1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Budget Fair Queueing (BFQ) I/O scheduler.
4  *
5  * Based on ideas and code from CFQ:
6  * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
7  *
8  * Copyright (C) 2008 Fabio Checconi <fabio@gandalf.sssup.it>
9  *		      Paolo Valente <paolo.valente@unimore.it>
10  *
11  * Copyright (C) 2010 Paolo Valente <paolo.valente@unimore.it>
12  *                    Arianna Avanzini <avanzini@google.com>
13  *
14  * Copyright (C) 2017 Paolo Valente <paolo.valente@linaro.org>
15  *
16  * BFQ is a proportional-share I/O scheduler, with some extra
17  * low-latency capabilities. BFQ also supports full hierarchical
18  * scheduling through cgroups. Next paragraphs provide an introduction
19  * on BFQ inner workings. Details on BFQ benefits, usage and
20  * limitations can be found in Documentation/block/bfq-iosched.rst.
21  *
22  * BFQ is a proportional-share storage-I/O scheduling algorithm based
23  * on the slice-by-slice service scheme of CFQ. But BFQ assigns
24  * budgets, measured in number of sectors, to processes instead of
25  * time slices. The device is not granted to the in-service process
26  * for a given time slice, but until it has exhausted its assigned
27  * budget. This change from the time to the service domain enables BFQ
28  * to distribute the device throughput among processes as desired,
29  * without any distortion due to throughput fluctuations, or to device
30  * internal queueing. BFQ uses an ad hoc internal scheduler, called
31  * B-WF2Q+, to schedule processes according to their budgets. More
32  * precisely, BFQ schedules queues associated with processes. Each
33  * process/queue is assigned a user-configurable weight, and B-WF2Q+
34  * guarantees that each queue receives a fraction of the throughput
35  * proportional to its weight. Thanks to the accurate policy of
36  * B-WF2Q+, BFQ can afford to assign high budgets to I/O-bound
37  * processes issuing sequential requests (to boost the throughput),
38  * and yet guarantee a low latency to interactive and soft real-time
39  * applications.
40  *
41  * In particular, to provide these low-latency guarantees, BFQ
42  * explicitly privileges the I/O of two classes of time-sensitive
43  * applications: interactive and soft real-time. In more detail, BFQ
44  * behaves this way if the low_latency parameter is set (default
45  * configuration). This feature enables BFQ to provide applications in
46  * these classes with a very low latency.
47  *
48  * To implement this feature, BFQ constantly tries to detect whether
49  * the I/O requests in a bfq_queue come from an interactive or a soft
50  * real-time application. For brevity, in these cases, the queue is
51  * said to be interactive or soft real-time. In both cases, BFQ
52  * privileges the service of the queue, over that of non-interactive
53  * and non-soft-real-time queues. This privileging is performed,
54  * mainly, by raising the weight of the queue. So, for brevity, we
55  * call just weight-raising periods the time periods during which a
56  * queue is privileged, because deemed interactive or soft real-time.
57  *
58  * The detection of soft real-time queues/applications is described in
59  * detail in the comments on the function
60  * bfq_bfqq_softrt_next_start. On the other hand, the detection of an
61  * interactive queue works as follows: a queue is deemed interactive
62  * if it is constantly non empty only for a limited time interval,
63  * after which it does become empty. The queue may be deemed
64  * interactive again (for a limited time), if it restarts being
65  * constantly non empty, provided that this happens only after the
66  * queue has remained empty for a given minimum idle time.
67  *
68  * By default, BFQ computes automatically the above maximum time
69  * interval, i.e., the time interval after which a constantly
70  * non-empty queue stops being deemed interactive. Since a queue is
71  * weight-raised while it is deemed interactive, this maximum time
72  * interval happens to coincide with the (maximum) duration of the
73  * weight-raising for interactive queues.
74  *
75  * Finally, BFQ also features additional heuristics for
76  * preserving both a low latency and a high throughput on NCQ-capable,
77  * rotational or flash-based devices, and to get the job done quickly
78  * for applications consisting in many I/O-bound processes.
79  *
80  * NOTE: if the main or only goal, with a given device, is to achieve
81  * the maximum-possible throughput at all times, then do switch off
82  * all low-latency heuristics for that device, by setting low_latency
83  * to 0.
84  *
85  * BFQ is described in [1], where also a reference to the initial,
86  * more theoretical paper on BFQ can be found. The interested reader
87  * can find in the latter paper full details on the main algorithm, as
88  * well as formulas of the guarantees and formal proofs of all the
89  * properties.  With respect to the version of BFQ presented in these
90  * papers, this implementation adds a few more heuristics, such as the
91  * ones that guarantee a low latency to interactive and soft real-time
92  * applications, and a hierarchical extension based on H-WF2Q+.
93  *
94  * B-WF2Q+ is based on WF2Q+, which is described in [2], together with
95  * H-WF2Q+, while the augmented tree used here to implement B-WF2Q+
96  * with O(log N) complexity derives from the one introduced with EEVDF
97  * in [3].
98  *
99  * [1] P. Valente, A. Avanzini, "Evolution of the BFQ Storage I/O
100  *     Scheduler", Proceedings of the First Workshop on Mobile System
101  *     Technologies (MST-2015), May 2015.
102  *     http://algogroup.unimore.it/people/paolo/disk_sched/mst-2015.pdf
103  *
104  * [2] Jon C.R. Bennett and H. Zhang, "Hierarchical Packet Fair Queueing
105  *     Algorithms", IEEE/ACM Transactions on Networking, 5(5):675-689,
106  *     Oct 1997.
107  *
108  * http://www.cs.cmu.edu/~hzhang/papers/TON-97-Oct.ps.gz
109  *
110  * [3] I. Stoica and H. Abdel-Wahab, "Earliest Eligible Virtual Deadline
111  *     First: A Flexible and Accurate Mechanism for Proportional Share
112  *     Resource Allocation", technical report.
113  *
114  * http://www.cs.berkeley.edu/~istoica/papers/eevdf-tr-95.pdf
115  */
116 #include <linux/module.h>
117 #include <linux/slab.h>
118 #include <linux/blkdev.h>
119 #include <linux/cgroup.h>
120 #include <linux/ktime.h>
121 #include <linux/rbtree.h>
122 #include <linux/ioprio.h>
123 #include <linux/sbitmap.h>
124 #include <linux/delay.h>
125 #include <linux/backing-dev.h>
126 
127 #include <trace/events/block.h>
128 
129 #include "elevator.h"
130 #include "blk.h"
131 #include "blk-mq.h"
132 #include "blk-mq-tag.h"
133 #include "blk-mq-sched.h"
134 #include "bfq-iosched.h"
135 #include "blk-wbt.h"
136 
137 #define BFQ_BFQQ_FNS(name)						\
138 void bfq_mark_bfqq_##name(struct bfq_queue *bfqq)			\
139 {									\
140 	__set_bit(BFQQF_##name, &(bfqq)->flags);			\
141 }									\
142 void bfq_clear_bfqq_##name(struct bfq_queue *bfqq)			\
143 {									\
144 	__clear_bit(BFQQF_##name, &(bfqq)->flags);		\
145 }									\
146 int bfq_bfqq_##name(const struct bfq_queue *bfqq)			\
147 {									\
148 	return test_bit(BFQQF_##name, &(bfqq)->flags);		\
149 }
150 
151 BFQ_BFQQ_FNS(just_created);
152 BFQ_BFQQ_FNS(busy);
153 BFQ_BFQQ_FNS(wait_request);
154 BFQ_BFQQ_FNS(non_blocking_wait_rq);
155 BFQ_BFQQ_FNS(fifo_expire);
156 BFQ_BFQQ_FNS(has_short_ttime);
157 BFQ_BFQQ_FNS(sync);
158 BFQ_BFQQ_FNS(IO_bound);
159 BFQ_BFQQ_FNS(in_large_burst);
160 BFQ_BFQQ_FNS(coop);
161 BFQ_BFQQ_FNS(split_coop);
162 BFQ_BFQQ_FNS(softrt_update);
163 #undef BFQ_BFQQ_FNS						\
164 
165 /* Expiration time of async (0) and sync (1) requests, in ns. */
166 static const u64 bfq_fifo_expire[2] = { NSEC_PER_SEC / 4, NSEC_PER_SEC / 8 };
167 
168 /* Maximum backwards seek (magic number lifted from CFQ), in KiB. */
169 static const int bfq_back_max = 16 * 1024;
170 
171 /* Penalty of a backwards seek, in number of sectors. */
172 static const int bfq_back_penalty = 2;
173 
174 /* Idling period duration, in ns. */
175 static u64 bfq_slice_idle = NSEC_PER_SEC / 125;
176 
177 /* Minimum number of assigned budgets for which stats are safe to compute. */
178 static const int bfq_stats_min_budgets = 194;
179 
180 /* Default maximum budget values, in sectors and number of requests. */
181 static const int bfq_default_max_budget = 16 * 1024;
182 
183 /*
184  * When a sync request is dispatched, the queue that contains that
185  * request, and all the ancestor entities of that queue, are charged
186  * with the number of sectors of the request. In contrast, if the
187  * request is async, then the queue and its ancestor entities are
188  * charged with the number of sectors of the request, multiplied by
189  * the factor below. This throttles the bandwidth for async I/O,
190  * w.r.t. to sync I/O, and it is done to counter the tendency of async
191  * writes to steal I/O throughput to reads.
