1 /*
2 * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved.
3 * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved.
4 *
5 * This software is available to you under a choice of one of two
6 * licenses. You may choose to be licensed under the terms of the GNU
7 * General Public License (GPL) Version 2, available from the file
8 * COPYING in the main directory of this source tree, or the
9 * OpenIB.org BSD license below:
10 *
11 * Redistribution and use in source and binary forms, with or
12 * without modification, are permitted provided that the following
13 * conditions are met:
14 *
15 * - Redistributions of source code must retain the above
16 * copyright notice, this list of conditions and the following
17 * disclaimer.
18 *
19 * - Redistributions in binary form must reproduce the above
20 * copyright notice, this list of conditions and the following
21 * disclaimer in the documentation and/or other materials
22 * provided with the distribution.
23 *
24 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
31 * SOFTWARE.
32 */
33
34 #ifndef _TLS_OFFLOAD_H
35 #define _TLS_OFFLOAD_H
36
37 #include <linux/types.h>
38 #include <asm/byteorder.h>
39 #include <linux/crypto.h>
40 #include <linux/socket.h>
41 #include <linux/tcp.h>
42 #include <linux/skmsg.h>
43 #include <linux/mutex.h>
44 #include <linux/netdevice.h>
45 #include <linux/rcupdate.h>
46
47 #include <net/net_namespace.h>
48 #include <net/tcp.h>
49 #include <net/strparser.h>
50 #include <crypto/aead.h>
51 #include <uapi/linux/tls.h>
52
53
54 /* Maximum data size carried in a TLS record */
55 #define TLS_MAX_PAYLOAD_SIZE ((size_t)1 << 14)
56
57 #define TLS_HEADER_SIZE 5
58 #define TLS_NONCE_OFFSET TLS_HEADER_SIZE
59
60 #define TLS_CRYPTO_INFO_READY(info) ((info)->cipher_type)
61
62 #define TLS_RECORD_TYPE_DATA 0x17
63
64 #define TLS_AAD_SPACE_SIZE 13
65
66 #define MAX_IV_SIZE 16
67 #define TLS_TAG_SIZE 16
68 #define TLS_MAX_REC_SEQ_SIZE 8
69
70 /* For CCM mode, the full 16-bytes of IV is made of '4' fields of given sizes.
71 *
72 * IV[16] = b0[1] || implicit nonce[4] || explicit nonce[8] || length[3]
73 *
74 * The field 'length' is encoded in field 'b0' as '(length width - 1)'.
75 * Hence b0 contains (3 - 1) = 2.
76 */
77 #define TLS_AES_CCM_IV_B0_BYTE 2
78 #define TLS_SM4_CCM_IV_B0_BYTE 2
79
80 #define __TLS_INC_STATS(net, field) \
81 __SNMP_INC_STATS((net)->mib.tls_statistics, field)
82 #define TLS_INC_STATS(net, field) \
83 SNMP_INC_STATS((net)->mib.tls_statistics, field)
84 #define TLS_DEC_STATS(net, field) \
85 SNMP_DEC_STATS((net)->mib.tls_statistics, field)
86
87 enum {
88 TLS_BASE,
89 TLS_SW,
90 TLS_HW,
91 TLS_HW_RECORD,
92 TLS_NUM_CONFIG,
93 };
94
95 /* TLS records are maintained in 'struct tls_rec'. It stores the memory pages
96 * allocated or mapped for each TLS record. After encryption, the records are
97 * stores in a linked list.
