1 /*
2    md.c : Multiple Devices driver for Linux
3 	  Copyright (C) 1998, 1999, 2000 Ingo Molnar
4 
5      completely rewritten, based on the MD driver code from Marc Zyngier
6 
7    Changes:
8 
9    - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
10    - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
11    - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
12    - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
13    - kmod support by: Cyrus Durgin
14    - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
15    - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
16 
17    - lots of fixes and improvements to the RAID1/RAID5 and generic
18      RAID code (such as request based resynchronization):
19 
20      Neil Brown <neilb@cse.unsw.edu.au>.
21 
22    - persistent bitmap code
23      Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
24 
25    This program is free software; you can redistribute it and/or modify
26    it under the terms of the GNU General Public License as published by
27    the Free Software Foundation; either version 2, or (at your option)
28    any later version.
29 
30    You should have received a copy of the GNU General Public License
31    (for example /usr/src/linux/COPYING); if not, write to the Free
32    Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
33 */
34 
35 #include <linux/kthread.h>
36 #include <linux/blkdev.h>
37 #include <linux/sysctl.h>
38 #include <linux/seq_file.h>
39 #include <linux/fs.h>
40 #include <linux/poll.h>
41 #include <linux/ctype.h>
42 #include <linux/string.h>
43 #include <linux/hdreg.h>
44 #include <linux/proc_fs.h>
45 #include <linux/random.h>
46 #include <linux/module.h>
47 #include <linux/reboot.h>
48 #include <linux/file.h>
49 #include <linux/compat.h>
50 #include <linux/delay.h>
51 #include <linux/raid/md_p.h>
52 #include <linux/raid/md_u.h>
53 #include <linux/slab.h>
54 #include "md.h"
55 #include "bitmap.h"
56 
57 #ifndef MODULE
58 static void autostart_arrays(int part);
59 #endif
60 
61 /* pers_list is a list of registered personalities protected
62  * by pers_lock.
63  * pers_lock does extra service to protect accesses to
64  * mddev->thread when the mutex cannot be held.
65  */
66 static LIST_HEAD(pers_list);
67 static DEFINE_SPINLOCK(pers_lock);
68 
69 static void md_print_devices(void);
70 
71 static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
72 static struct workqueue_struct *md_wq;
73 static struct workqueue_struct *md_misc_wq;
74 
75 #define MD_BUG(x...) { printk("md: bug in file %s, line %d\n", __FILE__, __LINE__); md_print_devices(); }
76 
77 /*
78  * Default number of read corrections we'll attempt on an rdev
79  * before ejecting it from the array. We divide the read error
80  * count by 2 for every hour elapsed between read errors.
81  */
82 #define MD_DEFAULT_MAX_CORRECTED_READ_ERRORS 20
83 /*
84  * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
85  * is 1000 KB/sec, so the extra system load does not show up that much.
86  * Increase it if you want to have more _guaranteed_ speed. Note that
87  * the RAID driver will use the maximum available bandwidth if the IO
88  * subsystem is idle. There is also an 'absolute maximum' reconstruction
89  * speed limit - in case reconstruction slows down your system despite
90  * idle IO detection.
91  *
92  * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
93  * or /sys/block/mdX/md/sync_speed_{min,max}
94  */
95 
96 static int sysctl_speed_limit_min = 1000;
97 static int sysctl_speed_limit_max = 200000;
speed_min(struct mddev * mddev)98 static inline int speed_min(struct mddev *mddev)
99 {
100 	return mddev->sync_speed_min ?
101 		mddev->sync_speed_min : sysctl_speed_limit_min;
102 }
103 
speed_max(struct mddev * mddev)104 static inline int speed_max(struct mddev *mddev)
105 {
106 	return mddev->sync_speed_max ?
107 		mddev->sync_speed_max : sysctl_speed_limit_max;
108 }
109 
110 static struct ctl_table_header *raid_table_header;
111 
112 static ctl_table raid_table[] = {
113 	{
114 		.procname	= "speed_limit_min",
115 		.data		= &sysctl_speed_limit_min,
116 		.maxlen		= sizeof(int),
117 		.mode		= S_IRUGO|S_IWUSR,
118 		.proc_handler	= proc_dointvec,
119 	},
120 	{
121 		.procname	= "speed_limit_max",
122 		.data		= &sysctl_speed_limit_max,
123 		.maxlen		= sizeof(int),
124 		.mode		= S_IRUGO|S_IWUSR,
125 		.proc_handler	= proc_dointvec,
126 	},
127 	{ }
128 };
129 
130 static ctl_table raid_dir_table[] = {
131 	{
132 		.procname	= "raid",
133 		.maxlen		= 0,
134 		.mode		= S_IRUGO|S_IXUGO,
135 		.child		= raid_table,
136 	},
137 	{ }
138 };
139 
140 static ctl_table raid_root_table[] = {
141 	{
142 		.procname	= "dev",
143 		.maxlen		= 0,
144 		.mode		= 0555,
145 		.child		= raid_dir_table,
146 	},
147 	{  }
148 };
149 
150 static const struct block_device_operations md_fops;
151 
152 static int start_readonly;
153 
154 /* bio_clone_mddev
155  * like bio_clone, but with a local bio set
156  */
157 
mddev_bio_destructor(struct bio * bio)158 static void mddev_bio_destructor(struct bio *bio)
159 {
160 	struct mddev *mddev, **mddevp;
161 
162 	mddevp = (void*)bio;
163 	mddev = mddevp[-1];
164 
165 	bio_free(bio, mddev->bio_set);
166 }
167 
bio_alloc_mddev(gfp_t gfp_mask,int nr_iovecs,struct mddev * mddev)168 struct bio *bio_alloc_mddev(gfp_t gfp_mask, int nr_iovecs,
169 			    struct mddev *mddev)
170 {
171 	struct bio *b;
172 	struct mddev **mddevp;
173 
174 	if (!mddev || !mddev->bio_set)
175 		return bio_alloc(gfp_mask, nr_iovecs);
176 
177 	b = bio_alloc_bioset(gfp_mask, nr_iovecs,
178 			     mddev->bio_set);
179 	if (!b)
180 		return NULL;
181 	mddevp = (void*)b;
182 	mddevp[-1] = mddev;
183 	b->bi_destructor = mddev_bio_destructor;
184 	return b;
185 }
186 EXPORT_SYMBOL_GPL(bio_alloc_mddev);
187 
bio_clone_mddev(struct bio * bio,gfp_t gfp_mask,struct mddev * mddev)188 struct bio *bio_clone_mddev(struct bio *bio, gfp_t gfp_mask,
189 			    struct mddev *mddev)
190 {
191 	struct bio *b;
192 	struct mddev **mddevp;
193 
194 	if (!mddev || !mddev->bio_set)
195 		return bio_clone(bio, gfp_mask);
196 
197 	b = bio_alloc_bioset(gfp_mask, bio->bi_max_vecs,
198 			     mddev->bio_set);
199 	if (!b)
200 		return NULL;
201 	mddevp = (void*)b;
202 	mddevp[-1] = mddev;
203 	b->bi_destructor = mddev_bio_destructor;
204 	__bio_clone(b, bio);
205 	if (bio_integrity(bio)) {
206 		int ret;
207 
208 		ret = bio_integrity_clone(b, bio, gfp_mask, mddev->bio_set);
209 
210 		if (ret < 0) {
211 			bio_put(b);
212 			return NULL;
213 		}
214 	}
215 
216 	return b;
217 }
218 EXPORT_SYMBOL_GPL(bio_clone_mddev);
219 
md_trim_bio(struct bio * bio,int offset,int size)220 void md_trim_bio(struct bio *bio, int offset, int size)
221 {
222 	/* 'bio' is a cloned bio which we need to trim to match
223 	 * the given offset and size.
224 	 * This requires adjusting bi_sector, bi_size, and bi_io_vec
225 	 */
226 	int i;
227 	struct bio_vec *bvec;
228 	int sofar = 0;
229 
230 	size <<= 9;
231 	if (offset == 0 && size == bio->bi_size)
232 		return;
233 
234 	bio->bi_sector += offset;
235 	bio->bi_size = size;
236 	offset <<= 9;
237 	clear_bit(BIO_SEG_VALID, &bio->bi_flags);
238 
239 	while (bio->bi_idx < bio->bi_vcnt &&
240 	       bio->bi_io_vec[bio->bi_idx].bv_len <= offset) {
241 		/* remove this whole bio_vec */
242 		offset -= bio->bi_io_vec[bio->bi_idx].bv_len;
243 		bio->bi_idx++;
244 	}
245 	if (bio->bi_idx < bio->bi_vcnt) {
246 		bio->bi_io_vec[bio->bi_idx].bv_offset += offset;
247 		bio->bi_io_vec[bio->bi_idx].bv_len -= offset;
248 	}
249 	/* avoid any complications with bi_idx being non-zero*/
250 	if (bio->bi_idx) {
251 		memmove(bio->bi_io_vec, bio->bi_io_vec+bio->bi_idx,
252 			(bio->bi_vcnt - bio->bi_idx) * sizeof(struct bio_vec));
253 		bio->bi_vcnt -= bio->bi_idx;
254 		bio->bi_idx = 0;
255 	}
256 	/* Make sure vcnt and last bv are not too big */
257 	bio_for_each_segment(bvec, bio, i) {
258 		if (sofar + bvec->bv_len > size)
259 			bvec->bv_len = size - sofar;
260 		if (bvec->bv_len == 0) {
261 			bio->bi_vcnt = i;
262 			break;
263 		}
264 		sofar += bvec->bv_len;
265 	}
266 }
267 EXPORT_SYMBOL_GPL(md_trim_bio);
268 
269 /*
270  * We have a system wide 'event count' that is incremented
271  * on any 'interesting' event, and readers of /proc/mdstat
272  * can use 'poll' or 'select' to find out when the event
273  * count increases.
274  *
275  * Events are:
276  *  start array, stop array, error, add device, remove device,
277  *  start build, activate spare
278  */
279 static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters);
280 static atomic_t md_event_count;
md_new_event(struct mddev * mddev)281 void md_new_event(struct mddev *mddev)
282 {
283 	atomic_inc(&md_event_count);
284 	wake_up(&md_event_waiters);
285 }
286 EXPORT_SYMBOL_GPL(md_new_event);
287 
288 /* Alternate version that can be called from interrupts
289  * when calling sysfs_notify isn't needed.
290  */
md_new_event_inintr(struct mddev * mddev)291 static void md_new_event_inintr(struct mddev *mddev)
292 {
293 	atomic_inc(&md_event_count);
294 	wake_up(&md_event_waiters);
295 }
296 
297 /*
298  * Enables to iterate over all existing md arrays
299  * all_mddevs_lock protects this list.
300  */
301 static LIST_HEAD(all_mddevs);
302 static DEFINE_SPINLOCK(all_mddevs_lock);
303 
304 
305 /*
306  * iterates through all used mddevs in the system.
307  * We take care to grab the all_mddevs_lock whenever navigating
308  * the list, and to always hold a refcount when unlocked.
309  * Any code which breaks out of this loop while own
310  * a reference to the current mddev and must mddev_put it.
311  */
312 #define for_each_mddev(_mddev,_tmp)					\
313 									\
314 	for (({ spin_lock(&all_mddevs_lock); 				\
315 		_tmp = all_mddevs.next;					\
316 		_mddev = NULL;});					\
317 	     ({ if (_tmp != &all_mddevs)				\
318 			mddev_get(list_entry(_tmp, struct mddev, all_mddevs));\
319 		spin_unlock(&all_mddevs_lock);				\
320 		if (_mddev) mddev_put(_mddev);				\
321 		_mddev = list_entry(_tmp, struct mddev, all_mddevs);	\
322 		_tmp != &all_mddevs;});					\
323 	     ({ spin_lock(&all_mddevs_lock);				\
324 		_tmp = _tmp->next;})					\
325 		)
326 
327 
328 /* Rather than calling directly into the personality make_request function,
329  * IO requests come here first so that we can check if the device is
330  * being suspended pending a reconfiguration.
331  * We hold a refcount over the call to ->make_request.  By the time that
332  * call has finished, the bio has been linked into some internal structure
333  * and so is visible to ->quiesce(), so we don't need the refcount any more.
334  */
md_make_request(struct request_queue * q,struct bio * bio)335 static void md_make_request(struct request_queue *q, struct bio *bio)
336 {
337 	const int rw = bio_data_dir(bio);
338 	struct mddev *mddev = q->queuedata;
339 	int cpu;
340 	unsigned int sectors;
341 
342 	if (mddev == NULL || mddev->pers == NULL
343 	    || !mddev->ready) {
344 		bio_io_error(bio);
345 		return;
346 	}
347 	if (mddev->ro == 1 && unlikely(rw == WRITE)) {
348 		bio_endio(bio, bio_sectors(bio) == 0 ? 0 : -EROFS);
349 		return;
350 	}
351 	smp_rmb(); /* Ensure implications of  'active' are visible */
352 	rcu_read_lock();
353 	if (mddev->suspended) {
354 		DEFINE_WAIT(__wait);
355 		for (;;) {
356 			prepare_to_wait(&mddev->sb_wait, &__wait,
357 					TASK_UNINTERRUPTIBLE);
358 			if (!mddev->suspended)
359 				break;
360 			rcu_read_unlock();
361 			schedule();
362 			rcu_read_lock();
363 		}
364 		finish_wait(&mddev->sb_wait, &__wait);
365 	}
366 	atomic_inc(&mddev->active_io);
367 	rcu_read_unlock();
368 
369 	/*
370 	 * save the sectors now since our bio can
371 	 * go away inside make_request
372 	 */
373 	sectors = bio_sectors(bio);
374 	mddev->pers->make_request(mddev, bio);
375 
376 	cpu = part_stat_lock();
377 	part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]);
378 	part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw], sectors);
379 	part_stat_unlock();
380 
381 	if (atomic_dec_and_test(&mddev->active_io) && mddev->suspended)
382 		wake_up(&mddev->sb_wait);
383 }
384 
385 /* mddev_suspend makes sure no new requests are submitted
386  * to the device, and that any requests that have been submitted
387  * are completely handled.
388  * Once ->stop is called and completes, the module will be completely
389  * unused.
390  */
mddev_suspend(struct mddev * mddev)391 void mddev_suspend(struct mddev *mddev)
392 {
393 	BUG_ON(mddev->suspended);
394 	mddev->suspended = 1;
395 	synchronize_rcu();
396 	wait_event(mddev->sb_wait, atomic_read(&mddev->active_io) == 0);
397 	mddev->pers->quiesce(mddev, 1);
398 
399 	del_timer_sync(&mddev->safemode_timer);
400 }
401 EXPORT_SYMBOL_GPL(mddev_suspend);
402 
mddev_resume(struct mddev * mddev)403 void mddev_resume(struct mddev *mddev)
404 {
405 	mddev->suspended = 0;
406 	wake_up(&mddev->sb_wait);
407 	mddev->pers->quiesce(mddev, 0);
408 
409 	md_wakeup_thread(mddev->thread);
410 	md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
411 }
412 EXPORT_SYMBOL_GPL(mddev_resume);
413 
mddev_congested(struct mddev * mddev,int bits)414 int mddev_congested(struct mddev *mddev, int bits)
415 {
416 	return mddev->suspended;
417 }
418 EXPORT_SYMBOL(mddev_congested);
419 
420 /*
421  * Generic flush handling for md
422  */
423 
md_end_flush(struct bio * bio,int err)424 static void md_end_flush(struct bio *bio, int err)
425 {
426 	struct md_rdev *rdev = bio->bi_private;
427 	struct mddev *mddev = rdev->mddev;
428 
429 	rdev_dec_pending(rdev, mddev);
430 
431 	if (atomic_dec_and_test(&mddev->flush_pending)) {
432 		/* The pre-request flush has finished */
433 		queue_work(md_wq, &mddev->flush_work);
434 	}
435 	bio_put(bio);
436 }
437 
438 static void md_submit_flush_data(struct work_struct *ws);
439 
submit_flushes(struct work_struct * ws)440 static void submit_flushes(struct work_struct *ws)
441 {
442 	struct mddev *mddev = container_of(ws, struct mddev, flush_work);
443 	struct md_rdev *rdev;
444 
445 	INIT_WORK(&mddev->flush_work, md_submit_flush_data);
446 	atomic_set(&mddev->flush_pending, 1);
447 	rcu_read_lock();
448 	rdev_for_each_rcu(rdev, mddev)
449 		if (rdev->raid_disk >= 0 &&
450 		    !test_bit(Faulty, &rdev->flags)) {
451 			/* Take two references, one is dropped
452 			 * when request finishes, one after
453 			 * we reclaim rcu_read_lock
454 			 */
455 			struct bio *bi;
456 			atomic_inc(&rdev->nr_pending);
457 			atomic_inc(&rdev->nr_pending);
458 			rcu_read_unlock();
459 			bi = bio_alloc_mddev(GFP_NOIO, 0, mddev);
460 			bi->bi_end_io = md_end_flush;
461 			bi->bi_private = rdev;
462 			bi->bi_bdev = rdev->bdev;
463 			atomic_inc(&mddev->flush_pending);
464 			submit_bio(WRITE_FLUSH, bi);
465 			rcu_read_lock();
466 			rdev_dec_pending(rdev, mddev);
467 		}
468 	rcu_read_unlock();
469 	if (atomic_dec_and_test(&mddev->flush_pending))
470 		queue_work(md_wq, &mddev->flush_work);
471 }
472 
md_submit_flush_data(struct work_struct * ws)473 static void md_submit_flush_data(struct work_struct *ws)
474 {
475 	struct mddev *mddev = container_of(ws, struct mddev, flush_work);
476 	struct bio *bio = mddev->flush_bio;
477 
478 	if (bio->bi_size == 0)
479 		/* an empty barrier - all done */
480 		bio_endio(bio, 0);
481 	else {
482 		bio->bi_rw &= ~REQ_FLUSH;
483 		mddev->pers->make_request(mddev, bio);
484 	}
485 
486 	mddev->flush_bio = NULL;
487 	wake_up(&mddev->sb_wait);
488 }
489 
md_flush_request(struct mddev * mddev,struct bio * bio)490 void md_flush_request(struct mddev *mddev, struct bio *bio)
491 {
492 	spin_lock_irq(&mddev->write_lock);
493 	wait_event_lock_irq(mddev->sb_wait,
494 			    !mddev->flush_bio,
495 			    mddev->write_lock, /*nothing*/);
496 	mddev->flush_bio = bio;
497 	spin_unlock_irq(&mddev->write_lock);
498 
499 	INIT_WORK(&mddev->flush_work, submit_flushes);
500 	queue_work(md_wq, &mddev->flush_work);
501 }
502 EXPORT_SYMBOL(md_flush_request);
503 
504 /* Support for plugging.
505  * This mirrors the plugging support in request_queue, but does not
506  * require having a whole queue or request structures.
507  * We allocate an md_plug_cb for each md device and each thread it gets
508  * plugged on.  This links tot the private plug_handle structure in the
509  * personality data where we keep a count of the number of outstanding
510  * plugs so other code can see if a plug is active.
511  */
512 struct md_plug_cb {
513 	struct blk_plug_cb cb;
514 	struct mddev *mddev;
515 };
516 
plugger_unplug(struct blk_plug_cb * cb)517 static void plugger_unplug(struct blk_plug_cb *cb)
518 {
519 	struct md_plug_cb *mdcb = container_of(cb, struct md_plug_cb, cb);
520 	if (atomic_dec_and_test(&mdcb->mddev->plug_cnt))
521 		md_wakeup_thread(mdcb->mddev->thread);
522 	kfree(mdcb);
523 }
524 
525 /* Check that an unplug wakeup will come shortly.
526  * If not, wakeup the md thread immediately
527  */
mddev_check_plugged(struct mddev * mddev)528 int mddev_check_plugged(struct mddev *mddev)
529 {
530 	struct blk_plug *plug = current->plug;
531 	struct md_plug_cb *mdcb;
532 
533 	if (!plug)
534 		return 0;
535 
536 	list_for_each_entry(mdcb, &plug->cb_list, cb.list) {
537 		if (mdcb->cb.callback == plugger_unplug &&
538 		    mdcb->mddev == mddev) {
539 			/* Already on the list, move to top */
540 			if (mdcb != list_first_entry(&plug->cb_list,
541 						    struct md_plug_cb,
542 						    cb.list))
543 				list_move(&mdcb->cb.list, &plug->cb_list);
544 			return 1;
545 		}
546 	}
547 	/* Not currently on the callback list */
548 	mdcb = kmalloc(sizeof(*mdcb), GFP_ATOMIC);
549 	if (!mdcb)
550 		return 0;
551 
552 	mdcb->mddev = mddev;
553 	mdcb->cb.callback = plugger_unplug;
554 	atomic_inc(&mddev->plug_cnt);
555 	list_add(&mdcb->cb.list, &plug->cb_list);
556 	return 1;
557 }
558 EXPORT_SYMBOL_GPL(mddev_check_plugged);
559 
mddev_get(struct mddev * mddev)560 static inline struct mddev *mddev_get(struct mddev *mddev)
561 {
562 	atomic_inc(&mddev->active);
563 	return mddev;
564 }
565 
566 static void mddev_delayed_delete(struct work_struct *ws);
567 
mddev_put(struct mddev * mddev)568 static void mddev_put(struct mddev *mddev)
569 {
570 	struct bio_set *bs = NULL;
571 
572 	if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
573 		return;
574 	if (!mddev->raid_disks && list_empty(&mddev->disks) &&
575 	    mddev->ctime == 0 && !mddev->hold_active) {
576 		/* Array is not configured at all, and not held active,
577 		 * so destroy it */
578 		list_del_init(&mddev->all_mddevs);
579 		bs = mddev->bio_set;
580 		mddev->bio_set = NULL;
581 		if (mddev->gendisk) {
582 			/* We did a probe so need to clean up.  Call
583 			 * queue_work inside the spinlock so that
584 			 * flush_workqueue() after mddev_find will
585 			 * succeed in waiting for the work to be done.
586 			 */
587 			INIT_WORK(&mddev->del_work, mddev_delayed_delete);
588 			queue_work(md_misc_wq, &mddev->del_work);
589 		} else
590 			kfree(mddev);
591 	}
592 	spin_unlock(&all_mddevs_lock);
593 	if (bs)
594 		bioset_free(bs);
595 }
596 
mddev_init(struct mddev * mddev)597 void mddev_init(struct mddev *mddev)
598 {
599 	mutex_init(&mddev->open_mutex);
600 	mutex_init(&mddev->reconfig_mutex);
601 	mutex_init(&mddev->bitmap_info.mutex);
602 	INIT_LIST_HEAD(&mddev->disks);
603 	INIT_LIST_HEAD(&mddev->all_mddevs);
604 	init_timer(&mddev->safemode_timer);
605 	atomic_set(&mddev->active, 1);
606 	atomic_set(&mddev->openers, 0);
607 	atomic_set(&mddev->active_io, 0);
608 	atomic_set(&mddev->plug_cnt, 0);
609 	spin_lock_init(&mddev->write_lock);
610 	atomic_set(&mddev->flush_pending, 0);
611 	init_waitqueue_head(&mddev->sb_wait);
612 	init_waitqueue_head(&mddev->recovery_wait);
613 	mddev->reshape_position = MaxSector;
614 	mddev->resync_min = 0;
615 	mddev->resync_max = MaxSector;
616 	mddev->level = LEVEL_NONE;
617 }
618 EXPORT_SYMBOL_GPL(mddev_init);
619 
mddev_find(dev_t unit)620 static struct mddev * mddev_find(dev_t unit)
621 {
622 	struct mddev *mddev, *new = NULL;
623 
624 	if (unit && MAJOR(unit) != MD_MAJOR)
625 		unit &= ~((1<<MdpMinorShift)-1);
626 
627  retry:
628 	spin_lock(&all_mddevs_lock);
629 
630 	if (unit) {
631 		list_for_each_entry(mddev, &all_mddevs, all_mddevs)
632 			if (mddev->unit == unit) {
633 				mddev_get(mddev);
634 				spin_unlock(&all_mddevs_lock);
635 				kfree(new);
636 				return mddev;
637 			}
638 
639 		if (new) {
640 			list_add(&new->all_mddevs, &all_mddevs);
641 			spin_unlock(&all_mddevs_lock);
642 			new->hold_active = UNTIL_IOCTL;
643 			return new;
644 		}
645 	} else if (new) {
646 		/* find an unused unit number */
647 		static int next_minor = 512;
648 		int start = next_minor;
649 		int is_free = 0;
650 		int dev = 0;
651 		while (!is_free) {
652 			dev = MKDEV(MD_MAJOR, next_minor);
653 			next_minor++;
654 			if (next_minor > MINORMASK)
655 				next_minor = 0;
656 			if (next_minor == start) {
657 				/* Oh dear, all in use. */
658 				spin_unlock(&all_mddevs_lock);
659 				kfree(new);
660 				return NULL;
661 			}
662 
663 			is_free = 1;
664 			list_for_each_entry(mddev, &all_mddevs, all_mddevs)
665 				if (mddev->unit == dev) {
666 					is_free = 0;
667 					break;
668 				}
669 		}
670 		new->unit = dev;
671 		new->md_minor = MINOR(dev);
672 		new->hold_active = UNTIL_STOP;
673 		list_add(&new->all_mddevs, &all_mddevs);
674 		spin_unlock(&all_mddevs_lock);
675 		return new;
676 	}
677 	spin_unlock(&all_mddevs_lock);
678 
679 	new = kzalloc(sizeof(*new), GFP_KERNEL);
680 	if (!new)
681 		return NULL;
682 
683 	new->unit = unit;
684 	if (MAJOR(unit) == MD_MAJOR)
685 		new->md_minor = MINOR(unit);
686 	else
687 		new->md_minor = MINOR(unit) >> MdpMinorShift;
688 
689 	mddev_init(new);
690 
691 	goto retry;
692 }
693 
mddev_lock(struct mddev * mddev)694 static inline int mddev_lock(struct mddev * mddev)
695 {
696 	return mutex_lock_interruptible(&mddev->reconfig_mutex);
697 }
698 
mddev_is_locked(struct mddev * mddev)699 static inline int mddev_is_locked(struct mddev *mddev)
700 {
701 	return mutex_is_locked(&mddev->reconfig_mutex);
702 }
703 
mddev_trylock(struct mddev * mddev)704 static inline int mddev_trylock(struct mddev * mddev)
705 {
706 	return mutex_trylock(&mddev->reconfig_mutex);
707 }
708 
709 static struct attribute_group md_redundancy_group;
710 
mddev_unlock(struct mddev * mddev)711 static void mddev_unlock(struct mddev * mddev)
712 {
713 	if (mddev->to_remove) {
714 		/* These cannot be removed under reconfig_mutex as
715 		 * an access to the files will try to take reconfig_mutex
716 		 * while holding the file unremovable, which leads to
717 		 * a deadlock.
718 		 * So hold set sysfs_active while the remove in happeing,
719 		 * and anything else which might set ->to_remove or my
720 		 * otherwise change the sysfs namespace will fail with
721 		 * -EBUSY if sysfs_active is still set.
722 		 * We set sysfs_active under reconfig_mutex and elsewhere
723 		 * test it under the same mutex to ensure its correct value
724 		 * is seen.
725 		 */
726 		struct attribute_group *to_remove = mddev->to_remove;
727 		mddev->to_remove = NULL;
728 		mddev->sysfs_active = 1;
729 		mutex_unlock(&mddev->reconfig_mutex);
730 
731 		if (mddev->kobj.sd) {
732 			if (to_remove != &md_redundancy_group)
733 				sysfs_remove_group(&mddev->kobj, to_remove);
734 			if (mddev->pers == NULL ||
735 			    mddev->pers->sync_request == NULL) {
736 				sysfs_remove_group(&mddev->kobj, &md_redundancy_group);
737 				if (mddev->sysfs_action)
738 					sysfs_put(mddev->sysfs_action);
739 				mddev->sysfs_action = NULL;
740 			}
741 		}
742 		mddev->sysfs_active = 0;
743 	} else
744 		mutex_unlock(&mddev->reconfig_mutex);
745 
746 	/* As we've dropped the mutex we need a spinlock to
747 	 * make sure the thread doesn't disappear
748 	 */
749 	spin_lock(&pers_lock);
750 	md_wakeup_thread(mddev->thread);
751 	spin_unlock(&pers_lock);
752 }
753 
find_rdev_nr(struct mddev * mddev,int nr)754 static struct md_rdev * find_rdev_nr(struct mddev *mddev, int nr)
755 {
756 	struct md_rdev *rdev;
757 
758 	rdev_for_each(rdev, mddev)
759 		if (rdev->desc_nr == nr)
760 			return rdev;
761 
762 	return NULL;
763 }
764 
find_rdev(struct mddev * mddev,dev_t dev)765 static struct md_rdev * find_rdev(struct mddev * mddev, dev_t dev)
766 {
767 	struct md_rdev *rdev;
768 
769 	rdev_for_each(rdev, mddev)
770 		if (rdev->bdev->bd_dev == dev)
771 			return rdev;
772 
773 	return NULL;
774 }
775 
find_pers(int level,char * clevel)776 static struct md_personality *find_pers(int level, char *clevel)
777 {
778 	struct md_personality *pers;
779 	list_for_each_entry(pers, &pers_list, list) {
780 		if (level != LEVEL_NONE && pers->level == level)
781 			return pers;
782 		if (strcmp(pers->name, clevel)==0)
783 			return pers;
784 	}
785 	return NULL;
786 }
787 
788 /* return the offset of the super block in 512byte sectors */
calc_dev_sboffset(struct md_rdev * rdev)789 static inline sector_t calc_dev_sboffset(struct md_rdev *rdev)
790 {
791 	sector_t num_sectors = i_size_read(rdev->bdev->bd_inode) / 512;
792 	return MD_NEW_SIZE_SECTORS(num_sectors);
793 }
794 
alloc_disk_sb(struct md_rdev * rdev)795 static int alloc_disk_sb(struct md_rdev * rdev)
796 {
797 	if (rdev->sb_page)
798 		MD_BUG();
799 
800 	rdev->sb_page = alloc_page(GFP_KERNEL);
801 	if (!rdev->sb_page) {
802 		printk(KERN_ALERT "md: out of memory.\n");
803 		return -ENOMEM;
804 	}
805 
806 	return 0;
807 }
808 
free_disk_sb(struct md_rdev * rdev)809 static void free_disk_sb(struct md_rdev * rdev)
810 {
811 	if (rdev->sb_page) {
812 		put_page(rdev->sb_page);
813 		rdev->sb_loaded = 0;
814 		rdev->sb_page = NULL;
815 		rdev->sb_start = 0;
816 		rdev->sectors = 0;
817 	}
818 	if (rdev->bb_page) {
819 		put_page(rdev->bb_page);
820 		rdev->bb_page = NULL;
821 	}
822 }
823 
824 
super_written(struct bio * bio,int error)825 static void super_written(struct bio *bio, int error)
826 {
827 	struct md_rdev *rdev = bio->bi_private;
828 	struct mddev *mddev = rdev->mddev;
829 
830 	if (error || !test_bit(BIO_UPTODATE, &bio->bi_flags)) {
831 		printk("md: super_written gets error=%d, uptodate=%d\n",
832 		       error, test_bit(BIO_UPTODATE, &bio->bi_flags));
833 		WARN_ON(test_bit(BIO_UPTODATE, &bio->bi_flags));
834 		md_error(mddev, rdev);
835 	}
836 
837 	if (atomic_dec_and_test(&mddev->pending_writes))
838 		wake_up(&mddev->sb_wait);
839 	bio_put(bio);
840 }
841 
md_super_write(struct mddev * mddev,struct md_rdev * rdev,sector_t sector,int size,struct page * page)842 void md_super_write(struct mddev *mddev, struct md_rdev *rdev,
843 		   sector_t sector, int size, struct page *page)
844 {
845 	/* write first size bytes of page to sector of rdev
846 	 * Increment mddev->pending_writes before returning
847 	 * and decrement it on completion, waking up sb_wait
848 	 * if zero is reached.
849 	 * If an error occurred, call md_error
850 	 */
851 	struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, mddev);
852 
853 	bio->bi_bdev = rdev->meta_bdev ? rdev->meta_bdev : rdev->bdev;
854 	bio->bi_sector = sector;
855 	bio_add_page(bio, page, size, 0);
856 	bio->bi_private = rdev;
857 	bio->bi_end_io = super_written;
858 
859 	atomic_inc(&mddev->pending_writes);
860 	submit_bio(WRITE_FLUSH_FUA, bio);
861 }
862 
md_super_wait(struct mddev * mddev)863 void md_super_wait(struct mddev *mddev)
864 {
865 	/* wait for all superblock writes that were scheduled to complete */
866 	DEFINE_WAIT(wq);
867 	for(;;) {
868 		prepare_to_wait(&mddev->sb_wait, &wq, TASK_UNINTERRUPTIBLE);
869 		if (atomic_read(&mddev->pending_writes)==0)
870 			break;
871 		schedule();
872 	}
873 	finish_wait(&mddev->sb_wait, &wq);
874 }
875 
bi_complete(struct bio * bio,int error)876 static void bi_complete(struct bio *bio, int error)
877 {
878 	complete((struct completion*)bio->bi_private);
879 }
880 
sync_page_io(struct md_rdev * rdev,sector_t sector,int size,struct page * page,int rw,bool metadata_op)881 int sync_page_io(struct md_rdev *rdev, sector_t sector, int size,
882 		 struct page *page, int rw, bool metadata_op)
883 {
884 	struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, rdev->mddev);
885 	struct completion event;
886 	int ret;
887 
888 	rw |= REQ_SYNC;
889 
890 	bio->bi_bdev = (metadata_op && rdev->meta_bdev) ?
891 		rdev->meta_bdev : rdev->bdev;
892 	if (metadata_op)
893 		bio->bi_sector = sector + rdev->sb_start;
894 	else
895 		bio->bi_sector = sector + rdev->data_offset;
896 	bio_add_page(bio, page, size, 0);
897 	init_completion(&event);
898 	bio->bi_private = &event;
899 	bio->bi_end_io = bi_complete;
900 	submit_bio(rw, bio);
901 	wait_for_completion(&event);
902 
903 	ret = test_bit(BIO_UPTODATE, &bio->bi_flags);
904 	bio_put(bio);
905 	return ret;
906 }
907 EXPORT_SYMBOL_GPL(sync_page_io);
908 
read_disk_sb(struct md_rdev * rdev,int size)909 static int read_disk_sb(struct md_rdev * rdev, int size)
910 {
911 	char b[BDEVNAME_SIZE];
912 	if (!rdev->sb_page) {
913 		MD_BUG();
914 		return -EINVAL;
915 	}
916 	if (rdev->sb_loaded)
917 		return 0;
918 
919 
920 	if (!sync_page_io(rdev, 0, size, rdev->sb_page, READ, true))
921 		goto fail;
922 	rdev->sb_loaded = 1;
923 	return 0;
924 
925 fail:
926 	printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n",
927 		bdevname(rdev->bdev,b));
928 	return -EINVAL;
929 }
930 
uuid_equal(mdp_super_t * sb1,mdp_super_t * sb2)931 static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
932 {
933 	return 	sb1->set_uuid0 == sb2->set_uuid0 &&
934 		sb1->set_uuid1 == sb2->set_uuid1 &&
935 		sb1->set_uuid2 == sb2->set_uuid2 &&
936 		sb1->set_uuid3 == sb2->set_uuid3;
937 }
938 
sb_equal(mdp_super_t * sb1,mdp_super_t * sb2)939 static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
940 {
941 	int ret;
942 	mdp_super_t *tmp1, *tmp2;
943 
944 	tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
945 	tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
946 
947 	if (!tmp1 || !tmp2) {
948 		ret = 0;
949 		printk(KERN_INFO "md.c sb_equal(): failed to allocate memory!\n");
950 		goto abort;
951 	}
952 
953 	*tmp1 = *sb1;
954 	*tmp2 = *sb2;
955 
956 	/*
957 	 * nr_disks is not constant
958 	 */
959 	tmp1->nr_disks = 0;
960 	tmp2->nr_disks = 0;
961 
962 	ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0);
963 abort:
964 	kfree(tmp1);
965 	kfree(tmp2);
966 	return ret;
967 }
968 
969 
md_csum_fold(u32 csum)970 static u32 md_csum_fold(u32 csum)
971 {
972 	csum = (csum & 0xffff) + (csum >> 16);
973 	return (csum & 0xffff) + (csum >> 16);
974 }
975 
calc_sb_csum(mdp_super_t * sb)976 static unsigned int calc_sb_csum(mdp_super_t * sb)
977 {
978 	u64 newcsum = 0;
979 	u32 *sb32 = (u32*)sb;
980 	int i;
981 	unsigned int disk_csum, csum;
982 
983 	disk_csum = sb->sb_csum;
984 	sb->sb_csum = 0;
985 
986 	for (i = 0; i < MD_SB_BYTES/4 ; i++)
987 		newcsum += sb32[i];
988 	csum = (newcsum & 0xffffffff) + (newcsum>>32);
989 
990 
991 #ifdef CONFIG_ALPHA
992 	/* This used to use csum_partial, which was wrong for several
993 	 * reasons including that different results are returned on
994 	 * different architectures.  It isn't critical that we get exactly
995 	 * the same return value as before (we always csum_fold before
996 	 * testing, and that removes any differences).  However as we
997 	 * know that csum_partial always returned a 16bit value on
998 	 * alphas, do a fold to maximise conformity to previous behaviour.
999 	 */
1000 	sb->sb_csum = md_csum_fold(disk_csum);
1001 #else
1002 	sb->sb_csum = disk_csum;
1003 #endif
1004 	return csum;
1005 }
1006 
1007 
1008 /*
1009  * Handle superblock details.
1010  * We want to be able to handle multiple superblock formats
1011  * so we have a common interface to them all, and an array of
1012  * different handlers.
1013  * We rely on user-space to write the initial superblock, and support
1014  * reading and updating of superblocks.
1015  * Interface methods are:
1016  *   int load_super(struct md_rdev *dev, struct md_rdev *refdev, int minor_version)
1017  *      loads and validates a superblock on dev.
1018  *      if refdev != NULL, compare superblocks on both devices
1019  *    Return:
1020  *      0 - dev has a superblock that is compatible with refdev
1021  *      1 - dev has a superblock that is compatible and newer than refdev
1022  *          so dev should be used as the refdev in future
1023  *     -EINVAL superblock incompatible or invalid
1024  *     -othererror e.g. -EIO
1025  *
1026  *   int validate_super(struct mddev *mddev, struct md_rdev *dev)
1027  *      Verify that dev is acceptable into mddev.
1028  *       The first time, mddev->raid_disks will be 0, and data from
1029  *       dev should be merged in.  Subsequent calls check that dev
1030  *       is new enough.  Return 0 or -EINVAL
1031  *
1032  *   void sync_super(struct mddev *mddev, struct md_rdev *dev)
1033  *     Update the superblock for rdev with data in mddev
1034  *     This does not write to disc.
1035  *
1036  */
1037 
1038 struct super_type  {
1039 	char		    *name;
1040 	struct module	    *owner;
1041 	int		    (*load_super)(struct md_rdev *rdev, struct md_rdev *refdev,
1042 					  int minor_version);
1043 	int		    (*validate_super)(struct mddev *mddev, struct md_rdev *rdev);
1044 	void		    (*sync_super)(struct mddev *mddev, struct md_rdev *rdev);
1045 	unsigned long long  (*rdev_size_change)(struct md_rdev *rdev,
1046 						sector_t num_sectors);
1047 };
1048 
1049 /*
1050  * Check that the given mddev has no bitmap.
1051  *
1052  * This function is called from the run method of all personalities that do not
1053  * support bitmaps. It prints an error message and returns non-zero if mddev
1054  * has a bitmap. Otherwise, it returns 0.
1055  *
1056  */
md_check_no_bitmap(struct mddev * mddev)1057 int md_check_no_bitmap(struct mddev *mddev)
1058 {
1059 	if (!mddev->bitmap_info.file && !mddev->bitmap_info.offset)
1060 		return 0;
1061 	printk(KERN_ERR "%s: bitmaps are not supported for %s\n",
1062 		mdname(mddev), mddev->pers->name);
1063 	return 1;
1064 }
1065 EXPORT_SYMBOL(md_check_no_bitmap);
1066 
1067 /*
1068  * load_super for 0.90.0
1069  */
super_90_load(struct md_rdev * rdev,struct md_rdev * refdev,int minor_version)1070 static int super_90_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
1071 {
1072 	char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1073 	mdp_super_t *sb;
1074 	int ret;
1075 
1076 	/*
1077 	 * Calculate the position of the superblock (512byte sectors),
1078 	 * it's at the end of the disk.
