1 /*
2 * Generic ring buffer
3 *
4 * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
5 */
6 #include <linux/ring_buffer.h>
7 #include <linux/trace_clock.h>
8 #include <linux/spinlock.h>
9 #include <linux/debugfs.h>
10 #include <linux/uaccess.h>
11 #include <linux/hardirq.h>
12 #include <linux/kmemcheck.h>
13 #include <linux/module.h>
14 #include <linux/percpu.h>
15 #include <linux/mutex.h>
16 #include <linux/slab.h>
17 #include <linux/init.h>
18 #include <linux/hash.h>
19 #include <linux/list.h>
20 #include <linux/cpu.h>
21 #include <linux/fs.h>
22
23 #include <asm/local.h>
24 #include "trace.h"
25
26 /*
27 * The ring buffer header is special. We must manually up keep it.
28 */
ring_buffer_print_entry_header(struct trace_seq * s)29 int ring_buffer_print_entry_header(struct trace_seq *s)
30 {
31 int ret;
32
33 ret = trace_seq_printf(s, "# compressed entry header\n");
34 ret = trace_seq_printf(s, "\ttype_len : 5 bits\n");
35 ret = trace_seq_printf(s, "\ttime_delta : 27 bits\n");
36 ret = trace_seq_printf(s, "\tarray : 32 bits\n");
37 ret = trace_seq_printf(s, "\n");
38 ret = trace_seq_printf(s, "\tpadding : type == %d\n",
39 RINGBUF_TYPE_PADDING);
40 ret = trace_seq_printf(s, "\ttime_extend : type == %d\n",
41 RINGBUF_TYPE_TIME_EXTEND);
42 ret = trace_seq_printf(s, "\tdata max type_len == %d\n",
43 RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
44
45 return ret;
46 }
47
48 /*
49 * The ring buffer is made up of a list of pages. A separate list of pages is
50 * allocated for each CPU. A writer may only write to a buffer that is
51 * associated with the CPU it is currently executing on. A reader may read
52 * from any per cpu buffer.
53 *
54 * The reader is special. For each per cpu buffer, the reader has its own
55 * reader page. When a reader has read the entire reader page, this reader
56 * page is swapped with another page in the ring buffer.
57 *
58 * Now, as long as the writer is off the reader page, the reader can do what
59 * ever it wants with that page. The writer will never write to that page
60 * again (as long as it is out of the ring buffer).
61 *
62 * Here's some silly ASCII art.
63 *
64 * +------+
65 * |reader| RING BUFFER
66 * |page |
67 * +------+ +---+ +---+ +---+
68 * | |-->| |-->| |
69 * +---+ +---+ +---+
70 * ^ |
71 * | |
72 * +---------------+
73 *
74 *
75 * +------+
76 * |reader| RING BUFFER
77 * |page |------------------v
78 * +------+ +---+ +---+ +---+
79 * | |-->| |-->| |
80 * +---+ +---+ +---+
81 * ^ |
82 * | |
83 * +---------------+
84 *
85 *
86 * +------+
87 * |reader| RING BUFFER
88 * |page |------------------v
89 * +------+ +---+ +---+ +---+
90 * ^ | |-->| |-->| |
91 * | +---+ +---+ +---+
92 * | |
93 * | |
94 * +------------------------------+
95 *
96 *
97 * +------+
98 * |buffer| RING BUFFER
99 * |page |------------------v
100 * +------+ +---+ +---+ +---+
101 * ^ | | | |-->| |
102 * | New +---+ +---+ +---+
103 * | Reader------^ |
104 * | page |
105 * +------------------------------+
106 *
107 *
108 * After we make this swap, the reader can hand this page off to the splice
109 * code and be done with it. It can even allocate a new page if it needs to
110 * and swap that into the ring buffer.
111 *
112 * We will be using cmpxchg soon to make all this lockless.
113 *
114 */
115
116 /*
117 * A fast way to enable or disable all ring buffers is to
118 * call tracing_on or tracing_off. Turning off the ring buffers
119 * prevents all ring buffers from being recorded to.
120 * Turning this switch on, makes it OK to write to the
121 * ring buffer, if the ring buffer is enabled itself.
122 *
123 * There's three layers that must be on in order to write
124 * to the ring buffer.
125 *
126 * 1) This global flag must be set.
127 * 2) The ring buffer must be enabled for recording.
128 * 3) The per cpu buffer must be enabled for recording.
129 *
130 * In case of an anomaly, this global flag has a bit set that
131 * will permantly disable all ring buffers.
132 */
133
134 /*
135 * Global flag to disable all recording to ring buffers
136 * This has two bits: ON, DISABLED
137 *
138 * ON DISABLED
139 * ---- ----------
140 * 0 0 : ring buffers are off
141 * 1 0 : ring buffers are on
142 * X 1 : ring buffers are permanently disabled
143 */
144
145 enum {
146 RB_BUFFERS_ON_BIT = 0,
147 RB_BUFFERS_DISABLED_BIT = 1,
148 };
149
150 enum {
151 RB_BUFFERS_ON = 1 << RB_BUFFERS_ON_BIT,
152 RB_BUFFERS_DISABLED = 1 << RB_BUFFERS_DISABLED_BIT,
153 };
154
155 static unsigned long ring_buffer_flags __read_mostly = RB_BUFFERS_ON;
156
157 #define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
158
159 /**
160 * tracing_on - enable all tracing buffers
161 *
162 * This function enables all tracing buffers that may have been
163 * disabled with tracing_off.
164 */
tracing_on(void)165 void tracing_on(void)
166 {
167 set_bit(RB_BUFFERS_ON_BIT, &ring_buffer_flags);
168 }
169 EXPORT_SYMBOL_GPL(tracing_on);
170
171 /**
172 * tracing_off - turn off all tracing buffers
173 *
174 * This function stops all tracing buffers from recording data.
175 * It does not disable any overhead the tracers themselves may
176 * be causing. This function simply causes all recording to
177 * the ring buffers to fail.
178 */
tracing_off(void)179 void tracing_off(void)
180 {
181 clear_bit(RB_BUFFERS_ON_BIT, &ring_buffer_flags);
182 }
183 EXPORT_SYMBOL_GPL(tracing_off);
184
185 /**
186 * tracing_off_permanent - permanently disable ring buffers
187 *
188 * This function, once called, will disable all ring buffers
189 * permanently.
190 */
tracing_off_permanent(void)191 void tracing_off_permanent(void)
192 {
193 set_bit(RB_BUFFERS_DISABLED_BIT, &ring_buffer_flags);
194 }
195
196 /**
197 * tracing_is_on - show state of ring buffers enabled
198 */
tracing_is_on(void)199 int tracing_is_on(void)
200 {
201 return ring_buffer_flags == RB_BUFFERS_ON;
202 }
203 EXPORT_SYMBOL_GPL(tracing_is_on);
204
205 #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
206 #define RB_ALIGNMENT 4U
207 #define RB_MAX_SMALL_DATA (RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
208 #define RB_EVNT_MIN_SIZE 8U /* two 32bit words */
209
210 #if !defined(CONFIG_64BIT) || defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)
211 # define RB_FORCE_8BYTE_ALIGNMENT 0
212 # define RB_ARCH_ALIGNMENT RB_ALIGNMENT
213 #else
214 # define RB_FORCE_8BYTE_ALIGNMENT 1
215 # define RB_ARCH_ALIGNMENT 8U
216 #endif
217
218 /* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
219 #define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
220
221 enum {
222 RB_LEN_TIME_EXTEND = 8,
223 RB_LEN_TIME_STAMP = 16,
224 };
225
226 #define skip_time_extend(event) \
227 ((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND))
228
rb_null_event(struct ring_buffer_event * event)229 static inline int rb_null_event(struct ring_buffer_event *event)
230 {
231 return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta;
232 }
233
rb_event_set_padding(struct ring_buffer_event * event)234 static void rb_event_set_padding(struct ring_buffer_event *event)
235 {
236 /* padding has a NULL time_delta */
237 event->type_len = RINGBUF_TYPE_PADDING;
238 event->time_delta = 0;
239 }
240
241 static unsigned
rb_event_data_length(struct ring_buffer_event * event)242 rb_event_data_length(struct ring_buffer_event *event)
243 {
244 unsigned length;
245
246 if (event->type_len)
247 length = event->type_len * RB_ALIGNMENT;
248 else
249 length = event->array[0];
250 return length + RB_EVNT_HDR_SIZE;
251 }
252
253 /*
254 * Return the length of the given event. Will return
255 * the length of the time extend if the event is a
256 * time extend.
257 */
258 static inline unsigned
rb_event_length(struct ring_buffer_event * event)259 rb_event_length(struct ring_buffer_event *event)
260 {
261 switch (event->type_len) {
262 case RINGBUF_TYPE_PADDING:
263 if (rb_null_event(event))
264 /* undefined */
265 return -1;
266 return event->array[0] + RB_EVNT_HDR_SIZE;
267
268 case RINGBUF_TYPE_TIME_EXTEND:
269 return RB_LEN_TIME_EXTEND;
270
271 case RINGBUF_TYPE_TIME_STAMP:
272 return RB_LEN_TIME_STAMP;
273
274 case RINGBUF_TYPE_DATA:
275 return rb_event_data_length(event);
276 default:
277 BUG();
278 }
279 /* not hit */
280 return 0;
281 }
282
283 /*
284 * Return total length of time extend and data,
285 * or just the event length for all other events.
286 */
287 static inline unsigned
rb_event_ts_length(struct ring_buffer_event * event)288 rb_event_ts_length(struct ring_buffer_event *event)
289 {
290 unsigned len = 0;
291
292 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
293 /* time extends include the data event after it */
294 len = RB_LEN_TIME_EXTEND;
295 event = skip_time_extend(event);
296 }
297 return len + rb_event_length(event);
298 }
299
300 /**
301 * ring_buffer_event_length - return the length of the event
302 * @event: the event to get the length of
303 *
304 * Returns the size of the data load of a data event.
305 * If the event is something other than a data event, it
306 * returns the size of the event itself. With the exception
307 * of a TIME EXTEND, where it still returns the size of the
308 * data load of the data event after it.
309 */
ring_buffer_event_length(struct ring_buffer_event * event)310 unsigned ring_buffer_event_length(struct ring_buffer_event *event)
311 {
312 unsigned length;
313
314 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
315 event = skip_time_extend(event);
316
317 length = rb_event_length(event);
318 if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
319 return length;
320 length -= RB_EVNT_HDR_SIZE;
321 if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
322 length -= sizeof(event->array[0]);
323 return length;
324 }
325 EXPORT_SYMBOL_GPL(ring_buffer_event_length);
326
327 /* inline for ring buffer fast paths */
328 static void *
rb_event_data(struct ring_buffer_event * event)329 rb_event_data(struct ring_buffer_event *event)
330 {
331 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
332 event = skip_time_extend(event);
333 BUG_ON(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
334 /* If length is in len field, then array[0] has the data */
335 if (event->type_len)
336 return (void *)&event->array[0];
337 /* Otherwise length is in array[0] and array[1] has the data */
338 return (void *)&event->array[1];
339 }
340
341 /**
342 * ring_buffer_event_data - return the data of the event
343 * @event: the event to get the data from
344 */
ring_buffer_event_data(struct ring_buffer_event * event)345 void *ring_buffer_event_data(struct ring_buffer_event *event)
346 {
347 return rb_event_data(event);
348 }
349 EXPORT_SYMBOL_GPL(ring_buffer_event_data);
350
351 #define for_each_buffer_cpu(buffer, cpu) \
352 for_each_cpu(cpu, buffer->cpumask)
353
354 #define TS_SHIFT 27
355 #define TS_MASK ((1ULL << TS_SHIFT) - 1)
356 #define TS_DELTA_TEST (~TS_MASK)
357
358 /* Flag when events were overwritten */
359 #define RB_MISSED_EVENTS (1 << 31)
360 /* Missed count stored at end */
361 #define RB_MISSED_STORED (1 << 30)
362
363 struct buffer_data_page {
364 u64 time_stamp; /* page time stamp */
365 local_t commit; /* write committed index */
366 unsigned char data[]; /* data of buffer page */
367 };
368
369 /*
370 * Note, the buffer_page list must be first. The buffer pages
371 * are allocated in cache lines, which means that each buffer
372 * page will be at the beginning of a cache line, and thus
373 * the least significant bits will be zero. We use this to
374 * add flags in the list struct pointers, to make the ring buffer
375 * lockless.
376 */
377 struct buffer_page {
378 struct list_head list; /* list of buffer pages */
379 local_t write; /* index for next write */
380 unsigned read; /* index for next read */
381 local_t entries; /* entries on this page */
382 unsigned long real_end; /* real end of data */
383 struct buffer_data_page *page; /* Actual data page */
384 };
385
386 /*
387 * The buffer page counters, write and entries, must be reset
388 * atomically when crossing page boundaries. To synchronize this
389 * update, two counters are inserted into the number. One is
390 * the actual counter for the write position or count on the page.
391 *
392 * The other is a counter of updaters. Before an update happens
393 * the update partition of the counter is incremented. This will
394 * allow the updater to update the counter atomically.
395 *
396 * The counter is 20 bits, and the state data is 12.
397 */
398 #define RB_WRITE_MASK 0xfffff
399 #define RB_WRITE_INTCNT (1 << 20)
400
rb_init_page(struct buffer_data_page * bpage)401 static void rb_init_page(struct buffer_data_page *bpage)
402 {
403 local_set(&bpage->commit, 0);
404 }
405
406 /**
407 * ring_buffer_page_len - the size of data on the page.
408 * @page: The page to read
409 *
410 * Returns the amount of data on the page, including buffer page header.
411 */
ring_buffer_page_len(void * page)412 size_t ring_buffer_page_len(void *page)
413 {
414 return local_read(&((struct buffer_data_page *)page)->commit)
415 + BUF_PAGE_HDR_SIZE;
416 }
417
418 /*
419 * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
420 * this issue out.
421 */
free_buffer_page(struct buffer_page * bpage)422 static void free_buffer_page(struct buffer_page *bpage)
423 {
424 free_page((unsigned long)bpage->page);
425 kfree(bpage);
426 }
427
428 /*
429 * We need to fit the time_stamp delta into 27 bits.
430 */
test_time_stamp(u64 delta)431 static inline int test_time_stamp(u64 delta)
432 {
433 if (delta & TS_DELTA_TEST)
434 return 1;
435 return 0;
436 }
437
438 #define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE)
439
440 /* Max payload is BUF_PAGE_SIZE - header (8bytes) */
441 #define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2))
442
ring_buffer_print_page_header(struct trace_seq * s)443 int ring_buffer_print_page_header(struct trace_seq *s)
444 {
445 struct buffer_data_page field;
446 int ret;
447
448 ret = trace_seq_printf(s, "\tfield: u64 timestamp;\t"
449 "offset:0;\tsize:%u;\tsigned:%u;\n",
450 (unsigned int)sizeof(field.time_stamp),
451 (unsigned int)is_signed_type(u64));
452
453 ret = trace_seq_printf(s, "\tfield: local_t commit;\t"
454 "offset:%u;\tsize:%u;\tsigned:%u;\n",
455 (unsigned int)offsetof(typeof(field), commit),
456 (unsigned int)sizeof(field.commit),
457 (unsigned int)is_signed_type(long));
458
459 ret = trace_seq_printf(s, "\tfield: int overwrite;\t"
460 "offset:%u;\tsize:%u;\tsigned:%u;\n",
461 (unsigned int)offsetof(typeof(field), commit),
462 1,
463 (unsigned int)is_signed_type(long));
464
465 ret = trace_seq_printf(s, "\tfield: char data;\t"
466 "offset:%u;\tsize:%u;\tsigned:%u;\n",
467 (unsigned int)offsetof(typeof(field), data),
468 (unsigned int)BUF_PAGE_SIZE,
469 (unsigned int)is_signed_type(char));
470
471 return ret;
472 }
473
474 /*
475 * head_page == tail_page && head == tail then buffer is empty.