98 */
99 struct tls_rec {
100 struct list_head list;
101 int tx_ready;
102 int tx_flags;
103
104 struct sk_msg msg_plaintext;
105 struct sk_msg msg_encrypted;
106
107 /* AAD | msg_plaintext.sg.data | sg_tag */
108 struct scatterlist sg_aead_in[2];
109 /* AAD | msg_encrypted.sg.data (data contains overhead for hdr & iv & tag) */
110 struct scatterlist sg_aead_out[2];
111
112 char content_type;
113 struct scatterlist sg_content_type;
114
115 char aad_space[TLS_AAD_SPACE_SIZE];
116 u8 iv_data[MAX_IV_SIZE];
117 struct aead_request aead_req;
118 u8 aead_req_ctx[];
119 };
120
121 struct tx_work {
122 struct delayed_work work;
123 struct sock *sk;
124 };
125
126 struct tls_sw_context_tx {
127 struct crypto_aead *aead_send;
128 struct crypto_wait async_wait;
129 struct tx_work tx_work;
130 struct tls_rec *open_rec;
131 struct list_head tx_list;
132 atomic_t encrypt_pending;
133 /* protect crypto_wait with encrypt_pending */
134 spinlock_t encrypt_compl_lock;
135 int async_notify;
136 u8 async_capable:1;
137
138 #define BIT_TX_SCHEDULED 0
139 #define BIT_TX_CLOSING 1
140 unsigned long tx_bitmask;
141 };
142
143 struct tls_sw_context_rx {
144 struct crypto_aead *aead_recv;
145 struct crypto_wait async_wait;
146 struct strparser strp;
147 struct sk_buff_head rx_list; /* list of decrypted 'data' records */
148 void (*saved_data_ready)(struct sock *sk);
149
150 struct sk_buff *recv_pkt;
151 u8 async_capable:1;
152 atomic_t decrypt_pending;
153 /* protect crypto_wait with decrypt_pending*/
154 spinlock_t decrypt_compl_lock;
155 };
156
157 struct tls_record_info {
158 struct list_head list;
159 u32 end_seq;
160 int len;
161 int num_frags;
162 skb_frag_t frags[MAX_SKB_FRAGS];
163 };
164
165 struct tls_offload_context_tx {
166 struct crypto_aead *aead_send;
167 spinlock_t lock; /* protects records list */
168 struct list_head records_list;
169 struct tls_record_info *open_record;
170 struct tls_record_info *retransmit_hint;
171 u64 hint_record_sn;
172 u64 unacked_record_sn;
173
174 struct scatterlist sg_tx_data[MAX_SKB_FRAGS];
175 void (*sk_destruct)(struct sock *sk);
176 u8 driver_state[] __aligned(8);
177 /* The TLS layer reserves room for driver specific state
178 * Currently the belief is that there is not enough
179 * driver specific state to justify another layer of indirection
180 */
181 #define TLS_DRIVER_STATE_SIZE_TX 16
182 };
183
184 #define TLS_OFFLOAD_CONTEXT_SIZE_TX \
185 (sizeof(struct tls_offload_context_tx) + TLS_DRIVER_STATE_SIZE_TX)
186
187 enum tls_context_flags {
188 /* tls_device_down was called after the netdev went down, device state
189 * was released, and kTLS works in software, even though rx_conf is
190 * still TLS_HW (needed for transition).
191 */
192 TLS_RX_DEV_DEGRADED = 0,
193 /* Unlike RX where resync is driven entirely by the core in TX only
194 * the driver knows when things went out of sync, so we need the flag
195 * to be atomic.
196 */
197 TLS_TX_SYNC_SCHED = 1,
198 /* tls_dev_del was called for the RX side, device state was released,
199 * but tls_ctx->netdev might still be kept, because TX-side driver
200 * resources might not be released yet. Used to prevent the second
201 * tls_dev_del call in tls_device_down if it happens simultaneously.
