1 /*
2  * Generic ring buffer
3  *
4  * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
5  */
6 #include <linux/ring_buffer.h>
7 #include <linux/trace_clock.h>
8 #include <linux/spinlock.h>
9 #include <linux/debugfs.h>
10 #include <linux/uaccess.h>
11 #include <linux/hardirq.h>
12 #include <linux/kmemcheck.h>
13 #include <linux/module.h>
14 #include <linux/percpu.h>
15 #include <linux/mutex.h>
16 #include <linux/slab.h>
17 #include <linux/init.h>
18 #include <linux/hash.h>
19 #include <linux/list.h>
20 #include <linux/cpu.h>
21 #include <linux/fs.h>
22 
23 #include <asm/local.h>
24 #include "trace.h"
25 
26 /*
27  * The ring buffer header is special. We must manually up keep it.
28  */
ring_buffer_print_entry_header(struct trace_seq * s)29 int ring_buffer_print_entry_header(struct trace_seq *s)
30 {
31 	int ret;
32 
33 	ret = trace_seq_printf(s, "# compressed entry header\n");
34 	ret = trace_seq_printf(s, "\ttype_len    :    5 bits\n");
35 	ret = trace_seq_printf(s, "\ttime_delta  :   27 bits\n");
36 	ret = trace_seq_printf(s, "\tarray       :   32 bits\n");
37 	ret = trace_seq_printf(s, "\n");
38 	ret = trace_seq_printf(s, "\tpadding     : type == %d\n",
39 			       RINGBUF_TYPE_PADDING);
40 	ret = trace_seq_printf(s, "\ttime_extend : type == %d\n",
41 			       RINGBUF_TYPE_TIME_EXTEND);
42 	ret = trace_seq_printf(s, "\tdata max type_len  == %d\n",
43 			       RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
44 
45 	return ret;
46 }
47 
48 /*
49  * The ring buffer is made up of a list of pages. A separate list of pages is
50  * allocated for each CPU. A writer may only write to a buffer that is
51  * associated with the CPU it is currently executing on.  A reader may read
52  * from any per cpu buffer.
53  *
54  * The reader is special. For each per cpu buffer, the reader has its own
55  * reader page. When a reader has read the entire reader page, this reader
56  * page is swapped with another page in the ring buffer.
57  *
58  * Now, as long as the writer is off the reader page, the reader can do what
59  * ever it wants with that page. The writer will never write to that page
60  * again (as long as it is out of the ring buffer).
61  *
62  * Here's some silly ASCII art.
63  *
64  *   +------+
65  *   |reader|          RING BUFFER
66  *   |page  |
67  *   +------+        +---+   +---+   +---+
68  *                   |   |-->|   |-->|   |
69  *                   +---+   +---+   +---+
70  *                     ^               |
71  *                     |               |
72  *                     +---------------+
73  *
74  *
75  *   +------+
76  *   |reader|          RING BUFFER
77  *   |page  |------------------v
78  *   +------+        +---+   +---+   +---+
79  *                   |   |-->|   |-->|   |
80  *                   +---+   +---+   +---+
81  *                     ^               |
82  *                     |               |
83  *                     +---------------+
84  *
85  *
86  *   +------+
87  *   |reader|          RING BUFFER
88  *   |page  |------------------v
89  *   +------+        +---+   +---+   +---+
90  *      ^            |   |-->|   |-->|   |
91  *      |            +---+   +---+   +---+
92  *      |                              |
93  *      |                              |
94  *      +------------------------------+
95  *
96  *
97  *   +------+
98  *   |buffer|          RING BUFFER
99  *   |page  |------------------v
100  *   +------+        +---+   +---+   +---+
101  *      ^            |   |   |   |-->|   |
102  *      |   New      +---+   +---+   +---+
103  *      |  Reader------^               |
104  *      |   page                       |
105  *      +------------------------------+
106  *
107  *
108  * After we make this swap, the reader can hand this page off to the splice
109  * code and be done with it. It can even allocate a new page if it needs to
110  * and swap that into the ring buffer.
111  *
112  * We will be using cmpxchg soon to make all this lockless.
113  *
114  */
115 
116 /*
117  * A fast way to enable or disable all ring buffers is to
118  * call tracing_on or tracing_off. Turning off the ring buffers
119  * prevents all ring buffers from being recorded to.
120  * Turning this switch on, makes it OK to write to the
121  * ring buffer, if the ring buffer is enabled itself.
122  *
123  * There's three layers that must be on in order to write
124  * to the ring buffer.
125  *
126  * 1) This global flag must be set.
127  * 2) The ring buffer must be enabled for recording.
128  * 3) The per cpu buffer must be enabled for recording.
129  *
130  * In case of an anomaly, this global flag has a bit set that
131  * will permantly disable all ring buffers.
132  */
133 
134 /*
135  * Global flag to disable all recording to ring buffers
136  *  This has two bits: ON, DISABLED
137  *
138  *  ON   DISABLED
139  * ---- ----------
140  *   0      0        : ring buffers are off
141  *   1      0        : ring buffers are on
142  *   X      1        : ring buffers are permanently disabled
143  */
144 
145 enum {
146 	RB_BUFFERS_ON_BIT	= 0,
147 	RB_BUFFERS_DISABLED_BIT	= 1,
148 };
149 
150 enum {
151 	RB_BUFFERS_ON		= 1 << RB_BUFFERS_ON_BIT,
152 	RB_BUFFERS_DISABLED	= 1 << RB_BUFFERS_DISABLED_BIT,
153 };
154 
155 static unsigned long ring_buffer_flags __read_mostly = RB_BUFFERS_ON;
156 
157 #define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
158 
159 /**
160  * tracing_on - enable all tracing buffers
161  *
162  * This function enables all tracing buffers that may have been
163  * disabled with tracing_off.
164  */
tracing_on(void)165 void tracing_on(void)
166 {
167 	set_bit(RB_BUFFERS_ON_BIT, &ring_buffer_flags);
168 }
169 EXPORT_SYMBOL_GPL(tracing_on);
170 
171 /**
172  * tracing_off - turn off all tracing buffers
173  *
174  * This function stops all tracing buffers from recording data.
175  * It does not disable any overhead the tracers themselves may
176  * be causing. This function simply causes all recording to
177  * the ring buffers to fail.
178  */
tracing_off(void)179 void tracing_off(void)
180 {
181 	clear_bit(RB_BUFFERS_ON_BIT, &ring_buffer_flags);
182 }
183 EXPORT_SYMBOL_GPL(tracing_off);
184 
185 /**
186  * tracing_off_permanent - permanently disable ring buffers
187  *
188  * This function, once called, will disable all ring buffers
189  * permanently.
190  */
tracing_off_permanent(void)191 void tracing_off_permanent(void)
192 {
193 	set_bit(RB_BUFFERS_DISABLED_BIT, &ring_buffer_flags);
194 }
195 
196 /**
197  * tracing_is_on - show state of ring buffers enabled
198  */
tracing_is_on(void)199 int tracing_is_on(void)
200 {
201 	return ring_buffer_flags == RB_BUFFERS_ON;
202 }
203 EXPORT_SYMBOL_GPL(tracing_is_on);
204 
205 #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
206 #define RB_ALIGNMENT		4U
207 #define RB_MAX_SMALL_DATA	(RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
208 #define RB_EVNT_MIN_SIZE	8U	/* two 32bit words */
209 
210 #if !defined(CONFIG_64BIT) || defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)
211 # define RB_FORCE_8BYTE_ALIGNMENT	0
212 # define RB_ARCH_ALIGNMENT		RB_ALIGNMENT
213 #else
214 # define RB_FORCE_8BYTE_ALIGNMENT	1
215 # define RB_ARCH_ALIGNMENT		8U
216 #endif
217 
218 /* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
219 #define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
220 
221 enum {
222 	RB_LEN_TIME_EXTEND = 8,
223 	RB_LEN_TIME_STAMP = 16,
224 };
225 
226 #define skip_time_extend(event) \
227 	((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND))
228 
rb_null_event(struct ring_buffer_event * event)229 static inline int rb_null_event(struct ring_buffer_event *event)
230 {
231 	return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta;
232 }
233 
rb_event_set_padding(struct ring_buffer_event * event)234 static void rb_event_set_padding(struct ring_buffer_event *event)
235 {
236 	/* padding has a NULL time_delta */
237 	event->type_len = RINGBUF_TYPE_PADDING;
238 	event->time_delta = 0;
239 }
240 
241 static unsigned
rb_event_data_length(struct ring_buffer_event * event)242 rb_event_data_length(struct ring_buffer_event *event)
243 {
244 	unsigned length;
245 
246 	if (event->type_len)
247 		length = event->type_len * RB_ALIGNMENT;
248 	else
249 		length = event->array[0];
250 	return length + RB_EVNT_HDR_SIZE;
251 }
252 
253 /*
254  * Return the length of the given event. Will return
255  * the length of the time extend if the event is a
256  * time extend.
257  */
258 static inline unsigned
rb_event_length(struct ring_buffer_event * event)259 rb_event_length(struct ring_buffer_event *event)
260 {
261 	switch (event->type_len) {
262 	case RINGBUF_TYPE_PADDING:
263 		if (rb_null_event(event))
264 			/* undefined */
265 			return -1;
266 		return  event->array[0] + RB_EVNT_HDR_SIZE;
267 
268 	case RINGBUF_TYPE_TIME_EXTEND:
269 		return RB_LEN_TIME_EXTEND;
270 
271 	case RINGBUF_TYPE_TIME_STAMP:
272 		return RB_LEN_TIME_STAMP;
273 
274 	case RINGBUF_TYPE_DATA:
275 		return rb_event_data_length(event);
276 	default:
277 		BUG();
278 	}
279 	/* not hit */
280 	return 0;
281 }
282 
283 /*
284  * Return total length of time extend and data,
285  *   or just the event length for all other events.
286  */
287 static inline unsigned
rb_event_ts_length(struct ring_buffer_event * event)288 rb_event_ts_length(struct ring_buffer_event *event)
289 {
290 	unsigned len = 0;
291 
292 	if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
293 		/* time extends include the data event after it */
294 		len = RB_LEN_TIME_EXTEND;
295 		event = skip_time_extend(event);
296 	}
297 	return len + rb_event_length(event);
298 }
299 
300 /**
301  * ring_buffer_event_length - return the length of the event
302  * @event: the event to get the length of
303  *
304  * Returns the size of the data load of a data event.
305  * If the event is something other than a data event, it
306  * returns the size of the event itself. With the exception
307  * of a TIME EXTEND, where it still returns the size of the
308  * data load of the data event after it.
309  */
ring_buffer_event_length(struct ring_buffer_event * event)310 unsigned ring_buffer_event_length(struct ring_buffer_event *event)
311 {
312 	unsigned length;
313 
314 	if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
315 		event = skip_time_extend(event);
316 
317 	length = rb_event_length(event);
318 	if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
319 		return length;
320 	length -= RB_EVNT_HDR_SIZE;
321 	if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
322                 length -= sizeof(event->array[0]);
323 	return length;
324 }
325 EXPORT_SYMBOL_GPL(ring_buffer_event_length);
326 
327 /* inline for ring buffer fast paths */
328 static void *
rb_event_data(struct ring_buffer_event * event)329 rb_event_data(struct ring_buffer_event *event)
330 {
331 	if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
332 		event = skip_time_extend(event);
333 	BUG_ON(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
334 	/* If length is in len field, then array[0] has the data */
335 	if (event->type_len)
336 		return (void *)&event->array[0];
337 	/* Otherwise length is in array[0] and array[1] has the data */
338 	return (void *)&event->array[1];
339 }
340 
341 /**
342  * ring_buffer_event_data - return the data of the event
343  * @event: the event to get the data from
344  */
ring_buffer_event_data(struct ring_buffer_event * event)345 void *ring_buffer_event_data(struct ring_buffer_event *event)
346 {
347 	return rb_event_data(event);
348 }
349 EXPORT_SYMBOL_GPL(ring_buffer_event_data);
350 
351 #define for_each_buffer_cpu(buffer, cpu)		\
352 	for_each_cpu(cpu, buffer->cpumask)
353 
354 #define TS_SHIFT	27
355 #define TS_MASK		((1ULL << TS_SHIFT) - 1)
356 #define TS_DELTA_TEST	(~TS_MASK)
357 
358 /* Flag when events were overwritten */
359 #define RB_MISSED_EVENTS	(1 << 31)
360 /* Missed count stored at end */
361 #define RB_MISSED_STORED	(1 << 30)
362 
363 struct buffer_data_page {
364 	u64		 time_stamp;	/* page time stamp */
365 	local_t		 commit;	/* write committed index */
366 	unsigned char	 data[];	/* data of buffer page */
367 };
368 
369 /*
370  * Note, the buffer_page list must be first. The buffer pages
371  * are allocated in cache lines, which means that each buffer
372  * page will be at the beginning of a cache line, and thus
373  * the least significant bits will be zero. We use this to
374  * add flags in the list struct pointers, to make the ring buffer
375  * lockless.
376  */
377 struct buffer_page {
378 	struct list_head list;		/* list of buffer pages */
379 	local_t		 write;		/* index for next write */
380 	unsigned	 read;		/* index for next read */
381 	local_t		 entries;	/* entries on this page */
382 	unsigned long	 real_end;	/* real end of data */
383 	struct buffer_data_page *page;	/* Actual data page */
384 };
385 
386 /*
387  * The buffer page counters, write and entries, must be reset
388  * atomically when crossing page boundaries. To synchronize this
389  * update, two counters are inserted into the number. One is
390  * the actual counter for the write position or count on the page.
391  *
392  * The other is a counter of updaters. Before an update happens
393  * the update partition of the counter is incremented. This will
394  * allow the updater to update the counter atomically.
395  *
396  * The counter is 20 bits, and the state data is 12.
397  */
398 #define RB_WRITE_MASK		0xfffff
399 #define RB_WRITE_INTCNT		(1 << 20)
400 
rb_init_page(struct buffer_data_page * bpage)401 static void rb_init_page(struct buffer_data_page *bpage)
402 {
403 	local_set(&bpage->commit, 0);
404 }
405 
406 /**
407  * ring_buffer_page_len - the size of data on the page.
408  * @page: The page to read
409  *
410  * Returns the amount of data on the page, including buffer page header.
411  */
ring_buffer_page_len(void * page)412 size_t ring_buffer_page_len(void *page)
413 {
414 	return local_read(&((struct buffer_data_page *)page)->commit)
415 		+ BUF_PAGE_HDR_SIZE;
416 }
417 
418 /*
419  * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
420  * this issue out.
421  */
free_buffer_page(struct buffer_page * bpage)422 static void free_buffer_page(struct buffer_page *bpage)
423 {
424 	free_page((unsigned long)bpage->page);
425 	kfree(bpage);
426 }
427 
428 /*
429  * We need to fit the time_stamp delta into 27 bits.
430  */
test_time_stamp(u64 delta)431 static inline int test_time_stamp(u64 delta)
432 {
433 	if (delta & TS_DELTA_TEST)
434 		return 1;
435 	return 0;
436 }
437 
438 #define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE)
439 
440 /* Max payload is BUF_PAGE_SIZE - header (8bytes) */
441 #define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2))
442 
ring_buffer_print_page_header(struct trace_seq * s)443 int ring_buffer_print_page_header(struct trace_seq *s)
444 {
445 	struct buffer_data_page field;
446 	int ret;
447 
448 	ret = trace_seq_printf(s, "\tfield: u64 timestamp;\t"
449 			       "offset:0;\tsize:%u;\tsigned:%u;\n",
450 			       (unsigned int)sizeof(field.time_stamp),
451 			       (unsigned int)is_signed_type(u64));
452 
453 	ret = trace_seq_printf(s, "\tfield: local_t commit;\t"
454 			       "offset:%u;\tsize:%u;\tsigned:%u;\n",
455 			       (unsigned int)offsetof(typeof(field), commit),
456 			       (unsigned int)sizeof(field.commit),
457 			       (unsigned int)is_signed_type(long));
458 
459 	ret = trace_seq_printf(s, "\tfield: int overwrite;\t"
460 			       "offset:%u;\tsize:%u;\tsigned:%u;\n",
461 			       (unsigned int)offsetof(typeof(field), commit),
462 			       1,
463 			       (unsigned int)is_signed_type(long));
464 
465 	ret = trace_seq_printf(s, "\tfield: char data;\t"
466 			       "offset:%u;\tsize:%u;\tsigned:%u;\n",
467 			       (unsigned int)offsetof(typeof(field), data),
468 			       (unsigned int)BUF_PAGE_SIZE,
469 			       (unsigned int)is_signed_type(char));
470 
471 	return ret;
472 }
473 
474 /*
475  * head_page == tail_page && head == tail then buffer is empty.