192  *
193  * The current value of this parameter is the result of a tuning with
194  * several hardware and software configurations. We tried to find the
195  * lowest value for which writes do not cause noticeable problems to
196  * reads. In fact, the lower this parameter, the stabler I/O control,
197  * in the following respect.  The lower this parameter is, the less
198  * the bandwidth enjoyed by a group decreases
199  * - when the group does writes, w.r.t. to when it does reads;
200  * - when other groups do reads, w.r.t. to when they do writes.
201  */
202 static const int bfq_async_charge_factor = 3;
203 
204 /* Default timeout values, in jiffies, approximating CFQ defaults. */
205 const int bfq_timeout = HZ / 8;
206 
207 /*
208  * Time limit for merging (see comments in bfq_setup_cooperator). Set
209  * to the slowest value that, in our tests, proved to be effective in
210  * removing false positives, while not causing true positives to miss
211  * queue merging.
212  *
213  * As can be deduced from the low time limit below, queue merging, if
214  * successful, happens at the very beginning of the I/O of the involved
215  * cooperating processes, as a consequence of the arrival of the very
216  * first requests from each cooperator.  After that, there is very
217  * little chance to find cooperators.
218  */
219 static const unsigned long bfq_merge_time_limit = HZ/10;
220 
221 static struct kmem_cache *bfq_pool;
222 
223 /* Below this threshold (in ns), we consider thinktime immediate. */
224 #define BFQ_MIN_TT		(2 * NSEC_PER_MSEC)
225 
226 /* hw_tag detection: parallel requests threshold and min samples needed. */
227 #define BFQ_HW_QUEUE_THRESHOLD	3
228 #define BFQ_HW_QUEUE_SAMPLES	32
229 
230 #define BFQQ_SEEK_THR		(sector_t)(8 * 100)
231 #define BFQQ_SECT_THR_NONROT	(sector_t)(2 * 32)
232 #define BFQ_RQ_SEEKY(bfqd, last_pos, rq) \
233 	(get_sdist(last_pos, rq) >			\
234 	 BFQQ_SEEK_THR &&				\
235 	 (!blk_queue_nonrot(bfqd->queue) ||		\
236 	  blk_rq_sectors(rq) < BFQQ_SECT_THR_NONROT))
237 #define BFQQ_CLOSE_THR		(sector_t)(8 * 1024)
238 #define BFQQ_SEEKY(bfqq)	(hweight32(bfqq->seek_history) > 19)
239 /*
240  * Sync random I/O is likely to be confused with soft real-time I/O,
241  * because it is characterized by limited throughput and apparently
242  * isochronous arrival pattern. To avoid false positives, queues
243  * containing only random (seeky) I/O are prevented from being tagged
244  * as soft real-time.
245  */
246 #define BFQQ_TOTALLY_SEEKY(bfqq)	(bfqq->seek_history == -1)
247 
248 /* Min number of samples required to perform peak-rate update */
249 #define BFQ_RATE_MIN_SAMPLES	32
250 /* Min observation time interval required to perform a peak-rate update (ns) */
251 #define BFQ_RATE_MIN_INTERVAL	(300*NSEC_PER_MSEC)
252 /* Target observation time interval for a peak-rate update (ns) */
253 #define BFQ_RATE_REF_INTERVAL	NSEC_PER_SEC
254 
255 /*
256  * Shift used for peak-rate fixed precision calculations.
257  * With
258  * - the current shift: 16 positions
259  * - the current type used to store rate: u32
260  * - the current unit of measure for rate: [sectors/usec], or, more precisely,
261  *   [(sectors/usec) / 2^BFQ_RATE_SHIFT] to take into account the shift,
262  * the range of rates that can be stored is
263  * [1 / 2^BFQ_RATE_SHIFT, 2^(32 - BFQ_RATE_SHIFT)] sectors/usec =
264  * [1 / 2^16, 2^16] sectors/usec = [15e-6, 65536] sectors/usec =
265  * [15, 65G] sectors/sec
266  * Which, assuming a sector size of 512B, corresponds to a range of
267  * [7.5K, 33T] B/sec
268  */
269 #define BFQ_RATE_SHIFT		16
270 
271 /*
272  * When configured for computing the duration of the weight-raising
273  * for interactive queues automatically (see the comments at the
274  * beginning of this file), BFQ does it using the following formula:
275  * duration = (ref_rate / r) * ref_wr_duration,
276  * where r is the peak rate of the device, and ref_rate and
277  * ref_wr_duration are two reference parameters.  In particular,
278  * ref_rate is the peak rate of the reference storage device (see
279  * below), and ref_wr_duration is about the maximum time needed, with
280  * BFQ and while reading two files in parallel, to load typical large
281  * applications on the reference device (see the comments on
282  * max_service_from_wr below, for more details on how ref_wr_duration
283  * is obtained).  In practice, the slower/faster the device at hand
284  * is, the more/less it takes to load applications with respect to the
285  * reference device.  Accordingly, the longer/shorter BFQ grants
286  * weight raising to interactive applications.
287  *
288  * BFQ uses two different reference pairs (ref_rate, ref_wr_duration),
289  * depending on whether the device is rotational or non-rotational.
290  *
291  * In the following definitions, ref_rate[0] and ref_wr_duration[0]
292  * are the reference values for a rotational device, whereas
293  * ref_rate[1] and ref_wr_duration[1] are the reference values for a
294  * non-rotational device. The reference rates are not the actual peak
295  * rates of the devices used as a reference, but slightly lower
296  * values. The reason for using slightly lower values is that the
297  * peak-rate estimator tends to yield slightly lower values than the
298  * actual peak rate (it can yield the actual peak rate only if there
299  * is only one process doing I/O, and the process does sequential
300  * I/O).
301  *
302  * The reference peak rates are measured in sectors/usec, left-shifted
303  * by BFQ_RATE_SHIFT.
304  */
305 static int ref_rate[2] = {14000, 33000};
306 /*
307  * To improve readability, a conversion function is used to initialize
308  * the following array, which entails that the array can be
309  * initialized only in a function.
310  */
311 static int ref_wr_duration[2];
312 
313 /*
314  * BFQ uses the above-detailed, time-based weight-raising mechanism to
315  * privilege interactive tasks. This mechanism is vulnerable to the
316  * following false positives: I/O-bound applications that will go on
317  * doing I/O for much longer than the duration of weight
318  * raising. These applications have basically no benefit from being
319  * weight-raised at the beginning of their I/O. On the opposite end,
320  * while being weight-raised, these applications
321  * a) unjustly steal throughput to applications that may actually need
322  * low latency;
323  * b) make BFQ uselessly perform device idling; device idling results
324  * in loss of device throughput with most flash-based storage, and may
325  * increase latencies when used purposelessly.
326  *
327  * BFQ tries to reduce these problems, by adopting the following
328  * countermeasure. To introduce this countermeasure, we need first to
329  * finish explaining how the duration of weight-raising for
330  * interactive tasks is computed.
331  *
332  * For a bfq_queue deemed as interactive, the duration of weight
333  * raising is dynamically adjusted, as a function of the estimated
334  * peak rate of the device, so as to be equal to the time needed to
335  * execute the 'largest' interactive task we benchmarked so far. By
336  * largest task, we mean the task for which each involved process has
337  * to do more I/O than for any of the other tasks we benchmarked. This
338  * reference interactive task is the start-up of LibreOffice Writer,
339  * and in this task each process/bfq_queue needs to have at most ~110K
340  * sectors transferred.
341  *
342  * This last piece of information enables BFQ to reduce the actual
343  * duration of weight-raising for at least one class of I/O-bound
344  * applications: those doing sequential or quasi-sequential I/O. An
345  * example is file copy. In fact, once started, the main I/O-bound
346  * processes of these applications usually consume the above 110K
347  * sectors in much less time than the processes of an application that
348  * is starting, because these I/O-bound processes will greedily devote
349  * almost all their CPU cycles only to their target,
350  * throughput-friendly I/O operations. This is even more true if BFQ
351  * happens to be underestimating the device peak rate, and thus
352  * overestimating the duration of weight raising. But, according to
353  * our measurements, once transferred 110K sectors, these processes
354  * have no right to be weight-raised any longer.