202 */
203 TLS_RX_DEV_CLOSED = 2,
204 };
205
206 struct cipher_context {
207 char *iv;
208 char *rec_seq;
209 };
210
211 union tls_crypto_context {
212 struct tls_crypto_info info;
213 union {
214 struct tls12_crypto_info_aes_gcm_128 aes_gcm_128;
215 struct tls12_crypto_info_aes_gcm_256 aes_gcm_256;
216 struct tls12_crypto_info_chacha20_poly1305 chacha20_poly1305;
217 struct tls12_crypto_info_sm4_gcm sm4_gcm;
218 struct tls12_crypto_info_sm4_ccm sm4_ccm;
219 };
220 };
221
222 struct tls_prot_info {
223 u16 version;
224 u16 cipher_type;
225 u16 prepend_size;
226 u16 tag_size;
227 u16 overhead_size;
228 u16 iv_size;
229 u16 salt_size;
230 u16 rec_seq_size;
231 u16 aad_size;
232 u16 tail_size;
233 };
234
235 struct tls_context {
236 /* read-only cache line */
237 struct tls_prot_info prot_info;
238
239 u8 tx_conf:3;
240 u8 rx_conf:3;
241 u8 zerocopy_sendfile:1;
242
243 int (*push_pending_record)(struct sock *sk, int flags);
244 void (*sk_write_space)(struct sock *sk);
245
246 void *priv_ctx_tx;
247 void *priv_ctx_rx;
248
249 struct net_device *netdev;
250
251 /* rw cache line */
252 struct cipher_context tx;
253 struct cipher_context rx;
254
255 struct scatterlist *partially_sent_record;
256 u16 partially_sent_offset;
257
258 bool in_tcp_sendpages;
259 bool pending_open_record_frags;
260
261 struct mutex tx_lock; /* protects partially_sent_* fields and
262 * per-type TX fields
263 */
264 unsigned long flags;
265
266 /* cache cold stuff */
267 struct proto *sk_proto;
268 struct sock *sk;
269
270 void (*sk_destruct)(struct sock *sk);
271
272 union tls_crypto_context crypto_send;
273 union tls_crypto_context crypto_recv;
274
275 struct list_head list;
276 refcount_t refcount;
277 struct rcu_head rcu;
278 };
279
280 enum tls_offload_ctx_dir {
281 TLS_OFFLOAD_CTX_DIR_RX,
282 TLS_OFFLOAD_CTX_DIR_TX,
283 };
284
285 struct tlsdev_ops {
286 int (*tls_dev_add)(struct net_device *netdev, struct sock *sk,
287 enum tls_offload_ctx_dir direction,
288 struct tls_crypto_info *crypto_info,
289 u32 start_offload_tcp_sn);
290 void (*tls_dev_del)(struct net_device *netdev,
291 struct tls_context *ctx,
292 enum tls_offload_ctx_dir direction);
293 int (*tls_dev_resync)(struct net_device *netdev,
294 struct sock *sk, u32 seq, u8 *rcd_sn,
295 enum tls_offload_ctx_dir direction);
296 };
297
298 enum tls_offload_sync_type {
299 TLS_OFFLOAD_SYNC_TYPE_DRIVER_REQ = 0,
300 TLS_OFFLOAD_SYNC_TYPE_CORE_NEXT_HINT = 1,
301 TLS_OFFLOAD_SYNC_TYPE_DRIVER_REQ_ASYNC = 2,
302 };
303
304 #define TLS_DEVICE_RESYNC_NH_START_IVAL 2
305 #define TLS_DEVICE_RESYNC_NH_MAX_IVAL 128
306
307 #define TLS_DEVICE_RESYNC_ASYNC_LOGMAX 13
308 struct tls_offload_resync_async {
309 atomic64_t req;
310 u16 loglen;
311 u16 rcd_delta;
312 u32 log[TLS_DEVICE_RESYNC_ASYNC_LOGMAX];
313 };
314
315 struct tls_offload_context_rx {
316 /* sw must be the first member of tls_offload_context_rx */
317 struct tls_sw_context_rx sw;
318 enum tls_offload_sync_type resync_type;
319 /* this member is set regardless of resync_type, to avoid branches */
320 u8 resync_nh_reset:1;