476  */
477 struct ring_buffer_per_cpu {
478 	int				cpu;
479 	atomic_t			record_disabled;
480 	struct ring_buffer		*buffer;
481 	spinlock_t			reader_lock;	/* serialize readers */
482 	arch_spinlock_t			lock;
483 	struct lock_class_key		lock_key;
484 	struct list_head		*pages;
485 	struct buffer_page		*head_page;	/* read from head */
486 	struct buffer_page		*tail_page;	/* write to tail */
487 	struct buffer_page		*commit_page;	/* committed pages */
488 	struct buffer_page		*reader_page;
489 	unsigned long			lost_events;
490 	unsigned long			last_overrun;
491 	local_t				commit_overrun;
492 	local_t				overrun;
493 	local_t				entries;
494 	local_t				committing;
495 	local_t				commits;
496 	unsigned long			read;
497 	u64				write_stamp;
498 	u64				read_stamp;
499 };
500 
501 struct ring_buffer {
502 	unsigned			pages;
503 	unsigned			flags;
504 	int				cpus;
505 	atomic_t			record_disabled;
506 	cpumask_var_t			cpumask;
507 
508 	struct lock_class_key		*reader_lock_key;
509 
510 	struct mutex			mutex;
511 
512 	struct ring_buffer_per_cpu	**buffers;
513 
514 #ifdef CONFIG_HOTPLUG_CPU
515 	struct notifier_block		cpu_notify;
516 #endif
517 	u64				(*clock)(void);
518 };
519 
520 struct ring_buffer_iter {
521 	struct ring_buffer_per_cpu	*cpu_buffer;
522 	unsigned long			head;
523 	struct buffer_page		*head_page;
524 	struct buffer_page		*cache_reader_page;
525 	unsigned long			cache_read;
526 	u64				read_stamp;
527 };
528 
529 /* buffer may be either ring_buffer or ring_buffer_per_cpu */
530 #define RB_WARN_ON(b, cond)						\
531 	({								\
532 		int _____ret = unlikely(cond);				\
533 		if (_____ret) {						\
534 			if (__same_type(*(b), struct ring_buffer_per_cpu)) { \
535 				struct ring_buffer_per_cpu *__b =	\
536 					(void *)b;			\
537 				atomic_inc(&__b->buffer->record_disabled); \
538 			} else						\
539 				atomic_inc(&b->record_disabled);	\
540 			WARN_ON(1);					\
541 		}							\
542 		_____ret;						\
543 	})
544 
545 /* Up this if you want to test the TIME_EXTENTS and normalization */
546 #define DEBUG_SHIFT 0
547 
rb_time_stamp(struct ring_buffer * buffer)548 static inline u64 rb_time_stamp(struct ring_buffer *buffer)
549 {
550 	/* shift to debug/test normalization and TIME_EXTENTS */
551 	return buffer->clock() << DEBUG_SHIFT;
552 }
553 
ring_buffer_time_stamp(struct ring_buffer * buffer,int cpu)554 u64 ring_buffer_time_stamp(struct ring_buffer *buffer, int cpu)
555 {
556 	u64 time;
557 
558 	preempt_disable_notrace();
559 	time = rb_time_stamp(buffer);
560 	preempt_enable_no_resched_notrace();
561 
562 	return time;
563 }
564 EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
565 
ring_buffer_normalize_time_stamp(struct ring_buffer * buffer,int cpu,u64 * ts)566 void ring_buffer_normalize_time_stamp(struct ring_buffer *buffer,
567 				      int cpu, u64 *ts)
568 {
569 	/* Just stupid testing the normalize function and deltas */
570 	*ts >>= DEBUG_SHIFT;
571 }
572 EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
573 
574 /*
575  * Making the ring buffer lockless makes things tricky.
576  * Although writes only happen on the CPU that they are on,
577  * and they only need to worry about interrupts. Reads can
578  * happen on any CPU.
579  *
580  * The reader page is always off the ring buffer, but when the
581  * reader finishes with a page, it needs to swap its page with
582  * a new one from the buffer. The reader needs to take from
583  * the head (writes go to the tail). But if a writer is in overwrite
584  * mode and wraps, it must push the head page forward.
585  *
586  * Here lies the problem.
587  *
588  * The reader must be careful to replace only the head page, and
589  * not another one. As described at the top of the file in the
590  * ASCII art, the reader sets its old page to point to the next
591  * page after head. It then sets the page after head to point to
592  * the old reader page. But if the writer moves the head page
593  * during this operation, the reader could end up with the tail.
594  *
595  * We use cmpxchg to help prevent this race. We also do something
596  * special with the page before head. We set the LSB to 1.
597  *
598  * When the writer must push the page forward, it will clear the
599  * bit that points to the head page, move the head, and then set
600  * the bit that points to the new head page.
601  *
602  * We also don't want an interrupt coming in and moving the head
603  * page on another writer. Thus we use the second LSB to catch
604  * that too. Thus:
605  *
606  * head->list->prev->next        bit 1          bit 0
607  *                              -------        -------
608  * Normal page                     0              0
609  * Points to head page             0              1
610  * New head page                   1              0
611  *
612  * Note we can not trust the prev pointer of the head page, because:
613  *
614  * +----+       +-----+        +-----+
615  * |    |------>|  T  |---X--->|  N  |
616  * |    |<------|     |        |     |
617  * +----+       +-----+        +-----+
618  *   ^                           ^ |
619  *   |          +-----+          | |
620  *   +----------|  R  |----------+ |
621  *              |     |<-----------+
622  *              +-----+
623  *
624  * Key:  ---X-->  HEAD flag set in pointer
625  *         T      Tail page
626  *         R      Reader page
627  *         N      Next page
628  *
629  * (see __rb_reserve_next() to see where this happens)
630  *
631  *  What the above shows is that the reader just swapped out
632  *  the reader page with a page in the buffer, but before it
633  *  could make the new header point back to the new page added
634  *  it was preempted by a writer. The writer moved forward onto
635  *  the new page added by the reader and is about to move forward
636  *  again.
637  *
638  *  You can see, it is legitimate for the previous pointer of
639  *  the head (or any page) not to point back to itself. But only
640  *  temporarially.
641  */
642 
643 #define RB_PAGE_NORMAL		0UL
644 #define RB_PAGE_HEAD		1UL
645 #define RB_PAGE_UPDATE		2UL
646 
647 
648 #define RB_FLAG_MASK		3UL
649 
650 /* PAGE_MOVED is not part of the mask */
651 #define RB_PAGE_MOVED		4UL
652 
653 /*
654  * rb_list_head - remove any bit
655  */
rb_list_head(struct list_head * list)656 static struct list_head *rb_list_head(struct list_head *list)
657 {
658 	unsigned long val = (unsigned long)list;
659 
660 	return (struct list_head *)(val & ~RB_FLAG_MASK);
661 }
662 
663 /*
664  * rb_is_head_page - test if the given page is the head page
665  *
666  * Because the reader may move the head_page pointer, we can
667  * not trust what the head page is (it may be pointing to
668  * the reader page). But if the next page is a header page,
669  * its flags will be non zero.
670  */
671 static inline int
rb_is_head_page(struct ring_buffer_per_cpu * cpu_buffer,struct buffer_page * page,struct list_head * list)672 rb_is_head_page(struct ring_buffer_per_cpu *cpu_buffer,
673 		struct buffer_page *page, struct list_head *list)
674 {
675 	unsigned long val;
676 
677 	val = (unsigned long)list->next;
678 
679 	if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list)
680 		return RB_PAGE_MOVED;
681 
682 	return val & RB_FLAG_MASK;
683 }
684 
685 /*
686  * rb_is_reader_page
687  *
688  * The unique thing about the reader page, is that, if the
689  * writer is ever on it, the previous pointer never points
690  * back to the reader page.
691  */
rb_is_reader_page(struct buffer_page * page)692 static int rb_is_reader_page(struct buffer_page *page)
693 {
694 	struct list_head *list = page->list.prev;
695 
696 	return rb_list_head(list->next) != &page->list;
697 }
698 
699 /*
700  * rb_set_list_to_head - set a list_head to be pointing to head.
701  */
rb_set_list_to_head(struct ring_buffer_per_cpu * cpu_buffer,struct list_head * list)702 static void rb_set_list_to_head(struct ring_buffer_per_cpu *cpu_buffer,
703 				struct list_head *list)
704 {
705 	unsigned long *ptr;
706 
707 	ptr = (unsigned long *)&list->next;
708 	*ptr |= RB_PAGE_HEAD;
709 	*ptr &= ~RB_PAGE_UPDATE;
710 }
711 
712 /*
713  * rb_head_page_activate - sets up head page
714  */
rb_head_page_activate(struct ring_buffer_per_cpu * cpu_buffer)715 static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer)
716 {
717 	struct buffer_page *head;
718 
719 	head = cpu_buffer->head_page;
720 	if (!head)
721 		return;
722 
723 	/*
724 	 * Set the previous list pointer to have the HEAD flag.
725 	 */
726 	rb_set_list_to_head(cpu_buffer, head->list.prev);
727 }
728 
rb_list_head_clear(struct list_head * list)729 static void rb_list_head_clear(struct list_head *list)
730 {
731 	unsigned long *ptr = (unsigned long *)&list->next;
732 
733 	*ptr &= ~RB_FLAG_MASK;
734 }
735 
736 /*
737  * rb_head_page_dactivate - clears head page ptr (for free list)
738  */
739 static void
rb_head_page_deactivate(struct ring_buffer_per_cpu * cpu_buffer)740 rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer)
741 {
742 	struct list_head *hd;
743 
744 	/* Go through the whole list and clear any pointers found. */
745 	rb_list_head_clear(cpu_buffer->pages);
746 
747 	list_for_each(hd, cpu_buffer->pages)
748 		rb_list_head_clear(hd);
749 }
750 
rb_head_page_set(struct ring_buffer_per_cpu * cpu_buffer,struct buffer_page * head,struct buffer_page * prev,int old_flag,int new_flag)751 static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer,
752 			    struct buffer_page *head,
753 			    struct buffer_page *prev,
754 			    int old_flag, int new_flag)
755 {
756 	struct list_head *list;
757 	unsigned long val = (unsigned long)&head->list;
758 	unsigned long ret;
759 
760 	list = &prev->list;
761 
762 	val &= ~RB_FLAG_MASK;
763 
764 	ret = cmpxchg((unsigned long *)&list->next,
765 		      val | old_flag, val | new_flag);
766 
767 	/* check if the reader took the page */
768 	if ((ret & ~RB_FLAG_MASK) != val)
769 		return RB_PAGE_MOVED;
770 
771 	return ret & RB_FLAG_MASK;
772 }
773 
rb_head_page_set_update(struct ring_buffer_per_cpu * cpu_buffer,struct buffer_page * head,struct buffer_page * prev,int old_flag)774 static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer,
775 				   struct buffer_page *head,
776 				   struct buffer_page *prev,
777 				   int old_flag)
778 {
779 	return rb_head_page_set(cpu_buffer, head, prev,
780 				old_flag, RB_PAGE_UPDATE);
781 }
782 
rb_head_page_set_head(struct ring_buffer_per_cpu * cpu_buffer,struct buffer_page * head,struct buffer_page * prev,int old_flag)783 static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer,
784 				 struct buffer_page *head,
785 				 struct buffer_page *prev,
786 				 int old_flag)
787 {
788 	return rb_head_page_set(cpu_buffer, head, prev,
789 				old_flag, RB_PAGE_HEAD);
790 }
791 
rb_head_page_set_normal(struct ring_buffer_per_cpu * cpu_buffer,struct buffer_page * head,struct buffer_page * prev,int old_flag)792 static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer,
793 				   struct buffer_page *head,
794 				   struct buffer_page *prev,
795 				   int old_flag)
796 {
797 	return rb_head_page_set(cpu_buffer, head, prev,
798 				old_flag, RB_PAGE_NORMAL);
799 }
800 
rb_inc_page(struct ring_buffer_per_cpu * cpu_buffer,struct buffer_page ** bpage)801 static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer,
802 			       struct buffer_page **bpage)
803 {
804 	struct list_head *p = rb_list_head((*bpage)->list.next);
805 
806 	*bpage = list_entry(p, struct buffer_page, list);
807 }
808 
809 static struct buffer_page *
rb_set_head_page(struct ring_buffer_per_cpu * cpu_buffer)810 rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer)
811 {
812 	struct buffer_page *head;
813 	struct buffer_page *page;
814 	struct list_head *list;
815 	int i;
816 
817 	if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page))
818 		return NULL;
819 
820 	/* sanity check */
821 	list = cpu_buffer->pages;
822 	if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list))
823 		return NULL;
824 
825 	page = head = cpu_buffer->head_page;
826 	/*
827 	 * It is possible that the writer moves the header behind
828 	 * where we started, and we miss in one loop.
829 	 * A second loop should grab the header, but we'll do
830 	 * three loops just because I'm paranoid.
831 	 */
832 	for (i = 0; i < 3; i++) {
833 		do {
834 			if (rb_is_head_page(cpu_buffer, page, page->list.prev)) {
835 				cpu_buffer->head_page = page;
836 				return page;
837 			}
838 			rb_inc_page(cpu_buffer, &page);
839 		} while (page != head);
840 	}
841 
842 	RB_WARN_ON(cpu_buffer, 1);
843 
844 	return NULL;
845 }
846 
rb_head_page_replace(struct buffer_page * old,struct buffer_page * new)847 static int rb_head_page_replace(struct buffer_page *old,
848 				struct buffer_page *new)
849 {
850 	unsigned long *ptr = (unsigned long *)&old->list.prev->next;
851 	unsigned long val;
852 	unsigned long ret;
853 
854 	val = *ptr & ~RB_FLAG_MASK;
855 	val |= RB_PAGE_HEAD;
856 
857 	ret = cmpxchg(ptr, val, (unsigned long)&new->list);
858 
859 	return ret == val;
860 }
861 
862 /*
863  * rb_tail_page_update - move the tail page forward
864  *
865  * Returns 1 if moved tail page, 0 if someone else did.
866  */
rb_tail_page_update(struct ring_buffer_per_cpu * cpu_buffer,struct buffer_page * tail_page,struct buffer_page * next_page)867 static int rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer,
868 			       struct buffer_page *tail_page,
869 			       struct buffer_page *next_page)
870 {
871 	struct buffer_page *old_tail;
872 	unsigned long old_entries;
873 	unsigned long old_write;
874 	int ret = 0;
875 
876 	/*
877 	 * The tail page now needs to be moved forward.
878 	 *
879 	 * We need to reset the tail page, but without messing
880 	 * with possible erasing of data brought in by interrupts
881 	 * that have moved the tail page and are currently on it.
882 	 *
883 	 * We add a counter to the write field to denote this.
884 	 */
885 	old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write);
886 	old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries);
887 
888 	/*
889 	 * Just make sure we have seen our old_write and synchronize
890 	 * with any interrupts that come in.
891 	 */
892 	barrier();
893 
894 	/*
895 	 * If the tail page is still the same as what we think
896 	 * it is, then it is up to us to update the tail
897 	 * pointer.
898 	 */
899 	if (tail_page == cpu_buffer->tail_page) {
900 		/* Zero the write counter */
901 		unsigned long val = old_write & ~RB_WRITE_MASK;
902 		unsigned long eval = old_entries & ~RB_WRITE_MASK;
903 
904 		/*
905 		 * This will only succeed if an interrupt did
906 		 * not come in and change it. In which case, we
907 		 * do not want to modify it.
908 		 *
909 		 * We add (void) to let the compiler know that we do not care
910 		 * about the return value of these functions. We use the
911 		 * cmpxchg to only update if an interrupt did not already
912 		 * do it for us. If the cmpxchg fails, we don't care.
913 		 */
914 		(void)local_cmpxchg(&next_page->write, old_write, val);
915 		(void)local_cmpxchg(&next_page->entries, old_entries, eval);
916 
917 		/*
918 		 * No need to worry about races with clearing out the commit.
919 		 * it only can increment when a commit takes place. But that
920 		 * only happens in the outer most nested commit.
921 		 */
922 		local_set(&next_page->page->commit, 0);
923 
924 		old_tail = cmpxchg(&cpu_buffer->tail_page,
925 				   tail_page, next_page);
926 
927 		if (old_tail == tail_page)
928 			ret = 1;
929 	}
930 
931 	return ret;
932 }
933 
rb_check_bpage(struct ring_buffer_per_cpu * cpu_buffer,struct buffer_page * bpage)934 static int rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer,
935 			  struct buffer_page *bpage)
936 {
937 	unsigned long val = (unsigned long)bpage;
938 
939 	if (RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK))
940 		return 1;
941 
942 	return 0;
943 }
944 
945 /**
946  * rb_check_list - make sure a pointer to a list has the last bits zero
947  */
rb_check_list(struct ring_buffer_per_cpu * cpu_buffer,struct list_head * list)948 static int rb_check_list(struct ring_buffer_per_cpu *cpu_buffer,
949 			 struct list_head *list)
950 {
951 	if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev) != list->prev))
952 		return 1;
953 	if (RB_WARN_ON(cpu_buffer, rb_list_head(list->next) != list->next))
954 		return 1;
955 	return 0;
956 }
957 
958 /**
959  * check_pages - integrity check of buffer pages
960  * @cpu_buffer: CPU buffer with pages to test
961  *
962  * As a safety measure we check to make sure the data pages have not
963  * been corrupted.
964  */
rb_check_pages(struct ring_buffer_per_cpu * cpu_buffer)965 static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
966 {
967 	struct list_head *head = cpu_buffer->pages;
968 	struct buffer_page *bpage, *tmp;
969 
970 	rb_head_page_deactivate(cpu_buffer);
971 
972 	if (RB_WARN_ON(cpu_buffer, head->next->prev != head))
973 		return -1;
974 	if (RB_WARN_ON(cpu_buffer, head->prev->next != head))
975 		return -1;
976 
977 	if (rb_check_list(cpu_buffer, head))
978 		return -1;
979 
980 	list_for_each_entry_safe(bpage, tmp, head, list) {
981 		if (RB_WARN_ON(cpu_buffer,
982 			       bpage->list.next->prev != &bpage->list))
983 			return -1;
984 		if (RB_WARN_ON(cpu_buffer,
985 			       bpage->list.prev->next != &bpage->list))
986 			return -1;
987 		if (rb_check_list(cpu_buffer, &bpage->list))
988 			return -1;
989 	}
990 
991 	rb_head_page_activate(cpu_buffer);
992 
993 	return 0;
994 }
995 
rb_allocate_pages(struct ring_buffer_per_cpu * cpu_buffer,unsigned nr_pages)996 static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
997 			     unsigned nr_pages)
998 {
999 	struct buffer_page *bpage, *tmp;
1000 	unsigned long addr;
1001 	LIST_HEAD(pages);
1002 	unsigned i;
1003 
1004 	WARN_ON(!nr_pages);
1005 
1006 	for (i = 0; i < nr_pages; i++) {
1007 		bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1008 				    GFP_KERNEL, cpu_to_node(cpu_buffer->cpu));
1009 		if (!bpage)
1010 			goto free_pages;
1011 
1012 		rb_check_bpage(cpu_buffer, bpage);
1013 
1014 		list_add(&bpage->list, &pages);
1015 
1016 		addr = __get_free_page(GFP_KERNEL);
1017 		if (!addr)
1018 			goto free_pages;
1019 		bpage->page = (void *)addr;
1020 		rb_init_page(bpage->page);
1021 	}
1022 
1023 	/*
1024 	 * The ring buffer page list is a circular list that does not
1025 	 * start and end with a list head. All page list items point to
1026 	 * other pages.