476 */
477 struct ring_buffer_per_cpu {
478 int cpu;
479 atomic_t record_disabled;
480 struct ring_buffer *buffer;
481 spinlock_t reader_lock; /* serialize readers */
482 arch_spinlock_t lock;
483 struct lock_class_key lock_key;
484 struct list_head *pages;
485 struct buffer_page *head_page; /* read from head */
486 struct buffer_page *tail_page; /* write to tail */
487 struct buffer_page *commit_page; /* committed pages */
488 struct buffer_page *reader_page;
489 unsigned long lost_events;
490 unsigned long last_overrun;
491 local_t commit_overrun;
492 local_t overrun;
493 local_t entries;
494 local_t committing;
495 local_t commits;
496 unsigned long read;
497 u64 write_stamp;
498 u64 read_stamp;
499 };
500
501 struct ring_buffer {
502 unsigned pages;
503 unsigned flags;
504 int cpus;
505 atomic_t record_disabled;
506 cpumask_var_t cpumask;
507
508 struct lock_class_key *reader_lock_key;
509
510 struct mutex mutex;
511
512 struct ring_buffer_per_cpu **buffers;
513
514 #ifdef CONFIG_HOTPLUG_CPU
515 struct notifier_block cpu_notify;
516 #endif
517 u64 (*clock)(void);
518 };
519
520 struct ring_buffer_iter {
521 struct ring_buffer_per_cpu *cpu_buffer;
522 unsigned long head;
523 struct buffer_page *head_page;
524 struct buffer_page *cache_reader_page;
525 unsigned long cache_read;
526 u64 read_stamp;
527 };
528
529 /* buffer may be either ring_buffer or ring_buffer_per_cpu */
530 #define RB_WARN_ON(b, cond) \
531 ({ \
532 int _____ret = unlikely(cond); \
533 if (_____ret) { \
534 if (__same_type(*(b), struct ring_buffer_per_cpu)) { \
535 struct ring_buffer_per_cpu *__b = \
536 (void *)b; \
537 atomic_inc(&__b->buffer->record_disabled); \
538 } else \
539 atomic_inc(&b->record_disabled); \
540 WARN_ON(1); \
541 } \
542 _____ret; \
543 })
544
545 /* Up this if you want to test the TIME_EXTENTS and normalization */
546 #define DEBUG_SHIFT 0
547
rb_time_stamp(struct ring_buffer * buffer)548 static inline u64 rb_time_stamp(struct ring_buffer *buffer)
549 {
550 /* shift to debug/test normalization and TIME_EXTENTS */
551 return buffer->clock() << DEBUG_SHIFT;
552 }
553
ring_buffer_time_stamp(struct ring_buffer * buffer,int cpu)554 u64 ring_buffer_time_stamp(struct ring_buffer *buffer, int cpu)
555 {
556 u64 time;
557
558 preempt_disable_notrace();
559 time = rb_time_stamp(buffer);
560 preempt_enable_no_resched_notrace();
561
562 return time;
563 }
564 EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
565
ring_buffer_normalize_time_stamp(struct ring_buffer * buffer,int cpu,u64 * ts)566 void ring_buffer_normalize_time_stamp(struct ring_buffer *buffer,
567 int cpu, u64 *ts)
568 {
569 /* Just stupid testing the normalize function and deltas */
570 *ts >>= DEBUG_SHIFT;
571 }
572 EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
573
574 /*
575 * Making the ring buffer lockless makes things tricky.
576 * Although writes only happen on the CPU that they are on,
577 * and they only need to worry about interrupts. Reads can
578 * happen on any CPU.
579 *
580 * The reader page is always off the ring buffer, but when the
581 * reader finishes with a page, it needs to swap its page with
582 * a new one from the buffer. The reader needs to take from
583 * the head (writes go to the tail). But if a writer is in overwrite
584 * mode and wraps, it must push the head page forward.
585 *
586 * Here lies the problem.
587 *
588 * The reader must be careful to replace only the head page, and
589 * not another one. As described at the top of the file in the
590 * ASCII art, the reader sets its old page to point to the next
591 * page after head. It then sets the page after head to point to
592 * the old reader page. But if the writer moves the head page
593 * during this operation, the reader could end up with the tail.
594 *
595 * We use cmpxchg to help prevent this race. We also do something
596 * special with the page before head. We set the LSB to 1.
597 *
598 * When the writer must push the page forward, it will clear the
599 * bit that points to the head page, move the head, and then set
600 * the bit that points to the new head page.
601 *
602 * We also don't want an interrupt coming in and moving the head
603 * page on another writer. Thus we use the second LSB to catch
604 * that too. Thus:
605 *
606 * head->list->prev->next bit 1 bit 0
607 * ------- -------
608 * Normal page 0 0
609 * Points to head page 0 1
610 * New head page 1 0
611 *
612 * Note we can not trust the prev pointer of the head page, because:
613 *
614 * +----+ +-----+ +-----+
615 * | |------>| T |---X--->| N |
616 * | |<------| | | |
617 * +----+ +-----+ +-----+
618 * ^ ^ |
619 * | +-----+ | |
620 * +----------| R |----------+ |
621 * | |<-----------+
622 * +-----+
623 *
624 * Key: ---X--> HEAD flag set in pointer
625 * T Tail page
626 * R Reader page
627 * N Next page
628 *
629 * (see __rb_reserve_next() to see where this happens)
630 *
631 * What the above shows is that the reader just swapped out
632 * the reader page with a page in the buffer, but before it
633 * could make the new header point back to the new page added
634 * it was preempted by a writer. The writer moved forward onto
635 * the new page added by the reader and is about to move forward
636 * again.
637 *
638 * You can see, it is legitimate for the previous pointer of
639 * the head (or any page) not to point back to itself. But only
640 * temporarially.
641 */
642
643 #define RB_PAGE_NORMAL 0UL
644 #define RB_PAGE_HEAD 1UL
645 #define RB_PAGE_UPDATE 2UL
646
647
648 #define RB_FLAG_MASK 3UL
649
650 /* PAGE_MOVED is not part of the mask */
651 #define RB_PAGE_MOVED 4UL
652
653 /*
654 * rb_list_head - remove any bit
655 */
rb_list_head(struct list_head * list)656 static struct list_head *rb_list_head(struct list_head *list)
657 {
658 unsigned long val = (unsigned long)list;
659
660 return (struct list_head *)(val & ~RB_FLAG_MASK);
661 }
662
663 /*
664 * rb_is_head_page - test if the given page is the head page
665 *
666 * Because the reader may move the head_page pointer, we can
667 * not trust what the head page is (it may be pointing to
668 * the reader page). But if the next page is a header page,
669 * its flags will be non zero.
670 */
671 static inline int
rb_is_head_page(struct ring_buffer_per_cpu * cpu_buffer,struct buffer_page * page,struct list_head * list)672 rb_is_head_page(struct ring_buffer_per_cpu *cpu_buffer,
673 struct buffer_page *page, struct list_head *list)
674 {
675 unsigned long val;
676
677 val = (unsigned long)list->next;
678
679 if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list)
680 return RB_PAGE_MOVED;
681
682 return val & RB_FLAG_MASK;
683 }
684
685 /*
686 * rb_is_reader_page
687 *
688 * The unique thing about the reader page, is that, if the
689 * writer is ever on it, the previous pointer never points
690 * back to the reader page.
691 */
rb_is_reader_page(struct buffer_page * page)692 static int rb_is_reader_page(struct buffer_page *page)
693 {
694 struct list_head *list = page->list.prev;
695
696 return rb_list_head(list->next) != &page->list;
697 }
698
699 /*
700 * rb_set_list_to_head - set a list_head to be pointing to head.
701 */
rb_set_list_to_head(struct ring_buffer_per_cpu * cpu_buffer,struct list_head * list)702 static void rb_set_list_to_head(struct ring_buffer_per_cpu *cpu_buffer,
703 struct list_head *list)
704 {
705 unsigned long *ptr;
706
707 ptr = (unsigned long *)&list->next;
708 *ptr |= RB_PAGE_HEAD;
709 *ptr &= ~RB_PAGE_UPDATE;
710 }
711
712 /*
713 * rb_head_page_activate - sets up head page
714 */
rb_head_page_activate(struct ring_buffer_per_cpu * cpu_buffer)715 static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer)
716 {
717 struct buffer_page *head;
718
719 head = cpu_buffer->head_page;
720 if (!head)
721 return;
722
723 /*
724 * Set the previous list pointer to have the HEAD flag.
725 */
726 rb_set_list_to_head(cpu_buffer, head->list.prev);
727 }
728
rb_list_head_clear(struct list_head * list)729 static void rb_list_head_clear(struct list_head *list)
730 {
731 unsigned long *ptr = (unsigned long *)&list->next;
732
733 *ptr &= ~RB_FLAG_MASK;
734 }
735
736 /*
737 * rb_head_page_dactivate - clears head page ptr (for free list)
738 */
739 static void
rb_head_page_deactivate(struct ring_buffer_per_cpu * cpu_buffer)740 rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer)
741 {
742 struct list_head *hd;
743
744 /* Go through the whole list and clear any pointers found. */
745 rb_list_head_clear(cpu_buffer->pages);
746
747 list_for_each(hd, cpu_buffer->pages)
748 rb_list_head_clear(hd);
749 }
750
rb_head_page_set(struct ring_buffer_per_cpu * cpu_buffer,struct buffer_page * head,struct buffer_page * prev,int old_flag,int new_flag)751 static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer,
752 struct buffer_page *head,
753 struct buffer_page *prev,
754 int old_flag, int new_flag)
755 {
756 struct list_head *list;
757 unsigned long val = (unsigned long)&head->list;
758 unsigned long ret;
759
760 list = &prev->list;
761
762 val &= ~RB_FLAG_MASK;
763
764 ret = cmpxchg((unsigned long *)&list->next,
765 val | old_flag, val | new_flag);
766
767 /* check if the reader took the page */
768 if ((ret & ~RB_FLAG_MASK) != val)
769 return RB_PAGE_MOVED;
770
771 return ret & RB_FLAG_MASK;
772 }
773
rb_head_page_set_update(struct ring_buffer_per_cpu * cpu_buffer,struct buffer_page * head,struct buffer_page * prev,int old_flag)774 static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer,
775 struct buffer_page *head,
776 struct buffer_page *prev,
777 int old_flag)
778 {
779 return rb_head_page_set(cpu_buffer, head, prev,
780 old_flag, RB_PAGE_UPDATE);
781 }
782
rb_head_page_set_head(struct ring_buffer_per_cpu * cpu_buffer,struct buffer_page * head,struct buffer_page * prev,int old_flag)783 static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer,
784 struct buffer_page *head,
785 struct buffer_page *prev,
786 int old_flag)
787 {
788 return rb_head_page_set(cpu_buffer, head, prev,
789 old_flag, RB_PAGE_HEAD);
790 }
791
rb_head_page_set_normal(struct ring_buffer_per_cpu * cpu_buffer,struct buffer_page * head,struct buffer_page * prev,int old_flag)792 static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer,
793 struct buffer_page *head,
794 struct buffer_page *prev,
795 int old_flag)
796 {
797 return rb_head_page_set(cpu_buffer, head, prev,
798 old_flag, RB_PAGE_NORMAL);
799 }
800
rb_inc_page(struct ring_buffer_per_cpu * cpu_buffer,struct buffer_page ** bpage)801 static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer,
802 struct buffer_page **bpage)
803 {
804 struct list_head *p = rb_list_head((*bpage)->list.next);
805
806 *bpage = list_entry(p, struct buffer_page, list);
807 }
808
809 static struct buffer_page *
rb_set_head_page(struct ring_buffer_per_cpu * cpu_buffer)810 rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer)
811 {
812 struct buffer_page *head;
813 struct buffer_page *page;
814 struct list_head *list;
815 int i;
816
817 if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page))
818 return NULL;
819
820 /* sanity check */
821 list = cpu_buffer->pages;
822 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list))
823 return NULL;
824
825 page = head = cpu_buffer->head_page;
826 /*
827 * It is possible that the writer moves the header behind
828 * where we started, and we miss in one loop.
829 * A second loop should grab the header, but we'll do
830 * three loops just because I'm paranoid.
831 */
832 for (i = 0; i < 3; i++) {
833 do {
834 if (rb_is_head_page(cpu_buffer, page, page->list.prev)) {
835 cpu_buffer->head_page = page;
836 return page;
837 }
838 rb_inc_page(cpu_buffer, &page);
839 } while (page != head);
840 }
841
842 RB_WARN_ON(cpu_buffer, 1);
843
844 return NULL;
845 }
846
rb_head_page_replace(struct buffer_page * old,struct buffer_page * new)847 static int rb_head_page_replace(struct buffer_page *old,
848 struct buffer_page *new)
849 {
850 unsigned long *ptr = (unsigned long *)&old->list.prev->next;
851 unsigned long val;
852 unsigned long ret;
853
854 val = *ptr & ~RB_FLAG_MASK;
855 val |= RB_PAGE_HEAD;
856
857 ret = cmpxchg(ptr, val, (unsigned long)&new->list);
858
859 return ret == val;
860 }
861
862 /*
863 * rb_tail_page_update - move the tail page forward
864 *
865 * Returns 1 if moved tail page, 0 if someone else did.
866 */
rb_tail_page_update(struct ring_buffer_per_cpu * cpu_buffer,struct buffer_page * tail_page,struct buffer_page * next_page)867 static int rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer,
868 struct buffer_page *tail_page,
869 struct buffer_page *next_page)
870 {
871 struct buffer_page *old_tail;
872 unsigned long old_entries;
873 unsigned long old_write;
874 int ret = 0;
875
876 /*
877 * The tail page now needs to be moved forward.
878 *
879 * We need to reset the tail page, but without messing
880 * with possible erasing of data brought in by interrupts
881 * that have moved the tail page and are currently on it.
882 *
883 * We add a counter to the write field to denote this.
884 */
885 old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write);
886 old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries);
887
888 /*
889 * Just make sure we have seen our old_write and synchronize
890 * with any interrupts that come in.
891 */
892 barrier();
893
894 /*
895 * If the tail page is still the same as what we think
896 * it is, then it is up to us to update the tail
897 * pointer.
898 */
899 if (tail_page == cpu_buffer->tail_page) {
900 /* Zero the write counter */
901 unsigned long val = old_write & ~RB_WRITE_MASK;
902 unsigned long eval = old_entries & ~RB_WRITE_MASK;
903
904 /*
905 * This will only succeed if an interrupt did
906 * not come in and change it. In which case, we
907 * do not want to modify it.
908 *
909 * We add (void) to let the compiler know that we do not care
910 * about the return value of these functions. We use the
911 * cmpxchg to only update if an interrupt did not already
912 * do it for us. If the cmpxchg fails, we don't care.
913 */
914 (void)local_cmpxchg(&next_page->write, old_write, val);
915 (void)local_cmpxchg(&next_page->entries, old_entries, eval);
916
917 /*
918 * No need to worry about races with clearing out the commit.
919 * it only can increment when a commit takes place. But that
920 * only happens in the outer most nested commit.
921 */
922 local_set(&next_page->page->commit, 0);
923
924 old_tail = cmpxchg(&cpu_buffer->tail_page,
925 tail_page, next_page);
926
927 if (old_tail == tail_page)
928 ret = 1;
929 }
930
931 return ret;
932 }
933
rb_check_bpage(struct ring_buffer_per_cpu * cpu_buffer,struct buffer_page * bpage)934 static int rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer,
935 struct buffer_page *bpage)
936 {
937 unsigned long val = (unsigned long)bpage;
938
939 if (RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK))
940 return 1;
941
942 return 0;
943 }
944
945 /**
946 * rb_check_list - make sure a pointer to a list has the last bits zero
947 */
rb_check_list(struct ring_buffer_per_cpu * cpu_buffer,struct list_head * list)948 static int rb_check_list(struct ring_buffer_per_cpu *cpu_buffer,
949 struct list_head *list)
950 {
951 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev) != list->prev))
952 return 1;
953 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->next) != list->next))
954 return 1;
955 return 0;
956 }
957
958 /**
959 * check_pages - integrity check of buffer pages
960 * @cpu_buffer: CPU buffer with pages to test
961 *
962 * As a safety measure we check to make sure the data pages have not
963 * been corrupted.
964 */
rb_check_pages(struct ring_buffer_per_cpu * cpu_buffer)965 static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
966 {
967 struct list_head *head = cpu_buffer->pages;
968 struct buffer_page *bpage, *tmp;
969
970 rb_head_page_deactivate(cpu_buffer);
971
972 if (RB_WARN_ON(cpu_buffer, head->next->prev != head))
973 return -1;
974 if (RB_WARN_ON(cpu_buffer, head->prev->next != head))
975 return -1;
976
977 if (rb_check_list(cpu_buffer, head))
978 return -1;
979
980 list_for_each_entry_safe(bpage, tmp, head, list) {
981 if (RB_WARN_ON(cpu_buffer,
982 bpage->list.next->prev != &bpage->list))
983 return -1;
984 if (RB_WARN_ON(cpu_buffer,
985 bpage->list.prev->next != &bpage->list))
986 return -1;
987 if (rb_check_list(cpu_buffer, &bpage->list))
988 return -1;
989 }
990
991 rb_head_page_activate(cpu_buffer);
992
993 return 0;
994 }
995
rb_allocate_pages(struct ring_buffer_per_cpu * cpu_buffer,unsigned nr_pages)996 static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
997 unsigned nr_pages)
998 {
999 struct buffer_page *bpage, *tmp;
1000 unsigned long addr;
1001 LIST_HEAD(pages);
1002 unsigned i;
1003
1004 WARN_ON(!nr_pages);
1005
1006 for (i = 0; i < nr_pages; i++) {
1007 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1008 GFP_KERNEL, cpu_to_node(cpu_buffer->cpu));
1009 if (!bpage)
1010 goto free_pages;
1011
1012 rb_check_bpage(cpu_buffer, bpage);
1013
1014 list_add(&bpage->list, &pages);
1015
1016 addr = __get_free_page(GFP_KERNEL);
1017 if (!addr)
1018 goto free_pages;
1019 bpage->page = (void *)addr;
1020 rb_init_page(bpage->page);
1021 }
1022
1023 /*
1024 * The ring buffer page list is a circular list that does not
1025 * start and end with a list head. All page list items point to
1026 * other pages.