1079 	 *
1080 	 * It also happens to be a multiple of 4Kb.
1081 	 */
1082 	rdev->sb_start = calc_dev_sboffset(rdev);
1083 
1084 	ret = read_disk_sb(rdev, MD_SB_BYTES);
1085 	if (ret) return ret;
1086 
1087 	ret = -EINVAL;
1088 
1089 	bdevname(rdev->bdev, b);
1090 	sb = page_address(rdev->sb_page);
1091 
1092 	if (sb->md_magic != MD_SB_MAGIC) {
1093 		printk(KERN_ERR "md: invalid raid superblock magic on %s\n",
1094 		       b);
1095 		goto abort;
1096 	}
1097 
1098 	if (sb->major_version != 0 ||
1099 	    sb->minor_version < 90 ||
1100 	    sb->minor_version > 91) {
1101 		printk(KERN_WARNING "Bad version number %d.%d on %s\n",
1102 			sb->major_version, sb->minor_version,
1103 			b);
1104 		goto abort;
1105 	}
1106 
1107 	if (sb->raid_disks <= 0)
1108 		goto abort;
1109 
1110 	if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) {
1111 		printk(KERN_WARNING "md: invalid superblock checksum on %s\n",
1112 			b);
1113 		goto abort;
1114 	}
1115 
1116 	rdev->preferred_minor = sb->md_minor;
1117 	rdev->data_offset = 0;
1118 	rdev->sb_size = MD_SB_BYTES;
1119 	rdev->badblocks.shift = -1;
1120 
1121 	if (sb->level == LEVEL_MULTIPATH)
1122 		rdev->desc_nr = -1;
1123 	else
1124 		rdev->desc_nr = sb->this_disk.number;
1125 
1126 	if (!refdev) {
1127 		ret = 1;
1128 	} else {
1129 		__u64 ev1, ev2;
1130 		mdp_super_t *refsb = page_address(refdev->sb_page);
1131 		if (!uuid_equal(refsb, sb)) {
1132 			printk(KERN_WARNING "md: %s has different UUID to %s\n",
1133 				b, bdevname(refdev->bdev,b2));
1134 			goto abort;
1135 		}
1136 		if (!sb_equal(refsb, sb)) {
1137 			printk(KERN_WARNING "md: %s has same UUID"
1138 			       " but different superblock to %s\n",
1139 			       b, bdevname(refdev->bdev, b2));
1140 			goto abort;
1141 		}
1142 		ev1 = md_event(sb);
1143 		ev2 = md_event(refsb);
1144 		if (ev1 > ev2)
1145 			ret = 1;
1146 		else
1147 			ret = 0;
1148 	}
1149 	rdev->sectors = rdev->sb_start;
1150 	/* Limit to 4TB as metadata cannot record more than that.
1151 	 * (not needed for Linear and RAID0 as metadata doesn't
1152 	 * record this size)
1153 	 */
1154 	if (rdev->sectors >= (2ULL << 32) && sb->level >= 1)
1155 		rdev->sectors = (2ULL << 32) - 2;
1156 
1157 	if (rdev->sectors < ((sector_t)sb->size) * 2 && sb->level >= 1)
1158 		/* "this cannot possibly happen" ... */
1159 		ret = -EINVAL;
1160 
1161  abort:
1162 	return ret;
1163 }
1164 
1165 /*
1166  * validate_super for 0.90.0
1167  */
super_90_validate(struct mddev * mddev,struct md_rdev * rdev)1168 static int super_90_validate(struct mddev *mddev, struct md_rdev *rdev)
1169 {
1170 	mdp_disk_t *desc;
1171 	mdp_super_t *sb = page_address(rdev->sb_page);
1172 	__u64 ev1 = md_event(sb);
1173 
1174 	rdev->raid_disk = -1;
1175 	clear_bit(Faulty, &rdev->flags);
1176 	clear_bit(In_sync, &rdev->flags);
1177 	clear_bit(WriteMostly, &rdev->flags);
1178 
1179 	if (mddev->raid_disks == 0) {
1180 		mddev->major_version = 0;
1181 		mddev->minor_version = sb->minor_version;
1182 		mddev->patch_version = sb->patch_version;
1183 		mddev->external = 0;
1184 		mddev->chunk_sectors = sb->chunk_size >> 9;
1185 		mddev->ctime = sb->ctime;
1186 		mddev->utime = sb->utime;
1187 		mddev->level = sb->level;
1188 		mddev->clevel[0] = 0;
1189 		mddev->layout = sb->layout;
1190 		mddev->raid_disks = sb->raid_disks;
1191 		mddev->dev_sectors = ((sector_t)sb->size) * 2;
1192 		mddev->events = ev1;
1193 		mddev->bitmap_info.offset = 0;
1194 		mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
1195 
1196 		if (mddev->minor_version >= 91) {
1197 			mddev->reshape_position = sb->reshape_position;
1198 			mddev->delta_disks = sb->delta_disks;
1199 			mddev->new_level = sb->new_level;
1200 			mddev->new_layout = sb->new_layout;
1201 			mddev->new_chunk_sectors = sb->new_chunk >> 9;
1202 		} else {
1203 			mddev->reshape_position = MaxSector;
1204 			mddev->delta_disks = 0;
1205 			mddev->new_level = mddev->level;
1206 			mddev->new_layout = mddev->layout;
1207 			mddev->new_chunk_sectors = mddev->chunk_sectors;
1208 		}
1209 
1210 		if (sb->state & (1<<MD_SB_CLEAN))
1211 			mddev->recovery_cp = MaxSector;
1212 		else {
1213 			if (sb->events_hi == sb->cp_events_hi &&
1214 				sb->events_lo == sb->cp_events_lo) {
1215 				mddev->recovery_cp = sb->recovery_cp;
1216 			} else
1217 				mddev->recovery_cp = 0;
1218 		}
1219 
1220 		memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
1221 		memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
1222 		memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
1223 		memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
1224 
1225 		mddev->max_disks = MD_SB_DISKS;
1226 
1227 		if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
1228 		    mddev->bitmap_info.file == NULL)
1229 			mddev->bitmap_info.offset =
1230 				mddev->bitmap_info.default_offset;
1231 
1232 	} else if (mddev->pers == NULL) {
1233 		/* Insist on good event counter while assembling, except
1234 		 * for spares (which don't need an event count) */
1235 		++ev1;
1236 		if (sb->disks[rdev->desc_nr].state & (
1237 			    (1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE)))
1238 			if (ev1 < mddev->events)
1239 				return -EINVAL;
1240 	} else if (mddev->bitmap) {
1241 		/* if adding to array with a bitmap, then we can accept an
1242 		 * older device ... but not too old.
1243 		 */
1244 		if (ev1 < mddev->bitmap->events_cleared)
1245 			return 0;
1246 	} else {
1247 		if (ev1 < mddev->events)
1248 			/* just a hot-add of a new device, leave raid_disk at -1 */
1249 			return 0;
1250 	}
1251 
1252 	if (mddev->level != LEVEL_MULTIPATH) {
1253 		desc = sb->disks + rdev->desc_nr;
1254 
1255 		if (desc->state & (1<<MD_DISK_FAULTY))
1256 			set_bit(Faulty, &rdev->flags);
1257 		else if (desc->state & (1<<MD_DISK_SYNC) /* &&
1258 			    desc->raid_disk < mddev->raid_disks */) {
1259 			set_bit(In_sync, &rdev->flags);
1260 			rdev->raid_disk = desc->raid_disk;
1261 		} else if (desc->state & (1<<MD_DISK_ACTIVE)) {
1262 			/* active but not in sync implies recovery up to
1263 			 * reshape position.  We don't know exactly where
1264 			 * that is, so set to zero for now */
1265 			if (mddev->minor_version >= 91) {
1266 				rdev->recovery_offset = 0;
1267 				rdev->raid_disk = desc->raid_disk;
1268 			}
1269 		}
1270 		if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
1271 			set_bit(WriteMostly, &rdev->flags);
1272 	} else /* MULTIPATH are always insync */
1273 		set_bit(In_sync, &rdev->flags);
1274 	return 0;
1275 }
1276 
1277 /*
1278  * sync_super for 0.90.0
1279  */
super_90_sync(struct mddev * mddev,struct md_rdev * rdev)1280 static void super_90_sync(struct mddev *mddev, struct md_rdev *rdev)
1281 {
1282 	mdp_super_t *sb;
1283 	struct md_rdev *rdev2;
1284 	int next_spare = mddev->raid_disks;
1285 
1286 
1287 	/* make rdev->sb match mddev data..
1288 	 *
1289 	 * 1/ zero out disks
1290 	 * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
1291 	 * 3/ any empty disks < next_spare become removed
1292 	 *
1293 	 * disks[0] gets initialised to REMOVED because
1294 	 * we cannot be sure from other fields if it has
1295 	 * been initialised or not.
1296 	 */
1297 	int i;
1298 	int active=0, working=0,failed=0,spare=0,nr_disks=0;
1299 
1300 	rdev->sb_size = MD_SB_BYTES;
1301 
1302 	sb = page_address(rdev->sb_page);
1303 
1304 	memset(sb, 0, sizeof(*sb));
1305 
1306 	sb->md_magic = MD_SB_MAGIC;
1307 	sb->major_version = mddev->major_version;
1308 	sb->patch_version = mddev->patch_version;
1309 	sb->gvalid_words  = 0; /* ignored */
1310 	memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
1311 	memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
1312 	memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
1313 	memcpy(&sb->set_uuid3, mddev->uuid+12,4);
1314 
1315 	sb->ctime = mddev->ctime;
1316 	sb->level = mddev->level;
1317 	sb->size = mddev->dev_sectors / 2;
1318 	sb->raid_disks = mddev->raid_disks;
1319 	sb->md_minor = mddev->md_minor;
1320 	sb->not_persistent = 0;
1321 	sb->utime = mddev->utime;
1322 	sb->state = 0;
1323 	sb->events_hi = (mddev->events>>32);
1324 	sb->events_lo = (u32)mddev->events;
1325 
1326 	if (mddev->reshape_position == MaxSector)
1327 		sb->minor_version = 90;
1328 	else {
1329 		sb->minor_version = 91;
1330 		sb->reshape_position = mddev->reshape_position;
1331 		sb->new_level = mddev->new_level;
1332 		sb->delta_disks = mddev->delta_disks;
1333 		sb->new_layout = mddev->new_layout;
1334 		sb->new_chunk = mddev->new_chunk_sectors << 9;
1335 	}
1336 	mddev->minor_version = sb->minor_version;
1337 	if (mddev->in_sync)
1338 	{
1339 		sb->recovery_cp = mddev->recovery_cp;
1340 		sb->cp_events_hi = (mddev->events>>32);
1341 		sb->cp_events_lo = (u32)mddev->events;
1342 		if (mddev->recovery_cp == MaxSector)
1343 			sb->state = (1<< MD_SB_CLEAN);
1344 	} else
1345 		sb->recovery_cp = 0;
1346 
1347 	sb->layout = mddev->layout;
1348 	sb->chunk_size = mddev->chunk_sectors << 9;
1349 
1350 	if (mddev->bitmap && mddev->bitmap_info.file == NULL)
1351 		sb->state |= (1<<MD_SB_BITMAP_PRESENT);
1352 
1353 	sb->disks[0].state = (1<<MD_DISK_REMOVED);
1354 	rdev_for_each(rdev2, mddev) {
1355 		mdp_disk_t *d;
1356 		int desc_nr;
1357 		int is_active = test_bit(In_sync, &rdev2->flags);
1358 
1359 		if (rdev2->raid_disk >= 0 &&
1360 		    sb->minor_version >= 91)
1361 			/* we have nowhere to store the recovery_offset,
1362 			 * but if it is not below the reshape_position,
1363 			 * we can piggy-back on that.
1364 			 */
1365 			is_active = 1;
1366 		if (rdev2->raid_disk < 0 ||
1367 		    test_bit(Faulty, &rdev2->flags))
1368 			is_active = 0;
1369 		if (is_active)
1370 			desc_nr = rdev2->raid_disk;
1371 		else
1372 			desc_nr = next_spare++;
1373 		rdev2->desc_nr = desc_nr;
1374 		d = &sb->disks[rdev2->desc_nr];
1375 		nr_disks++;
1376 		d->number = rdev2->desc_nr;
1377 		d->major = MAJOR(rdev2->bdev->bd_dev);
1378 		d->minor = MINOR(rdev2->bdev->bd_dev);
1379 		if (is_active)
1380 			d->raid_disk = rdev2->raid_disk;
1381 		else
1382 			d->raid_disk = rdev2->desc_nr; /* compatibility */
1383 		if (test_bit(Faulty, &rdev2->flags))
1384 			d->state = (1<<MD_DISK_FAULTY);
1385 		else if (is_active) {
1386 			d->state = (1<<MD_DISK_ACTIVE);
1387 			if (test_bit(In_sync, &rdev2->flags))
1388 				d->state |= (1<<MD_DISK_SYNC);
1389 			active++;
1390 			working++;
1391 		} else {
1392 			d->state = 0;
1393 			spare++;
1394 			working++;
1395 		}
1396 		if (test_bit(WriteMostly, &rdev2->flags))
1397 			d->state |= (1<<MD_DISK_WRITEMOSTLY);
1398 	}
1399 	/* now set the "removed" and "faulty" bits on any missing devices */
1400 	for (i=0 ; i < mddev->raid_disks ; i++) {
1401 		mdp_disk_t *d = &sb->disks[i];
1402 		if (d->state == 0 && d->number == 0) {
1403 			d->number = i;
1404 			d->raid_disk = i;
1405 			d->state = (1<<MD_DISK_REMOVED);
1406 			d->state |= (1<<MD_DISK_FAULTY);
1407 			failed++;
1408 		}
1409 	}
1410 	sb->nr_disks = nr_disks;
1411 	sb->active_disks = active;
1412 	sb->working_disks = working;
1413 	sb->failed_disks = failed;
1414 	sb->spare_disks = spare;
1415 
1416 	sb->this_disk = sb->disks[rdev->desc_nr];
1417 	sb->sb_csum = calc_sb_csum(sb);
1418 }
1419 
1420 /*
1421  * rdev_size_change for 0.90.0
1422  */
1423 static unsigned long long
super_90_rdev_size_change(struct md_rdev * rdev,sector_t num_sectors)1424 super_90_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
1425 {
1426 	if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1427 		return 0; /* component must fit device */
1428 	if (rdev->mddev->bitmap_info.offset)
1429 		return 0; /* can't move bitmap */
1430 	rdev->sb_start = calc_dev_sboffset(rdev);
1431 	if (!num_sectors || num_sectors > rdev->sb_start)
1432 		num_sectors = rdev->sb_start;
1433 	/* Limit to 4TB as metadata cannot record more than that.
1434 	 * 4TB == 2^32 KB, or 2*2^32 sectors.
1435 	 */
1436 	if (num_sectors >= (2ULL << 32) && rdev->mddev->level >= 1)
1437 		num_sectors = (2ULL << 32) - 2;
1438 	md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1439 		       rdev->sb_page);
1440 	md_super_wait(rdev->mddev);
1441 	return num_sectors;
1442 }
1443 
1444 
1445 /*
1446  * version 1 superblock
1447  */
1448 
calc_sb_1_csum(struct mdp_superblock_1 * sb)1449 static __le32 calc_sb_1_csum(struct mdp_superblock_1 * sb)
1450 {
1451 	__le32 disk_csum;
1452 	u32 csum;
1453 	unsigned long long newcsum;
1454 	int size = 256 + le32_to_cpu(sb->max_dev)*2;
1455 	__le32 *isuper = (__le32*)sb;
1456 	int i;
1457 
1458 	disk_csum = sb->sb_csum;
1459 	sb->sb_csum = 0;
1460 	newcsum = 0;
1461 	for (i=0; size>=4; size -= 4 )
1462 		newcsum += le32_to_cpu(*isuper++);
1463 
1464 	if (size == 2)
1465 		newcsum += le16_to_cpu(*(__le16*) isuper);
1466 
1467 	csum = (newcsum & 0xffffffff) + (newcsum >> 32);
1468 	sb->sb_csum = disk_csum;
1469 	return cpu_to_le32(csum);
1470 }
1471 
1472 static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
1473 			    int acknowledged);
super_1_load(struct md_rdev * rdev,struct md_rdev * refdev,int minor_version)1474 static int super_1_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
1475 {
1476 	struct mdp_superblock_1 *sb;
1477 	int ret;
1478 	sector_t sb_start;
1479 	char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1480 	int bmask;
1481 
1482 	/*
1483 	 * Calculate the position of the superblock in 512byte sectors.
1484 	 * It is always aligned to a 4K boundary and
1485 	 * depeding on minor_version, it can be:
1486 	 * 0: At least 8K, but less than 12K, from end of device
1487 	 * 1: At start of device
1488 	 * 2: 4K from start of device.
1489 	 */
1490 	switch(minor_version) {
1491 	case 0:
1492 		sb_start = i_size_read(rdev->bdev->bd_inode) >> 9;
1493 		sb_start -= 8*2;
1494 		sb_start &= ~(sector_t)(4*2-1);
1495 		break;
1496 	case 1:
1497 		sb_start = 0;
1498 		break;
1499 	case 2:
1500 		sb_start = 8;
1501 		break;
1502 	default:
1503 		return -EINVAL;
1504 	}
1505 	rdev->sb_start = sb_start;
1506 
1507 	/* superblock is rarely larger than 1K, but it can be larger,
1508 	 * and it is safe to read 4k, so we do that
1509 	 */
1510 	ret = read_disk_sb(rdev, 4096);
1511 	if (ret) return ret;
1512 
1513 
1514 	sb = page_address(rdev->sb_page);
1515 
1516 	if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
1517 	    sb->major_version != cpu_to_le32(1) ||
1518 	    le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
1519 	    le64_to_cpu(sb->super_offset) != rdev->sb_start ||
1520 	    (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
1521 		return -EINVAL;
1522 
1523 	if (calc_sb_1_csum(sb) != sb->sb_csum) {
1524 		printk("md: invalid superblock checksum on %s\n",
1525 			bdevname(rdev->bdev,b));
1526 		return -EINVAL;
1527 	}
1528 	if (le64_to_cpu(sb->data_size) < 10) {
1529 		printk("md: data_size too small on %s\n",
1530 		       bdevname(rdev->bdev,b));
1531 		return -EINVAL;
1532 	}
1533 
1534 	rdev->preferred_minor = 0xffff;
1535 	rdev->data_offset = le64_to_cpu(sb->data_offset);
1536 	atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read));
1537 
1538 	rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
1539 	bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1540 	if (rdev->sb_size & bmask)
1541 		rdev->sb_size = (rdev->sb_size | bmask) + 1;
1542 
1543 	if (minor_version
1544 	    && rdev->data_offset < sb_start + (rdev->sb_size/512))
1545 		return -EINVAL;
1546 
1547 	if (sb->level == cpu_to_le32(LEVEL_MULTIPATH))
1548 		rdev->desc_nr = -1;
1549 	else
1550 		rdev->desc_nr = le32_to_cpu(sb->dev_number);
1551 
1552 	if (!rdev->bb_page) {
1553 		rdev->bb_page = alloc_page(GFP_KERNEL);
1554 		if (!rdev->bb_page)
1555 			return -ENOMEM;
1556 	}
1557 	if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BAD_BLOCKS) &&
1558 	    rdev->badblocks.count == 0) {
1559 		/* need to load the bad block list.
1560 		 * Currently we limit it to one page.
1561 		 */
1562 		s32 offset;
1563 		sector_t bb_sector;
1564 		u64 *bbp;
1565 		int i;
1566 		int sectors = le16_to_cpu(sb->bblog_size);
1567 		if (sectors > (PAGE_SIZE / 512))
1568 			return -EINVAL;
1569 		offset = le32_to_cpu(sb->bblog_offset);
1570 		if (offset == 0)
1571 			return -EINVAL;
1572 		bb_sector = (long long)offset;
1573 		if (!sync_page_io(rdev, bb_sector, sectors << 9,
1574 				  rdev->bb_page, READ, true))
1575 			return -EIO;
1576 		bbp = (u64 *)page_address(rdev->bb_page);
1577 		rdev->badblocks.shift = sb->bblog_shift;
1578 		for (i = 0 ; i < (sectors << (9-3)) ; i++, bbp++) {
1579 			u64 bb = le64_to_cpu(*bbp);
1580 			int count = bb & (0x3ff);
1581 			u64 sector = bb >> 10;
1582 			sector <<= sb->bblog_shift;
1583 			count <<= sb->bblog_shift;
1584 			if (bb + 1 == 0)
1585 				break;
1586 			if (md_set_badblocks(&rdev->badblocks,
1587 					     sector, count, 1) == 0)
1588 				return -EINVAL;
1589 		}
1590 	} else if (sb->bblog_offset != 0)
1591 		rdev->badblocks.shift = 0;
1592 
1593 	if (!refdev) {
1594 		ret = 1;
1595 	} else {
1596 		__u64 ev1, ev2;
1597 		struct mdp_superblock_1 *refsb = page_address(refdev->sb_page);
1598 
1599 		if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
1600 		    sb->level != refsb->level ||
1601 		    sb->layout != refsb->layout ||
1602 		    sb->chunksize != refsb->chunksize) {
1603 			printk(KERN_WARNING "md: %s has strangely different"
1604 				" superblock to %s\n",
1605 				bdevname(rdev->bdev,b),
1606 				bdevname(refdev->bdev,b2));
1607 			return -EINVAL;
1608 		}
1609 		ev1 = le64_to_cpu(sb->events);
1610 		ev2 = le64_to_cpu(refsb->events);
1611 
1612 		if (ev1 > ev2)
1613 			ret = 1;
1614 		else
1615 			ret = 0;
1616 	}
1617 	if (minor_version)
1618 		rdev->sectors = (i_size_read(rdev->bdev->bd_inode) >> 9) -
1619 			le64_to_cpu(sb->data_offset);
1620 	else
1621 		rdev->sectors = rdev->sb_start;
1622 	if (rdev->sectors < le64_to_cpu(sb->data_size))
1623 		return -EINVAL;
1624 	rdev->sectors = le64_to_cpu(sb->data_size);
1625 	if (le64_to_cpu(sb->size) > rdev->sectors)
1626 		return -EINVAL;
1627 	return ret;
1628 }
1629 
super_1_validate(struct mddev * mddev,struct md_rdev * rdev)1630 static int super_1_validate(struct mddev *mddev, struct md_rdev *rdev)
1631 {
1632 	struct mdp_superblock_1 *sb = page_address(rdev->sb_page);
1633 	__u64 ev1 = le64_to_cpu(sb->events);
1634 
1635 	rdev->raid_disk = -1;
1636 	clear_bit(Faulty, &rdev->flags);
1637 	clear_bit(In_sync, &rdev->flags);
1638 	clear_bit(WriteMostly, &rdev->flags);
1639 
1640 	if (mddev->raid_disks == 0) {
1641 		mddev->major_version = 1;
1642 		mddev->patch_version = 0;
1643 		mddev->external = 0;
1644 		mddev->chunk_sectors = le32_to_cpu(sb->chunksize);
1645 		mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1);
1646 		mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1);
1647 		mddev->level = le32_to_cpu(sb->level);
1648 		mddev->clevel[0] = 0;
1649 		mddev->layout = le32_to_cpu(sb->layout);
1650 		mddev->raid_disks = le32_to_cpu(sb->raid_disks);
1651 		mddev->dev_sectors = le64_to_cpu(sb->size);
1652 		mddev->events = ev1;
1653 		mddev->bitmap_info.offset = 0;
1654 		mddev->bitmap_info.default_offset = 1024 >> 9;
1655 
1656 		mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
1657 		memcpy(mddev->uuid, sb->set_uuid, 16);
1658 
1659 		mddev->max_disks =  (4096-256)/2;
1660 
1661 		if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
1662 		    mddev->bitmap_info.file == NULL )
1663 			mddev->bitmap_info.offset =
1664 				(__s32)le32_to_cpu(sb->bitmap_offset);
1665 
1666 		if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
1667 			mddev->reshape_position = le64_to_cpu(sb->reshape_position);
1668 			mddev->delta_disks = le32_to_cpu(sb->delta_disks);
1669 			mddev->new_level = le32_to_cpu(sb->new_level);
1670 			mddev->new_layout = le32_to_cpu(sb->new_layout);
1671 			mddev->new_chunk_sectors = le32_to_cpu(sb->new_chunk);
1672 		} else {
1673 			mddev->reshape_position = MaxSector;
1674 			mddev->delta_disks = 0;
1675 			mddev->new_level = mddev->level;
1676 			mddev->new_layout = mddev->layout;
1677 			mddev->new_chunk_sectors = mddev->chunk_sectors;
1678 		}
1679 
1680 	} else if (mddev->pers == NULL) {
1681 		/* Insist of good event counter while assembling, except for
1682 		 * spares (which don't need an event count) */
1683 		++ev1;
1684 		if (rdev->desc_nr >= 0 &&
1685 		    rdev->desc_nr < le32_to_cpu(sb->max_dev) &&
1686 		    le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < 0xfffe)
1687 			if (ev1 < mddev->events)
1688 				return -EINVAL;
1689 	} else if (mddev->bitmap) {
1690 		/* If adding to array with a bitmap, then we can accept an
1691 		 * older device, but not too old.
1692 		 */
1693 		if (ev1 < mddev->bitmap->events_cleared)
1694 			return 0;
1695 	} else {
1696 		if (ev1 < mddev->events)
1697 			/* just a hot-add of a new device, leave raid_disk at -1 */
1698 			return 0;
1699 	}
1700 	if (mddev->level != LEVEL_MULTIPATH) {
1701 		int role;
1702 		if (rdev->desc_nr < 0 ||
1703 		    rdev->desc_nr >= le32_to_cpu(sb->max_dev)) {
1704 			role = 0xffff;
1705 			rdev->desc_nr = -1;
1706 		} else
1707 			role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
1708 		switch(role) {
1709 		case 0xffff: /* spare */
1710 			break;
1711 		case 0xfffe: /* faulty */
1712 			set_bit(Faulty, &rdev->flags);
1713 			break;
1714 		default:
1715 			if ((le32_to_cpu(sb->feature_map) &
1716 			     MD_FEATURE_RECOVERY_OFFSET))
1717 				rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
1718 			else
1719 				set_bit(In_sync, &rdev->flags);
1720 			rdev->raid_disk = role;
1721 			break;
1722 		}
1723 		if (sb->devflags & WriteMostly1)
1724 			set_bit(WriteMostly, &rdev->flags);
1725 		if (le32_to_cpu(sb->feature_map) & MD_FEATURE_REPLACEMENT)
1726 			set_bit(Replacement, &rdev->flags);
1727 	} else /* MULTIPATH are always insync */
1728 		set_bit(In_sync, &rdev->flags);
1729 
1730 	return 0;
1731 }
1732 
super_1_sync(struct mddev * mddev,struct md_rdev * rdev)1733 static void super_1_sync(struct mddev *mddev, struct md_rdev *rdev)
1734 {
1735 	struct mdp_superblock_1 *sb;
1736 	struct md_rdev *rdev2;
1737 	int max_dev, i;
1738 	/* make rdev->sb match mddev and rdev data. */
1739 
1740 	sb = page_address(rdev->sb_page);
1741 
1742 	sb->feature_map = 0;
1743 	sb->pad0 = 0;
1744 	sb->recovery_offset = cpu_to_le64(0);
1745 	memset(sb->pad1, 0, sizeof(sb->pad1));
1746 	memset(sb->pad3, 0, sizeof(sb->pad3));
1747 
1748 	sb->utime = cpu_to_le64((__u64)mddev->utime);
1749 	sb->events = cpu_to_le64(mddev->events);
1750 	if (mddev->in_sync)
1751 		sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
1752 	else
1753 		sb->resync_offset = cpu_to_le64(0);
1754 
1755 	sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors));
1756 
1757 	sb->raid_disks = cpu_to_le32(mddev->raid_disks);
1758 	sb->size = cpu_to_le64(mddev->dev_sectors);
1759 	sb->chunksize = cpu_to_le32(mddev->chunk_sectors);
1760 	sb->level = cpu_to_le32(mddev->level);
1761 	sb->layout = cpu_to_le32(mddev->layout);
1762 
1763 	if (test_bit(WriteMostly, &rdev->flags))
1764 		sb->devflags |= WriteMostly1;
1765 	else
1766 		sb->devflags &= ~WriteMostly1;
1767 
1768 	if (mddev->bitmap && mddev->bitmap_info.file == NULL) {
1769 		sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_info.offset);
1770 		sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
1771 	}
1772 
1773 	if (rdev->raid_disk >= 0 &&
1774 	    !test_bit(In_sync, &rdev->flags)) {
1775 		sb->feature_map |=
1776 			cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET);
1777 		sb->recovery_offset =
1778 			cpu_to_le64(rdev->recovery_offset);
1779 	}
1780 	if (test_bit(Replacement, &rdev->flags))
1781 		sb->feature_map |=
1782 			cpu_to_le32(MD_FEATURE_REPLACEMENT);
1783 
1784 	if (mddev->reshape_position != MaxSector) {
1785 		sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE);
1786 		sb->reshape_position = cpu_to_le64(mddev->reshape_position);
1787 		sb->new_layout = cpu_to_le32(mddev->new_layout);
1788 		sb->delta_disks = cpu_to_le32(mddev->delta_disks);
1789 		sb->new_level = cpu_to_le32(mddev->new_level);
1790 		sb->new_chunk = cpu_to_le32(mddev->new_chunk_sectors);
1791 	}
1792 
1793 	if (rdev->badblocks.count == 0)
1794 		/* Nothing to do for bad blocks*/ ;
1795 	else if (sb->bblog_offset == 0)
1796 		/* Cannot record bad blocks on this device */
1797 		md_error(mddev, rdev);
1798 	else {
1799 		struct badblocks *bb = &rdev->badblocks;
1800 		u64 *bbp = (u64 *)page_address(rdev->bb_page);
1801 		u64 *p = bb->page;
1802 		sb->feature_map |= cpu_to_le32(MD_FEATURE_BAD_BLOCKS);
1803 		if (bb->changed) {
1804 			unsigned seq;
1805 
1806 retry:
1807 			seq = read_seqbegin(&bb->lock);
1808 
1809 			memset(bbp, 0xff, PAGE_SIZE);
1810 
1811 			for (i = 0 ; i < bb->count ; i++) {
1812 				u64 internal_bb = p[i];
1813 				u64 store_bb = ((BB_OFFSET(internal_bb) << 10)
1814 						| BB_LEN(internal_bb));
1815 				bbp[i] = cpu_to_le64(store_bb);
1816 			}
1817 			bb->changed = 0;
1818 			if (read_seqretry(&bb->lock, seq))
1819 				goto retry;
1820 
1821 			bb->sector = (rdev->sb_start +
1822 				      (int)le32_to_cpu(sb->bblog_offset));
1823 			bb->size = le16_to_cpu(sb->bblog_size);
1824 		}
1825 	}
1826 
1827 	max_dev = 0;
1828 	rdev_for_each(rdev2, mddev)
1829 		if (rdev2->desc_nr+1 > max_dev)
1830 			max_dev = rdev2->desc_nr+1;
1831 
1832 	if (max_dev > le32_to_cpu(sb->max_dev)) {
1833 		int bmask;
1834 		sb->max_dev = cpu_to_le32(max_dev);
1835 		rdev->sb_size = max_dev * 2 + 256;
1836 		bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1837 		if (rdev->sb_size & bmask)
1838 			rdev->sb_size = (rdev->sb_size | bmask) + 1;
1839 	} else
1840 		max_dev = le32_to_cpu(sb->max_dev);
1841 
1842 	for (i=0; i<max_dev;i++)
1843 		sb->dev_roles[i] = cpu_to_le16(0xfffe);
1844 
1845 	rdev_for_each(rdev2, mddev) {
1846 		i = rdev2->desc_nr;
1847 		if (test_bit(Faulty, &rdev2->flags))
1848 			sb->dev_roles[i] = cpu_to_le16(0xfffe);
1849 		else if (test_bit(In_sync, &rdev2->flags))
1850 			sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1851 		else if (rdev2->raid_disk >= 0)
1852 			sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1853 		else
1854 			sb->dev_roles[i] = cpu_to_le16(0xffff);
1855 	}
1856 
1857 	sb->sb_csum = calc_sb_1_csum(sb);
1858 }
1859 
1860 static unsigned long long
super_1_rdev_size_change(struct md_rdev * rdev,sector_t num_sectors)1861 super_1_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
1862 {
1863 	struct mdp_superblock_1 *sb;
1864 	sector_t max_sectors;
1865 	if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1866 		return 0; /* component must fit device */
1867 	if (rdev->sb_start < rdev->data_offset) {
1868 		/* minor versions 1 and 2; superblock before data */
1869 		max_sectors = i_size_read(rdev->bdev->bd_inode) >> 9;
1870 		max_sectors -= rdev->data_offset;
1871 		if (!num_sectors || num_sectors > max_sectors)
1872 			num_sectors = max_sectors;
1873 	} else if (rdev->mddev->bitmap_info.offset) {
1874 		/* minor version 0 with bitmap we can't move */
1875 		return 0;
1876 	} else {
1877 		/* minor version 0; superblock after data */
1878 		sector_t sb_start;
1879 		sb_start = (i_size_read(rdev->bdev->bd_inode) >> 9) - 8*2;
1880 		sb_start &= ~(sector_t)(4*2 - 1);
1881 		max_sectors = rdev->sectors + sb_start - rdev->sb_start;
1882 		if (!num_sectors || num_sectors > max_sectors)
1883 			num_sectors = max_sectors;
1884 		rdev->sb_start = sb_start;
1885 	}
1886 	sb = page_address(rdev->sb_page);
1887 	sb->data_size = cpu_to_le64(num_sectors);
1888 	sb->super_offset = rdev->sb_start;
1889 	sb->sb_csum = calc_sb_1_csum(sb);
1890 	md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1891 		       rdev->sb_page);
1892 	md_super_wait(rdev->mddev);
1893 	return num_sectors;
1894 }
1895 
1896 static struct super_type super_types[] = {
1897 	[0] = {
1898 		.name	= "0.90.0",
1899 		.owner	= THIS_MODULE,
1900 		.load_super	    = super_90_load,
1901 		.validate_super	    = super_90_validate,
1902 		.sync_super	    = super_90_sync,
1903 		.rdev_size_change   = super_90_rdev_size_change,
1904 	},
1905 	[1] = {
1906 		.name	= "md-1",
1907 		.owner	= THIS_MODULE,
1908 		.load_super	    = super_1_load,
1909 		.validate_super	    = super_1_validate,
1910 		.sync_super	    = super_1_sync,
1911 		.rdev_size_change   = super_1_rdev_size_change,
1912 	},
1913 };
1914 
sync_super(struct mddev * mddev,struct md_rdev * rdev)1915 static void sync_super(struct mddev *mddev, struct md_rdev *rdev)
1916 {
1917 	if (mddev->sync_super) {
1918 		mddev->sync_super(mddev, rdev);
1919 		return;
1920 	}
1921 
1922 	BUG_ON(mddev->major_version >= ARRAY_SIZE(super_types));
1923 
1924 	super_types[mddev->major_version].sync_super(mddev, rdev);
1925 }
1926 
match_mddev_units(struct mddev * mddev1,struct mddev * mddev2)1927 static int match_mddev_units(struct mddev *mddev1, struct mddev *mddev2)
1928 {
1929 	struct md_rdev *rdev, *rdev2;
1930 
1931 	rcu_read_lock();
1932 	rdev_for_each_rcu(rdev, mddev1)
1933 		rdev_for_each_rcu(rdev2, mddev2)
1934 			if (rdev->bdev->bd_contains ==
1935 			    rdev2->bdev->bd_contains) {
1936 				rcu_read_unlock();
1937 				return 1;
1938 			}
1939 	rcu_read_unlock();
1940 	return 0;
1941 }
1942 
1943 static LIST_HEAD(pending_raid_disks);
1944 
1945 /*
1946  * Try to register data integrity profile for an mddev
1947  *
1948  * This is called when an array is started and after a disk has been kicked
1949  * from the array. It only succeeds if all working and active component devices
1950  * are integrity capable with matching profiles.
1951  */
md_integrity_register(struct mddev * mddev)1952 int md_integrity_register(struct mddev *mddev)
1953 {
1954 	struct md_rdev *rdev, *reference = NULL;
1955 
1956 	if (list_empty(&mddev->disks))
1957 		return 0; /* nothing to do */
1958 	if (!mddev->gendisk || blk_get_integrity(mddev->gendisk))
1959 		return 0; /* shouldn't register, or already is */
1960 	rdev_for_each(rdev, mddev) {
1961 		/* skip spares and non-functional disks */
1962 		if (test_bit(Faulty, &rdev->flags))
1963 			continue;
1964 		if (rdev->raid_disk < 0)
1965 			continue;
1966 		if (!reference) {
1967 			/* Use the first rdev as the reference */
1968 			reference = rdev;
1969 			continue;
1970 		}
1971 		/* does this rdev's profile match the reference profile? */
1972 		if (blk_integrity_compare(reference->bdev->bd_disk,
1973 				rdev->bdev->bd_disk) < 0)
1974 			return -EINVAL;
1975 	}
1976 	if (!reference || !bdev_get_integrity(reference->bdev))
1977 		return 0;
1978 	/*
1979 	 * All component devices are integrity capable and have matching
1980 	 * profiles, register the common profile for the md device.
1981 	 */
1982 	if (blk_integrity_register(mddev->gendisk,
1983 			bdev_get_integrity(reference->bdev)) != 0) {
1984 		printk(KERN_ERR "md: failed to register integrity for %s\n",
1985 			mdname(mddev));
1986 		return -EINVAL;
1987 	}
1988 	printk(KERN_NOTICE "md: data integrity enabled on %s\n", mdname(mddev));
1989 	if (bioset_integrity_create(mddev->bio_set, BIO_POOL_SIZE)) {
1990 		printk(KERN_ERR "md: failed to create integrity pool for %s\n",
1991 		       mdname(mddev));
1992 		return -EINVAL;
1993 	}
1994 	return 0;
1995 }
1996 EXPORT_SYMBOL(md_integrity_register);
1997 
1998 /* Disable data integrity if non-capable/non-matching disk is being added */
md_integrity_add_rdev(struct md_rdev * rdev,struct mddev * mddev)1999 void md_integrity_add_rdev(struct md_rdev *rdev, struct mddev *mddev)
2000 {
2001 	struct blk_integrity *bi_rdev = bdev_get_integrity(rdev->bdev);
2002 	struct blk_integrity *bi_mddev = blk_get_integrity(mddev->gendisk);
2003 
2004 	if (!bi_mddev) /* nothing to do */
2005 		return;
2006 	if (rdev->raid_disk < 0) /* skip spares */
2007 		return;
2008 	if (bi_rdev && blk_integrity_compare(mddev->gendisk,
2009 					     rdev->bdev->bd_disk) >= 0)
2010 		return;
2011 	printk(KERN_NOTICE "disabling data integrity on %s\n", mdname(mddev));
2012 	blk_integrity_unregister(mddev->gendisk);
2013 }
2014 EXPORT_SYMBOL(md_integrity_add_rdev);
2015 
bind_rdev_to_array(struct md_rdev * rdev,struct mddev * mddev)2016 static int bind_rdev_to_array(struct md_rdev * rdev, struct mddev * mddev)
2017 {
2018 	char b[BDEVNAME_SIZE];
2019 	struct kobject *ko;
2020 	char *s;
2021 	int err;
2022 
2023 	if (rdev->mddev) {
2024 		MD_BUG();
2025 		return -EINVAL;
2026 	}
2027 
2028 	/* prevent duplicates */
2029 	if (find_rdev(mddev, rdev->bdev->bd_dev))
2030 		return -EEXIST;
2031 
2032 	/* make sure rdev->sectors exceeds mddev->dev_sectors */
2033 	if (rdev->sectors && (mddev->dev_sectors == 0 ||
2034 			rdev->sectors < mddev->dev_sectors)) {
2035 		if (mddev->pers) {
2036 			/* Cannot change size, so fail
2037 			 * If mddev->level <= 0, then we don't care
2038 			 * about aligning sizes (e.g. linear)
2039 			 */
2040 			if (mddev->level > 0)
2041 				return -ENOSPC;
2042 		} else
2043 			mddev->dev_sectors = rdev->sectors;
2044 	}
2045 
2046 	/* Verify rdev->desc_nr is unique.