1027 	 */
1028 	cpu_buffer->pages = pages.next;
1029 	list_del(&pages);
1030 
1031 	rb_check_pages(cpu_buffer);
1032 
1033 	return 0;
1034 
1035  free_pages:
1036 	list_for_each_entry_safe(bpage, tmp, &pages, list) {
1037 		list_del_init(&bpage->list);
1038 		free_buffer_page(bpage);
1039 	}
1040 	return -ENOMEM;
1041 }
1042 
1043 static struct ring_buffer_per_cpu *
rb_allocate_cpu_buffer(struct ring_buffer * buffer,int cpu)1044 rb_allocate_cpu_buffer(struct ring_buffer *buffer, int cpu)
1045 {
1046 	struct ring_buffer_per_cpu *cpu_buffer;
1047 	struct buffer_page *bpage;
1048 	unsigned long addr;
1049 	int ret;
1050 
1051 	cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
1052 				  GFP_KERNEL, cpu_to_node(cpu));
1053 	if (!cpu_buffer)
1054 		return NULL;
1055 
1056 	cpu_buffer->cpu = cpu;
1057 	cpu_buffer->buffer = buffer;
1058 	spin_lock_init(&cpu_buffer->reader_lock);
1059 	lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key);
1060 	cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
1061 
1062 	bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1063 			    GFP_KERNEL, cpu_to_node(cpu));
1064 	if (!bpage)
1065 		goto fail_free_buffer;
1066 
1067 	rb_check_bpage(cpu_buffer, bpage);
1068 
1069 	cpu_buffer->reader_page = bpage;
1070 	addr = __get_free_page(GFP_KERNEL);
1071 	if (!addr)
1072 		goto fail_free_reader;
1073 	bpage->page = (void *)addr;
1074 	rb_init_page(bpage->page);
1075 
1076 	INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
1077 
1078 	ret = rb_allocate_pages(cpu_buffer, buffer->pages);
1079 	if (ret < 0)
1080 		goto fail_free_reader;
1081 
1082 	cpu_buffer->head_page
1083 		= list_entry(cpu_buffer->pages, struct buffer_page, list);
1084 	cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
1085 
1086 	rb_head_page_activate(cpu_buffer);
1087 
1088 	return cpu_buffer;
1089 
1090  fail_free_reader:
1091 	free_buffer_page(cpu_buffer->reader_page);
1092 
1093  fail_free_buffer:
1094 	kfree(cpu_buffer);
1095 	return NULL;
1096 }
1097 
rb_free_cpu_buffer(struct ring_buffer_per_cpu * cpu_buffer)1098 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
1099 {
1100 	struct list_head *head = cpu_buffer->pages;
1101 	struct buffer_page *bpage, *tmp;
1102 
1103 	free_buffer_page(cpu_buffer->reader_page);
1104 
1105 	rb_head_page_deactivate(cpu_buffer);
1106 
1107 	if (head) {
1108 		list_for_each_entry_safe(bpage, tmp, head, list) {
1109 			list_del_init(&bpage->list);
1110 			free_buffer_page(bpage);
1111 		}
1112 		bpage = list_entry(head, struct buffer_page, list);
1113 		free_buffer_page(bpage);
1114 	}
1115 
1116 	kfree(cpu_buffer);
1117 }
1118 
1119 #ifdef CONFIG_HOTPLUG_CPU
1120 static int rb_cpu_notify(struct notifier_block *self,
1121 			 unsigned long action, void *hcpu);
1122 #endif
1123 
1124 /**
1125  * ring_buffer_alloc - allocate a new ring_buffer
1126  * @size: the size in bytes per cpu that is needed.
1127  * @flags: attributes to set for the ring buffer.
1128  *
1129  * Currently the only flag that is available is the RB_FL_OVERWRITE
1130  * flag. This flag means that the buffer will overwrite old data
1131  * when the buffer wraps. If this flag is not set, the buffer will
1132  * drop data when the tail hits the head.
1133  */
__ring_buffer_alloc(unsigned long size,unsigned flags,struct lock_class_key * key)1134 struct ring_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags,
1135 					struct lock_class_key *key)
1136 {
1137 	struct ring_buffer *buffer;
1138 	int bsize;
1139 	int cpu;
1140 
1141 	/* keep it in its own cache line */
1142 	buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
1143 			 GFP_KERNEL);
1144 	if (!buffer)
1145 		return NULL;
1146 
1147 	if (!alloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
1148 		goto fail_free_buffer;
1149 
1150 	buffer->pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1151 	buffer->flags = flags;
1152 	buffer->clock = trace_clock_local;
1153 	buffer->reader_lock_key = key;
1154 
1155 	/* need at least two pages */
1156 	if (buffer->pages < 2)
1157 		buffer->pages = 2;
1158 
1159 	/*
1160 	 * In case of non-hotplug cpu, if the ring-buffer is allocated
1161 	 * in early initcall, it will not be notified of secondary cpus.
1162 	 * In that off case, we need to allocate for all possible cpus.
1163 	 */
1164 #ifdef CONFIG_HOTPLUG_CPU
1165 	get_online_cpus();
1166 	cpumask_copy(buffer->cpumask, cpu_online_mask);
1167 #else
1168 	cpumask_copy(buffer->cpumask, cpu_possible_mask);
1169 #endif
1170 	buffer->cpus = nr_cpu_ids;
1171 
1172 	bsize = sizeof(void *) * nr_cpu_ids;
1173 	buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
1174 				  GFP_KERNEL);
1175 	if (!buffer->buffers)
1176 		goto fail_free_cpumask;
1177 
1178 	for_each_buffer_cpu(buffer, cpu) {
1179 		buffer->buffers[cpu] =
1180 			rb_allocate_cpu_buffer(buffer, cpu);
1181 		if (!buffer->buffers[cpu])
1182 			goto fail_free_buffers;
1183 	}
1184 
1185 #ifdef CONFIG_HOTPLUG_CPU
1186 	buffer->cpu_notify.notifier_call = rb_cpu_notify;
1187 	buffer->cpu_notify.priority = 0;
1188 	register_cpu_notifier(&buffer->cpu_notify);
1189 #endif
1190 
1191 	put_online_cpus();
1192 	mutex_init(&buffer->mutex);
1193 
1194 	return buffer;
1195 
1196  fail_free_buffers:
1197 	for_each_buffer_cpu(buffer, cpu) {
1198 		if (buffer->buffers[cpu])
1199 			rb_free_cpu_buffer(buffer->buffers[cpu]);
1200 	}
1201 	kfree(buffer->buffers);
1202 
1203  fail_free_cpumask:
1204 	free_cpumask_var(buffer->cpumask);
1205 	put_online_cpus();
1206 
1207  fail_free_buffer:
1208 	kfree(buffer);
1209 	return NULL;
1210 }
1211 EXPORT_SYMBOL_GPL(__ring_buffer_alloc);
1212 
1213 /**
1214  * ring_buffer_free - free a ring buffer.
1215  * @buffer: the buffer to free.
1216  */
1217 void
ring_buffer_free(struct ring_buffer * buffer)1218 ring_buffer_free(struct ring_buffer *buffer)
1219 {
1220 	int cpu;
1221 
1222 	get_online_cpus();
1223 
1224 #ifdef CONFIG_HOTPLUG_CPU
1225 	unregister_cpu_notifier(&buffer->cpu_notify);
1226 #endif
1227 
1228 	for_each_buffer_cpu(buffer, cpu)
1229 		rb_free_cpu_buffer(buffer->buffers[cpu]);
1230 
1231 	put_online_cpus();
1232 
1233 	kfree(buffer->buffers);
1234 	free_cpumask_var(buffer->cpumask);
1235 
1236 	kfree(buffer);
1237 }
1238 EXPORT_SYMBOL_GPL(ring_buffer_free);
1239 
ring_buffer_set_clock(struct ring_buffer * buffer,u64 (* clock)(void))1240 void ring_buffer_set_clock(struct ring_buffer *buffer,
1241 			   u64 (*clock)(void))
1242 {
1243 	buffer->clock = clock;
1244 }
1245 
1246 static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
1247 
1248 static void
rb_remove_pages(struct ring_buffer_per_cpu * cpu_buffer,unsigned nr_pages)1249 rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned nr_pages)
1250 {
1251 	struct buffer_page *bpage;
1252 	struct list_head *p;
1253 	unsigned i;
1254 
1255 	spin_lock_irq(&cpu_buffer->reader_lock);
1256 	rb_head_page_deactivate(cpu_buffer);
1257 
1258 	for (i = 0; i < nr_pages; i++) {
1259 		if (RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages)))
1260 			goto out;
1261 		p = cpu_buffer->pages->next;
1262 		bpage = list_entry(p, struct buffer_page, list);
1263 		list_del_init(&bpage->list);
1264 		free_buffer_page(bpage);
1265 	}
1266 	if (RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages)))
1267 		goto out;
1268 
1269 	rb_reset_cpu(cpu_buffer);
1270 	rb_check_pages(cpu_buffer);
1271 
1272 out:
1273 	spin_unlock_irq(&cpu_buffer->reader_lock);
1274 }
1275 
1276 static void
rb_insert_pages(struct ring_buffer_per_cpu * cpu_buffer,struct list_head * pages,unsigned nr_pages)1277 rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer,
1278 		struct list_head *pages, unsigned nr_pages)
1279 {
1280 	struct buffer_page *bpage;
1281 	struct list_head *p;
1282 	unsigned i;
1283 
1284 	spin_lock_irq(&cpu_buffer->reader_lock);
1285 	rb_head_page_deactivate(cpu_buffer);
1286 
1287 	for (i = 0; i < nr_pages; i++) {
1288 		if (RB_WARN_ON(cpu_buffer, list_empty(pages)))
1289 			goto out;
1290 		p = pages->next;
1291 		bpage = list_entry(p, struct buffer_page, list);
1292 		list_del_init(&bpage->list);
1293 		list_add_tail(&bpage->list, cpu_buffer->pages);
1294 	}
1295 	rb_reset_cpu(cpu_buffer);
1296 	rb_check_pages(cpu_buffer);
1297 
1298 out:
1299 	spin_unlock_irq(&cpu_buffer->reader_lock);
1300 }
1301 
1302 /**
1303  * ring_buffer_resize - resize the ring buffer
1304  * @buffer: the buffer to resize.
1305  * @size: the new size.
1306  *
1307  * Minimum size is 2 * BUF_PAGE_SIZE.
1308  *
1309  * Returns -1 on failure.
1310  */
ring_buffer_resize(struct ring_buffer * buffer,unsigned long size)1311 int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size)
1312 {
1313 	struct ring_buffer_per_cpu *cpu_buffer;
1314 	unsigned nr_pages, rm_pages, new_pages;
1315 	struct buffer_page *bpage, *tmp;
1316 	unsigned long buffer_size;
1317 	unsigned long addr;
1318 	LIST_HEAD(pages);
1319 	int i, cpu;
1320 
1321 	/*
1322 	 * Always succeed at resizing a non-existent buffer:
1323 	 */
1324 	if (!buffer)
1325 		return size;
1326 
1327 	size = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1328 	size *= BUF_PAGE_SIZE;
1329 	buffer_size = buffer->pages * BUF_PAGE_SIZE;
1330 
1331 	/* we need a minimum of two pages */
1332 	if (size < BUF_PAGE_SIZE * 2)
1333 		size = BUF_PAGE_SIZE * 2;
1334 
1335 	if (size == buffer_size)
1336 		return size;
1337 
1338 	atomic_inc(&buffer->record_disabled);
1339 
1340 	/* Make sure all writers are done with this buffer. */
1341 	synchronize_sched();
1342 
1343 	mutex_lock(&buffer->mutex);
1344 	get_online_cpus();
1345 
1346 	nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1347 
1348 	if (size < buffer_size) {
1349 
1350 		/* easy case, just free pages */
1351 		if (RB_WARN_ON(buffer, nr_pages >= buffer->pages))
1352 			goto out_fail;
1353 
1354 		rm_pages = buffer->pages - nr_pages;
1355 
1356 		for_each_buffer_cpu(buffer, cpu) {
1357 			cpu_buffer = buffer->buffers[cpu];
1358 			rb_remove_pages(cpu_buffer, rm_pages);
1359 		}
1360 		goto out;
1361 	}
1362 
1363 	/*
1364 	 * This is a bit more difficult. We only want to add pages
1365 	 * when we can allocate enough for all CPUs. We do this
1366 	 * by allocating all the pages and storing them on a local
1367 	 * link list. If we succeed in our allocation, then we
1368 	 * add these pages to the cpu_buffers. Otherwise we just free
1369 	 * them all and return -ENOMEM;
1370 	 */
1371 	if (RB_WARN_ON(buffer, nr_pages <= buffer->pages))
1372 		goto out_fail;
1373 
1374 	new_pages = nr_pages - buffer->pages;
1375 
1376 	for_each_buffer_cpu(buffer, cpu) {
1377 		for (i = 0; i < new_pages; i++) {
1378 			bpage = kzalloc_node(ALIGN(sizeof(*bpage),
1379 						  cache_line_size()),
1380 					    GFP_KERNEL, cpu_to_node(cpu));
1381 			if (!bpage)
1382 				goto free_pages;
1383 			list_add(&bpage->list, &pages);
1384 			addr = __get_free_page(GFP_KERNEL);
1385 			if (!addr)
1386 				goto free_pages;
1387 			bpage->page = (void *)addr;
1388 			rb_init_page(bpage->page);
1389 		}
1390 	}
1391 
1392 	for_each_buffer_cpu(buffer, cpu) {
1393 		cpu_buffer = buffer->buffers[cpu];
1394 		rb_insert_pages(cpu_buffer, &pages, new_pages);
1395 	}
1396 
1397 	if (RB_WARN_ON(buffer, !list_empty(&pages)))
1398 		goto out_fail;
1399 
1400  out:
1401 	buffer->pages = nr_pages;
1402 	put_online_cpus();
1403 	mutex_unlock(&buffer->mutex);
1404 
1405 	atomic_dec(&buffer->record_disabled);
1406 
1407 	return size;
1408 
1409  free_pages:
1410 	list_for_each_entry_safe(bpage, tmp, &pages, list) {
1411 		list_del_init(&bpage->list);
1412 		free_buffer_page(bpage);
1413 	}
1414 	put_online_cpus();
1415 	mutex_unlock(&buffer->mutex);
1416 	atomic_dec(&buffer->record_disabled);
1417 	return -ENOMEM;
1418 
1419 	/*
1420 	 * Something went totally wrong, and we are too paranoid
1421 	 * to even clean up the mess.
1422 	 */
1423  out_fail:
1424 	put_online_cpus();
1425 	mutex_unlock(&buffer->mutex);
1426 	atomic_dec(&buffer->record_disabled);
1427 	return -1;
1428 }
1429 EXPORT_SYMBOL_GPL(ring_buffer_resize);
1430 
ring_buffer_change_overwrite(struct ring_buffer * buffer,int val)1431 void ring_buffer_change_overwrite(struct ring_buffer *buffer, int val)
1432 {
1433 	mutex_lock(&buffer->mutex);
1434 	if (val)
1435 		buffer->flags |= RB_FL_OVERWRITE;
1436 	else
1437 		buffer->flags &= ~RB_FL_OVERWRITE;
1438 	mutex_unlock(&buffer->mutex);
1439 }
1440 EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite);
1441 
1442 static inline void *
__rb_data_page_index(struct buffer_data_page * bpage,unsigned index)1443 __rb_data_page_index(struct buffer_data_page *bpage, unsigned index)
1444 {
1445 	return bpage->data + index;
1446 }
1447 
__rb_page_index(struct buffer_page * bpage,unsigned index)1448 static inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
1449 {
1450 	return bpage->page->data + index;
1451 }
1452 
1453 static inline struct ring_buffer_event *
rb_reader_event(struct ring_buffer_per_cpu * cpu_buffer)1454 rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
1455 {
1456 	return __rb_page_index(cpu_buffer->reader_page,
1457 			       cpu_buffer->reader_page->read);
1458 }
1459 
1460 static inline struct ring_buffer_event *
rb_iter_head_event(struct ring_buffer_iter * iter)1461 rb_iter_head_event(struct ring_buffer_iter *iter)
1462 {
1463 	return __rb_page_index(iter->head_page, iter->head);
1464 }
1465 
rb_page_write(struct buffer_page * bpage)1466 static inline unsigned long rb_page_write(struct buffer_page *bpage)
1467 {
1468 	return local_read(&bpage->write) & RB_WRITE_MASK;
1469 }
1470 
rb_page_commit(struct buffer_page * bpage)1471 static inline unsigned rb_page_commit(struct buffer_page *bpage)
1472 {
1473 	return local_read(&bpage->page->commit);
1474 }
1475 
rb_page_entries(struct buffer_page * bpage)1476 static inline unsigned long rb_page_entries(struct buffer_page *bpage)
1477 {
1478 	return local_read(&bpage->entries) & RB_WRITE_MASK;
1479 }
1480 
1481 /* Size is determined by what has been committed */
rb_page_size(struct buffer_page * bpage)1482 static inline unsigned rb_page_size(struct buffer_page *bpage)
1483 {
1484 	return rb_page_commit(bpage);
1485 }
1486 
1487 static inline unsigned
rb_commit_index(struct ring_buffer_per_cpu * cpu_buffer)1488 rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
1489 {
1490 	return rb_page_commit(cpu_buffer->commit_page);
1491 }
1492 
1493 static inline unsigned
rb_event_index(struct ring_buffer_event * event)1494 rb_event_index(struct ring_buffer_event *event)
1495 {
1496 	unsigned long addr = (unsigned long)event;
1497 
1498 	return (addr & ~PAGE_MASK) - BUF_PAGE_HDR_SIZE;
1499 }
1500 
1501 static inline int
rb_event_is_commit(struct ring_buffer_per_cpu * cpu_buffer,struct ring_buffer_event * event)1502 rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
1503 		   struct ring_buffer_event *event)
1504 {
1505 	unsigned long addr = (unsigned long)event;
1506 	unsigned long index;
1507 
1508 	index = rb_event_index(event);
1509 	addr &= PAGE_MASK;
1510 
1511 	return cpu_buffer->commit_page->page == (void *)addr &&
1512 		rb_commit_index(cpu_buffer) == index;
1513 }
1514 
1515 static void
rb_set_commit_to_write(struct ring_buffer_per_cpu * cpu_buffer)1516 rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
1517 {
1518 	unsigned long max_count;
1519 
1520 	/*
1521 	 * We only race with interrupts and NMIs on this CPU.
1522 	 * If we own the commit event, then we can commit
1523 	 * all others that interrupted us, since the interruptions
1524 	 * are in stack format (they finish before they come
1525 	 * back to us). This allows us to do a simple loop to
1526 	 * assign the commit to the tail.