1027 */
1028 cpu_buffer->pages = pages.next;
1029 list_del(&pages);
1030
1031 rb_check_pages(cpu_buffer);
1032
1033 return 0;
1034
1035 free_pages:
1036 list_for_each_entry_safe(bpage, tmp, &pages, list) {
1037 list_del_init(&bpage->list);
1038 free_buffer_page(bpage);
1039 }
1040 return -ENOMEM;
1041 }
1042
1043 static struct ring_buffer_per_cpu *
rb_allocate_cpu_buffer(struct ring_buffer * buffer,int cpu)1044 rb_allocate_cpu_buffer(struct ring_buffer *buffer, int cpu)
1045 {
1046 struct ring_buffer_per_cpu *cpu_buffer;
1047 struct buffer_page *bpage;
1048 unsigned long addr;
1049 int ret;
1050
1051 cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
1052 GFP_KERNEL, cpu_to_node(cpu));
1053 if (!cpu_buffer)
1054 return NULL;
1055
1056 cpu_buffer->cpu = cpu;
1057 cpu_buffer->buffer = buffer;
1058 spin_lock_init(&cpu_buffer->reader_lock);
1059 lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key);
1060 cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
1061
1062 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1063 GFP_KERNEL, cpu_to_node(cpu));
1064 if (!bpage)
1065 goto fail_free_buffer;
1066
1067 rb_check_bpage(cpu_buffer, bpage);
1068
1069 cpu_buffer->reader_page = bpage;
1070 addr = __get_free_page(GFP_KERNEL);
1071 if (!addr)
1072 goto fail_free_reader;
1073 bpage->page = (void *)addr;
1074 rb_init_page(bpage->page);
1075
1076 INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
1077
1078 ret = rb_allocate_pages(cpu_buffer, buffer->pages);
1079 if (ret < 0)
1080 goto fail_free_reader;
1081
1082 cpu_buffer->head_page
1083 = list_entry(cpu_buffer->pages, struct buffer_page, list);
1084 cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
1085
1086 rb_head_page_activate(cpu_buffer);
1087
1088 return cpu_buffer;
1089
1090 fail_free_reader:
1091 free_buffer_page(cpu_buffer->reader_page);
1092
1093 fail_free_buffer:
1094 kfree(cpu_buffer);
1095 return NULL;
1096 }
1097
rb_free_cpu_buffer(struct ring_buffer_per_cpu * cpu_buffer)1098 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
1099 {
1100 struct list_head *head = cpu_buffer->pages;
1101 struct buffer_page *bpage, *tmp;
1102
1103 free_buffer_page(cpu_buffer->reader_page);
1104
1105 rb_head_page_deactivate(cpu_buffer);
1106
1107 if (head) {
1108 list_for_each_entry_safe(bpage, tmp, head, list) {
1109 list_del_init(&bpage->list);
1110 free_buffer_page(bpage);
1111 }
1112 bpage = list_entry(head, struct buffer_page, list);
1113 free_buffer_page(bpage);
1114 }
1115
1116 kfree(cpu_buffer);
1117 }
1118
1119 #ifdef CONFIG_HOTPLUG_CPU
1120 static int rb_cpu_notify(struct notifier_block *self,
1121 unsigned long action, void *hcpu);
1122 #endif
1123
1124 /**
1125 * ring_buffer_alloc - allocate a new ring_buffer
1126 * @size: the size in bytes per cpu that is needed.
1127 * @flags: attributes to set for the ring buffer.
1128 *
1129 * Currently the only flag that is available is the RB_FL_OVERWRITE
1130 * flag. This flag means that the buffer will overwrite old data
1131 * when the buffer wraps. If this flag is not set, the buffer will
1132 * drop data when the tail hits the head.
1133 */
__ring_buffer_alloc(unsigned long size,unsigned flags,struct lock_class_key * key)1134 struct ring_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags,
1135 struct lock_class_key *key)
1136 {
1137 struct ring_buffer *buffer;
1138 int bsize;
1139 int cpu;
1140
1141 /* keep it in its own cache line */
1142 buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
1143 GFP_KERNEL);
1144 if (!buffer)
1145 return NULL;
1146
1147 if (!alloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
1148 goto fail_free_buffer;
1149
1150 buffer->pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1151 buffer->flags = flags;
1152 buffer->clock = trace_clock_local;
1153 buffer->reader_lock_key = key;
1154
1155 /* need at least two pages */
1156 if (buffer->pages < 2)
1157 buffer->pages = 2;
1158
1159 /*
1160 * In case of non-hotplug cpu, if the ring-buffer is allocated
1161 * in early initcall, it will not be notified of secondary cpus.
1162 * In that off case, we need to allocate for all possible cpus.
1163 */
1164 #ifdef CONFIG_HOTPLUG_CPU
1165 get_online_cpus();
1166 cpumask_copy(buffer->cpumask, cpu_online_mask);
1167 #else
1168 cpumask_copy(buffer->cpumask, cpu_possible_mask);
1169 #endif
1170 buffer->cpus = nr_cpu_ids;
1171
1172 bsize = sizeof(void *) * nr_cpu_ids;
1173 buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
1174 GFP_KERNEL);
1175 if (!buffer->buffers)
1176 goto fail_free_cpumask;
1177
1178 for_each_buffer_cpu(buffer, cpu) {
1179 buffer->buffers[cpu] =
1180 rb_allocate_cpu_buffer(buffer, cpu);
1181 if (!buffer->buffers[cpu])
1182 goto fail_free_buffers;
1183 }
1184
1185 #ifdef CONFIG_HOTPLUG_CPU
1186 buffer->cpu_notify.notifier_call = rb_cpu_notify;
1187 buffer->cpu_notify.priority = 0;
1188 register_cpu_notifier(&buffer->cpu_notify);
1189 #endif
1190
1191 put_online_cpus();
1192 mutex_init(&buffer->mutex);
1193
1194 return buffer;
1195
1196 fail_free_buffers:
1197 for_each_buffer_cpu(buffer, cpu) {
1198 if (buffer->buffers[cpu])
1199 rb_free_cpu_buffer(buffer->buffers[cpu]);
1200 }
1201 kfree(buffer->buffers);
1202
1203 fail_free_cpumask:
1204 free_cpumask_var(buffer->cpumask);
1205 put_online_cpus();
1206
1207 fail_free_buffer:
1208 kfree(buffer);
1209 return NULL;
1210 }
1211 EXPORT_SYMBOL_GPL(__ring_buffer_alloc);
1212
1213 /**
1214 * ring_buffer_free - free a ring buffer.
1215 * @buffer: the buffer to free.
1216 */
1217 void
ring_buffer_free(struct ring_buffer * buffer)1218 ring_buffer_free(struct ring_buffer *buffer)
1219 {
1220 int cpu;
1221
1222 get_online_cpus();
1223
1224 #ifdef CONFIG_HOTPLUG_CPU
1225 unregister_cpu_notifier(&buffer->cpu_notify);
1226 #endif
1227
1228 for_each_buffer_cpu(buffer, cpu)
1229 rb_free_cpu_buffer(buffer->buffers[cpu]);
1230
1231 put_online_cpus();
1232
1233 kfree(buffer->buffers);
1234 free_cpumask_var(buffer->cpumask);
1235
1236 kfree(buffer);
1237 }
1238 EXPORT_SYMBOL_GPL(ring_buffer_free);
1239
ring_buffer_set_clock(struct ring_buffer * buffer,u64 (* clock)(void))1240 void ring_buffer_set_clock(struct ring_buffer *buffer,
1241 u64 (*clock)(void))
1242 {
1243 buffer->clock = clock;
1244 }
1245
1246 static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
1247
1248 static void
rb_remove_pages(struct ring_buffer_per_cpu * cpu_buffer,unsigned nr_pages)1249 rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned nr_pages)
1250 {
1251 struct buffer_page *bpage;
1252 struct list_head *p;
1253 unsigned i;
1254
1255 spin_lock_irq(&cpu_buffer->reader_lock);
1256 rb_head_page_deactivate(cpu_buffer);
1257
1258 for (i = 0; i < nr_pages; i++) {
1259 if (RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages)))
1260 goto out;
1261 p = cpu_buffer->pages->next;
1262 bpage = list_entry(p, struct buffer_page, list);
1263 list_del_init(&bpage->list);
1264 free_buffer_page(bpage);
1265 }
1266 if (RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages)))
1267 goto out;
1268
1269 rb_reset_cpu(cpu_buffer);
1270 rb_check_pages(cpu_buffer);
1271
1272 out:
1273 spin_unlock_irq(&cpu_buffer->reader_lock);
1274 }
1275
1276 static void
rb_insert_pages(struct ring_buffer_per_cpu * cpu_buffer,struct list_head * pages,unsigned nr_pages)1277 rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer,
1278 struct list_head *pages, unsigned nr_pages)
1279 {
1280 struct buffer_page *bpage;
1281 struct list_head *p;
1282 unsigned i;
1283
1284 spin_lock_irq(&cpu_buffer->reader_lock);
1285 rb_head_page_deactivate(cpu_buffer);
1286
1287 for (i = 0; i < nr_pages; i++) {
1288 if (RB_WARN_ON(cpu_buffer, list_empty(pages)))
1289 goto out;
1290 p = pages->next;
1291 bpage = list_entry(p, struct buffer_page, list);
1292 list_del_init(&bpage->list);
1293 list_add_tail(&bpage->list, cpu_buffer->pages);
1294 }
1295 rb_reset_cpu(cpu_buffer);
1296 rb_check_pages(cpu_buffer);
1297
1298 out:
1299 spin_unlock_irq(&cpu_buffer->reader_lock);
1300 }
1301
1302 /**
1303 * ring_buffer_resize - resize the ring buffer
1304 * @buffer: the buffer to resize.
1305 * @size: the new size.
1306 *
1307 * Minimum size is 2 * BUF_PAGE_SIZE.
1308 *
1309 * Returns -1 on failure.
1310 */
ring_buffer_resize(struct ring_buffer * buffer,unsigned long size)1311 int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size)
1312 {
1313 struct ring_buffer_per_cpu *cpu_buffer;
1314 unsigned nr_pages, rm_pages, new_pages;
1315 struct buffer_page *bpage, *tmp;
1316 unsigned long buffer_size;
1317 unsigned long addr;
1318 LIST_HEAD(pages);
1319 int i, cpu;
1320
1321 /*
1322 * Always succeed at resizing a non-existent buffer:
1323 */
1324 if (!buffer)
1325 return size;
1326
1327 size = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1328 size *= BUF_PAGE_SIZE;
1329 buffer_size = buffer->pages * BUF_PAGE_SIZE;
1330
1331 /* we need a minimum of two pages */
1332 if (size < BUF_PAGE_SIZE * 2)
1333 size = BUF_PAGE_SIZE * 2;
1334
1335 if (size == buffer_size)
1336 return size;
1337
1338 atomic_inc(&buffer->record_disabled);
1339
1340 /* Make sure all writers are done with this buffer. */
1341 synchronize_sched();
1342
1343 mutex_lock(&buffer->mutex);
1344 get_online_cpus();
1345
1346 nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1347
1348 if (size < buffer_size) {
1349
1350 /* easy case, just free pages */
1351 if (RB_WARN_ON(buffer, nr_pages >= buffer->pages))
1352 goto out_fail;
1353
1354 rm_pages = buffer->pages - nr_pages;
1355
1356 for_each_buffer_cpu(buffer, cpu) {
1357 cpu_buffer = buffer->buffers[cpu];
1358 rb_remove_pages(cpu_buffer, rm_pages);
1359 }
1360 goto out;
1361 }
1362
1363 /*
1364 * This is a bit more difficult. We only want to add pages
1365 * when we can allocate enough for all CPUs. We do this
1366 * by allocating all the pages and storing them on a local
1367 * link list. If we succeed in our allocation, then we
1368 * add these pages to the cpu_buffers. Otherwise we just free
1369 * them all and return -ENOMEM;
1370 */
1371 if (RB_WARN_ON(buffer, nr_pages <= buffer->pages))
1372 goto out_fail;
1373
1374 new_pages = nr_pages - buffer->pages;
1375
1376 for_each_buffer_cpu(buffer, cpu) {
1377 for (i = 0; i < new_pages; i++) {
1378 bpage = kzalloc_node(ALIGN(sizeof(*bpage),
1379 cache_line_size()),
1380 GFP_KERNEL, cpu_to_node(cpu));
1381 if (!bpage)
1382 goto free_pages;
1383 list_add(&bpage->list, &pages);
1384 addr = __get_free_page(GFP_KERNEL);
1385 if (!addr)
1386 goto free_pages;
1387 bpage->page = (void *)addr;
1388 rb_init_page(bpage->page);
1389 }
1390 }
1391
1392 for_each_buffer_cpu(buffer, cpu) {
1393 cpu_buffer = buffer->buffers[cpu];
1394 rb_insert_pages(cpu_buffer, &pages, new_pages);
1395 }
1396
1397 if (RB_WARN_ON(buffer, !list_empty(&pages)))
1398 goto out_fail;
1399
1400 out:
1401 buffer->pages = nr_pages;
1402 put_online_cpus();
1403 mutex_unlock(&buffer->mutex);
1404
1405 atomic_dec(&buffer->record_disabled);
1406
1407 return size;
1408
1409 free_pages:
1410 list_for_each_entry_safe(bpage, tmp, &pages, list) {
1411 list_del_init(&bpage->list);
1412 free_buffer_page(bpage);
1413 }
1414 put_online_cpus();
1415 mutex_unlock(&buffer->mutex);
1416 atomic_dec(&buffer->record_disabled);
1417 return -ENOMEM;
1418
1419 /*
1420 * Something went totally wrong, and we are too paranoid
1421 * to even clean up the mess.
1422 */
1423 out_fail:
1424 put_online_cpus();
1425 mutex_unlock(&buffer->mutex);
1426 atomic_dec(&buffer->record_disabled);
1427 return -1;
1428 }
1429 EXPORT_SYMBOL_GPL(ring_buffer_resize);
1430
ring_buffer_change_overwrite(struct ring_buffer * buffer,int val)1431 void ring_buffer_change_overwrite(struct ring_buffer *buffer, int val)
1432 {
1433 mutex_lock(&buffer->mutex);
1434 if (val)
1435 buffer->flags |= RB_FL_OVERWRITE;
1436 else
1437 buffer->flags &= ~RB_FL_OVERWRITE;
1438 mutex_unlock(&buffer->mutex);
1439 }
1440 EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite);
1441
1442 static inline void *
__rb_data_page_index(struct buffer_data_page * bpage,unsigned index)1443 __rb_data_page_index(struct buffer_data_page *bpage, unsigned index)
1444 {
1445 return bpage->data + index;
1446 }
1447
__rb_page_index(struct buffer_page * bpage,unsigned index)1448 static inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
1449 {
1450 return bpage->page->data + index;
1451 }
1452
1453 static inline struct ring_buffer_event *
rb_reader_event(struct ring_buffer_per_cpu * cpu_buffer)1454 rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
1455 {
1456 return __rb_page_index(cpu_buffer->reader_page,
1457 cpu_buffer->reader_page->read);
1458 }
1459
1460 static inline struct ring_buffer_event *
rb_iter_head_event(struct ring_buffer_iter * iter)1461 rb_iter_head_event(struct ring_buffer_iter *iter)
1462 {
1463 return __rb_page_index(iter->head_page, iter->head);
1464 }
1465
rb_page_write(struct buffer_page * bpage)1466 static inline unsigned long rb_page_write(struct buffer_page *bpage)
1467 {
1468 return local_read(&bpage->write) & RB_WRITE_MASK;
1469 }
1470
rb_page_commit(struct buffer_page * bpage)1471 static inline unsigned rb_page_commit(struct buffer_page *bpage)
1472 {
1473 return local_read(&bpage->page->commit);
1474 }
1475
rb_page_entries(struct buffer_page * bpage)1476 static inline unsigned long rb_page_entries(struct buffer_page *bpage)
1477 {
1478 return local_read(&bpage->entries) & RB_WRITE_MASK;
1479 }
1480
1481 /* Size is determined by what has been committed */
rb_page_size(struct buffer_page * bpage)1482 static inline unsigned rb_page_size(struct buffer_page *bpage)
1483 {
1484 return rb_page_commit(bpage);
1485 }
1486
1487 static inline unsigned
rb_commit_index(struct ring_buffer_per_cpu * cpu_buffer)1488 rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
1489 {
1490 return rb_page_commit(cpu_buffer->commit_page);
1491 }
1492
1493 static inline unsigned
rb_event_index(struct ring_buffer_event * event)1494 rb_event_index(struct ring_buffer_event *event)
1495 {
1496 unsigned long addr = (unsigned long)event;
1497
1498 return (addr & ~PAGE_MASK) - BUF_PAGE_HDR_SIZE;
1499 }
1500
1501 static inline int
rb_event_is_commit(struct ring_buffer_per_cpu * cpu_buffer,struct ring_buffer_event * event)1502 rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
1503 struct ring_buffer_event *event)
1504 {
1505 unsigned long addr = (unsigned long)event;
1506 unsigned long index;
1507
1508 index = rb_event_index(event);
1509 addr &= PAGE_MASK;
1510
1511 return cpu_buffer->commit_page->page == (void *)addr &&
1512 rb_commit_index(cpu_buffer) == index;
1513 }
1514
1515 static void
rb_set_commit_to_write(struct ring_buffer_per_cpu * cpu_buffer)1516 rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
1517 {
1518 unsigned long max_count;
1519
1520 /*
1521 * We only race with interrupts and NMIs on this CPU.
1522 * If we own the commit event, then we can commit
1523 * all others that interrupted us, since the interruptions
1524 * are in stack format (they finish before they come
1525 * back to us). This allows us to do a simple loop to
1526 * assign the commit to the tail.