2047 	 * If it is -1, assign a free number, else
2048 	 * check number is not in use
2049 	 */
2050 	if (rdev->desc_nr < 0) {
2051 		int choice = 0;
2052 		if (mddev->pers) choice = mddev->raid_disks;
2053 		while (find_rdev_nr(mddev, choice))
2054 			choice++;
2055 		rdev->desc_nr = choice;
2056 	} else {
2057 		if (find_rdev_nr(mddev, rdev->desc_nr))
2058 			return -EBUSY;
2059 	}
2060 	if (mddev->max_disks && rdev->desc_nr >= mddev->max_disks) {
2061 		printk(KERN_WARNING "md: %s: array is limited to %d devices\n",
2062 		       mdname(mddev), mddev->max_disks);
2063 		return -EBUSY;
2064 	}
2065 	bdevname(rdev->bdev,b);
2066 	while ( (s=strchr(b, '/')) != NULL)
2067 		*s = '!';
2068 
2069 	rdev->mddev = mddev;
2070 	printk(KERN_INFO "md: bind<%s>\n", b);
2071 
2072 	if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b)))
2073 		goto fail;
2074 
2075 	ko = &part_to_dev(rdev->bdev->bd_part)->kobj;
2076 	if (sysfs_create_link(&rdev->kobj, ko, "block"))
2077 		/* failure here is OK */;
2078 	rdev->sysfs_state = sysfs_get_dirent_safe(rdev->kobj.sd, "state");
2079 
2080 	list_add_rcu(&rdev->same_set, &mddev->disks);
2081 	bd_link_disk_holder(rdev->bdev, mddev->gendisk);
2082 
2083 	/* May as well allow recovery to be retried once */
2084 	mddev->recovery_disabled++;
2085 
2086 	return 0;
2087 
2088  fail:
2089 	printk(KERN_WARNING "md: failed to register dev-%s for %s\n",
2090 	       b, mdname(mddev));
2091 	return err;
2092 }
2093 
md_delayed_delete(struct work_struct * ws)2094 static void md_delayed_delete(struct work_struct *ws)
2095 {
2096 	struct md_rdev *rdev = container_of(ws, struct md_rdev, del_work);
2097 	kobject_del(&rdev->kobj);
2098 	kobject_put(&rdev->kobj);
2099 }
2100 
unbind_rdev_from_array(struct md_rdev * rdev)2101 static void unbind_rdev_from_array(struct md_rdev * rdev)
2102 {
2103 	char b[BDEVNAME_SIZE];
2104 	if (!rdev->mddev) {
2105 		MD_BUG();
2106 		return;
2107 	}
2108 	bd_unlink_disk_holder(rdev->bdev, rdev->mddev->gendisk);
2109 	list_del_rcu(&rdev->same_set);
2110 	printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b));
2111 	rdev->mddev = NULL;
2112 	sysfs_remove_link(&rdev->kobj, "block");
2113 	sysfs_put(rdev->sysfs_state);
2114 	rdev->sysfs_state = NULL;
2115 	kfree(rdev->badblocks.page);
2116 	rdev->badblocks.count = 0;
2117 	rdev->badblocks.page = NULL;
2118 	/* We need to delay this, otherwise we can deadlock when
2119 	 * writing to 'remove' to "dev/state".  We also need
2120 	 * to delay it due to rcu usage.
2121 	 */
2122 	synchronize_rcu();
2123 	INIT_WORK(&rdev->del_work, md_delayed_delete);
2124 	kobject_get(&rdev->kobj);
2125 	queue_work(md_misc_wq, &rdev->del_work);
2126 }
2127 
2128 /*
2129  * prevent the device from being mounted, repartitioned or
2130  * otherwise reused by a RAID array (or any other kernel
2131  * subsystem), by bd_claiming the device.
2132  */
lock_rdev(struct md_rdev * rdev,dev_t dev,int shared)2133 static int lock_rdev(struct md_rdev *rdev, dev_t dev, int shared)
2134 {
2135 	int err = 0;
2136 	struct block_device *bdev;
2137 	char b[BDEVNAME_SIZE];
2138 
2139 	bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL,
2140 				 shared ? (struct md_rdev *)lock_rdev : rdev);
2141 	if (IS_ERR(bdev)) {
2142 		printk(KERN_ERR "md: could not open %s.\n",
2143 			__bdevname(dev, b));
2144 		return PTR_ERR(bdev);
2145 	}
2146 	rdev->bdev = bdev;
2147 	return err;
2148 }
2149 
unlock_rdev(struct md_rdev * rdev)2150 static void unlock_rdev(struct md_rdev *rdev)
2151 {
2152 	struct block_device *bdev = rdev->bdev;
2153 	rdev->bdev = NULL;
2154 	if (!bdev)
2155 		MD_BUG();
2156 	blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
2157 }
2158 
2159 void md_autodetect_dev(dev_t dev);
2160 
export_rdev(struct md_rdev * rdev)2161 static void export_rdev(struct md_rdev * rdev)
2162 {
2163 	char b[BDEVNAME_SIZE];
2164 	printk(KERN_INFO "md: export_rdev(%s)\n",
2165 		bdevname(rdev->bdev,b));
2166 	if (rdev->mddev)
2167 		MD_BUG();
2168 	free_disk_sb(rdev);
2169 #ifndef MODULE
2170 	if (test_bit(AutoDetected, &rdev->flags))
2171 		md_autodetect_dev(rdev->bdev->bd_dev);
2172 #endif
2173 	unlock_rdev(rdev);
2174 	kobject_put(&rdev->kobj);
2175 }
2176 
kick_rdev_from_array(struct md_rdev * rdev)2177 static void kick_rdev_from_array(struct md_rdev * rdev)
2178 {
2179 	unbind_rdev_from_array(rdev);
2180 	export_rdev(rdev);
2181 }
2182 
export_array(struct mddev * mddev)2183 static void export_array(struct mddev *mddev)
2184 {
2185 	struct md_rdev *rdev, *tmp;
2186 
2187 	rdev_for_each_safe(rdev, tmp, mddev) {
2188 		if (!rdev->mddev) {
2189 			MD_BUG();
2190 			continue;
2191 		}
2192 		kick_rdev_from_array(rdev);
2193 	}
2194 	if (!list_empty(&mddev->disks))
2195 		MD_BUG();
2196 	mddev->raid_disks = 0;
2197 	mddev->major_version = 0;
2198 }
2199 
print_desc(mdp_disk_t * desc)2200 static void print_desc(mdp_disk_t *desc)
2201 {
2202 	printk(" DISK<N:%d,(%d,%d),R:%d,S:%d>\n", desc->number,
2203 		desc->major,desc->minor,desc->raid_disk,desc->state);
2204 }
2205 
print_sb_90(mdp_super_t * sb)2206 static void print_sb_90(mdp_super_t *sb)
2207 {
2208 	int i;
2209 
2210 	printk(KERN_INFO
2211 		"md:  SB: (V:%d.%d.%d) ID:<%08x.%08x.%08x.%08x> CT:%08x\n",
2212 		sb->major_version, sb->minor_version, sb->patch_version,
2213 		sb->set_uuid0, sb->set_uuid1, sb->set_uuid2, sb->set_uuid3,
2214 		sb->ctime);
2215 	printk(KERN_INFO "md:     L%d S%08d ND:%d RD:%d md%d LO:%d CS:%d\n",
2216 		sb->level, sb->size, sb->nr_disks, sb->raid_disks,
2217 		sb->md_minor, sb->layout, sb->chunk_size);
2218 	printk(KERN_INFO "md:     UT:%08x ST:%d AD:%d WD:%d"
2219 		" FD:%d SD:%d CSUM:%08x E:%08lx\n",
2220 		sb->utime, sb->state, sb->active_disks, sb->working_disks,
2221 		sb->failed_disks, sb->spare_disks,
2222 		sb->sb_csum, (unsigned long)sb->events_lo);
2223 
2224 	printk(KERN_INFO);
2225 	for (i = 0; i < MD_SB_DISKS; i++) {
2226 		mdp_disk_t *desc;
2227 
2228 		desc = sb->disks + i;
2229 		if (desc->number || desc->major || desc->minor ||
2230 		    desc->raid_disk || (desc->state && (desc->state != 4))) {
2231 			printk("     D %2d: ", i);
2232 			print_desc(desc);
2233 		}
2234 	}
2235 	printk(KERN_INFO "md:     THIS: ");
2236 	print_desc(&sb->this_disk);
2237 }
2238 
print_sb_1(struct mdp_superblock_1 * sb)2239 static void print_sb_1(struct mdp_superblock_1 *sb)
2240 {
2241 	__u8 *uuid;
2242 
2243 	uuid = sb->set_uuid;
2244 	printk(KERN_INFO
2245 	       "md:  SB: (V:%u) (F:0x%08x) Array-ID:<%pU>\n"
2246 	       "md:    Name: \"%s\" CT:%llu\n",
2247 		le32_to_cpu(sb->major_version),
2248 		le32_to_cpu(sb->feature_map),
2249 		uuid,
2250 		sb->set_name,
2251 		(unsigned long long)le64_to_cpu(sb->ctime)
2252 		       & MD_SUPERBLOCK_1_TIME_SEC_MASK);
2253 
2254 	uuid = sb->device_uuid;
2255 	printk(KERN_INFO
2256 	       "md:       L%u SZ%llu RD:%u LO:%u CS:%u DO:%llu DS:%llu SO:%llu"
2257 			" RO:%llu\n"
2258 	       "md:     Dev:%08x UUID: %pU\n"
2259 	       "md:       (F:0x%08x) UT:%llu Events:%llu ResyncOffset:%llu CSUM:0x%08x\n"
2260 	       "md:         (MaxDev:%u) \n",
2261 		le32_to_cpu(sb->level),
2262 		(unsigned long long)le64_to_cpu(sb->size),
2263 		le32_to_cpu(sb->raid_disks),
2264 		le32_to_cpu(sb->layout),
2265 		le32_to_cpu(sb->chunksize),
2266 		(unsigned long long)le64_to_cpu(sb->data_offset),
2267 		(unsigned long long)le64_to_cpu(sb->data_size),
2268 		(unsigned long long)le64_to_cpu(sb->super_offset),
2269 		(unsigned long long)le64_to_cpu(sb->recovery_offset),
2270 		le32_to_cpu(sb->dev_number),
2271 		uuid,
2272 		sb->devflags,
2273 		(unsigned long long)le64_to_cpu(sb->utime) & MD_SUPERBLOCK_1_TIME_SEC_MASK,
2274 		(unsigned long long)le64_to_cpu(sb->events),
2275 		(unsigned long long)le64_to_cpu(sb->resync_offset),
2276 		le32_to_cpu(sb->sb_csum),
2277 		le32_to_cpu(sb->max_dev)
2278 		);
2279 }
2280 
print_rdev(struct md_rdev * rdev,int major_version)2281 static void print_rdev(struct md_rdev *rdev, int major_version)
2282 {
2283 	char b[BDEVNAME_SIZE];
2284 	printk(KERN_INFO "md: rdev %s, Sect:%08llu F:%d S:%d DN:%u\n",
2285 		bdevname(rdev->bdev, b), (unsigned long long)rdev->sectors,
2286 	        test_bit(Faulty, &rdev->flags), test_bit(In_sync, &rdev->flags),
2287 	        rdev->desc_nr);
2288 	if (rdev->sb_loaded) {
2289 		printk(KERN_INFO "md: rdev superblock (MJ:%d):\n", major_version);
2290 		switch (major_version) {
2291 		case 0:
2292 			print_sb_90(page_address(rdev->sb_page));
2293 			break;
2294 		case 1:
2295 			print_sb_1(page_address(rdev->sb_page));
2296 			break;
2297 		}
2298 	} else
2299 		printk(KERN_INFO "md: no rdev superblock!\n");
2300 }
2301 
md_print_devices(void)2302 static void md_print_devices(void)
2303 {
2304 	struct list_head *tmp;
2305 	struct md_rdev *rdev;
2306 	struct mddev *mddev;
2307 	char b[BDEVNAME_SIZE];
2308 
2309 	printk("\n");
2310 	printk("md:	**********************************\n");
2311 	printk("md:	* <COMPLETE RAID STATE PRINTOUT> *\n");
2312 	printk("md:	**********************************\n");
2313 	for_each_mddev(mddev, tmp) {
2314 
2315 		if (mddev->bitmap)
2316 			bitmap_print_sb(mddev->bitmap);
2317 		else
2318 			printk("%s: ", mdname(mddev));
2319 		rdev_for_each(rdev, mddev)
2320 			printk("<%s>", bdevname(rdev->bdev,b));
2321 		printk("\n");
2322 
2323 		rdev_for_each(rdev, mddev)
2324 			print_rdev(rdev, mddev->major_version);
2325 	}
2326 	printk("md:	**********************************\n");
2327 	printk("\n");
2328 }
2329 
2330 
sync_sbs(struct mddev * mddev,int nospares)2331 static void sync_sbs(struct mddev * mddev, int nospares)
2332 {
2333 	/* Update each superblock (in-memory image), but
2334 	 * if we are allowed to, skip spares which already
2335 	 * have the right event counter, or have one earlier
2336 	 * (which would mean they aren't being marked as dirty
2337 	 * with the rest of the array)
2338 	 */
2339 	struct md_rdev *rdev;
2340 	rdev_for_each(rdev, mddev) {
2341 		if (rdev->sb_events == mddev->events ||
2342 		    (nospares &&
2343 		     rdev->raid_disk < 0 &&
2344 		     rdev->sb_events+1 == mddev->events)) {
2345 			/* Don't update this superblock */
2346 			rdev->sb_loaded = 2;
2347 		} else {
2348 			sync_super(mddev, rdev);
2349 			rdev->sb_loaded = 1;
2350 		}
2351 	}
2352 }
2353 
md_update_sb(struct mddev * mddev,int force_change)2354 static void md_update_sb(struct mddev * mddev, int force_change)
2355 {
2356 	struct md_rdev *rdev;
2357 	int sync_req;
2358 	int nospares = 0;
2359 	int any_badblocks_changed = 0;
2360 
2361 repeat:
2362 	/* First make sure individual recovery_offsets are correct */
2363 	rdev_for_each(rdev, mddev) {
2364 		if (rdev->raid_disk >= 0 &&
2365 		    mddev->delta_disks >= 0 &&
2366 		    !test_bit(In_sync, &rdev->flags) &&
2367 		    mddev->curr_resync_completed > rdev->recovery_offset)
2368 				rdev->recovery_offset = mddev->curr_resync_completed;
2369 
2370 	}
2371 	if (!mddev->persistent) {
2372 		clear_bit(MD_CHANGE_CLEAN, &mddev->flags);
2373 		clear_bit(MD_CHANGE_DEVS, &mddev->flags);
2374 		if (!mddev->external) {
2375 			clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2376 			rdev_for_each(rdev, mddev) {
2377 				if (rdev->badblocks.changed) {
2378 					rdev->badblocks.changed = 0;
2379 					md_ack_all_badblocks(&rdev->badblocks);
2380 					md_error(mddev, rdev);
2381 				}
2382 				clear_bit(Blocked, &rdev->flags);
2383 				clear_bit(BlockedBadBlocks, &rdev->flags);
2384 				wake_up(&rdev->blocked_wait);
2385 			}
2386 		}
2387 		wake_up(&mddev->sb_wait);
2388 		return;
2389 	}
2390 
2391 	spin_lock_irq(&mddev->write_lock);
2392 
2393 	mddev->utime = get_seconds();
2394 
2395 	if (test_and_clear_bit(MD_CHANGE_DEVS, &mddev->flags))
2396 		force_change = 1;
2397 	if (test_and_clear_bit(MD_CHANGE_CLEAN, &mddev->flags))
2398 		/* just a clean<-> dirty transition, possibly leave spares alone,
2399 		 * though if events isn't the right even/odd, we will have to do
2400 		 * spares after all
2401 		 */
2402 		nospares = 1;
2403 	if (force_change)
2404 		nospares = 0;
2405 	if (mddev->degraded)
2406 		/* If the array is degraded, then skipping spares is both
2407 		 * dangerous and fairly pointless.
2408 		 * Dangerous because a device that was removed from the array
2409 		 * might have a event_count that still looks up-to-date,
2410 		 * so it can be re-added without a resync.
2411 		 * Pointless because if there are any spares to skip,
2412 		 * then a recovery will happen and soon that array won't
2413 		 * be degraded any more and the spare can go back to sleep then.
2414 		 */
2415 		nospares = 0;
2416 
2417 	sync_req = mddev->in_sync;
2418 
2419 	/* If this is just a dirty<->clean transition, and the array is clean
2420 	 * and 'events' is odd, we can roll back to the previous clean state */
2421 	if (nospares
2422 	    && (mddev->in_sync && mddev->recovery_cp == MaxSector)
2423 	    && mddev->can_decrease_events
2424 	    && mddev->events != 1) {
2425 		mddev->events--;
2426 		mddev->can_decrease_events = 0;
2427 	} else {
2428 		/* otherwise we have to go forward and ... */
2429 		mddev->events ++;
2430 		mddev->can_decrease_events = nospares;
2431 	}
2432 
2433 	if (!mddev->events) {
2434 		/*
2435 		 * oops, this 64-bit counter should never wrap.
2436 		 * Either we are in around ~1 trillion A.C., assuming
2437 		 * 1 reboot per second, or we have a bug:
2438 		 */
2439 		MD_BUG();
2440 		mddev->events --;
2441 	}
2442 
2443 	rdev_for_each(rdev, mddev) {
2444 		if (rdev->badblocks.changed)
2445 			any_badblocks_changed++;
2446 		if (test_bit(Faulty, &rdev->flags))
2447 			set_bit(FaultRecorded, &rdev->flags);
2448 	}
2449 
2450 	sync_sbs(mddev, nospares);
2451 	spin_unlock_irq(&mddev->write_lock);
2452 
2453 	pr_debug("md: updating %s RAID superblock on device (in sync %d)\n",
2454 		 mdname(mddev), mddev->in_sync);
2455 
2456 	bitmap_update_sb(mddev->bitmap);
2457 	rdev_for_each(rdev, mddev) {
2458 		char b[BDEVNAME_SIZE];
2459 
2460 		if (rdev->sb_loaded != 1)
2461 			continue; /* no noise on spare devices */
2462 
2463 		if (!test_bit(Faulty, &rdev->flags) &&
2464 		    rdev->saved_raid_disk == -1) {
2465 			md_super_write(mddev,rdev,
2466 				       rdev->sb_start, rdev->sb_size,
2467 				       rdev->sb_page);
2468 			pr_debug("md: (write) %s's sb offset: %llu\n",
2469 				 bdevname(rdev->bdev, b),
2470 				 (unsigned long long)rdev->sb_start);
2471 			rdev->sb_events = mddev->events;
2472 			if (rdev->badblocks.size) {
2473 				md_super_write(mddev, rdev,
2474 					       rdev->badblocks.sector,
2475 					       rdev->badblocks.size << 9,
2476 					       rdev->bb_page);
2477 				rdev->badblocks.size = 0;
2478 			}
2479 
2480 		} else if (test_bit(Faulty, &rdev->flags))
2481 			pr_debug("md: %s (skipping faulty)\n",
2482 				 bdevname(rdev->bdev, b));
2483 		else
2484 			pr_debug("(skipping incremental s/r ");
2485 
2486 		if (mddev->level == LEVEL_MULTIPATH)
2487 			/* only need to write one superblock... */
2488 			break;
2489 	}
2490 	md_super_wait(mddev);
2491 	/* if there was a failure, MD_CHANGE_DEVS was set, and we re-write super */
2492 
2493 	spin_lock_irq(&mddev->write_lock);
2494 	if (mddev->in_sync != sync_req ||
2495 	    test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
2496 		/* have to write it out again */
2497 		spin_unlock_irq(&mddev->write_lock);
2498 		goto repeat;
2499 	}
2500 	clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2501 	spin_unlock_irq(&mddev->write_lock);
2502 	wake_up(&mddev->sb_wait);
2503 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
2504 		sysfs_notify(&mddev->kobj, NULL, "sync_completed");
2505 
2506 	rdev_for_each(rdev, mddev) {
2507 		if (test_and_clear_bit(FaultRecorded, &rdev->flags))
2508 			clear_bit(Blocked, &rdev->flags);
2509 
2510 		if (any_badblocks_changed)
2511 			md_ack_all_badblocks(&rdev->badblocks);
2512 		clear_bit(BlockedBadBlocks, &rdev->flags);
2513 		wake_up(&rdev->blocked_wait);
2514 	}
2515 }
2516 
2517 /* words written to sysfs files may, or may not, be \n terminated.
2518  * We want to accept with case. For this we use cmd_match.
2519  */
cmd_match(const char * cmd,const char * str)2520 static int cmd_match(const char *cmd, const char *str)
2521 {
2522 	/* See if cmd, written into a sysfs file, matches
2523 	 * str.  They must either be the same, or cmd can
2524 	 * have a trailing newline
2525 	 */
2526 	while (*cmd && *str && *cmd == *str) {
2527 		cmd++;
2528 		str++;
2529 	}
2530 	if (*cmd == '\n')
2531 		cmd++;
2532 	if (*str || *cmd)
2533 		return 0;
2534 	return 1;
2535 }
2536 
2537 struct rdev_sysfs_entry {
2538 	struct attribute attr;
2539 	ssize_t (*show)(struct md_rdev *, char *);
2540 	ssize_t (*store)(struct md_rdev *, const char *, size_t);
2541 };
2542 
2543 static ssize_t
state_show(struct md_rdev * rdev,char * page)2544 state_show(struct md_rdev *rdev, char *page)
2545 {
2546 	char *sep = "";
2547 	size_t len = 0;
2548 
2549 	if (test_bit(Faulty, &rdev->flags) ||
2550 	    rdev->badblocks.unacked_exist) {
2551 		len+= sprintf(page+len, "%sfaulty",sep);
2552 		sep = ",";
2553 	}
2554 	if (test_bit(In_sync, &rdev->flags)) {
2555 		len += sprintf(page+len, "%sin_sync",sep);
2556 		sep = ",";
2557 	}
2558 	if (test_bit(WriteMostly, &rdev->flags)) {
2559 		len += sprintf(page+len, "%swrite_mostly",sep);
2560 		sep = ",";
2561 	}
2562 	if (test_bit(Blocked, &rdev->flags) ||
2563 	    (rdev->badblocks.unacked_exist
2564 	     && !test_bit(Faulty, &rdev->flags))) {
2565 		len += sprintf(page+len, "%sblocked", sep);
2566 		sep = ",";
2567 	}
2568 	if (!test_bit(Faulty, &rdev->flags) &&
2569 	    !test_bit(In_sync, &rdev->flags)) {
2570 		len += sprintf(page+len, "%sspare", sep);
2571 		sep = ",";
2572 	}
2573 	if (test_bit(WriteErrorSeen, &rdev->flags)) {
2574 		len += sprintf(page+len, "%swrite_error", sep);
2575 		sep = ",";
2576 	}
2577 	if (test_bit(WantReplacement, &rdev->flags)) {
2578 		len += sprintf(page+len, "%swant_replacement", sep);
2579 		sep = ",";
2580 	}
2581 	if (test_bit(Replacement, &rdev->flags)) {
2582 		len += sprintf(page+len, "%sreplacement", sep);
2583 		sep = ",";
2584 	}
2585 
2586 	return len+sprintf(page+len, "\n");
2587 }
2588 
2589 static ssize_t
state_store(struct md_rdev * rdev,const char * buf,size_t len)2590 state_store(struct md_rdev *rdev, const char *buf, size_t len)
2591 {
2592 	/* can write
2593 	 *  faulty  - simulates an error
2594 	 *  remove  - disconnects the device
2595 	 *  writemostly - sets write_mostly
2596 	 *  -writemostly - clears write_mostly
2597 	 *  blocked - sets the Blocked flags
2598 	 *  -blocked - clears the Blocked and possibly simulates an error
2599 	 *  insync - sets Insync providing device isn't active
2600 	 *  write_error - sets WriteErrorSeen
2601 	 *  -write_error - clears WriteErrorSeen
2602 	 */
2603 	int err = -EINVAL;
2604 	if (cmd_match(buf, "faulty") && rdev->mddev->pers) {
2605 		md_error(rdev->mddev, rdev);
2606 		if (test_bit(Faulty, &rdev->flags))
2607 			err = 0;
2608 		else
2609 			err = -EBUSY;
2610 	} else if (cmd_match(buf, "remove")) {
2611 		if (rdev->raid_disk >= 0)
2612 			err = -EBUSY;
2613 		else {
2614 			struct mddev *mddev = rdev->mddev;
2615 			kick_rdev_from_array(rdev);
2616 			if (mddev->pers)
2617 				md_update_sb(mddev, 1);
2618 			md_new_event(mddev);
2619 			err = 0;
2620 		}
2621 	} else if (cmd_match(buf, "writemostly")) {
2622 		set_bit(WriteMostly, &rdev->flags);
2623 		err = 0;
2624 	} else if (cmd_match(buf, "-writemostly")) {
2625 		clear_bit(WriteMostly, &rdev->flags);
2626 		err = 0;
2627 	} else if (cmd_match(buf, "blocked")) {
2628 		set_bit(Blocked, &rdev->flags);
2629 		err = 0;
2630 	} else if (cmd_match(buf, "-blocked")) {
2631 		if (!test_bit(Faulty, &rdev->flags) &&
2632 		    rdev->badblocks.unacked_exist) {
2633 			/* metadata handler doesn't understand badblocks,
2634 			 * so we need to fail the device
2635 			 */
2636 			md_error(rdev->mddev, rdev);
2637 		}
2638 		clear_bit(Blocked, &rdev->flags);
2639 		clear_bit(BlockedBadBlocks, &rdev->flags);
2640 		wake_up(&rdev->blocked_wait);
2641 		set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2642 		md_wakeup_thread(rdev->mddev->thread);
2643 
2644 		err = 0;
2645 	} else if (cmd_match(buf, "insync") && rdev->raid_disk == -1) {
2646 		set_bit(In_sync, &rdev->flags);
2647 		err = 0;
2648 	} else if (cmd_match(buf, "write_error")) {
2649 		set_bit(WriteErrorSeen, &rdev->flags);
2650 		err = 0;
2651 	} else if (cmd_match(buf, "-write_error")) {
2652 		clear_bit(WriteErrorSeen, &rdev->flags);
2653 		err = 0;
2654 	} else if (cmd_match(buf, "want_replacement")) {
2655 		/* Any non-spare device that is not a replacement can
2656 		 * become want_replacement at any time, but we then need to
2657 		 * check if recovery is needed.
2658 		 */
2659 		if (rdev->raid_disk >= 0 &&
2660 		    !test_bit(Replacement, &rdev->flags))
2661 			set_bit(WantReplacement, &rdev->flags);
2662 		set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2663 		md_wakeup_thread(rdev->mddev->thread);
2664 		err = 0;
2665 	} else if (cmd_match(buf, "-want_replacement")) {
2666 		/* Clearing 'want_replacement' is always allowed.
2667 		 * Once replacements starts it is too late though.
2668 		 */
2669 		err = 0;
2670 		clear_bit(WantReplacement, &rdev->flags);
2671 	} else if (cmd_match(buf, "replacement")) {
2672 		/* Can only set a device as a replacement when array has not
2673 		 * yet been started.  Once running, replacement is automatic
2674 		 * from spares, or by assigning 'slot'.
2675 		 */
2676 		if (rdev->mddev->pers)
2677 			err = -EBUSY;
2678 		else {
2679 			set_bit(Replacement, &rdev->flags);
2680 			err = 0;
2681 		}
2682 	} else if (cmd_match(buf, "-replacement")) {
2683 		/* Similarly, can only clear Replacement before start */
2684 		if (rdev->mddev->pers)
2685 			err = -EBUSY;
2686 		else {
2687 			clear_bit(Replacement, &rdev->flags);
2688 			err = 0;
2689 		}
2690 	}
2691 	if (!err)
2692 		sysfs_notify_dirent_safe(rdev->sysfs_state);
2693 	return err ? err : len;
2694 }
2695 static struct rdev_sysfs_entry rdev_state =
2696 __ATTR(state, S_IRUGO|S_IWUSR, state_show, state_store);
2697 
2698 static ssize_t
errors_show(struct md_rdev * rdev,char * page)2699 errors_show(struct md_rdev *rdev, char *page)
2700 {
2701 	return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors));
2702 }
2703 
2704 static ssize_t
errors_store(struct md_rdev * rdev,const char * buf,size_t len)2705 errors_store(struct md_rdev *rdev, const char *buf, size_t len)
2706 {
2707 	char *e;
2708 	unsigned long n = simple_strtoul(buf, &e, 10);
2709 	if (*buf && (*e == 0 || *e == '\n')) {
2710 		atomic_set(&rdev->corrected_errors, n);
2711 		return len;
2712 	}
2713 	return -EINVAL;
2714 }
2715 static struct rdev_sysfs_entry rdev_errors =
2716 __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store);
2717 
2718 static ssize_t
slot_show(struct md_rdev * rdev,char * page)2719 slot_show(struct md_rdev *rdev, char *page)
2720 {
2721 	if (rdev->raid_disk < 0)
2722 		return sprintf(page, "none\n");
2723 	else
2724 		return sprintf(page, "%d\n", rdev->raid_disk);
2725 }
2726 
2727 static ssize_t
slot_store(struct md_rdev * rdev,const char * buf,size_t len)2728 slot_store(struct md_rdev *rdev, const char *buf, size_t len)
2729 {
2730 	char *e;
2731 	int err;
2732 	int slot = simple_strtoul(buf, &e, 10);
2733 	if (strncmp(buf, "none", 4)==0)
2734 		slot = -1;
2735 	else if (e==buf || (*e && *e!= '\n'))
2736 		return -EINVAL;
2737 	if (rdev->mddev->pers && slot == -1) {
2738 		/* Setting 'slot' on an active array requires also
2739 		 * updating the 'rd%d' link, and communicating
2740 		 * with the personality with ->hot_*_disk.
2741 		 * For now we only support removing
2742 		 * failed/spare devices.  This normally happens automatically,
2743 		 * but not when the metadata is externally managed.
2744 		 */
2745 		if (rdev->raid_disk == -1)
2746 			return -EEXIST;
2747 		/* personality does all needed checks */
2748 		if (rdev->mddev->pers->hot_remove_disk == NULL)
2749 			return -EINVAL;
2750 		err = rdev->mddev->pers->
2751 			hot_remove_disk(rdev->mddev, rdev);
2752 		if (err)
2753 			return err;
2754 		sysfs_unlink_rdev(rdev->mddev, rdev);
2755 		rdev->raid_disk = -1;
2756 		set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2757 		md_wakeup_thread(rdev->mddev->thread);
2758 	} else if (rdev->mddev->pers) {
2759 		/* Activating a spare .. or possibly reactivating
2760 		 * if we ever get bitmaps working here.
2761 		 */
2762 
2763 		if (rdev->raid_disk != -1)
2764 			return -EBUSY;
2765 
2766 		if (test_bit(MD_RECOVERY_RUNNING, &rdev->mddev->recovery))
2767 			return -EBUSY;
2768 
2769 		if (rdev->mddev->pers->hot_add_disk == NULL)
2770 			return -EINVAL;
2771 
2772 		if (slot >= rdev->mddev->raid_disks &&
2773 		    slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
2774 			return -ENOSPC;
2775 
2776 		rdev->raid_disk = slot;
2777 		if (test_bit(In_sync, &rdev->flags))
2778 			rdev->saved_raid_disk = slot;
2779 		else
2780 			rdev->saved_raid_disk = -1;
2781 		clear_bit(In_sync, &rdev->flags);
2782 		err = rdev->mddev->pers->
2783 			hot_add_disk(rdev->mddev, rdev);
2784 		if (err) {
2785 			rdev->raid_disk = -1;
2786 			return err;
2787 		} else
2788 			sysfs_notify_dirent_safe(rdev->sysfs_state);
2789 		if (sysfs_link_rdev(rdev->mddev, rdev))
2790 			/* failure here is OK */;
2791 		/* don't wakeup anyone, leave that to userspace. */
2792 	} else {
2793 		if (slot >= rdev->mddev->raid_disks &&
2794 		    slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
2795 			return -ENOSPC;
2796 		rdev->raid_disk = slot;
2797 		/* assume it is working */
2798 		clear_bit(Faulty, &rdev->flags);
2799 		clear_bit(WriteMostly, &rdev->flags);
2800 		set_bit(In_sync, &rdev->flags);
2801 		sysfs_notify_dirent_safe(rdev->sysfs_state);
2802 	}
2803 	return len;
2804 }
2805 
2806 
2807 static struct rdev_sysfs_entry rdev_slot =
2808 __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store);
2809 
2810 static ssize_t
offset_show(struct md_rdev * rdev,char * page)2811 offset_show(struct md_rdev *rdev, char *page)
2812 {
2813 	return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset);
2814 }
2815 
2816 static ssize_t
offset_store(struct md_rdev * rdev,const char * buf,size_t len)2817 offset_store(struct md_rdev *rdev, const char *buf, size_t len)
2818 {
2819 	char *e;
2820 	unsigned long long offset = simple_strtoull(buf, &e, 10);
2821 	if (e==buf || (*e && *e != '\n'))
2822 		return -EINVAL;
2823 	if (rdev->mddev->pers && rdev->raid_disk >= 0)
2824 		return -EBUSY;
2825 	if (rdev->sectors && rdev->mddev->external)
2826 		/* Must set offset before size, so overlap checks
2827 		 * can be sane */
2828 		return -EBUSY;
2829 	rdev->data_offset = offset;
2830 	return len;
2831 }
2832 
2833 static struct rdev_sysfs_entry rdev_offset =
2834 __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store);
2835 
2836 static ssize_t
rdev_size_show(struct md_rdev * rdev,char * page)2837 rdev_size_show(struct md_rdev *rdev, char *page)
2838 {
2839 	return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2);
2840 }
2841 
overlaps(sector_t s1,sector_t l1,sector_t s2,sector_t l2)2842 static int overlaps(sector_t s1, sector_t l1, sector_t s2, sector_t l2)
2843 {
2844 	/* check if two start/length pairs overlap */
2845 	if (s1+l1 <= s2)
2846 		return 0;
2847 	if (s2+l2 <= s1)
2848 		return 0;
2849 	return 1;
2850 }
2851 
strict_blocks_to_sectors(const char * buf,sector_t * sectors)2852 static int strict_blocks_to_sectors(const char *buf, sector_t *sectors)
2853 {
2854 	unsigned long long blocks;
2855 	sector_t new;
2856 
2857 	if (strict_strtoull(buf, 10, &blocks) < 0)
2858 		return -EINVAL;
2859 
2860 	if (blocks & 1ULL << (8 * sizeof(blocks) - 1))
2861 		return -EINVAL; /* sector conversion overflow */
2862 
2863 	new = blocks * 2;
2864 	if (new != blocks * 2)
2865 		return -EINVAL; /* unsigned long long to sector_t overflow */
2866 
2867 	*sectors = new;
2868 	return 0;
2869 }
2870 
2871 static ssize_t
rdev_size_store(struct md_rdev * rdev,const char * buf,size_t len)2872 rdev_size_store(struct md_rdev *rdev, const char *buf, size_t len)
2873 {
2874 	struct mddev *my_mddev = rdev->mddev;
2875 	sector_t oldsectors = rdev->sectors;
2876 	sector_t sectors;
2877 
2878 	if (strict_blocks_to_sectors(buf, &sectors) < 0)
2879 		return -EINVAL;
2880 	if (my_mddev->pers && rdev->raid_disk >= 0) {
2881 		if (my_mddev->persistent) {
2882 			sectors = super_types[my_mddev->major_version].
2883 				rdev_size_change(rdev, sectors);
2884 			if (!sectors)
2885 				return -EBUSY;
2886 		} else if (!sectors)
2887 			sectors = (i_size_read(rdev->bdev->bd_inode) >> 9) -
2888 				rdev->data_offset;
2889 		if (!my_mddev->pers->resize)
2890 			/* Cannot change size for RAID0 or Linear etc */
2891 			return -EINVAL;
2892 	}
2893 	if (sectors < my_mddev->dev_sectors)
2894 		return -EINVAL; /* component must fit device */
2895 
2896 	rdev->sectors = sectors;
2897 	if (sectors > oldsectors && my_mddev->external) {
2898 		/* need to check that all other rdevs with the same ->bdev
2899 		 * do not overlap.  We need to unlock the mddev to avoid
2900 		 * a deadlock.  We have already changed rdev->sectors, and if
2901 		 * we have to change it back, we will have the lock again.
2902 		 */
2903 		struct mddev *mddev;
2904 		int overlap = 0;
2905 		struct list_head *tmp;
2906 
2907 		mddev_unlock(my_mddev);
2908 		for_each_mddev(mddev, tmp) {
2909 			struct md_rdev *rdev2;
2910 
2911 			mddev_lock(mddev);
2912 			rdev_for_each(rdev2, mddev)
2913 				if (rdev->bdev == rdev2->bdev &&
2914 				    rdev != rdev2 &&
2915 				    overlaps(rdev->data_offset, rdev->sectors,
2916 					     rdev2->data_offset,
2917 					     rdev2->sectors)) {
2918 					overlap = 1;
2919 					break;
2920 				}
2921 			mddev_unlock(mddev);
2922 			if (overlap) {
2923 				mddev_put(mddev);
2924 				break;
2925 			}
2926 		}
2927 		mddev_lock(my_mddev);
2928 		if (overlap) {
2929 			/* Someone else could have slipped in a size
2930 			 * change here, but doing so is just silly.