1527 	 */
1528  again:
1529 	max_count = cpu_buffer->buffer->pages * 100;
1530 
1531 	while (cpu_buffer->commit_page != cpu_buffer->tail_page) {
1532 		if (RB_WARN_ON(cpu_buffer, !(--max_count)))
1533 			return;
1534 		if (RB_WARN_ON(cpu_buffer,
1535 			       rb_is_reader_page(cpu_buffer->tail_page)))
1536 			return;
1537 		local_set(&cpu_buffer->commit_page->page->commit,
1538 			  rb_page_write(cpu_buffer->commit_page));
1539 		rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
1540 		cpu_buffer->write_stamp =
1541 			cpu_buffer->commit_page->page->time_stamp;
1542 		/* add barrier to keep gcc from optimizing too much */
1543 		barrier();
1544 	}
1545 	while (rb_commit_index(cpu_buffer) !=
1546 	       rb_page_write(cpu_buffer->commit_page)) {
1547 
1548 		local_set(&cpu_buffer->commit_page->page->commit,
1549 			  rb_page_write(cpu_buffer->commit_page));
1550 		RB_WARN_ON(cpu_buffer,
1551 			   local_read(&cpu_buffer->commit_page->page->commit) &
1552 			   ~RB_WRITE_MASK);
1553 		barrier();
1554 	}
1555 
1556 	/* again, keep gcc from optimizing */
1557 	barrier();
1558 
1559 	/*
1560 	 * If an interrupt came in just after the first while loop
1561 	 * and pushed the tail page forward, we will be left with
1562 	 * a dangling commit that will never go forward.
1563 	 */
1564 	if (unlikely(cpu_buffer->commit_page != cpu_buffer->tail_page))
1565 		goto again;
1566 }
1567 
rb_reset_reader_page(struct ring_buffer_per_cpu * cpu_buffer)1568 static void rb_reset_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
1569 {
1570 	cpu_buffer->read_stamp = cpu_buffer->reader_page->page->time_stamp;
1571 	cpu_buffer->reader_page->read = 0;
1572 }
1573 
rb_inc_iter(struct ring_buffer_iter * iter)1574 static void rb_inc_iter(struct ring_buffer_iter *iter)
1575 {
1576 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
1577 
1578 	/*
1579 	 * The iterator could be on the reader page (it starts there).
1580 	 * But the head could have moved, since the reader was
1581 	 * found. Check for this case and assign the iterator
1582 	 * to the head page instead of next.
1583 	 */
1584 	if (iter->head_page == cpu_buffer->reader_page)
1585 		iter->head_page = rb_set_head_page(cpu_buffer);
1586 	else
1587 		rb_inc_page(cpu_buffer, &iter->head_page);
1588 
1589 	iter->read_stamp = iter->head_page->page->time_stamp;
1590 	iter->head = 0;
1591 }
1592 
1593 /* Slow path, do not inline */
1594 static noinline struct ring_buffer_event *
rb_add_time_stamp(struct ring_buffer_event * event,u64 delta)1595 rb_add_time_stamp(struct ring_buffer_event *event, u64 delta)
1596 {
1597 	event->type_len = RINGBUF_TYPE_TIME_EXTEND;
1598 
1599 	/* Not the first event on the page? */
1600 	if (rb_event_index(event)) {
1601 		event->time_delta = delta & TS_MASK;
1602 		event->array[0] = delta >> TS_SHIFT;
1603 	} else {
1604 		/* nope, just zero it */
1605 		event->time_delta = 0;
1606 		event->array[0] = 0;
1607 	}
1608 
1609 	return skip_time_extend(event);
1610 }
1611 
1612 /**
1613  * ring_buffer_update_event - update event type and data
1614  * @event: the even to update
1615  * @type: the type of event
1616  * @length: the size of the event field in the ring buffer
1617  *
1618  * Update the type and data fields of the event. The length
1619  * is the actual size that is written to the ring buffer,
1620  * and with this, we can determine what to place into the
1621  * data field.
1622  */
1623 static void
rb_update_event(struct ring_buffer_per_cpu * cpu_buffer,struct ring_buffer_event * event,unsigned length,int add_timestamp,u64 delta)1624 rb_update_event(struct ring_buffer_per_cpu *cpu_buffer,
1625 		struct ring_buffer_event *event, unsigned length,
1626 		int add_timestamp, u64 delta)
1627 {
1628 	/* Only a commit updates the timestamp */
1629 	if (unlikely(!rb_event_is_commit(cpu_buffer, event)))
1630 		delta = 0;
1631 
1632 	/*
1633 	 * If we need to add a timestamp, then we
1634 	 * add it to the start of the resevered space.
1635 	 */
1636 	if (unlikely(add_timestamp)) {
1637 		event = rb_add_time_stamp(event, delta);
1638 		length -= RB_LEN_TIME_EXTEND;
1639 		delta = 0;
1640 	}
1641 
1642 	event->time_delta = delta;
1643 	length -= RB_EVNT_HDR_SIZE;
1644 	if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) {
1645 		event->type_len = 0;
1646 		event->array[0] = length;
1647 	} else
1648 		event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT);
1649 }
1650 
1651 /*
1652  * rb_handle_head_page - writer hit the head page
1653  *
1654  * Returns: +1 to retry page
1655  *           0 to continue
1656  *          -1 on error
1657  */
1658 static int
rb_handle_head_page(struct ring_buffer_per_cpu * cpu_buffer,struct buffer_page * tail_page,struct buffer_page * next_page)1659 rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer,
1660 		    struct buffer_page *tail_page,
1661 		    struct buffer_page *next_page)
1662 {
1663 	struct buffer_page *new_head;
1664 	int entries;
1665 	int type;
1666 	int ret;
1667 
1668 	entries = rb_page_entries(next_page);
1669 
1670 	/*
1671 	 * The hard part is here. We need to move the head
1672 	 * forward, and protect against both readers on
1673 	 * other CPUs and writers coming in via interrupts.
1674 	 */
1675 	type = rb_head_page_set_update(cpu_buffer, next_page, tail_page,
1676 				       RB_PAGE_HEAD);
1677 
1678 	/*
1679 	 * type can be one of four:
1680 	 *  NORMAL - an interrupt already moved it for us
1681 	 *  HEAD   - we are the first to get here.
1682 	 *  UPDATE - we are the interrupt interrupting
1683 	 *           a current move.
1684 	 *  MOVED  - a reader on another CPU moved the next
1685 	 *           pointer to its reader page. Give up
1686 	 *           and try again.
1687 	 */
1688 
1689 	switch (type) {
1690 	case RB_PAGE_HEAD:
1691 		/*
1692 		 * We changed the head to UPDATE, thus
1693 		 * it is our responsibility to update
1694 		 * the counters.
1695 		 */
1696 		local_add(entries, &cpu_buffer->overrun);
1697 
1698 		/*
1699 		 * The entries will be zeroed out when we move the
1700 		 * tail page.
1701 		 */
1702 
1703 		/* still more to do */
1704 		break;
1705 
1706 	case RB_PAGE_UPDATE:
1707 		/*
1708 		 * This is an interrupt that interrupt the
1709 		 * previous update. Still more to do.
1710 		 */
1711 		break;
1712 	case RB_PAGE_NORMAL:
1713 		/*
1714 		 * An interrupt came in before the update
1715 		 * and processed this for us.
1716 		 * Nothing left to do.
1717 		 */
1718 		return 1;
1719 	case RB_PAGE_MOVED:
1720 		/*
1721 		 * The reader is on another CPU and just did
1722 		 * a swap with our next_page.
1723 		 * Try again.
1724 		 */
1725 		return 1;
1726 	default:
1727 		RB_WARN_ON(cpu_buffer, 1); /* WTF??? */
1728 		return -1;
1729 	}
1730 
1731 	/*
1732 	 * Now that we are here, the old head pointer is
1733 	 * set to UPDATE. This will keep the reader from
1734 	 * swapping the head page with the reader page.
1735 	 * The reader (on another CPU) will spin till
1736 	 * we are finished.
1737 	 *
1738 	 * We just need to protect against interrupts
1739 	 * doing the job. We will set the next pointer
1740 	 * to HEAD. After that, we set the old pointer
1741 	 * to NORMAL, but only if it was HEAD before.
1742 	 * otherwise we are an interrupt, and only
1743 	 * want the outer most commit to reset it.
1744 	 */
1745 	new_head = next_page;
1746 	rb_inc_page(cpu_buffer, &new_head);
1747 
1748 	ret = rb_head_page_set_head(cpu_buffer, new_head, next_page,
1749 				    RB_PAGE_NORMAL);
1750 
1751 	/*
1752 	 * Valid returns are:
1753 	 *  HEAD   - an interrupt came in and already set it.
1754 	 *  NORMAL - One of two things:
1755 	 *            1) We really set it.
1756 	 *            2) A bunch of interrupts came in and moved
1757 	 *               the page forward again.
1758 	 */
1759 	switch (ret) {
1760 	case RB_PAGE_HEAD:
1761 	case RB_PAGE_NORMAL:
1762 		/* OK */
1763 		break;
1764 	default:
1765 		RB_WARN_ON(cpu_buffer, 1);
1766 		return -1;
1767 	}
1768 
1769 	/*
1770 	 * It is possible that an interrupt came in,
1771 	 * set the head up, then more interrupts came in
1772 	 * and moved it again. When we get back here,
1773 	 * the page would have been set to NORMAL but we
1774 	 * just set it back to HEAD.
1775 	 *
1776 	 * How do you detect this? Well, if that happened
1777 	 * the tail page would have moved.
1778 	 */
1779 	if (ret == RB_PAGE_NORMAL) {
1780 		/*
1781 		 * If the tail had moved passed next, then we need
1782 		 * to reset the pointer.
1783 		 */
1784 		if (cpu_buffer->tail_page != tail_page &&
1785 		    cpu_buffer->tail_page != next_page)
1786 			rb_head_page_set_normal(cpu_buffer, new_head,
1787 						next_page,
1788 						RB_PAGE_HEAD);
1789 	}
1790 
1791 	/*
1792 	 * If this was the outer most commit (the one that
1793 	 * changed the original pointer from HEAD to UPDATE),
1794 	 * then it is up to us to reset it to NORMAL.
1795 	 */
1796 	if (type == RB_PAGE_HEAD) {
1797 		ret = rb_head_page_set_normal(cpu_buffer, next_page,
1798 					      tail_page,
1799 					      RB_PAGE_UPDATE);
1800 		if (RB_WARN_ON(cpu_buffer,
1801 			       ret != RB_PAGE_UPDATE))
1802 			return -1;
1803 	}
1804 
1805 	return 0;
1806 }
1807 
rb_calculate_event_length(unsigned length)1808 static unsigned rb_calculate_event_length(unsigned length)
1809 {
1810 	struct ring_buffer_event event; /* Used only for sizeof array */
1811 
1812 	/* zero length can cause confusions */
1813 	if (!length)
1814 		length = 1;
1815 
1816 	if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT)
1817 		length += sizeof(event.array[0]);
1818 
1819 	length += RB_EVNT_HDR_SIZE;
1820 	length = ALIGN(length, RB_ARCH_ALIGNMENT);
1821 
1822 	return length;
1823 }
1824 
1825 static inline void
rb_reset_tail(struct ring_buffer_per_cpu * cpu_buffer,struct buffer_page * tail_page,unsigned long tail,unsigned long length)1826 rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer,
1827 	      struct buffer_page *tail_page,
1828 	      unsigned long tail, unsigned long length)
1829 {
1830 	struct ring_buffer_event *event;
1831 
1832 	/*
1833 	 * Only the event that crossed the page boundary
1834 	 * must fill the old tail_page with padding.
1835 	 */
1836 	if (tail >= BUF_PAGE_SIZE) {
1837 		/*
1838 		 * If the page was filled, then we still need
1839 		 * to update the real_end. Reset it to zero
1840 		 * and the reader will ignore it.
1841 		 */
1842 		if (tail == BUF_PAGE_SIZE)
1843 			tail_page->real_end = 0;
1844 
1845 		local_sub(length, &tail_page->write);
1846 		return;
1847 	}
1848 
1849 	event = __rb_page_index(tail_page, tail);
1850 	kmemcheck_annotate_bitfield(event, bitfield);
1851 
1852 	/*
1853 	 * Save the original length to the meta data.
1854 	 * This will be used by the reader to add lost event
1855 	 * counter.
1856 	 */
1857 	tail_page->real_end = tail;
1858 
1859 	/*
1860 	 * If this event is bigger than the minimum size, then
1861 	 * we need to be careful that we don't subtract the
1862 	 * write counter enough to allow another writer to slip
1863 	 * in on this page.
1864 	 * We put in a discarded commit instead, to make sure
1865 	 * that this space is not used again.
1866 	 *
1867 	 * If we are less than the minimum size, we don't need to
1868 	 * worry about it.
1869 	 */
1870 	if (tail > (BUF_PAGE_SIZE - RB_EVNT_MIN_SIZE)) {
1871 		/* No room for any events */
1872 
1873 		/* Mark the rest of the page with padding */
1874 		rb_event_set_padding(event);
1875 
1876 		/* Set the write back to the previous setting */
1877 		local_sub(length, &tail_page->write);
1878 		return;
1879 	}
1880 
1881 	/* Put in a discarded event */
1882 	event->array[0] = (BUF_PAGE_SIZE - tail) - RB_EVNT_HDR_SIZE;
1883 	event->type_len = RINGBUF_TYPE_PADDING;
1884 	/* time delta must be non zero */
1885 	event->time_delta = 1;
1886 
1887 	/* Set write to end of buffer */
1888 	length = (tail + length) - BUF_PAGE_SIZE;
1889 	local_sub(length, &tail_page->write);
1890 }
1891 
1892 /*
1893  * This is the slow path, force gcc not to inline it.
1894  */
1895 static noinline struct ring_buffer_event *
rb_move_tail(struct ring_buffer_per_cpu * cpu_buffer,unsigned long length,unsigned long tail,struct buffer_page * tail_page,u64 ts)1896 rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer,
1897 	     unsigned long length, unsigned long tail,
1898 	     struct buffer_page *tail_page, u64 ts)
1899 {
1900 	struct buffer_page *commit_page = cpu_buffer->commit_page;
1901 	struct ring_buffer *buffer = cpu_buffer->buffer;
1902 	struct buffer_page *next_page;
1903 	int ret;
1904 
1905 	next_page = tail_page;
1906 
1907 	rb_inc_page(cpu_buffer, &next_page);
1908 
1909 	/*
1910 	 * If for some reason, we had an interrupt storm that made
1911 	 * it all the way around the buffer, bail, and warn
1912 	 * about it.
1913 	 */
1914 	if (unlikely(next_page == commit_page)) {
1915 		local_inc(&cpu_buffer->commit_overrun);
1916 		goto out_reset;
1917 	}
1918 
1919 	/*
1920 	 * This is where the fun begins!
1921 	 *
1922 	 * We are fighting against races between a reader that
1923 	 * could be on another CPU trying to swap its reader
1924 	 * page with the buffer head.
1925 	 *
1926 	 * We are also fighting against interrupts coming in and
1927 	 * moving the head or tail on us as well.
1928 	 *
1929 	 * If the next page is the head page then we have filled
1930 	 * the buffer, unless the commit page is still on the
1931 	 * reader page.
1932 	 */
1933 	if (rb_is_head_page(cpu_buffer, next_page, &tail_page->list)) {
1934 
1935 		/*
1936 		 * If the commit is not on the reader page, then
1937 		 * move the header page.
1938 		 */
1939 		if (!rb_is_reader_page(cpu_buffer->commit_page)) {
1940 			/*
1941 			 * If we are not in overwrite mode,
1942 			 * this is easy, just stop here.
1943 			 */
1944 			if (!(buffer->flags & RB_FL_OVERWRITE))
1945 				goto out_reset;
1946 
1947 			ret = rb_handle_head_page(cpu_buffer,
1948 						  tail_page,
1949 						  next_page);
1950 			if (ret < 0)
1951 				goto out_reset;
1952 			if (ret)
1953 				goto out_again;
1954 		} else {
1955 			/*
1956 			 * We need to be careful here too. The
1957 			 * commit page could still be on the reader
1958 			 * page. We could have a small buffer, and
1959 			 * have filled up the buffer with events
1960 			 * from interrupts and such, and wrapped.
1961 			 *
1962 			 * Note, if the tail page is also the on the
1963 			 * reader_page, we let it move out.
1964 			 */
1965 			if (unlikely((cpu_buffer->commit_page !=
1966 				      cpu_buffer->tail_page) &&
1967 				     (cpu_buffer->commit_page ==
1968 				      cpu_buffer->reader_page))) {
1969 				local_inc(&cpu_buffer->commit_overrun);
1970 				goto out_reset;
1971 			}
1972 		}
1973 	}
1974 
1975 	ret = rb_tail_page_update(cpu_buffer, tail_page, next_page);
1976 	if (ret) {
1977 		/*
1978 		 * Nested commits always have zero deltas, so
1979 		 * just reread the time stamp
1980 		 */
1981 		ts = rb_time_stamp(buffer);
1982 		next_page->page->time_stamp = ts;
1983 	}
1984 
1985  out_again:
1986 
1987 	rb_reset_tail(cpu_buffer, tail_page, tail, length);
1988 
1989 	/* fail and let the caller try again */
1990 	return ERR_PTR(-EAGAIN);
1991 
1992  out_reset:
1993 	/* reset write */
1994 	rb_reset_tail(cpu_buffer, tail_page, tail, length);
1995 
1996 	return NULL;
1997 }
1998 
1999 static struct ring_buffer_event *
__rb_reserve_next(struct ring_buffer_per_cpu * cpu_buffer,unsigned long length,u64 ts,u64 delta,int add_timestamp)2000 __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
2001 		  unsigned long length, u64 ts,
2002 		  u64 delta, int add_timestamp)
2003 {
2004 	struct buffer_page *tail_page;
2005 	struct ring_buffer_event *event;
2006 	unsigned long tail, write;
2007 
2008 	/*
2009 	 * If the time delta since the last event is too big to
2010 	 * hold in the time field of the event, then we append a
2011 	 * TIME EXTEND event ahead of the data event.
