplimit = dev_addr.hoplimit;
848 return 0;
849 }
850
netevent_callback(struct notifier_block * self,unsigned long event,void * ctx)851 static int netevent_callback(struct notifier_block *self, unsigned long event,
852 void *ctx)
853 {
854 struct addr_req *req;
855
856 if (event == NETEVENT_NEIGH_UPDATE) {
857 struct neighbour *neigh = ctx;
858
859 if (neigh->nud_state & NUD_VALID) {
860 spin_lock_bh(&lock);
861 list_for_each_entry(req, &req_list, list)
862 set_timeout(req, jiffies);
863 spin_unlock_bh(&lock);
864 }
865 }
866 return 0;
867 }
868
869 static struct notifier_block nb = {
870 .notifier_call = netevent_callback
871 };
872
addr_init(void)873 int addr_init(void)
874 {
875 addr_wq = alloc_ordered_workqueue("ib_addr", 0);
876 if (!addr_wq)
877 return -ENOMEM;
878
879 register_netevent_notifier(&nb);
880
881 return 0;
882 }
883
addr_cleanup(void)884 void addr_cleanup(void)
885 {
886 unregister_netevent_notifier(&nb);
887 destroy_workqueue(addr_wq);
888 WARN_ON(!list_empty(&req_list));
889 }
890