2931 			 * We put oldsectors back because we *know* it is
2932 			 * safe, and trust userspace not to race with
2933 			 * itself
2934 			 */
2935 			rdev->sectors = oldsectors;
2936 			return -EBUSY;
2937 		}
2938 	}
2939 	return len;
2940 }
2941 
2942 static struct rdev_sysfs_entry rdev_size =
2943 __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store);
2944 
2945 
recovery_start_show(struct md_rdev * rdev,char * page)2946 static ssize_t recovery_start_show(struct md_rdev *rdev, char *page)
2947 {
2948 	unsigned long long recovery_start = rdev->recovery_offset;
2949 
2950 	if (test_bit(In_sync, &rdev->flags) ||
2951 	    recovery_start == MaxSector)
2952 		return sprintf(page, "none\n");
2953 
2954 	return sprintf(page, "%llu\n", recovery_start);
2955 }
2956 
recovery_start_store(struct md_rdev * rdev,const char * buf,size_t len)2957 static ssize_t recovery_start_store(struct md_rdev *rdev, const char *buf, size_t len)
2958 {
2959 	unsigned long long recovery_start;
2960 
2961 	if (cmd_match(buf, "none"))
2962 		recovery_start = MaxSector;
2963 	else if (strict_strtoull(buf, 10, &recovery_start))
2964 		return -EINVAL;
2965 
2966 	if (rdev->mddev->pers &&
2967 	    rdev->raid_disk >= 0)
2968 		return -EBUSY;
2969 
2970 	rdev->recovery_offset = recovery_start;
2971 	if (recovery_start == MaxSector)
2972 		set_bit(In_sync, &rdev->flags);
2973 	else
2974 		clear_bit(In_sync, &rdev->flags);
2975 	return len;
2976 }
2977 
2978 static struct rdev_sysfs_entry rdev_recovery_start =
2979 __ATTR(recovery_start, S_IRUGO|S_IWUSR, recovery_start_show, recovery_start_store);
2980 
2981 
2982 static ssize_t
2983 badblocks_show(struct badblocks *bb, char *page, int unack);
2984 static ssize_t
2985 badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack);
2986 
bb_show(struct md_rdev * rdev,char * page)2987 static ssize_t bb_show(struct md_rdev *rdev, char *page)
2988 {
2989 	return badblocks_show(&rdev->badblocks, page, 0);
2990 }
bb_store(struct md_rdev * rdev,const char * page,size_t len)2991 static ssize_t bb_store(struct md_rdev *rdev, const char *page, size_t len)
2992 {
2993 	int rv = badblocks_store(&rdev->badblocks, page, len, 0);
2994 	/* Maybe that ack was all we needed */
2995 	if (test_and_clear_bit(BlockedBadBlocks, &rdev->flags))
2996 		wake_up(&rdev->blocked_wait);
2997 	return rv;
2998 }
2999 static struct rdev_sysfs_entry rdev_bad_blocks =
3000 __ATTR(bad_blocks, S_IRUGO|S_IWUSR, bb_show, bb_store);
3001 
3002 
ubb_show(struct md_rdev * rdev,char * page)3003 static ssize_t ubb_show(struct md_rdev *rdev, char *page)
3004 {
3005 	return badblocks_show(&rdev->badblocks, page, 1);
3006 }
ubb_store(struct md_rdev * rdev,const char * page,size_t len)3007 static ssize_t ubb_store(struct md_rdev *rdev, const char *page, size_t len)
3008 {
3009 	return badblocks_store(&rdev->badblocks, page, len, 1);
3010 }
3011 static struct rdev_sysfs_entry rdev_unack_bad_blocks =
3012 __ATTR(unacknowledged_bad_blocks, S_IRUGO|S_IWUSR, ubb_show, ubb_store);
3013 
3014 static struct attribute *rdev_default_attrs[] = {
3015 	&rdev_state.attr,
3016 	&rdev_errors.attr,
3017 	&rdev_slot.attr,
3018 	&rdev_offset.attr,
3019 	&rdev_size.attr,
3020 	&rdev_recovery_start.attr,
3021 	&rdev_bad_blocks.attr,
3022 	&rdev_unack_bad_blocks.attr,
3023 	NULL,
3024 };
3025 static ssize_t
rdev_attr_show(struct kobject * kobj,struct attribute * attr,char * page)3026 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
3027 {
3028 	struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
3029 	struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
3030 	struct mddev *mddev = rdev->mddev;
3031 	ssize_t rv;
3032 
3033 	if (!entry->show)
3034 		return -EIO;
3035 
3036 	rv = mddev ? mddev_lock(mddev) : -EBUSY;
3037 	if (!rv) {
3038 		if (rdev->mddev == NULL)
3039 			rv = -EBUSY;
3040 		else
3041 			rv = entry->show(rdev, page);
3042 		mddev_unlock(mddev);
3043 	}
3044 	return rv;
3045 }
3046 
3047 static ssize_t
rdev_attr_store(struct kobject * kobj,struct attribute * attr,const char * page,size_t length)3048 rdev_attr_store(struct kobject *kobj, struct attribute *attr,
3049 	      const char *page, size_t length)
3050 {
3051 	struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
3052 	struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
3053 	ssize_t rv;
3054 	struct mddev *mddev = rdev->mddev;
3055 
3056 	if (!entry->store)
3057 		return -EIO;
3058 	if (!capable(CAP_SYS_ADMIN))
3059 		return -EACCES;
3060 	rv = mddev ? mddev_lock(mddev): -EBUSY;
3061 	if (!rv) {
3062 		if (rdev->mddev == NULL)
3063 			rv = -EBUSY;
3064 		else
3065 			rv = entry->store(rdev, page, length);
3066 		mddev_unlock(mddev);
3067 	}
3068 	return rv;
3069 }
3070 
rdev_free(struct kobject * ko)3071 static void rdev_free(struct kobject *ko)
3072 {
3073 	struct md_rdev *rdev = container_of(ko, struct md_rdev, kobj);
3074 	kfree(rdev);
3075 }
3076 static const struct sysfs_ops rdev_sysfs_ops = {
3077 	.show		= rdev_attr_show,
3078 	.store		= rdev_attr_store,
3079 };
3080 static struct kobj_type rdev_ktype = {
3081 	.release	= rdev_free,
3082 	.sysfs_ops	= &rdev_sysfs_ops,
3083 	.default_attrs	= rdev_default_attrs,
3084 };
3085 
md_rdev_init(struct md_rdev * rdev)3086 int md_rdev_init(struct md_rdev *rdev)
3087 {
3088 	rdev->desc_nr = -1;
3089 	rdev->saved_raid_disk = -1;
3090 	rdev->raid_disk = -1;
3091 	rdev->flags = 0;
3092 	rdev->data_offset = 0;
3093 	rdev->sb_events = 0;
3094 	rdev->last_read_error.tv_sec  = 0;
3095 	rdev->last_read_error.tv_nsec = 0;
3096 	rdev->sb_loaded = 0;
3097 	rdev->bb_page = NULL;
3098 	atomic_set(&rdev->nr_pending, 0);
3099 	atomic_set(&rdev->read_errors, 0);
3100 	atomic_set(&rdev->corrected_errors, 0);
3101 
3102 	INIT_LIST_HEAD(&rdev->same_set);
3103 	init_waitqueue_head(&rdev->blocked_wait);
3104 
3105 	/* Add space to store bad block list.
3106 	 * This reserves the space even on arrays where it cannot
3107 	 * be used - I wonder if that matters
3108 	 */
3109 	rdev->badblocks.count = 0;
3110 	rdev->badblocks.shift = -1; /* disabled until explicitly enabled */
3111 	rdev->badblocks.page = kmalloc(PAGE_SIZE, GFP_KERNEL);
3112 	seqlock_init(&rdev->badblocks.lock);
3113 	if (rdev->badblocks.page == NULL)
3114 		return -ENOMEM;
3115 
3116 	return 0;
3117 }
3118 EXPORT_SYMBOL_GPL(md_rdev_init);
3119 /*
3120  * Import a device. If 'super_format' >= 0, then sanity check the superblock
3121  *
3122  * mark the device faulty if:
3123  *
3124  *   - the device is nonexistent (zero size)
3125  *   - the device has no valid superblock
3126  *
3127  * a faulty rdev _never_ has rdev->sb set.
3128  */
md_import_device(dev_t newdev,int super_format,int super_minor)3129 static struct md_rdev *md_import_device(dev_t newdev, int super_format, int super_minor)
3130 {
3131 	char b[BDEVNAME_SIZE];
3132 	int err;
3133 	struct md_rdev *rdev;
3134 	sector_t size;
3135 
3136 	rdev = kzalloc(sizeof(*rdev), GFP_KERNEL);
3137 	if (!rdev) {
3138 		printk(KERN_ERR "md: could not alloc mem for new device!\n");
3139 		return ERR_PTR(-ENOMEM);
3140 	}
3141 
3142 	err = md_rdev_init(rdev);
3143 	if (err)
3144 		goto abort_free;
3145 	err = alloc_disk_sb(rdev);
3146 	if (err)
3147 		goto abort_free;
3148 
3149 	err = lock_rdev(rdev, newdev, super_format == -2);
3150 	if (err)
3151 		goto abort_free;
3152 
3153 	kobject_init(&rdev->kobj, &rdev_ktype);
3154 
3155 	size = i_size_read(rdev->bdev->bd_inode) >> BLOCK_SIZE_BITS;
3156 	if (!size) {
3157 		printk(KERN_WARNING
3158 			"md: %s has zero or unknown size, marking faulty!\n",
3159 			bdevname(rdev->bdev,b));
3160 		err = -EINVAL;
3161 		goto abort_free;
3162 	}
3163 
3164 	if (super_format >= 0) {
3165 		err = super_types[super_format].
3166 			load_super(rdev, NULL, super_minor);
3167 		if (err == -EINVAL) {
3168 			printk(KERN_WARNING
3169 				"md: %s does not have a valid v%d.%d "
3170 			       "superblock, not importing!\n",
3171 				bdevname(rdev->bdev,b),
3172 			       super_format, super_minor);
3173 			goto abort_free;
3174 		}
3175 		if (err < 0) {
3176 			printk(KERN_WARNING
3177 				"md: could not read %s's sb, not importing!\n",
3178 				bdevname(rdev->bdev,b));
3179 			goto abort_free;
3180 		}
3181 	}
3182 
3183 	return rdev;
3184 
3185 abort_free:
3186 	if (rdev->bdev)
3187 		unlock_rdev(rdev);
3188 	free_disk_sb(rdev);
3189 	kfree(rdev->badblocks.page);
3190 	kfree(rdev);
3191 	return ERR_PTR(err);
3192 }
3193 
3194 /*
3195  * Check a full RAID array for plausibility
3196  */
3197 
3198 
analyze_sbs(struct mddev * mddev)3199 static void analyze_sbs(struct mddev * mddev)
3200 {
3201 	int i;
3202 	struct md_rdev *rdev, *freshest, *tmp;
3203 	char b[BDEVNAME_SIZE];
3204 
3205 	freshest = NULL;
3206 	rdev_for_each_safe(rdev, tmp, mddev)
3207 		switch (super_types[mddev->major_version].
3208 			load_super(rdev, freshest, mddev->minor_version)) {
3209 		case 1:
3210 			freshest = rdev;
3211 			break;
3212 		case 0:
3213 			break;
3214 		default:
3215 			printk( KERN_ERR \
3216 				"md: fatal superblock inconsistency in %s"
3217 				" -- removing from array\n",
3218 				bdevname(rdev->bdev,b));
3219 			kick_rdev_from_array(rdev);
3220 		}
3221 
3222 
3223 	super_types[mddev->major_version].
3224 		validate_super(mddev, freshest);
3225 
3226 	i = 0;
3227 	rdev_for_each_safe(rdev, tmp, mddev) {
3228 		if (mddev->max_disks &&
3229 		    (rdev->desc_nr >= mddev->max_disks ||
3230 		     i > mddev->max_disks)) {
3231 			printk(KERN_WARNING
3232 			       "md: %s: %s: only %d devices permitted\n",
3233 			       mdname(mddev), bdevname(rdev->bdev, b),
3234 			       mddev->max_disks);
3235 			kick_rdev_from_array(rdev);
3236 			continue;
3237 		}
3238 		if (rdev != freshest)
3239 			if (super_types[mddev->major_version].
3240 			    validate_super(mddev, rdev)) {
3241 				printk(KERN_WARNING "md: kicking non-fresh %s"
3242 					" from array!\n",
3243 					bdevname(rdev->bdev,b));
3244 				kick_rdev_from_array(rdev);
3245 				continue;
3246 			}
3247 		if (mddev->level == LEVEL_MULTIPATH) {
3248 			rdev->desc_nr = i++;
3249 			rdev->raid_disk = rdev->desc_nr;
3250 			set_bit(In_sync, &rdev->flags);
3251 		} else if (rdev->raid_disk >= (mddev->raid_disks - min(0, mddev->delta_disks))) {
3252 			rdev->raid_disk = -1;
3253 			clear_bit(In_sync, &rdev->flags);
3254 		}
3255 	}
3256 }
3257 
3258 /* Read a fixed-point number.
3259  * Numbers in sysfs attributes should be in "standard" units where
3260  * possible, so time should be in seconds.
3261  * However we internally use a a much smaller unit such as
3262  * milliseconds or jiffies.
3263  * This function takes a decimal number with a possible fractional
3264  * component, and produces an integer which is the result of
3265  * multiplying that number by 10^'scale'.
3266  * all without any floating-point arithmetic.
3267  */
strict_strtoul_scaled(const char * cp,unsigned long * res,int scale)3268 int strict_strtoul_scaled(const char *cp, unsigned long *res, int scale)
3269 {
3270 	unsigned long result = 0;
3271 	long decimals = -1;
3272 	while (isdigit(*cp) || (*cp == '.' && decimals < 0)) {
3273 		if (*cp == '.')
3274 			decimals = 0;
3275 		else if (decimals < scale) {
3276 			unsigned int value;
3277 			value = *cp - '0';
3278 			result = result * 10 + value;
3279 			if (decimals >= 0)
3280 				decimals++;
3281 		}
3282 		cp++;
3283 	}
3284 	if (*cp == '\n')
3285 		cp++;
3286 	if (*cp)
3287 		return -EINVAL;
3288 	if (decimals < 0)
3289 		decimals = 0;
3290 	while (decimals < scale) {
3291 		result *= 10;
3292 		decimals ++;
3293 	}
3294 	*res = result;
3295 	return 0;
3296 }
3297 
3298 
3299 static void md_safemode_timeout(unsigned long data);
3300 
3301 static ssize_t
safe_delay_show(struct mddev * mddev,char * page)3302 safe_delay_show(struct mddev *mddev, char *page)
3303 {
3304 	int msec = (mddev->safemode_delay*1000)/HZ;
3305 	return sprintf(page, "%d.%03d\n", msec/1000, msec%1000);
3306 }
3307 static ssize_t
safe_delay_store(struct mddev * mddev,const char * cbuf,size_t len)3308 safe_delay_store(struct mddev *mddev, const char *cbuf, size_t len)
3309 {
3310 	unsigned long msec;
3311 
3312 	if (strict_strtoul_scaled(cbuf, &msec, 3) < 0)
3313 		return -EINVAL;
3314 	if (msec == 0)
3315 		mddev->safemode_delay = 0;
3316 	else {
3317 		unsigned long old_delay = mddev->safemode_delay;
3318 		mddev->safemode_delay = (msec*HZ)/1000;
3319 		if (mddev->safemode_delay == 0)
3320 			mddev->safemode_delay = 1;
3321 		if (mddev->safemode_delay < old_delay)
3322 			md_safemode_timeout((unsigned long)mddev);
3323 	}
3324 	return len;
3325 }
3326 static struct md_sysfs_entry md_safe_delay =
3327 __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store);
3328 
3329 static ssize_t
level_show(struct mddev * mddev,char * page)3330 level_show(struct mddev *mddev, char *page)
3331 {
3332 	struct md_personality *p = mddev->pers;
3333 	if (p)
3334 		return sprintf(page, "%s\n", p->name);
3335 	else if (mddev->clevel[0])
3336 		return sprintf(page, "%s\n", mddev->clevel);
3337 	else if (mddev->level != LEVEL_NONE)
3338 		return sprintf(page, "%d\n", mddev->level);
3339 	else
3340 		return 0;
3341 }
3342 
3343 static ssize_t
level_store(struct mddev * mddev,const char * buf,size_t len)3344 level_store(struct mddev *mddev, const char *buf, size_t len)
3345 {
3346 	char clevel[16];
3347 	ssize_t rv = len;
3348 	struct md_personality *pers;
3349 	long level;
3350 	void *priv;
3351 	struct md_rdev *rdev;
3352 
3353 	if (mddev->pers == NULL) {
3354 		if (len == 0)
3355 			return 0;
3356 		if (len >= sizeof(mddev->clevel))
3357 			return -ENOSPC;
3358 		strncpy(mddev->clevel, buf, len);
3359 		if (mddev->clevel[len-1] == '\n')
3360 			len--;
3361 		mddev->clevel[len] = 0;
3362 		mddev->level = LEVEL_NONE;
3363 		return rv;
3364 	}
3365 
3366 	/* request to change the personality.  Need to ensure:
3367 	 *  - array is not engaged in resync/recovery/reshape
3368 	 *  - old personality can be suspended
3369 	 *  - new personality will access other array.
3370 	 */
3371 
3372 	if (mddev->sync_thread ||
3373 	    mddev->reshape_position != MaxSector ||
3374 	    mddev->sysfs_active)
3375 		return -EBUSY;
3376 
3377 	if (!mddev->pers->quiesce) {
3378 		printk(KERN_WARNING "md: %s: %s does not support online personality change\n",
3379 		       mdname(mddev), mddev->pers->name);
3380 		return -EINVAL;
3381 	}
3382 
3383 	/* Now find the new personality */
3384 	if (len == 0 || len >= sizeof(clevel))
3385 		return -EINVAL;
3386 	strncpy(clevel, buf, len);
3387 	if (clevel[len-1] == '\n')
3388 		len--;
3389 	clevel[len] = 0;
3390 	if (strict_strtol(clevel, 10, &level))
3391 		level = LEVEL_NONE;
3392 
3393 	if (request_module("md-%s", clevel) != 0)
3394 		request_module("md-level-%s", clevel);
3395 	spin_lock(&pers_lock);
3396 	pers = find_pers(level, clevel);
3397 	if (!pers || !try_module_get(pers->owner)) {
3398 		spin_unlock(&pers_lock);
3399 		printk(KERN_WARNING "md: personality %s not loaded\n", clevel);
3400 		return -EINVAL;
3401 	}
3402 	spin_unlock(&pers_lock);
3403 
3404 	if (pers == mddev->pers) {
3405 		/* Nothing to do! */
3406 		module_put(pers->owner);
3407 		return rv;
3408 	}
3409 	if (!pers->takeover) {
3410 		module_put(pers->owner);
3411 		printk(KERN_WARNING "md: %s: %s does not support personality takeover\n",
3412 		       mdname(mddev), clevel);
3413 		return -EINVAL;
3414 	}
3415 
3416 	rdev_for_each(rdev, mddev)
3417 		rdev->new_raid_disk = rdev->raid_disk;
3418 
3419 	/* ->takeover must set new_* and/or delta_disks
3420 	 * if it succeeds, and may set them when it fails.
3421 	 */
3422 	priv = pers->takeover(mddev);
3423 	if (IS_ERR(priv)) {
3424 		mddev->new_level = mddev->level;
3425 		mddev->new_layout = mddev->layout;
3426 		mddev->new_chunk_sectors = mddev->chunk_sectors;
3427 		mddev->raid_disks -= mddev->delta_disks;
3428 		mddev->delta_disks = 0;
3429 		module_put(pers->owner);
3430 		printk(KERN_WARNING "md: %s: %s would not accept array\n",
3431 		       mdname(mddev), clevel);
3432 		return PTR_ERR(priv);
3433 	}
3434 
3435 	/* Looks like we have a winner */
3436 	mddev_suspend(mddev);
3437 	mddev->pers->stop(mddev);
3438 
3439 	if (mddev->pers->sync_request == NULL &&
3440 	    pers->sync_request != NULL) {
3441 		/* need to add the md_redundancy_group */
3442 		if (sysfs_create_group(&mddev->kobj, &md_redundancy_group))
3443 			printk(KERN_WARNING
3444 			       "md: cannot register extra attributes for %s\n",
3445 			       mdname(mddev));
3446 		mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, NULL, "sync_action");
3447 	}
3448 	if (mddev->pers->sync_request != NULL &&
3449 	    pers->sync_request == NULL) {
3450 		/* need to remove the md_redundancy_group */
3451 		if (mddev->to_remove == NULL)
3452 			mddev->to_remove = &md_redundancy_group;
3453 	}
3454 
3455 	if (mddev->pers->sync_request == NULL &&
3456 	    mddev->external) {
3457 		/* We are converting from a no-redundancy array
3458 		 * to a redundancy array and metadata is managed
3459 		 * externally so we need to be sure that writes
3460 		 * won't block due to a need to transition
3461 		 *      clean->dirty
3462 		 * until external management is started.
3463 		 */
3464 		mddev->in_sync = 0;
3465 		mddev->safemode_delay = 0;
3466 		mddev->safemode = 0;
3467 	}
3468 
3469 	rdev_for_each(rdev, mddev) {
3470 		if (rdev->raid_disk < 0)
3471 			continue;
3472 		if (rdev->new_raid_disk >= mddev->raid_disks)
3473 			rdev->new_raid_disk = -1;
3474 		if (rdev->new_raid_disk == rdev->raid_disk)
3475 			continue;
3476 		sysfs_unlink_rdev(mddev, rdev);
3477 	}
3478 	rdev_for_each(rdev, mddev) {
3479 		if (rdev->raid_disk < 0)
3480 			continue;
3481 		if (rdev->new_raid_disk == rdev->raid_disk)
3482 			continue;
3483 		rdev->raid_disk = rdev->new_raid_disk;
3484 		if (rdev->raid_disk < 0)
3485 			clear_bit(In_sync, &rdev->flags);
3486 		else {
3487 			if (sysfs_link_rdev(mddev, rdev))
3488 				printk(KERN_WARNING "md: cannot register rd%d"
3489 				       " for %s after level change\n",
3490 				       rdev->raid_disk, mdname(mddev));
3491 		}
3492 	}
3493 
3494 	module_put(mddev->pers->owner);
3495 	mddev->pers = pers;
3496 	mddev->private = priv;
3497 	strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
3498 	mddev->level = mddev->new_level;
3499 	mddev->layout = mddev->new_layout;
3500 	mddev->chunk_sectors = mddev->new_chunk_sectors;
3501 	mddev->delta_disks = 0;
3502 	mddev->degraded = 0;
3503 	if (mddev->pers->sync_request == NULL) {
3504 		/* this is now an array without redundancy, so
3505 		 * it must always be in_sync
3506 		 */
3507 		mddev->in_sync = 1;
3508 		del_timer_sync(&mddev->safemode_timer);
3509 	}
3510 	blk_set_stacking_limits(&mddev->queue->limits);
3511 	pers->run(mddev);
3512 	mddev_resume(mddev);
3513 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
3514 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3515 	md_wakeup_thread(mddev->thread);
3516 	sysfs_notify(&mddev->kobj, NULL, "level");
3517 	md_new_event(mddev);
3518 	return rv;
3519 }
3520 
3521 static struct md_sysfs_entry md_level =
3522 __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store);
3523 
3524 
3525 static ssize_t
layout_show(struct mddev * mddev,char * page)3526 layout_show(struct mddev *mddev, char *page)
3527 {
3528 	/* just a number, not meaningful for all levels */
3529 	if (mddev->reshape_position != MaxSector &&
3530 	    mddev->layout != mddev->new_layout)
3531 		return sprintf(page, "%d (%d)\n",
3532 			       mddev->new_layout, mddev->layout);
3533 	return sprintf(page, "%d\n", mddev->layout);
3534 }
3535 
3536 static ssize_t
layout_store(struct mddev * mddev,const char * buf,size_t len)3537 layout_store(struct mddev *mddev, const char *buf, size_t len)
3538 {
3539 	char *e;
3540 	unsigned long n = simple_strtoul(buf, &e, 10);
3541 
3542 	if (!*buf || (*e && *e != '\n'))
3543 		return -EINVAL;
3544 
3545 	if (mddev->pers) {
3546 		int err;
3547 		if (mddev->pers->check_reshape == NULL)
3548 			return -EBUSY;
3549 		mddev->new_layout = n;
3550 		err = mddev->pers->check_reshape(mddev);
3551 		if (err) {
3552 			mddev->new_layout = mddev->layout;
3553 			return err;
3554 		}
3555 	} else {
3556 		mddev->new_layout = n;
3557 		if (mddev->reshape_position == MaxSector)
3558 			mddev->layout = n;
3559 	}
3560 	return len;
3561 }
3562 static struct md_sysfs_entry md_layout =
3563 __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store);
3564 
3565 
3566 static ssize_t
raid_disks_show(struct mddev * mddev,char * page)3567 raid_disks_show(struct mddev *mddev, char *page)
3568 {
3569 	if (mddev->raid_disks == 0)
3570 		return 0;
3571 	if (mddev->reshape_position != MaxSector &&
3572 	    mddev->delta_disks != 0)
3573 		return sprintf(page, "%d (%d)\n", mddev->raid_disks,
3574 			       mddev->raid_disks - mddev->delta_disks);
3575 	return sprintf(page, "%d\n", mddev->raid_disks);
3576 }
3577 
3578 static int update_raid_disks(struct mddev *mddev, int raid_disks);
3579 
3580 static ssize_t
raid_disks_store(struct mddev * mddev,const char * buf,size_t len)3581 raid_disks_store(struct mddev *mddev, const char *buf, size_t len)
3582 {
3583 	char *e;
3584 	int rv = 0;
3585 	unsigned long n = simple_strtoul(buf, &e, 10);
3586 
3587 	if (!*buf || (*e && *e != '\n'))
3588 		return -EINVAL;
3589 
3590 	if (mddev->pers)
3591 		rv = update_raid_disks(mddev, n);
3592 	else if (mddev->reshape_position != MaxSector) {
3593 		int olddisks = mddev->raid_disks - mddev->delta_disks;
3594 		mddev->delta_disks = n - olddisks;
3595 		mddev->raid_disks = n;
3596 	} else
3597 		mddev->raid_disks = n;
3598 	return rv ? rv : len;
3599 }
3600 static struct md_sysfs_entry md_raid_disks =
3601 __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store);
3602 
3603 static ssize_t
chunk_size_show(struct mddev * mddev,char * page)3604 chunk_size_show(struct mddev *mddev, char *page)
3605 {
3606 	if (mddev->reshape_position != MaxSector &&
3607 	    mddev->chunk_sectors != mddev->new_chunk_sectors)
3608 		return sprintf(page, "%d (%d)\n",
3609 			       mddev->new_chunk_sectors << 9,
3610 			       mddev->chunk_sectors << 9);
3611 	return sprintf(page, "%d\n", mddev->chunk_sectors << 9);
3612 }
3613 
3614 static ssize_t
chunk_size_store(struct mddev * mddev,const char * buf,size_t len)3615 chunk_size_store(struct mddev *mddev, const char *buf, size_t len)
3616 {
3617 	char *e;
3618 	unsigned long n = simple_strtoul(buf, &e, 10);
3619 
3620 	if (!*buf || (*e && *e != '\n'))
3621 		return -EINVAL;
3622 
3623 	if (mddev->pers) {
3624 		int err;
3625 		if (mddev->pers->check_reshape == NULL)
3626 			return -EBUSY;
3627 		mddev->new_chunk_sectors = n >> 9;
3628 		err = mddev->pers->check_reshape(mddev);
3629 		if (err) {
3630 			mddev->new_chunk_sectors = mddev->chunk_sectors;
3631 			return err;
3632 		}
3633 	} else {
3634 		mddev->new_chunk_sectors = n >> 9;
3635 		if (mddev->reshape_position == MaxSector)
3636 			mddev->chunk_sectors = n >> 9;
3637 	}
3638 	return len;
3639 }
3640 static struct md_sysfs_entry md_chunk_size =
3641 __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store);
3642 
3643 static ssize_t
resync_start_show(struct mddev * mddev,char * page)3644 resync_start_show(struct mddev *mddev, char *page)
3645 {
3646 	if (mddev->recovery_cp == MaxSector)
3647 		return sprintf(page, "none\n");
3648 	return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp);
3649 }
3650 
3651 static ssize_t
resync_start_store(struct mddev * mddev,const char * buf,size_t len)3652 resync_start_store(struct mddev *mddev, const char *buf, size_t len)
3653 {
3654 	char *e;
3655 	unsigned long long n = simple_strtoull(buf, &e, 10);
3656 
3657 	if (mddev->pers && !test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
3658 		return -EBUSY;
3659 	if (cmd_match(buf, "none"))
3660 		n = MaxSector;
3661 	else if (!*buf || (*e && *e != '\n'))
3662 		return -EINVAL;
3663 
3664 	mddev->recovery_cp = n;
3665 	return len;
3666 }
3667 static struct md_sysfs_entry md_resync_start =
3668 __ATTR(resync_start, S_IRUGO|S_IWUSR, resync_start_show, resync_start_store);
3669 
3670 /*
3671  * The array state can be:
3672  *
3673  * clear
3674  *     No devices, no size, no level
3675  *     Equivalent to STOP_ARRAY ioctl
3676  * inactive
3677  *     May have some settings, but array is not active
3678  *        all IO results in error
3679  *     When written, doesn't tear down array, but just stops it
3680  * suspended (not supported yet)
3681  *     All IO requests will block. The array can be reconfigured.
3682  *     Writing this, if accepted, will block until array is quiescent
3683  * readonly
3684  *     no resync can happen.  no superblocks get written.
3685  *     write requests fail
3686  * read-auto
3687  *     like readonly, but behaves like 'clean' on a write request.
3688  *
3689  * clean - no pending writes, but otherwise active.
3690  *     When written to inactive array, starts without resync
3691  *     If a write request arrives then
3692  *       if metadata is known, mark 'dirty' and switch to 'active'.
3693  *       if not known, block and switch to write-pending
3694  *     If written to an active array that has pending writes, then fails.
3695  * active
3696  *     fully active: IO and resync can be happening.
3697  *     When written to inactive array, starts with resync
3698  *
3699  * write-pending
3700  *     clean, but writes are blocked waiting for 'active' to be written.
3701  *
3702  * active-idle
3703  *     like active, but no writes have been seen for a while (100msec).
3704  *
3705  */
3706 enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active,
3707 		   write_pending, active_idle, bad_word};
3708 static char *array_states[] = {
3709 	"clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active",
3710 	"write-pending", "active-idle", NULL };
3711 
match_word(const char * word,char ** list)3712 static int match_word(const char *word, char **list)
3713 {
3714 	int n;
3715 	for (n=0; list[n]; n++)
3716 		if (cmd_match(word, list[n]))
3717 			break;
3718 	return n;
3719 }
3720 
3721 static ssize_t
array_state_show(struct mddev * mddev,char * page)3722 array_state_show(struct mddev *mddev, char *page)
3723 {
3724 	enum array_state st = inactive;
3725 
3726 	if (mddev->pers)
3727 		switch(mddev->ro) {
3728 		case 1:
3729 			st = readonly;
3730 			break;
3731 		case 2:
3732 			st = read_auto;
3733 			break;
3734 		case 0:
3735 			if (mddev->in_sync)
3736 				st = clean;
3737 			else if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
3738 				st = write_pending;
3739 			else if (mddev->safemode)
3740 				st = active_idle;
3741 			else
3742 				st = active;
3743 		}
3744 	else {
3745 		if (list_empty(&mddev->disks) &&
3746 		    mddev->raid_disks == 0 &&
3747 		    mddev->dev_sectors == 0)
3748 			st = clear;
3749 		else
3750 			st = inactive;
3751 	}
3752 	return sprintf(page, "%s\n", array_states[st]);
3753 }
3754 
3755 static int do_md_stop(struct mddev * mddev, int ro, struct block_device *bdev);
3756 static int md_set_readonly(struct mddev * mddev, struct block_device *bdev);
3757 static int do_md_run(struct mddev * mddev);
3758 static int restart_array(struct mddev *mddev);
3759 
3760 static ssize_t
array_state_store(struct mddev * mddev,const char * buf,size_t len)3761 array_state_store(struct mddev *mddev, const char *buf, size_t len)
3762 {
3763 	int err = -EINVAL;
3764 	enum array_state st = match_word(buf, array_states);
3765 	switch(st) {
3766 	case bad_word:
3767 		break;
3768 	case clear:
3769 		/* stopping an active array */
3770 		if (atomic_read(&mddev->openers) > 0)
3771 			return -EBUSY;
3772 		err = do_md_stop(mddev, 0, NULL);
3773 		break;
3774 	case inactive:
3775 		/* stopping an active array */
3776 		if (mddev->pers) {
3777 			if (atomic_read(&mddev->openers) > 0)
3778 				return -EBUSY;
3779 			err = do_md_stop(mddev, 2, NULL);
3780 		} else
3781 			err = 0; /* already inactive */
3782 		break;
3783 	case suspended:
3784 		break; /* not supported yet */
3785 	case readonly:
3786 		if (mddev->pers)
3787 			err = md_set_readonly(mddev, NULL);
3788 		else {
3789 			mddev->ro = 1;
3790 			set_disk_ro(mddev->gendisk, 1);
3791 			err = do_md_run(mddev);
3792 		}
3793 		break;
3794 	case read_auto:
3795 		if (mddev->pers) {
3796 			if (mddev->ro == 0)
3797 				err = md_set_readonly(mddev, NULL);
3798 			else if (mddev->ro == 1)
3799 				err = restart_array(mddev);
3800 			if (err == 0) {
3801 				mddev->ro = 2;
3802 				set_disk_ro(mddev->gendisk, 0);
3803 			}
3804 		} else {
3805 			mddev->ro = 2;
3806 			err = do_md_run(mddev);
3807 		}
3808 		break;
3809 	case clean:
3810 		if (mddev->pers) {
3811 			restart_array(mddev);
3812 			spin_lock_irq(&mddev->write_lock);
3813 			if (atomic_read(&mddev->writes_pending) == 0) {
3814 				if (mddev->in_sync == 0) {
3815 					mddev->in_sync = 1;
3816 					if (mddev->safemode == 1)
3817 						mddev->safemode = 0;
3818 					set_bit(MD_CHANGE_CLEAN, &mddev->flags);
3819 				}
3820 				err = 0;
3821 			} else
3822 				err = -EBUSY;
3823 			spin_unlock_irq(&mddev->write_lock);
3824 		} else
3825 			err = -EINVAL;
3826 		break;
3827 	case active:
3828 		if (mddev->pers) {
3829 			restart_array(mddev);
3830 			clear_bit(MD_CHANGE_PENDING, &mddev->flags);
3831 			wake_up(&mddev->sb_wait);
3832 			err = 0;
3833 		} else {
3834 			mddev->ro = 0;
3835 			set_disk_ro(mddev->gendisk, 0);
3836 			err = do_md_run(mddev);
3837 		}
3838 		break;
3839 	case write_pending:
3840 	case active_idle:
3841 		/* these cannot be set */
3842 		break;
3843 	}
3844 	if (err)
3845 		return err;
3846 	else {
3847 		if (mddev->hold_active == UNTIL_IOCTL)
3848 			mddev->hold_active = 0;
3849 		sysfs_notify_dirent_safe(mddev->sysfs_state);
3850 		return len;
3851 	}
3852 }
3853 static struct md_sysfs_entry md_array_state =
3854 __ATTR(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store);
3855 
3856 static ssize_t
max_corrected_read_errors_show(struct mddev * mddev,char * page)3857 max_corrected_read_errors_show(struct mddev *mddev, char *page) {
3858 	return sprintf(page, "%d\n",
3859 		       atomic_read(&mddev->max_corr_read_errors));
3860 }
3861 
3862 static ssize_t
max_corrected_read_errors_store(struct mddev * mddev,const char * buf,size_t len)3863 max_corrected_read_errors_store(struct mddev *mddev, const char *buf, size_t len)
3864 {
3865 	char *e;
3866 	unsigned long n = simple_strtoul(buf, &e, 10);
3867 
3868 	if (*buf && (*e == 0 || *e == '\n')) {
3869 		atomic_set(&mddev->max_corr_read_errors, n);
3870 		return len;
3871 	}
3872 	return -EINVAL;
3873 }
3874 
3875 static struct md_sysfs_entry max_corr_read_errors =
3876 __ATTR(max_read_errors, S_IRUGO|S_IWUSR, max_corrected_read_errors_show,
3877 	max_corrected_read_errors_store);
3878 
3879 static ssize_t
null_show(struct mddev * mddev,char * page)3880 null_show(struct mddev *mddev, char *page)
3881 {
3882 	return -EINVAL;
3883 }
3884 
3885 static ssize_t
new_dev_store(struct mddev * mddev,const char * buf,size_t len)3886 new_dev_store(struct mddev *mddev, const char *buf, size_t len)
3887 {
3888 	/* buf must be %d:%d\n? giving major and minor numbers */
3889 	/* The new device is added to the array.
3890 	 * If the array has a persistent superblock, we read the
3891 	 * superblock to initialise info and check validity.
3892 	 * Otherwise, only checking done is that in bind_rdev_to_array,
3893 	 * which mainly checks size.
3894 	 */
3895 	char *e;
3896 	int major = simple_strtoul(buf, &e, 10);
3897 	int minor;
3898 	dev_t dev;
3899 	struct md_rdev *rdev;
3900 	int err;
3901 
3902 	if (!*buf || *e != ':' || !e[1] || e[1] == '\n')
3903 		return -EINVAL;
3904 	minor = simple_strtoul(e+1, &e, 10);
3905 	if (*e && *e != '\n')
3906 		return -EINVAL;
3907 	dev = MKDEV(major, minor);
3908 	if (major != MAJOR(dev) ||
3909 	    minor != MINOR(dev))
3910 		return -EOVERFLOW;
3911 
3912 
3913 	if (mddev->persistent) {
3914 		rdev = md_import_device(dev, mddev->major_version,
3915 					mddev->minor_version);
3916 		if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) {
3917 			struct md_rdev *rdev0
3918 				= list_entry(mddev->disks.next,
3919 					     struct md_rdev, same_set);
3920 			err = super_types[mddev->major_version]
3921 				.load_super(rdev, rdev0, mddev->minor_version);
3922 			if (err < 0)
3923 				goto out;
3924 		}
3925 	} else if (mddev->external)
3926 		rdev = md_import_device(dev, -2, -1);
3927 	else
3928 		rdev = md_import_device(dev, -1, -1);
3929 
3930 	if (IS_ERR(rdev))
3931 		return PTR_ERR(rdev);
3932 	err = bind_rdev_to_array(rdev, mddev);
3933  out:
3934 	if (err)
3935 		export_rdev(rdev);
3936 	return err ? err : len;
3937 }
3938 
3939 static struct md_sysfs_entry md_new_device =
3940 __ATTR(new_dev, S_IWUSR, null_show, new_dev_store);
3941 
3942 static ssize_t
bitmap_store(struct mddev * mddev,const char * buf,size_t len)3943 bitmap_store(struct mddev *mddev, const char *buf, size_t len)
3944 {
3945 	char *end;
3946 	unsigned long chunk, end_chunk;
3947 
3948 	if (!mddev->bitmap)
3949 		goto out;
3950 	/* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */
3951 	while (*buf) {
3952 		chunk = end_chunk = simple_strtoul(buf, &end, 0);
3953 		if (buf == end) break;
3954 		if (*end == '-') { /* range */
3955 			buf = end + 1;
3956 			end_chunk = simple_strtoul(buf, &end, 0);
3957 			if (buf == end) break;
3958 		}
3959 		if (*end && !isspace(*end)) break;
3960 		bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk);
3961 		buf = skip_spaces(end);
3962 	}
3963 	bitmap_unplug(mddev->bitmap); /* flush the bits to disk */
3964 out:
3965 	return len;
3966 }
3967 
3968 static struct md_sysfs_entry md_bitmap =
3969 __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store);
3970 
3971 static ssize_t
size_show(struct mddev * mddev,char * page)3972 size_show(struct mddev *mddev, char *page)
3973 {
3974 	return sprintf(page, "%llu\n",
3975 		(unsigned long long)mddev->dev_sectors / 2);
3976 }
3977 
3978 static int update_size(struct mddev *mddev, sector_t num_sectors);
3979 
3980 static ssize_t
size_store(struct mddev * mddev,const char * buf,size_t len)3981 size_store(struct mddev *mddev, const char *buf, size_t len)
3982 {
3983 	/* If array is inactive, we can reduce the component size, but
3984 	 * not increase it (except from 0).
3985 	 * If array is active, we can try an on-line resize
3986 	 */
3987 	sector_t sectors;
3988 	int err = strict_blocks_to_sectors(buf, &sectors);
3989 
3990 	if (err < 0)
3991 		return err;
3992 	if (mddev->pers) {
3993 		err = update_size(mddev, sectors);
3994 		md_update_sb(mddev, 1);
3995 	} else {
3996 		if (mddev->dev_sectors == 0 ||
3997 		    mddev->dev_sectors > sectors)
3998 			mddev->dev_sectors = sectors;
3999 		else
4000 			err = -ENOSPC;
4001 	}
4002 	return err ? err : len;
4003 }
4004 
4005 static struct md_sysfs_entry md_size =
4006 __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store);
4007 
4008 
4009 /* Metdata version.
4010  * This is one of
4011  *   'none' for arrays with no metadata (good luck...)
4012  *   'external' for arrays with externally managed metadata,
4013  * or N.M for internally known formats
4014  */
4015 static ssize_t
metadata_show(struct mddev * mddev,char * page)4016 metadata_show(struct mddev *mddev, char *page)
4017 {
4018 	if (mddev->persistent)
4019 		return sprintf(page, "%d.%d\n",
4020 			       mddev->major_version, mddev->minor_version);
4021 	else if (mddev->external)
4022 		return sprintf(page, "external:%s\n", mddev->metadata_type);
4023 	else
4024 		return sprintf(page, "none\n");
4025 }
4026 
4027 static ssize_t
metadata_store(struct mddev * mddev,const char * buf,size_t len)4028 metadata_store(struct mddev *mddev, const char *buf, size_t len)
4029 {
4030 	int major, minor;
4031 	char *e;
4032 	/* Changing the details of 'external' metadata is
4033 	 * always permitted.  Otherwise there must be
4034 	 * no devices attached to the array.
4035 	 */
4036 	if (mddev->external && strncmp(buf, "external:", 9) == 0)
4037 		;
4038 	else if (!list_empty(&mddev->disks))
4039 		return -EBUSY;
4040 
4041 	if (cmd_match(buf, "none")) {
4042 		mddev->persistent = 0;
4043 		mddev->external = 0;
4044 		mddev->major_version = 0;
4045 		mddev->minor_version = 90;
4046 		return len;
4047 	}
4048 	if (strncmp(buf, "external:", 9) == 0) {
4049 		size_t namelen = len-9;
4050 		if (namelen >= sizeof(mddev->metadata_type))
4051 			namelen = sizeof(mddev->metadata_type)-1;
4052 		strncpy(mddev->metadata_type, buf+9, namelen);
4053 		mddev->metadata_type[namelen] = 0;
4054 		if (namelen && mddev->metadata_type[namelen-1] == '\n')
4055 			mddev->metadata_type[--namelen] = 0;
4056 		mddev->persistent = 0;
4057 		mddev->external = 1;
4058 		mddev->major_version = 0;
4059 		mddev->minor_version = 90;
4060 		return len;
4061 	}
4062 	major = simple_strtoul(buf, &e, 10);
4063 	if (e==buf || *e != '.')