2012 	 */
2013 	if (unlikely(add_timestamp))
2014 		length += RB_LEN_TIME_EXTEND;
2015 
2016 	tail_page = cpu_buffer->tail_page;
2017 	write = local_add_return(length, &tail_page->write);
2018 
2019 	/* set write to only the index of the write */
2020 	write &= RB_WRITE_MASK;
2021 	tail = write - length;
2022 
2023 	/* See if we shot pass the end of this buffer page */
2024 	if (unlikely(write > BUF_PAGE_SIZE))
2025 		return rb_move_tail(cpu_buffer, length, tail,
2026 				    tail_page, ts);
2027 
2028 	/* We reserved something on the buffer */
2029 
2030 	event = __rb_page_index(tail_page, tail);
2031 	kmemcheck_annotate_bitfield(event, bitfield);
2032 	rb_update_event(cpu_buffer, event, length, add_timestamp, delta);
2033 
2034 	local_inc(&tail_page->entries);
2035 
2036 	/*
2037 	 * If this is the first commit on the page, then update
2038 	 * its timestamp.
2039 	 */
2040 	if (!tail)
2041 		tail_page->page->time_stamp = ts;
2042 
2043 	return event;
2044 }
2045 
2046 static inline int
rb_try_to_discard(struct ring_buffer_per_cpu * cpu_buffer,struct ring_buffer_event * event)2047 rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer,
2048 		  struct ring_buffer_event *event)
2049 {
2050 	unsigned long new_index, old_index;
2051 	struct buffer_page *bpage;
2052 	unsigned long index;
2053 	unsigned long addr;
2054 
2055 	new_index = rb_event_index(event);
2056 	old_index = new_index + rb_event_ts_length(event);
2057 	addr = (unsigned long)event;
2058 	addr &= PAGE_MASK;
2059 
2060 	bpage = cpu_buffer->tail_page;
2061 
2062 	if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) {
2063 		unsigned long write_mask =
2064 			local_read(&bpage->write) & ~RB_WRITE_MASK;
2065 		/*
2066 		 * This is on the tail page. It is possible that
2067 		 * a write could come in and move the tail page
2068 		 * and write to the next page. That is fine
2069 		 * because we just shorten what is on this page.
2070 		 */
2071 		old_index += write_mask;
2072 		new_index += write_mask;
2073 		index = local_cmpxchg(&bpage->write, old_index, new_index);
2074 		if (index == old_index)
2075 			return 1;
2076 	}
2077 
2078 	/* could not discard */
2079 	return 0;
2080 }
2081 
rb_start_commit(struct ring_buffer_per_cpu * cpu_buffer)2082 static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer)
2083 {
2084 	local_inc(&cpu_buffer->committing);
2085 	local_inc(&cpu_buffer->commits);
2086 }
2087 
rb_end_commit(struct ring_buffer_per_cpu * cpu_buffer)2088 static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer)
2089 {
2090 	unsigned long commits;
2091 
2092 	if (RB_WARN_ON(cpu_buffer,
2093 		       !local_read(&cpu_buffer->committing)))
2094 		return;
2095 
2096  again:
2097 	commits = local_read(&cpu_buffer->commits);
2098 	/* synchronize with interrupts */
2099 	barrier();
2100 	if (local_read(&cpu_buffer->committing) == 1)
2101 		rb_set_commit_to_write(cpu_buffer);
2102 
2103 	local_dec(&cpu_buffer->committing);
2104 
2105 	/* synchronize with interrupts */
2106 	barrier();
2107 
2108 	/*
2109 	 * Need to account for interrupts coming in between the
2110 	 * updating of the commit page and the clearing of the
2111 	 * committing counter.
2112 	 */
2113 	if (unlikely(local_read(&cpu_buffer->commits) != commits) &&
2114 	    !local_read(&cpu_buffer->committing)) {
2115 		local_inc(&cpu_buffer->committing);
2116 		goto again;
2117 	}
2118 }
2119 
2120 static struct ring_buffer_event *
rb_reserve_next_event(struct ring_buffer * buffer,struct ring_buffer_per_cpu * cpu_buffer,unsigned long length)2121 rb_reserve_next_event(struct ring_buffer *buffer,
2122 		      struct ring_buffer_per_cpu *cpu_buffer,
2123 		      unsigned long length)
2124 {
2125 	struct ring_buffer_event *event;
2126 	u64 ts, delta;
2127 	int nr_loops = 0;
2128 	int add_timestamp;
2129 	u64 diff;
2130 
2131 	rb_start_commit(cpu_buffer);
2132 
2133 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
2134 	/*
2135 	 * Due to the ability to swap a cpu buffer from a buffer
2136 	 * it is possible it was swapped before we committed.
2137 	 * (committing stops a swap). We check for it here and
2138 	 * if it happened, we have to fail the write.
2139 	 */
2140 	barrier();
2141 	if (unlikely(ACCESS_ONCE(cpu_buffer->buffer) != buffer)) {
2142 		local_dec(&cpu_buffer->committing);
2143 		local_dec(&cpu_buffer->commits);
2144 		return NULL;
2145 	}
2146 #endif
2147 
2148 	length = rb_calculate_event_length(length);
2149  again:
2150 	add_timestamp = 0;
2151 	delta = 0;
2152 
2153 	/*
2154 	 * We allow for interrupts to reenter here and do a trace.
2155 	 * If one does, it will cause this original code to loop
2156 	 * back here. Even with heavy interrupts happening, this
2157 	 * should only happen a few times in a row. If this happens
2158 	 * 1000 times in a row, there must be either an interrupt
2159 	 * storm or we have something buggy.
2160 	 * Bail!
2161 	 */
2162 	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
2163 		goto out_fail;
2164 
2165 	ts = rb_time_stamp(cpu_buffer->buffer);
2166 	diff = ts - cpu_buffer->write_stamp;
2167 
2168 	/* make sure this diff is calculated here */
2169 	barrier();
2170 
2171 	/* Did the write stamp get updated already? */
2172 	if (likely(ts >= cpu_buffer->write_stamp)) {
2173 		delta = diff;
2174 		if (unlikely(test_time_stamp(delta))) {
2175 			int local_clock_stable = 1;
2176 #ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
2177 			local_clock_stable = sched_clock_stable;
2178 #endif
2179 			WARN_ONCE(delta > (1ULL << 59),
2180 				  KERN_WARNING "Delta way too big! %llu ts=%llu write stamp = %llu\n%s",
2181 				  (unsigned long long)delta,
2182 				  (unsigned long long)ts,
2183 				  (unsigned long long)cpu_buffer->write_stamp,
2184 				  local_clock_stable ? "" :
2185 				  "If you just came from a suspend/resume,\n"
2186 				  "please switch to the trace global clock:\n"
2187 				  "  echo global > /sys/kernel/debug/tracing/trace_clock\n");
2188 			add_timestamp = 1;
2189 		}
2190 	}
2191 
2192 	event = __rb_reserve_next(cpu_buffer, length, ts,
2193 				  delta, add_timestamp);
2194 	if (unlikely(PTR_ERR(event) == -EAGAIN))
2195 		goto again;
2196 
2197 	if (!event)
2198 		goto out_fail;
2199 
2200 	return event;
2201 
2202  out_fail:
2203 	rb_end_commit(cpu_buffer);
2204 	return NULL;
2205 }
2206 
2207 #ifdef CONFIG_TRACING
2208 
2209 #define TRACE_RECURSIVE_DEPTH 16
2210 
2211 /* Keep this code out of the fast path cache */
trace_recursive_fail(void)2212 static noinline void trace_recursive_fail(void)
2213 {
2214 	/* Disable all tracing before we do anything else */
2215 	tracing_off_permanent();
2216 
2217 	printk_once(KERN_WARNING "Tracing recursion: depth[%ld]:"
2218 		    "HC[%lu]:SC[%lu]:NMI[%lu]\n",
2219 		    current->trace_recursion,
2220 		    hardirq_count() >> HARDIRQ_SHIFT,
2221 		    softirq_count() >> SOFTIRQ_SHIFT,
2222 		    in_nmi());
2223 
2224 	WARN_ON_ONCE(1);
2225 }
2226 
trace_recursive_lock(void)2227 static inline int trace_recursive_lock(void)
2228 {
2229 	current->trace_recursion++;
2230 
2231 	if (likely(current->trace_recursion < TRACE_RECURSIVE_DEPTH))
2232 		return 0;
2233 
2234 	trace_recursive_fail();
2235 
2236 	return -1;
2237 }
2238 
trace_recursive_unlock(void)2239 static inline void trace_recursive_unlock(void)
2240 {
2241 	WARN_ON_ONCE(!current->trace_recursion);
2242 
2243 	current->trace_recursion--;
2244 }
2245 
2246 #else
2247 
2248 #define trace_recursive_lock()		(0)
2249 #define trace_recursive_unlock()	do { } while (0)
2250 
2251 #endif
2252 
2253 /**
2254  * ring_buffer_lock_reserve - reserve a part of the buffer
2255  * @buffer: the ring buffer to reserve from
2256  * @length: the length of the data to reserve (excluding event header)
2257  *
2258  * Returns a reseverd event on the ring buffer to copy directly to.
2259  * The user of this interface will need to get the body to write into
2260  * and can use the ring_buffer_event_data() interface.
2261  *
2262  * The length is the length of the data needed, not the event length
2263  * which also includes the event header.
2264  *
2265  * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
2266  * If NULL is returned, then nothing has been allocated or locked.
2267  */
2268 struct ring_buffer_event *
ring_buffer_lock_reserve(struct ring_buffer * buffer,unsigned long length)2269 ring_buffer_lock_reserve(struct ring_buffer *buffer, unsigned long length)
2270 {
2271 	struct ring_buffer_per_cpu *cpu_buffer;
2272 	struct ring_buffer_event *event;
2273 	int cpu;
2274 
2275 	if (ring_buffer_flags != RB_BUFFERS_ON)
2276 		return NULL;
2277 
2278 	/* If we are tracing schedule, we don't want to recurse */
2279 	preempt_disable_notrace();
2280 
2281 	if (atomic_read(&buffer->record_disabled))
2282 		goto out_nocheck;
2283 
2284 	if (trace_recursive_lock())
2285 		goto out_nocheck;
2286 
2287 	cpu = raw_smp_processor_id();
2288 
2289 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
2290 		goto out;
2291 
2292 	cpu_buffer = buffer->buffers[cpu];
2293 
2294 	if (atomic_read(&cpu_buffer->record_disabled))
2295 		goto out;
2296 
2297 	if (length > BUF_MAX_DATA_SIZE)
2298 		goto out;
2299 
2300 	event = rb_reserve_next_event(buffer, cpu_buffer, length);
2301 	if (!event)
2302 		goto out;
2303 
2304 	return event;
2305 
2306  out:
2307 	trace_recursive_unlock();
2308 
2309  out_nocheck:
2310 	preempt_enable_notrace();
2311 	return NULL;
2312 }
2313 EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
2314 
2315 static void
rb_update_write_stamp(struct ring_buffer_per_cpu * cpu_buffer,struct ring_buffer_event * event)2316 rb_update_write_stamp(struct ring_buffer_per_cpu *cpu_buffer,
2317 		      struct ring_buffer_event *event)
2318 {
2319 	u64 delta;
2320 
2321 	/*
2322 	 * The event first in the commit queue updates the
2323 	 * time stamp.
2324 	 */
2325 	if (rb_event_is_commit(cpu_buffer, event)) {
2326 		/*
2327 		 * A commit event that is first on a page
2328 		 * updates the write timestamp with the page stamp
2329 		 */
2330 		if (!rb_event_index(event))
2331 			cpu_buffer->write_stamp =
2332 				cpu_buffer->commit_page->page->time_stamp;
2333 		else if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
2334 			delta = event->array[0];
2335 			delta <<= TS_SHIFT;
2336 			delta += event->time_delta;
2337 			cpu_buffer->write_stamp += delta;
2338 		} else
2339 			cpu_buffer->write_stamp += event->time_delta;
2340 	}
2341 }
2342 
rb_commit(struct ring_buffer_per_cpu * cpu_buffer,struct ring_buffer_event * event)2343 static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer,
2344 		      struct ring_buffer_event *event)
2345 {
2346 	local_inc(&cpu_buffer->entries);
2347 	rb_update_write_stamp(cpu_buffer, event);
2348 	rb_end_commit(cpu_buffer);
2349 }
2350 
2351 /**
2352  * ring_buffer_unlock_commit - commit a reserved
2353  * @buffer: The buffer to commit to
2354  * @event: The event pointer to commit.
2355  *
2356  * This commits the data to the ring buffer, and releases any locks held.
2357  *
2358  * Must be paired with ring_buffer_lock_reserve.
2359  */
ring_buffer_unlock_commit(struct ring_buffer * buffer,struct ring_buffer_event * event)2360 int ring_buffer_unlock_commit(struct ring_buffer *buffer,
2361 			      struct ring_buffer_event *event)
2362 {
2363 	struct ring_buffer_per_cpu *cpu_buffer;
2364 	int cpu = raw_smp_processor_id();
2365 
2366 	cpu_buffer = buffer->buffers[cpu];
2367 
2368 	rb_commit(cpu_buffer, event);
2369 
2370 	trace_recursive_unlock();
2371 
2372 	preempt_enable_notrace();
2373 
2374 	return 0;
2375 }
2376 EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
2377 
rb_event_discard(struct ring_buffer_event * event)2378 static inline void rb_event_discard(struct ring_buffer_event *event)
2379 {
2380 	if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
2381 		event = skip_time_extend(event);
2382 
2383 	/* array[0] holds the actual length for the discarded event */
2384 	event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE;
2385 	event->type_len = RINGBUF_TYPE_PADDING;
2386 	/* time delta must be non zero */
2387 	if (!event->time_delta)
2388 		event->time_delta = 1;
2389 }
2390 
2391 /*
2392  * Decrement the entries to the page that an event is on.
2393  * The event does not even need to exist, only the pointer
2394  * to the page it is on. This may only be called before the commit
2395  * takes place.
2396  */
2397 static inline void
rb_decrement_entry(struct ring_buffer_per_cpu * cpu_buffer,struct ring_buffer_event * event)2398 rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer,
2399 		   struct ring_buffer_event *event)
2400 {
2401 	unsigned long addr = (unsigned long)event;
2402 	struct buffer_page *bpage = cpu_buffer->commit_page;
2403 	struct buffer_page *start;
2404 
2405 	addr &= PAGE_MASK;
2406 
2407 	/* Do the likely case first */
2408 	if (likely(bpage->page == (void *)addr)) {
2409 		local_dec(&bpage->entries);
2410 		return;
2411 	}
2412 
2413 	/*
2414 	 * Because the commit page may be on the reader page we
2415 	 * start with the next page and check the end loop there.
2416 	 */
2417 	rb_inc_page(cpu_buffer, &bpage);
2418 	start = bpage;
2419 	do {
2420 		if (bpage->page == (void *)addr) {
2421 			local_dec(&bpage->entries);
2422 			return;
2423 		}
2424 		rb_inc_page(cpu_buffer, &bpage);
2425 	} while (bpage != start);
2426 
2427 	/* commit not part of this buffer?? */
2428 	RB_WARN_ON(cpu_buffer, 1);
2429 }
2430 
2431 /**
2432  * ring_buffer_commit_discard - discard an event that has not been committed
2433  * @buffer: the ring buffer
2434  * @event: non committed event to discard
2435  *
2436  * Sometimes an event that is in the ring buffer needs to be ignored.
2437  * This function lets the user discard an event in the ring buffer
2438  * and then that event will not be read later.
2439  *
2440  * This function only works if it is called before the the item has been
2441  * committed. It will try to free the event from the ring buffer
2442  * if another event has not been added behind it.
2443  *
2444  * If another event has been added behind it, it will set the event
2445  * up as discarded, and perform the commit.
2446  *
2447  * If this function is called, do not call ring_buffer_unlock_commit on
2448  * the event.
2449  */
ring_buffer_discard_commit(struct ring_buffer * buffer,struct ring_buffer_event * event)2450 void ring_buffer_discard_commit(struct ring_buffer *buffer,
2451 				struct ring_buffer_event *event)
2452 {
2453 	struct ring_buffer_per_cpu *cpu_buffer;
2454 	int cpu;
2455 
2456 	/* The event is discarded regardless */
2457 	rb_event_discard(event);
2458 
2459 	cpu = smp_processor_id();
2460 	cpu_buffer = buffer->buffers[cpu];
2461 
2462 	/*
2463 	 * This must only be called if the event has not been
2464 	 * committed yet. Thus we can assume that preemption
2465 	 * is still disabled.
2466 	 */
2467 	RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing));
2468 
2469 	rb_decrement_entry(cpu_buffer, event);
2470 	if (rb_try_to_discard(cpu_buffer, event))
2471 		goto out;
2472 
2473 	/*
2474 	 * The commit is still visible by the reader, so we
2475 	 * must still update the timestamp.
2476 	 */
2477 	rb_update_write_stamp(cpu_buffer, event);
2478  out:
2479 	rb_end_commit(cpu_buffer);
2480 
2481 	trace_recursive_unlock();
2482 
2483 	preempt_enable_notrace();
2484 
2485 }
2486 EXPORT_SYMBOL_GPL(ring_buffer_discard_commit);
2487 
2488 /**
2489  * ring_buffer_write - write data to the buffer without reserving
2490  * @buffer: The ring buffer to write to.
2491  * @length: The length of the data being written (excluding the event header)
2492  * @data: The data to write to the buffer.
2493  *
2494  * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
2495  * one function. If you already have the data to write to the buffer, it
2496  * may be easier to simply call this function.
2497  *
2498  * Note, like ring_buffer_lock_reserve, the length is the length of the data
2499  * and not the length of the event which would hold the header.