321 /* CORE_NEXT_HINT-only member, but use the hole here */
322 u8 resync_nh_do_now:1;
323 union {
324 /* TLS_OFFLOAD_SYNC_TYPE_DRIVER_REQ */
325 struct {
326 atomic64_t resync_req;
327 };
328 /* TLS_OFFLOAD_SYNC_TYPE_CORE_NEXT_HINT */
329 struct {
330 u32 decrypted_failed;
331 u32 decrypted_tgt;
332 } resync_nh;
333 /* TLS_OFFLOAD_SYNC_TYPE_DRIVER_REQ_ASYNC */
334 struct {
335 struct tls_offload_resync_async *resync_async;
336 };
337 };
338 u8 driver_state[] __aligned(8);
339 /* The TLS layer reserves room for driver specific state
340 * Currently the belief is that there is not enough
341 * driver specific state to justify another layer of indirection
342 */
343 #define TLS_DRIVER_STATE_SIZE_RX 8
344 };
345
346 #define TLS_OFFLOAD_CONTEXT_SIZE_RX \
347 (sizeof(struct tls_offload_context_rx) + TLS_DRIVER_STATE_SIZE_RX)
348
349 struct tls_context *tls_ctx_create(struct sock *sk);
350 void tls_ctx_free(struct sock *sk, struct tls_context *ctx);
351 void update_sk_prot(struct sock *sk, struct tls_context *ctx);
352
353 int wait_on_pending_writer(struct sock *sk, long *timeo);
354 int tls_sk_query(struct sock *sk, int optname, char __user *optval,
355 int __user *optlen);
356 int tls_sk_attach(struct sock *sk, int optname, char __user *optval,
357 unsigned int optlen);
358 void tls_err_abort(struct sock *sk, int err);
359
360 int tls_set_sw_offload(struct sock *sk, struct tls_context *ctx, int tx);
361 void tls_sw_strparser_arm(struct sock *sk, struct tls_context *ctx);
362 void tls_sw_strparser_done(struct tls_context *tls_ctx);
363 int tls_sw_sendmsg(struct sock *sk, struct msghdr *msg, size_t size);
364 int tls_sw_sendpage_locked(struct sock *sk, struct page *page,
365 int offset, size_t size, int flags);
366 int tls_sw_sendpage(struct sock *sk, struct page *page,
367 int offset, size_t size, int flags);
368 void tls_sw_cancel_work_tx(struct tls_context *tls_ctx);
369 void tls_sw_release_resources_tx(struct sock *sk);
370 void tls_sw_free_ctx_tx(struct tls_context *tls_ctx);
371 void tls_sw_free_resources_rx(struct sock *sk);
372 void tls_sw_release_resources_rx(struct sock *sk);
373 void tls_sw_free_ctx_rx(struct tls_context *tls_ctx);
374 int tls_sw_recvmsg(struct sock *sk, struct msghdr *msg, size_t len,
375 int flags, int *addr_len);
376 bool tls_sw_sock_is_readable(struct sock *sk);
377 ssize_t tls_sw_splice_read(struct socket *sock, loff_t *ppos,
378 struct pipe_inode_info *pipe,
379 size_t len, unsigned int flags);
380
381 int tls_device_sendmsg(struct sock *sk, struct msghdr *msg, size_t size);
382 int tls_device_sendpage(struct sock *sk, struct page *page,
383 int offset, size_t size, int flags);
384 int tls_tx_records(struct sock *sk, int flags);
385
386 struct tls_record_info *tls_get_record(struct tls_offload_context_tx *context,
387 u32 seq, u64 *p_record_sn);
388
tls_record_is_start_marker(struct tls_record_info * rec)389 static inline bool tls_record_is_start_marker(struct tls_record_info *rec)
390 {
391 return rec->len == 0;
392 }
393
tls_record_start_seq(struct tls_record_info * rec)394 static inline u32 tls_record_start_seq(struct tls_record_info *rec)