1527 */
1528 again:
1529 max_count = cpu_buffer->buffer->pages * 100;
1530
1531 while (cpu_buffer->commit_page != cpu_buffer->tail_page) {
1532 if (RB_WARN_ON(cpu_buffer, !(--max_count)))
1533 return;
1534 if (RB_WARN_ON(cpu_buffer,
1535 rb_is_reader_page(cpu_buffer->tail_page)))
1536 return;
1537 local_set(&cpu_buffer->commit_page->page->commit,
1538 rb_page_write(cpu_buffer->commit_page));
1539 rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
1540 cpu_buffer->write_stamp =
1541 cpu_buffer->commit_page->page->time_stamp;
1542 /* add barrier to keep gcc from optimizing too much */
1543 barrier();
1544 }
1545 while (rb_commit_index(cpu_buffer) !=
1546 rb_page_write(cpu_buffer->commit_page)) {
1547
1548 local_set(&cpu_buffer->commit_page->page->commit,
1549 rb_page_write(cpu_buffer->commit_page));
1550 RB_WARN_ON(cpu_buffer,
1551 local_read(&cpu_buffer->commit_page->page->commit) &
1552 ~RB_WRITE_MASK);
1553 barrier();
1554 }
1555
1556 /* again, keep gcc from optimizing */
1557 barrier();
1558
1559 /*
1560 * If an interrupt came in just after the first while loop
1561 * and pushed the tail page forward, we will be left with
1562 * a dangling commit that will never go forward.
1563 */
1564 if (unlikely(cpu_buffer->commit_page != cpu_buffer->tail_page))
1565 goto again;
1566 }
1567
rb_reset_reader_page(struct ring_buffer_per_cpu * cpu_buffer)1568 static void rb_reset_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
1569 {
1570 cpu_buffer->read_stamp = cpu_buffer->reader_page->page->time_stamp;
1571 cpu_buffer->reader_page->read = 0;
1572 }
1573
rb_inc_iter(struct ring_buffer_iter * iter)1574 static void rb_inc_iter(struct ring_buffer_iter *iter)
1575 {
1576 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
1577
1578 /*
1579 * The iterator could be on the reader page (it starts there).
1580 * But the head could have moved, since the reader was
1581 * found. Check for this case and assign the iterator
1582 * to the head page instead of next.
1583 */
1584 if (iter->head_page == cpu_buffer->reader_page)
1585 iter->head_page = rb_set_head_page(cpu_buffer);
1586 else
1587 rb_inc_page(cpu_buffer, &iter->head_page);
1588
1589 iter->read_stamp = iter->head_page->page->time_stamp;
1590 iter->head = 0;
1591 }
1592
1593 /* Slow path, do not inline */
1594 static noinline struct ring_buffer_event *
rb_add_time_stamp(struct ring_buffer_event * event,u64 delta)1595 rb_add_time_stamp(struct ring_buffer_event *event, u64 delta)
1596 {
1597 event->type_len = RINGBUF_TYPE_TIME_EXTEND;
1598
1599 /* Not the first event on the page? */
1600 if (rb_event_index(event)) {
1601 event->time_delta = delta & TS_MASK;
1602 event->array[0] = delta >> TS_SHIFT;
1603 } else {
1604 /* nope, just zero it */
1605 event->time_delta = 0;
1606 event->array[0] = 0;
1607 }
1608
1609 return skip_time_extend(event);
1610 }
1611
1612 /**
1613 * ring_buffer_update_event - update event type and data
1614 * @event: the even to update
1615 * @type: the type of event
1616 * @length: the size of the event field in the ring buffer
1617 *
1618 * Update the type and data fields of the event. The length
1619 * is the actual size that is written to the ring buffer,
1620 * and with this, we can determine what to place into the
1621 * data field.
1622 */
1623 static void
rb_update_event(struct ring_buffer_per_cpu * cpu_buffer,struct ring_buffer_event * event,unsigned length,int add_timestamp,u64 delta)1624 rb_update_event(struct ring_buffer_per_cpu *cpu_buffer,
1625 struct ring_buffer_event *event, unsigned length,
1626 int add_timestamp, u64 delta)
1627 {
1628 /* Only a commit updates the timestamp */
1629 if (unlikely(!rb_event_is_commit(cpu_buffer, event)))
1630 delta = 0;
1631
1632 /*
1633 * If we need to add a timestamp, then we
1634 * add it to the start of the resevered space.
1635 */
1636 if (unlikely(add_timestamp)) {
1637 event = rb_add_time_stamp(event, delta);
1638 length -= RB_LEN_TIME_EXTEND;
1639 delta = 0;
1640 }
1641
1642 event->time_delta = delta;
1643 length -= RB_EVNT_HDR_SIZE;
1644 if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) {
1645 event->type_len = 0;
1646 event->array[0] = length;
1647 } else
1648 event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT);
1649 }
1650
1651 /*
1652 * rb_handle_head_page - writer hit the head page
1653 *
1654 * Returns: +1 to retry page
1655 * 0 to continue
1656 * -1 on error
1657 */
1658 static int
rb_handle_head_page(struct ring_buffer_per_cpu * cpu_buffer,struct buffer_page * tail_page,struct buffer_page * next_page)1659 rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer,
1660 struct buffer_page *tail_page,
1661 struct buffer_page *next_page)
1662 {
1663 struct buffer_page *new_head;
1664 int entries;
1665 int type;
1666 int ret;
1667
1668 entries = rb_page_entries(next_page);
1669
1670 /*
1671 * The hard part is here. We need to move the head
1672 * forward, and protect against both readers on
1673 * other CPUs and writers coming in via interrupts.
1674 */
1675 type = rb_head_page_set_update(cpu_buffer, next_page, tail_page,
1676 RB_PAGE_HEAD);
1677
1678 /*
1679 * type can be one of four:
1680 * NORMAL - an interrupt already moved it for us
1681 * HEAD - we are the first to get here.
1682 * UPDATE - we are the interrupt interrupting
1683 * a current move.
1684 * MOVED - a reader on another CPU moved the next
1685 * pointer to its reader page. Give up
1686 * and try again.
1687 */
1688
1689 switch (type) {
1690 case RB_PAGE_HEAD:
1691 /*
1692 * We changed the head to UPDATE, thus
1693 * it is our responsibility to update
1694 * the counters.
1695 */
1696 local_add(entries, &cpu_buffer->overrun);
1697
1698 /*
1699 * The entries will be zeroed out when we move the
1700 * tail page.
1701 */
1702
1703 /* still more to do */
1704 break;
1705
1706 case RB_PAGE_UPDATE:
1707 /*
1708 * This is an interrupt that interrupt the
1709 * previous update. Still more to do.
1710 */
1711 break;
1712 case RB_PAGE_NORMAL:
1713 /*
1714 * An interrupt came in before the update
1715 * and processed this for us.
1716 * Nothing left to do.
1717 */
1718 return 1;
1719 case RB_PAGE_MOVED:
1720 /*
1721 * The reader is on another CPU and just did
1722 * a swap with our next_page.
1723 * Try again.
1724 */
1725 return 1;
1726 default:
1727 RB_WARN_ON(cpu_buffer, 1); /* WTF??? */
1728 return -1;
1729 }
1730
1731 /*
1732 * Now that we are here, the old head pointer is
1733 * set to UPDATE. This will keep the reader from
1734 * swapping the head page with the reader page.
1735 * The reader (on another CPU) will spin till
1736 * we are finished.
1737 *
1738 * We just need to protect against interrupts
1739 * doing the job. We will set the next pointer
1740 * to HEAD. After that, we set the old pointer
1741 * to NORMAL, but only if it was HEAD before.
1742 * otherwise we are an interrupt, and only
1743 * want the outer most commit to reset it.
1744 */
1745 new_head = next_page;
1746 rb_inc_page(cpu_buffer, &new_head);
1747
1748 ret = rb_head_page_set_head(cpu_buffer, new_head, next_page,
1749 RB_PAGE_NORMAL);
1750
1751 /*
1752 * Valid returns are:
1753 * HEAD - an interrupt came in and already set it.
1754 * NORMAL - One of two things:
1755 * 1) We really set it.
1756 * 2) A bunch of interrupts came in and moved
1757 * the page forward again.
1758 */
1759 switch (ret) {
1760 case RB_PAGE_HEAD:
1761 case RB_PAGE_NORMAL:
1762 /* OK */
1763 break;
1764 default:
1765 RB_WARN_ON(cpu_buffer, 1);
1766 return -1;
1767 }
1768
1769 /*
1770 * It is possible that an interrupt came in,
1771 * set the head up, then more interrupts came in
1772 * and moved it again. When we get back here,
1773 * the page would have been set to NORMAL but we
1774 * just set it back to HEAD.
1775 *
1776 * How do you detect this? Well, if that happened
1777 * the tail page would have moved.
1778 */
1779 if (ret == RB_PAGE_NORMAL) {
1780 /*
1781 * If the tail had moved passed next, then we need
1782 * to reset the pointer.
1783 */
1784 if (cpu_buffer->tail_page != tail_page &&
1785 cpu_buffer->tail_page != next_page)
1786 rb_head_page_set_normal(cpu_buffer, new_head,
1787 next_page,
1788 RB_PAGE_HEAD);
1789 }
1790
1791 /*
1792 * If this was the outer most commit (the one that
1793 * changed the original pointer from HEAD to UPDATE),
1794 * then it is up to us to reset it to NORMAL.
1795 */
1796 if (type == RB_PAGE_HEAD) {
1797 ret = rb_head_page_set_normal(cpu_buffer, next_page,
1798 tail_page,
1799 RB_PAGE_UPDATE);
1800 if (RB_WARN_ON(cpu_buffer,
1801 ret != RB_PAGE_UPDATE))
1802 return -1;
1803 }
1804
1805 return 0;
1806 }
1807
rb_calculate_event_length(unsigned length)1808 static unsigned rb_calculate_event_length(unsigned length)
1809 {
1810 struct ring_buffer_event event; /* Used only for sizeof array */
1811
1812 /* zero length can cause confusions */
1813 if (!length)
1814 length = 1;
1815
1816 if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT)
1817 length += sizeof(event.array[0]);
1818
1819 length += RB_EVNT_HDR_SIZE;
1820 length = ALIGN(length, RB_ARCH_ALIGNMENT);
1821
1822 return length;
1823 }
1824
1825 static inline void
rb_reset_tail(struct ring_buffer_per_cpu * cpu_buffer,struct buffer_page * tail_page,unsigned long tail,unsigned long length)1826 rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer,
1827 struct buffer_page *tail_page,
1828 unsigned long tail, unsigned long length)
1829 {
1830 struct ring_buffer_event *event;
1831
1832 /*
1833 * Only the event that crossed the page boundary
1834 * must fill the old tail_page with padding.
1835 */
1836 if (tail >= BUF_PAGE_SIZE) {
1837 /*
1838 * If the page was filled, then we still need
1839 * to update the real_end. Reset it to zero
1840 * and the reader will ignore it.
1841 */
1842 if (tail == BUF_PAGE_SIZE)
1843 tail_page->real_end = 0;
1844
1845 local_sub(length, &tail_page->write);
1846 return;
1847 }
1848
1849 event = __rb_page_index(tail_page, tail);
1850 kmemcheck_annotate_bitfield(event, bitfield);
1851
1852 /*
1853 * Save the original length to the meta data.
1854 * This will be used by the reader to add lost event
1855 * counter.
1856 */
1857 tail_page->real_end = tail;
1858
1859 /*
1860 * If this event is bigger than the minimum size, then
1861 * we need to be careful that we don't subtract the
1862 * write counter enough to allow another writer to slip
1863 * in on this page.
1864 * We put in a discarded commit instead, to make sure
1865 * that this space is not used again.
1866 *
1867 * If we are less than the minimum size, we don't need to
1868 * worry about it.
1869 */
1870 if (tail > (BUF_PAGE_SIZE - RB_EVNT_MIN_SIZE)) {
1871 /* No room for any events */
1872
1873 /* Mark the rest of the page with padding */
1874 rb_event_set_padding(event);
1875
1876 /* Set the write back to the previous setting */
1877 local_sub(length, &tail_page->write);
1878 return;
1879 }
1880
1881 /* Put in a discarded event */
1882 event->array[0] = (BUF_PAGE_SIZE - tail) - RB_EVNT_HDR_SIZE;
1883 event->type_len = RINGBUF_TYPE_PADDING;
1884 /* time delta must be non zero */
1885 event->time_delta = 1;
1886
1887 /* Set write to end of buffer */
1888 length = (tail + length) - BUF_PAGE_SIZE;
1889 local_sub(length, &tail_page->write);
1890 }
1891
1892 /*
1893 * This is the slow path, force gcc not to inline it.
1894 */
1895 static noinline struct ring_buffer_event *
rb_move_tail(struct ring_buffer_per_cpu * cpu_buffer,unsigned long length,unsigned long tail,struct buffer_page * tail_page,u64 ts)1896 rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer,
1897 unsigned long length, unsigned long tail,
1898 struct buffer_page *tail_page, u64 ts)
1899 {
1900 struct buffer_page *commit_page = cpu_buffer->commit_page;
1901 struct ring_buffer *buffer = cpu_buffer->buffer;
1902 struct buffer_page *next_page;
1903 int ret;
1904
1905 next_page = tail_page;
1906
1907 rb_inc_page(cpu_buffer, &next_page);
1908
1909 /*
1910 * If for some reason, we had an interrupt storm that made
1911 * it all the way around the buffer, bail, and warn
1912 * about it.
1913 */
1914 if (unlikely(next_page == commit_page)) {
1915 local_inc(&cpu_buffer->commit_overrun);
1916 goto out_reset;
1917 }
1918
1919 /*
1920 * This is where the fun begins!
1921 *
1922 * We are fighting against races between a reader that
1923 * could be on another CPU trying to swap its reader
1924 * page with the buffer head.
1925 *
1926 * We are also fighting against interrupts coming in and
1927 * moving the head or tail on us as well.
1928 *
1929 * If the next page is the head page then we have filled
1930 * the buffer, unless the commit page is still on the
1931 * reader page.
1932 */
1933 if (rb_is_head_page(cpu_buffer, next_page, &tail_page->list)) {
1934
1935 /*
1936 * If the commit is not on the reader page, then
1937 * move the header page.
1938 */
1939 if (!rb_is_reader_page(cpu_buffer->commit_page)) {
1940 /*
1941 * If we are not in overwrite mode,
1942 * this is easy, just stop here.
1943 */
1944 if (!(buffer->flags & RB_FL_OVERWRITE))
1945 goto out_reset;
1946
1947 ret = rb_handle_head_page(cpu_buffer,
1948 tail_page,
1949 next_page);
1950 if (ret < 0)
1951 goto out_reset;
1952 if (ret)
1953 goto out_again;
1954 } else {
1955 /*
1956 * We need to be careful here too. The
1957 * commit page could still be on the reader
1958 * page. We could have a small buffer, and
1959 * have filled up the buffer with events
1960 * from interrupts and such, and wrapped.
1961 *
1962 * Note, if the tail page is also the on the
1963 * reader_page, we let it move out.
1964 */
1965 if (unlikely((cpu_buffer->commit_page !=
1966 cpu_buffer->tail_page) &&
1967 (cpu_buffer->commit_page ==
1968 cpu_buffer->reader_page))) {
1969 local_inc(&cpu_buffer->commit_overrun);
1970 goto out_reset;
1971 }
1972 }
1973 }
1974
1975 ret = rb_tail_page_update(cpu_buffer, tail_page, next_page);
1976 if (ret) {
1977 /*
1978 * Nested commits always have zero deltas, so
1979 * just reread the time stamp
1980 */
1981 ts = rb_time_stamp(buffer);
1982 next_page->page->time_stamp = ts;
1983 }
1984
1985 out_again:
1986
1987 rb_reset_tail(cpu_buffer, tail_page, tail, length);
1988
1989 /* fail and let the caller try again */
1990 return ERR_PTR(-EAGAIN);
1991
1992 out_reset:
1993 /* reset write */
1994 rb_reset_tail(cpu_buffer, tail_page, tail, length);
1995
1996 return NULL;
1997 }
1998
1999 static struct ring_buffer_event *
__rb_reserve_next(struct ring_buffer_per_cpu * cpu_buffer,unsigned long length,u64 ts,u64 delta,int add_timestamp)2000 __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
2001 unsigned long length, u64 ts,
2002 u64 delta, int add_timestamp)
2003 {
2004 struct buffer_page *tail_page;
2005 struct ring_buffer_event *event;
2006 unsigned long tail, write;
2007
2008 /*
2009 * If the time delta since the last event is too big to
2010 * hold in the time field of the event, then we append a
2011 * TIME EXTEND event ahead of the data event.
2012 */
2013 if (unlikely(add_timestamp))
2014 length += RB_LEN_TIME_EXTEND;
2015
2016 tail_page = cpu_buffer->tail_page;
2017 write = local_add_return(length, &tail_page->write);
2018
2019 /* set write to only the index of the write */
2020 write &= RB_WRITE_MASK;
2021 tail = write - length;
2022
2023 /* See if we shot pass the end of this buffer page */
2024 if (unlikely(write > BUF_PAGE_SIZE))
2025 return rb_move_tail(cpu_buffer, length, tail,
2026 tail_page, ts);
2027
2028 /* We reserved something on the buffer */
2029
2030 event = __rb_page_index(tail_page, tail);
2031 kmemcheck_annotate_bitfield(event, bitfield);
2032 rb_update_event(cpu_buffer, event, length, add_timestamp, delta);
2033
2034 local_inc(&tail_page->entries);
2035
2036 /*
2037 * If this is the first commit on the page, then update
2038 * its timestamp.