2500  */
ring_buffer_write(struct ring_buffer * buffer,unsigned long length,void * data)2501 int ring_buffer_write(struct ring_buffer *buffer,
2502 			unsigned long length,
2503 			void *data)
2504 {
2505 	struct ring_buffer_per_cpu *cpu_buffer;
2506 	struct ring_buffer_event *event;
2507 	void *body;
2508 	int ret = -EBUSY;
2509 	int cpu;
2510 
2511 	if (ring_buffer_flags != RB_BUFFERS_ON)
2512 		return -EBUSY;
2513 
2514 	preempt_disable_notrace();
2515 
2516 	if (atomic_read(&buffer->record_disabled))
2517 		goto out;
2518 
2519 	cpu = raw_smp_processor_id();
2520 
2521 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
2522 		goto out;
2523 
2524 	cpu_buffer = buffer->buffers[cpu];
2525 
2526 	if (atomic_read(&cpu_buffer->record_disabled))
2527 		goto out;
2528 
2529 	if (length > BUF_MAX_DATA_SIZE)
2530 		goto out;
2531 
2532 	event = rb_reserve_next_event(buffer, cpu_buffer, length);
2533 	if (!event)
2534 		goto out;
2535 
2536 	body = rb_event_data(event);
2537 
2538 	memcpy(body, data, length);
2539 
2540 	rb_commit(cpu_buffer, event);
2541 
2542 	ret = 0;
2543  out:
2544 	preempt_enable_notrace();
2545 
2546 	return ret;
2547 }
2548 EXPORT_SYMBOL_GPL(ring_buffer_write);
2549 
rb_per_cpu_empty(struct ring_buffer_per_cpu * cpu_buffer)2550 static int rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
2551 {
2552 	struct buffer_page *reader = cpu_buffer->reader_page;
2553 	struct buffer_page *head = rb_set_head_page(cpu_buffer);
2554 	struct buffer_page *commit = cpu_buffer->commit_page;
2555 
2556 	/* In case of error, head will be NULL */
2557 	if (unlikely(!head))
2558 		return 1;
2559 
2560 	return reader->read == rb_page_commit(reader) &&
2561 		(commit == reader ||
2562 		 (commit == head &&
2563 		  head->read == rb_page_commit(commit)));
2564 }
2565 
2566 /**
2567  * ring_buffer_record_disable - stop all writes into the buffer
2568  * @buffer: The ring buffer to stop writes to.
2569  *
2570  * This prevents all writes to the buffer. Any attempt to write
2571  * to the buffer after this will fail and return NULL.
2572  *
2573  * The caller should call synchronize_sched() after this.
2574  */
ring_buffer_record_disable(struct ring_buffer * buffer)2575 void ring_buffer_record_disable(struct ring_buffer *buffer)
2576 {
2577 	atomic_inc(&buffer->record_disabled);
2578 }
2579 EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
2580 
2581 /**
2582  * ring_buffer_record_enable - enable writes to the buffer
2583  * @buffer: The ring buffer to enable writes
2584  *
2585  * Note, multiple disables will need the same number of enables
2586  * to truly enable the writing (much like preempt_disable).
2587  */
ring_buffer_record_enable(struct ring_buffer * buffer)2588 void ring_buffer_record_enable(struct ring_buffer *buffer)
2589 {
2590 	atomic_dec(&buffer->record_disabled);
2591 }
2592 EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
2593 
2594 /**
2595  * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
2596  * @buffer: The ring buffer to stop writes to.
2597  * @cpu: The CPU buffer to stop
2598  *
2599  * This prevents all writes to the buffer. Any attempt to write
2600  * to the buffer after this will fail and return NULL.
2601  *
2602  * The caller should call synchronize_sched() after this.
2603  */
ring_buffer_record_disable_cpu(struct ring_buffer * buffer,int cpu)2604 void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu)
2605 {
2606 	struct ring_buffer_per_cpu *cpu_buffer;
2607 
2608 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
2609 		return;
2610 
2611 	cpu_buffer = buffer->buffers[cpu];
2612 	atomic_inc(&cpu_buffer->record_disabled);
2613 }
2614 EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
2615 
2616 /**
2617  * ring_buffer_record_enable_cpu - enable writes to the buffer
2618  * @buffer: The ring buffer to enable writes
2619  * @cpu: The CPU to enable.
2620  *
2621  * Note, multiple disables will need the same number of enables
2622  * to truly enable the writing (much like preempt_disable).
2623  */
ring_buffer_record_enable_cpu(struct ring_buffer * buffer,int cpu)2624 void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu)
2625 {
2626 	struct ring_buffer_per_cpu *cpu_buffer;
2627 
2628 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
2629 		return;
2630 
2631 	cpu_buffer = buffer->buffers[cpu];
2632 	atomic_dec(&cpu_buffer->record_disabled);
2633 }
2634 EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
2635 
2636 /*
2637  * The total entries in the ring buffer is the running counter
2638  * of entries entered into the ring buffer, minus the sum of
2639  * the entries read from the ring buffer and the number of
2640  * entries that were overwritten.
2641  */
2642 static inline unsigned long
rb_num_of_entries(struct ring_buffer_per_cpu * cpu_buffer)2643 rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer)
2644 {
2645 	return local_read(&cpu_buffer->entries) -
2646 		(local_read(&cpu_buffer->overrun) + cpu_buffer->read);
2647 }
2648 
2649 /**
2650  * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
2651  * @buffer: The ring buffer
2652  * @cpu: The per CPU buffer to get the entries from.
2653  */
ring_buffer_entries_cpu(struct ring_buffer * buffer,int cpu)2654 unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu)
2655 {
2656 	struct ring_buffer_per_cpu *cpu_buffer;
2657 
2658 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
2659 		return 0;
2660 
2661 	cpu_buffer = buffer->buffers[cpu];
2662 
2663 	return rb_num_of_entries(cpu_buffer);
2664 }
2665 EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
2666 
2667 /**
2668  * ring_buffer_overrun_cpu - get the number of overruns in a cpu_buffer
2669  * @buffer: The ring buffer
2670  * @cpu: The per CPU buffer to get the number of overruns from
2671  */
ring_buffer_overrun_cpu(struct ring_buffer * buffer,int cpu)2672 unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu)
2673 {
2674 	struct ring_buffer_per_cpu *cpu_buffer;
2675 	unsigned long ret;
2676 
2677 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
2678 		return 0;
2679 
2680 	cpu_buffer = buffer->buffers[cpu];
2681 	ret = local_read(&cpu_buffer->overrun);
2682 
2683 	return ret;
2684 }
2685 EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
2686 
2687 /**
2688  * ring_buffer_commit_overrun_cpu - get the number of overruns caused by commits
2689  * @buffer: The ring buffer
2690  * @cpu: The per CPU buffer to get the number of overruns from
2691  */
2692 unsigned long
ring_buffer_commit_overrun_cpu(struct ring_buffer * buffer,int cpu)2693 ring_buffer_commit_overrun_cpu(struct ring_buffer *buffer, int cpu)
2694 {
2695 	struct ring_buffer_per_cpu *cpu_buffer;
2696 	unsigned long ret;
2697 
2698 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
2699 		return 0;
2700 
2701 	cpu_buffer = buffer->buffers[cpu];
2702 	ret = local_read(&cpu_buffer->commit_overrun);
2703 
2704 	return ret;
2705 }
2706 EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu);
2707 
2708 /**
2709  * ring_buffer_entries - get the number of entries in a buffer
2710  * @buffer: The ring buffer
2711  *
2712  * Returns the total number of entries in the ring buffer
2713  * (all CPU entries)
2714  */
ring_buffer_entries(struct ring_buffer * buffer)2715 unsigned long ring_buffer_entries(struct ring_buffer *buffer)
2716 {
2717 	struct ring_buffer_per_cpu *cpu_buffer;
2718 	unsigned long entries = 0;
2719 	int cpu;
2720 
2721 	/* if you care about this being correct, lock the buffer */
2722 	for_each_buffer_cpu(buffer, cpu) {
2723 		cpu_buffer = buffer->buffers[cpu];
2724 		entries += rb_num_of_entries(cpu_buffer);
2725 	}
2726 
2727 	return entries;
2728 }
2729 EXPORT_SYMBOL_GPL(ring_buffer_entries);
2730 
2731 /**
2732  * ring_buffer_overruns - get the number of overruns in buffer
2733  * @buffer: The ring buffer
2734  *
2735  * Returns the total number of overruns in the ring buffer
2736  * (all CPU entries)
2737  */
ring_buffer_overruns(struct ring_buffer * buffer)2738 unsigned long ring_buffer_overruns(struct ring_buffer *buffer)
2739 {
2740 	struct ring_buffer_per_cpu *cpu_buffer;
2741 	unsigned long overruns = 0;
2742 	int cpu;
2743 
2744 	/* if you care about this being correct, lock the buffer */
2745 	for_each_buffer_cpu(buffer, cpu) {
2746 		cpu_buffer = buffer->buffers[cpu];
2747 		overruns += local_read(&cpu_buffer->overrun);
2748 	}
2749 
2750 	return overruns;
2751 }
2752 EXPORT_SYMBOL_GPL(ring_buffer_overruns);
2753 
rb_iter_reset(struct ring_buffer_iter * iter)2754 static void rb_iter_reset(struct ring_buffer_iter *iter)
2755 {
2756 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
2757 
2758 	/* Iterator usage is expected to have record disabled */
2759 	if (list_empty(&cpu_buffer->reader_page->list)) {
2760 		iter->head_page = rb_set_head_page(cpu_buffer);
2761 		if (unlikely(!iter->head_page))
2762 			return;
2763 		iter->head = iter->head_page->read;
2764 	} else {
2765 		iter->head_page = cpu_buffer->reader_page;
2766 		iter->head = cpu_buffer->reader_page->read;
2767 	}
2768 	if (iter->head)
2769 		iter->read_stamp = cpu_buffer->read_stamp;
2770 	else
2771 		iter->read_stamp = iter->head_page->page->time_stamp;
2772 	iter->cache_reader_page = cpu_buffer->reader_page;
2773 	iter->cache_read = cpu_buffer->read;
2774 }
2775 
2776 /**
2777  * ring_buffer_iter_reset - reset an iterator
2778  * @iter: The iterator to reset
2779  *
2780  * Resets the iterator, so that it will start from the beginning
2781  * again.
2782  */
ring_buffer_iter_reset(struct ring_buffer_iter * iter)2783 void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
2784 {
2785 	struct ring_buffer_per_cpu *cpu_buffer;
2786 	unsigned long flags;
2787 
2788 	if (!iter)
2789 		return;
2790 
2791 	cpu_buffer = iter->cpu_buffer;
2792 
2793 	spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2794 	rb_iter_reset(iter);
2795 	spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2796 }
2797 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
2798 
2799 /**
2800  * ring_buffer_iter_empty - check if an iterator has no more to read
2801  * @iter: The iterator to check
2802  */
ring_buffer_iter_empty(struct ring_buffer_iter * iter)2803 int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
2804 {
2805 	struct ring_buffer_per_cpu *cpu_buffer;
2806 
2807 	cpu_buffer = iter->cpu_buffer;
2808 
2809 	return iter->head_page == cpu_buffer->commit_page &&
2810 		iter->head == rb_commit_index(cpu_buffer);
2811 }
2812 EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
2813 
2814 static void
rb_update_read_stamp(struct ring_buffer_per_cpu * cpu_buffer,struct ring_buffer_event * event)2815 rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
2816 		     struct ring_buffer_event *event)
2817 {
2818 	u64 delta;
2819 
2820 	switch (event->type_len) {
2821 	case RINGBUF_TYPE_PADDING:
2822 		return;
2823 
2824 	case RINGBUF_TYPE_TIME_EXTEND:
2825 		delta = event->array[0];
2826 		delta <<= TS_SHIFT;
2827 		delta += event->time_delta;
2828 		cpu_buffer->read_stamp += delta;
2829 		return;
2830 
2831 	case RINGBUF_TYPE_TIME_STAMP:
2832 		/* FIXME: not implemented */
2833 		return;
2834 
2835 	case RINGBUF_TYPE_DATA:
2836 		cpu_buffer->read_stamp += event->time_delta;
2837 		return;
2838 
2839 	default:
2840 		BUG();
2841 	}
2842 	return;
2843 }
2844 
2845 static void
rb_update_iter_read_stamp(struct ring_buffer_iter * iter,struct ring_buffer_event * event)2846 rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
2847 			  struct ring_buffer_event *event)
2848 {
2849 	u64 delta;
2850 
2851 	switch (event->type_len) {
2852 	case RINGBUF_TYPE_PADDING:
2853 		return;
2854 
2855 	case RINGBUF_TYPE_TIME_EXTEND:
2856 		delta = event->array[0];
2857 		delta <<= TS_SHIFT;
2858 		delta += event->time_delta;
2859 		iter->read_stamp += delta;
2860 		return;
2861 
2862 	case RINGBUF_TYPE_TIME_STAMP:
2863 		/* FIXME: not implemented */
2864 		return;
2865 
2866 	case RINGBUF_TYPE_DATA:
2867 		iter->read_stamp += event->time_delta;
2868 		return;
2869 
2870 	default:
2871 		BUG();
2872 	}
2873 	return;
2874 }
2875 
2876 static struct buffer_page *
rb_get_reader_page(struct ring_buffer_per_cpu * cpu_buffer)2877 rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
2878 {
2879 	struct buffer_page *reader = NULL;
2880 	unsigned long overwrite;
2881 	unsigned long flags;
2882 	int nr_loops = 0;
2883 	int ret;
2884 
2885 	local_irq_save(flags);
2886 	arch_spin_lock(&cpu_buffer->lock);
2887 
2888  again:
2889 	/*
2890 	 * This should normally only loop twice. But because the
2891 	 * start of the reader inserts an empty page, it causes
2892 	 * a case where we will loop three times. There should be no
2893 	 * reason to loop four times (that I know of).
2894 	 */
2895 	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
2896 		reader = NULL;
2897 		goto out;
2898 	}
2899 
2900 	reader = cpu_buffer->reader_page;
2901 
2902 	/* If there's more to read, return this page */
2903 	if (cpu_buffer->reader_page->read < rb_page_size(reader))
2904 		goto out;
2905 
2906 	/* Never should we have an index greater than the size */
2907 	if (RB_WARN_ON(cpu_buffer,
2908 		       cpu_buffer->reader_page->read > rb_page_size(reader)))
2909 		goto out;
2910 
2911 	/* check if we caught up to the tail */
2912 	reader = NULL;
2913 	if (cpu_buffer->commit_page == cpu_buffer->reader_page)
2914 		goto out;
2915 
2916 	/*
2917 	 * Reset the reader page to size zero.
2918 	 */
2919 	local_set(&cpu_buffer->reader_page->write, 0);
2920 	local_set(&cpu_buffer->reader_page->entries, 0);
2921 	local_set(&cpu_buffer->reader_page->page->commit, 0);
2922 	cpu_buffer->reader_page->real_end = 0;
2923 
2924  spin:
2925 	/*
2926 	 * Splice the empty reader page into the list around the head.
2927 	 */
2928 	reader = rb_set_head_page(cpu_buffer);
2929 	cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next);
2930 	cpu_buffer->reader_page->list.prev = reader->list.prev;
2931 
2932 	/*
2933 	 * cpu_buffer->pages just needs to point to the buffer, it
2934 	 *  has no specific buffer page to point to. Lets move it out
2935 	 *  of our way so we don't accidentally swap it.
2936 	 */
2937 	cpu_buffer->pages = reader->list.prev;
2938 
2939 	/* The reader page will be pointing to the new head */
2940 	rb_set_list_to_head(cpu_buffer, &cpu_buffer->reader_page->list);
2941 
2942 	/*
2943 	 * We want to make sure we read the overruns after we set up our
2944 	 * pointers to the next object. The writer side does a
2945 	 * cmpxchg to cross pages which acts as the mb on the writer
2946 	 * side. Note, the reader will constantly fail the swap
2947 	 * while the writer is updating the pointers, so this
2948 	 * guarantees that the overwrite recorded here is the one we
2949 	 * want to compare with the last_overrun.
2950 	 */
2951 	smp_mb();
2952 	overwrite = local_read(&(cpu_buffer->overrun));
2953 
2954 	/*
2955 	 * Here's the tricky part.
2956 	 *
2957 	 * We need to move the pointer past the header page.
2958 	 * But we can only do that if a writer is not currently
2959 	 * moving it. The page before the header page has the
2960 	 * flag bit '1' set if it is pointing to the page we want.
2961 	 * but if the writer is in the process of moving it
2962 	 * than it will be '2' or already moved '0'.
2963 	 */
2964 
2965 	ret = rb_head_page_replace(reader, cpu_buffer->reader_page);
2966 
2967 	/*
2968 	 * If we did not convert it, then we must try again.
2969 	 */
2970 	if (!ret)
2971 		goto spin;
2972 
2973 	/*
2974 	 * Yeah! We succeeded in replacing the page.
2975 	 *
2976 	 * Now make the new head point back to the reader page.
2977 	 */
2978 	rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list;
2979 	rb_inc_page(cpu_buffer, &cpu_buffer->head_page);
2980 
2981 	/* Finally update the reader page to the new head */
2982 	cpu_buffer->reader_page = reader;
2983 	rb_reset_reader_page(cpu_buffer);
2984 
2985 	if (overwrite != cpu_buffer->last_overrun) {
2986 		cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun;
2987 		cpu_buffer->last_overrun = overwrite;
2988 	}
2989 
2990 	goto again;
2991 
2992  out:
2993 	arch_spin_unlock(&cpu_buffer->lock);
2994 	local_irq_restore(flags);
2995 
2996 	return reader;
2997 }
2998 
rb_advance_reader(struct ring_buffer_per_cpu * cpu_buffer)2999 static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
3000 {
3001 	struct ring_buffer_event *event;
3002 	struct buffer_page *reader;
3003 	unsigned length;
3004 
3005 	reader = rb_get_reader_page(cpu_buffer);
3006 
3007 	/* This function should not be called when buffer is empty */
3008 	if (RB_WARN_ON(cpu_buffer, !reader))
3009 		return;
3010 
3011 	event = rb_reader_event(cpu_buffer);
3012 
3013 	if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
3014 		cpu_buffer->read++;
3015 
3016 	rb_update_read_stamp(cpu_buffer, event);
3017 
3018 	length = rb_event_length(event);
3019 	cpu_buffer->reader_page->read += length;
3020 }
3021 
rb_advance_iter(struct ring_buffer_iter * iter)3022 static void rb_advance_iter(struct ring_buffer_iter *iter)
3023 {
3024 	struct ring_buffer_per_cpu *cpu_buffer;
3025 	struct ring_buffer_event *event;
3026 	unsigned length;
3027 
3028 	cpu_buffer = iter->cpu_buffer;
3029 
3030 	/*
3031 	 * Check if we are at the end of the buffer.