4064 		return -EINVAL;
4065 	buf = e+1;
4066 	minor = simple_strtoul(buf, &e, 10);
4067 	if (e==buf || (*e && *e != '\n') )
4068 		return -EINVAL;
4069 	if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL)
4070 		return -ENOENT;
4071 	mddev->major_version = major;
4072 	mddev->minor_version = minor;
4073 	mddev->persistent = 1;
4074 	mddev->external = 0;
4075 	return len;
4076 }
4077 
4078 static struct md_sysfs_entry md_metadata =
4079 __ATTR(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store);
4080 
4081 static ssize_t
action_show(struct mddev * mddev,char * page)4082 action_show(struct mddev *mddev, char *page)
4083 {
4084 	char *type = "idle";
4085 	if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
4086 		type = "frozen";
4087 	else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
4088 	    (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))) {
4089 		if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4090 			type = "reshape";
4091 		else if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
4092 			if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
4093 				type = "resync";
4094 			else if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
4095 				type = "check";
4096 			else
4097 				type = "repair";
4098 		} else if (test_bit(MD_RECOVERY_RECOVER, &mddev->recovery))
4099 			type = "recover";
4100 	}
4101 	return sprintf(page, "%s\n", type);
4102 }
4103 
4104 static void reap_sync_thread(struct mddev *mddev);
4105 
4106 static ssize_t
action_store(struct mddev * mddev,const char * page,size_t len)4107 action_store(struct mddev *mddev, const char *page, size_t len)
4108 {
4109 	if (!mddev->pers || !mddev->pers->sync_request)
4110 		return -EINVAL;
4111 
4112 	if (cmd_match(page, "frozen"))
4113 		set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4114 	else
4115 		clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4116 
4117 	if (cmd_match(page, "idle") || cmd_match(page, "frozen")) {
4118 		if (mddev->sync_thread) {
4119 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4120 			reap_sync_thread(mddev);
4121 		}
4122 	} else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
4123 		   test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
4124 		return -EBUSY;
4125 	else if (cmd_match(page, "resync"))
4126 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4127 	else if (cmd_match(page, "recover")) {
4128 		set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
4129 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4130 	} else if (cmd_match(page, "reshape")) {
4131 		int err;
4132 		if (mddev->pers->start_reshape == NULL)
4133 			return -EINVAL;
4134 		err = mddev->pers->start_reshape(mddev);
4135 		if (err)
4136 			return err;
4137 		sysfs_notify(&mddev->kobj, NULL, "degraded");
4138 	} else {
4139 		if (cmd_match(page, "check"))
4140 			set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4141 		else if (!cmd_match(page, "repair"))
4142 			return -EINVAL;
4143 		set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
4144 		set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4145 	}
4146 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4147 	md_wakeup_thread(mddev->thread);
4148 	sysfs_notify_dirent_safe(mddev->sysfs_action);
4149 	return len;
4150 }
4151 
4152 static ssize_t
mismatch_cnt_show(struct mddev * mddev,char * page)4153 mismatch_cnt_show(struct mddev *mddev, char *page)
4154 {
4155 	return sprintf(page, "%llu\n",
4156 		       (unsigned long long) mddev->resync_mismatches);
4157 }
4158 
4159 static struct md_sysfs_entry md_scan_mode =
4160 __ATTR(sync_action, S_IRUGO|S_IWUSR, action_show, action_store);
4161 
4162 
4163 static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt);
4164 
4165 static ssize_t
sync_min_show(struct mddev * mddev,char * page)4166 sync_min_show(struct mddev *mddev, char *page)
4167 {
4168 	return sprintf(page, "%d (%s)\n", speed_min(mddev),
4169 		       mddev->sync_speed_min ? "local": "system");
4170 }
4171 
4172 static ssize_t
sync_min_store(struct mddev * mddev,const char * buf,size_t len)4173 sync_min_store(struct mddev *mddev, const char *buf, size_t len)
4174 {
4175 	int min;
4176 	char *e;
4177 	if (strncmp(buf, "system", 6)==0) {
4178 		mddev->sync_speed_min = 0;
4179 		return len;
4180 	}
4181 	min = simple_strtoul(buf, &e, 10);
4182 	if (buf == e || (*e && *e != '\n') || min <= 0)
4183 		return -EINVAL;
4184 	mddev->sync_speed_min = min;
4185 	return len;
4186 }
4187 
4188 static struct md_sysfs_entry md_sync_min =
4189 __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store);
4190 
4191 static ssize_t
sync_max_show(struct mddev * mddev,char * page)4192 sync_max_show(struct mddev *mddev, char *page)
4193 {
4194 	return sprintf(page, "%d (%s)\n", speed_max(mddev),
4195 		       mddev->sync_speed_max ? "local": "system");
4196 }
4197 
4198 static ssize_t
sync_max_store(struct mddev * mddev,const char * buf,size_t len)4199 sync_max_store(struct mddev *mddev, const char *buf, size_t len)
4200 {
4201 	int max;
4202 	char *e;
4203 	if (strncmp(buf, "system", 6)==0) {
4204 		mddev->sync_speed_max = 0;
4205 		return len;
4206 	}
4207 	max = simple_strtoul(buf, &e, 10);
4208 	if (buf == e || (*e && *e != '\n') || max <= 0)
4209 		return -EINVAL;
4210 	mddev->sync_speed_max = max;
4211 	return len;
4212 }
4213 
4214 static struct md_sysfs_entry md_sync_max =
4215 __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store);
4216 
4217 static ssize_t
degraded_show(struct mddev * mddev,char * page)4218 degraded_show(struct mddev *mddev, char *page)
4219 {
4220 	return sprintf(page, "%d\n", mddev->degraded);
4221 }
4222 static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded);
4223 
4224 static ssize_t
sync_force_parallel_show(struct mddev * mddev,char * page)4225 sync_force_parallel_show(struct mddev *mddev, char *page)
4226 {
4227 	return sprintf(page, "%d\n", mddev->parallel_resync);
4228 }
4229 
4230 static ssize_t
sync_force_parallel_store(struct mddev * mddev,const char * buf,size_t len)4231 sync_force_parallel_store(struct mddev *mddev, const char *buf, size_t len)
4232 {
4233 	long n;
4234 
4235 	if (strict_strtol(buf, 10, &n))
4236 		return -EINVAL;
4237 
4238 	if (n != 0 && n != 1)
4239 		return -EINVAL;
4240 
4241 	mddev->parallel_resync = n;
4242 
4243 	if (mddev->sync_thread)
4244 		wake_up(&resync_wait);
4245 
4246 	return len;
4247 }
4248 
4249 /* force parallel resync, even with shared block devices */
4250 static struct md_sysfs_entry md_sync_force_parallel =
4251 __ATTR(sync_force_parallel, S_IRUGO|S_IWUSR,
4252        sync_force_parallel_show, sync_force_parallel_store);
4253 
4254 static ssize_t
sync_speed_show(struct mddev * mddev,char * page)4255 sync_speed_show(struct mddev *mddev, char *page)
4256 {
4257 	unsigned long resync, dt, db;
4258 	if (mddev->curr_resync == 0)
4259 		return sprintf(page, "none\n");
4260 	resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active);
4261 	dt = (jiffies - mddev->resync_mark) / HZ;
4262 	if (!dt) dt++;
4263 	db = resync - mddev->resync_mark_cnt;
4264 	return sprintf(page, "%lu\n", db/dt/2); /* K/sec */
4265 }
4266 
4267 static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed);
4268 
4269 static ssize_t
sync_completed_show(struct mddev * mddev,char * page)4270 sync_completed_show(struct mddev *mddev, char *page)
4271 {
4272 	unsigned long long max_sectors, resync;
4273 
4274 	if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4275 		return sprintf(page, "none\n");
4276 
4277 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
4278 		max_sectors = mddev->resync_max_sectors;
4279 	else
4280 		max_sectors = mddev->dev_sectors;
4281 
4282 	resync = mddev->curr_resync_completed;
4283 	return sprintf(page, "%llu / %llu\n", resync, max_sectors);
4284 }
4285 
4286 static struct md_sysfs_entry md_sync_completed = __ATTR_RO(sync_completed);
4287 
4288 static ssize_t
min_sync_show(struct mddev * mddev,char * page)4289 min_sync_show(struct mddev *mddev, char *page)
4290 {
4291 	return sprintf(page, "%llu\n",
4292 		       (unsigned long long)mddev->resync_min);
4293 }
4294 static ssize_t
min_sync_store(struct mddev * mddev,const char * buf,size_t len)4295 min_sync_store(struct mddev *mddev, const char *buf, size_t len)
4296 {
4297 	unsigned long long min;
4298 	if (strict_strtoull(buf, 10, &min))
4299 		return -EINVAL;
4300 	if (min > mddev->resync_max)
4301 		return -EINVAL;
4302 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4303 		return -EBUSY;
4304 
4305 	/* Must be a multiple of chunk_size */
4306 	if (mddev->chunk_sectors) {
4307 		sector_t temp = min;
4308 		if (sector_div(temp, mddev->chunk_sectors))
4309 			return -EINVAL;
4310 	}
4311 	mddev->resync_min = min;
4312 
4313 	return len;
4314 }
4315 
4316 static struct md_sysfs_entry md_min_sync =
4317 __ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store);
4318 
4319 static ssize_t
max_sync_show(struct mddev * mddev,char * page)4320 max_sync_show(struct mddev *mddev, char *page)
4321 {
4322 	if (mddev->resync_max == MaxSector)
4323 		return sprintf(page, "max\n");
4324 	else
4325 		return sprintf(page, "%llu\n",
4326 			       (unsigned long long)mddev->resync_max);
4327 }
4328 static ssize_t
max_sync_store(struct mddev * mddev,const char * buf,size_t len)4329 max_sync_store(struct mddev *mddev, const char *buf, size_t len)
4330 {
4331 	if (strncmp(buf, "max", 3) == 0)
4332 		mddev->resync_max = MaxSector;
4333 	else {
4334 		unsigned long long max;
4335 		if (strict_strtoull(buf, 10, &max))
4336 			return -EINVAL;
4337 		if (max < mddev->resync_min)
4338 			return -EINVAL;
4339 		if (max < mddev->resync_max &&
4340 		    mddev->ro == 0 &&
4341 		    test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4342 			return -EBUSY;
4343 
4344 		/* Must be a multiple of chunk_size */
4345 		if (mddev->chunk_sectors) {
4346 			sector_t temp = max;
4347 			if (sector_div(temp, mddev->chunk_sectors))
4348 				return -EINVAL;
4349 		}
4350 		mddev->resync_max = max;
4351 	}
4352 	wake_up(&mddev->recovery_wait);
4353 	return len;
4354 }
4355 
4356 static struct md_sysfs_entry md_max_sync =
4357 __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store);
4358 
4359 static ssize_t
suspend_lo_show(struct mddev * mddev,char * page)4360 suspend_lo_show(struct mddev *mddev, char *page)
4361 {
4362 	return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo);
4363 }
4364 
4365 static ssize_t
suspend_lo_store(struct mddev * mddev,const char * buf,size_t len)4366 suspend_lo_store(struct mddev *mddev, const char *buf, size_t len)
4367 {
4368 	char *e;
4369 	unsigned long long new = simple_strtoull(buf, &e, 10);
4370 	unsigned long long old = mddev->suspend_lo;
4371 
4372 	if (mddev->pers == NULL ||
4373 	    mddev->pers->quiesce == NULL)
4374 		return -EINVAL;
4375 	if (buf == e || (*e && *e != '\n'))
4376 		return -EINVAL;
4377 
4378 	mddev->suspend_lo = new;
4379 	if (new >= old)
4380 		/* Shrinking suspended region */
4381 		mddev->pers->quiesce(mddev, 2);
4382 	else {
4383 		/* Expanding suspended region - need to wait */
4384 		mddev->pers->quiesce(mddev, 1);
4385 		mddev->pers->quiesce(mddev, 0);
4386 	}
4387 	return len;
4388 }
4389 static struct md_sysfs_entry md_suspend_lo =
4390 __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store);
4391 
4392 
4393 static ssize_t
suspend_hi_show(struct mddev * mddev,char * page)4394 suspend_hi_show(struct mddev *mddev, char *page)
4395 {
4396 	return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi);
4397 }
4398 
4399 static ssize_t
suspend_hi_store(struct mddev * mddev,const char * buf,size_t len)4400 suspend_hi_store(struct mddev *mddev, const char *buf, size_t len)
4401 {
4402 	char *e;
4403 	unsigned long long new = simple_strtoull(buf, &e, 10);
4404 	unsigned long long old = mddev->suspend_hi;
4405 
4406 	if (mddev->pers == NULL ||
4407 	    mddev->pers->quiesce == NULL)
4408 		return -EINVAL;
4409 	if (buf == e || (*e && *e != '\n'))
4410 		return -EINVAL;
4411 
4412 	mddev->suspend_hi = new;
4413 	if (new <= old)
4414 		/* Shrinking suspended region */
4415 		mddev->pers->quiesce(mddev, 2);
4416 	else {
4417 		/* Expanding suspended region - need to wait */
4418 		mddev->pers->quiesce(mddev, 1);
4419 		mddev->pers->quiesce(mddev, 0);
4420 	}
4421 	return len;
4422 }
4423 static struct md_sysfs_entry md_suspend_hi =
4424 __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store);
4425 
4426 static ssize_t
reshape_position_show(struct mddev * mddev,char * page)4427 reshape_position_show(struct mddev *mddev, char *page)
4428 {
4429 	if (mddev->reshape_position != MaxSector)
4430 		return sprintf(page, "%llu\n",
4431 			       (unsigned long long)mddev->reshape_position);
4432 	strcpy(page, "none\n");
4433 	return 5;
4434 }
4435 
4436 static ssize_t
reshape_position_store(struct mddev * mddev,const char * buf,size_t len)4437 reshape_position_store(struct mddev *mddev, const char *buf, size_t len)
4438 {
4439 	char *e;
4440 	unsigned long long new = simple_strtoull(buf, &e, 10);
4441 	if (mddev->pers)
4442 		return -EBUSY;
4443 	if (buf == e || (*e && *e != '\n'))
4444 		return -EINVAL;
4445 	mddev->reshape_position = new;
4446 	mddev->delta_disks = 0;
4447 	mddev->new_level = mddev->level;
4448 	mddev->new_layout = mddev->layout;
4449 	mddev->new_chunk_sectors = mddev->chunk_sectors;
4450 	return len;
4451 }
4452 
4453 static struct md_sysfs_entry md_reshape_position =
4454 __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show,
4455        reshape_position_store);
4456 
4457 static ssize_t
array_size_show(struct mddev * mddev,char * page)4458 array_size_show(struct mddev *mddev, char *page)
4459 {
4460 	if (mddev->external_size)
4461 		return sprintf(page, "%llu\n",
4462 			       (unsigned long long)mddev->array_sectors/2);
4463 	else
4464 		return sprintf(page, "default\n");
4465 }
4466 
4467 static ssize_t
array_size_store(struct mddev * mddev,const char * buf,size_t len)4468 array_size_store(struct mddev *mddev, const char *buf, size_t len)
4469 {
4470 	sector_t sectors;
4471 
4472 	if (strncmp(buf, "default", 7) == 0) {
4473 		if (mddev->pers)
4474 			sectors = mddev->pers->size(mddev, 0, 0);
4475 		else
4476 			sectors = mddev->array_sectors;
4477 
4478 		mddev->external_size = 0;
4479 	} else {
4480 		if (strict_blocks_to_sectors(buf, &sectors) < 0)
4481 			return -EINVAL;
4482 		if (mddev->pers && mddev->pers->size(mddev, 0, 0) < sectors)
4483 			return -E2BIG;
4484 
4485 		mddev->external_size = 1;
4486 	}
4487 
4488 	mddev->array_sectors = sectors;
4489 	if (mddev->pers) {
4490 		set_capacity(mddev->gendisk, mddev->array_sectors);
4491 		revalidate_disk(mddev->gendisk);
4492 	}
4493 	return len;
4494 }
4495 
4496 static struct md_sysfs_entry md_array_size =
4497 __ATTR(array_size, S_IRUGO|S_IWUSR, array_size_show,
4498        array_size_store);
4499 
4500 static struct attribute *md_default_attrs[] = {
4501 	&md_level.attr,
4502 	&md_layout.attr,
4503 	&md_raid_disks.attr,
4504 	&md_chunk_size.attr,
4505 	&md_size.attr,
4506 	&md_resync_start.attr,
4507 	&md_metadata.attr,
4508 	&md_new_device.attr,
4509 	&md_safe_delay.attr,
4510 	&md_array_state.attr,
4511 	&md_reshape_position.attr,
4512 	&md_array_size.attr,
4513 	&max_corr_read_errors.attr,
4514 	NULL,
4515 };
4516 
4517 static struct attribute *md_redundancy_attrs[] = {
4518 	&md_scan_mode.attr,
4519 	&md_mismatches.attr,
4520 	&md_sync_min.attr,
4521 	&md_sync_max.attr,
4522 	&md_sync_speed.attr,
4523 	&md_sync_force_parallel.attr,
4524 	&md_sync_completed.attr,
4525 	&md_min_sync.attr,
4526 	&md_max_sync.attr,
4527 	&md_suspend_lo.attr,
4528 	&md_suspend_hi.attr,
4529 	&md_bitmap.attr,
4530 	&md_degraded.attr,
4531 	NULL,
4532 };
4533 static struct attribute_group md_redundancy_group = {
4534 	.name = NULL,
4535 	.attrs = md_redundancy_attrs,
4536 };
4537 
4538 
4539 static ssize_t
md_attr_show(struct kobject * kobj,struct attribute * attr,char * page)4540 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
4541 {
4542 	struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4543 	struct mddev *mddev = container_of(kobj, struct mddev, kobj);
4544 	ssize_t rv;
4545 
4546 	if (!entry->show)
4547 		return -EIO;
4548 	spin_lock(&all_mddevs_lock);
4549 	if (list_empty(&mddev->all_mddevs)) {
4550 		spin_unlock(&all_mddevs_lock);
4551 		return -EBUSY;
4552 	}
4553 	mddev_get(mddev);
4554 	spin_unlock(&all_mddevs_lock);
4555 
4556 	rv = mddev_lock(mddev);
4557 	if (!rv) {
4558 		rv = entry->show(mddev, page);
4559 		mddev_unlock(mddev);
4560 	}
4561 	mddev_put(mddev);
4562 	return rv;
4563 }
4564 
4565 static ssize_t
md_attr_store(struct kobject * kobj,struct attribute * attr,const char * page,size_t length)4566 md_attr_store(struct kobject *kobj, struct attribute *attr,
4567 	      const char *page, size_t length)
4568 {
4569 	struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4570 	struct mddev *mddev = container_of(kobj, struct mddev, kobj);
4571 	ssize_t rv;
4572 
4573 	if (!entry->store)
4574 		return -EIO;
4575 	if (!capable(CAP_SYS_ADMIN))
4576 		return -EACCES;
4577 	spin_lock(&all_mddevs_lock);
4578 	if (list_empty(&mddev->all_mddevs)) {
4579 		spin_unlock(&all_mddevs_lock);
4580 		return -EBUSY;
4581 	}
4582 	mddev_get(mddev);
4583 	spin_unlock(&all_mddevs_lock);
4584 	rv = mddev_lock(mddev);
4585 	if (!rv) {
4586 		rv = entry->store(mddev, page, length);
4587 		mddev_unlock(mddev);
4588 	}
4589 	mddev_put(mddev);
4590 	return rv;
4591 }
4592 
md_free(struct kobject * ko)4593 static void md_free(struct kobject *ko)
4594 {
4595 	struct mddev *mddev = container_of(ko, struct mddev, kobj);
4596 
4597 	if (mddev->sysfs_state)
4598 		sysfs_put(mddev->sysfs_state);
4599 
4600 	if (mddev->gendisk) {
4601 		del_gendisk(mddev->gendisk);
4602 		put_disk(mddev->gendisk);
4603 	}
4604 	if (mddev->queue)
4605 		blk_cleanup_queue(mddev->queue);
4606 
4607 	kfree(mddev);
4608 }
4609 
4610 static const struct sysfs_ops md_sysfs_ops = {
4611 	.show	= md_attr_show,
4612 	.store	= md_attr_store,
4613 };
4614 static struct kobj_type md_ktype = {
4615 	.release	= md_free,
4616 	.sysfs_ops	= &md_sysfs_ops,
4617 	.default_attrs	= md_default_attrs,
4618 };
4619 
4620 int mdp_major = 0;
4621 
mddev_delayed_delete(struct work_struct * ws)4622 static void mddev_delayed_delete(struct work_struct *ws)
4623 {
4624 	struct mddev *mddev = container_of(ws, struct mddev, del_work);
4625 
4626 	sysfs_remove_group(&mddev->kobj, &md_bitmap_group);
4627 	kobject_del(&mddev->kobj);
4628 	kobject_put(&mddev->kobj);
4629 }
4630 
md_alloc(dev_t dev,char * name)4631 static int md_alloc(dev_t dev, char *name)
4632 {
4633 	static DEFINE_MUTEX(disks_mutex);
4634 	struct mddev *mddev = mddev_find(dev);
4635 	struct gendisk *disk;
4636 	int partitioned;
4637 	int shift;
4638 	int unit;
4639 	int error;
4640 
4641 	if (!mddev)
4642 		return -ENODEV;
4643 
4644 	partitioned = (MAJOR(mddev->unit) != MD_MAJOR);
4645 	shift = partitioned ? MdpMinorShift : 0;
4646 	unit = MINOR(mddev->unit) >> shift;
4647 
4648 	/* wait for any previous instance of this device to be
4649 	 * completely removed (mddev_delayed_delete).
4650 	 */
4651 	flush_workqueue(md_misc_wq);
4652 
4653 	mutex_lock(&disks_mutex);
4654 	error = -EEXIST;
4655 	if (mddev->gendisk)
4656 		goto abort;
4657 
4658 	if (name) {
4659 		/* Need to ensure that 'name' is not a duplicate.
4660 		 */
4661 		struct mddev *mddev2;
4662 		spin_lock(&all_mddevs_lock);
4663 
4664 		list_for_each_entry(mddev2, &all_mddevs, all_mddevs)
4665 			if (mddev2->gendisk &&
4666 			    strcmp(mddev2->gendisk->disk_name, name) == 0) {
4667 				spin_unlock(&all_mddevs_lock);
4668 				goto abort;
4669 			}
4670 		spin_unlock(&all_mddevs_lock);
4671 	}
4672 
4673 	error = -ENOMEM;
4674 	mddev->queue = blk_alloc_queue(GFP_KERNEL);
4675 	if (!mddev->queue)
4676 		goto abort;
4677 	mddev->queue->queuedata = mddev;
4678 
4679 	blk_queue_make_request(mddev->queue, md_make_request);
4680 	blk_set_stacking_limits(&mddev->queue->limits);
4681 
4682 	disk = alloc_disk(1 << shift);
4683 	if (!disk) {
4684 		blk_cleanup_queue(mddev->queue);
4685 		mddev->queue = NULL;
4686 		goto abort;
4687 	}
4688 	disk->major = MAJOR(mddev->unit);
4689 	disk->first_minor = unit << shift;
4690 	if (name)
4691 		strcpy(disk->disk_name, name);
4692 	else if (partitioned)
4693 		sprintf(disk->disk_name, "md_d%d", unit);
4694 	else
4695 		sprintf(disk->disk_name, "md%d", unit);
4696 	disk->fops = &md_fops;
4697 	disk->private_data = mddev;
4698 	disk->queue = mddev->queue;
4699 	blk_queue_flush(mddev->queue, REQ_FLUSH | REQ_FUA);
4700 	/* Allow extended partitions.  This makes the
4701 	 * 'mdp' device redundant, but we can't really
4702 	 * remove it now.
4703 	 */
4704 	disk->flags |= GENHD_FL_EXT_DEVT;
4705 	mddev->gendisk = disk;
4706 	/* As soon as we call add_disk(), another thread could get
4707 	 * through to md_open, so make sure it doesn't get too far
4708 	 */
4709 	mutex_lock(&mddev->open_mutex);
4710 	add_disk(disk);
4711 
4712 	error = kobject_init_and_add(&mddev->kobj, &md_ktype,
4713 				     &disk_to_dev(disk)->kobj, "%s", "md");
4714 	if (error) {
4715 		/* This isn't possible, but as kobject_init_and_add is marked
4716 		 * __must_check, we must do something with the result
4717 		 */
4718 		printk(KERN_WARNING "md: cannot register %s/md - name in use\n",
4719 		       disk->disk_name);
4720 		error = 0;
4721 	}
4722 	if (mddev->kobj.sd &&
4723 	    sysfs_create_group(&mddev->kobj, &md_bitmap_group))
4724 		printk(KERN_DEBUG "pointless warning\n");
4725 	mutex_unlock(&mddev->open_mutex);
4726  abort:
4727 	mutex_unlock(&disks_mutex);
4728 	if (!error && mddev->kobj.sd) {
4729 		kobject_uevent(&mddev->kobj, KOBJ_ADD);
4730 		mddev->sysfs_state = sysfs_get_dirent_safe(mddev->kobj.sd, "array_state");
4731 	}
4732 	mddev_put(mddev);
4733 	return error;
4734 }
4735 
md_probe(dev_t dev,int * part,void * data)4736 static struct kobject *md_probe(dev_t dev, int *part, void *data)
4737 {
4738 	md_alloc(dev, NULL);
4739 	return NULL;
4740 }
4741 
add_named_array(const char * val,struct kernel_param * kp)4742 static int add_named_array(const char *val, struct kernel_param *kp)
4743 {
4744 	/* val must be "md_*" where * is not all digits.
4745 	 * We allocate an array with a large free minor number, and
4746 	 * set the name to val.  val must not already be an active name.
4747 	 */
4748 	int len = strlen(val);
4749 	char buf[DISK_NAME_LEN];
4750 
4751 	while (len && val[len-1] == '\n')
4752 		len--;
4753 	if (len >= DISK_NAME_LEN)
4754 		return -E2BIG;
4755 	strlcpy(buf, val, len+1);
4756 	if (strncmp(buf, "md_", 3) != 0)
4757 		return -EINVAL;
4758 	return md_alloc(0, buf);
4759 }
4760 
md_safemode_timeout(unsigned long data)4761 static void md_safemode_timeout(unsigned long data)
4762 {
4763 	struct mddev *mddev = (struct mddev *) data;
4764 
4765 	if (!atomic_read(&mddev->writes_pending)) {
4766 		mddev->safemode = 1;
4767 		if (mddev->external)
4768 			sysfs_notify_dirent_safe(mddev->sysfs_state);
4769 	}
4770 	md_wakeup_thread(mddev->thread);
4771 }
4772 
4773 static int start_dirty_degraded;
4774 
md_run(struct mddev * mddev)4775 int md_run(struct mddev *mddev)
4776 {
4777 	int err;
4778 	struct md_rdev *rdev;
4779 	struct md_personality *pers;
4780 
4781 	if (list_empty(&mddev->disks))
4782 		/* cannot run an array with no devices.. */
4783 		return -EINVAL;
4784 
4785 	if (mddev->pers)
4786 		return -EBUSY;
4787 	/* Cannot run until previous stop completes properly */
4788 	if (mddev->sysfs_active)
4789 		return -EBUSY;
4790 
4791 	/*
4792 	 * Analyze all RAID superblock(s)
4793 	 */
4794 	if (!mddev->raid_disks) {
4795 		if (!mddev->persistent)
4796 			return -EINVAL;
4797 		analyze_sbs(mddev);
4798 	}
4799 
4800 	if (mddev->level != LEVEL_NONE)
4801 		request_module("md-level-%d", mddev->level);
4802 	else if (mddev->clevel[0])
4803 		request_module("md-%s", mddev->clevel);
4804 
4805 	/*
4806 	 * Drop all container device buffers, from now on
4807 	 * the only valid external interface is through the md
4808 	 * device.
4809 	 */
4810 	rdev_for_each(rdev, mddev) {
4811 		if (test_bit(Faulty, &rdev->flags))
4812 			continue;
4813 		sync_blockdev(rdev->bdev);
4814 		invalidate_bdev(rdev->bdev);
4815 
4816 		/* perform some consistency tests on the device.
4817 		 * We don't want the data to overlap the metadata,
4818 		 * Internal Bitmap issues have been handled elsewhere.
4819 		 */
4820 		if (rdev->meta_bdev) {
4821 			/* Nothing to check */;
4822 		} else if (rdev->data_offset < rdev->sb_start) {
4823 			if (mddev->dev_sectors &&
4824 			    rdev->data_offset + mddev->dev_sectors
4825 			    > rdev->sb_start) {
4826 				printk("md: %s: data overlaps metadata\n",
4827 				       mdname(mddev));
4828 				return -EINVAL;
4829 			}
4830 		} else {
4831 			if (rdev->sb_start + rdev->sb_size/512
4832 			    > rdev->data_offset) {
4833 				printk("md: %s: metadata overlaps data\n",
4834 				       mdname(mddev));
4835 				return -EINVAL;
4836 			}
4837 		}
4838 		sysfs_notify_dirent_safe(rdev->sysfs_state);
4839 	}
4840 
4841 	if (mddev->bio_set == NULL)
4842 		mddev->bio_set = bioset_create(BIO_POOL_SIZE,
4843 					       sizeof(struct mddev *));
4844 
4845 	spin_lock(&pers_lock);
4846 	pers = find_pers(mddev->level, mddev->clevel);
4847 	if (!pers || !try_module_get(pers->owner)) {
4848 		spin_unlock(&pers_lock);
4849 		if (mddev->level != LEVEL_NONE)
4850 			printk(KERN_WARNING "md: personality for level %d is not loaded!\n",
4851 			       mddev->level);
4852 		else
4853 			printk(KERN_WARNING "md: personality for level %s is not loaded!\n",
4854 			       mddev->clevel);
4855 		return -EINVAL;
4856 	}
4857 	mddev->pers = pers;
4858 	spin_unlock(&pers_lock);
4859 	if (mddev->level != pers->level) {
4860 		mddev->level = pers->level;
4861 		mddev->new_level = pers->level;
4862 	}
4863 	strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
4864 
4865 	if (mddev->reshape_position != MaxSector &&
4866 	    pers->start_reshape == NULL) {
4867 		/* This personality cannot handle reshaping... */
4868 		mddev->pers = NULL;
4869 		module_put(pers->owner);
4870 		return -EINVAL;
4871 	}
4872 
4873 	if (pers->sync_request) {
4874 		/* Warn if this is a potentially silly
4875 		 * configuration.
4876 		 */
4877 		char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
4878 		struct md_rdev *rdev2;
4879 		int warned = 0;
4880 
4881 		rdev_for_each(rdev, mddev)
4882 			rdev_for_each(rdev2, mddev) {
4883 				if (rdev < rdev2 &&
4884 				    rdev->bdev->bd_contains ==
4885 				    rdev2->bdev->bd_contains) {
4886 					printk(KERN_WARNING
4887 					       "%s: WARNING: %s appears to be"
4888 					       " on the same physical disk as"
4889 					       " %s.\n",
4890 					       mdname(mddev),
4891 					       bdevname(rdev->bdev,b),
4892 					       bdevname(rdev2->bdev,b2));
4893 					warned = 1;
4894 				}
4895 			}
4896 
4897 		if (warned)
4898 			printk(KERN_WARNING
4899 			       "True protection against single-disk"
4900 			       " failure might be compromised.\n");
4901 	}
4902 
4903 	mddev->recovery = 0;
4904 	/* may be over-ridden by personality */
4905 	mddev->resync_max_sectors = mddev->dev_sectors;
4906 
4907 	mddev->ok_start_degraded = start_dirty_degraded;
4908 
4909 	if (start_readonly && mddev->ro == 0)
4910 		mddev->ro = 2; /* read-only, but switch on first write */
4911 
4912 	err = mddev->pers->run(mddev);
4913 	if (err)
4914 		printk(KERN_ERR "md: pers->run() failed ...\n");
4915 	else if (mddev->pers->size(mddev, 0, 0) < mddev->array_sectors) {
4916 		WARN_ONCE(!mddev->external_size, "%s: default size too small,"
4917 			  " but 'external_size' not in effect?\n", __func__);
4918 		printk(KERN_ERR
4919 		       "md: invalid array_size %llu > default size %llu\n",
4920 		       (unsigned long long)mddev->array_sectors / 2,
4921 		       (unsigned long long)mddev->pers->size(mddev, 0, 0) / 2);
4922 		err = -EINVAL;
4923 		mddev->pers->stop(mddev);
4924 	}
4925 	if (err == 0 && mddev->pers->sync_request) {
4926 		err = bitmap_create(mddev);
4927 		if (err) {
4928 			printk(KERN_ERR "%s: failed to create bitmap (%d)\n",
4929 			       mdname(mddev), err);
4930 			mddev->pers->stop(mddev);
4931 		}
4932 	}
4933 	if (err) {
4934 		module_put(mddev->pers->owner);
4935 		mddev->pers = NULL;
4936 		bitmap_destroy(mddev);
4937 		return err;
4938 	}
4939 	if (mddev->pers->sync_request) {
4940 		if (mddev->kobj.sd &&
4941 		    sysfs_create_group(&mddev->kobj, &md_redundancy_group))
4942 			printk(KERN_WARNING
4943 			       "md: cannot register extra attributes for %s\n",
4944 			       mdname(mddev));
4945 		mddev->sysfs_action = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_action");
4946 	} else if (mddev->ro == 2) /* auto-readonly not meaningful */
4947 		mddev->ro = 0;
4948 
4949  	atomic_set(&mddev->writes_pending,0);
4950 	atomic_set(&mddev->max_corr_read_errors,
4951 		   MD_DEFAULT_MAX_CORRECTED_READ_ERRORS);
4952 	mddev->safemode = 0;
4953 	mddev->safemode_timer.function = md_safemode_timeout;
4954 	mddev->safemode_timer.data = (unsigned long) mddev;
4955 	mddev->safemode_delay = (200 * HZ)/1000 +1; /* 200 msec delay */
4956 	mddev->in_sync = 1;
4957 	smp_wmb();
4958 	mddev->ready = 1;
4959 	rdev_for_each(rdev, mddev)
4960 		if (rdev->raid_disk >= 0)
4961 			if (sysfs_link_rdev(mddev, rdev))
4962 				/* failure here is OK */;
4963 
4964 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4965 
4966 	if (mddev->flags)
4967 		md_update_sb(mddev, 0);
4968 
4969 	md_new_event(mddev);
4970 	sysfs_notify_dirent_safe(mddev->sysfs_state);
4971 	sysfs_notify_dirent_safe(mddev->sysfs_action);
4972 	sysfs_notify(&mddev->kobj, NULL, "degraded");
4973 	return 0;
4974 }
4975 EXPORT_SYMBOL_GPL(md_run);
4976 
do_md_run(struct mddev * mddev)4977 static int do_md_run(struct mddev *mddev)
4978 {
4979 	int err;
4980 
4981 	err = md_run(mddev);
4982 	if (err)
4983 		goto out;
4984 	err = bitmap_load(mddev);
4985 	if (err) {
4986 		bitmap_destroy(mddev);
4987 		goto out;
4988 	}
4989 
4990 	md_wakeup_thread(mddev->thread);
4991 	md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
4992 
4993 	set_capacity(mddev->gendisk, mddev->array_sectors);
4994 	revalidate_disk(mddev->gendisk);
4995 	mddev->changed = 1;
4996 	kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
4997 out:
4998 	return err;
4999 }
5000 
restart_array(struct mddev * mddev)5001 static int restart_array(struct mddev *mddev)
5002 {
5003 	struct gendisk *disk = mddev->gendisk;
5004 
5005 	/* Complain if it has no devices */
5006 	if (list_empty(&mddev->disks))
5007 		return -ENXIO;
5008 	if (!mddev->pers)
5009 		return -EINVAL;
5010 	if (!mddev->ro)
5011 		return -EBUSY;
5012 	mddev->safemode = 0;
5013 	mddev->ro = 0;
5014 	set_disk_ro(disk, 0);
5015 	printk(KERN_INFO "md: %s switched to read-write mode.\n",
5016 		mdname(mddev));
5017 	/* Kick recovery or resync if necessary */
5018 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5019 	md_wakeup_thread(mddev->thread);
5020 	md_wakeup_thread(mddev->sync_thread);
5021 	sysfs_notify_dirent_safe(mddev->sysfs_state);
5022 	return 0;
5023 }
5024 
5025 /* similar to deny_write_access, but accounts for our holding a reference
5026  * to the file ourselves */
deny_bitmap_write_access(struct file * file)5027 static int deny_bitmap_write_access(struct file * file)
5028 {
5029 	struct inode *inode = file->f_mapping->host;
5030 
5031 	spin_lock(&inode->i_lock);
5032 	if (atomic_read(&inode->i_writecount) > 1) {
5033 		spin_unlock(&inode->i_lock);
5034 		return -ETXTBSY;
5035 	}
5036 	atomic_set(&inode->i_writecount, -1);
5037 	spin_unlock(&inode->i_lock);
5038 
5039 	return 0;
5040 }
5041 
restore_bitmap_write_access(struct file * file)5042 void restore_bitmap_write_access(struct file *file)
5043 {
5044 	struct inode *inode = file->f_mapping->host;
5045 
5046 	spin_lock(&inode->i_lock);
5047 	atomic_set(&inode->i_writecount, 1);
5048 	spin_unlock(&inode->i_lock);
5049 }
5050 
md_clean(struct mddev * mddev)5051 static void md_clean(struct mddev *mddev)
5052 {
5053 	mddev->array_sectors = 0;
5054 	mddev->external_size = 0;
5055 	mddev->dev_sectors = 0;
5056 	mddev->raid_disks = 0;
5057 	mddev->recovery_cp = 0;
5058 	mddev->resync_min = 0;
5059 	mddev->resync_max = MaxSector;
5060 	mddev->reshape_position = MaxSector;
5061 	mddev->external = 0;
5062 	mddev->persistent = 0;
5063 	mddev->level = LEVEL_NONE;
5064 	mddev->clevel[0] = 0;
5065 	mddev->flags = 0;
5066 	mddev->ro = 0;
5067 	mddev->metadata_type[0] = 0;
5068 	mddev->chunk_sectors = 0;
5069 	mddev->ctime = mddev->utime = 0;
5070 	mddev->layout = 0;
5071 	mddev->max_disks = 0;
5072 	mddev->events = 0;
5073 	mddev->can_decrease_events = 0;
5074 	mddev->delta_disks = 0;
5075 	mddev->new_level = LEVEL_NONE;
5076 	mddev->new_layout = 0;
5077 	mddev->new_chunk_sectors = 0;
5078 	mddev->curr_resync = 0;
5079 	mddev->resync_mismatches = 0;
5080 	mddev->suspend_lo = mddev->suspend_hi = 0;
5081 	mddev->sync_speed_min = mddev->sync_speed_max = 0;
5082 	mddev->recovery = 0;
5083 	mddev->in_sync = 0;
5084 	mddev->changed = 0;
5085 	mddev->degraded = 0;
5086 	mddev->safemode = 0;
5087 	mddev->merge_check_needed = 0;
5088 	mddev->bitmap_info.offset = 0;
5089 	mddev->bitmap_info.default_offset = 0;
5090 	mddev->bitmap_info.chunksize = 0;
5091 	mddev->bitmap_info.daemon_sleep = 0;
5092 	mddev->bitmap_info.max_write_behind = 0;
5093 }
5094 
__md_stop_writes(struct mddev * mddev)5095 static void __md_stop_writes(struct mddev *mddev)
5096 {
5097 	if (mddev->sync_thread) {
5098 		set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5099 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5100 		reap_sync_thread(mddev);
5101 	}
5102 
5103 	del_timer_sync(&mddev->safemode_timer);
5104 
5105 	bitmap_flush(mddev);
5106 	md_super_wait(mddev);
5107 
5108 	if (!mddev->in_sync || mddev->flags) {
5109 		/* mark array as shutdown cleanly */
5110 		mddev->in_sync = 1;
5111 		md_update_sb(mddev, 1);
5112 	}
5113 }
5114 
md_stop_writes(struct mddev * mddev)5115 void md_stop_writes(struct mddev *mddev)
5116 {
5117 	mddev_lock(mddev);
5118 	__md_stop_writes(mddev);
5119 	mddev_unlock(mddev);
5120 }
5121 EXPORT_SYMBOL_GPL(md_stop_writes);
5122 
md_stop(struct mddev * mddev)5123 void md_stop(struct mddev *mddev)
5124 {
5125 	mddev->ready = 0;
5126 	mddev->pers->stop(mddev);
5127 	if (mddev->pers->sync_request && mddev->to_remove == NULL)
5128 		mddev->to_remove = &md_redundancy_group;
5129 	module_put(mddev->pers->owner);
5130 	mddev->pers = NULL;
5131 	clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5132 }
5133 EXPORT_SYMBOL_GPL(md_stop);
5134 
md_set_readonly(struct mddev * mddev,struct block_device * bdev)5135 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev)
5136 {
5137 	int err = 0;
5138 	mutex_lock(&mddev->open_mutex);
5139 	if (atomic_read(&mddev->openers) > !!bdev) {
5140 		printk("md: %s still in use.\n",mdname(mddev));
5141 		err = -EBUSY;
5142 		goto out;
5143 	}
5144 	if (bdev)
5145 		sync_blockdev(bdev);
5146 	if (mddev->pers) {
5147 		__md_stop_writes(mddev);
5148 
5149 		err  = -ENXIO;
5150 		if (mddev->ro==1)
5151 			goto out;
5152 		mddev->ro = 1;
5153 		set_disk_ro(mddev->gendisk, 1);
5154 		clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5155 		sysfs_notify_dirent_safe(mddev->sysfs_state);
5156 		err = 0;
5157 	}
5158 out:
5159 	mutex_unlock(&mddev->open_mutex);
5160 	return err;
5161 }
5162 
5163 /* mode:
5164  *   0 - completely stop and dis-assemble array
5165  *   2 - stop but do not disassemble array
5166  */
do_md_stop(struct mddev * mddev,int mode,struct block_device * bdev)5167 static int do_md_stop(struct mddev * mddev, int mode,
5168 		      struct block_device *bdev)
5169 {
5170 	struct gendisk *disk = mddev->gendisk;
5171 	struct md_rdev *rdev;
5172 
5173 	mutex_lock(&mddev->open_mutex);
5174 	if (atomic_read(&mddev->openers) > !!bdev ||
5175 	    mddev->sysfs_active) {
5176 		printk("md: %s still in use.\n",mdname(mddev));
5177 		mutex_unlock(&mddev->open_mutex);
5178 		return -EBUSY;
5179 	}
5180 	if (bdev)
5181 		/* It is possible IO was issued on some other
5182 		 * open file which was closed before we took ->open_mutex.