355  *
356  * Basing on the last consideration, BFQ ends weight-raising for a
357  * bfq_queue if the latter happens to have received an amount of
358  * service at least equal to the following constant. The constant is
359  * set to slightly more than 110K, to have a minimum safety margin.
360  *
361  * This early ending of weight-raising reduces the amount of time
362  * during which interactive false positives cause the two problems
363  * described at the beginning of these comments.
364  */
365 static const unsigned long max_service_from_wr = 120000;
366 
367 /*
368  * Maximum time between the creation of two queues, for stable merge
369  * to be activated (in ms)
370  */
371 static const unsigned long bfq_activation_stable_merging = 600;
372 /*
373  * Minimum time to be waited before evaluating delayed stable merge (in ms)
374  */
375 static const unsigned long bfq_late_stable_merging = 600;
376 
377 #define RQ_BIC(rq)		((struct bfq_io_cq *)((rq)->elv.priv[0]))
378 #define RQ_BFQQ(rq)		((rq)->elv.priv[1])
379 
bic_to_bfqq(struct bfq_io_cq * bic,bool is_sync)380 struct bfq_queue *bic_to_bfqq(struct bfq_io_cq *bic, bool is_sync)
381 {
382 	return bic->bfqq[is_sync];
383 }
384 
385 static void bfq_put_stable_ref(struct bfq_queue *bfqq);
386 
bic_set_bfqq(struct bfq_io_cq * bic,struct bfq_queue * bfqq,bool is_sync)387 void bic_set_bfqq(struct bfq_io_cq *bic, struct bfq_queue *bfqq, bool is_sync)
388 {
389 	struct bfq_queue *old_bfqq = bic->bfqq[is_sync];
390 
391 	/* Clear bic pointer if bfqq is detached from this bic */
392 	if (old_bfqq && old_bfqq->bic == bic)
393 		old_bfqq->bic = NULL;
394 
395 	/*
396 	 * If bfqq != NULL, then a non-stable queue merge between
397 	 * bic->bfqq and bfqq is happening here. This causes troubles
398 	 * in the following case: bic->bfqq has also been scheduled
399 	 * for a possible stable merge with bic->stable_merge_bfqq,
400 	 * and bic->stable_merge_bfqq == bfqq happens to
401 	 * hold. Troubles occur because bfqq may then undergo a split,
402 	 * thereby becoming eligible for a stable merge. Yet, if
403 	 * bic->stable_merge_bfqq points exactly to bfqq, then bfqq
404 	 * would be stably merged with itself. To avoid this anomaly,
405 	 * we cancel the stable merge if
406 	 * bic->stable_merge_bfqq == bfqq.
407 	 */
408 	bic->bfqq[is_sync] = bfqq;
409 
410 	if (bfqq && bic->stable_merge_bfqq == bfqq) {
411 		/*
412 		 * Actually, these same instructions are executed also
413 		 * in bfq_setup_cooperator, in case of abort or actual
414 		 * execution of a stable merge. We could avoid
415 		 * repeating these instructions there too, but if we
416 		 * did so, we would nest even more complexity in this
417 		 * function.
418 		 */
419 		bfq_put_stable_ref(bic->stable_merge_bfqq);
420 
421 		bic->stable_merge_bfqq = NULL;
422 	}
423 }
424 
bic_to_bfqd(struct bfq_io_cq * bic)425 struct bfq_data *bic_to_bfqd(struct bfq_io_cq *bic)
426 {
427 	return bic->icq.q->elevator->elevator_data;
428 }
429 
430 /**
431  * icq_to_bic - convert iocontext queue structure to bfq_io_cq.
432  * @icq: the iocontext queue.
433  */
icq_to_bic(struct io_cq * icq)434 static struct bfq_io_cq *icq_to_bic(struct io_cq *icq)
435 {
436 	/* bic->icq is the first member, %NULL will convert to %NULL */
437 	return container_of(icq, struct bfq_io_cq, icq);
438 }
439 
440 /**
441  * bfq_bic_lookup - search into @ioc a bic associated to @bfqd.
442  * @q: the request queue.
443  */
bfq_bic_lookup(struct request_queue * q)444 static struct bfq_io_cq *bfq_bic_lookup(struct request_queue *q)
445 {
446 	struct bfq_io_cq *icq;
447 	unsigned long flags;
448 
449 	if (!current->io_context)
450 		return NULL;
451 
452 	spin_lock_irqsave(&q->queue_lock, flags);
453 	icq = icq_to_bic(ioc_lookup_icq(q));
454 	spin_unlock_irqrestore(&q->queue_lock, flags);
455 
456 	return icq;
457 }
458 
459 /*
460  * Scheduler run of queue, if there are requests pending and no one in the
461  * driver that will restart queueing.
462  */
bfq_schedule_dispatch(struct bfq_data * bfqd)463 void bfq_schedule_dispatch(struct bfq_data *bfqd)
464 {
465 	lockdep_assert_held(&bfqd->lock);
466 
467 	if (bfqd->queued != 0) {
468 		bfq_log(bfqd, "schedule dispatch");
469 		blk_mq_run_hw_queues(bfqd->queue, true);
470 	}
471 }
472 
473 #define bfq_class_idle(bfqq)	((bfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
474 
475 #define bfq_sample_valid(samples)	((samples) > 80)
476 
477 /*
478  * Lifted from AS - choose which of rq1 and rq2 that is best served now.
479  * We choose the request that is closer to the head right now.  Distance
480  * behind the head is penalized and only allowed to a certain extent.
481  */
bfq_choose_req(struct bfq_data * bfqd,struct request * rq1,struct request * rq2,sector_t last)482 static struct request *bfq_choose_req(struct bfq_data *bfqd,
483 				      struct request *rq1,
484 				      struct request *rq2,
485 				      sector_t last)
486 {
487 	sector_t s1, s2, d1 = 0, d2 = 0;
488 	unsigned long back_max;
489 #define BFQ_RQ1_WRAP	0x01 /* request 1 wraps */
490 #define BFQ_RQ2_WRAP	0x02 /* request 2 wraps */
491 	unsigned int wrap = 0; /* bit mask: requests behind the disk head? */
492 
493 	if (!rq1 || rq1 == rq2)
494 		return rq2;
495 	if (!rq2)
496 		return rq1;
497 
498 	if (rq_is_sync(rq1) && !rq_is_sync(rq2))
499 		return rq1;
500 	else if (rq_is_sync(rq2) && !rq_is_sync(rq1))
501 		return rq2;
502 	if ((rq1->cmd_flags & REQ_META) && !(rq2->cmd_flags & REQ_META))
503 		return rq1;
504 	else if ((rq2->cmd_flags & REQ_META) && !(rq1->cmd_flags & REQ_META))
505 		return rq2;
506 
507 	s1 = blk_rq_pos(rq1);
508 	s2 = blk_rq_pos(rq2);
509 
510 	/*
511 	 * By definition, 1KiB is 2 sectors.
512 	 */
513 	back_max = bfqd->bfq_back_max * 2;
514 
515 	/*
516 	 * Strict one way elevator _except_ in the case where we allow
517 	 * short backward seeks which are biased as twice the cost of a
518 	 * similar forward seek.
519 	 */
520 	if (s1 >= last)
521 		d1 = s1 - last;
522 	else if (s1 + back_max >= last)
523 		d1 = (last - s1) * bfqd->bfq_back_penalty;
524 	else
525 		wrap |= BFQ_RQ1_WRAP;
526 
527 	if (s2 >= last)
528 		d2 = s2 - last;
529 	else if (s2 + back_max >= last)
530 		d2 = (last - s2) * bfqd->bfq_back_penalty;
531 	else
532 		wrap |= BFQ_RQ2_WRAP;
533 
534 	/* Found required data */
535 
536 	/*
537 	 * By doing switch() on the bit mask "wrap" we avoid having to
538 	 * check two variables for all permutations: --> faster!
539 	 */
540 	switch (wrap) {
541 	case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
542 		if (d1 < d2)
543 			return rq1;
544 		else if (d2 < d1)
545 			return rq2;
546 
547 		if (s1 >= s2)
548 			return rq1;
549 		else
550 			return rq2;
551 
552 	case BFQ_RQ2_WRAP:
553 		return rq1;
554 	case BFQ_RQ1_WRAP:
555 		return rq2;
556 	case BFQ_RQ1_WRAP|BFQ_RQ2_WRAP: /* both rqs wrapped */
557 	default:
558 		/*
559 		 * Since both rqs are wrapped,
560 		 * start with the one that's further behind head
561 		 * (--> only *one* back seek required),
562 		 * since back seek takes more time than forward.