2039 */
2040 if (!tail)
2041 tail_page->page->time_stamp = ts;
2042
2043 return event;
2044 }
2045
2046 static inline int
rb_try_to_discard(struct ring_buffer_per_cpu * cpu_buffer,struct ring_buffer_event * event)2047 rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer,
2048 struct ring_buffer_event *event)
2049 {
2050 unsigned long new_index, old_index;
2051 struct buffer_page *bpage;
2052 unsigned long index;
2053 unsigned long addr;
2054
2055 new_index = rb_event_index(event);
2056 old_index = new_index + rb_event_ts_length(event);
2057 addr = (unsigned long)event;
2058 addr &= PAGE_MASK;
2059
2060 bpage = cpu_buffer->tail_page;
2061
2062 if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) {
2063 unsigned long write_mask =
2064 local_read(&bpage->write) & ~RB_WRITE_MASK;
2065 /*
2066 * This is on the tail page. It is possible that
2067 * a write could come in and move the tail page
2068 * and write to the next page. That is fine
2069 * because we just shorten what is on this page.
2070 */
2071 old_index += write_mask;
2072 new_index += write_mask;
2073 index = local_cmpxchg(&bpage->write, old_index, new_index);
2074 if (index == old_index)
2075 return 1;
2076 }
2077
2078 /* could not discard */
2079 return 0;
2080 }
2081
rb_start_commit(struct ring_buffer_per_cpu * cpu_buffer)2082 static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer)
2083 {
2084 local_inc(&cpu_buffer->committing);
2085 local_inc(&cpu_buffer->commits);
2086 }
2087
rb_end_commit(struct ring_buffer_per_cpu * cpu_buffer)2088 static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer)
2089 {
2090 unsigned long commits;
2091
2092 if (RB_WARN_ON(cpu_buffer,
2093 !local_read(&cpu_buffer->committing)))
2094 return;
2095
2096 again:
2097 commits = local_read(&cpu_buffer->commits);
2098 /* synchronize with interrupts */
2099 barrier();
2100 if (local_read(&cpu_buffer->committing) == 1)
2101 rb_set_commit_to_write(cpu_buffer);
2102
2103 local_dec(&cpu_buffer->committing);
2104
2105 /* synchronize with interrupts */
2106 barrier();
2107
2108 /*
2109 * Need to account for interrupts coming in between the
2110 * updating of the commit page and the clearing of the
2111 * committing counter.
2112 */
2113 if (unlikely(local_read(&cpu_buffer->commits) != commits) &&
2114 !local_read(&cpu_buffer->committing)) {
2115 local_inc(&cpu_buffer->committing);
2116 goto again;
2117 }
2118 }
2119
2120 static struct ring_buffer_event *
rb_reserve_next_event(struct ring_buffer * buffer,struct ring_buffer_per_cpu * cpu_buffer,unsigned long length)2121 rb_reserve_next_event(struct ring_buffer *buffer,
2122 struct ring_buffer_per_cpu *cpu_buffer,
2123 unsigned long length)
2124 {
2125 struct ring_buffer_event *event;
2126 u64 ts, delta;
2127 int nr_loops = 0;
2128 int add_timestamp;
2129 u64 diff;
2130
2131 rb_start_commit(cpu_buffer);
2132
2133 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
2134 /*
2135 * Due to the ability to swap a cpu buffer from a buffer
2136 * it is possible it was swapped before we committed.
2137 * (committing stops a swap). We check for it here and
2138 * if it happened, we have to fail the write.
2139 */
2140 barrier();
2141 if (unlikely(ACCESS_ONCE(cpu_buffer->buffer) != buffer)) {
2142 local_dec(&cpu_buffer->committing);
2143 local_dec(&cpu_buffer->commits);
2144 return NULL;
2145 }
2146 #endif
2147
2148 length = rb_calculate_event_length(length);
2149 again:
2150 add_timestamp = 0;
2151 delta = 0;
2152
2153 /*
2154 * We allow for interrupts to reenter here and do a trace.
2155 * If one does, it will cause this original code to loop
2156 * back here. Even with heavy interrupts happening, this
2157 * should only happen a few times in a row. If this happens
2158 * 1000 times in a row, there must be either an interrupt
2159 * storm or we have something buggy.
2160 * Bail!
2161 */
2162 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
2163 goto out_fail;
2164
2165 ts = rb_time_stamp(cpu_buffer->buffer);
2166 diff = ts - cpu_buffer->write_stamp;
2167
2168 /* make sure this diff is calculated here */
2169 barrier();
2170
2171 /* Did the write stamp get updated already? */
2172 if (likely(ts >= cpu_buffer->write_stamp)) {
2173 delta = diff;
2174 if (unlikely(test_time_stamp(delta))) {
2175 int local_clock_stable = 1;
2176 #ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
2177 local_clock_stable = sched_clock_stable;
2178 #endif
2179 WARN_ONCE(delta > (1ULL << 59),
2180 KERN_WARNING "Delta way too big! %llu ts=%llu write stamp = %llu\n%s",
2181 (unsigned long long)delta,
2182 (unsigned long long)ts,
2183 (unsigned long long)cpu_buffer->write_stamp,
2184 local_clock_stable ? "" :
2185 "If you just came from a suspend/resume,\n"
2186 "please switch to the trace global clock:\n"
2187 " echo global > /sys/kernel/debug/tracing/trace_clock\n");
2188 add_timestamp = 1;
2189 }
2190 }
2191
2192 event = __rb_reserve_next(cpu_buffer, length, ts,
2193 delta, add_timestamp);
2194 if (unlikely(PTR_ERR(event) == -EAGAIN))
2195 goto again;
2196
2197 if (!event)
2198 goto out_fail;
2199
2200 return event;
2201
2202 out_fail:
2203 rb_end_commit(cpu_buffer);
2204 return NULL;
2205 }
2206
2207 #ifdef CONFIG_TRACING
2208
2209 #define TRACE_RECURSIVE_DEPTH 16
2210
2211 /* Keep this code out of the fast path cache */
trace_recursive_fail(void)2212 static noinline void trace_recursive_fail(void)
2213 {
2214 /* Disable all tracing before we do anything else */
2215 tracing_off_permanent();
2216
2217 printk_once(KERN_WARNING "Tracing recursion: depth[%ld]:"
2218 "HC[%lu]:SC[%lu]:NMI[%lu]\n",
2219 current->trace_recursion,
2220 hardirq_count() >> HARDIRQ_SHIFT,
2221 softirq_count() >> SOFTIRQ_SHIFT,
2222 in_nmi());
2223
2224 WARN_ON_ONCE(1);
2225 }
2226
trace_recursive_lock(void)2227 static inline int trace_recursive_lock(void)
2228 {
2229 current->trace_recursion++;
2230
2231 if (likely(current->trace_recursion < TRACE_RECURSIVE_DEPTH))
2232 return 0;
2233
2234 trace_recursive_fail();
2235
2236 return -1;
2237 }
2238
trace_recursive_unlock(void)2239 static inline void trace_recursive_unlock(void)
2240 {
2241 WARN_ON_ONCE(!current->trace_recursion);
2242
2243 current->trace_recursion--;
2244 }
2245
2246 #else
2247
2248 #define trace_recursive_lock() (0)
2249 #define trace_recursive_unlock() do { } while (0)
2250
2251 #endif
2252
2253 /**
2254 * ring_buffer_lock_reserve - reserve a part of the buffer
2255 * @buffer: the ring buffer to reserve from
2256 * @length: the length of the data to reserve (excluding event header)
2257 *
2258 * Returns a reseverd event on the ring buffer to copy directly to.
2259 * The user of this interface will need to get the body to write into
2260 * and can use the ring_buffer_event_data() interface.
2261 *
2262 * The length is the length of the data needed, not the event length
2263 * which also includes the event header.
2264 *
2265 * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
2266 * If NULL is returned, then nothing has been allocated or locked.
2267 */
2268 struct ring_buffer_event *
ring_buffer_lock_reserve(struct ring_buffer * buffer,unsigned long length)2269 ring_buffer_lock_reserve(struct ring_buffer *buffer, unsigned long length)
2270 {
2271 struct ring_buffer_per_cpu *cpu_buffer;
2272 struct ring_buffer_event *event;
2273 int cpu;
2274
2275 if (ring_buffer_flags != RB_BUFFERS_ON)
2276 return NULL;
2277
2278 /* If we are tracing schedule, we don't want to recurse */
2279 preempt_disable_notrace();
2280
2281 if (atomic_read(&buffer->record_disabled))
2282 goto out_nocheck;
2283
2284 if (trace_recursive_lock())
2285 goto out_nocheck;
2286
2287 cpu = raw_smp_processor_id();
2288
2289 if (!cpumask_test_cpu(cpu, buffer->cpumask))
2290 goto out;
2291
2292 cpu_buffer = buffer->buffers[cpu];
2293
2294 if (atomic_read(&cpu_buffer->record_disabled))
2295 goto out;
2296
2297 if (length > BUF_MAX_DATA_SIZE)
2298 goto out;
2299
2300 event = rb_reserve_next_event(buffer, cpu_buffer, length);
2301 if (!event)
2302 goto out;
2303
2304 return event;
2305
2306 out:
2307 trace_recursive_unlock();
2308
2309 out_nocheck:
2310 preempt_enable_notrace();
2311 return NULL;
2312 }
2313 EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
2314
2315 static void
rb_update_write_stamp(struct ring_buffer_per_cpu * cpu_buffer,struct ring_buffer_event * event)2316 rb_update_write_stamp(struct ring_buffer_per_cpu *cpu_buffer,
2317 struct ring_buffer_event *event)
2318 {
2319 u64 delta;
2320
2321 /*
2322 * The event first in the commit queue updates the
2323 * time stamp.
2324 */
2325 if (rb_event_is_commit(cpu_buffer, event)) {
2326 /*
2327 * A commit event that is first on a page
2328 * updates the write timestamp with the page stamp
2329 */
2330 if (!rb_event_index(event))
2331 cpu_buffer->write_stamp =
2332 cpu_buffer->commit_page->page->time_stamp;
2333 else if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
2334 delta = event->array[0];
2335 delta <<= TS_SHIFT;
2336 delta += event->time_delta;
2337 cpu_buffer->write_stamp += delta;
2338 } else
2339 cpu_buffer->write_stamp += event->time_delta;
2340 }
2341 }
2342
rb_commit(struct ring_buffer_per_cpu * cpu_buffer,struct ring_buffer_event * event)2343 static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer,
2344 struct ring_buffer_event *event)
2345 {
2346 local_inc(&cpu_buffer->entries);
2347 rb_update_write_stamp(cpu_buffer, event);
2348 rb_end_commit(cpu_buffer);
2349 }
2350
2351 /**
2352 * ring_buffer_unlock_commit - commit a reserved
2353 * @buffer: The buffer to commit to
2354 * @event: The event pointer to commit.
2355 *
2356 * This commits the data to the ring buffer, and releases any locks held.
2357 *
2358 * Must be paired with ring_buffer_lock_reserve.
2359 */
ring_buffer_unlock_commit(struct ring_buffer * buffer,struct ring_buffer_event * event)2360 int ring_buffer_unlock_commit(struct ring_buffer *buffer,
2361 struct ring_buffer_event *event)
2362 {
2363 struct ring_buffer_per_cpu *cpu_buffer;
2364 int cpu = raw_smp_processor_id();
2365
2366 cpu_buffer = buffer->buffers[cpu];
2367
2368 rb_commit(cpu_buffer, event);
2369
2370 trace_recursive_unlock();
2371
2372 preempt_enable_notrace();
2373
2374 return 0;
2375 }
2376 EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
2377
rb_event_discard(struct ring_buffer_event * event)2378 static inline void rb_event_discard(struct ring_buffer_event *event)
2379 {
2380 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
2381 event = skip_time_extend(event);
2382
2383 /* array[0] holds the actual length for the discarded event */
2384 event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE;
2385 event->type_len = RINGBUF_TYPE_PADDING;
2386 /* time delta must be non zero */
2387 if (!event->time_delta)
2388 event->time_delta = 1;
2389 }
2390
2391 /*
2392 * Decrement the entries to the page that an event is on.
2393 * The event does not even need to exist, only the pointer
2394 * to the page it is on. This may only be called before the commit
2395 * takes place.
2396 */
2397 static inline void
rb_decrement_entry(struct ring_buffer_per_cpu * cpu_buffer,struct ring_buffer_event * event)2398 rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer,
2399 struct ring_buffer_event *event)
2400 {
2401 unsigned long addr = (unsigned long)event;
2402 struct buffer_page *bpage = cpu_buffer->commit_page;
2403 struct buffer_page *start;
2404
2405 addr &= PAGE_MASK;
2406
2407 /* Do the likely case first */
2408 if (likely(bpage->page == (void *)addr)) {
2409 local_dec(&bpage->entries);
2410 return;
2411 }
2412
2413 /*
2414 * Because the commit page may be on the reader page we
2415 * start with the next page and check the end loop there.
2416 */
2417 rb_inc_page(cpu_buffer, &bpage);
2418 start = bpage;
2419 do {
2420 if (bpage->page == (void *)addr) {
2421 local_dec(&bpage->entries);
2422 return;
2423 }
2424 rb_inc_page(cpu_buffer, &bpage);
2425 } while (bpage != start);
2426
2427 /* commit not part of this buffer?? */
2428 RB_WARN_ON(cpu_buffer, 1);
2429 }
2430
2431 /**
2432 * ring_buffer_commit_discard - discard an event that has not been committed
2433 * @buffer: the ring buffer
2434 * @event: non committed event to discard
2435 *
2436 * Sometimes an event that is in the ring buffer needs to be ignored.
2437 * This function lets the user discard an event in the ring buffer
2438 * and then that event will not be read later.
2439 *
2440 * This function only works if it is called before the the item has been
2441 * committed. It will try to free the event from the ring buffer
2442 * if another event has not been added behind it.
2443 *
2444 * If another event has been added behind it, it will set the event
2445 * up as discarded, and perform the commit.
2446 *
2447 * If this function is called, do not call ring_buffer_unlock_commit on
2448 * the event.
2449 */
ring_buffer_discard_commit(struct ring_buffer * buffer,struct ring_buffer_event * event)2450 void ring_buffer_discard_commit(struct ring_buffer *buffer,
2451 struct ring_buffer_event *event)
2452 {
2453 struct ring_buffer_per_cpu *cpu_buffer;
2454 int cpu;
2455
2456 /* The event is discarded regardless */
2457 rb_event_discard(event);
2458
2459 cpu = smp_processor_id();
2460 cpu_buffer = buffer->buffers[cpu];
2461
2462 /*
2463 * This must only be called if the event has not been
2464 * committed yet. Thus we can assume that preemption
2465 * is still disabled.
2466 */
2467 RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing));
2468
2469 rb_decrement_entry(cpu_buffer, event);
2470 if (rb_try_to_discard(cpu_buffer, event))
2471 goto out;
2472
2473 /*
2474 * The commit is still visible by the reader, so we
2475 * must still update the timestamp.
2476 */
2477 rb_update_write_stamp(cpu_buffer, event);
2478 out:
2479 rb_end_commit(cpu_buffer);
2480
2481 trace_recursive_unlock();
2482
2483 preempt_enable_notrace();
2484
2485 }
2486 EXPORT_SYMBOL_GPL(ring_buffer_discard_commit);
2487
2488 /**
2489 * ring_buffer_write - write data to the buffer without reserving
2490 * @buffer: The ring buffer to write to.
2491 * @length: The length of the data being written (excluding the event header)
2492 * @data: The data to write to the buffer.
2493 *
2494 * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
2495 * one function. If you already have the data to write to the buffer, it
2496 * may be easier to simply call this function.
2497 *
2498 * Note, like ring_buffer_lock_reserve, the length is the length of the data
2499 * and not the length of the event which would hold the header.
2500 */
ring_buffer_write(struct ring_buffer * buffer,unsigned long length,void * data)2501 int ring_buffer_write(struct ring_buffer *buffer,
2502 unsigned long length,
2503 void *data)
2504 {
2505 struct ring_buffer_per_cpu *cpu_buffer;
2506 struct ring_buffer_event *event;
2507 void *body;
2508 int ret = -EBUSY;
2509 int cpu;
2510
2511 if (ring_buffer_flags != RB_BUFFERS_ON)
2512 return -EBUSY;
2513
2514 preempt_disable_notrace();
2515
2516 if (atomic_read(&buffer->record_disabled))
2517 goto out;
2518
2519 cpu = raw_smp_processor_id();
2520
2521 if (!cpumask_test_cpu(cpu, buffer->cpumask))
2522 goto out;
2523
2524 cpu_buffer = buffer->buffers[cpu];
2525
2526 if (atomic_read(&cpu_buffer->record_disabled))
2527 goto out;
2528
2529 if (length > BUF_MAX_DATA_SIZE)
2530 goto out;
2531
2532 event = rb_reserve_next_event(buffer, cpu_buffer, length);
2533 if (!event)
2534 goto out;
2535
2536 body = rb_event_data(event);
2537
2538 memcpy(body, data, length);
2539
2540 rb_commit(cpu_buffer, event);
2541
2542 ret = 0;
2543 out:
2544 preempt_enable_notrace();
2545
2546 return ret;
2547 }
2548 EXPORT_SYMBOL_GPL(ring_buffer_write);
2549
rb_per_cpu_empty(struct ring_buffer_per_cpu * cpu_buffer)2550 static int rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
2551 {
2552 struct buffer_page *reader = cpu_buffer->reader_page;
2553 struct buffer_page *head = rb_set_head_page(cpu_buffer);
2554 struct buffer_page *commit = cpu_buffer->commit_page;
2555
2556 /* In case of error, head will be NULL */
2557 if (unlikely(!head))
2558 return 1;
2559
2560 return reader->read == rb_page_commit(reader) &&
2561 (commit == reader ||
2562 (commit == head &&
2563 head->read == rb_page_commit(commit)));
2564 }
2565
2566 /**
2567 * ring_buffer_record_disable - stop all writes into the buffer
2568 * @buffer: The ring buffer to stop writes to.