395 {
396 return rec->end_seq - rec->len;
397 }
398
399 int tls_push_sg(struct sock *sk, struct tls_context *ctx,
400 struct scatterlist *sg, u16 first_offset,
401 int flags);
402 int tls_push_partial_record(struct sock *sk, struct tls_context *ctx,
403 int flags);
404 void tls_free_partial_record(struct sock *sk, struct tls_context *ctx);
405
tls_msg(struct sk_buff * skb)406 static inline struct tls_msg *tls_msg(struct sk_buff *skb)
407 {
408 struct sk_skb_cb *scb = (struct sk_skb_cb *)skb->cb;
409
410 return &scb->tls;
411 }
412
tls_is_partially_sent_record(struct tls_context * ctx)413 static inline bool tls_is_partially_sent_record(struct tls_context *ctx)
414 {
415 return !!ctx->partially_sent_record;
416 }
417
tls_is_pending_open_record(struct tls_context * tls_ctx)418 static inline bool tls_is_pending_open_record(struct tls_context *tls_ctx)
419 {
420 return tls_ctx->pending_open_record_frags;
421 }
422
is_tx_ready(struct tls_sw_context_tx * ctx)423 static inline bool is_tx_ready(struct tls_sw_context_tx *ctx)
424 {
425 struct tls_rec *rec;
426
427 rec = list_first_entry(&ctx->tx_list, struct tls_rec, list);
428 if (!rec)
429 return false;
430
431 return READ_ONCE(rec->tx_ready);
432 }
433
tls_user_config(struct tls_context * ctx,bool tx)434 static inline u16 tls_user_config(struct tls_context *ctx, bool tx)
435 {
436 u16 config = tx ? ctx->tx_conf : ctx->rx_conf;
437
438 switch (config) {
439 case TLS_BASE:
440 return TLS_CONF_BASE;
441 case TLS_SW:
442 return TLS_CONF_SW;
443 case TLS_HW:
444 return TLS_CONF_HW;
445 case TLS_HW_RECORD:
446 return TLS_CONF_HW_RECORD;
447 }
448 return 0;
449 }
450
451 struct sk_buff *
452 tls_validate_xmit_skb(struct sock *sk, struct net_device *dev,
453 struct sk_buff *skb);
454 struct sk_buff *
455 tls_validate_xmit_skb_sw(struct sock *sk, struct net_device *dev,
456 struct sk_buff *skb);
457
tls_is_sk_tx_device_offloaded(struct sock * sk)458 static inline bool tls_is_sk_tx_device_offloaded(struct sock *sk)
459 {
460 #ifdef CONFIG_SOCK_VALIDATE_XMIT
461 return sk_fullsock(sk) &&
462 (smp_load_acquire(&sk->sk_validate_xmit_skb) ==
463 &tls_validate_xmit_skb);
464 #else
465 return false;
466 #endif
467 }
468
tls_bigint_increment(unsigned char * seq,int len)469 static inline bool tls_bigint_increment(unsigned char *seq, int len)
470 {
471 int i;
472
473 for (i = len - 1; i >= 0; i--) {
474 ++seq[i];
475 if (seq[i] != 0)
476 break;
477 }
478
479 return (i == -1);
480 }
481
tls_bigint_subtract(unsigned char * seq,int n)482 static inline void tls_bigint_subtract(unsigned char *seq, int n)
483 {
484 u64 rcd_sn;
485 __be64 *p;
486
487 BUILD_BUG_ON(TLS_MAX_REC_SEQ_SIZE != 8);
488
489 p = (__be64 *)seq;
490 rcd_sn = be64_to_cpu(*p);
491 *p = cpu_to_be64(rcd_sn - n);
492 }
493
tls_get_ctx(const struct sock * sk)494 static inline struct tls_context *tls_get_ctx(const struct sock *sk)
495 {
496 struct inet_connection_sock *icsk = inet_csk(sk);
497
498 /* Use RCU on icsk_ulp_data only for sock diag code,
499 * TLS data path doesn't need rcu_dereference().