563 		 */
564 		if (s1 <= s2)
565 			return rq1;
566 		else
567 			return rq2;
568 	}
569 }
570 
571 #define BFQ_LIMIT_INLINE_DEPTH 16
572 
573 #ifdef CONFIG_BFQ_GROUP_IOSCHED
bfqq_request_over_limit(struct bfq_queue * bfqq,int limit)574 static bool bfqq_request_over_limit(struct bfq_queue *bfqq, int limit)
575 {
576 	struct bfq_data *bfqd = bfqq->bfqd;
577 	struct bfq_entity *entity = &bfqq->entity;
578 	struct bfq_entity *inline_entities[BFQ_LIMIT_INLINE_DEPTH];
579 	struct bfq_entity **entities = inline_entities;
580 	int depth, level, alloc_depth = BFQ_LIMIT_INLINE_DEPTH;
581 	int class_idx = bfqq->ioprio_class - 1;
582 	struct bfq_sched_data *sched_data;
583 	unsigned long wsum;
584 	bool ret = false;
585 
586 	if (!entity->on_st_or_in_serv)
587 		return false;
588 
589 retry:
590 	spin_lock_irq(&bfqd->lock);
591 	/* +1 for bfqq entity, root cgroup not included */
592 	depth = bfqg_to_blkg(bfqq_group(bfqq))->blkcg->css.cgroup->level + 1;
593 	if (depth > alloc_depth) {
594 		spin_unlock_irq(&bfqd->lock);
595 		if (entities != inline_entities)
596 			kfree(entities);
597 		entities = kmalloc_array(depth, sizeof(*entities), GFP_NOIO);
598 		if (!entities)
599 			return false;
600 		alloc_depth = depth;
601 		goto retry;
602 	}
603 
604 	sched_data = entity->sched_data;
605 	/* Gather our ancestors as we need to traverse them in reverse order */
606 	level = 0;
607 	for_each_entity(entity) {
608 		/*
609 		 * If at some level entity is not even active, allow request
610 		 * queueing so that BFQ knows there's work to do and activate
611 		 * entities.
612 		 */
613 		if (!entity->on_st_or_in_serv)
614 			goto out;
615 		/* Uh, more parents than cgroup subsystem thinks? */
616 		if (WARN_ON_ONCE(level >= depth))
617 			break;
618 		entities[level++] = entity;
619 	}
620 	WARN_ON_ONCE(level != depth);
621 	for (level--; level >= 0; level--) {
622 		entity = entities[level];
623 		if (level > 0) {
624 			wsum = bfq_entity_service_tree(entity)->wsum;
625 		} else {
626 			int i;
627 			/*
628 			 * For bfqq itself we take into account service trees
629 			 * of all higher priority classes and multiply their
630 			 * weights so that low prio queue from higher class
631 			 * gets more requests than high prio queue from lower
632 			 * class.
633 			 */
634 			wsum = 0;
635 			for (i = 0; i <= class_idx; i++) {
636 				wsum = wsum * IOPRIO_BE_NR +
637 					sched_data->service_tree[i].wsum;
638 			}
639 		}
640 		limit = DIV_ROUND_CLOSEST(limit * entity->weight, wsum);
641 		if (entity->allocated >= limit) {
642 			bfq_log_bfqq(bfqq->bfqd, bfqq,
643 				"too many requests: allocated %d limit %d level %d",
644 				entity->allocated, limit, level);
645 			ret = true;
646 			break;
647 		}
648 	}
649 out:
650 	spin_unlock_irq(&bfqd->lock);
651 	if (entities != inline_entities)
652 		kfree(entities);
653 	return ret;
654 }
655 #else
bfqq_request_over_limit(struct bfq_queue * bfqq,int limit)656 static bool bfqq_request_over_limit(struct bfq_queue *bfqq, int limit)
657 {
658 	return false;
659 }
660 #endif
661 
662 /*
663  * Async I/O can easily starve sync I/O (both sync reads and sync
664  * writes), by consuming all tags. Similarly, storms of sync writes,
665  * such as those that sync(2) may trigger, can starve sync reads.
666  * Limit depths of async I/O and sync writes so as to counter both
667  * problems.
668  *
669  * Also if a bfq queue or its parent cgroup consume more tags than would be
670  * appropriate for their weight, we trim the available tag depth to 1. This
671  * avoids a situation where one cgroup can starve another cgroup from tags and
672  * thus block service differentiation among cgroups. Note that because the
673  * queue / cgroup already has many requests allocated and queued, this does not
674  * significantly affect service guarantees coming from the BFQ scheduling
675  * algorithm.
676  */
bfq_limit_depth(blk_opf_t opf,struct blk_mq_alloc_data * data)677 static void bfq_limit_depth(blk_opf_t opf, struct blk_mq_alloc_data *data)
678 {
679 	struct bfq_data *bfqd = data->q->elevator->elevator_data;
680 	struct bfq_io_cq *bic = bfq_bic_lookup(data->q);
681 	struct bfq_queue *bfqq = bic ? bic_to_bfqq(bic, op_is_sync(opf)) : NULL;
682 	int depth;
683 	unsigned limit = data->q->nr_requests;
684 
685 	/* Sync reads have full depth available */
686 	if (op_is_sync(opf) && !op_is_write(opf)) {
687 		depth = 0;
688 	} else {
689 		depth = bfqd->word_depths[!!bfqd->wr_busy_queues][op_is_sync(opf)];
690 		limit = (limit * depth) >> bfqd->full_depth_shift;
691 	}
692 
693 	/*
694 	 * Does queue (or any parent entity) exceed number of requests that
695 	 * should be available to it? Heavily limit depth so that it cannot
696 	 * consume more available requests and thus starve other entities.
697 	 */
698 	if (bfqq && bfqq_request_over_limit(bfqq, limit))
699 		depth = 1;
700 
701 	bfq_log(bfqd, "[%s] wr_busy %d sync %d depth %u",
702 		__func__, bfqd->wr_busy_queues, op_is_sync(opf), depth);
703 	if (depth)
704 		data->shallow_depth = depth;
705 }
706 
707 static struct bfq_queue *
bfq_rq_pos_tree_lookup(struct bfq_data * bfqd,struct rb_root * root,sector_t sector,struct rb_node ** ret_parent,struct rb_node *** rb_link)708 bfq_rq_pos_tree_lookup(struct bfq_data *bfqd, struct rb_root *root,
709 		     sector_t sector, struct rb_node **ret_parent,
710 		     struct rb_node ***rb_link)
711 {
712 	struct rb_node **p, *parent;
713 	struct bfq_queue *bfqq = NULL;
714 
715 	parent = NULL;
716 	p = &root->rb_node;
717 	while (*p) {
718 		struct rb_node **n;
719 
720 		parent = *p;
721 		bfqq = rb_entry(parent, struct bfq_queue, pos_node);
722 
723 		/*
724 		 * Sort strictly based on sector. Smallest to the left,
725 		 * largest to the right.
726 		 */
727 		if (sector > blk_rq_pos(bfqq->next_rq))
728 			n = &(*p)->rb_right;
729 		else if (sector < blk_rq_pos(bfqq->next_rq))
730 			n = &(*p)->rb_left;
731 		else
732 			break;
733 		p = n;
734 		bfqq = NULL;
735 	}
736 
737 	*ret_parent = parent;
738 	if (rb_link)
739 		*rb_link = p;
740 
741 	bfq_log(bfqd, "rq_pos_tree_lookup %llu: returning %d",
742 		(unsigned long long)sector,
743 		bfqq ? bfqq->pid : 0);
744 
745 	return bfqq;
746 }
747 
bfq_too_late_for_merging(struct bfq_queue * bfqq)748 static bool bfq_too_late_for_merging(struct bfq_queue *bfqq)
749 {
750 	return bfqq->service_from_backlogged > 0 &&
751 		time_is_before_jiffies(bfqq->first_IO_time +
752 				       bfq_merge_time_limit);
753 }
754 
755 /*
756  * The following function is not marked as __cold because it is
757  * actually cold, but for the same performance goal described in the
758  * comments on the likely() at the beginning of
759  * bfq_setup_cooperator(). Unexpectedly, to reach an even lower
760  * execution time for the case where this function is not invoked, we
761  * had to add an unlikely() in each involved if().
762  */
763 void __cold
bfq_pos_tree_add_move(struct bfq_data * bfqd,struct bfq_queue * bfqq)764 bfq_pos_tree_add_move(struct bfq_data *bfqd, struct bfq_queue *bfqq)
765 {
766 	struct rb_node **p, *parent;
767 	struct bfq_queue *__bfqq;
768 
769 	if (bfqq->pos_root) {
770 		rb_erase(&bfqq->pos_node, bfqq->pos_root);
771 		bfqq->pos_root = NULL;
772 	}
773 
774 	/* oom_bfqq does not participate in queue merging */
775 	if (bfqq == &bfqd->oom_bfqq)
776 		return;
777 
778 	/*
779 	 * bfqq cannot be merged any longer (see comments in
780 	 * bfq_setup_cooperator): no point in adding bfqq into the
781 	 * position tree.