2569 *
2570 * This prevents all writes to the buffer. Any attempt to write
2571 * to the buffer after this will fail and return NULL.
2572 *
2573 * The caller should call synchronize_sched() after this.
2574 */
ring_buffer_record_disable(struct ring_buffer * buffer)2575 void ring_buffer_record_disable(struct ring_buffer *buffer)
2576 {
2577 atomic_inc(&buffer->record_disabled);
2578 }
2579 EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
2580
2581 /**
2582 * ring_buffer_record_enable - enable writes to the buffer
2583 * @buffer: The ring buffer to enable writes
2584 *
2585 * Note, multiple disables will need the same number of enables
2586 * to truly enable the writing (much like preempt_disable).
2587 */
ring_buffer_record_enable(struct ring_buffer * buffer)2588 void ring_buffer_record_enable(struct ring_buffer *buffer)
2589 {
2590 atomic_dec(&buffer->record_disabled);
2591 }
2592 EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
2593
2594 /**
2595 * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
2596 * @buffer: The ring buffer to stop writes to.
2597 * @cpu: The CPU buffer to stop
2598 *
2599 * This prevents all writes to the buffer. Any attempt to write
2600 * to the buffer after this will fail and return NULL.
2601 *
2602 * The caller should call synchronize_sched() after this.
2603 */
ring_buffer_record_disable_cpu(struct ring_buffer * buffer,int cpu)2604 void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu)
2605 {
2606 struct ring_buffer_per_cpu *cpu_buffer;
2607
2608 if (!cpumask_test_cpu(cpu, buffer->cpumask))
2609 return;
2610
2611 cpu_buffer = buffer->buffers[cpu];
2612 atomic_inc(&cpu_buffer->record_disabled);
2613 }
2614 EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
2615
2616 /**
2617 * ring_buffer_record_enable_cpu - enable writes to the buffer
2618 * @buffer: The ring buffer to enable writes
2619 * @cpu: The CPU to enable.
2620 *
2621 * Note, multiple disables will need the same number of enables
2622 * to truly enable the writing (much like preempt_disable).
2623 */
ring_buffer_record_enable_cpu(struct ring_buffer * buffer,int cpu)2624 void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu)
2625 {
2626 struct ring_buffer_per_cpu *cpu_buffer;
2627
2628 if (!cpumask_test_cpu(cpu, buffer->cpumask))
2629 return;
2630
2631 cpu_buffer = buffer->buffers[cpu];
2632 atomic_dec(&cpu_buffer->record_disabled);
2633 }
2634 EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
2635
2636 /*
2637 * The total entries in the ring buffer is the running counter
2638 * of entries entered into the ring buffer, minus the sum of
2639 * the entries read from the ring buffer and the number of
2640 * entries that were overwritten.
2641 */
2642 static inline unsigned long
rb_num_of_entries(struct ring_buffer_per_cpu * cpu_buffer)2643 rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer)
2644 {
2645 return local_read(&cpu_buffer->entries) -
2646 (local_read(&cpu_buffer->overrun) + cpu_buffer->read);
2647 }
2648
2649 /**
2650 * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
2651 * @buffer: The ring buffer
2652 * @cpu: The per CPU buffer to get the entries from.
2653 */
ring_buffer_entries_cpu(struct ring_buffer * buffer,int cpu)2654 unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu)
2655 {
2656 struct ring_buffer_per_cpu *cpu_buffer;
2657
2658 if (!cpumask_test_cpu(cpu, buffer->cpumask))
2659 return 0;
2660
2661 cpu_buffer = buffer->buffers[cpu];
2662
2663 return rb_num_of_entries(cpu_buffer);
2664 }
2665 EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
2666
2667 /**
2668 * ring_buffer_overrun_cpu - get the number of overruns in a cpu_buffer
2669 * @buffer: The ring buffer
2670 * @cpu: The per CPU buffer to get the number of overruns from
2671 */
ring_buffer_overrun_cpu(struct ring_buffer * buffer,int cpu)2672 unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu)
2673 {
2674 struct ring_buffer_per_cpu *cpu_buffer;
2675 unsigned long ret;
2676
2677 if (!cpumask_test_cpu(cpu, buffer->cpumask))
2678 return 0;
2679
2680 cpu_buffer = buffer->buffers[cpu];
2681 ret = local_read(&cpu_buffer->overrun);
2682
2683 return ret;
2684 }
2685 EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
2686
2687 /**
2688 * ring_buffer_commit_overrun_cpu - get the number of overruns caused by commits
2689 * @buffer: The ring buffer
2690 * @cpu: The per CPU buffer to get the number of overruns from
2691 */
2692 unsigned long
ring_buffer_commit_overrun_cpu(struct ring_buffer * buffer,int cpu)2693 ring_buffer_commit_overrun_cpu(struct ring_buffer *buffer, int cpu)
2694 {
2695 struct ring_buffer_per_cpu *cpu_buffer;
2696 unsigned long ret;
2697
2698 if (!cpumask_test_cpu(cpu, buffer->cpumask))
2699 return 0;
2700
2701 cpu_buffer = buffer->buffers[cpu];
2702 ret = local_read(&cpu_buffer->commit_overrun);
2703
2704 return ret;
2705 }
2706 EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu);
2707
2708 /**
2709 * ring_buffer_entries - get the number of entries in a buffer
2710 * @buffer: The ring buffer
2711 *
2712 * Returns the total number of entries in the ring buffer
2713 * (all CPU entries)
2714 */
ring_buffer_entries(struct ring_buffer * buffer)2715 unsigned long ring_buffer_entries(struct ring_buffer *buffer)
2716 {
2717 struct ring_buffer_per_cpu *cpu_buffer;
2718 unsigned long entries = 0;
2719 int cpu;
2720
2721 /* if you care about this being correct, lock the buffer */
2722 for_each_buffer_cpu(buffer, cpu) {
2723 cpu_buffer = buffer->buffers[cpu];
2724 entries += rb_num_of_entries(cpu_buffer);
2725 }
2726
2727 return entries;
2728 }
2729 EXPORT_SYMBOL_GPL(ring_buffer_entries);
2730
2731 /**
2732 * ring_buffer_overruns - get the number of overruns in buffer
2733 * @buffer: The ring buffer
2734 *
2735 * Returns the total number of overruns in the ring buffer
2736 * (all CPU entries)
2737 */
ring_buffer_overruns(struct ring_buffer * buffer)2738 unsigned long ring_buffer_overruns(struct ring_buffer *buffer)
2739 {
2740 struct ring_buffer_per_cpu *cpu_buffer;
2741 unsigned long overruns = 0;
2742 int cpu;
2743
2744 /* if you care about this being correct, lock the buffer */
2745 for_each_buffer_cpu(buffer, cpu) {
2746 cpu_buffer = buffer->buffers[cpu];
2747 overruns += local_read(&cpu_buffer->overrun);
2748 }
2749
2750 return overruns;
2751 }
2752 EXPORT_SYMBOL_GPL(ring_buffer_overruns);
2753
rb_iter_reset(struct ring_buffer_iter * iter)2754 static void rb_iter_reset(struct ring_buffer_iter *iter)
2755 {
2756 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
2757
2758 /* Iterator usage is expected to have record disabled */
2759 if (list_empty(&cpu_buffer->reader_page->list)) {
2760 iter->head_page = rb_set_head_page(cpu_buffer);
2761 if (unlikely(!iter->head_page))
2762 return;
2763 iter->head = iter->head_page->read;
2764 } else {
2765 iter->head_page = cpu_buffer->reader_page;
2766 iter->head = cpu_buffer->reader_page->read;
2767 }
2768 if (iter->head)
2769 iter->read_stamp = cpu_buffer->read_stamp;
2770 else
2771 iter->read_stamp = iter->head_page->page->time_stamp;
2772 iter->cache_reader_page = cpu_buffer->reader_page;
2773 iter->cache_read = cpu_buffer->read;
2774 }
2775
2776 /**
2777 * ring_buffer_iter_reset - reset an iterator
2778 * @iter: The iterator to reset
2779 *
2780 * Resets the iterator, so that it will start from the beginning
2781 * again.
2782 */
ring_buffer_iter_reset(struct ring_buffer_iter * iter)2783 void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
2784 {
2785 struct ring_buffer_per_cpu *cpu_buffer;
2786 unsigned long flags;
2787
2788 if (!iter)
2789 return;
2790
2791 cpu_buffer = iter->cpu_buffer;
2792
2793 spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2794 rb_iter_reset(iter);
2795 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2796 }
2797 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
2798
2799 /**
2800 * ring_buffer_iter_empty - check if an iterator has no more to read
2801 * @iter: The iterator to check
2802 */
ring_buffer_iter_empty(struct ring_buffer_iter * iter)2803 int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
2804 {
2805 struct ring_buffer_per_cpu *cpu_buffer;
2806
2807 cpu_buffer = iter->cpu_buffer;
2808
2809 return iter->head_page == cpu_buffer->commit_page &&
2810 iter->head == rb_commit_index(cpu_buffer);
2811 }
2812 EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
2813
2814 static void
rb_update_read_stamp(struct ring_buffer_per_cpu * cpu_buffer,struct ring_buffer_event * event)2815 rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
2816 struct ring_buffer_event *event)
2817 {
2818 u64 delta;
2819
2820 switch (event->type_len) {
2821 case RINGBUF_TYPE_PADDING:
2822 return;
2823
2824 case RINGBUF_TYPE_TIME_EXTEND:
2825 delta = event->array[0];
2826 delta <<= TS_SHIFT;
2827 delta += event->time_delta;
2828 cpu_buffer->read_stamp += delta;
2829 return;
2830
2831 case RINGBUF_TYPE_TIME_STAMP:
2832 /* FIXME: not implemented */
2833 return;
2834
2835 case RINGBUF_TYPE_DATA:
2836 cpu_buffer->read_stamp += event->time_delta;
2837 return;
2838
2839 default:
2840 BUG();
2841 }
2842 return;
2843 }
2844
2845 static void
rb_update_iter_read_stamp(struct ring_buffer_iter * iter,struct ring_buffer_event * event)2846 rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
2847 struct ring_buffer_event *event)
2848 {
2849 u64 delta;
2850
2851 switch (event->type_len) {
2852 case RINGBUF_TYPE_PADDING:
2853 return;
2854
2855 case RINGBUF_TYPE_TIME_EXTEND:
2856 delta = event->array[0];
2857 delta <<= TS_SHIFT;
2858 delta += event->time_delta;
2859 iter->read_stamp += delta;
2860 return;
2861
2862 case RINGBUF_TYPE_TIME_STAMP:
2863 /* FIXME: not implemented */
2864 return;
2865
2866 case RINGBUF_TYPE_DATA:
2867 iter->read_stamp += event->time_delta;
2868 return;
2869
2870 default:
2871 BUG();
2872 }
2873 return;
2874 }
2875
2876 static struct buffer_page *
rb_get_reader_page(struct ring_buffer_per_cpu * cpu_buffer)2877 rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
2878 {
2879 struct buffer_page *reader = NULL;
2880 unsigned long overwrite;
2881 unsigned long flags;
2882 int nr_loops = 0;
2883 int ret;
2884
2885 local_irq_save(flags);
2886 arch_spin_lock(&cpu_buffer->lock);
2887
2888 again:
2889 /*
2890 * This should normally only loop twice. But because the
2891 * start of the reader inserts an empty page, it causes
2892 * a case where we will loop three times. There should be no
2893 * reason to loop four times (that I know of).
2894 */
2895 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
2896 reader = NULL;
2897 goto out;
2898 }
2899
2900 reader = cpu_buffer->reader_page;
2901
2902 /* If there's more to read, return this page */
2903 if (cpu_buffer->reader_page->read < rb_page_size(reader))
2904 goto out;
2905
2906 /* Never should we have an index greater than the size */
2907 if (RB_WARN_ON(cpu_buffer,
2908 cpu_buffer->reader_page->read > rb_page_size(reader)))
2909 goto out;
2910
2911 /* check if we caught up to the tail */
2912 reader = NULL;
2913 if (cpu_buffer->commit_page == cpu_buffer->reader_page)
2914 goto out;
2915
2916 /*
2917 * Reset the reader page to size zero.
2918 */
2919 local_set(&cpu_buffer->reader_page->write, 0);
2920 local_set(&cpu_buffer->reader_page->entries, 0);
2921 local_set(&cpu_buffer->reader_page->page->commit, 0);
2922 cpu_buffer->reader_page->real_end = 0;
2923
2924 spin:
2925 /*
2926 * Splice the empty reader page into the list around the head.
2927 */
2928 reader = rb_set_head_page(cpu_buffer);
2929 cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next);
2930 cpu_buffer->reader_page->list.prev = reader->list.prev;
2931
2932 /*
2933 * cpu_buffer->pages just needs to point to the buffer, it
2934 * has no specific buffer page to point to. Lets move it out
2935 * of our way so we don't accidentally swap it.
2936 */
2937 cpu_buffer->pages = reader->list.prev;
2938
2939 /* The reader page will be pointing to the new head */
2940 rb_set_list_to_head(cpu_buffer, &cpu_buffer->reader_page->list);
2941
2942 /*
2943 * We want to make sure we read the overruns after we set up our
2944 * pointers to the next object. The writer side does a
2945 * cmpxchg to cross pages which acts as the mb on the writer
2946 * side. Note, the reader will constantly fail the swap
2947 * while the writer is updating the pointers, so this
2948 * guarantees that the overwrite recorded here is the one we
2949 * want to compare with the last_overrun.
2950 */
2951 smp_mb();
2952 overwrite = local_read(&(cpu_buffer->overrun));
2953
2954 /*
2955 * Here's the tricky part.
2956 *
2957 * We need to move the pointer past the header page.
2958 * But we can only do that if a writer is not currently
2959 * moving it. The page before the header page has the
2960 * flag bit '1' set if it is pointing to the page we want.
2961 * but if the writer is in the process of moving it
2962 * than it will be '2' or already moved '0'.
2963 */
2964
2965 ret = rb_head_page_replace(reader, cpu_buffer->reader_page);
2966
2967 /*
2968 * If we did not convert it, then we must try again.
2969 */
2970 if (!ret)
2971 goto spin;
2972
2973 /*
2974 * Yeah! We succeeded in replacing the page.
2975 *
2976 * Now make the new head point back to the reader page.
2977 */
2978 rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list;
2979 rb_inc_page(cpu_buffer, &cpu_buffer->head_page);
2980
2981 /* Finally update the reader page to the new head */
2982 cpu_buffer->reader_page = reader;
2983 rb_reset_reader_page(cpu_buffer);
2984
2985 if (overwrite != cpu_buffer->last_overrun) {
2986 cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun;
2987 cpu_buffer->last_overrun = overwrite;
2988 }
2989
2990 goto again;
2991
2992 out:
2993 arch_spin_unlock(&cpu_buffer->lock);
2994 local_irq_restore(flags);
2995
2996 return reader;
2997 }
2998
rb_advance_reader(struct ring_buffer_per_cpu * cpu_buffer)2999 static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
3000 {
3001 struct ring_buffer_event *event;
3002 struct buffer_page *reader;
3003 unsigned length;
3004
3005 reader = rb_get_reader_page(cpu_buffer);
3006
3007 /* This function should not be called when buffer is empty */
3008 if (RB_WARN_ON(cpu_buffer, !reader))
3009 return;
3010
3011 event = rb_reader_event(cpu_buffer);
3012
3013 if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
3014 cpu_buffer->read++;
3015
3016 rb_update_read_stamp(cpu_buffer, event);
3017
3018 length = rb_event_length(event);
3019 cpu_buffer->reader_page->read += length;
3020 }
3021
rb_advance_iter(struct ring_buffer_iter * iter)3022 static void rb_advance_iter(struct ring_buffer_iter *iter)
3023 {
3024 struct ring_buffer_per_cpu *cpu_buffer;
3025 struct ring_buffer_event *event;
3026 unsigned length;
3027
3028 cpu_buffer = iter->cpu_buffer;
3029
3030 /*
3031 * Check if we are at the end of the buffer.
3032 */
3033 if (iter->head >= rb_page_size(iter->head_page)) {
3034 /* discarded commits can make the page empty */
3035 if (iter->head_page == cpu_buffer->commit_page)
3036 return;
3037 rb_inc_iter(iter);
3038 return;
3039 }
3040
3041 event = rb_iter_head_event(iter);
3042
3043 length = rb_event_length(event);
3044
3045 /*
3046 * This should not be called to advance the header if we are
3047 * at the tail of the buffer.