5183 		 * As that was not the last close __blkdev_put will not
5184 		 * have called sync_blockdev, so we must.
5185 		 */
5186 		sync_blockdev(bdev);
5187 
5188 	if (mddev->pers) {
5189 		if (mddev->ro)
5190 			set_disk_ro(disk, 0);
5191 
5192 		__md_stop_writes(mddev);
5193 		md_stop(mddev);
5194 		mddev->queue->merge_bvec_fn = NULL;
5195 		mddev->queue->backing_dev_info.congested_fn = NULL;
5196 
5197 		/* tell userspace to handle 'inactive' */
5198 		sysfs_notify_dirent_safe(mddev->sysfs_state);
5199 
5200 		rdev_for_each(rdev, mddev)
5201 			if (rdev->raid_disk >= 0)
5202 				sysfs_unlink_rdev(mddev, rdev);
5203 
5204 		set_capacity(disk, 0);
5205 		mutex_unlock(&mddev->open_mutex);
5206 		mddev->changed = 1;
5207 		revalidate_disk(disk);
5208 
5209 		if (mddev->ro)
5210 			mddev->ro = 0;
5211 	} else
5212 		mutex_unlock(&mddev->open_mutex);
5213 	/*
5214 	 * Free resources if final stop
5215 	 */
5216 	if (mode == 0) {
5217 		printk(KERN_INFO "md: %s stopped.\n", mdname(mddev));
5218 
5219 		bitmap_destroy(mddev);
5220 		if (mddev->bitmap_info.file) {
5221 			restore_bitmap_write_access(mddev->bitmap_info.file);
5222 			fput(mddev->bitmap_info.file);
5223 			mddev->bitmap_info.file = NULL;
5224 		}
5225 		mddev->bitmap_info.offset = 0;
5226 
5227 		export_array(mddev);
5228 
5229 		md_clean(mddev);
5230 		kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
5231 		if (mddev->hold_active == UNTIL_STOP)
5232 			mddev->hold_active = 0;
5233 	}
5234 	blk_integrity_unregister(disk);
5235 	md_new_event(mddev);
5236 	sysfs_notify_dirent_safe(mddev->sysfs_state);
5237 	return 0;
5238 }
5239 
5240 #ifndef MODULE
autorun_array(struct mddev * mddev)5241 static void autorun_array(struct mddev *mddev)
5242 {
5243 	struct md_rdev *rdev;
5244 	int err;
5245 
5246 	if (list_empty(&mddev->disks))
5247 		return;
5248 
5249 	printk(KERN_INFO "md: running: ");
5250 
5251 	rdev_for_each(rdev, mddev) {
5252 		char b[BDEVNAME_SIZE];
5253 		printk("<%s>", bdevname(rdev->bdev,b));
5254 	}
5255 	printk("\n");
5256 
5257 	err = do_md_run(mddev);
5258 	if (err) {
5259 		printk(KERN_WARNING "md: do_md_run() returned %d\n", err);
5260 		do_md_stop(mddev, 0, NULL);
5261 	}
5262 }
5263 
5264 /*
5265  * lets try to run arrays based on all disks that have arrived
5266  * until now. (those are in pending_raid_disks)
5267  *
5268  * the method: pick the first pending disk, collect all disks with
5269  * the same UUID, remove all from the pending list and put them into
5270  * the 'same_array' list. Then order this list based on superblock
5271  * update time (freshest comes first), kick out 'old' disks and
5272  * compare superblocks. If everything's fine then run it.
5273  *
5274  * If "unit" is allocated, then bump its reference count
5275  */
autorun_devices(int part)5276 static void autorun_devices(int part)
5277 {
5278 	struct md_rdev *rdev0, *rdev, *tmp;
5279 	struct mddev *mddev;
5280 	char b[BDEVNAME_SIZE];
5281 
5282 	printk(KERN_INFO "md: autorun ...\n");
5283 	while (!list_empty(&pending_raid_disks)) {
5284 		int unit;
5285 		dev_t dev;
5286 		LIST_HEAD(candidates);
5287 		rdev0 = list_entry(pending_raid_disks.next,
5288 					 struct md_rdev, same_set);
5289 
5290 		printk(KERN_INFO "md: considering %s ...\n",
5291 			bdevname(rdev0->bdev,b));
5292 		INIT_LIST_HEAD(&candidates);
5293 		rdev_for_each_list(rdev, tmp, &pending_raid_disks)
5294 			if (super_90_load(rdev, rdev0, 0) >= 0) {
5295 				printk(KERN_INFO "md:  adding %s ...\n",
5296 					bdevname(rdev->bdev,b));
5297 				list_move(&rdev->same_set, &candidates);
5298 			}
5299 		/*
5300 		 * now we have a set of devices, with all of them having
5301 		 * mostly sane superblocks. It's time to allocate the
5302 		 * mddev.
5303 		 */
5304 		if (part) {
5305 			dev = MKDEV(mdp_major,
5306 				    rdev0->preferred_minor << MdpMinorShift);
5307 			unit = MINOR(dev) >> MdpMinorShift;
5308 		} else {
5309 			dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
5310 			unit = MINOR(dev);
5311 		}
5312 		if (rdev0->preferred_minor != unit) {
5313 			printk(KERN_INFO "md: unit number in %s is bad: %d\n",
5314 			       bdevname(rdev0->bdev, b), rdev0->preferred_minor);
5315 			break;
5316 		}
5317 
5318 		md_probe(dev, NULL, NULL);
5319 		mddev = mddev_find(dev);
5320 		if (!mddev || !mddev->gendisk) {
5321 			if (mddev)
5322 				mddev_put(mddev);
5323 			printk(KERN_ERR
5324 				"md: cannot allocate memory for md drive.\n");
5325 			break;
5326 		}
5327 		if (mddev_lock(mddev))
5328 			printk(KERN_WARNING "md: %s locked, cannot run\n",
5329 			       mdname(mddev));
5330 		else if (mddev->raid_disks || mddev->major_version
5331 			 || !list_empty(&mddev->disks)) {
5332 			printk(KERN_WARNING
5333 				"md: %s already running, cannot run %s\n",
5334 				mdname(mddev), bdevname(rdev0->bdev,b));
5335 			mddev_unlock(mddev);
5336 		} else {
5337 			printk(KERN_INFO "md: created %s\n", mdname(mddev));
5338 			mddev->persistent = 1;
5339 			rdev_for_each_list(rdev, tmp, &candidates) {
5340 				list_del_init(&rdev->same_set);
5341 				if (bind_rdev_to_array(rdev, mddev))
5342 					export_rdev(rdev);
5343 			}
5344 			autorun_array(mddev);
5345 			mddev_unlock(mddev);
5346 		}
5347 		/* on success, candidates will be empty, on error
5348 		 * it won't...
5349 		 */
5350 		rdev_for_each_list(rdev, tmp, &candidates) {
5351 			list_del_init(&rdev->same_set);
5352 			export_rdev(rdev);
5353 		}
5354 		mddev_put(mddev);
5355 	}
5356 	printk(KERN_INFO "md: ... autorun DONE.\n");
5357 }
5358 #endif /* !MODULE */
5359 
get_version(void __user * arg)5360 static int get_version(void __user * arg)
5361 {
5362 	mdu_version_t ver;
5363 
5364 	ver.major = MD_MAJOR_VERSION;
5365 	ver.minor = MD_MINOR_VERSION;
5366 	ver.patchlevel = MD_PATCHLEVEL_VERSION;
5367 
5368 	if (copy_to_user(arg, &ver, sizeof(ver)))
5369 		return -EFAULT;
5370 
5371 	return 0;
5372 }
5373 
get_array_info(struct mddev * mddev,void __user * arg)5374 static int get_array_info(struct mddev * mddev, void __user * arg)
5375 {
5376 	mdu_array_info_t info;
5377 	int nr,working,insync,failed,spare;
5378 	struct md_rdev *rdev;
5379 
5380 	nr=working=insync=failed=spare=0;
5381 	rdev_for_each(rdev, mddev) {
5382 		nr++;
5383 		if (test_bit(Faulty, &rdev->flags))
5384 			failed++;
5385 		else {
5386 			working++;
5387 			if (test_bit(In_sync, &rdev->flags))
5388 				insync++;
5389 			else
5390 				spare++;
5391 		}
5392 	}
5393 
5394 	info.major_version = mddev->major_version;
5395 	info.minor_version = mddev->minor_version;
5396 	info.patch_version = MD_PATCHLEVEL_VERSION;
5397 	info.ctime         = mddev->ctime;
5398 	info.level         = mddev->level;
5399 	info.size          = mddev->dev_sectors / 2;
5400 	if (info.size != mddev->dev_sectors / 2) /* overflow */
5401 		info.size = -1;
5402 	info.nr_disks      = nr;
5403 	info.raid_disks    = mddev->raid_disks;
5404 	info.md_minor      = mddev->md_minor;
5405 	info.not_persistent= !mddev->persistent;
5406 
5407 	info.utime         = mddev->utime;
5408 	info.state         = 0;
5409 	if (mddev->in_sync)
5410 		info.state = (1<<MD_SB_CLEAN);
5411 	if (mddev->bitmap && mddev->bitmap_info.offset)
5412 		info.state = (1<<MD_SB_BITMAP_PRESENT);
5413 	info.active_disks  = insync;
5414 	info.working_disks = working;
5415 	info.failed_disks  = failed;
5416 	info.spare_disks   = spare;
5417 
5418 	info.layout        = mddev->layout;
5419 	info.chunk_size    = mddev->chunk_sectors << 9;
5420 
5421 	if (copy_to_user(arg, &info, sizeof(info)))
5422 		return -EFAULT;
5423 
5424 	return 0;
5425 }
5426 
get_bitmap_file(struct mddev * mddev,void __user * arg)5427 static int get_bitmap_file(struct mddev * mddev, void __user * arg)
5428 {
5429 	mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
5430 	char *ptr, *buf = NULL;
5431 	int err = -ENOMEM;
5432 
5433 	if (md_allow_write(mddev))
5434 		file = kmalloc(sizeof(*file), GFP_NOIO);
5435 	else
5436 		file = kmalloc(sizeof(*file), GFP_KERNEL);
5437 
5438 	if (!file)
5439 		goto out;
5440 
5441 	/* bitmap disabled, zero the first byte and copy out */
5442 	if (!mddev->bitmap || !mddev->bitmap->file) {
5443 		file->pathname[0] = '\0';
5444 		goto copy_out;
5445 	}
5446 
5447 	buf = kmalloc(sizeof(file->pathname), GFP_KERNEL);
5448 	if (!buf)
5449 		goto out;
5450 
5451 	ptr = d_path(&mddev->bitmap->file->f_path, buf, sizeof(file->pathname));
5452 	if (IS_ERR(ptr))
5453 		goto out;
5454 
5455 	strcpy(file->pathname, ptr);
5456 
5457 copy_out:
5458 	err = 0;
5459 	if (copy_to_user(arg, file, sizeof(*file)))
5460 		err = -EFAULT;
5461 out:
5462 	kfree(buf);
5463 	kfree(file);
5464 	return err;
5465 }
5466 
get_disk_info(struct mddev * mddev,void __user * arg)5467 static int get_disk_info(struct mddev * mddev, void __user * arg)
5468 {
5469 	mdu_disk_info_t info;
5470 	struct md_rdev *rdev;
5471 
5472 	if (copy_from_user(&info, arg, sizeof(info)))
5473 		return -EFAULT;
5474 
5475 	rdev = find_rdev_nr(mddev, info.number);
5476 	if (rdev) {
5477 		info.major = MAJOR(rdev->bdev->bd_dev);
5478 		info.minor = MINOR(rdev->bdev->bd_dev);
5479 		info.raid_disk = rdev->raid_disk;
5480 		info.state = 0;
5481 		if (test_bit(Faulty, &rdev->flags))
5482 			info.state |= (1<<MD_DISK_FAULTY);
5483 		else if (test_bit(In_sync, &rdev->flags)) {
5484 			info.state |= (1<<MD_DISK_ACTIVE);
5485 			info.state |= (1<<MD_DISK_SYNC);
5486 		}
5487 		if (test_bit(WriteMostly, &rdev->flags))
5488 			info.state |= (1<<MD_DISK_WRITEMOSTLY);
5489 	} else {
5490 		info.major = info.minor = 0;
5491 		info.raid_disk = -1;
5492 		info.state = (1<<MD_DISK_REMOVED);
5493 	}
5494 
5495 	if (copy_to_user(arg, &info, sizeof(info)))
5496 		return -EFAULT;
5497 
5498 	return 0;
5499 }
5500 
add_new_disk(struct mddev * mddev,mdu_disk_info_t * info)5501 static int add_new_disk(struct mddev * mddev, mdu_disk_info_t *info)
5502 {
5503 	char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
5504 	struct md_rdev *rdev;
5505 	dev_t dev = MKDEV(info->major,info->minor);
5506 
5507 	if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
5508 		return -EOVERFLOW;
5509 
5510 	if (!mddev->raid_disks) {
5511 		int err;
5512 		/* expecting a device which has a superblock */
5513 		rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
5514 		if (IS_ERR(rdev)) {
5515 			printk(KERN_WARNING
5516 				"md: md_import_device returned %ld\n",
5517 				PTR_ERR(rdev));
5518 			return PTR_ERR(rdev);
5519 		}
5520 		if (!list_empty(&mddev->disks)) {
5521 			struct md_rdev *rdev0
5522 				= list_entry(mddev->disks.next,
5523 					     struct md_rdev, same_set);
5524 			err = super_types[mddev->major_version]
5525 				.load_super(rdev, rdev0, mddev->minor_version);
5526 			if (err < 0) {
5527 				printk(KERN_WARNING
5528 					"md: %s has different UUID to %s\n",
5529 					bdevname(rdev->bdev,b),
5530 					bdevname(rdev0->bdev,b2));
5531 				export_rdev(rdev);
5532 				return -EINVAL;
5533 			}
5534 		}
5535 		err = bind_rdev_to_array(rdev, mddev);
5536 		if (err)
5537 			export_rdev(rdev);
5538 		return err;
5539 	}
5540 
5541 	/*
5542 	 * add_new_disk can be used once the array is assembled
5543 	 * to add "hot spares".  They must already have a superblock
5544 	 * written
5545 	 */
5546 	if (mddev->pers) {
5547 		int err;
5548 		if (!mddev->pers->hot_add_disk) {
5549 			printk(KERN_WARNING
5550 				"%s: personality does not support diskops!\n",
5551 			       mdname(mddev));
5552 			return -EINVAL;
5553 		}
5554 		if (mddev->persistent)
5555 			rdev = md_import_device(dev, mddev->major_version,
5556 						mddev->minor_version);
5557 		else
5558 			rdev = md_import_device(dev, -1, -1);
5559 		if (IS_ERR(rdev)) {
5560 			printk(KERN_WARNING
5561 				"md: md_import_device returned %ld\n",
5562 				PTR_ERR(rdev));
5563 			return PTR_ERR(rdev);
5564 		}
5565 		/* set saved_raid_disk if appropriate */
5566 		if (!mddev->persistent) {
5567 			if (info->state & (1<<MD_DISK_SYNC)  &&
5568 			    info->raid_disk < mddev->raid_disks) {
5569 				rdev->raid_disk = info->raid_disk;
5570 				set_bit(In_sync, &rdev->flags);
5571 			} else
5572 				rdev->raid_disk = -1;
5573 		} else
5574 			super_types[mddev->major_version].
5575 				validate_super(mddev, rdev);
5576 		if ((info->state & (1<<MD_DISK_SYNC)) &&
5577 		    (!test_bit(In_sync, &rdev->flags) ||
5578 		     rdev->raid_disk != info->raid_disk)) {
5579 			/* This was a hot-add request, but events doesn't
5580 			 * match, so reject it.
5581 			 */
5582 			export_rdev(rdev);
5583 			return -EINVAL;
5584 		}
5585 
5586 		if (test_bit(In_sync, &rdev->flags))
5587 			rdev->saved_raid_disk = rdev->raid_disk;
5588 		else
5589 			rdev->saved_raid_disk = -1;
5590 
5591 		clear_bit(In_sync, &rdev->flags); /* just to be sure */
5592 		if (info->state & (1<<MD_DISK_WRITEMOSTLY))
5593 			set_bit(WriteMostly, &rdev->flags);
5594 		else
5595 			clear_bit(WriteMostly, &rdev->flags);
5596 
5597 		rdev->raid_disk = -1;
5598 		err = bind_rdev_to_array(rdev, mddev);
5599 		if (!err && !mddev->pers->hot_remove_disk) {
5600 			/* If there is hot_add_disk but no hot_remove_disk
5601 			 * then added disks for geometry changes,
5602 			 * and should be added immediately.
5603 			 */
5604 			super_types[mddev->major_version].
5605 				validate_super(mddev, rdev);
5606 			err = mddev->pers->hot_add_disk(mddev, rdev);
5607 			if (err)
5608 				unbind_rdev_from_array(rdev);
5609 		}
5610 		if (err)
5611 			export_rdev(rdev);
5612 		else
5613 			sysfs_notify_dirent_safe(rdev->sysfs_state);
5614 
5615 		md_update_sb(mddev, 1);
5616 		if (mddev->degraded)
5617 			set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
5618 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5619 		if (!err)
5620 			md_new_event(mddev);
5621 		md_wakeup_thread(mddev->thread);
5622 		return err;
5623 	}
5624 
5625 	/* otherwise, add_new_disk is only allowed
5626 	 * for major_version==0 superblocks
5627 	 */
5628 	if (mddev->major_version != 0) {
5629 		printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n",
5630 		       mdname(mddev));
5631 		return -EINVAL;
5632 	}
5633 
5634 	if (!(info->state & (1<<MD_DISK_FAULTY))) {
5635 		int err;
5636 		rdev = md_import_device(dev, -1, 0);
5637 		if (IS_ERR(rdev)) {
5638 			printk(KERN_WARNING
5639 				"md: error, md_import_device() returned %ld\n",
5640 				PTR_ERR(rdev));
5641 			return PTR_ERR(rdev);
5642 		}
5643 		rdev->desc_nr = info->number;
5644 		if (info->raid_disk < mddev->raid_disks)
5645 			rdev->raid_disk = info->raid_disk;
5646 		else
5647 			rdev->raid_disk = -1;
5648 
5649 		if (rdev->raid_disk < mddev->raid_disks)
5650 			if (info->state & (1<<MD_DISK_SYNC))
5651 				set_bit(In_sync, &rdev->flags);
5652 
5653 		if (info->state & (1<<MD_DISK_WRITEMOSTLY))
5654 			set_bit(WriteMostly, &rdev->flags);
5655 
5656 		if (!mddev->persistent) {
5657 			printk(KERN_INFO "md: nonpersistent superblock ...\n");
5658 			rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
5659 		} else
5660 			rdev->sb_start = calc_dev_sboffset(rdev);
5661 		rdev->sectors = rdev->sb_start;
5662 
5663 		err = bind_rdev_to_array(rdev, mddev);
5664 		if (err) {
5665 			export_rdev(rdev);
5666 			return err;
5667 		}
5668 	}
5669 
5670 	return 0;
5671 }
5672 
hot_remove_disk(struct mddev * mddev,dev_t dev)5673 static int hot_remove_disk(struct mddev * mddev, dev_t dev)
5674 {
5675 	char b[BDEVNAME_SIZE];
5676 	struct md_rdev *rdev;
5677 
5678 	rdev = find_rdev(mddev, dev);
5679 	if (!rdev)
5680 		return -ENXIO;
5681 
5682 	if (rdev->raid_disk >= 0)
5683 		goto busy;
5684 
5685 	kick_rdev_from_array(rdev);
5686 	md_update_sb(mddev, 1);
5687 	md_new_event(mddev);
5688 
5689 	return 0;
5690 busy:
5691 	printk(KERN_WARNING "md: cannot remove active disk %s from %s ...\n",
5692 		bdevname(rdev->bdev,b), mdname(mddev));
5693 	return -EBUSY;
5694 }
5695 
hot_add_disk(struct mddev * mddev,dev_t dev)5696 static int hot_add_disk(struct mddev * mddev, dev_t dev)
5697 {
5698 	char b[BDEVNAME_SIZE];
5699 	int err;
5700 	struct md_rdev *rdev;
5701 
5702 	if (!mddev->pers)
5703 		return -ENODEV;
5704 
5705 	if (mddev->major_version != 0) {
5706 		printk(KERN_WARNING "%s: HOT_ADD may only be used with"
5707 			" version-0 superblocks.\n",
5708 			mdname(mddev));
5709 		return -EINVAL;
5710 	}
5711 	if (!mddev->pers->hot_add_disk) {
5712 		printk(KERN_WARNING
5713 			"%s: personality does not support diskops!\n",
5714 			mdname(mddev));
5715 		return -EINVAL;
5716 	}
5717 
5718 	rdev = md_import_device(dev, -1, 0);
5719 	if (IS_ERR(rdev)) {
5720 		printk(KERN_WARNING
5721 			"md: error, md_import_device() returned %ld\n",
5722 			PTR_ERR(rdev));
5723 		return -EINVAL;
5724 	}
5725 
5726 	if (mddev->persistent)
5727 		rdev->sb_start = calc_dev_sboffset(rdev);
5728 	else
5729 		rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
5730 
5731 	rdev->sectors = rdev->sb_start;
5732 
5733 	if (test_bit(Faulty, &rdev->flags)) {
5734 		printk(KERN_WARNING
5735 			"md: can not hot-add faulty %s disk to %s!\n",
5736 			bdevname(rdev->bdev,b), mdname(mddev));
5737 		err = -EINVAL;
5738 		goto abort_export;
5739 	}
5740 	clear_bit(In_sync, &rdev->flags);
5741 	rdev->desc_nr = -1;
5742 	rdev->saved_raid_disk = -1;
5743 	err = bind_rdev_to_array(rdev, mddev);
5744 	if (err)
5745 		goto abort_export;
5746 
5747 	/*
5748 	 * The rest should better be atomic, we can have disk failures
5749 	 * noticed in interrupt contexts ...
5750 	 */
5751 
5752 	rdev->raid_disk = -1;
5753 
5754 	md_update_sb(mddev, 1);
5755 
5756 	/*
5757 	 * Kick recovery, maybe this spare has to be added to the
5758 	 * array immediately.
5759 	 */
5760 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5761 	md_wakeup_thread(mddev->thread);
5762 	md_new_event(mddev);
5763 	return 0;
5764 
5765 abort_export:
5766 	export_rdev(rdev);
5767 	return err;
5768 }
5769 
set_bitmap_file(struct mddev * mddev,int fd)5770 static int set_bitmap_file(struct mddev *mddev, int fd)
5771 {
5772 	int err;
5773 
5774 	if (mddev->pers) {
5775 		if (!mddev->pers->quiesce)
5776 			return -EBUSY;
5777 		if (mddev->recovery || mddev->sync_thread)
5778 			return -EBUSY;
5779 		/* we should be able to change the bitmap.. */
5780 	}
5781 
5782 
5783 	if (fd >= 0) {
5784 		if (mddev->bitmap)
5785 			return -EEXIST; /* cannot add when bitmap is present */
5786 		mddev->bitmap_info.file = fget(fd);
5787 
5788 		if (mddev->bitmap_info.file == NULL) {
5789 			printk(KERN_ERR "%s: error: failed to get bitmap file\n",
5790 			       mdname(mddev));
5791 			return -EBADF;
5792 		}
5793 
5794 		err = deny_bitmap_write_access(mddev->bitmap_info.file);
5795 		if (err) {
5796 			printk(KERN_ERR "%s: error: bitmap file is already in use\n",
5797 			       mdname(mddev));
5798 			fput(mddev->bitmap_info.file);
5799 			mddev->bitmap_info.file = NULL;
5800 			return err;
5801 		}
5802 		mddev->bitmap_info.offset = 0; /* file overrides offset */
5803 	} else if (mddev->bitmap == NULL)
5804 		return -ENOENT; /* cannot remove what isn't there */
5805 	err = 0;
5806 	if (mddev->pers) {
5807 		mddev->pers->quiesce(mddev, 1);
5808 		if (fd >= 0) {
5809 			err = bitmap_create(mddev);
5810 			if (!err)
5811 				err = bitmap_load(mddev);
5812 		}
5813 		if (fd < 0 || err) {
5814 			bitmap_destroy(mddev);
5815 			fd = -1; /* make sure to put the file */
5816 		}
5817 		mddev->pers->quiesce(mddev, 0);
5818 	}
5819 	if (fd < 0) {
5820 		if (mddev->bitmap_info.file) {
5821 			restore_bitmap_write_access(mddev->bitmap_info.file);
5822 			fput(mddev->bitmap_info.file);
5823 		}
5824 		mddev->bitmap_info.file = NULL;
5825 	}
5826 
5827 	return err;
5828 }
5829 
5830 /*
5831  * set_array_info is used two different ways
5832  * The original usage is when creating a new array.
5833  * In this usage, raid_disks is > 0 and it together with
5834  *  level, size, not_persistent,layout,chunksize determine the
5835  *  shape of the array.
5836  *  This will always create an array with a type-0.90.0 superblock.
5837  * The newer usage is when assembling an array.
5838  *  In this case raid_disks will be 0, and the major_version field is
5839  *  use to determine which style super-blocks are to be found on the devices.
5840  *  The minor and patch _version numbers are also kept incase the
5841  *  super_block handler wishes to interpret them.
5842  */
set_array_info(struct mddev * mddev,mdu_array_info_t * info)5843 static int set_array_info(struct mddev * mddev, mdu_array_info_t *info)
5844 {
5845 
5846 	if (info->raid_disks == 0) {
5847 		/* just setting version number for superblock loading */
5848 		if (info->major_version < 0 ||
5849 		    info->major_version >= ARRAY_SIZE(super_types) ||
5850 		    super_types[info->major_version].name == NULL) {
5851 			/* maybe try to auto-load a module? */
5852 			printk(KERN_INFO
5853 				"md: superblock version %d not known\n",
5854 				info->major_version);
5855 			return -EINVAL;
5856 		}
5857 		mddev->major_version = info->major_version;
5858 		mddev->minor_version = info->minor_version;
5859 		mddev->patch_version = info->patch_version;
5860 		mddev->persistent = !info->not_persistent;
5861 		/* ensure mddev_put doesn't delete this now that there
5862 		 * is some minimal configuration.
5863 		 */
5864 		mddev->ctime         = get_seconds();
5865 		return 0;
5866 	}
5867 	mddev->major_version = MD_MAJOR_VERSION;
5868 	mddev->minor_version = MD_MINOR_VERSION;
5869 	mddev->patch_version = MD_PATCHLEVEL_VERSION;
5870 	mddev->ctime         = get_seconds();
5871 
5872 	mddev->level         = info->level;
5873 	mddev->clevel[0]     = 0;
5874 	mddev->dev_sectors   = 2 * (sector_t)info->size;
5875 	mddev->raid_disks    = info->raid_disks;
5876 	/* don't set md_minor, it is determined by which /dev/md* was
5877 	 * openned
5878 	 */
5879 	if (info->state & (1<<MD_SB_CLEAN))
5880 		mddev->recovery_cp = MaxSector;
5881 	else
5882 		mddev->recovery_cp = 0;
5883 	mddev->persistent    = ! info->not_persistent;
5884 	mddev->external	     = 0;
5885 
5886 	mddev->layout        = info->layout;
5887 	mddev->chunk_sectors = info->chunk_size >> 9;
5888 
5889 	mddev->max_disks     = MD_SB_DISKS;
5890 
5891 	if (mddev->persistent)
5892 		mddev->flags         = 0;
5893 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
5894 
5895 	mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
5896 	mddev->bitmap_info.offset = 0;
5897 
5898 	mddev->reshape_position = MaxSector;
5899 
5900 	/*
5901 	 * Generate a 128 bit UUID
5902 	 */
5903 	get_random_bytes(mddev->uuid, 16);
5904 
5905 	mddev->new_level = mddev->level;
5906 	mddev->new_chunk_sectors = mddev->chunk_sectors;
5907 	mddev->new_layout = mddev->layout;
5908 	mddev->delta_disks = 0;
5909 
5910 	return 0;
5911 }
5912 
md_set_array_sectors(struct mddev * mddev,sector_t array_sectors)5913 void md_set_array_sectors(struct mddev *mddev, sector_t array_sectors)
5914 {
5915 	WARN(!mddev_is_locked(mddev), "%s: unlocked mddev!\n", __func__);
5916 
5917 	if (mddev->external_size)
5918 		return;
5919 
5920 	mddev->array_sectors = array_sectors;
5921 }
5922 EXPORT_SYMBOL(md_set_array_sectors);
5923 
update_size(struct mddev * mddev,sector_t num_sectors)5924 static int update_size(struct mddev *mddev, sector_t num_sectors)
5925 {
5926 	struct md_rdev *rdev;
5927 	int rv;
5928 	int fit = (num_sectors == 0);
5929 
5930 	if (mddev->pers->resize == NULL)
5931 		return -EINVAL;
5932 	/* The "num_sectors" is the number of sectors of each device that
5933 	 * is used.  This can only make sense for arrays with redundancy.
5934 	 * linear and raid0 always use whatever space is available. We can only
5935 	 * consider changing this number if no resync or reconstruction is
5936 	 * happening, and if the new size is acceptable. It must fit before the
5937 	 * sb_start or, if that is <data_offset, it must fit before the size
5938 	 * of each device.  If num_sectors is zero, we find the largest size
5939 	 * that fits.
5940 	 */
5941 	if (mddev->sync_thread)
5942 		return -EBUSY;
5943 	if (mddev->bitmap)
5944 		/* Sorry, cannot grow a bitmap yet, just remove it,
5945 		 * grow, and re-add.
5946 		 */
5947 		return -EBUSY;
5948 	rdev_for_each(rdev, mddev) {
5949 		sector_t avail = rdev->sectors;
5950 
5951 		if (fit && (num_sectors == 0 || num_sectors > avail))
5952 			num_sectors = avail;
5953 		if (avail < num_sectors)
5954 			return -ENOSPC;
5955 	}
5956 	rv = mddev->pers->resize(mddev, num_sectors);
5957 	if (!rv)
5958 		revalidate_disk(mddev->gendisk);
5959 	return rv;
5960 }
5961 
update_raid_disks(struct mddev * mddev,int raid_disks)5962 static int update_raid_disks(struct mddev *mddev, int raid_disks)
5963 {
5964 	int rv;
5965 	/* change the number of raid disks */
5966 	if (mddev->pers->check_reshape == NULL)
5967 		return -EINVAL;
5968 	if (raid_disks <= 0 ||
5969 	    (mddev->max_disks && raid_disks >= mddev->max_disks))
5970 		return -EINVAL;
5971 	if (mddev->sync_thread || mddev->reshape_position != MaxSector)
5972 		return -EBUSY;
5973 	mddev->delta_disks = raid_disks - mddev->raid_disks;
5974 
5975 	rv = mddev->pers->check_reshape(mddev);
5976 	if (rv < 0)
5977 		mddev->delta_disks = 0;
5978 	return rv;
5979 }
5980 
5981 
5982 /*
5983  * update_array_info is used to change the configuration of an
5984  * on-line array.
5985  * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
5986  * fields in the info are checked against the array.
5987  * Any differences that cannot be handled will cause an error.
5988  * Normally, only one change can be managed at a time.
5989  */
update_array_info(struct mddev * mddev,mdu_array_info_t * info)5990 static int update_array_info(struct mddev *mddev, mdu_array_info_t *info)
5991 {
5992 	int rv = 0;
5993 	int cnt = 0;
5994 	int state = 0;
5995 
5996 	/* calculate expected state,ignoring low bits */
5997 	if (mddev->bitmap && mddev->bitmap_info.offset)
5998 		state |= (1 << MD_SB_BITMAP_PRESENT);
5999 
6000 	if (mddev->major_version != info->major_version ||
6001 	    mddev->minor_version != info->minor_version ||
6002 /*	    mddev->patch_version != info->patch_version || */
6003 	    mddev->ctime         != info->ctime         ||
6004 	    mddev->level         != info->level         ||
6005 /*	    mddev->layout        != info->layout        || */
6006 	    !mddev->persistent	 != info->not_persistent||
6007 	    mddev->chunk_sectors != info->chunk_size >> 9 ||
6008 	    /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
6009 	    ((state^info->state) & 0xfffffe00)
6010 		)
6011 		return -EINVAL;
6012 	/* Check there is only one change */
6013 	if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
6014 		cnt++;
6015 	if (mddev->raid_disks != info->raid_disks)
6016 		cnt++;
6017 	if (mddev->layout != info->layout)
6018 		cnt++;
6019 	if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT))
6020 		cnt++;
6021 	if (cnt == 0)
6022 		return 0;
6023 	if (cnt > 1)
6024 		return -EINVAL;
6025 
6026 	if (mddev->layout != info->layout) {
6027 		/* Change layout
6028 		 * we don't need to do anything at the md level, the
6029 		 * personality will take care of it all.
6030 		 */
6031 		if (mddev->pers->check_reshape == NULL)
6032 			return -EINVAL;
6033 		else {
6034 			mddev->new_layout = info->layout;
6035 			rv = mddev->pers->check_reshape(mddev);
6036 			if (rv)
6037 				mddev->new_layout = mddev->layout;
6038 			return rv;
6039 		}
6040 	}
6041 	if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
6042 		rv = update_size(mddev, (sector_t)info->size * 2);
6043 
6044 	if (mddev->raid_disks    != info->raid_disks)
6045 		rv = update_raid_disks(mddev, info->raid_disks);
6046 
6047 	if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
6048 		if (mddev->pers->quiesce == NULL)
6049 			return -EINVAL;
6050 		if (mddev->recovery || mddev->sync_thread)
6051 			return -EBUSY;
6052 		if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
6053 			/* add the bitmap */
6054 			if (mddev->bitmap)
6055 				return -EEXIST;
6056 			if (mddev->bitmap_info.default_offset == 0)
6057 				return -EINVAL;
6058 			mddev->bitmap_info.offset =
6059 				mddev->bitmap_info.default_offset;
6060 			mddev->pers->quiesce(mddev, 1);
6061 			rv = bitmap_create(mddev);
6062 			if (!rv)
6063 				rv = bitmap_load(mddev);
6064 			if (rv)
6065 				bitmap_destroy(mddev);
6066 			mddev->pers->quiesce(mddev, 0);
6067 		} else {
6068 			/* remove the bitmap */
6069 			if (!mddev->bitmap)
6070 				return -ENOENT;
6071 			if (mddev->bitmap->file)
6072 				return -EINVAL;
6073 			mddev->pers->quiesce(mddev, 1);
6074 			bitmap_destroy(mddev);
6075 			mddev->pers->quiesce(mddev, 0);
6076 			mddev->bitmap_info.offset = 0;
6077 		}
6078 	}
6079 	md_update_sb(mddev, 1);
6080 	return rv;
6081 }
6082 
set_disk_faulty(struct mddev * mddev,dev_t dev)6083 static int set_disk_faulty(struct mddev *mddev, dev_t dev)
6084 {
6085 	struct md_rdev *rdev;
6086 
6087 	if (mddev->pers == NULL)
6088 		return -ENODEV;
6089 
6090 	rdev = find_rdev(mddev, dev);
6091 	if (!rdev)
6092 		return -ENODEV;
6093 
6094 	md_error(mddev, rdev);
6095 	if (!test_bit(Faulty, &rdev->flags))
6096 		return -EBUSY;
6097 	return 0;
6098 }
6099 
6100 /*
6101  * We have a problem here : there is no easy way to give a CHS
6102  * virtual geometry. We currently pretend that we have a 2 heads
6103  * 4 sectors (with a BIG number of cylinders...). This drives
6104  * dosfs just mad... ;-)
6105  */
md_getgeo(struct block_device * bdev,struct hd_geometry * geo)6106 static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo)
6107 {
6108 	struct mddev *mddev = bdev->bd_disk->private_data;
6109 
6110 	geo->heads = 2;
6111 	geo->sectors = 4;
6112 	geo->cylinders = mddev->array_sectors / 8;
6113 	return 0;
6114 }
6115 
md_ioctl(struct block_device * bdev,fmode_t mode,unsigned int cmd,unsigned long arg)6116 static int md_ioctl(struct block_device *bdev, fmode_t mode,
6117 			unsigned int cmd, unsigned long arg)
6118 {
6119 	int err = 0;
6120 	void __user *argp = (void __user *)arg;
6121 	struct mddev *mddev = NULL;
6122 	int ro;
6123 
6124 	switch (cmd) {
6125 	case RAID_VERSION:
6126 	case GET_ARRAY_INFO:
6127 	case GET_DISK_INFO:
6128 		break;
6129 	default:
6130 		if (!capable(CAP_SYS_ADMIN))
6131 			return -EACCES;
6132 	}
6133 
6134 	/*
6135 	 * Commands dealing with the RAID driver but not any
6136 	 * particular array:
6137 	 */
6138 	switch (cmd)
6139 	{
6140 		case RAID_VERSION:
6141 			err = get_version(argp);
6142 			goto done;
6143 
6144 		case PRINT_RAID_DEBUG:
6145 			err = 0;
6146 			md_print_devices();
6147 			goto done;
6148 
6149 #ifndef MODULE
6150 		case RAID_AUTORUN:
6151 			err = 0;
6152 			autostart_arrays(arg);
6153 			goto done;
6154 #endif
6155 		default:;
6156 	}
6157 
6158 	/*
6159 	 * Commands creating/starting a new array:
6160 	 */
6161 
6162 	mddev = bdev->bd_disk->private_data;
6163 
6164 	if (!mddev) {
6165 		BUG();
6166 		goto abort;
6167 	}
6168 
6169 	err = mddev_lock(mddev);
6170 	if (err) {
6171 		printk(KERN_INFO
6172 			"md: ioctl lock interrupted, reason %d, cmd %d\n",
6173 			err, cmd);
6174 		goto abort;
6175 	}
6176 
6177 	switch (cmd)
6178 	{
6179 		case SET_ARRAY_INFO:
6180 			{
6181 				mdu_array_info_t info;
6182 				if (!arg)
6183 					memset(&info, 0, sizeof(info));
6184 				else if (copy_from_user(&info, argp, sizeof(info))) {
6185 					err = -EFAULT;
6186 					goto abort_unlock;
6187 				}
6188 				if (mddev->pers) {
6189 					err = update_array_info(mddev, &info);
6190 					if (err) {
6191 						printk(KERN_WARNING "md: couldn't update"
6192 						       " array info. %d\n", err);
6193 						goto abort_unlock;
6194 					}
6195 					goto done_unlock;
6196 				}
6197 				if (!list_empty(&mddev->disks)) {
6198 					printk(KERN_WARNING
6199 					       "md: array %s already has disks!\n",
6200 					       mdname(mddev));
6201 					err = -EBUSY;
6202 					goto abort_unlock;
6203 				}
6204 				if (mddev->raid_disks) {
6205 					printk(KERN_WARNING
6206 					       "md: array %s already initialised!\n",
6207 					       mdname(mddev));
6208 					err = -EBUSY;
6209 					goto abort_unlock;
6210 				}
6211 				err = set_array_info(mddev, &info);
6212 				if (err) {
6213 					printk(KERN_WARNING "md: couldn't set"
6214 					       " array info. %d\n", err);
6215 					goto abort_unlock;
6216 				}
6217 			}
6218 			goto done_unlock;
6219 
6220 		default:;
6221 	}
6222 
6223 	/*
6224 	 * Commands querying/configuring an existing array:
6225 	 */
6226 	/* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
6227 	 * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */
6228 	if ((!mddev->raid_disks && !mddev->external)
6229 	    && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
6230 	    && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE
6231 	    && cmd != GET_BITMAP_FILE) {
6232 		err = -ENODEV;
6233 		goto abort_unlock;
6234 	}
6235 
6236 	/*
6237 	 * Commands even a read-only array can execute:
6238 	 */
6239 	switch (cmd)
6240 	{
6241 		case GET_ARRAY_INFO:
6242 			err = get_array_info(mddev, argp);
6243 			goto done_unlock;
6244 
6245 		case GET_BITMAP_FILE:
6246 			err = get_bitmap_file(mddev, argp);
6247 			goto done_unlock;
6248 
6249 		case GET_DISK_INFO:
6250 			err = get_disk_info(mddev, argp);
6251 			goto done_unlock;
6252 
6253 		case RESTART_ARRAY_RW:
6254 			err = restart_array(mddev);
6255 			goto done_unlock;
6256 
6257 		case STOP_ARRAY:
6258 			err = do_md_stop(mddev, 0, bdev);
6259 			goto done_unlock;
6260 
6261 		case STOP_ARRAY_RO:
6262 			err = md_set_readonly(mddev, bdev);
6263 			goto done_unlock;
6264 
6265 		case BLKROSET:
6266 			if (get_user(ro, (int __user *)(arg))) {
6267 				err = -EFAULT;
6268 				goto done_unlock;
6269 			}
6270 			err = -EINVAL;
6271 
6272 			/* if the bdev is going readonly the value of mddev->ro
6273 			 * does not matter, no writes are coming
6274 			 */
6275 			if (ro)
6276 				goto done_unlock;
6277 
6278 			/* are we are already prepared for writes? */
6279 			if (mddev->ro != 1)
6280 				goto done_unlock;
6281 
6282 			/* transitioning to readauto need only happen for
6283 			 * arrays that call md_write_start
6284 			 */
6285 			if (mddev->pers) {
6286 				err = restart_array(mddev);
6287 				if (err == 0) {
6288 					mddev->ro = 2;
6289 					set_disk_ro(mddev->gendisk, 0);
6290 				}
6291 			}
6292 			goto done_unlock;
6293 	}
6294 
6295 	/*
6296 	 * The remaining ioctls are changing the state of the
6297 	 * superblock, so we do not allow them on read-only arrays.