782 	 */
783 	if (bfq_too_late_for_merging(bfqq))
784 		return;
785 
786 	if (bfq_class_idle(bfqq))
787 		return;
788 	if (!bfqq->next_rq)
789 		return;
790 
791 	bfqq->pos_root = &bfqq_group(bfqq)->rq_pos_tree;
792 	__bfqq = bfq_rq_pos_tree_lookup(bfqd, bfqq->pos_root,
793 			blk_rq_pos(bfqq->next_rq), &parent, &p);
794 	if (!__bfqq) {
795 		rb_link_node(&bfqq->pos_node, parent, p);
796 		rb_insert_color(&bfqq->pos_node, bfqq->pos_root);
797 	} else
798 		bfqq->pos_root = NULL;
799 }
800 
801 /*
802  * The following function returns false either if every active queue
803  * must receive the same share of the throughput (symmetric scenario),
804  * or, as a special case, if bfqq must receive a share of the
805  * throughput lower than or equal to the share that every other active
806  * queue must receive.  If bfqq does sync I/O, then these are the only
807  * two cases where bfqq happens to be guaranteed its share of the
808  * throughput even if I/O dispatching is not plugged when bfqq remains
809  * temporarily empty (for more details, see the comments in the
810  * function bfq_better_to_idle()). For this reason, the return value
811  * of this function is used to check whether I/O-dispatch plugging can
812  * be avoided.
813  *
814  * The above first case (symmetric scenario) occurs when:
815  * 1) all active queues have the same weight,
816  * 2) all active queues belong to the same I/O-priority class,
817  * 3) all active groups at the same level in the groups tree have the same
818  *    weight,
819  * 4) all active groups at the same level in the groups tree have the same
820  *    number of children.
821  *
822  * Unfortunately, keeping the necessary state for evaluating exactly
823  * the last two symmetry sub-conditions above would be quite complex
824  * and time consuming. Therefore this function evaluates, instead,
825  * only the following stronger three sub-conditions, for which it is
826  * much easier to maintain the needed state:
827  * 1) all active queues have the same weight,
828  * 2) all active queues belong to the same I/O-priority class,
829  * 3) there are no active groups.
830  * In particular, the last condition is always true if hierarchical
831  * support or the cgroups interface are not enabled, thus no state
832  * needs to be maintained in this case.
833  */
bfq_asymmetric_scenario(struct bfq_data * bfqd,struct bfq_queue * bfqq)834 static bool bfq_asymmetric_scenario(struct bfq_data *bfqd,
835 				   struct bfq_queue *bfqq)
836 {
837 	bool smallest_weight = bfqq &&
838 		bfqq->weight_counter &&
839 		bfqq->weight_counter ==
840 		container_of(
841 			rb_first_cached(&bfqd->queue_weights_tree),
842 			struct bfq_weight_counter,
843 			weights_node);
844 
845 	/*
846 	 * For queue weights to differ, queue_weights_tree must contain
847 	 * at least two nodes.
848 	 */
849 	bool varied_queue_weights = !smallest_weight &&
850 		!RB_EMPTY_ROOT(&bfqd->queue_weights_tree.rb_root) &&
851 		(bfqd->queue_weights_tree.rb_root.rb_node->rb_left ||
852 		 bfqd->queue_weights_tree.rb_root.rb_node->rb_right);
853 
854 	bool multiple_classes_busy =
855 		(bfqd->busy_queues[0] && bfqd->busy_queues[1]) ||
856 		(bfqd->busy_queues[0] && bfqd->busy_queues[2]) ||
857 		(bfqd->busy_queues[1] && bfqd->busy_queues[2]);
858 
859 	return varied_queue_weights || multiple_classes_busy
860 #ifdef CONFIG_BFQ_GROUP_IOSCHED
861 	       || bfqd->num_groups_with_pending_reqs > 0
862 #endif
863 		;
864 }
865 
866 /*
867  * If the weight-counter tree passed as input contains no counter for
868  * the weight of the input queue, then add that counter; otherwise just
869  * increment the existing counter.
870  *
871  * Note that weight-counter trees contain few nodes in mostly symmetric
872  * scenarios. For example, if all queues have the same weight, then the
873  * weight-counter tree for the queues may contain at most one node.
874  * This holds even if low_latency is on, because weight-raised queues
875  * are not inserted in the tree.
876  * In most scenarios, the rate at which nodes are created/destroyed
877  * should be low too.
878  */
bfq_weights_tree_add(struct bfq_data * bfqd,struct bfq_queue * bfqq,struct rb_root_cached * root)879 void bfq_weights_tree_add(struct bfq_data *bfqd, struct bfq_queue *bfqq,
880 			  struct rb_root_cached *root)
881 {
882 	struct bfq_entity *entity = &bfqq->entity;
883 	struct rb_node **new = &(root->rb_root.rb_node), *parent = NULL;
884 	bool leftmost = true;
885 
886 	/*
887 	 * Do not insert if the queue is already associated with a
888 	 * counter, which happens if:
889 	 *   1) a request arrival has caused the queue to become both
890 	 *      non-weight-raised, and hence change its weight, and
891 	 *      backlogged; in this respect, each of the two events
892 	 *      causes an invocation of this function,
893 	 *   2) this is the invocation of this function caused by the
894 	 *      second event. This second invocation is actually useless,
895 	 *      and we handle this fact by exiting immediately. More
896 	 *      efficient or clearer solutions might possibly be adopted.
897 	 */
898 	if (bfqq->weight_counter)
899 		return;
900 
901 	while (*new) {
902 		struct bfq_weight_counter *__counter = container_of(*new,
903 						struct bfq_weight_counter,
904 						weights_node);
905 		parent = *new;
906 
907 		if (entity->weight == __counter->weight) {
908 			bfqq->weight_counter = __counter;
909 			goto inc_counter;
910 		}
911 		if (entity->weight < __counter->weight)
912 			new = &((*new)->rb_left);
913 		else {
914 			new = &((*new)->rb_right);
915 			leftmost = false;
916 		}
917 	}
918 
919 	bfqq->weight_counter = kzalloc(sizeof(struct bfq_weight_counter),
920 				       GFP_ATOMIC);
921 
922 	/*
923 	 * In the unlucky event of an allocation failure, we just
924 	 * exit. This will cause the weight of queue to not be
925 	 * considered in bfq_asymmetric_scenario, which, in its turn,
926 	 * causes the scenario to be deemed wrongly symmetric in case
927 	 * bfqq's weight would have been the only weight making the
928 	 * scenario asymmetric.  On the bright side, no unbalance will
929 	 * however occur when bfqq becomes inactive again (the
930 	 * invocation of this function is triggered by an activation
931 	 * of queue).  In fact, bfq_weights_tree_remove does nothing
932 	 * if !bfqq->weight_counter.
933 	 */
934 	if (unlikely(!bfqq->weight_counter))
935 		return;
936 
937 	bfqq->weight_counter->weight = entity->weight;
938 	rb_link_node(&bfqq->weight_counter->weights_node, parent, new);
939 	rb_insert_color_cached(&bfqq->weight_counter->weights_node, root,
940 				leftmost);
941 
942 inc_counter:
943 	bfqq->weight_counter->num_active++;
944 	bfqq->ref++;
945 }
946 
947 /*
948  * Decrement the weight counter associated with the queue, and, if the
949  * counter reaches 0, remove the counter from the tree.
950  * See the comments to the function bfq_weights_tree_add() for considerations
951  * about overhead.
952  */
__bfq_weights_tree_remove(struct bfq_data * bfqd,struct bfq_queue * bfqq,struct rb_root_cached * root)953 void __bfq_weights_tree_remove(struct bfq_data *bfqd,
954 			       struct bfq_queue *bfqq,
955 			       struct rb_root_cached *root)
956 {
957 	if (!bfqq->weight_counter)
958 		return;
959 
960 	bfqq->weight_counter->num_active--;
961 	if (bfqq->weight_counter->num_active > 0)
962 		goto reset_entity_pointer;
963 
964 	rb_erase_cached(&bfqq->weight_counter->weights_node, root);
965 	kfree(bfqq->weight_counter);
966 
967 reset_entity_pointer:
968 	bfqq->weight_counter = NULL;
969 	bfq_put_queue(bfqq);
970 }
971 
972 /*
973  * Invoke __bfq_weights_tree_remove on bfqq and decrement the number
974  * of active groups for each queue's inactive parent entity.