3048 */
3049 if (RB_WARN_ON(cpu_buffer,
3050 (iter->head_page == cpu_buffer->commit_page) &&
3051 (iter->head + length > rb_commit_index(cpu_buffer))))
3052 return;
3053
3054 rb_update_iter_read_stamp(iter, event);
3055
3056 iter->head += length;
3057
3058 /* check for end of page padding */
3059 if ((iter->head >= rb_page_size(iter->head_page)) &&
3060 (iter->head_page != cpu_buffer->commit_page))
3061 rb_advance_iter(iter);
3062 }
3063
rb_lost_events(struct ring_buffer_per_cpu * cpu_buffer)3064 static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer)
3065 {
3066 return cpu_buffer->lost_events;
3067 }
3068
3069 static struct ring_buffer_event *
rb_buffer_peek(struct ring_buffer_per_cpu * cpu_buffer,u64 * ts,unsigned long * lost_events)3070 rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts,
3071 unsigned long *lost_events)
3072 {
3073 struct ring_buffer_event *event;
3074 struct buffer_page *reader;
3075 int nr_loops = 0;
3076
3077 again:
3078 /*
3079 * We repeat when a time extend is encountered.
3080 * Since the time extend is always attached to a data event,
3081 * we should never loop more than once.
3082 * (We never hit the following condition more than twice).
3083 */
3084 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
3085 return NULL;
3086
3087 reader = rb_get_reader_page(cpu_buffer);
3088 if (!reader)
3089 return NULL;
3090
3091 event = rb_reader_event(cpu_buffer);
3092
3093 switch (event->type_len) {
3094 case RINGBUF_TYPE_PADDING:
3095 if (rb_null_event(event))
3096 RB_WARN_ON(cpu_buffer, 1);
3097 /*
3098 * Because the writer could be discarding every
3099 * event it creates (which would probably be bad)
3100 * if we were to go back to "again" then we may never
3101 * catch up, and will trigger the warn on, or lock
3102 * the box. Return the padding, and we will release
3103 * the current locks, and try again.
3104 */
3105 return event;
3106
3107 case RINGBUF_TYPE_TIME_EXTEND:
3108 /* Internal data, OK to advance */
3109 rb_advance_reader(cpu_buffer);
3110 goto again;
3111
3112 case RINGBUF_TYPE_TIME_STAMP:
3113 /* FIXME: not implemented */
3114 rb_advance_reader(cpu_buffer);
3115 goto again;
3116
3117 case RINGBUF_TYPE_DATA:
3118 if (ts) {
3119 *ts = cpu_buffer->read_stamp + event->time_delta;
3120 ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
3121 cpu_buffer->cpu, ts);
3122 }
3123 if (lost_events)
3124 *lost_events = rb_lost_events(cpu_buffer);
3125 return event;
3126
3127 default:
3128 BUG();
3129 }
3130
3131 return NULL;
3132 }
3133 EXPORT_SYMBOL_GPL(ring_buffer_peek);
3134
3135 static struct ring_buffer_event *
rb_iter_peek(struct ring_buffer_iter * iter,u64 * ts)3136 rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3137 {
3138 struct ring_buffer *buffer;
3139 struct ring_buffer_per_cpu *cpu_buffer;
3140 struct ring_buffer_event *event;
3141 int nr_loops = 0;
3142
3143 cpu_buffer = iter->cpu_buffer;
3144 buffer = cpu_buffer->buffer;
3145
3146 /*
3147 * Check if someone performed a consuming read to
3148 * the buffer. A consuming read invalidates the iterator
3149 * and we need to reset the iterator in this case.
3150 */
3151 if (unlikely(iter->cache_read != cpu_buffer->read ||
3152 iter->cache_reader_page != cpu_buffer->reader_page))
3153 rb_iter_reset(iter);
3154
3155 again:
3156 if (ring_buffer_iter_empty(iter))
3157 return NULL;
3158
3159 /*
3160 * We repeat when a time extend is encountered.
3161 * Since the time extend is always attached to a data event,
3162 * we should never loop more than once.
3163 * (We never hit the following condition more than twice).
3164 */
3165 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
3166 return NULL;
3167
3168 if (rb_per_cpu_empty(cpu_buffer))
3169 return NULL;
3170
3171 if (iter->head >= local_read(&iter->head_page->page->commit)) {
3172 rb_inc_iter(iter);
3173 goto again;
3174 }
3175
3176 event = rb_iter_head_event(iter);
3177
3178 switch (event->type_len) {
3179 case RINGBUF_TYPE_PADDING:
3180 if (rb_null_event(event)) {
3181 rb_inc_iter(iter);
3182 goto again;
3183 }
3184 rb_advance_iter(iter);
3185 return event;
3186
3187 case RINGBUF_TYPE_TIME_EXTEND:
3188 /* Internal data, OK to advance */
3189 rb_advance_iter(iter);
3190 goto again;
3191
3192 case RINGBUF_TYPE_TIME_STAMP:
3193 /* FIXME: not implemented */
3194 rb_advance_iter(iter);
3195 goto again;
3196
3197 case RINGBUF_TYPE_DATA:
3198 if (ts) {
3199 *ts = iter->read_stamp + event->time_delta;
3200 ring_buffer_normalize_time_stamp(buffer,
3201 cpu_buffer->cpu, ts);
3202 }
3203 return event;
3204
3205 default:
3206 BUG();
3207 }
3208
3209 return NULL;
3210 }
3211 EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
3212
rb_ok_to_lock(void)3213 static inline int rb_ok_to_lock(void)
3214 {
3215 /*
3216 * If an NMI die dumps out the content of the ring buffer
3217 * do not grab locks. We also permanently disable the ring
3218 * buffer too. A one time deal is all you get from reading
3219 * the ring buffer from an NMI.
3220 */
3221 if (likely(!in_nmi()))
3222 return 1;
3223
3224 tracing_off_permanent();
3225 return 0;
3226 }
3227
3228 /**
3229 * ring_buffer_peek - peek at the next event to be read
3230 * @buffer: The ring buffer to read
3231 * @cpu: The cpu to peak at
3232 * @ts: The timestamp counter of this event.
3233 * @lost_events: a variable to store if events were lost (may be NULL)
3234 *
3235 * This will return the event that will be read next, but does
3236 * not consume the data.
3237 */
3238 struct ring_buffer_event *
ring_buffer_peek(struct ring_buffer * buffer,int cpu,u64 * ts,unsigned long * lost_events)3239 ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts,
3240 unsigned long *lost_events)
3241 {
3242 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
3243 struct ring_buffer_event *event;
3244 unsigned long flags;
3245 int dolock;
3246
3247 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3248 return NULL;
3249
3250 dolock = rb_ok_to_lock();
3251 again:
3252 local_irq_save(flags);
3253 if (dolock)
3254 spin_lock(&cpu_buffer->reader_lock);
3255 event = rb_buffer_peek(cpu_buffer, ts, lost_events);
3256 if (event && event->type_len == RINGBUF_TYPE_PADDING)
3257 rb_advance_reader(cpu_buffer);
3258 if (dolock)
3259 spin_unlock(&cpu_buffer->reader_lock);
3260 local_irq_restore(flags);
3261
3262 if (event && event->type_len == RINGBUF_TYPE_PADDING)
3263 goto again;
3264
3265 return event;
3266 }
3267
3268 /**
3269 * ring_buffer_iter_peek - peek at the next event to be read
3270 * @iter: The ring buffer iterator
3271 * @ts: The timestamp counter of this event.
3272 *
3273 * This will return the event that will be read next, but does
3274 * not increment the iterator.
3275 */
3276 struct ring_buffer_event *
ring_buffer_iter_peek(struct ring_buffer_iter * iter,u64 * ts)3277 ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3278 {
3279 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3280 struct ring_buffer_event *event;
3281 unsigned long flags;
3282
3283 again:
3284 spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3285 event = rb_iter_peek(iter, ts);
3286 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3287
3288 if (event && event->type_len == RINGBUF_TYPE_PADDING)
3289 goto again;
3290
3291 return event;
3292 }
3293
3294 /**
3295 * ring_buffer_consume - return an event and consume it
3296 * @buffer: The ring buffer to get the next event from
3297 * @cpu: the cpu to read the buffer from
3298 * @ts: a variable to store the timestamp (may be NULL)
3299 * @lost_events: a variable to store if events were lost (may be NULL)
3300 *
3301 * Returns the next event in the ring buffer, and that event is consumed.
3302 * Meaning, that sequential reads will keep returning a different event,
3303 * and eventually empty the ring buffer if the producer is slower.
3304 */
3305 struct ring_buffer_event *
ring_buffer_consume(struct ring_buffer * buffer,int cpu,u64 * ts,unsigned long * lost_events)3306 ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts,
3307 unsigned long *lost_events)
3308 {
3309 struct ring_buffer_per_cpu *cpu_buffer;
3310 struct ring_buffer_event *event = NULL;
3311 unsigned long flags;
3312 int dolock;
3313
3314 dolock = rb_ok_to_lock();
3315
3316 again:
3317 /* might be called in atomic */
3318 preempt_disable();
3319
3320 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3321 goto out;
3322
3323 cpu_buffer = buffer->buffers[cpu];
3324 local_irq_save(flags);
3325 if (dolock)
3326 spin_lock(&cpu_buffer->reader_lock);
3327
3328 event = rb_buffer_peek(cpu_buffer, ts, lost_events);
3329 if (event) {
3330 cpu_buffer->lost_events = 0;
3331 rb_advance_reader(cpu_buffer);
3332 }
3333
3334 if (dolock)
3335 spin_unlock(&cpu_buffer->reader_lock);
3336 local_irq_restore(flags);
3337
3338 out:
3339 preempt_enable();
3340
3341 if (event && event->type_len == RINGBUF_TYPE_PADDING)
3342 goto again;
3343
3344 return event;
3345 }
3346 EXPORT_SYMBOL_GPL(ring_buffer_consume);
3347
3348 /**
3349 * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer
3350 * @buffer: The ring buffer to read from
3351 * @cpu: The cpu buffer to iterate over
3352 *
3353 * This performs the initial preparations necessary to iterate
3354 * through the buffer. Memory is allocated, buffer recording
3355 * is disabled, and the iterator pointer is returned to the caller.
3356 *
3357 * Disabling buffer recordng prevents the reading from being
3358 * corrupted. This is not a consuming read, so a producer is not
3359 * expected.
3360 *
3361 * After a sequence of ring_buffer_read_prepare calls, the user is
3362 * expected to make at least one call to ring_buffer_prepare_sync.
3363 * Afterwards, ring_buffer_read_start is invoked to get things going
3364 * for real.
3365 *
3366 * This overall must be paired with ring_buffer_finish.
3367 */
3368 struct ring_buffer_iter *
ring_buffer_read_prepare(struct ring_buffer * buffer,int cpu)3369 ring_buffer_read_prepare(struct ring_buffer *buffer, int cpu)
3370 {
3371 struct ring_buffer_per_cpu *cpu_buffer;
3372 struct ring_buffer_iter *iter;
3373
3374 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3375 return NULL;
3376
3377 iter = kmalloc(sizeof(*iter), GFP_KERNEL);
3378 if (!iter)
3379 return NULL;
3380
3381 cpu_buffer = buffer->buffers[cpu];
3382
3383 iter->cpu_buffer = cpu_buffer;
3384
3385 atomic_inc(&cpu_buffer->record_disabled);
3386
3387 return iter;
3388 }
3389 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare);
3390
3391 /**
3392 * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls
3393 *
3394 * All previously invoked ring_buffer_read_prepare calls to prepare
3395 * iterators will be synchronized. Afterwards, read_buffer_read_start
3396 * calls on those iterators are allowed.
3397 */
3398 void
ring_buffer_read_prepare_sync(void)3399 ring_buffer_read_prepare_sync(void)
3400 {
3401 synchronize_sched();
3402 }
3403 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync);
3404
3405 /**
3406 * ring_buffer_read_start - start a non consuming read of the buffer
3407 * @iter: The iterator returned by ring_buffer_read_prepare
3408 *
3409 * This finalizes the startup of an iteration through the buffer.
3410 * The iterator comes from a call to ring_buffer_read_prepare and
3411 * an intervening ring_buffer_read_prepare_sync must have been
3412 * performed.
3413 *
3414 * Must be paired with ring_buffer_finish.
3415 */
3416 void
ring_buffer_read_start(struct ring_buffer_iter * iter)3417 ring_buffer_read_start(struct ring_buffer_iter *iter)
3418 {
3419 struct ring_buffer_per_cpu *cpu_buffer;
3420 unsigned long flags;
3421
3422 if (!iter)
3423 return;
3424
3425 cpu_buffer = iter->cpu_buffer;
3426
3427 spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3428 arch_spin_lock(&cpu_buffer->lock);
3429 rb_iter_reset(iter);
3430 arch_spin_unlock(&cpu_buffer->lock);
3431 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3432 }
3433 EXPORT_SYMBOL_GPL(ring_buffer_read_start);
3434
3435 /**
3436 * ring_buffer_finish - finish reading the iterator of the buffer
3437 * @iter: The iterator retrieved by ring_buffer_start
3438 *
3439 * This re-enables the recording to the buffer, and frees the
3440 * iterator.
3441 */
3442 void
ring_buffer_read_finish(struct ring_buffer_iter * iter)3443 ring_buffer_read_finish(struct ring_buffer_iter *iter)
3444 {
3445 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3446
3447 atomic_dec(&cpu_buffer->record_disabled);
3448 kfree(iter);
3449 }
3450 EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
3451
3452 /**
3453 * ring_buffer_read - read the next item in the ring buffer by the iterator
3454 * @iter: The ring buffer iterator
3455 * @ts: The time stamp of the event read.
3456 *
3457 * This reads the next event in the ring buffer and increments the iterator.
3458 */
3459 struct ring_buffer_event *
ring_buffer_read(struct ring_buffer_iter * iter,u64 * ts)3460 ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts)
3461 {
3462 struct ring_buffer_event *event;
3463 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3464 unsigned long flags;
3465
3466 spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3467 again:
3468 event = rb_iter_peek(iter, ts);
3469 if (!event)
3470 goto out;
3471
3472 if (event->type_len == RINGBUF_TYPE_PADDING)
3473 goto again;
3474
3475 rb_advance_iter(iter);
3476 out:
3477 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3478
3479 return event;
3480 }
3481 EXPORT_SYMBOL_GPL(ring_buffer_read);
3482
3483 /**
3484 * ring_buffer_size - return the size of the ring buffer (in bytes)
3485 * @buffer: The ring buffer.
3486 */
ring_buffer_size(struct ring_buffer * buffer)3487 unsigned long ring_buffer_size(struct ring_buffer *buffer)
3488 {
3489 return BUF_PAGE_SIZE * buffer->pages;
3490 }
3491 EXPORT_SYMBOL_GPL(ring_buffer_size);
3492
3493 static void
rb_reset_cpu(struct ring_buffer_per_cpu * cpu_buffer)3494 rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
3495 {
3496 rb_head_page_deactivate(cpu_buffer);
3497
3498 cpu_buffer->head_page
3499 = list_entry(cpu_buffer->pages, struct buffer_page, list);
3500 local_set(&cpu_buffer->head_page->write, 0);
3501 local_set(&cpu_buffer->head_page->entries, 0);
3502 local_set(&cpu_buffer->head_page->page->commit, 0);
3503
3504 cpu_buffer->head_page->read = 0;
3505
3506 cpu_buffer->tail_page = cpu_buffer->head_page;
3507 cpu_buffer->commit_page = cpu_buffer->head_page;
3508
3509 INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
3510 local_set(&cpu_buffer->reader_page->write, 0);
3511 local_set(&cpu_buffer->reader_page->entries, 0);
3512 local_set(&cpu_buffer->reader_page->page->commit, 0);
3513 cpu_buffer->reader_page->read = 0;
3514
3515 local_set(&cpu_buffer->commit_overrun, 0);
3516 local_set(&cpu_buffer->overrun, 0);
3517 local_set(&cpu_buffer->entries, 0);
3518 local_set(&cpu_buffer->committing, 0);
3519 local_set(&cpu_buffer->commits, 0);
3520 cpu_buffer->read = 0;
3521
3522 cpu_buffer->write_stamp = 0;
3523 cpu_buffer->read_stamp = 0;
3524
3525 cpu_buffer->lost_events = 0;
3526 cpu_buffer->last_overrun = 0;
3527
3528 rb_head_page_activate(cpu_buffer);
3529 }
3530
3531 /**
3532 * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
3533 * @buffer: The ring buffer to reset a per cpu buffer of
3534 * @cpu: The CPU buffer to be reset
3535 */
ring_buffer_reset_cpu(struct ring_buffer * buffer,int cpu)3536 void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu)
3537 {
3538 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
3539 unsigned long flags;
3540
3541 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3542 return;
3543
3544 atomic_inc(&cpu_buffer->record_disabled);
3545
3546 spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3547
3548 if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing)))
3549 goto out;
3550
3551 arch_spin_lock(&cpu_buffer->lock);
3552
3553 rb_reset_cpu(cpu_buffer);
3554
3555 arch_spin_unlock(&cpu_buffer->lock);
3556
3557 out:
3558 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3559
3560 atomic_dec(&cpu_buffer->record_disabled);
3561 }
3562 EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
3563
3564 /**
3565 * ring_buffer_reset - reset a ring buffer
3566 * @buffer: The ring buffer to reset all cpu buffers
3567 */
ring_buffer_reset(struct ring_buffer * buffer)3568 void ring_buffer_reset(struct ring_buffer *buffer)
3569 {
3570 int cpu;
3571
3572 for_each_buffer_cpu(buffer, cpu)
3573 ring_buffer_reset_cpu(buffer, cpu);
3574 }
3575 EXPORT_SYMBOL_GPL(ring_buffer_reset);
3576
3577 /**
3578 * rind_buffer_empty - is the ring buffer empty?