6298 	 * However non-MD ioctls (e.g. get-size) will still come through
6299 	 * here and hit the 'default' below, so only disallow
6300 	 * 'md' ioctls, and switch to rw mode if started auto-readonly.
6301 	 */
6302 	if (_IOC_TYPE(cmd) == MD_MAJOR && mddev->ro && mddev->pers) {
6303 		if (mddev->ro == 2) {
6304 			mddev->ro = 0;
6305 			sysfs_notify_dirent_safe(mddev->sysfs_state);
6306 			set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6307 			md_wakeup_thread(mddev->thread);
6308 		} else {
6309 			err = -EROFS;
6310 			goto abort_unlock;
6311 		}
6312 	}
6313 
6314 	switch (cmd)
6315 	{
6316 		case ADD_NEW_DISK:
6317 		{
6318 			mdu_disk_info_t info;
6319 			if (copy_from_user(&info, argp, sizeof(info)))
6320 				err = -EFAULT;
6321 			else
6322 				err = add_new_disk(mddev, &info);
6323 			goto done_unlock;
6324 		}
6325 
6326 		case HOT_REMOVE_DISK:
6327 			err = hot_remove_disk(mddev, new_decode_dev(arg));
6328 			goto done_unlock;
6329 
6330 		case HOT_ADD_DISK:
6331 			err = hot_add_disk(mddev, new_decode_dev(arg));
6332 			goto done_unlock;
6333 
6334 		case SET_DISK_FAULTY:
6335 			err = set_disk_faulty(mddev, new_decode_dev(arg));
6336 			goto done_unlock;
6337 
6338 		case RUN_ARRAY:
6339 			err = do_md_run(mddev);
6340 			goto done_unlock;
6341 
6342 		case SET_BITMAP_FILE:
6343 			err = set_bitmap_file(mddev, (int)arg);
6344 			goto done_unlock;
6345 
6346 		default:
6347 			err = -EINVAL;
6348 			goto abort_unlock;
6349 	}
6350 
6351 done_unlock:
6352 abort_unlock:
6353 	if (mddev->hold_active == UNTIL_IOCTL &&
6354 	    err != -EINVAL)
6355 		mddev->hold_active = 0;
6356 	mddev_unlock(mddev);
6357 
6358 	return err;
6359 done:
6360 	if (err)
6361 		MD_BUG();
6362 abort:
6363 	return err;
6364 }
6365 #ifdef CONFIG_COMPAT
md_compat_ioctl(struct block_device * bdev,fmode_t mode,unsigned int cmd,unsigned long arg)6366 static int md_compat_ioctl(struct block_device *bdev, fmode_t mode,
6367 		    unsigned int cmd, unsigned long arg)
6368 {
6369 	switch (cmd) {
6370 	case HOT_REMOVE_DISK:
6371 	case HOT_ADD_DISK:
6372 	case SET_DISK_FAULTY:
6373 	case SET_BITMAP_FILE:
6374 		/* These take in integer arg, do not convert */
6375 		break;
6376 	default:
6377 		arg = (unsigned long)compat_ptr(arg);
6378 		break;
6379 	}
6380 
6381 	return md_ioctl(bdev, mode, cmd, arg);
6382 }
6383 #endif /* CONFIG_COMPAT */
6384 
md_open(struct block_device * bdev,fmode_t mode)6385 static int md_open(struct block_device *bdev, fmode_t mode)
6386 {
6387 	/*
6388 	 * Succeed if we can lock the mddev, which confirms that
6389 	 * it isn't being stopped right now.
6390 	 */
6391 	struct mddev *mddev = mddev_find(bdev->bd_dev);
6392 	int err;
6393 
6394 	if (mddev->gendisk != bdev->bd_disk) {
6395 		/* we are racing with mddev_put which is discarding this
6396 		 * bd_disk.
6397 		 */
6398 		mddev_put(mddev);
6399 		/* Wait until bdev->bd_disk is definitely gone */
6400 		flush_workqueue(md_misc_wq);
6401 		/* Then retry the open from the top */
6402 		return -ERESTARTSYS;
6403 	}
6404 	BUG_ON(mddev != bdev->bd_disk->private_data);
6405 
6406 	if ((err = mutex_lock_interruptible(&mddev->open_mutex)))
6407 		goto out;
6408 
6409 	err = 0;
6410 	atomic_inc(&mddev->openers);
6411 	mutex_unlock(&mddev->open_mutex);
6412 
6413 	check_disk_change(bdev);
6414  out:
6415 	return err;
6416 }
6417 
md_release(struct gendisk * disk,fmode_t mode)6418 static int md_release(struct gendisk *disk, fmode_t mode)
6419 {
6420  	struct mddev *mddev = disk->private_data;
6421 
6422 	BUG_ON(!mddev);
6423 	atomic_dec(&mddev->openers);
6424 	mddev_put(mddev);
6425 
6426 	return 0;
6427 }
6428 
md_media_changed(struct gendisk * disk)6429 static int md_media_changed(struct gendisk *disk)
6430 {
6431 	struct mddev *mddev = disk->private_data;
6432 
6433 	return mddev->changed;
6434 }
6435 
md_revalidate(struct gendisk * disk)6436 static int md_revalidate(struct gendisk *disk)
6437 {
6438 	struct mddev *mddev = disk->private_data;
6439 
6440 	mddev->changed = 0;
6441 	return 0;
6442 }
6443 static const struct block_device_operations md_fops =
6444 {
6445 	.owner		= THIS_MODULE,
6446 	.open		= md_open,
6447 	.release	= md_release,
6448 	.ioctl		= md_ioctl,
6449 #ifdef CONFIG_COMPAT
6450 	.compat_ioctl	= md_compat_ioctl,
6451 #endif
6452 	.getgeo		= md_getgeo,
6453 	.media_changed  = md_media_changed,
6454 	.revalidate_disk= md_revalidate,
6455 };
6456 
md_thread(void * arg)6457 static int md_thread(void * arg)
6458 {
6459 	struct md_thread *thread = arg;
6460 
6461 	/*
6462 	 * md_thread is a 'system-thread', it's priority should be very
6463 	 * high. We avoid resource deadlocks individually in each
6464 	 * raid personality. (RAID5 does preallocation) We also use RR and
6465 	 * the very same RT priority as kswapd, thus we will never get
6466 	 * into a priority inversion deadlock.
6467 	 *
6468 	 * we definitely have to have equal or higher priority than
6469 	 * bdflush, otherwise bdflush will deadlock if there are too
6470 	 * many dirty RAID5 blocks.
6471 	 */
6472 
6473 	allow_signal(SIGKILL);
6474 	while (!kthread_should_stop()) {
6475 
6476 		/* We need to wait INTERRUPTIBLE so that
6477 		 * we don't add to the load-average.
6478 		 * That means we need to be sure no signals are
6479 		 * pending
6480 		 */
6481 		if (signal_pending(current))
6482 			flush_signals(current);
6483 
6484 		wait_event_interruptible_timeout
6485 			(thread->wqueue,
6486 			 test_bit(THREAD_WAKEUP, &thread->flags)
6487 			 || kthread_should_stop(),
6488 			 thread->timeout);
6489 
6490 		clear_bit(THREAD_WAKEUP, &thread->flags);
6491 		if (!kthread_should_stop())
6492 			thread->run(thread->mddev);
6493 	}
6494 
6495 	return 0;
6496 }
6497 
md_wakeup_thread(struct md_thread * thread)6498 void md_wakeup_thread(struct md_thread *thread)
6499 {
6500 	if (thread) {
6501 		pr_debug("md: waking up MD thread %s.\n", thread->tsk->comm);
6502 		set_bit(THREAD_WAKEUP, &thread->flags);
6503 		wake_up(&thread->wqueue);
6504 	}
6505 }
6506 
md_register_thread(void (* run)(struct mddev *),struct mddev * mddev,const char * name)6507 struct md_thread *md_register_thread(void (*run) (struct mddev *), struct mddev *mddev,
6508 				 const char *name)
6509 {
6510 	struct md_thread *thread;
6511 
6512 	thread = kzalloc(sizeof(struct md_thread), GFP_KERNEL);
6513 	if (!thread)
6514 		return NULL;
6515 
6516 	init_waitqueue_head(&thread->wqueue);
6517 
6518 	thread->run = run;
6519 	thread->mddev = mddev;
6520 	thread->timeout = MAX_SCHEDULE_TIMEOUT;
6521 	thread->tsk = kthread_run(md_thread, thread,
6522 				  "%s_%s",
6523 				  mdname(thread->mddev),
6524 				  name ?: mddev->pers->name);
6525 	if (IS_ERR(thread->tsk)) {
6526 		kfree(thread);
6527 		return NULL;
6528 	}
6529 	return thread;
6530 }
6531 
md_unregister_thread(struct md_thread ** threadp)6532 void md_unregister_thread(struct md_thread **threadp)
6533 {
6534 	struct md_thread *thread = *threadp;
6535 	if (!thread)
6536 		return;
6537 	pr_debug("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk));
6538 	/* Locking ensures that mddev_unlock does not wake_up a
6539 	 * non-existent thread
6540 	 */
6541 	spin_lock(&pers_lock);
6542 	*threadp = NULL;
6543 	spin_unlock(&pers_lock);
6544 
6545 	kthread_stop(thread->tsk);
6546 	kfree(thread);
6547 }
6548 
md_error(struct mddev * mddev,struct md_rdev * rdev)6549 void md_error(struct mddev *mddev, struct md_rdev *rdev)
6550 {
6551 	if (!mddev) {
6552 		MD_BUG();
6553 		return;
6554 	}
6555 
6556 	if (!rdev || test_bit(Faulty, &rdev->flags))
6557 		return;
6558 
6559 	if (!mddev->pers || !mddev->pers->error_handler)
6560 		return;
6561 	mddev->pers->error_handler(mddev,rdev);
6562 	if (mddev->degraded)
6563 		set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
6564 	sysfs_notify_dirent_safe(rdev->sysfs_state);
6565 	set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6566 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6567 	md_wakeup_thread(mddev->thread);
6568 	if (mddev->event_work.func)
6569 		queue_work(md_misc_wq, &mddev->event_work);
6570 	md_new_event_inintr(mddev);
6571 }
6572 
6573 /* seq_file implementation /proc/mdstat */
6574 
status_unused(struct seq_file * seq)6575 static void status_unused(struct seq_file *seq)
6576 {
6577 	int i = 0;
6578 	struct md_rdev *rdev;
6579 
6580 	seq_printf(seq, "unused devices: ");
6581 
6582 	list_for_each_entry(rdev, &pending_raid_disks, same_set) {
6583 		char b[BDEVNAME_SIZE];
6584 		i++;
6585 		seq_printf(seq, "%s ",
6586 			      bdevname(rdev->bdev,b));
6587 	}
6588 	if (!i)
6589 		seq_printf(seq, "<none>");
6590 
6591 	seq_printf(seq, "\n");
6592 }
6593 
6594 
status_resync(struct seq_file * seq,struct mddev * mddev)6595 static void status_resync(struct seq_file *seq, struct mddev * mddev)
6596 {
6597 	sector_t max_sectors, resync, res;
6598 	unsigned long dt, db;
6599 	sector_t rt;
6600 	int scale;
6601 	unsigned int per_milli;
6602 
6603 	resync = mddev->curr_resync - atomic_read(&mddev->recovery_active);
6604 
6605 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
6606 		max_sectors = mddev->resync_max_sectors;
6607 	else
6608 		max_sectors = mddev->dev_sectors;
6609 
6610 	/*
6611 	 * Should not happen.
6612 	 */
6613 	if (!max_sectors) {
6614 		MD_BUG();
6615 		return;
6616 	}
6617 	/* Pick 'scale' such that (resync>>scale)*1000 will fit
6618 	 * in a sector_t, and (max_sectors>>scale) will fit in a
6619 	 * u32, as those are the requirements for sector_div.
6620 	 * Thus 'scale' must be at least 10
6621 	 */
6622 	scale = 10;
6623 	if (sizeof(sector_t) > sizeof(unsigned long)) {
6624 		while ( max_sectors/2 > (1ULL<<(scale+32)))
6625 			scale++;
6626 	}
6627 	res = (resync>>scale)*1000;
6628 	sector_div(res, (u32)((max_sectors>>scale)+1));
6629 
6630 	per_milli = res;
6631 	{
6632 		int i, x = per_milli/50, y = 20-x;
6633 		seq_printf(seq, "[");
6634 		for (i = 0; i < x; i++)
6635 			seq_printf(seq, "=");
6636 		seq_printf(seq, ">");
6637 		for (i = 0; i < y; i++)
6638 			seq_printf(seq, ".");
6639 		seq_printf(seq, "] ");
6640 	}
6641 	seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)",
6642 		   (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)?
6643 		    "reshape" :
6644 		    (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)?
6645 		     "check" :
6646 		     (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
6647 		      "resync" : "recovery"))),
6648 		   per_milli/10, per_milli % 10,
6649 		   (unsigned long long) resync/2,
6650 		   (unsigned long long) max_sectors/2);
6651 
6652 	/*
6653 	 * dt: time from mark until now
6654 	 * db: blocks written from mark until now
6655 	 * rt: remaining time
6656 	 *
6657 	 * rt is a sector_t, so could be 32bit or 64bit.
6658 	 * So we divide before multiply in case it is 32bit and close
6659 	 * to the limit.
6660 	 * We scale the divisor (db) by 32 to avoid losing precision
6661 	 * near the end of resync when the number of remaining sectors
6662 	 * is close to 'db'.
6663 	 * We then divide rt by 32 after multiplying by db to compensate.
6664 	 * The '+1' avoids division by zero if db is very small.
6665 	 */
6666 	dt = ((jiffies - mddev->resync_mark) / HZ);
6667 	if (!dt) dt++;
6668 	db = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active))
6669 		- mddev->resync_mark_cnt;
6670 
6671 	rt = max_sectors - resync;    /* number of remaining sectors */
6672 	sector_div(rt, db/32+1);
6673 	rt *= dt;
6674 	rt >>= 5;
6675 
6676 	seq_printf(seq, " finish=%lu.%lumin", (unsigned long)rt / 60,
6677 		   ((unsigned long)rt % 60)/6);
6678 
6679 	seq_printf(seq, " speed=%ldK/sec", db/2/dt);
6680 }
6681 
md_seq_start(struct seq_file * seq,loff_t * pos)6682 static void *md_seq_start(struct seq_file *seq, loff_t *pos)
6683 {
6684 	struct list_head *tmp;
6685 	loff_t l = *pos;
6686 	struct mddev *mddev;
6687 
6688 	if (l >= 0x10000)
6689 		return NULL;
6690 	if (!l--)
6691 		/* header */
6692 		return (void*)1;
6693 
6694 	spin_lock(&all_mddevs_lock);
6695 	list_for_each(tmp,&all_mddevs)
6696 		if (!l--) {
6697 			mddev = list_entry(tmp, struct mddev, all_mddevs);
6698 			mddev_get(mddev);
6699 			spin_unlock(&all_mddevs_lock);
6700 			return mddev;
6701 		}
6702 	spin_unlock(&all_mddevs_lock);
6703 	if (!l--)
6704 		return (void*)2;/* tail */
6705 	return NULL;
6706 }
6707 
md_seq_next(struct seq_file * seq,void * v,loff_t * pos)6708 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
6709 {
6710 	struct list_head *tmp;
6711 	struct mddev *next_mddev, *mddev = v;
6712 
6713 	++*pos;
6714 	if (v == (void*)2)
6715 		return NULL;
6716 
6717 	spin_lock(&all_mddevs_lock);
6718 	if (v == (void*)1)
6719 		tmp = all_mddevs.next;
6720 	else
6721 		tmp = mddev->all_mddevs.next;
6722 	if (tmp != &all_mddevs)
6723 		next_mddev = mddev_get(list_entry(tmp,struct mddev,all_mddevs));
6724 	else {
6725 		next_mddev = (void*)2;
6726 		*pos = 0x10000;
6727 	}
6728 	spin_unlock(&all_mddevs_lock);
6729 
6730 	if (v != (void*)1)
6731 		mddev_put(mddev);
6732 	return next_mddev;
6733 
6734 }
6735 
md_seq_stop(struct seq_file * seq,void * v)6736 static void md_seq_stop(struct seq_file *seq, void *v)
6737 {
6738 	struct mddev *mddev = v;
6739 
6740 	if (mddev && v != (void*)1 && v != (void*)2)
6741 		mddev_put(mddev);
6742 }
6743 
md_seq_show(struct seq_file * seq,void * v)6744 static int md_seq_show(struct seq_file *seq, void *v)
6745 {
6746 	struct mddev *mddev = v;
6747 	sector_t sectors;
6748 	struct md_rdev *rdev;
6749 
6750 	if (v == (void*)1) {
6751 		struct md_personality *pers;
6752 		seq_printf(seq, "Personalities : ");
6753 		spin_lock(&pers_lock);
6754 		list_for_each_entry(pers, &pers_list, list)
6755 			seq_printf(seq, "[%s] ", pers->name);
6756 
6757 		spin_unlock(&pers_lock);
6758 		seq_printf(seq, "\n");
6759 		seq->poll_event = atomic_read(&md_event_count);
6760 		return 0;
6761 	}
6762 	if (v == (void*)2) {
6763 		status_unused(seq);
6764 		return 0;
6765 	}
6766 
6767 	if (mddev_lock(mddev) < 0)
6768 		return -EINTR;
6769 
6770 	if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
6771 		seq_printf(seq, "%s : %sactive", mdname(mddev),
6772 						mddev->pers ? "" : "in");
6773 		if (mddev->pers) {
6774 			if (mddev->ro==1)
6775 				seq_printf(seq, " (read-only)");
6776 			if (mddev->ro==2)
6777 				seq_printf(seq, " (auto-read-only)");
6778 			seq_printf(seq, " %s", mddev->pers->name);
6779 		}
6780 
6781 		sectors = 0;
6782 		rdev_for_each(rdev, mddev) {
6783 			char b[BDEVNAME_SIZE];
6784 			seq_printf(seq, " %s[%d]",
6785 				bdevname(rdev->bdev,b), rdev->desc_nr);
6786 			if (test_bit(WriteMostly, &rdev->flags))
6787 				seq_printf(seq, "(W)");
6788 			if (test_bit(Faulty, &rdev->flags)) {
6789 				seq_printf(seq, "(F)");
6790 				continue;
6791 			}
6792 			if (rdev->raid_disk < 0)
6793 				seq_printf(seq, "(S)"); /* spare */
6794 			if (test_bit(Replacement, &rdev->flags))
6795 				seq_printf(seq, "(R)");
6796 			sectors += rdev->sectors;
6797 		}
6798 
6799 		if (!list_empty(&mddev->disks)) {
6800 			if (mddev->pers)
6801 				seq_printf(seq, "\n      %llu blocks",
6802 					   (unsigned long long)
6803 					   mddev->array_sectors / 2);
6804 			else
6805 				seq_printf(seq, "\n      %llu blocks",
6806 					   (unsigned long long)sectors / 2);
6807 		}
6808 		if (mddev->persistent) {
6809 			if (mddev->major_version != 0 ||
6810 			    mddev->minor_version != 90) {
6811 				seq_printf(seq," super %d.%d",
6812 					   mddev->major_version,
6813 					   mddev->minor_version);
6814 			}
6815 		} else if (mddev->external)
6816 			seq_printf(seq, " super external:%s",
6817 				   mddev->metadata_type);
6818 		else
6819 			seq_printf(seq, " super non-persistent");
6820 
6821 		if (mddev->pers) {
6822 			mddev->pers->status(seq, mddev);
6823 	 		seq_printf(seq, "\n      ");
6824 			if (mddev->pers->sync_request) {
6825 				if (mddev->curr_resync > 2) {
6826 					status_resync(seq, mddev);
6827 					seq_printf(seq, "\n      ");
6828 				} else if (mddev->curr_resync == 1 || mddev->curr_resync == 2)
6829 					seq_printf(seq, "\tresync=DELAYED\n      ");
6830 				else if (mddev->recovery_cp < MaxSector)
6831 					seq_printf(seq, "\tresync=PENDING\n      ");
6832 			}
6833 		} else
6834 			seq_printf(seq, "\n       ");
6835 
6836 		bitmap_status(seq, mddev->bitmap);
6837 
6838 		seq_printf(seq, "\n");
6839 	}
6840 	mddev_unlock(mddev);
6841 
6842 	return 0;
6843 }
6844 
6845 static const struct seq_operations md_seq_ops = {
6846 	.start  = md_seq_start,
6847 	.next   = md_seq_next,
6848 	.stop   = md_seq_stop,
6849 	.show   = md_seq_show,
6850 };
6851 
md_seq_open(struct inode * inode,struct file * file)6852 static int md_seq_open(struct inode *inode, struct file *file)
6853 {
6854 	struct seq_file *seq;
6855 	int error;
6856 
6857 	error = seq_open(file, &md_seq_ops);
6858 	if (error)
6859 		return error;
6860 
6861 	seq = file->private_data;
6862 	seq->poll_event = atomic_read(&md_event_count);
6863 	return error;
6864 }
6865 
mdstat_poll(struct file * filp,poll_table * wait)6866 static unsigned int mdstat_poll(struct file *filp, poll_table *wait)
6867 {
6868 	struct seq_file *seq = filp->private_data;
6869 	int mask;
6870 
6871 	poll_wait(filp, &md_event_waiters, wait);
6872 
6873 	/* always allow read */
6874 	mask = POLLIN | POLLRDNORM;
6875 
6876 	if (seq->poll_event != atomic_read(&md_event_count))
6877 		mask |= POLLERR | POLLPRI;
6878 	return mask;
6879 }
6880 
6881 static const struct file_operations md_seq_fops = {
6882 	.owner		= THIS_MODULE,
6883 	.open           = md_seq_open,
6884 	.read           = seq_read,
6885 	.llseek         = seq_lseek,
6886 	.release	= seq_release_private,
6887 	.poll		= mdstat_poll,
6888 };
6889 
register_md_personality(struct md_personality * p)6890 int register_md_personality(struct md_personality *p)
6891 {
6892 	spin_lock(&pers_lock);
6893 	list_add_tail(&p->list, &pers_list);
6894 	printk(KERN_INFO "md: %s personality registered for level %d\n", p->name, p->level);
6895 	spin_unlock(&pers_lock);
6896 	return 0;
6897 }
6898 
unregister_md_personality(struct md_personality * p)6899 int unregister_md_personality(struct md_personality *p)
6900 {
6901 	printk(KERN_INFO "md: %s personality unregistered\n", p->name);
6902 	spin_lock(&pers_lock);
6903 	list_del_init(&p->list);
6904 	spin_unlock(&pers_lock);
6905 	return 0;
6906 }
6907 
is_mddev_idle(struct mddev * mddev,int init)6908 static int is_mddev_idle(struct mddev *mddev, int init)
6909 {
6910 	struct md_rdev * rdev;
6911 	int idle;
6912 	int curr_events;
6913 
6914 	idle = 1;
6915 	rcu_read_lock();
6916 	rdev_for_each_rcu(rdev, mddev) {
6917 		struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
6918 		curr_events = (int)part_stat_read(&disk->part0, sectors[0]) +
6919 			      (int)part_stat_read(&disk->part0, sectors[1]) -
6920 			      atomic_read(&disk->sync_io);
6921 		/* sync IO will cause sync_io to increase before the disk_stats
6922 		 * as sync_io is counted when a request starts, and
6923 		 * disk_stats is counted when it completes.
6924 		 * So resync activity will cause curr_events to be smaller than
6925 		 * when there was no such activity.
6926 		 * non-sync IO will cause disk_stat to increase without
6927 		 * increasing sync_io so curr_events will (eventually)
6928 		 * be larger than it was before.  Once it becomes
6929 		 * substantially larger, the test below will cause
6930 		 * the array to appear non-idle, and resync will slow
6931 		 * down.
6932 		 * If there is a lot of outstanding resync activity when
6933 		 * we set last_event to curr_events, then all that activity
6934 		 * completing might cause the array to appear non-idle
6935 		 * and resync will be slowed down even though there might
6936 		 * not have been non-resync activity.  This will only
6937 		 * happen once though.  'last_events' will soon reflect
6938 		 * the state where there is little or no outstanding
6939 		 * resync requests, and further resync activity will
6940 		 * always make curr_events less than last_events.
6941 		 *
6942 		 */
6943 		if (init || curr_events - rdev->last_events > 64) {
6944 			rdev->last_events = curr_events;
6945 			idle = 0;
6946 		}
6947 	}
6948 	rcu_read_unlock();
6949 	return idle;
6950 }
6951 
md_done_sync(struct mddev * mddev,int blocks,int ok)6952 void md_done_sync(struct mddev *mddev, int blocks, int ok)
6953 {
6954 	/* another "blocks" (512byte) blocks have been synced */
6955 	atomic_sub(blocks, &mddev->recovery_active);
6956 	wake_up(&mddev->recovery_wait);
6957 	if (!ok) {
6958 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6959 		md_wakeup_thread(mddev->thread);
6960 		// stop recovery, signal do_sync ....
6961 	}
6962 }
6963 
6964 
6965 /* md_write_start(mddev, bi)
6966  * If we need to update some array metadata (e.g. 'active' flag
6967  * in superblock) before writing, schedule a superblock update
6968  * and wait for it to complete.
6969  */
md_write_start(struct mddev * mddev,struct bio * bi)6970 void md_write_start(struct mddev *mddev, struct bio *bi)
6971 {
6972 	int did_change = 0;
6973 	if (bio_data_dir(bi) != WRITE)
6974 		return;
6975 
6976 	BUG_ON(mddev->ro == 1);
6977 	if (mddev->ro == 2) {
6978 		/* need to switch to read/write */
6979 		mddev->ro = 0;
6980 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6981 		md_wakeup_thread(mddev->thread);
6982 		md_wakeup_thread(mddev->sync_thread);
6983 		did_change = 1;
6984 	}
6985 	atomic_inc(&mddev->writes_pending);
6986 	if (mddev->safemode == 1)
6987 		mddev->safemode = 0;
6988 	if (mddev->in_sync) {
6989 		spin_lock_irq(&mddev->write_lock);
6990 		if (mddev->in_sync) {
6991 			mddev->in_sync = 0;
6992 			set_bit(MD_CHANGE_CLEAN, &mddev->flags);
6993 			set_bit(MD_CHANGE_PENDING, &mddev->flags);
6994 			md_wakeup_thread(mddev->thread);
6995 			did_change = 1;
6996 		}
6997 		spin_unlock_irq(&mddev->write_lock);
6998 	}
6999 	if (did_change)
7000 		sysfs_notify_dirent_safe(mddev->sysfs_state);
7001 	wait_event(mddev->sb_wait,
7002 		   !test_bit(MD_CHANGE_PENDING, &mddev->flags));
7003 }
7004 
md_write_end(struct mddev * mddev)7005 void md_write_end(struct mddev *mddev)
7006 {
7007 	if (atomic_dec_and_test(&mddev->writes_pending)) {
7008 		if (mddev->safemode == 2)
7009 			md_wakeup_thread(mddev->thread);
7010 		else if (mddev->safemode_delay)
7011 			mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay);
7012 	}
7013 }
7014 
7015 /* md_allow_write(mddev)
7016  * Calling this ensures that the array is marked 'active' so that writes
7017  * may proceed without blocking.  It is important to call this before
7018  * attempting a GFP_KERNEL allocation while holding the mddev lock.
7019  * Must be called with mddev_lock held.
7020  *
7021  * In the ->external case MD_CHANGE_CLEAN can not be cleared until mddev->lock
7022  * is dropped, so return -EAGAIN after notifying userspace.
7023  */
md_allow_write(struct mddev * mddev)7024 int md_allow_write(struct mddev *mddev)
7025 {
7026 	if (!mddev->pers)
7027 		return 0;
7028 	if (mddev->ro)
7029 		return 0;
7030 	if (!mddev->pers->sync_request)
7031 		return 0;
7032 
7033 	spin_lock_irq(&mddev->write_lock);
7034 	if (mddev->in_sync) {
7035 		mddev->in_sync = 0;
7036 		set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7037 		set_bit(MD_CHANGE_PENDING, &mddev->flags);
7038 		if (mddev->safemode_delay &&
7039 		    mddev->safemode == 0)
7040 			mddev->safemode = 1;
7041 		spin_unlock_irq(&mddev->write_lock);
7042 		md_update_sb(mddev, 0);
7043 		sysfs_notify_dirent_safe(mddev->sysfs_state);
7044 	} else
7045 		spin_unlock_irq(&mddev->write_lock);
7046 
7047 	if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
7048 		return -EAGAIN;
7049 	else
7050 		return 0;
7051 }
7052 EXPORT_SYMBOL_GPL(md_allow_write);
7053 
7054 #define SYNC_MARKS	10
7055 #define	SYNC_MARK_STEP	(3*HZ)
md_do_sync(struct mddev * mddev)7056 void md_do_sync(struct mddev *mddev)
7057 {
7058 	struct mddev *mddev2;
7059 	unsigned int currspeed = 0,
7060 		 window;
7061 	sector_t max_sectors,j, io_sectors;
7062 	unsigned long mark[SYNC_MARKS];
7063 	sector_t mark_cnt[SYNC_MARKS];
7064 	int last_mark,m;
7065 	struct list_head *tmp;
7066 	sector_t last_check;
7067 	int skipped = 0;
7068 	struct md_rdev *rdev;
7069 	char *desc;
7070 
7071 	/* just incase thread restarts... */
7072 	if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
7073 		return;
7074 	if (mddev->ro) {/* never try to sync a read-only array */
7075 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7076 		return;
7077 	}
7078 
7079 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7080 		if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
7081 			desc = "data-check";
7082 		else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7083 			desc = "requested-resync";
7084 		else
7085 			desc = "resync";
7086 	} else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7087 		desc = "reshape";
7088 	else
7089 		desc = "recovery";
7090 
7091 	/* we overload curr_resync somewhat here.
7092 	 * 0 == not engaged in resync at all
7093 	 * 2 == checking that there is no conflict with another sync
7094 	 * 1 == like 2, but have yielded to allow conflicting resync to
7095 	 *		commense
7096 	 * other == active in resync - this many blocks
7097 	 *
7098 	 * Before starting a resync we must have set curr_resync to
7099 	 * 2, and then checked that every "conflicting" array has curr_resync
7100 	 * less than ours.  When we find one that is the same or higher
7101 	 * we wait on resync_wait.  To avoid deadlock, we reduce curr_resync
7102 	 * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
7103 	 * This will mean we have to start checking from the beginning again.
7104 	 *
7105 	 */
7106 
7107 	do {
7108 		mddev->curr_resync = 2;
7109 
7110 	try_again:
7111 		if (kthread_should_stop())
7112 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7113 
7114 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7115 			goto skip;
7116 		for_each_mddev(mddev2, tmp) {
7117 			if (mddev2 == mddev)
7118 				continue;
7119 			if (!mddev->parallel_resync
7120 			&&  mddev2->curr_resync
7121 			&&  match_mddev_units(mddev, mddev2)) {
7122 				DEFINE_WAIT(wq);
7123 				if (mddev < mddev2 && mddev->curr_resync == 2) {
7124 					/* arbitrarily yield */
7125 					mddev->curr_resync = 1;
7126 					wake_up(&resync_wait);
7127 				}
7128 				if (mddev > mddev2 && mddev->curr_resync == 1)
7129 					/* no need to wait here, we can wait the next
7130 					 * time 'round when curr_resync == 2
7131 					 */
7132 					continue;
7133 				/* We need to wait 'interruptible' so as not to
7134 				 * contribute to the load average, and not to
7135 				 * be caught by 'softlockup'
7136 				 */
7137 				prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE);
7138 				if (!kthread_should_stop() &&
7139 				    mddev2->curr_resync >= mddev->curr_resync) {
7140 					printk(KERN_INFO "md: delaying %s of %s"
7141 					       " until %s has finished (they"
7142 					       " share one or more physical units)\n",
7143 					       desc, mdname(mddev), mdname(mddev2));
7144 					mddev_put(mddev2);
7145 					if (signal_pending(current))
7146 						flush_signals(current);
7147 					schedule();
7148 					finish_wait(&resync_wait, &wq);
7149 					goto try_again;
7150 				}
7151 				finish_wait(&resync_wait, &wq);
7152 			}
7153 		}
7154 	} while (mddev->curr_resync < 2);
7155 
7156 	j = 0;
7157 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7158 		/* resync follows the size requested by the personality,
7159 		 * which defaults to physical size, but can be virtual size
7160 		 */
7161 		max_sectors = mddev->resync_max_sectors;
7162 		mddev->resync_mismatches = 0;
7163 		/* we don't use the checkpoint if there's a bitmap */
7164 		if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7165 			j = mddev->resync_min;
7166 		else if (!mddev->bitmap)
7167 			j = mddev->recovery_cp;
7168 
7169 	} else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7170 		max_sectors = mddev->dev_sectors;
7171 	else {
7172 		/* recovery follows the physical size of devices */
7173 		max_sectors = mddev->dev_sectors;
7174 		j = MaxSector;
7175 		rcu_read_lock();
7176 		rdev_for_each_rcu(rdev, mddev)
7177 			if (rdev->raid_disk >= 0 &&
7178 			    !test_bit(Faulty, &rdev->flags) &&
7179 			    !test_bit(In_sync, &rdev->flags) &&
7180 			    rdev->recovery_offset < j)
7181 				j = rdev->recovery_offset;
7182 		rcu_read_unlock();
7183 
7184 		/* If there is a bitmap, we need to make sure all
7185 		 * writes that started before we added a spare
7186 		 * complete before we start doing a recovery.
7187 		 * Otherwise the write might complete and (via
7188 		 * bitmap_endwrite) set a bit in the bitmap after the
7189 		 * recovery has checked that bit and skipped that
7190 		 * region.
7191 		 */
7192 		if (mddev->bitmap) {
7193 			mddev->pers->quiesce(mddev, 1);
7194 			mddev->pers->quiesce(mddev, 0);
7195 		}
7196 	}
7197 
7198 	printk(KERN_INFO "md: %s of RAID array %s\n", desc, mdname(mddev));
7199 	printk(KERN_INFO "md: minimum _guaranteed_  speed:"
7200 		" %d KB/sec/disk.\n", speed_min(mddev));
7201 	printk(KERN_INFO "md: using maximum available idle IO bandwidth "
7202 	       "(but not more than %d KB/sec) for %s.\n",
7203 	       speed_max(mddev), desc);
7204 
7205 	is_mddev_idle(mddev, 1); /* this initializes IO event counters */
7206 
7207 	io_sectors = 0;
7208 	for (m = 0; m < SYNC_MARKS; m++) {
7209 		mark[m] = jiffies;
7210 		mark_cnt[m] = io_sectors;
7211 	}
7212 	last_mark = 0;
7213 	mddev->resync_mark = mark[last_mark];
7214 	mddev->resync_mark_cnt = mark_cnt[last_mark];
7215 
7216 	/*
7217 	 * Tune reconstruction:
7218 	 */
7219 	window = 32*(PAGE_SIZE/512);
7220 	printk(KERN_INFO "md: using %dk window, over a total of %lluk.\n",
7221 		window/2, (unsigned long long)max_sectors/2);
7222 
7223 	atomic_set(&mddev->recovery_active, 0);
7224 	last_check = 0;
7225 
7226 	if (j>2) {
7227 		printk(KERN_INFO
7228 		       "md: resuming %s of %s from checkpoint.\n",
7229 		       desc, mdname(mddev));
7230 		mddev->curr_resync = j;
7231 	}
7232 	mddev->curr_resync_completed = j;
7233 
7234 	while (j < max_sectors) {
7235 		sector_t sectors;
7236 
7237 		skipped = 0;
7238 
7239 		if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
7240 		    ((mddev->curr_resync > mddev->curr_resync_completed &&
7241 		      (mddev->curr_resync - mddev->curr_resync_completed)
7242 		      > (max_sectors >> 4)) ||
7243 		     (j - mddev->curr_resync_completed)*2
7244 		     >= mddev->resync_max - mddev->curr_resync_completed
7245 			    )) {
7246 			/* time to update curr_resync_completed */
7247 			wait_event(mddev->recovery_wait,
7248 				   atomic_read(&mddev->recovery_active) == 0);
7249 			mddev->curr_resync_completed = j;
7250 			set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7251 			sysfs_notify(&mddev->kobj, NULL, "sync_completed");
7252 		}
7253 
7254 		while (j >= mddev->resync_max && !kthread_should_stop()) {
7255 			/* As this condition is controlled by user-space,
7256 			 * we can block indefinitely, so use '_interruptible'
7257 			 * to avoid triggering warnings.
7258 			 */
7259 			flush_signals(current); /* just in case */
7260 			wait_event_interruptible(mddev->recovery_wait,
7261 						 mddev->resync_max > j
7262 						 || kthread_should_stop());
7263 		}
7264 
7265 		if (kthread_should_stop())
7266 			goto interrupted;
7267 
7268 		sectors = mddev->pers->sync_request(mddev, j, &skipped,
7269 						  currspeed < speed_min(mddev));
7270 		if (sectors == 0) {
7271 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7272 			goto out;
7273 		}
7274 
7275 		if (!skipped) { /* actual IO requested */
7276 			io_sectors += sectors;
7277 			atomic_add(sectors, &mddev->recovery_active);
7278 		}
7279 
7280 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7281 			break;
7282 
7283 		j += sectors;
7284 		if (j>1) mddev->curr_resync = j;
7285 		mddev->curr_mark_cnt = io_sectors;
7286 		if (last_check == 0)
7287 			/* this is the earliest that rebuild will be
7288 			 * visible in /proc/mdstat
7289 			 */
7290 			md_new_event(mddev);
7291 
7292 		if (last_check + window > io_sectors || j == max_sectors)
7293 			continue;
7294 
7295 		last_check = io_sectors;
7296 	repeat:
7297 		if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
7298 			/* step marks */
7299 			int next = (last_mark+1) % SYNC_MARKS;
7300 
7301 			mddev->resync_mark = mark[next];
7302 			mddev->resync_mark_cnt = mark_cnt[next];
7303 			mark[next] = jiffies;
7304 			mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
7305 			last_mark = next;
7306 		}
7307 
7308 
7309 		if (kthread_should_stop())
7310 			goto interrupted;
7311 
7312 
7313 		/*
7314 		 * this loop exits only if either when we are slower than
7315 		 * the 'hard' speed limit, or the system was IO-idle for
7316 		 * a jiffy.