500 */
501 return (__force void *)icsk->icsk_ulp_data;
502 }
503
tls_advance_record_sn(struct sock * sk,struct tls_prot_info * prot,struct cipher_context * ctx)504 static inline void tls_advance_record_sn(struct sock *sk,
505 struct tls_prot_info *prot,
506 struct cipher_context *ctx)
507 {
508 if (tls_bigint_increment(ctx->rec_seq, prot->rec_seq_size))
509 tls_err_abort(sk, -EBADMSG);
510
511 if (prot->version != TLS_1_3_VERSION &&
512 prot->cipher_type != TLS_CIPHER_CHACHA20_POLY1305)
513 tls_bigint_increment(ctx->iv + prot->salt_size,
514 prot->iv_size);
515 }
516
tls_fill_prepend(struct tls_context * ctx,char * buf,size_t plaintext_len,unsigned char record_type)517 static inline void tls_fill_prepend(struct tls_context *ctx,
518 char *buf,
519 size_t plaintext_len,
520 unsigned char record_type)
521 {
522 struct tls_prot_info *prot = &ctx->prot_info;
523 size_t pkt_len, iv_size = prot->iv_size;
524
525 pkt_len = plaintext_len + prot->tag_size;
526 if (prot->version != TLS_1_3_VERSION &&
527 prot->cipher_type != TLS_CIPHER_CHACHA20_POLY1305) {
528 pkt_len += iv_size;
529
530 memcpy(buf + TLS_NONCE_OFFSET,
531 ctx->tx.iv + prot->salt_size, iv_size);
532 }
533
534 /* we cover nonce explicit here as well, so buf should be of
535 * size KTLS_DTLS_HEADER_SIZE + KTLS_DTLS_NONCE_EXPLICIT_SIZE
536 */
537 buf[0] = prot->version == TLS_1_3_VERSION ?
538 TLS_RECORD_TYPE_DATA : record_type;
539 /* Note that VERSION must be TLS_1_2 for both TLS1.2 and TLS1.3 */
540 buf[1] = TLS_1_2_VERSION_MINOR;
541 buf[2] = TLS_1_2_VERSION_MAJOR;
542 /* we can use IV for nonce explicit according to spec */
543 buf[3] = pkt_len >> 8;
544 buf[4] = pkt_len & 0xFF;
545 }
546
tls_make_aad(char * buf,size_t size,char * record_sequence,unsigned char record_type,struct tls_prot_info * prot)547 static inline void tls_make_aad(char *buf,
548 size_t size,
549 char *record_sequence,
550 unsigned char record_type,
551 struct tls_prot_info *prot)
552 {
553 if (prot->version != TLS_1_3_VERSION) {
554 memcpy(buf, record_sequence, prot->rec_seq_size);
555 buf += 8;
556 } else {
557 size += prot->tag_size;
558 }
559
560 buf[0] = prot->version == TLS_1_3_VERSION ?
561 TLS_RECORD_TYPE_DATA : record_type;
562 buf[1] = TLS_1_2_VERSION_MAJOR;
563 buf[2] = TLS_1_2_VERSION_MINOR;
564 buf[3] = size >> 8;
565 buf[4] = size & 0xFF;
566 }
567
xor_iv_with_seq(struct tls_prot_info * prot,char * iv,char * seq)568 static inline void xor_iv_with_seq(struct tls_prot_info *prot, char *iv, char *seq)
569 {
570 int i;
571
572 if (prot->version == TLS_1_3_VERSION ||
573 prot->cipher_type == TLS_CIPHER_CHACHA20_POLY1305) {
574 for (i = 0; i < 8; i++)
575 iv[i + 4] ^= seq[i];
576 }
577 }
578
579
tls_sw_ctx_rx(const struct tls_context * tls_ctx)580 static inline struct tls_sw_context_rx *tls_sw_ctx_rx(
581 const struct tls_context *tls_ctx)
582 {
583 return (struct tls_sw_context_rx *)tls_ctx->priv_ctx_rx;
584 }
585
tls_sw_ctx_tx(const struct tls_context * tls_ctx)586 static inline struct tls_sw_context_tx *tls_sw_ctx_tx(
587 const struct tls_context *tls_ctx)
588 {
589 return (struct tls_sw_context_tx *)tls_ctx->priv_ctx_tx;
590 }
591
592 static inline struct tls_offload_context_tx *
tls_offload_ctx_tx(const struct tls_context * tls_ctx)593 tls_offload_ctx_tx(const struct tls_context *tls_ctx)