3579 * @buffer: The ring buffer to test
3580 */
ring_buffer_empty(struct ring_buffer * buffer)3581 int ring_buffer_empty(struct ring_buffer *buffer)
3582 {
3583 struct ring_buffer_per_cpu *cpu_buffer;
3584 unsigned long flags;
3585 int dolock;
3586 int cpu;
3587 int ret;
3588
3589 dolock = rb_ok_to_lock();
3590
3591 /* yes this is racy, but if you don't like the race, lock the buffer */
3592 for_each_buffer_cpu(buffer, cpu) {
3593 cpu_buffer = buffer->buffers[cpu];
3594 local_irq_save(flags);
3595 if (dolock)
3596 spin_lock(&cpu_buffer->reader_lock);
3597 ret = rb_per_cpu_empty(cpu_buffer);
3598 if (dolock)
3599 spin_unlock(&cpu_buffer->reader_lock);
3600 local_irq_restore(flags);
3601
3602 if (!ret)
3603 return 0;
3604 }
3605
3606 return 1;
3607 }
3608 EXPORT_SYMBOL_GPL(ring_buffer_empty);
3609
3610 /**
3611 * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
3612 * @buffer: The ring buffer
3613 * @cpu: The CPU buffer to test
3614 */
ring_buffer_empty_cpu(struct ring_buffer * buffer,int cpu)3615 int ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu)
3616 {
3617 struct ring_buffer_per_cpu *cpu_buffer;
3618 unsigned long flags;
3619 int dolock;
3620 int ret;
3621
3622 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3623 return 1;
3624
3625 dolock = rb_ok_to_lock();
3626
3627 cpu_buffer = buffer->buffers[cpu];
3628 local_irq_save(flags);
3629 if (dolock)
3630 spin_lock(&cpu_buffer->reader_lock);
3631 ret = rb_per_cpu_empty(cpu_buffer);
3632 if (dolock)
3633 spin_unlock(&cpu_buffer->reader_lock);
3634 local_irq_restore(flags);
3635
3636 return ret;
3637 }
3638 EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
3639
3640 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
3641 /**
3642 * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
3643 * @buffer_a: One buffer to swap with
3644 * @buffer_b: The other buffer to swap with
3645 *
3646 * This function is useful for tracers that want to take a "snapshot"
3647 * of a CPU buffer and has another back up buffer lying around.
3648 * it is expected that the tracer handles the cpu buffer not being
3649 * used at the moment.
3650 */
ring_buffer_swap_cpu(struct ring_buffer * buffer_a,struct ring_buffer * buffer_b,int cpu)3651 int ring_buffer_swap_cpu(struct ring_buffer *buffer_a,
3652 struct ring_buffer *buffer_b, int cpu)
3653 {
3654 struct ring_buffer_per_cpu *cpu_buffer_a;
3655 struct ring_buffer_per_cpu *cpu_buffer_b;
3656 int ret = -EINVAL;
3657
3658 if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
3659 !cpumask_test_cpu(cpu, buffer_b->cpumask))
3660 goto out;
3661
3662 /* At least make sure the two buffers are somewhat the same */
3663 if (buffer_a->pages != buffer_b->pages)
3664 goto out;
3665
3666 ret = -EAGAIN;
3667
3668 if (ring_buffer_flags != RB_BUFFERS_ON)
3669 goto out;
3670
3671 if (atomic_read(&buffer_a->record_disabled))
3672 goto out;
3673
3674 if (atomic_read(&buffer_b->record_disabled))
3675 goto out;
3676
3677 cpu_buffer_a = buffer_a->buffers[cpu];
3678 cpu_buffer_b = buffer_b->buffers[cpu];
3679
3680 if (atomic_read(&cpu_buffer_a->record_disabled))
3681 goto out;
3682
3683 if (atomic_read(&cpu_buffer_b->record_disabled))
3684 goto out;
3685
3686 /*
3687 * We can't do a synchronize_sched here because this
3688 * function can be called in atomic context.
3689 * Normally this will be called from the same CPU as cpu.
3690 * If not it's up to the caller to protect this.
3691 */
3692 atomic_inc(&cpu_buffer_a->record_disabled);
3693 atomic_inc(&cpu_buffer_b->record_disabled);
3694
3695 ret = -EBUSY;
3696 if (local_read(&cpu_buffer_a->committing))
3697 goto out_dec;
3698 if (local_read(&cpu_buffer_b->committing))
3699 goto out_dec;
3700
3701 buffer_a->buffers[cpu] = cpu_buffer_b;
3702 buffer_b->buffers[cpu] = cpu_buffer_a;
3703
3704 cpu_buffer_b->buffer = buffer_a;
3705 cpu_buffer_a->buffer = buffer_b;
3706
3707 ret = 0;
3708
3709 out_dec:
3710 atomic_dec(&cpu_buffer_a->record_disabled);
3711 atomic_dec(&cpu_buffer_b->record_disabled);
3712 out:
3713 return ret;
3714 }
3715 EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
3716 #endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */
3717
3718 /**
3719 * ring_buffer_alloc_read_page - allocate a page to read from buffer
3720 * @buffer: the buffer to allocate for.
3721 *
3722 * This function is used in conjunction with ring_buffer_read_page.
3723 * When reading a full page from the ring buffer, these functions
3724 * can be used to speed up the process. The calling function should
3725 * allocate a few pages first with this function. Then when it
3726 * needs to get pages from the ring buffer, it passes the result
3727 * of this function into ring_buffer_read_page, which will swap
3728 * the page that was allocated, with the read page of the buffer.
3729 *
3730 * Returns:
3731 * The page allocated, or NULL on error.
3732 */
ring_buffer_alloc_read_page(struct ring_buffer * buffer)3733 void *ring_buffer_alloc_read_page(struct ring_buffer *buffer)
3734 {
3735 struct buffer_data_page *bpage;
3736 unsigned long addr;
3737
3738 addr = __get_free_page(GFP_KERNEL);
3739 if (!addr)
3740 return NULL;
3741
3742 bpage = (void *)addr;
3743
3744 rb_init_page(bpage);
3745
3746 return bpage;
3747 }
3748 EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page);
3749
3750 /**
3751 * ring_buffer_free_read_page - free an allocated read page
3752 * @buffer: the buffer the page was allocate for
3753 * @data: the page to free
3754 *
3755 * Free a page allocated from ring_buffer_alloc_read_page.
3756 */
ring_buffer_free_read_page(struct ring_buffer * buffer,void * data)3757 void ring_buffer_free_read_page(struct ring_buffer *buffer, void *data)
3758 {
3759 free_page((unsigned long)data);
3760 }
3761 EXPORT_SYMBOL_GPL(ring_buffer_free_read_page);
3762
3763 /**
3764 * ring_buffer_read_page - extract a page from the ring buffer
3765 * @buffer: buffer to extract from
3766 * @data_page: the page to use allocated from ring_buffer_alloc_read_page
3767 * @len: amount to extract
3768 * @cpu: the cpu of the buffer to extract
3769 * @full: should the extraction only happen when the page is full.
3770 *
3771 * This function will pull out a page from the ring buffer and consume it.
3772 * @data_page must be the address of the variable that was returned
3773 * from ring_buffer_alloc_read_page. This is because the page might be used
3774 * to swap with a page in the ring buffer.
3775 *
3776 * for example:
3777 * rpage = ring_buffer_alloc_read_page(buffer);
3778 * if (!rpage)
3779 * return error;
3780 * ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0);
3781 * if (ret >= 0)
3782 * process_page(rpage, ret);
3783 *
3784 * When @full is set, the function will not return true unless
3785 * the writer is off the reader page.
3786 *
3787 * Note: it is up to the calling functions to handle sleeps and wakeups.
3788 * The ring buffer can be used anywhere in the kernel and can not
3789 * blindly call wake_up. The layer that uses the ring buffer must be
3790 * responsible for that.
3791 *
3792 * Returns:
3793 * >=0 if data has been transferred, returns the offset of consumed data.
3794 * <0 if no data has been transferred.
3795 */
ring_buffer_read_page(struct ring_buffer * buffer,void ** data_page,size_t len,int cpu,int full)3796 int ring_buffer_read_page(struct ring_buffer *buffer,
3797 void **data_page, size_t len, int cpu, int full)
3798 {
3799 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
3800 struct ring_buffer_event *event;
3801 struct buffer_data_page *bpage;
3802 struct buffer_page *reader;
3803 unsigned long missed_events;
3804 unsigned long flags;
3805 unsigned int commit;
3806 unsigned int read;
3807 u64 save_timestamp;
3808 int ret = -1;
3809
3810 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3811 goto out;
3812
3813 /*
3814 * If len is not big enough to hold the page header, then
3815 * we can not copy anything.
3816 */
3817 if (len <= BUF_PAGE_HDR_SIZE)
3818 goto out;
3819
3820 len -= BUF_PAGE_HDR_SIZE;
3821
3822 if (!data_page)
3823 goto out;
3824
3825 bpage = *data_page;
3826 if (!bpage)
3827 goto out;
3828
3829 spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3830
3831 reader = rb_get_reader_page(cpu_buffer);
3832 if (!reader)
3833 goto out_unlock;
3834
3835 event = rb_reader_event(cpu_buffer);
3836
3837 read = reader->read;
3838 commit = rb_page_commit(reader);
3839
3840 /* Check if any events were dropped */
3841 missed_events = cpu_buffer->lost_events;
3842
3843 /*
3844 * If this page has been partially read or
3845 * if len is not big enough to read the rest of the page or
3846 * a writer is still on the page, then
3847 * we must copy the data from the page to the buffer.
3848 * Otherwise, we can simply swap the page with the one passed in.
3849 */
3850 if (read || (len < (commit - read)) ||
3851 cpu_buffer->reader_page == cpu_buffer->commit_page) {
3852 struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
3853 unsigned int rpos = read;
3854 unsigned int pos = 0;
3855 unsigned int size;
3856
3857 if (full)
3858 goto out_unlock;
3859
3860 if (len > (commit - read))
3861 len = (commit - read);
3862
3863 /* Always keep the time extend and data together */
3864 size = rb_event_ts_length(event);
3865
3866 if (len < size)
3867 goto out_unlock;
3868
3869 /* save the current timestamp, since the user will need it */
3870 save_timestamp = cpu_buffer->read_stamp;
3871
3872 /* Need to copy one event at a time */
3873 do {
3874 /* We need the size of one event, because
3875 * rb_advance_reader only advances by one event,
3876 * whereas rb_event_ts_length may include the size of
3877 * one or two events.
3878 * We have already ensured there's enough space if this
3879 * is a time extend. */
3880 size = rb_event_length(event);
3881 memcpy(bpage->data + pos, rpage->data + rpos, size);
3882
3883 len -= size;
3884
3885 rb_advance_reader(cpu_buffer);
3886 rpos = reader->read;
3887 pos += size;
3888
3889 if (rpos >= commit)
3890 break;
3891
3892 event = rb_reader_event(cpu_buffer);
3893 /* Always keep the time extend and data together */
3894 size = rb_event_ts_length(event);
3895 } while (len >= size);
3896
3897 /* update bpage */
3898 local_set(&bpage->commit, pos);
3899 bpage->time_stamp = save_timestamp;
3900
3901 /* we copied everything to the beginning */
3902 read = 0;
3903 } else {
3904 /* update the entry counter */
3905 cpu_buffer->read += rb_page_entries(reader);
3906
3907 /* swap the pages */
3908 rb_init_page(bpage);
3909 bpage = reader->page;
3910 reader->page = *data_page;
3911 local_set(&reader->write, 0);
3912 local_set(&reader->entries, 0);
3913 reader->read = 0;
3914 *data_page = bpage;
3915
3916 /*
3917 * Use the real_end for the data size,
3918 * This gives us a chance to store the lost events
3919 * on the page.
3920 */
3921 if (reader->real_end)
3922 local_set(&bpage->commit, reader->real_end);
3923 }
3924 ret = read;
3925
3926 cpu_buffer->lost_events = 0;
3927
3928 commit = local_read(&bpage->commit);
3929 /*
3930 * Set a flag in the commit field if we lost events
3931 */
3932 if (missed_events) {
3933 /* If there is room at the end of the page to save the
3934 * missed events, then record it there.
3935 */
3936 if (BUF_PAGE_SIZE - commit >= sizeof(missed_events)) {
3937 memcpy(&bpage->data[commit], &missed_events,
3938 sizeof(missed_events));
3939 local_add(RB_MISSED_STORED, &bpage->commit);
3940 commit += sizeof(missed_events);
3941 }
3942 local_add(RB_MISSED_EVENTS, &bpage->commit);
3943 }
3944
3945 /*
3946 * This page may be off to user land. Zero it out here.
3947 */
3948 if (commit < BUF_PAGE_SIZE)
3949 memset(&bpage->data[commit], 0, BUF_PAGE_SIZE - commit);
3950
3951 out_unlock:
3952 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3953
3954 out:
3955 return ret;
3956 }
3957 EXPORT_SYMBOL_GPL(ring_buffer_read_page);
3958
3959 #ifdef CONFIG_TRACING
3960 static ssize_t
rb_simple_read(struct file * filp,char __user * ubuf,size_t cnt,loff_t * ppos)3961 rb_simple_read(struct file *filp, char __user *ubuf,
3962 size_t cnt, loff_t *ppos)
3963 {
3964 unsigned long *p = filp->private_data;
3965 char buf[64];
3966 int r;
3967
3968 if (test_bit(RB_BUFFERS_DISABLED_BIT, p))
3969 r = sprintf(buf, "permanently disabled\n");
3970 else
3971 r = sprintf(buf, "%d\n", test_bit(RB_BUFFERS_ON_BIT, p));
3972
3973 return simple_read_from_buffer(ubuf, cnt, ppos, buf, r);
3974 }
3975
3976 static ssize_t
rb_simple_write(struct file * filp,const char __user * ubuf,size_t cnt,loff_t * ppos)3977 rb_simple_write(struct file *filp, const char __user *ubuf,
3978 size_t cnt, loff_t *ppos)
3979 {
3980 unsigned long *p = filp->private_data;
3981 char buf[64];
3982 unsigned long val;
3983 int ret;
3984
3985 if (cnt >= sizeof(buf))
3986 return -EINVAL;
3987
3988 if (copy_from_user(&buf, ubuf, cnt))
3989 return -EFAULT;
3990
3991 buf[cnt] = 0;
3992
3993 ret = strict_strtoul(buf, 10, &val);
3994 if (ret < 0)
3995 return ret;
3996
3997 if (val)
3998 set_bit(RB_BUFFERS_ON_BIT, p);
3999 else
4000 clear_bit(RB_BUFFERS_ON_BIT, p);
4001
4002 (*ppos)++;
4003
4004 return cnt;
4005 }
4006
4007 static const struct file_operations rb_simple_fops = {
4008 .open = tracing_open_generic,
4009 .read = rb_simple_read,
4010 .write = rb_simple_write,
4011 .llseek = default_llseek,
4012 };
4013
4014
rb_init_debugfs(void)4015 static __init int rb_init_debugfs(void)
4016 {
4017 struct dentry *d_tracer;
4018
4019 d_tracer = tracing_init_dentry();
4020
4021 trace_create_file("tracing_on", 0644, d_tracer,
4022 &ring_buffer_flags, &rb_simple_fops);
4023
4024 return 0;
4025 }
4026
4027 fs_initcall(rb_init_debugfs);
4028 #endif
4029
4030 #ifdef CONFIG_HOTPLUG_CPU
rb_cpu_notify(struct notifier_block * self,unsigned long action,void * hcpu)4031 static int rb_cpu_notify(struct notifier_block *self,
4032 unsigned long action, void *hcpu)
4033 {
4034 struct ring_buffer *buffer =
4035 container_of(self, struct ring_buffer, cpu_notify);
4036 long cpu = (long)hcpu;
4037
4038 switch (action) {
4039 case CPU_UP_PREPARE:
4040 case CPU_UP_PREPARE_FROZEN:
4041 if (cpumask_test_cpu(cpu, buffer->cpumask))
4042 return NOTIFY_OK;
4043
4044 buffer->buffers[cpu] =
4045 rb_allocate_cpu_buffer(buffer, cpu);
4046 if (!buffer->buffers[cpu]) {
4047 WARN(1, "failed to allocate ring buffer on CPU %ld\n",
4048 cpu);
4049 return NOTIFY_OK;
4050 }
4051 smp_wmb();
4052 cpumask_set_cpu(cpu, buffer->cpumask);
4053 break;
4054 case CPU_DOWN_PREPARE:
4055 case CPU_DOWN_PREPARE_FROZEN:
4056 /*
4057 * Do nothing.
4058 * If we were to free the buffer, then the user would
4059 * lose any trace that was in the buffer.
4060 */
4061 break;
4062 default:
4063 break;
4064 }
4065 return NOTIFY_OK;
4066 }
4067 #endif
4068