975  */
bfq_weights_tree_remove(struct bfq_data * bfqd,struct bfq_queue * bfqq)976 void bfq_weights_tree_remove(struct bfq_data *bfqd,
977 			     struct bfq_queue *bfqq)
978 {
979 	struct bfq_entity *entity = bfqq->entity.parent;
980 
981 	for_each_entity(entity) {
982 		struct bfq_sched_data *sd = entity->my_sched_data;
983 
984 		if (sd->next_in_service || sd->in_service_entity) {
985 			/*
986 			 * entity is still active, because either
987 			 * next_in_service or in_service_entity is not
988 			 * NULL (see the comments on the definition of
989 			 * next_in_service for details on why
990 			 * in_service_entity must be checked too).
991 			 *
992 			 * As a consequence, its parent entities are
993 			 * active as well, and thus this loop must
994 			 * stop here.
995 			 */
996 			break;
997 		}
998 
999 		/*
1000 		 * The decrement of num_groups_with_pending_reqs is
1001 		 * not performed immediately upon the deactivation of
1002 		 * entity, but it is delayed to when it also happens
1003 		 * that the first leaf descendant bfqq of entity gets
1004 		 * all its pending requests completed. The following
1005 		 * instructions perform this delayed decrement, if
1006 		 * needed. See the comments on
1007 		 * num_groups_with_pending_reqs for details.
1008 		 */
1009 		if (entity->in_groups_with_pending_reqs) {
1010 			entity->in_groups_with_pending_reqs = false;
1011 			bfqd->num_groups_with_pending_reqs--;
1012 		}
1013 	}
1014 
1015 	/*
1016 	 * Next function is invoked last, because it causes bfqq to be
1017 	 * freed if the following holds: bfqq is not in service and
1018 	 * has no dispatched request. DO NOT use bfqq after the next
1019 	 * function invocation.
1020 	 */
1021 	__bfq_weights_tree_remove(bfqd, bfqq,
1022 				  &bfqd->queue_weights_tree);
1023 }
1024 
1025 /*
1026  * Return expired entry, or NULL to just start from scratch in rbtree.
1027  */
bfq_check_fifo(struct bfq_queue * bfqq,struct request * last)1028 static struct request *bfq_check_fifo(struct bfq_queue *bfqq,
1029 				      struct request *last)
1030 {
1031 	struct request *rq;
1032 
1033 	if (bfq_bfqq_fifo_expire(bfqq))
1034 		return NULL;
1035 
1036 	bfq_mark_bfqq_fifo_expire(bfqq);
1037 
1038 	rq = rq_entry_fifo(bfqq->fifo.next);
1039 
1040 	if (rq == last || ktime_get_ns() < rq->fifo_time)
1041 		return NULL;
1042 
1043 	bfq_log_bfqq(bfqq->bfqd, bfqq, "check_fifo: returned %p", rq);
1044 	return rq;
1045 }
1046 
bfq_find_next_rq(struct bfq_data * bfqd,struct bfq_queue * bfqq,struct request * last)1047 static struct request *bfq_find_next_rq(struct bfq_data *bfqd,
1048 					struct bfq_queue *bfqq,
1049 					struct request *last)
1050 {
1051 	struct rb_node *rbnext = rb_next(&last->rb_node);
1052 	struct rb_node *rbprev = rb_prev(&last->rb_node);
1053 	struct request *next, *prev = NULL;
1054 
1055 	/* Follow expired path, else get first next available. */
1056 	next = bfq_check_fifo(bfqq, last);
1057 	if (next)
1058 		return next;
1059 
1060 	if (rbprev)
1061 		prev = rb_entry_rq(rbprev);
1062 
1063 	if (rbnext)
1064 		next = rb_entry_rq(rbnext);
1065 	else {
1066 		rbnext = rb_first(&bfqq->sort_list);
1067 		if (rbnext && rbnext != &last->rb_node)
1068 			next = rb_entry_rq(rbnext);
1069 	}
1070 
1071 	return bfq_choose_req(bfqd, next, prev, blk_rq_pos(last));
1072 }
1073 
1074 /* see the definition of bfq_async_charge_factor for details */
bfq_serv_to_charge(struct request * rq,struct bfq_queue * bfqq)1075 static unsigned long bfq_serv_to_charge(struct request *rq,
1076 					struct bfq_queue *bfqq)
1077 {
1078 	if (bfq_bfqq_sync(bfqq) || bfqq->wr_coeff > 1 ||
1079 	    bfq_asymmetric_scenario(bfqq->bfqd, bfqq))
1080 		return blk_rq_sectors(rq);
1081 
1082 	return blk_rq_sectors(rq) * bfq_async_charge_factor;
1083 }
1084 
1085 /**
1086  * bfq_updated_next_req - update the queue after a new next_rq selection.
1087  * @bfqd: the device data the queue belongs to.
1088  * @bfqq: the queue to update.
1089  *
1090  * If the first request of a queue changes we make sure that the queue
1091  * has enough budget to serve at least its first request (if the
1092  * request has grown).  We do this because if the queue has not enough
1093  * budget for its first request, it has to go through two dispatch
1094  * rounds to actually get it dispatched.
1095  */
bfq_updated_next_req(struct bfq_data * bfqd,struct bfq_queue * bfqq)1096 static void bfq_updated_next_req(struct bfq_data *bfqd,
1097 				 struct bfq_queue *bfqq)
1098 {
1099 	struct bfq_entity *entity = &bfqq->entity;
1100 	struct request *next_rq = bfqq->next_rq;
1101 	unsigned long new_budget;
1102 
1103 	if (!next_rq)
1104 		return;
1105 
1106 	if (bfqq == bfqd->in_service_queue)
1107 		/*
1108 		 * In order not to break guarantees, budgets cannot be
1109 		 * changed after an entity has been selected.
1110 		 */
1111 		return;
1112 
1113 	new_budget = max_t(unsigned long,
1114 			   max_t(unsigned long, bfqq->max_budget,
1115 				 bfq_serv_to_charge(next_rq, bfqq)),
1116 			   entity->service);
1117 	if (entity->budget != new_budget) {
1118 		entity->budget = new_budget;
1119 		bfq_log_bfqq(bfqd, bfqq, "updated next rq: new budget %lu",
1120 					 new_budget);
1121 		bfq_requeue_bfqq(bfqd, bfqq, false);
1122 	}
1123 }
1124 
bfq_wr_duration(struct bfq_data * bfqd)1125 static unsigned int bfq_wr_duration(struct bfq_data *bfqd)
1126 {
1127 	u64 dur;
1128 
1129 	if (bfqd->bfq_wr_max_time > 0)
1130 		return bfqd->bfq_wr_max_time;
1131 
1132 	dur = bfqd->rate_dur_prod;
1133 	do_div(dur, bfqd->peak_rate);
1134 
1135 	/*
1136 	 * Limit duration between 3 and 25 seconds. The upper limit
1137 	 * has been conservatively set after the following worst case:
1138 	 * on a QEMU/KVM virtual machine
1139 	 * - running in a slow PC
1140 	 * - with a virtual disk stacked on a slow low-end 5400rpm HDD
1141 	 * - serving a heavy I/O workload, such as the sequential reading
1142 	 *   of several files
1143 	 * mplayer took 23 seconds to start, if constantly weight-raised.
1144 	 *
1145 	 * As for higher values than that accommodating the above bad
1146 	 * scenario, tests show that higher values would often yield
1147 	 * the opposite of the desired result, i.e., would worsen
1148 	 * responsiveness by allowing non-interactive applications to
1149 	 * preserve weight raising for too long.
1150 	 *
1151 	 * On the other end, lower values than 3 seconds make it
1152 	 * difficult for most interactive tasks to complete their jobs
1153 	 * before weight-raising finishes.