7317 		 * the system might be non-idle CPU-wise, but we only care
7318 		 * about not overloading the IO subsystem. (things like an
7319 		 * e2fsck being done on the RAID array should execute fast)
7320 		 */
7321 		cond_resched();
7322 
7323 		currspeed = ((unsigned long)(io_sectors-mddev->resync_mark_cnt))/2
7324 			/((jiffies-mddev->resync_mark)/HZ +1) +1;
7325 
7326 		if (currspeed > speed_min(mddev)) {
7327 			if ((currspeed > speed_max(mddev)) ||
7328 					!is_mddev_idle(mddev, 0)) {
7329 				msleep(500);
7330 				goto repeat;
7331 			}
7332 		}
7333 	}
7334 	printk(KERN_INFO "md: %s: %s done.\n",mdname(mddev), desc);
7335 	/*
7336 	 * this also signals 'finished resyncing' to md_stop
7337 	 */
7338  out:
7339 	wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
7340 
7341 	/* tell personality that we are finished */
7342 	mddev->pers->sync_request(mddev, max_sectors, &skipped, 1);
7343 
7344 	if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) &&
7345 	    mddev->curr_resync > 2) {
7346 		if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7347 			if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7348 				if (mddev->curr_resync >= mddev->recovery_cp) {
7349 					printk(KERN_INFO
7350 					       "md: checkpointing %s of %s.\n",
7351 					       desc, mdname(mddev));
7352 					mddev->recovery_cp =
7353 						mddev->curr_resync_completed;
7354 				}
7355 			} else
7356 				mddev->recovery_cp = MaxSector;
7357 		} else {
7358 			if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7359 				mddev->curr_resync = MaxSector;
7360 			rcu_read_lock();
7361 			rdev_for_each_rcu(rdev, mddev)
7362 				if (rdev->raid_disk >= 0 &&
7363 				    mddev->delta_disks >= 0 &&
7364 				    !test_bit(Faulty, &rdev->flags) &&
7365 				    !test_bit(In_sync, &rdev->flags) &&
7366 				    rdev->recovery_offset < mddev->curr_resync)
7367 					rdev->recovery_offset = mddev->curr_resync;
7368 			rcu_read_unlock();
7369 		}
7370 	}
7371  skip:
7372 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
7373 
7374 	if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7375 		/* We completed so min/max setting can be forgotten if used. */
7376 		if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7377 			mddev->resync_min = 0;
7378 		mddev->resync_max = MaxSector;
7379 	} else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7380 		mddev->resync_min = mddev->curr_resync_completed;
7381 	mddev->curr_resync = 0;
7382 	wake_up(&resync_wait);
7383 	set_bit(MD_RECOVERY_DONE, &mddev->recovery);
7384 	md_wakeup_thread(mddev->thread);
7385 	return;
7386 
7387  interrupted:
7388 	/*
7389 	 * got a signal, exit.
7390 	 */
7391 	printk(KERN_INFO
7392 	       "md: md_do_sync() got signal ... exiting\n");
7393 	set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7394 	goto out;
7395 
7396 }
7397 EXPORT_SYMBOL_GPL(md_do_sync);
7398 
remove_and_add_spares(struct mddev * mddev)7399 static int remove_and_add_spares(struct mddev *mddev)
7400 {
7401 	struct md_rdev *rdev;
7402 	int spares = 0;
7403 	int removed = 0;
7404 
7405 	mddev->curr_resync_completed = 0;
7406 
7407 	rdev_for_each(rdev, mddev)
7408 		if (rdev->raid_disk >= 0 &&
7409 		    !test_bit(Blocked, &rdev->flags) &&
7410 		    (test_bit(Faulty, &rdev->flags) ||
7411 		     ! test_bit(In_sync, &rdev->flags)) &&
7412 		    atomic_read(&rdev->nr_pending)==0) {
7413 			if (mddev->pers->hot_remove_disk(
7414 				    mddev, rdev) == 0) {
7415 				sysfs_unlink_rdev(mddev, rdev);
7416 				rdev->raid_disk = -1;
7417 				removed++;
7418 			}
7419 		}
7420 	if (removed)
7421 		sysfs_notify(&mddev->kobj, NULL,
7422 			     "degraded");
7423 
7424 
7425 	rdev_for_each(rdev, mddev) {
7426 		if (rdev->raid_disk >= 0 &&
7427 		    !test_bit(In_sync, &rdev->flags) &&
7428 		    !test_bit(Faulty, &rdev->flags))
7429 			spares++;
7430 		if (rdev->raid_disk < 0
7431 		    && !test_bit(Faulty, &rdev->flags)) {
7432 			rdev->recovery_offset = 0;
7433 			if (mddev->pers->
7434 			    hot_add_disk(mddev, rdev) == 0) {
7435 				if (sysfs_link_rdev(mddev, rdev))
7436 					/* failure here is OK */;
7437 				spares++;
7438 				md_new_event(mddev);
7439 				set_bit(MD_CHANGE_DEVS, &mddev->flags);
7440 			}
7441 		}
7442 	}
7443 	if (removed)
7444 		set_bit(MD_CHANGE_DEVS, &mddev->flags);
7445 	return spares;
7446 }
7447 
reap_sync_thread(struct mddev * mddev)7448 static void reap_sync_thread(struct mddev *mddev)
7449 {
7450 	struct md_rdev *rdev;
7451 
7452 	/* resync has finished, collect result */
7453 	md_unregister_thread(&mddev->sync_thread);
7454 	if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
7455 	    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
7456 		/* success...*/
7457 		/* activate any spares */
7458 		if (mddev->pers->spare_active(mddev)) {
7459 			sysfs_notify(&mddev->kobj, NULL,
7460 				     "degraded");
7461 			set_bit(MD_CHANGE_DEVS, &mddev->flags);
7462 		}
7463 	}
7464 	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
7465 	    mddev->pers->finish_reshape)
7466 		mddev->pers->finish_reshape(mddev);
7467 
7468 	/* If array is no-longer degraded, then any saved_raid_disk
7469 	 * information must be scrapped.  Also if any device is now
7470 	 * In_sync we must scrape the saved_raid_disk for that device
7471 	 * do the superblock for an incrementally recovered device
7472 	 * written out.
7473 	 */
7474 	rdev_for_each(rdev, mddev)
7475 		if (!mddev->degraded ||
7476 		    test_bit(In_sync, &rdev->flags))
7477 			rdev->saved_raid_disk = -1;
7478 
7479 	md_update_sb(mddev, 1);
7480 	clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7481 	clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7482 	clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7483 	clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
7484 	clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7485 	/* flag recovery needed just to double check */
7486 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7487 	sysfs_notify_dirent_safe(mddev->sysfs_action);
7488 	md_new_event(mddev);
7489 	if (mddev->event_work.func)
7490 		queue_work(md_misc_wq, &mddev->event_work);
7491 }
7492 
7493 /*
7494  * This routine is regularly called by all per-raid-array threads to
7495  * deal with generic issues like resync and super-block update.
7496  * Raid personalities that don't have a thread (linear/raid0) do not
7497  * need this as they never do any recovery or update the superblock.
7498  *
7499  * It does not do any resync itself, but rather "forks" off other threads
7500  * to do that as needed.
7501  * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
7502  * "->recovery" and create a thread at ->sync_thread.
7503  * When the thread finishes it sets MD_RECOVERY_DONE
7504  * and wakeups up this thread which will reap the thread and finish up.
7505  * This thread also removes any faulty devices (with nr_pending == 0).
7506  *
7507  * The overall approach is:
7508  *  1/ if the superblock needs updating, update it.
7509  *  2/ If a recovery thread is running, don't do anything else.
7510  *  3/ If recovery has finished, clean up, possibly marking spares active.
7511  *  4/ If there are any faulty devices, remove them.
7512  *  5/ If array is degraded, try to add spares devices
7513  *  6/ If array has spares or is not in-sync, start a resync thread.
7514  */
md_check_recovery(struct mddev * mddev)7515 void md_check_recovery(struct mddev *mddev)
7516 {
7517 	if (mddev->suspended)
7518 		return;
7519 
7520 	if (mddev->bitmap)
7521 		bitmap_daemon_work(mddev);
7522 
7523 	if (signal_pending(current)) {
7524 		if (mddev->pers->sync_request && !mddev->external) {
7525 			printk(KERN_INFO "md: %s in immediate safe mode\n",
7526 			       mdname(mddev));
7527 			mddev->safemode = 2;
7528 		}
7529 		flush_signals(current);
7530 	}
7531 
7532 	if (mddev->ro && !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
7533 		return;
7534 	if ( ! (
7535 		(mddev->flags & ~ (1<<MD_CHANGE_PENDING)) ||
7536 		test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
7537 		test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
7538 		(mddev->external == 0 && mddev->safemode == 1) ||
7539 		(mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending)
7540 		 && !mddev->in_sync && mddev->recovery_cp == MaxSector)
7541 		))
7542 		return;
7543 
7544 	if (mddev_trylock(mddev)) {
7545 		int spares = 0;
7546 
7547 		if (mddev->ro) {
7548 			/* Only thing we do on a ro array is remove
7549 			 * failed devices.
7550 			 */
7551 			struct md_rdev *rdev;
7552 			rdev_for_each(rdev, mddev)
7553 				if (rdev->raid_disk >= 0 &&
7554 				    !test_bit(Blocked, &rdev->flags) &&
7555 				    test_bit(Faulty, &rdev->flags) &&
7556 				    atomic_read(&rdev->nr_pending)==0) {
7557 					if (mddev->pers->hot_remove_disk(
7558 						    mddev, rdev) == 0) {
7559 						sysfs_unlink_rdev(mddev, rdev);
7560 						rdev->raid_disk = -1;
7561 					}
7562 				}
7563 			clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7564 			goto unlock;
7565 		}
7566 
7567 		if (!mddev->external) {
7568 			int did_change = 0;
7569 			spin_lock_irq(&mddev->write_lock);
7570 			if (mddev->safemode &&
7571 			    !atomic_read(&mddev->writes_pending) &&
7572 			    !mddev->in_sync &&
7573 			    mddev->recovery_cp == MaxSector) {
7574 				mddev->in_sync = 1;
7575 				did_change = 1;
7576 				set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7577 			}
7578 			if (mddev->safemode == 1)
7579 				mddev->safemode = 0;
7580 			spin_unlock_irq(&mddev->write_lock);
7581 			if (did_change)
7582 				sysfs_notify_dirent_safe(mddev->sysfs_state);
7583 		}
7584 
7585 		if (mddev->flags)
7586 			md_update_sb(mddev, 0);
7587 
7588 		if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
7589 		    !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
7590 			/* resync/recovery still happening */
7591 			clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7592 			goto unlock;
7593 		}
7594 		if (mddev->sync_thread) {
7595 			reap_sync_thread(mddev);
7596 			goto unlock;
7597 		}
7598 		/* Set RUNNING before clearing NEEDED to avoid
7599 		 * any transients in the value of "sync_action".
7600 		 */
7601 		set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7602 		/* Clear some bits that don't mean anything, but
7603 		 * might be left set
7604 		 */
7605 		clear_bit(MD_RECOVERY_INTR, &mddev->recovery);
7606 		clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
7607 
7608 		if (!test_and_clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
7609 		    test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
7610 			goto unlock;
7611 		/* no recovery is running.
7612 		 * remove any failed drives, then
7613 		 * add spares if possible.
7614 		 * Spare are also removed and re-added, to allow
7615 		 * the personality to fail the re-add.
7616 		 */
7617 
7618 		if (mddev->reshape_position != MaxSector) {
7619 			if (mddev->pers->check_reshape == NULL ||
7620 			    mddev->pers->check_reshape(mddev) != 0)
7621 				/* Cannot proceed */
7622 				goto unlock;
7623 			set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7624 			clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7625 		} else if ((spares = remove_and_add_spares(mddev))) {
7626 			clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7627 			clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7628 			clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
7629 			set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7630 		} else if (mddev->recovery_cp < MaxSector) {
7631 			set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7632 			clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7633 		} else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
7634 			/* nothing to be done ... */
7635 			goto unlock;
7636 
7637 		if (mddev->pers->sync_request) {
7638 			if (spares && mddev->bitmap && ! mddev->bitmap->file) {
7639 				/* We are adding a device or devices to an array
7640 				 * which has the bitmap stored on all devices.
7641 				 * So make sure all bitmap pages get written
7642 				 */
7643 				bitmap_write_all(mddev->bitmap);
7644 			}
7645 			mddev->sync_thread = md_register_thread(md_do_sync,
7646 								mddev,
7647 								"resync");
7648 			if (!mddev->sync_thread) {
7649 				printk(KERN_ERR "%s: could not start resync"
7650 					" thread...\n",
7651 					mdname(mddev));
7652 				/* leave the spares where they are, it shouldn't hurt */
7653 				clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7654 				clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7655 				clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7656 				clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
7657 				clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7658 			} else
7659 				md_wakeup_thread(mddev->sync_thread);
7660 			sysfs_notify_dirent_safe(mddev->sysfs_action);
7661 			md_new_event(mddev);
7662 		}
7663 	unlock:
7664 		if (!mddev->sync_thread) {
7665 			clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7666 			if (test_and_clear_bit(MD_RECOVERY_RECOVER,
7667 					       &mddev->recovery))
7668 				if (mddev->sysfs_action)
7669 					sysfs_notify_dirent_safe(mddev->sysfs_action);
7670 		}
7671 		mddev_unlock(mddev);
7672 	}
7673 }
7674 
md_wait_for_blocked_rdev(struct md_rdev * rdev,struct mddev * mddev)7675 void md_wait_for_blocked_rdev(struct md_rdev *rdev, struct mddev *mddev)
7676 {
7677 	sysfs_notify_dirent_safe(rdev->sysfs_state);
7678 	wait_event_timeout(rdev->blocked_wait,
7679 			   !test_bit(Blocked, &rdev->flags) &&
7680 			   !test_bit(BlockedBadBlocks, &rdev->flags),
7681 			   msecs_to_jiffies(5000));
7682 	rdev_dec_pending(rdev, mddev);
7683 }
7684 EXPORT_SYMBOL(md_wait_for_blocked_rdev);
7685 
7686 
7687 /* Bad block management.
7688  * We can record which blocks on each device are 'bad' and so just
7689  * fail those blocks, or that stripe, rather than the whole device.
7690  * Entries in the bad-block table are 64bits wide.  This comprises:
7691  * Length of bad-range, in sectors: 0-511 for lengths 1-512
7692  * Start of bad-range, sector offset, 54 bits (allows 8 exbibytes)
7693  *  A 'shift' can be set so that larger blocks are tracked and
7694  *  consequently larger devices can be covered.
7695  * 'Acknowledged' flag - 1 bit. - the most significant bit.
7696  *
7697  * Locking of the bad-block table uses a seqlock so md_is_badblock
7698  * might need to retry if it is very unlucky.
7699  * We will sometimes want to check for bad blocks in a bi_end_io function,
7700  * so we use the write_seqlock_irq variant.
7701  *
7702  * When looking for a bad block we specify a range and want to
7703  * know if any block in the range is bad.  So we binary-search
7704  * to the last range that starts at-or-before the given endpoint,
7705  * (or "before the sector after the target range")
7706  * then see if it ends after the given start.
7707  * We return
7708  *  0 if there are no known bad blocks in the range
7709  *  1 if there are known bad block which are all acknowledged
7710  * -1 if there are bad blocks which have not yet been acknowledged in metadata.
7711  * plus the start/length of the first bad section we overlap.
7712  */
md_is_badblock(struct badblocks * bb,sector_t s,int sectors,sector_t * first_bad,int * bad_sectors)7713 int md_is_badblock(struct badblocks *bb, sector_t s, int sectors,
7714 		   sector_t *first_bad, int *bad_sectors)
7715 {
7716 	int hi;
7717 	int lo;
7718 	u64 *p = bb->page;
7719 	int rv;
7720 	sector_t target = s + sectors;
7721 	unsigned seq;
7722 
7723 	if (bb->shift > 0) {
7724 		/* round the start down, and the end up */
7725 		s >>= bb->shift;
7726 		target += (1<<bb->shift) - 1;
7727 		target >>= bb->shift;
7728 		sectors = target - s;
7729 	}
7730 	/* 'target' is now the first block after the bad range */
7731 
7732 retry:
7733 	seq = read_seqbegin(&bb->lock);
7734 	lo = 0;
7735 	rv = 0;
7736 	hi = bb->count;
7737 
7738 	/* Binary search between lo and hi for 'target'
7739 	 * i.e. for the last range that starts before 'target'
7740 	 */
7741 	/* INVARIANT: ranges before 'lo' and at-or-after 'hi'
7742 	 * are known not to be the last range before target.
7743 	 * VARIANT: hi-lo is the number of possible
7744 	 * ranges, and decreases until it reaches 1
7745 	 */
7746 	while (hi - lo > 1) {
7747 		int mid = (lo + hi) / 2;
7748 		sector_t a = BB_OFFSET(p[mid]);
7749 		if (a < target)
7750 			/* This could still be the one, earlier ranges
7751 			 * could not. */
7752 			lo = mid;
7753 		else
7754 			/* This and later ranges are definitely out. */
7755 			hi = mid;
7756 	}
7757 	/* 'lo' might be the last that started before target, but 'hi' isn't */
7758 	if (hi > lo) {
7759 		/* need to check all range that end after 's' to see if
7760 		 * any are unacknowledged.
7761 		 */
7762 		while (lo >= 0 &&
7763 		       BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
7764 			if (BB_OFFSET(p[lo]) < target) {
7765 				/* starts before the end, and finishes after
7766 				 * the start, so they must overlap
7767 				 */
7768 				if (rv != -1 && BB_ACK(p[lo]))
7769 					rv = 1;
7770 				else
7771 					rv = -1;
7772 				*first_bad = BB_OFFSET(p[lo]);
7773 				*bad_sectors = BB_LEN(p[lo]);
7774 			}
7775 			lo--;
7776 		}
7777 	}
7778 
7779 	if (read_seqretry(&bb->lock, seq))
7780 		goto retry;
7781 
7782 	return rv;
7783 }
7784 EXPORT_SYMBOL_GPL(md_is_badblock);
7785 
7786 /*
7787  * Add a range of bad blocks to the table.
7788  * This might extend the table, or might contract it
7789  * if two adjacent ranges can be merged.
7790  * We binary-search to find the 'insertion' point, then
7791  * decide how best to handle it.
7792  */
md_set_badblocks(struct badblocks * bb,sector_t s,int sectors,int acknowledged)7793 static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
7794 			    int acknowledged)
7795 {
7796 	u64 *p;
7797 	int lo, hi;
7798 	int rv = 1;
7799 
7800 	if (bb->shift < 0)
7801 		/* badblocks are disabled */
7802 		return 0;
7803 
7804 	if (bb->shift) {
7805 		/* round the start down, and the end up */
7806 		sector_t next = s + sectors;
7807 		s >>= bb->shift;
7808 		next += (1<<bb->shift) - 1;
7809 		next >>= bb->shift;
7810 		sectors = next - s;
7811 	}
7812 
7813 	write_seqlock_irq(&bb->lock);
7814 
7815 	p = bb->page;
7816 	lo = 0;
7817 	hi = bb->count;
7818 	/* Find the last range that starts at-or-before 's' */
7819 	while (hi - lo > 1) {
7820 		int mid = (lo + hi) / 2;
7821 		sector_t a = BB_OFFSET(p[mid]);
7822 		if (a <= s)
7823 			lo = mid;
7824 		else
7825 			hi = mid;
7826 	}
7827 	if (hi > lo && BB_OFFSET(p[lo]) > s)
7828 		hi = lo;
7829 
7830 	if (hi > lo) {
7831 		/* we found a range that might merge with the start
7832 		 * of our new range
7833 		 */
7834 		sector_t a = BB_OFFSET(p[lo]);
7835 		sector_t e = a + BB_LEN(p[lo]);
7836 		int ack = BB_ACK(p[lo]);
7837 		if (e >= s) {
7838 			/* Yes, we can merge with a previous range */
7839 			if (s == a && s + sectors >= e)
7840 				/* new range covers old */
7841 				ack = acknowledged;
7842 			else
7843 				ack = ack && acknowledged;
7844 
7845 			if (e < s + sectors)
7846 				e = s + sectors;
7847 			if (e - a <= BB_MAX_LEN) {
7848 				p[lo] = BB_MAKE(a, e-a, ack);
7849 				s = e;
7850 			} else {
7851 				/* does not all fit in one range,
7852 				 * make p[lo] maximal
7853 				 */
7854 				if (BB_LEN(p[lo]) != BB_MAX_LEN)
7855 					p[lo] = BB_MAKE(a, BB_MAX_LEN, ack);
7856 				s = a + BB_MAX_LEN;
7857 			}
7858 			sectors = e - s;
7859 		}
7860 	}
7861 	if (sectors && hi < bb->count) {
7862 		/* 'hi' points to the first range that starts after 's'.
7863 		 * Maybe we can merge with the start of that range */
7864 		sector_t a = BB_OFFSET(p[hi]);
7865 		sector_t e = a + BB_LEN(p[hi]);
7866 		int ack = BB_ACK(p[hi]);
7867 		if (a <= s + sectors) {
7868 			/* merging is possible */
7869 			if (e <= s + sectors) {
7870 				/* full overlap */
7871 				e = s + sectors;
7872 				ack = acknowledged;
7873 			} else
7874 				ack = ack && acknowledged;
7875 
7876 			a = s;
7877 			if (e - a <= BB_MAX_LEN) {
7878 				p[hi] = BB_MAKE(a, e-a, ack);
7879 				s = e;
7880 			} else {
7881 				p[hi] = BB_MAKE(a, BB_MAX_LEN, ack);
7882 				s = a + BB_MAX_LEN;
7883 			}
7884 			sectors = e - s;
7885 			lo = hi;
7886 			hi++;
7887 		}
7888 	}
7889 	if (sectors == 0 && hi < bb->count) {
7890 		/* we might be able to combine lo and hi */
7891 		/* Note: 's' is at the end of 'lo' */
7892 		sector_t a = BB_OFFSET(p[hi]);
7893 		int lolen = BB_LEN(p[lo]);
7894 		int hilen = BB_LEN(p[hi]);
7895 		int newlen = lolen + hilen - (s - a);
7896 		if (s >= a && newlen < BB_MAX_LEN) {
7897 			/* yes, we can combine them */
7898 			int ack = BB_ACK(p[lo]) && BB_ACK(p[hi]);
7899 			p[lo] = BB_MAKE(BB_OFFSET(p[lo]), newlen, ack);
7900 			memmove(p + hi, p + hi + 1,
7901 				(bb->count - hi - 1) * 8);
7902 			bb->count--;
7903 		}
7904 	}
7905 	while (sectors) {
7906 		/* didn't merge (it all).
7907 		 * Need to add a range just before 'hi' */
7908 		if (bb->count >= MD_MAX_BADBLOCKS) {
7909 			/* No room for more */
7910 			rv = 0;
7911 			break;
7912 		} else {
7913 			int this_sectors = sectors;
7914 			memmove(p + hi + 1, p + hi,
7915 				(bb->count - hi) * 8);
7916 			bb->count++;
7917 
7918 			if (this_sectors > BB_MAX_LEN)
7919 				this_sectors = BB_MAX_LEN;
7920 			p[hi] = BB_MAKE(s, this_sectors, acknowledged);
7921 			sectors -= this_sectors;
7922 			s += this_sectors;
7923 		}
7924 	}
7925 
7926 	bb->changed = 1;
7927 	if (!acknowledged)
7928 		bb->unacked_exist = 1;
7929 	write_sequnlock_irq(&bb->lock);
7930 
7931 	return rv;
7932 }
7933 
rdev_set_badblocks(struct md_rdev * rdev,sector_t s,int sectors,int acknowledged)7934 int rdev_set_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
7935 		       int acknowledged)
7936 {
7937 	int rv = md_set_badblocks(&rdev->badblocks,
7938 				  s + rdev->data_offset, sectors, acknowledged);
7939 	if (rv) {
7940 		/* Make sure they get written out promptly */
7941 		sysfs_notify_dirent_safe(rdev->sysfs_state);
7942 		set_bit(MD_CHANGE_CLEAN, &rdev->mddev->flags);
7943 		md_wakeup_thread(rdev->mddev->thread);
7944 	}
7945 	return rv;
7946 }
7947 EXPORT_SYMBOL_GPL(rdev_set_badblocks);
7948 
7949 /*
7950  * Remove a range of bad blocks from the table.
7951  * This may involve extending the table if we spilt a region,
7952  * but it must not fail.  So if the table becomes full, we just
7953  * drop the remove request.
7954  */
md_clear_badblocks(struct badblocks * bb,sector_t s,int sectors)7955 static int md_clear_badblocks(struct badblocks *bb, sector_t s, int sectors)
7956 {
7957 	u64 *p;
7958 	int lo, hi;
7959 	sector_t target = s + sectors;
7960 	int rv = 0;
7961 
7962 	if (bb->shift > 0) {
7963 		/* When clearing we round the start up and the end down.
7964 		 * This should not matter as the shift should align with
7965 		 * the block size and no rounding should ever be needed.
7966 		 * However it is better the think a block is bad when it
7967 		 * isn't than to think a block is not bad when it is.
7968 		 */
7969 		s += (1<<bb->shift) - 1;
7970 		s >>= bb->shift;
7971 		target >>= bb->shift;
7972 		sectors = target - s;
7973 	}
7974 
7975 	write_seqlock_irq(&bb->lock);
7976 
7977 	p = bb->page;
7978 	lo = 0;
7979 	hi = bb->count;
7980 	/* Find the last range that starts before 'target' */
7981 	while (hi - lo > 1) {
7982 		int mid = (lo + hi) / 2;
7983 		sector_t a = BB_OFFSET(p[mid]);
7984 		if (a < target)
7985 			lo = mid;
7986 		else
7987 			hi = mid;
7988 	}
7989 	if (hi > lo) {
7990 		/* p[lo] is the last range that could overlap the
7991 		 * current range.  Earlier ranges could also overlap,
7992 		 * but only this one can overlap the end of the range.
7993 		 */
7994 		if (BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > target) {
7995 			/* Partial overlap, leave the tail of this range */
7996 			int ack = BB_ACK(p[lo]);
7997 			sector_t a = BB_OFFSET(p[lo]);
7998 			sector_t end = a + BB_LEN(p[lo]);
7999 
8000 			if (a < s) {
8001 				/* we need to split this range */
8002 				if (bb->count >= MD_MAX_BADBLOCKS) {
8003 					rv = 0;
8004 					goto out;
8005 				}
8006 				memmove(p+lo+1, p+lo, (bb->count - lo) * 8);
8007 				bb->count++;
8008 				p[lo] = BB_MAKE(a, s-a, ack);
8009 				lo++;
8010 			}
8011 			p[lo] = BB_MAKE(target, end - target, ack);
8012 			/* there is no longer an overlap */
8013 			hi = lo;
8014 			lo--;
8015 		}
8016 		while (lo >= 0 &&
8017 		       BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
8018 			/* This range does overlap */
8019 			if (BB_OFFSET(p[lo]) < s) {
8020 				/* Keep the early parts of this range. */
8021 				int ack = BB_ACK(p[lo]);
8022 				sector_t start = BB_OFFSET(p[lo]);
8023 				p[lo] = BB_MAKE(start, s - start, ack);
8024 				/* now low doesn't overlap, so.. */
8025 				break;
8026 			}
8027 			lo--;
8028 		}
8029 		/* 'lo' is strictly before, 'hi' is strictly after,
8030 		 * anything between needs to be discarded
8031 		 */
8032 		if (hi - lo > 1) {
8033 			memmove(p+lo+1, p+hi, (bb->count - hi) * 8);
8034 			bb->count -= (hi - lo - 1);
8035 		}
8036 	}
8037 
8038 	bb->changed = 1;
8039 out:
8040 	write_sequnlock_irq(&bb->lock);
8041 	return rv;
8042 }
8043 
rdev_clear_badblocks(struct md_rdev * rdev,sector_t s,int sectors)8044 int rdev_clear_badblocks(struct md_rdev *rdev, sector_t s, int sectors)
8045 {
8046 	return md_clear_badblocks(&rdev->badblocks,
8047 				  s + rdev->data_offset,
8048 				  sectors);
8049 }
8050 EXPORT_SYMBOL_GPL(rdev_clear_badblocks);
8051 
8052 /*
8053  * Acknowledge all bad blocks in a list.
8054  * This only succeeds if ->changed is clear.  It is used by
8055  * in-kernel metadata updates
8056  */
md_ack_all_badblocks(struct badblocks * bb)8057 void md_ack_all_badblocks(struct badblocks *bb)
8058 {
8059 	if (bb->page == NULL || bb->changed)
8060 		/* no point even trying */
8061 		return;
8062 	write_seqlock_irq(&bb->lock);
8063 
8064 	if (bb->changed == 0 && bb->unacked_exist) {
8065 		u64 *p = bb->page;
8066 		int i;
8067 		for (i = 0; i < bb->count ; i++) {
8068 			if (!BB_ACK(p[i])) {
8069 				sector_t start = BB_OFFSET(p[i]);
8070 				int len = BB_LEN(p[i]);
8071 				p[i] = BB_MAKE(start, len, 1);
8072 			}
8073 		}
8074 		bb->unacked_exist = 0;
8075 	}
8076 	write_sequnlock_irq(&bb->lock);
8077 }
8078 EXPORT_SYMBOL_GPL(md_ack_all_badblocks);
8079 
8080 /* sysfs access to bad-blocks list.
8081  * We present two files.
8082  * 'bad-blocks' lists sector numbers and lengths of ranges that
8083  *    are recorded as bad.  The list is truncated to fit within
8084  *    the one-page limit of sysfs.
8085  *    Writing "sector length" to this file adds an acknowledged
8086  *    bad block list.
8087  * 'unacknowledged-bad-blocks' lists bad blocks that have not yet
8088  *    been acknowledged.  Writing to this file adds bad blocks
8089  *    without acknowledging them.  This is largely for testing.
8090  */
8091 
8092 static ssize_t
badblocks_show(struct badblocks * bb,char * page,int unack)8093 badblocks_show(struct badblocks *bb, char *page, int unack)
8094 {
8095 	size_t len;
8096 	int i;
8097 	u64 *p = bb->page;
8098 	unsigned seq;
8099 
8100 	if (bb->shift < 0)
8101 		return 0;
8102 
8103 retry:
8104 	seq = read_seqbegin(&bb->lock);
8105 
8106 	len = 0;
8107 	i = 0;
8108 
8109 	while (len < PAGE_SIZE && i < bb->count) {
8110 		sector_t s = BB_OFFSET(p[i]);
8111 		unsigned int length = BB_LEN(p[i]);
8112 		int ack = BB_ACK(p[i]);
8113 		i++;
8114 
8115 		if (unack && ack)
8116 			continue;
8117 
8118 		len += snprintf(page+len, PAGE_SIZE-len, "%llu %u\n",
8119 				(unsigned long long)s << bb->shift,
8120 				length << bb->shift);
8121 	}
8122 	if (unack && len == 0)
8123 		bb->unacked_exist = 0;
8124 
8125 	if (read_seqretry(&bb->lock, seq))
8126 		goto retry;
8127 
8128 	return len;
8129 }
8130 
8131 #define DO_DEBUG 1
8132 
8133 static ssize_t
badblocks_store(struct badblocks * bb,const char * page,size_t len,int unack)8134 badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack)
8135 {
8136 	unsigned long long sector;
8137 	int length;
8138 	char newline;
8139 #ifdef DO_DEBUG
8140 	/* Allow clearing via sysfs *only* for testing/debugging.
8141 	 * Normally only a successful write may clear a badblock
8142 	 */
8143 	int clear = 0;
8144 	if (page[0] == '-') {
8145 		clear = 1;
8146 		page++;
8147 	}
8148 #endif /* DO_DEBUG */
8149 
8150 	switch (sscanf(page, "%llu %d%c", &sector, &length, &newline)) {
8151 	case 3:
8152 		if (newline != '\n')
8153 			return -EINVAL;
8154 	case 2:
8155 		if (length <= 0)
8156 			return -EINVAL;
8157 		break;
8158 	default:
8159 		return -EINVAL;
8160 	}
8161 
8162 #ifdef DO_DEBUG
8163 	if (clear) {
8164 		md_clear_badblocks(bb, sector, length);
8165 		return len;
8166 	}
8167 #endif /* DO_DEBUG */
8168 	if (md_set_badblocks(bb, sector, length, !unack))
8169 		return len;
8170 	else
8171 		return -ENOSPC;
8172 }
8173 
md_notify_reboot(struct notifier_block * this,unsigned long code,void * x)8174 static int md_notify_reboot(struct notifier_block *this,
8175 			    unsigned long code, void *x)
8176 {
8177 	struct list_head *tmp;
8178 	struct mddev *mddev;
8179 	int need_delay = 0;
8180 
8181 	for_each_mddev(mddev, tmp) {
8182 		if (mddev_trylock(mddev)) {
8183 			if (mddev->pers)
8184 				__md_stop_writes(mddev);
8185 			if (mddev->persistent)
8186 				mddev->safemode = 2;
8187 			mddev_unlock(mddev);
8188 		}
8189 		need_delay = 1;
8190 	}
8191 	/*
8192 	 * certain more exotic SCSI devices are known to be
8193 	 * volatile wrt too early system reboots. While the
8194 	 * right place to handle this issue is the given
8195 	 * driver, we do want to have a safe RAID driver ...
8196 	 */
8197 	if (need_delay)
8198 		mdelay(1000*1);
8199 
8200 	return NOTIFY_DONE;
8201 }
8202 
8203 static struct notifier_block md_notifier = {
8204 	.notifier_call	= md_notify_reboot,
8205 	.next		= NULL,
8206 	.priority	= INT_MAX, /* before any real devices */
8207 };
8208 
md_geninit(void)8209 static void md_geninit(void)
8210 {
8211 	pr_debug("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
8212 
8213 	proc_create("mdstat", S_IRUGO, NULL, &md_seq_fops);
8214 }
8215 
md_init(void)8216 static int __init md_init(void)
8217 {
8218 	int ret = -ENOMEM;
8219 
8220 	md_wq = alloc_workqueue("md", WQ_MEM_RECLAIM, 0);
8221 	if (!md_wq)
8222 		goto err_wq;
8223 
8224 	md_misc_wq = alloc_workqueue("md_misc", 0, 0);
8225 	if (!md_misc_wq)
8226 		goto err_misc_wq;
8227 
8228 	if ((ret = register_blkdev(MD_MAJOR, "md")) < 0)
8229 		goto err_md;
8230 
8231 	if ((ret = register_blkdev(0, "mdp")) < 0)
8232 		goto err_mdp;
8233 	mdp_major = ret;
8234 
8235 	blk_register_region(MKDEV(MD_MAJOR, 0), 1UL<<MINORBITS, THIS_MODULE,
8236 			    md_probe, NULL, NULL);
8237 	blk_register_region(MKDEV(mdp_major, 0), 1UL<<MINORBITS, THIS_MODULE,
8238 			    md_probe, NULL, NULL);
8239 
8240 	register_reboot_notifier(&md_notifier);
8241 	raid_table_header = register_sysctl_table(raid_root_table);
8242 
8243 	md_geninit();
8244 	return 0;
8245 
8246 err_mdp:
8247 	unregister_blkdev(MD_MAJOR, "md");
8248 err_md:
8249 	destroy_workqueue(md_misc_wq);
8250 err_misc_wq:
8251 	destroy_workqueue(md_wq);
8252 err_wq:
8253 	return ret;
8254 }
8255 
8256 #ifndef MODULE
8257 
8258 /*
8259  * Searches all registered partitions for autorun RAID arrays
8260  * at boot time.
8261  */
8262 
8263 static LIST_HEAD(all_detected_devices);
8264 struct detected_devices_node {
8265 	struct list_head list;
8266 	dev_t dev;
8267 };
8268 
md_autodetect_dev(dev_t dev)8269 void md_autodetect_dev(dev_t dev)
8270 {
8271 	struct detected_devices_node *node_detected_dev;
8272 
8273 	node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL);
8274 	if (node_detected_dev) {
8275 		node_detected_dev->dev = dev;
8276 		list_add_tail(&node_detected_dev->list, &all_detected_devices);
8277 	} else {
8278 		printk(KERN_CRIT "md: md_autodetect_dev: kzalloc failed"
8279 			", skipping dev(%d,%d)\n", MAJOR(dev), MINOR(dev));
8280 	}
8281 }
8282 
8283 
autostart_arrays(int part)8284 static void autostart_arrays(int part)
8285 {
8286 	struct md_rdev *rdev;
8287 	struct detected_devices_node *node_detected_dev;
8288 	dev_t dev;
8289 	int i_scanned, i_passed;
8290 
8291 	i_scanned = 0;
8292 	i_passed = 0;
8293 
8294 	printk(KERN_INFO "md: Autodetecting RAID arrays.\n");
8295 
8296 	while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) {
8297 		i_scanned++;
8298 		node_detected_dev = list_entry(all_detected_devices.next,
8299 					struct detected_devices_node, list);
8300 		list_del(&node_detected_dev->list);
8301 		dev = node_detected_dev->dev;
8302 		kfree(node_detected_dev);
8303 		rdev = md_import_device(dev,0, 90);
8304 		if (IS_ERR(rdev))
8305 			continue;
8306 
8307 		if (test_bit(Faulty, &rdev->flags)) {
8308 			MD_BUG();
8309 			continue;
8310 		}
8311 		set_bit(AutoDetected, &rdev->flags);
8312 		list_add(&rdev->same_set, &pending_raid_disks);
8313 		i_passed++;
8314 	}
8315 
8316 	printk(KERN_INFO "md: Scanned %d and added %d devices.\n",
8317 						i_scanned, i_passed);
8318 
8319 	autorun_devices(part);
8320 }
8321 
8322 #endif /* !MODULE */
8323 
md_exit(void)8324 static __exit void md_exit(void)
8325 {
8326 	struct mddev *mddev;
8327 	struct list_head *tmp;
8328 
8329 	blk_unregister_region(MKDEV(MD_MAJOR,0), 1U << MINORBITS);
8330 	blk_unregister_region(MKDEV(mdp_major,0), 1U << MINORBITS);
8331 
8332 	unregister_blkdev(MD_MAJOR,"md");
8333 	unregister_blkdev(mdp_major, "mdp");
8334 	unregister_reboot_notifier(&md_notifier);
8335 	unregister_sysctl_table(raid_table_header);
8336 	remove_proc_entry("mdstat", NULL);
8337 	for_each_mddev(mddev, tmp) {
8338 		export_array(mddev);
8339 		mddev->hold_active = 0;
8340 	}
8341 	destroy_workqueue(md_misc_wq);
8342 	destroy_workqueue(md_wq);
8343 }
8344 
8345 subsys_initcall(md_init);
module_exit(md_exit)8346 module_exit(md_exit)
8347 
8348 static int get_ro(char *buffer, struct kernel_param *kp)
8349 {
8350 	return sprintf(buffer, "%d", start_readonly);
8351 }
set_ro(const char * val,struct kernel_param * kp)8352 static int set_ro(const char *val, struct kernel_param *kp)
8353 {
8354 	char *e;
8355 	int num = simple_strtoul(val, &e, 10);
8356 	if (*val && (*e == '\0' || *e == '\n')) {
8357 		start_readonly = num;
8358 		return 0;
8359 	}
8360 	return -EINVAL;
8361 }
8362 
8363 module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR);
8364 module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR);
8365 
8366 module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR);
8367 
8368 EXPORT_SYMBOL(register_md_personality);
8369 EXPORT_SYMBOL(unregister_md_personality);
8370 EXPORT_SYMBOL(md_error);
8371 EXPORT_SYMBOL(md_done_sync);
8372 EXPORT_SYMBOL(md_write_start);
8373 EXPORT_SYMBOL(md_write_end);
8374 EXPORT_SYMBOL(md_register_thread);
8375 EXPORT_SYMBOL(md_unregister_thread);
8376 EXPORT_SYMBOL(md_wakeup_thread);
8377 EXPORT_SYMBOL(md_check_recovery);
8378 MODULE_LICENSE("GPL");
8379 MODULE_DESCRIPTION("MD RAID framework");
8380 MODULE_ALIAS("md");
8381 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);
8382