3032 	 */
3033 	if (iter->head >= rb_page_size(iter->head_page)) {
3034 		/* discarded commits can make the page empty */
3035 		if (iter->head_page == cpu_buffer->commit_page)
3036 			return;
3037 		rb_inc_iter(iter);
3038 		return;
3039 	}
3040 
3041 	event = rb_iter_head_event(iter);
3042 
3043 	length = rb_event_length(event);
3044 
3045 	/*
3046 	 * This should not be called to advance the header if we are
3047 	 * at the tail of the buffer.
3048 	 */
3049 	if (RB_WARN_ON(cpu_buffer,
3050 		       (iter->head_page == cpu_buffer->commit_page) &&
3051 		       (iter->head + length > rb_commit_index(cpu_buffer))))
3052 		return;
3053 
3054 	rb_update_iter_read_stamp(iter, event);
3055 
3056 	iter->head += length;
3057 
3058 	/* check for end of page padding */
3059 	if ((iter->head >= rb_page_size(iter->head_page)) &&
3060 	    (iter->head_page != cpu_buffer->commit_page))
3061 		rb_advance_iter(iter);
3062 }
3063 
rb_lost_events(struct ring_buffer_per_cpu * cpu_buffer)3064 static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer)
3065 {
3066 	return cpu_buffer->lost_events;
3067 }
3068 
3069 static struct ring_buffer_event *
rb_buffer_peek(struct ring_buffer_per_cpu * cpu_buffer,u64 * ts,unsigned long * lost_events)3070 rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts,
3071 	       unsigned long *lost_events)
3072 {
3073 	struct ring_buffer_event *event;
3074 	struct buffer_page *reader;
3075 	int nr_loops = 0;
3076 
3077  again:
3078 	/*
3079 	 * We repeat when a time extend is encountered.
3080 	 * Since the time extend is always attached to a data event,
3081 	 * we should never loop more than once.
3082 	 * (We never hit the following condition more than twice).
3083 	 */
3084 	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
3085 		return NULL;
3086 
3087 	reader = rb_get_reader_page(cpu_buffer);
3088 	if (!reader)
3089 		return NULL;
3090 
3091 	event = rb_reader_event(cpu_buffer);
3092 
3093 	switch (event->type_len) {
3094 	case RINGBUF_TYPE_PADDING:
3095 		if (rb_null_event(event))
3096 			RB_WARN_ON(cpu_buffer, 1);
3097 		/*
3098 		 * Because the writer could be discarding every
3099 		 * event it creates (which would probably be bad)
3100 		 * if we were to go back to "again" then we may never
3101 		 * catch up, and will trigger the warn on, or lock
3102 		 * the box. Return the padding, and we will release
3103 		 * the current locks, and try again.
3104 		 */
3105 		return event;
3106 
3107 	case RINGBUF_TYPE_TIME_EXTEND:
3108 		/* Internal data, OK to advance */
3109 		rb_advance_reader(cpu_buffer);
3110 		goto again;
3111 
3112 	case RINGBUF_TYPE_TIME_STAMP:
3113 		/* FIXME: not implemented */
3114 		rb_advance_reader(cpu_buffer);
3115 		goto again;
3116 
3117 	case RINGBUF_TYPE_DATA:
3118 		if (ts) {
3119 			*ts = cpu_buffer->read_stamp + event->time_delta;
3120 			ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
3121 							 cpu_buffer->cpu, ts);
3122 		}
3123 		if (lost_events)
3124 			*lost_events = rb_lost_events(cpu_buffer);
3125 		return event;
3126 
3127 	default:
3128 		BUG();
3129 	}
3130 
3131 	return NULL;
3132 }
3133 EXPORT_SYMBOL_GPL(ring_buffer_peek);
3134 
3135 static struct ring_buffer_event *
rb_iter_peek(struct ring_buffer_iter * iter,u64 * ts)3136 rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3137 {
3138 	struct ring_buffer *buffer;
3139 	struct ring_buffer_per_cpu *cpu_buffer;
3140 	struct ring_buffer_event *event;
3141 	int nr_loops = 0;
3142 
3143 	cpu_buffer = iter->cpu_buffer;
3144 	buffer = cpu_buffer->buffer;
3145 
3146 	/*
3147 	 * Check if someone performed a consuming read to
3148 	 * the buffer. A consuming read invalidates the iterator
3149 	 * and we need to reset the iterator in this case.
3150 	 */
3151 	if (unlikely(iter->cache_read != cpu_buffer->read ||
3152 		     iter->cache_reader_page != cpu_buffer->reader_page))
3153 		rb_iter_reset(iter);
3154 
3155  again:
3156 	if (ring_buffer_iter_empty(iter))
3157 		return NULL;
3158 
3159 	/*
3160 	 * We repeat when a time extend is encountered.
3161 	 * Since the time extend is always attached to a data event,
3162 	 * we should never loop more than once.
3163 	 * (We never hit the following condition more than twice).
3164 	 */
3165 	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
3166 		return NULL;
3167 
3168 	if (rb_per_cpu_empty(cpu_buffer))
3169 		return NULL;
3170 
3171 	if (iter->head >= local_read(&iter->head_page->page->commit)) {
3172 		rb_inc_iter(iter);
3173 		goto again;
3174 	}
3175 
3176 	event = rb_iter_head_event(iter);
3177 
3178 	switch (event->type_len) {
3179 	case RINGBUF_TYPE_PADDING:
3180 		if (rb_null_event(event)) {
3181 			rb_inc_iter(iter);
3182 			goto again;
3183 		}
3184 		rb_advance_iter(iter);
3185 		return event;
3186 
3187 	case RINGBUF_TYPE_TIME_EXTEND:
3188 		/* Internal data, OK to advance */
3189 		rb_advance_iter(iter);
3190 		goto again;
3191 
3192 	case RINGBUF_TYPE_TIME_STAMP:
3193 		/* FIXME: not implemented */
3194 		rb_advance_iter(iter);
3195 		goto again;
3196 
3197 	case RINGBUF_TYPE_DATA:
3198 		if (ts) {
3199 			*ts = iter->read_stamp + event->time_delta;
3200 			ring_buffer_normalize_time_stamp(buffer,
3201 							 cpu_buffer->cpu, ts);
3202 		}
3203 		return event;
3204 
3205 	default:
3206 		BUG();
3207 	}
3208 
3209 	return NULL;
3210 }
3211 EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
3212 
rb_ok_to_lock(void)3213 static inline int rb_ok_to_lock(void)
3214 {
3215 	/*
3216 	 * If an NMI die dumps out the content of the ring buffer
3217 	 * do not grab locks. We also permanently disable the ring
3218 	 * buffer too. A one time deal is all you get from reading
3219 	 * the ring buffer from an NMI.
3220 	 */
3221 	if (likely(!in_nmi()))
3222 		return 1;
3223 
3224 	tracing_off_permanent();
3225 	return 0;
3226 }
3227 
3228 /**
3229  * ring_buffer_peek - peek at the next event to be read
3230  * @buffer: The ring buffer to read
3231  * @cpu: The cpu to peak at
3232  * @ts: The timestamp counter of this event.
3233  * @lost_events: a variable to store if events were lost (may be NULL)
3234  *
3235  * This will return the event that will be read next, but does
3236  * not consume the data.
3237  */
3238 struct ring_buffer_event *
ring_buffer_peek(struct ring_buffer * buffer,int cpu,u64 * ts,unsigned long * lost_events)3239 ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts,
3240 		 unsigned long *lost_events)
3241 {
3242 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
3243 	struct ring_buffer_event *event;
3244 	unsigned long flags;
3245 	int dolock;
3246 
3247 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3248 		return NULL;
3249 
3250 	dolock = rb_ok_to_lock();
3251  again:
3252 	local_irq_save(flags);
3253 	if (dolock)
3254 		spin_lock(&cpu_buffer->reader_lock);
3255 	event = rb_buffer_peek(cpu_buffer, ts, lost_events);
3256 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
3257 		rb_advance_reader(cpu_buffer);
3258 	if (dolock)
3259 		spin_unlock(&cpu_buffer->reader_lock);
3260 	local_irq_restore(flags);
3261 
3262 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
3263 		goto again;
3264 
3265 	return event;
3266 }
3267 
3268 /**
3269  * ring_buffer_iter_peek - peek at the next event to be read
3270  * @iter: The ring buffer iterator
3271  * @ts: The timestamp counter of this event.
3272  *
3273  * This will return the event that will be read next, but does
3274  * not increment the iterator.
3275  */
3276 struct ring_buffer_event *
ring_buffer_iter_peek(struct ring_buffer_iter * iter,u64 * ts)3277 ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3278 {
3279 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3280 	struct ring_buffer_event *event;
3281 	unsigned long flags;
3282 
3283  again:
3284 	spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3285 	event = rb_iter_peek(iter, ts);
3286 	spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3287 
3288 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
3289 		goto again;
3290 
3291 	return event;
3292 }
3293 
3294 /**
3295  * ring_buffer_consume - return an event and consume it
3296  * @buffer: The ring buffer to get the next event from
3297  * @cpu: the cpu to read the buffer from
3298  * @ts: a variable to store the timestamp (may be NULL)
3299  * @lost_events: a variable to store if events were lost (may be NULL)
3300  *
3301  * Returns the next event in the ring buffer, and that event is consumed.
3302  * Meaning, that sequential reads will keep returning a different event,
3303  * and eventually empty the ring buffer if the producer is slower.
3304  */
3305 struct ring_buffer_event *
ring_buffer_consume(struct ring_buffer * buffer,int cpu,u64 * ts,unsigned long * lost_events)3306 ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts,
3307 		    unsigned long *lost_events)
3308 {
3309 	struct ring_buffer_per_cpu *cpu_buffer;
3310 	struct ring_buffer_event *event = NULL;
3311 	unsigned long flags;
3312 	int dolock;
3313 
3314 	dolock = rb_ok_to_lock();
3315 
3316  again:
3317 	/* might be called in atomic */
3318 	preempt_disable();
3319 
3320 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3321 		goto out;
3322 
3323 	cpu_buffer = buffer->buffers[cpu];
3324 	local_irq_save(flags);
3325 	if (dolock)
3326 		spin_lock(&cpu_buffer->reader_lock);
3327 
3328 	event = rb_buffer_peek(cpu_buffer, ts, lost_events);
3329 	if (event) {
3330 		cpu_buffer->lost_events = 0;
3331 		rb_advance_reader(cpu_buffer);
3332 	}
3333 
3334 	if (dolock)
3335 		spin_unlock(&cpu_buffer->reader_lock);
3336 	local_irq_restore(flags);
3337 
3338  out:
3339 	preempt_enable();
3340 
3341 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
3342 		goto again;
3343 
3344 	return event;
3345 }
3346 EXPORT_SYMBOL_GPL(ring_buffer_consume);
3347 
3348 /**
3349  * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer
3350  * @buffer: The ring buffer to read from
3351  * @cpu: The cpu buffer to iterate over
3352  *
3353  * This performs the initial preparations necessary to iterate
3354  * through the buffer.  Memory is allocated, buffer recording
3355  * is disabled, and the iterator pointer is returned to the caller.
3356  *
3357  * Disabling buffer recordng prevents the reading from being
3358  * corrupted. This is not a consuming read, so a producer is not
3359  * expected.
3360  *
3361  * After a sequence of ring_buffer_read_prepare calls, the user is
3362  * expected to make at least one call to ring_buffer_prepare_sync.
3363  * Afterwards, ring_buffer_read_start is invoked to get things going
3364  * for real.
3365  *
3366  * This overall must be paired with ring_buffer_finish.
3367  */
3368 struct ring_buffer_iter *
ring_buffer_read_prepare(struct ring_buffer * buffer,int cpu)3369 ring_buffer_read_prepare(struct ring_buffer *buffer, int cpu)
3370 {
3371 	struct ring_buffer_per_cpu *cpu_buffer;
3372 	struct ring_buffer_iter *iter;
3373 
3374 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3375 		return NULL;
3376 
3377 	iter = kmalloc(sizeof(*iter), GFP_KERNEL);
3378 	if (!iter)
3379 		return NULL;
3380 
3381 	cpu_buffer = buffer->buffers[cpu];
3382 
3383 	iter->cpu_buffer = cpu_buffer;
3384 
3385 	atomic_inc(&cpu_buffer->record_disabled);
3386 
3387 	return iter;
3388 }
3389 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare);
3390 
3391 /**
3392  * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls
3393  *
3394  * All previously invoked ring_buffer_read_prepare calls to prepare
3395  * iterators will be synchronized.  Afterwards, read_buffer_read_start
3396  * calls on those iterators are allowed.
3397  */
3398 void
ring_buffer_read_prepare_sync(void)3399 ring_buffer_read_prepare_sync(void)
3400 {
3401 	synchronize_sched();
3402 }
3403 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync);
3404 
3405 /**
3406  * ring_buffer_read_start - start a non consuming read of the buffer
3407  * @iter: The iterator returned by ring_buffer_read_prepare
3408  *
3409  * This finalizes the startup of an iteration through the buffer.
3410  * The iterator comes from a call to ring_buffer_read_prepare and
3411  * an intervening ring_buffer_read_prepare_sync must have been
3412  * performed.
3413  *
3414  * Must be paired with ring_buffer_finish.
3415  */
3416 void
ring_buffer_read_start(struct ring_buffer_iter * iter)3417 ring_buffer_read_start(struct ring_buffer_iter *iter)
3418 {
3419 	struct ring_buffer_per_cpu *cpu_buffer;
3420 	unsigned long flags;
3421 
3422 	if (!iter)
3423 		return;
3424 
3425 	cpu_buffer = iter->cpu_buffer;
3426 
3427 	spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3428 	arch_spin_lock(&cpu_buffer->lock);
3429 	rb_iter_reset(iter);
3430 	arch_spin_unlock(&cpu_buffer->lock);
3431 	spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3432 }
3433 EXPORT_SYMBOL_GPL(ring_buffer_read_start);
3434 
3435 /**
3436  * ring_buffer_finish - finish reading the iterator of the buffer
3437  * @iter: The iterator retrieved by ring_buffer_start
3438  *
3439  * This re-enables the recording to the buffer, and frees the
3440  * iterator.
3441  */
3442 void
ring_buffer_read_finish(struct ring_buffer_iter * iter)3443 ring_buffer_read_finish(struct ring_buffer_iter *iter)
3444 {
3445 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3446 
3447 	atomic_dec(&cpu_buffer->record_disabled);
3448 	kfree(iter);
3449 }
3450 EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
3451 
3452 /**
3453  * ring_buffer_read - read the next item in the ring buffer by the iterator
3454  * @iter: The ring buffer iterator
3455  * @ts: The time stamp of the event read.
3456  *
3457  * This reads the next event in the ring buffer and increments the iterator.
3458  */
3459 struct ring_buffer_event *
ring_buffer_read(struct ring_buffer_iter * iter,u64 * ts)3460 ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts)
3461 {
3462 	struct ring_buffer_event *event;
3463 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3464 	unsigned long flags;
3465 
3466 	spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3467  again:
3468 	event = rb_iter_peek(iter, ts);
3469 	if (!event)
3470 		goto out;
3471 
3472 	if (event->type_len == RINGBUF_TYPE_PADDING)
3473 		goto again;
3474 
3475 	rb_advance_iter(iter);
3476  out:
3477 	spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3478 
3479 	return event;
3480 }
3481 EXPORT_SYMBOL_GPL(ring_buffer_read);
3482 
3483 /**
3484  * ring_buffer_size - return the size of the ring buffer (in bytes)
3485  * @buffer: The ring buffer.
3486  */
ring_buffer_size(struct ring_buffer * buffer)3487 unsigned long ring_buffer_size(struct ring_buffer *buffer)
3488 {
3489 	return BUF_PAGE_SIZE * buffer->pages;
3490 }
3491 EXPORT_SYMBOL_GPL(ring_buffer_size);
3492 
3493 static void
rb_reset_cpu(struct ring_buffer_per_cpu * cpu_buffer)3494 rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
3495 {
3496 	rb_head_page_deactivate(cpu_buffer);
3497 
3498 	cpu_buffer->head_page
3499 		= list_entry(cpu_buffer->pages, struct buffer_page, list);
3500 	local_set(&cpu_buffer->head_page->write, 0);
3501 	local_set(&cpu_buffer->head_page->entries, 0);
3502 	local_set(&cpu_buffer->head_page->page->commit, 0);
3503 
3504 	cpu_buffer->head_page->read = 0;
3505 
3506 	cpu_buffer->tail_page = cpu_buffer->head_page;
3507 	cpu_buffer->commit_page = cpu_buffer->head_page;
3508 
3509 	INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
3510 	local_set(&cpu_buffer->reader_page->write, 0);
3511 	local_set(&cpu_buffer->reader_page->entries, 0);
3512 	local_set(&cpu_buffer->reader_page->page->commit, 0);
3513 	cpu_buffer->reader_page->read = 0;
3514 
3515 	local_set(&cpu_buffer->commit_overrun, 0);
3516 	local_set(&cpu_buffer->overrun, 0);
3517 	local_set(&cpu_buffer->entries, 0);
3518 	local_set(&cpu_buffer->committing, 0);
3519 	local_set(&cpu_buffer->commits, 0);
3520 	cpu_buffer->read = 0;
3521 
3522 	cpu_buffer->write_stamp = 0;
3523 	cpu_buffer->read_stamp = 0;
3524 
3525 	cpu_buffer->lost_events = 0;
3526 	cpu_buffer->last_overrun = 0;
3527 
3528 	rb_head_page_activate(cpu_buffer);
3529 }
3530 
3531 /**
3532  * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
3533  * @buffer: The ring buffer to reset a per cpu buffer of
3534  * @cpu: The CPU buffer to be reset
3535  */
ring_buffer_reset_cpu(struct ring_buffer * buffer,int cpu)3536 void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu)
3537 {
3538 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
3539 	unsigned long flags;
3540 
3541 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3542 		return;
3543 
3544 	atomic_inc(&cpu_buffer->record_disabled);
3545 
3546 	spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3547 
3548 	if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing)))
3549 		goto out;
3550 
3551 	arch_spin_lock(&cpu_buffer->lock);
3552 
3553 	rb_reset_cpu(cpu_buffer);
3554 
3555 	arch_spin_unlock(&cpu_buffer->lock);
3556 
3557  out:
3558 	spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3559 
3560 	atomic_dec(&cpu_buffer->record_disabled);
3561 }
3562 EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
3563 
3564 /**
3565  * ring_buffer_reset - reset a ring buffer
3566  * @buffer: The ring buffer to reset all cpu buffers
3567  */
ring_buffer_reset(struct ring_buffer * buffer)3568 void ring_buffer_reset(struct ring_buffer *buffer)
3569 {
3570 	int cpu;
3571 
3572 	for_each_buffer_cpu(buffer, cpu)
3573 		ring_buffer_reset_cpu(buffer, cpu);
3574 }
3575 EXPORT_SYMBOL_GPL(ring_buffer_reset);
3576 
3577 /**
3578  * rind_buffer_empty - is the ring buffer empty?