1154 	 */
1155 	return clamp_val(dur, msecs_to_jiffies(3000), msecs_to_jiffies(25000));
1156 }
1157 
1158 /* switch back from soft real-time to interactive weight raising */
switch_back_to_interactive_wr(struct bfq_queue * bfqq,struct bfq_data * bfqd)1159 static void switch_back_to_interactive_wr(struct bfq_queue *bfqq,
1160 					  struct bfq_data *bfqd)
1161 {
1162 	bfqq->wr_coeff = bfqd->bfq_wr_coeff;
1163 	bfqq->wr_cur_max_time = bfq_wr_duration(bfqd);
1164 	bfqq->last_wr_start_finish = bfqq->wr_start_at_switch_to_srt;
1165 }
1166 
1167 static void
bfq_bfqq_resume_state(struct bfq_queue * bfqq,struct bfq_data * bfqd,struct bfq_io_cq * bic,bool bfq_already_existing)1168 bfq_bfqq_resume_state(struct bfq_queue *bfqq, struct bfq_data *bfqd,
1169 		      struct bfq_io_cq *bic, bool bfq_already_existing)
1170 {
1171 	unsigned int old_wr_coeff = 1;
1172 	bool busy = bfq_already_existing && bfq_bfqq_busy(bfqq);
1173 
1174 	if (bic->saved_has_short_ttime)
1175 		bfq_mark_bfqq_has_short_ttime(bfqq);
1176 	else
1177 		bfq_clear_bfqq_has_short_ttime(bfqq);
1178 
1179 	if (bic->saved_IO_bound)
1180 		bfq_mark_bfqq_IO_bound(bfqq);
1181 	else
1182 		bfq_clear_bfqq_IO_bound(bfqq);
1183 
1184 	bfqq->last_serv_time_ns = bic->saved_last_serv_time_ns;
1185 	bfqq->inject_limit = bic->saved_inject_limit;
1186 	bfqq->decrease_time_jif = bic->saved_decrease_time_jif;
1187 
1188 	bfqq->entity.new_weight = bic->saved_weight;
1189 	bfqq->ttime = bic->saved_ttime;
1190 	bfqq->io_start_time = bic->saved_io_start_time;
1191 	bfqq->tot_idle_time = bic->saved_tot_idle_time;
1192 	/*
1193 	 * Restore weight coefficient only if low_latency is on
1194 	 */
1195 	if (bfqd->low_latency) {
1196 		old_wr_coeff = bfqq->wr_coeff;
1197 		bfqq->wr_coeff = bic->saved_wr_coeff;
1198 	}
1199 	bfqq->service_from_wr = bic->saved_service_from_wr;
1200 	bfqq->wr_start_at_switch_to_srt = bic->saved_wr_start_at_switch_to_srt;
1201 	bfqq->last_wr_start_finish = bic->saved_last_wr_start_finish;
1202 	bfqq->wr_cur_max_time = bic->saved_wr_cur_max_time;
1203 
1204 	if (bfqq->wr_coeff > 1 && (bfq_bfqq_in_large_burst(bfqq) ||
1205 	    time_is_before_jiffies(bfqq->last_wr_start_finish +
1206 				   bfqq->wr_cur_max_time))) {
1207 		if (bfqq->wr_cur_max_time == bfqd->bfq_wr_rt_max_time &&
1208 		    !bfq_bfqq_in_large_burst(bfqq) &&
1209 		    time_is_after_eq_jiffies(bfqq->wr_start_at_switch_to_srt +
1210 					     bfq_wr_duration(bfqd))) {
1211 			switch_back_to_interactive_wr(bfqq, bfqd);
1212 		} else {
1213 			bfqq->wr_coeff = 1;
1214 			bfq_log_bfqq(bfqq->bfqd, bfqq,
1215 				     "resume state: switching off wr");
1216 		}
1217 	}
1218 
1219 	/* make sure weight will be updated, however we got here */
1220 	bfqq->entity.prio_changed = 1;
1221 
1222 	if (likely(!busy))
1223 		return;
1224 
1225 	if (old_wr_coeff == 1 && bfqq->wr_coeff > 1)
1226 		bfqd->wr_busy_queues++;
1227 	else if (old_wr_coeff > 1 && bfqq->wr_coeff == 1)
1228 		bfqd->wr_busy_queues--;
1229 }
1230 
bfqq_process_refs(struct bfq_queue * bfqq)1231 static int bfqq_process_refs(struct bfq_queue *bfqq)
1232 {
1233 	return bfqq->ref - bfqq->entity.allocated -
1234 		bfqq->entity.on_st_or_in_serv -
1235 		(bfqq->weight_counter != NULL) - bfqq->stable_ref;
1236 }
1237 
1238 /* Empty burst list and add just bfqq (see comments on bfq_handle_burst) */
bfq_reset_burst_list(struct bfq_data * bfqd,struct bfq_queue * bfqq)1239 static void bfq_reset_burst_list(struct bfq_data *bfqd, struct bfq_queue *bfqq)
1240 {
1241 	struct bfq_queue *item;
1242 	struct hlist_node *n;
1243 
1244 	hlist_for_each_entry_safe(item, n, &bfqd->burst_list, burst_list_node)
1245 		hlist_del_init(&item->burst_list_node);
1246 
1247 	/*
1248 	 * Start the creation of a new burst list only if there is no
1249 	 * active queue. See comments on the conditional invocation of
1250 	 * bfq_handle_burst().
1251 	 */
1252 	if (bfq_tot_busy_queues(bfqd) == 0) {
1253 		hlist_add_head(&bfqq->burst_list_node, &bfqd->burst_list);
1254 		bfqd->burst_size = 1;
1255 	} else
1256 		bfqd->burst_size = 0;
1257 
1258 	bfqd->burst_parent_entity = bfqq->entity.parent;
1259 }
1260 
1261 /* Add bfqq to the list of queues in current burst (see bfq_handle_burst) */
bfq_add_to_burst(struct bfq_data * bfqd,struct bfq_queue * bfqq)1262 static void bfq_add_to_burst(struct bfq_data *bfqd, struct bfq_queue *bfqq)
1263 {
1264 	/* Increment burst size to take into account also bfqq */
1265 	bfqd->burst_size++;
1266 
1267 	if (bfqd->burst_size == bfqd->bfq_large_burst_thresh) {
1268 		struct bfq_queue *pos, *bfqq_item;
1269 		struct hlist_node *n;
1270 
1271 		/*
1272 		 * Enough queues have been activated shortly after each
1273 		 * other to consider this burst as large.
1274 		 */
1275 		bfqd->large_burst = true;
1276 
1277 		/*
1278 		 * We can now mark all queues in the burst list as
1279 		 * belonging to a large burst.
1280 		 */
1281 		hlist_for_each_entry(bfqq_item, &bfqd->burst_list,
1282 				     burst_list_node)
1283 			bfq_mark_bfqq_in_large_burst(bfqq_item);
1284 		bfq_mark_bfqq_in_large_burst(bfqq);
1285 
1286 		/*
1287 		 * From now on, and until the current burst finishes, any
1288 		 * new queue being activated shortly after the last queue
1289 		 * was inserted in the burst can be immediately marked as
1290 		 * belonging to a large burst. So the burst list is not
1291 		 * needed any more. Remove it.
1292 		 */
1293 		hlist_for_each_entry_safe(pos, n, &bfqd->burst_list,
1294 					  burst_list_node)
1295 			hlist_del_init(&pos->burst_list_node);
1296 	} else /*
1297 		* Burst not yet large: add bfqq to the burst list. Do
1298 		* not increment the ref counter for bfqq, because bfqq
1299 		* is removed from the burst list before freeing bfqq
1300 		* in put_queue.
1301 		*/
1302 		hlist_add_head(&bfqq->burst_list_node, &bfqd->burst_list);
1303 }
1304 
1305 /*
1306  * If many queues belonging to the same group happen to be created
1307  * shortly after each other, then the processes associated with these
1308  * queues have typically a common goal. In particular, bursts of queue
1309  * creations are usually caused by services or applications that spawn
1310  * many parallel threads/processes. Examples are systemd during boot,
1311  * or git grep. To help these processes get their job done as soon as
1312  * possible, it is usually better to not grant either weight-raising
1313  * or device idling to their queues, unless these queues must be
1314  * protected from the I/O flowing through other active queues.
1315  *
1316  * In this comment we describe, firstly, the reasons why this fact
1317  * holds, and, secondly, the next function, which implements the main
1318  * steps needed to properly mark these queues so that they can then be
1319  * treated in a different way.
1320  *
1321  * The above services or applications benefit mostly from a high
1322  * throughput: the quicker the requests of the activated queues are
1323  * cumulatively served, the sooner the target job of these queues gets
1324  * completed. As a consequence, weight-raising any of these queues,
1325  * which also implies idling the device for it, is almost always
1326  * counterproductive, unless there are other active queues to isolate
1327  * these new queues from. If there no other active queues, then
1328  * weight-raising these new queues just lowers throughput in most
1329  * cases.
1330  *
1331  * On the other hand, a burst of queue creations may be caused also by
1332  * the start of an application that does not consist of a lot of
1333  * parallel I/O-bound threads. In fact, with a complex application,
1334  * several short processes may need to be executed to start-up the
1335  * application. In this respect, to start an application as quickly as
1336  * possible, the best thing to do is in any case to privilege the I/O
1337  * related to the application with respect to all other
1338  * I/O. Therefore, the best strategy to start as quickly as possible
1339  * an application that causes a burst of queue creations is to
1340  * weight-raise all the queues created during the burst. This is the
1341  * exact opposite of the best strategy for the other type of bursts.
1342  *
1343  * In the end, to take the best action for each of the two cases, the
1344  * two types of bursts need to be distinguished. Fortunately, this
1345  * seems relatively easy, by looking at the sizes of the bursts. In
1346  * particular, we found a threshold such that only bursts with a
1347  * larger size than that threshold are apparently caused by
1348  * services or commands such as systemd or git grep. For brevity,
1349  * hereafter we call just 'large' these bursts. BFQ *does not*
1350  * weight-raise queues whose creation occurs in a large burst. In
1351  * addition, for each of these queues BFQ performs or does not perform
1352  * idling depending on which choice boosts the throughput more. The
1353  * exact choice depends on the device and request pattern at
1354  * hand.