594 {
595 return (struct tls_offload_context_tx *)tls_ctx->priv_ctx_tx;
596 }
597
tls_sw_has_ctx_tx(const struct sock * sk)598 static inline bool tls_sw_has_ctx_tx(const struct sock *sk)
599 {
600 struct tls_context *ctx = tls_get_ctx(sk);
601
602 if (!ctx)
603 return false;
604 return !!tls_sw_ctx_tx(ctx);
605 }
606
tls_sw_has_ctx_rx(const struct sock * sk)607 static inline bool tls_sw_has_ctx_rx(const struct sock *sk)
608 {
609 struct tls_context *ctx = tls_get_ctx(sk);
610
611 if (!ctx)
612 return false;
613 return !!tls_sw_ctx_rx(ctx);
614 }
615
616 void tls_sw_write_space(struct sock *sk, struct tls_context *ctx);
617 void tls_device_write_space(struct sock *sk, struct tls_context *ctx);
618
619 static inline struct tls_offload_context_rx *
tls_offload_ctx_rx(const struct tls_context * tls_ctx)620 tls_offload_ctx_rx(const struct tls_context *tls_ctx)
621 {
622 return (struct tls_offload_context_rx *)tls_ctx->priv_ctx_rx;
623 }
624
__tls_driver_ctx(struct tls_context * tls_ctx,enum tls_offload_ctx_dir direction)625 static inline void *__tls_driver_ctx(struct tls_context *tls_ctx,
626 enum tls_offload_ctx_dir direction)
627 {
628 if (direction == TLS_OFFLOAD_CTX_DIR_TX)
629 return tls_offload_ctx_tx(tls_ctx)->driver_state;
630 else
631 return tls_offload_ctx_rx(tls_ctx)->driver_state;
632 }
633
634 static inline void *
tls_driver_ctx(const struct sock * sk,enum tls_offload_ctx_dir direction)635 tls_driver_ctx(const struct sock *sk, enum tls_offload_ctx_dir direction)
636 {
637 return __tls_driver_ctx(tls_get_ctx(sk), direction);
638 }
639
640 #define RESYNC_REQ BIT(0)
641 #define RESYNC_REQ_ASYNC BIT(1)
642 /* The TLS context is valid until sk_destruct is called */
tls_offload_rx_resync_request(struct sock * sk,__be32 seq)643 static inline void tls_offload_rx_resync_request(struct sock *sk, __be32 seq)
644 {
645 struct tls_context *tls_ctx = tls_get_ctx(sk);
646 struct tls_offload_context_rx *rx_ctx = tls_offload_ctx_rx(tls_ctx);
647
648 atomic64_set(&rx_ctx->resync_req, ((u64)ntohl(seq) << 32) | RESYNC_REQ);
649 }
650
651 /* Log all TLS record header TCP sequences in [seq, seq+len] */
652 static inline void
tls_offload_rx_resync_async_request_start(struct sock * sk,__be32 seq,u16 len)653 tls_offload_rx_resync_async_request_start(struct sock *sk, __be32 seq, u16 len)
654 {
655 struct tls_context *tls_ctx = tls_get_ctx(sk);
656 struct tls_offload_context_rx *rx_ctx = tls_offload_ctx_rx(tls_ctx);
657
658 atomic64_set(&rx_ctx->resync_async->req, ((u64)ntohl(seq) << 32) |
659 ((u64)len << 16) | RESYNC_REQ | RESYNC_REQ_ASYNC);
660 rx_ctx->resync_async->loglen = 0;
661 rx_ctx->resync_async->rcd_delta = 0;
662 }
663
664 static inline void
tls_offload_rx_resync_async_request_end(struct sock * sk,__be32 seq)665 tls_offload_rx_resync_async_request_end(struct sock *sk, __be32 seq)
666 {
667 struct tls_context *tls_ctx = tls_get_ctx(sk);
668 struct tls_offload_context_rx *rx_ctx = tls_offload_ctx_rx(tls_ctx);
669
670 atomic64_set(&rx_ctx->resync_async->req,
671 ((u64)ntohl(seq) << 32) | RESYNC_REQ);
672 }
673
674 static inline void
tls_offload_rx_resync_set_type(struct sock * sk,enum tls_offload_sync_type type)675 tls_offload_rx_resync_set_type(struct sock *sk, enum tls_offload_sync_type type)
676 {