3579  * @buffer: The ring buffer to test
3580  */
ring_buffer_empty(struct ring_buffer * buffer)3581 int ring_buffer_empty(struct ring_buffer *buffer)
3582 {
3583 	struct ring_buffer_per_cpu *cpu_buffer;
3584 	unsigned long flags;
3585 	int dolock;
3586 	int cpu;
3587 	int ret;
3588 
3589 	dolock = rb_ok_to_lock();
3590 
3591 	/* yes this is racy, but if you don't like the race, lock the buffer */
3592 	for_each_buffer_cpu(buffer, cpu) {
3593 		cpu_buffer = buffer->buffers[cpu];
3594 		local_irq_save(flags);
3595 		if (dolock)
3596 			spin_lock(&cpu_buffer->reader_lock);
3597 		ret = rb_per_cpu_empty(cpu_buffer);
3598 		if (dolock)
3599 			spin_unlock(&cpu_buffer->reader_lock);
3600 		local_irq_restore(flags);
3601 
3602 		if (!ret)
3603 			return 0;
3604 	}
3605 
3606 	return 1;
3607 }
3608 EXPORT_SYMBOL_GPL(ring_buffer_empty);
3609 
3610 /**
3611  * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
3612  * @buffer: The ring buffer
3613  * @cpu: The CPU buffer to test
3614  */
ring_buffer_empty_cpu(struct ring_buffer * buffer,int cpu)3615 int ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu)
3616 {
3617 	struct ring_buffer_per_cpu *cpu_buffer;
3618 	unsigned long flags;
3619 	int dolock;
3620 	int ret;
3621 
3622 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3623 		return 1;
3624 
3625 	dolock = rb_ok_to_lock();
3626 
3627 	cpu_buffer = buffer->buffers[cpu];
3628 	local_irq_save(flags);
3629 	if (dolock)
3630 		spin_lock(&cpu_buffer->reader_lock);
3631 	ret = rb_per_cpu_empty(cpu_buffer);
3632 	if (dolock)
3633 		spin_unlock(&cpu_buffer->reader_lock);
3634 	local_irq_restore(flags);
3635 
3636 	return ret;
3637 }
3638 EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
3639 
3640 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
3641 /**
3642  * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
3643  * @buffer_a: One buffer to swap with
3644  * @buffer_b: The other buffer to swap with
3645  *
3646  * This function is useful for tracers that want to take a "snapshot"
3647  * of a CPU buffer and has another back up buffer lying around.
3648  * it is expected that the tracer handles the cpu buffer not being
3649  * used at the moment.
3650  */
ring_buffer_swap_cpu(struct ring_buffer * buffer_a,struct ring_buffer * buffer_b,int cpu)3651 int ring_buffer_swap_cpu(struct ring_buffer *buffer_a,
3652 			 struct ring_buffer *buffer_b, int cpu)
3653 {
3654 	struct ring_buffer_per_cpu *cpu_buffer_a;
3655 	struct ring_buffer_per_cpu *cpu_buffer_b;
3656 	int ret = -EINVAL;
3657 
3658 	if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
3659 	    !cpumask_test_cpu(cpu, buffer_b->cpumask))
3660 		goto out;
3661 
3662 	/* At least make sure the two buffers are somewhat the same */
3663 	if (buffer_a->pages != buffer_b->pages)
3664 		goto out;
3665 
3666 	ret = -EAGAIN;
3667 
3668 	if (ring_buffer_flags != RB_BUFFERS_ON)
3669 		goto out;
3670 
3671 	if (atomic_read(&buffer_a->record_disabled))
3672 		goto out;
3673 
3674 	if (atomic_read(&buffer_b->record_disabled))
3675 		goto out;
3676 
3677 	cpu_buffer_a = buffer_a->buffers[cpu];
3678 	cpu_buffer_b = buffer_b->buffers[cpu];
3679 
3680 	if (atomic_read(&cpu_buffer_a->record_disabled))
3681 		goto out;
3682 
3683 	if (atomic_read(&cpu_buffer_b->record_disabled))
3684 		goto out;
3685 
3686 	/*
3687 	 * We can't do a synchronize_sched here because this
3688 	 * function can be called in atomic context.
3689 	 * Normally this will be called from the same CPU as cpu.
3690 	 * If not it's up to the caller to protect this.
3691 	 */
3692 	atomic_inc(&cpu_buffer_a->record_disabled);
3693 	atomic_inc(&cpu_buffer_b->record_disabled);
3694 
3695 	ret = -EBUSY;
3696 	if (local_read(&cpu_buffer_a->committing))
3697 		goto out_dec;
3698 	if (local_read(&cpu_buffer_b->committing))
3699 		goto out_dec;
3700 
3701 	buffer_a->buffers[cpu] = cpu_buffer_b;
3702 	buffer_b->buffers[cpu] = cpu_buffer_a;
3703 
3704 	cpu_buffer_b->buffer = buffer_a;
3705 	cpu_buffer_a->buffer = buffer_b;
3706 
3707 	ret = 0;
3708 
3709 out_dec:
3710 	atomic_dec(&cpu_buffer_a->record_disabled);
3711 	atomic_dec(&cpu_buffer_b->record_disabled);
3712 out:
3713 	return ret;
3714 }
3715 EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
3716 #endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */
3717 
3718 /**
3719  * ring_buffer_alloc_read_page - allocate a page to read from buffer
3720  * @buffer: the buffer to allocate for.
3721  *
3722  * This function is used in conjunction with ring_buffer_read_page.
3723  * When reading a full page from the ring buffer, these functions
3724  * can be used to speed up the process. The calling function should
3725  * allocate a few pages first with this function. Then when it
3726  * needs to get pages from the ring buffer, it passes the result
3727  * of this function into ring_buffer_read_page, which will swap
3728  * the page that was allocated, with the read page of the buffer.
3729  *
3730  * Returns:
3731  *  The page allocated, or NULL on error.
3732  */
ring_buffer_alloc_read_page(struct ring_buffer * buffer)3733 void *ring_buffer_alloc_read_page(struct ring_buffer *buffer)
3734 {
3735 	struct buffer_data_page *bpage;
3736 	unsigned long addr;
3737 
3738 	addr = __get_free_page(GFP_KERNEL);
3739 	if (!addr)
3740 		return NULL;
3741 
3742 	bpage = (void *)addr;
3743 
3744 	rb_init_page(bpage);
3745 
3746 	return bpage;
3747 }
3748 EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page);
3749 
3750 /**
3751  * ring_buffer_free_read_page - free an allocated read page
3752  * @buffer: the buffer the page was allocate for
3753  * @data: the page to free
3754  *
3755  * Free a page allocated from ring_buffer_alloc_read_page.
3756  */
ring_buffer_free_read_page(struct ring_buffer * buffer,void * data)3757 void ring_buffer_free_read_page(struct ring_buffer *buffer, void *data)
3758 {
3759 	free_page((unsigned long)data);
3760 }
3761 EXPORT_SYMBOL_GPL(ring_buffer_free_read_page);
3762 
3763 /**
3764  * ring_buffer_read_page - extract a page from the ring buffer
3765  * @buffer: buffer to extract from
3766  * @data_page: the page to use allocated from ring_buffer_alloc_read_page
3767  * @len: amount to extract
3768  * @cpu: the cpu of the buffer to extract
3769  * @full: should the extraction only happen when the page is full.
3770  *
3771  * This function will pull out a page from the ring buffer and consume it.
3772  * @data_page must be the address of the variable that was returned
3773  * from ring_buffer_alloc_read_page. This is because the page might be used
3774  * to swap with a page in the ring buffer.
3775  *
3776  * for example:
3777  *	rpage = ring_buffer_alloc_read_page(buffer);
3778  *	if (!rpage)
3779  *		return error;
3780  *	ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0);
3781  *	if (ret >= 0)
3782  *		process_page(rpage, ret);
3783  *
3784  * When @full is set, the function will not return true unless
3785  * the writer is off the reader page.
3786  *
3787  * Note: it is up to the calling functions to handle sleeps and wakeups.
3788  *  The ring buffer can be used anywhere in the kernel and can not
3789  *  blindly call wake_up. The layer that uses the ring buffer must be
3790  *  responsible for that.
3791  *
3792  * Returns:
3793  *  >=0 if data has been transferred, returns the offset of consumed data.
3794  *  <0 if no data has been transferred.
3795  */
ring_buffer_read_page(struct ring_buffer * buffer,void ** data_page,size_t len,int cpu,int full)3796 int ring_buffer_read_page(struct ring_buffer *buffer,
3797 			  void **data_page, size_t len, int cpu, int full)
3798 {
3799 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
3800 	struct ring_buffer_event *event;
3801 	struct buffer_data_page *bpage;
3802 	struct buffer_page *reader;
3803 	unsigned long missed_events;
3804 	unsigned long flags;
3805 	unsigned int commit;
3806 	unsigned int read;
3807 	u64 save_timestamp;
3808 	int ret = -1;
3809 
3810 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3811 		goto out;
3812 
3813 	/*
3814 	 * If len is not big enough to hold the page header, then
3815 	 * we can not copy anything.
3816 	 */
3817 	if (len <= BUF_PAGE_HDR_SIZE)
3818 		goto out;
3819 
3820 	len -= BUF_PAGE_HDR_SIZE;
3821 
3822 	if (!data_page)
3823 		goto out;
3824 
3825 	bpage = *data_page;
3826 	if (!bpage)
3827 		goto out;
3828 
3829 	spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3830 
3831 	reader = rb_get_reader_page(cpu_buffer);
3832 	if (!reader)
3833 		goto out_unlock;
3834 
3835 	event = rb_reader_event(cpu_buffer);
3836 
3837 	read = reader->read;
3838 	commit = rb_page_commit(reader);
3839 
3840 	/* Check if any events were dropped */
3841 	missed_events = cpu_buffer->lost_events;
3842 
3843 	/*
3844 	 * If this page has been partially read or
3845 	 * if len is not big enough to read the rest of the page or
3846 	 * a writer is still on the page, then
3847 	 * we must copy the data from the page to the buffer.
3848 	 * Otherwise, we can simply swap the page with the one passed in.
3849 	 */
3850 	if (read || (len < (commit - read)) ||
3851 	    cpu_buffer->reader_page == cpu_buffer->commit_page) {
3852 		struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
3853 		unsigned int rpos = read;
3854 		unsigned int pos = 0;
3855 		unsigned int size;
3856 
3857 		if (full)
3858 			goto out_unlock;
3859 
3860 		if (len > (commit - read))
3861 			len = (commit - read);
3862 
3863 		/* Always keep the time extend and data together */
3864 		size = rb_event_ts_length(event);
3865 
3866 		if (len < size)
3867 			goto out_unlock;
3868 
3869 		/* save the current timestamp, since the user will need it */
3870 		save_timestamp = cpu_buffer->read_stamp;
3871 
3872 		/* Need to copy one event at a time */
3873 		do {
3874 			/* We need the size of one event, because
3875 			 * rb_advance_reader only advances by one event,
3876 			 * whereas rb_event_ts_length may include the size of
3877 			 * one or two events.
3878 			 * We have already ensured there's enough space if this
3879 			 * is a time extend. */
3880 			size = rb_event_length(event);
3881 			memcpy(bpage->data + pos, rpage->data + rpos, size);
3882 
3883 			len -= size;
3884 
3885 			rb_advance_reader(cpu_buffer);
3886 			rpos = reader->read;
3887 			pos += size;
3888 
3889 			if (rpos >= commit)
3890 				break;
3891 
3892 			event = rb_reader_event(cpu_buffer);
3893 			/* Always keep the time extend and data together */
3894 			size = rb_event_ts_length(event);
3895 		} while (len >= size);
3896 
3897 		/* update bpage */
3898 		local_set(&bpage->commit, pos);
3899 		bpage->time_stamp = save_timestamp;
3900 
3901 		/* we copied everything to the beginning */
3902 		read = 0;
3903 	} else {
3904 		/* update the entry counter */
3905 		cpu_buffer->read += rb_page_entries(reader);
3906 
3907 		/* swap the pages */
3908 		rb_init_page(bpage);
3909 		bpage = reader->page;
3910 		reader->page = *data_page;
3911 		local_set(&reader->write, 0);
3912 		local_set(&reader->entries, 0);
3913 		reader->read = 0;
3914 		*data_page = bpage;
3915 
3916 		/*
3917 		 * Use the real_end for the data size,
3918 		 * This gives us a chance to store the lost events
3919 		 * on the page.
3920 		 */
3921 		if (reader->real_end)
3922 			local_set(&bpage->commit, reader->real_end);
3923 	}
3924 	ret = read;
3925 
3926 	cpu_buffer->lost_events = 0;
3927 
3928 	commit = local_read(&bpage->commit);
3929 	/*
3930 	 * Set a flag in the commit field if we lost events
3931 	 */
3932 	if (missed_events) {
3933 		/* If there is room at the end of the page to save the
3934 		 * missed events, then record it there.
3935 		 */
3936 		if (BUF_PAGE_SIZE - commit >= sizeof(missed_events)) {
3937 			memcpy(&bpage->data[commit], &missed_events,
3938 			       sizeof(missed_events));
3939 			local_add(RB_MISSED_STORED, &bpage->commit);
3940 			commit += sizeof(missed_events);
3941 		}
3942 		local_add(RB_MISSED_EVENTS, &bpage->commit);
3943 	}
3944 
3945 	/*
3946 	 * This page may be off to user land. Zero it out here.
3947 	 */
3948 	if (commit < BUF_PAGE_SIZE)
3949 		memset(&bpage->data[commit], 0, BUF_PAGE_SIZE - commit);
3950 
3951  out_unlock:
3952 	spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3953 
3954  out:
3955 	return ret;
3956 }
3957 EXPORT_SYMBOL_GPL(ring_buffer_read_page);
3958 
3959 #ifdef CONFIG_TRACING
3960 static ssize_t
rb_simple_read(struct file * filp,char __user * ubuf,size_t cnt,loff_t * ppos)3961 rb_simple_read(struct file *filp, char __user *ubuf,
3962 	       size_t cnt, loff_t *ppos)
3963 {
3964 	unsigned long *p = filp->private_data;
3965 	char buf[64];
3966 	int r;
3967 
3968 	if (test_bit(RB_BUFFERS_DISABLED_BIT, p))
3969 		r = sprintf(buf, "permanently disabled\n");
3970 	else
3971 		r = sprintf(buf, "%d\n", test_bit(RB_BUFFERS_ON_BIT, p));
3972 
3973 	return simple_read_from_buffer(ubuf, cnt, ppos, buf, r);
3974 }
3975 
3976 static ssize_t
rb_simple_write(struct file * filp,const char __user * ubuf,size_t cnt,loff_t * ppos)3977 rb_simple_write(struct file *filp, const char __user *ubuf,
3978 		size_t cnt, loff_t *ppos)
3979 {
3980 	unsigned long *p = filp->private_data;
3981 	char buf[64];
3982 	unsigned long val;
3983 	int ret;
3984 
3985 	if (cnt >= sizeof(buf))
3986 		return -EINVAL;
3987 
3988 	if (copy_from_user(&buf, ubuf, cnt))
3989 		return -EFAULT;
3990 
3991 	buf[cnt] = 0;
3992 
3993 	ret = strict_strtoul(buf, 10, &val);
3994 	if (ret < 0)
3995 		return ret;
3996 
3997 	if (val)
3998 		set_bit(RB_BUFFERS_ON_BIT, p);
3999 	else
4000 		clear_bit(RB_BUFFERS_ON_BIT, p);
4001 
4002 	(*ppos)++;
4003 
4004 	return cnt;
4005 }
4006 
4007 static const struct file_operations rb_simple_fops = {
4008 	.open		= tracing_open_generic,
4009 	.read		= rb_simple_read,
4010 	.write		= rb_simple_write,
4011 	.llseek		= default_llseek,
4012 };
4013 
4014 
rb_init_debugfs(void)4015 static __init int rb_init_debugfs(void)
4016 {
4017 	struct dentry *d_tracer;
4018 
4019 	d_tracer = tracing_init_dentry();
4020 
4021 	trace_create_file("tracing_on", 0644, d_tracer,
4022 			    &ring_buffer_flags, &rb_simple_fops);
4023 
4024 	return 0;
4025 }
4026 
4027 fs_initcall(rb_init_debugfs);
4028 #endif
4029 
4030 #ifdef CONFIG_HOTPLUG_CPU
rb_cpu_notify(struct notifier_block * self,unsigned long action,void * hcpu)4031 static int rb_cpu_notify(struct notifier_block *self,
4032 			 unsigned long action, void *hcpu)
4033 {
4034 	struct ring_buffer *buffer =
4035 		container_of(self, struct ring_buffer, cpu_notify);
4036 	long cpu = (long)hcpu;
4037 
4038 	switch (action) {
4039 	case CPU_UP_PREPARE:
4040 	case CPU_UP_PREPARE_FROZEN:
4041 		if (cpumask_test_cpu(cpu, buffer->cpumask))
4042 			return NOTIFY_OK;
4043 
4044 		buffer->buffers[cpu] =
4045 			rb_allocate_cpu_buffer(buffer, cpu);
4046 		if (!buffer->buffers[cpu]) {
4047 			WARN(1, "failed to allocate ring buffer on CPU %ld\n",
4048 			     cpu);
4049 			return NOTIFY_OK;
4050 		}
4051 		smp_wmb();
4052 		cpumask_set_cpu(cpu, buffer->cpumask);
4053 		break;
4054 	case CPU_DOWN_PREPARE:
4055 	case CPU_DOWN_PREPARE_FROZEN:
4056 		/*
4057 		 * Do nothing.
4058 		 *  If we were to free the buffer, then the user would
4059 		 *  lose any trace that was in the buffer.
4060 		 */
4061 		break;
4062 	default:
4063 		break;
4064 	}
4065 	return NOTIFY_OK;
4066 }
4067 #endif
4068