677 struct tls_context *tls_ctx = tls_get_ctx(sk);
678
679 tls_offload_ctx_rx(tls_ctx)->resync_type = type;
680 }
681
682 /* Driver's seq tracking has to be disabled until resync succeeded */
tls_offload_tx_resync_pending(struct sock * sk)683 static inline bool tls_offload_tx_resync_pending(struct sock *sk)
684 {
685 struct tls_context *tls_ctx = tls_get_ctx(sk);
686 bool ret;
687
688 ret = test_bit(TLS_TX_SYNC_SCHED, &tls_ctx->flags);
689 smp_mb__after_atomic();
690 return ret;
691 }
692
693 int __net_init tls_proc_init(struct net *net);
694 void __net_exit tls_proc_fini(struct net *net);
695
696 int tls_proccess_cmsg(struct sock *sk, struct msghdr *msg,
697 unsigned char *record_type);
698 int decrypt_skb(struct sock *sk, struct sk_buff *skb,
699 struct scatterlist *sgout);
700 struct sk_buff *tls_encrypt_skb(struct sk_buff *skb);
701
702 int tls_sw_fallback_init(struct sock *sk,
703 struct tls_offload_context_tx *offload_ctx,
704 struct tls_crypto_info *crypto_info);
705
706 #ifdef CONFIG_TLS_DEVICE
707 int tls_device_init(void);
708 void tls_device_cleanup(void);
709 void tls_device_sk_destruct(struct sock *sk);
710 int tls_set_device_offload(struct sock *sk, struct tls_context *ctx);
711 void tls_device_free_resources_tx(struct sock *sk);
712 int tls_set_device_offload_rx(struct sock *sk, struct tls_context *ctx);
713 void tls_device_offload_cleanup_rx(struct sock *sk);
714 void tls_device_rx_resync_new_rec(struct sock *sk, u32 rcd_len, u32 seq);
715 void tls_offload_tx_resync_request(struct sock *sk, u32 got_seq, u32 exp_seq);
716 int tls_device_decrypted(struct sock *sk, struct tls_context *tls_ctx,
717 struct sk_buff *skb, struct strp_msg *rxm);
718
tls_is_sk_rx_device_offloaded(struct sock * sk)719 static inline bool tls_is_sk_rx_device_offloaded(struct sock *sk)
720 {
721 if (!sk_fullsock(sk) ||
722 smp_load_acquire(&sk->sk_destruct) != tls_device_sk_destruct)
723 return false;
724 return tls_get_ctx(sk)->rx_conf == TLS_HW;
725 }
726 #else
tls_device_init(void)727 static inline int tls_device_init(void) { return 0; }
tls_device_cleanup(void)728 static inline void tls_device_cleanup(void) {}
729
730 static inline int
tls_set_device_offload(struct sock * sk,struct tls_context * ctx)731 tls_set_device_offload(struct sock *sk, struct tls_context *ctx)
732 {
733 return -EOPNOTSUPP;
734 }
735
tls_device_free_resources_tx(struct sock * sk)736 static inline void tls_device_free_resources_tx(struct sock *sk) {}
737
738 static inline int
tls_set_device_offload_rx(struct sock * sk,struct tls_context * ctx)739 tls_set_device_offload_rx(struct sock *sk, struct tls_context *ctx)
740 {
741 return -EOPNOTSUPP;
742 }
743
tls_device_offload_cleanup_rx(struct sock * sk)744 static inline void tls_device_offload_cleanup_rx(struct sock *sk) {}
745 static inline void
tls_device_rx_resync_new_rec(struct sock * sk,u32 rcd_len,u32 seq)746 tls_device_rx_resync_new_rec(struct sock *sk, u32 rcd_len, u32 seq) {}
747
748 static inline int
tls_device_decrypted(struct sock * sk,struct tls_context * tls_ctx,struct sk_buff * skb,struct strp_msg * rxm)749 tls_device_decrypted(struct sock *sk, struct tls_context *tls_ctx,
750 struct sk_buff *skb, struct strp_msg *rxm)
751 {
752 return 0;
753 }
754 #endif
755 #endif /* _TLS_OFFLOAD_H */
756