1355  *
1356  * Unfortunately, false positives may occur while an interactive task
1357  * is starting (e.g., an application is being started). The
1358  * consequence is that the queues associated with the task do not
1359  * enjoy weight raising as expected. Fortunately these false positives
1360  * are very rare. They typically occur if some service happens to
1361  * start doing I/O exactly when the interactive task starts.
1362  *
1363  * Turning back to the next function, it is invoked only if there are
1364  * no active queues (apart from active queues that would belong to the
1365  * same, possible burst bfqq would belong to), and it implements all
1366  * the steps needed to detect the occurrence of a large burst and to
1367  * properly mark all the queues belonging to it (so that they can then
1368  * be treated in a different way). This goal is achieved by
1369  * maintaining a "burst list" that holds, temporarily, the queues that
1370  * belong to the burst in progress. The list is then used to mark
1371  * these queues as belonging to a large burst if the burst does become
1372  * large. The main steps are the following.
1373  *
1374  * . when the very first queue is created, the queue is inserted into the
1375  *   list (as it could be the first queue in a possible burst)
1376  *
1377  * . if the current burst has not yet become large, and a queue Q that does
1378  *   not yet belong to the burst is activated shortly after the last time
1379  *   at which a new queue entered the burst list, then the function appends
1380  *   Q to the burst list
1381  *
1382  * . if, as a consequence of the previous step, the burst size reaches
1383  *   the large-burst threshold, then
1384  *
1385  *     . all the queues in the burst list are marked as belonging to a
1386  *       large burst
1387  *
1388  *     . the burst list is deleted; in fact, the burst list already served
1389  *       its purpose (keeping temporarily track of the queues in a burst,
1390  *       so as to be able to mark them as belonging to a large burst in the
1391  *       previous sub-step), and now is not needed any more
1392  *
1393  *     . the device enters a large-burst mode
1394  *
1395  * . if a queue Q that does not belong to the burst is created while
1396  *   the device is in large-burst mode and shortly after the last time
1397  *   at which a queue either entered the burst list or was marked as
1398  *   belonging to the current large burst, then Q is immediately marked
1399  *   as belonging to a large burst.
1400  *
1401  * . if a queue Q that does not belong to the burst is created a while
1402  *   later, i.e., not shortly after, than the last time at which a queue
1403  *   either entered the burst list or was marked as belonging to the
1404  *   current large burst, then the current burst is deemed as finished and:
1405  *
1406  *        . the large-burst mode is reset if set
1407  *
1408  *        . the burst list is emptied
1409  *
1410  *        . Q is inserted in the burst list, as Q may be the first queue
1411  *          in a possible new burst (then the burst list contains just Q
1412  *          after this step).
1413  */
bfq_handle_burst(struct bfq_data * bfqd,struct bfq_queue * bfqq)1414 static void bfq_handle_burst(struct bfq_data *bfqd, struct bfq_queue *bfqq)
1415 {
1416 	/*
1417 	 * If bfqq is already in the burst list or is part of a large
1418 	 * burst, or finally has just been split, then there is
1419 	 * nothing else to do.
1420 	 */
1421 	if (!hlist_unhashed(&bfqq->burst_list_node) ||
1422 	    bfq_bfqq_in_large_burst(bfqq) ||
1423 	    time_is_after_eq_jiffies(bfqq->split_time +
1424 				     msecs_to_jiffies(10)))
1425 		return;
1426 
1427 	/*
1428 	 * If bfqq's creation happens late enough, or bfqq belongs to
1429 	 * a different group than the burst group, then the current
1430 	 * burst is finished, and related data structures must be
1431 	 * reset.
1432 	 *
1433 	 * In this respect, consider the special case where bfqq is
1434 	 * the very first queue created after BFQ is selected for this
1435 	 * device. In this case, last_ins_in_burst and
1436 	 * burst_parent_entity are not yet significant when we get
1437 	 * here. But it is easy to verify that, whether or not the
1438 	 * following condition is true, bfqq will end up being
1439 	 * inserted into the burst list. In particular the list will
1440 	 * happen to contain only bfqq. And this is exactly what has
1441 	 * to happen, as bfqq may be the first queue of the first
1442 	 * burst.
1443 	 */
1444 	if (time_is_before_jiffies(bfqd->last_ins_in_burst +
1445 	    bfqd->bfq_burst_interval) ||
1446 	    bfqq->entity.parent != bfqd->burst_parent_entity) {
1447 		bfqd->large_burst = false;
1448 		bfq_reset_burst_list(bfqd, bfqq);
1449 		goto end;
1450 	}
1451 
1452 	/*
1453 	 * If we get here, then bfqq is being activated shortly after the
1454 	 * last queue. So, if the current burst is also large, we can mark
1455 	 * bfqq as belonging to this large burst immediately.
1456 	 */
1457 	if (bfqd->large_burst) {
1458 		bfq_mark_bfqq_in_large_burst(bfqq);
1459 		goto end;
1460 	}
1461 
1462 	/*
1463 	 * If we get here, then a large-burst state has not yet been
1464 	 * reached, but bfqq is being activated shortly after the last
1465 	 * queue. Then we add bfqq to the burst.
1466 	 */
1467 	bfq_add_to_burst(bfqd, bfqq);
1468 end:
1469 	/*
1470 	 * At this point, bfqq either has been added to the current
1471 	 * burst or has caused the current burst to terminate and a
1472 	 * possible new burst to start. In particular, in the second
1473 	 * case, bfqq has become the first queue in the possible new
1474 	 * burst.  In both cases last_ins_in_burst needs to be moved
1475 	 * forward.
1476 	 */
1477 	bfqd->last_ins_in_burst = jiffies;
1478 }
1479 
bfq_bfqq_budget_left(struct bfq_queue * bfqq)1480 static int bfq_bfqq_budget_left(struct bfq_queue *bfqq)
1481 {
1482 	struct bfq_entity *entity = &bfqq->entity;
1483 
1484 	return entity->budget - entity->service;
1485 }
1486 
1487 /*
1488  * If enough samples have been computed, return the current max budget
1489  * stored in bfqd, which is dynamically updated according to the
1490  * estimated disk peak rate; otherwise return the default max budget
1491  */
bfq_max_budget(struct bfq_data * bfqd)1492 static int bfq_max_budget(struct bfq_data *bfqd)
1493 {
1494 	if (bfqd->budgets_assigned < bfq_stats_min_budgets)
1495 		return bfq_default_max_budget;
1496 	else
1497 		return bfqd->bfq_max_budget;
1498 }
1499 
1500 /*
1501  * Return min budget, which is a fraction of the current or default
1502  * max budget (trying with 1/32)
1503  */
bfq_min_budget(struct bfq_data * bfqd)1504 static int bfq_min_budget(struct bfq_data *bfqd)
1505 {
1506 	if (bfqd->budgets_assigned < bfq_stats_min_budgets)
1507 		return bfq_default_max_budget / 32;
1508 	else
1509 		return bfqd->bfq_max_budget / 32;
1510 }
1511 
1512 /*
1513  * The next function, invoked after the input queue bfqq switches from
1514  * idle to busy, updates the budget of bfqq. The function also tells
1515  * whether the in-service queue should be expired, by returning
1516  * true. The purpose of expiring the in-service queue is to give bfqq
1517  * the chance to possibly preempt the in-service queue, and the reason
1518  * for preempting the in-service queue is to achieve one of the two
1519  * goals below.
1520  *
1521  * 1. Guarantee to bfqq its reserved bandwidth even if bfqq has
1522  * expired because it has remained idle. In particular, bfqq may have
1523  * expired for one of the following two reasons:
1524  *
1525  * - BFQQE_NO_MORE_REQUESTS bfqq did not enjoy any device idling
1526  *   and did not make it to issue a new request before its last
1527  *   request was served;
1528  *
1529  * - BFQQE_TOO_IDLE bfqq did enjoy device idling, but did not issue
1530  *   a new request before the expiration of the idling-time.
1531  *
1532  * Even if bfqq has expired for one of the above reasons, the process
1533  * associated with the queue may be however issuing requests greedily,
1534  * and thus be sensitive to the bandwidth it receives (bfqq may have
1535  * remained idle for other reasons: CPU high load, bfqq not enjoying
1536  * idling, I/O throttling somewhere in the path from the process to
1537  * the I/O scheduler, ...). But if, after every expiration for one of
1538  * the above two reasons, bfqq has to wait for the service of at least
1539  * one full budget of another queue before being served again, then
1540  * bfqq is likely to get a much lower bandwidth or resource time than
1541  * its reserved ones. To address this issue, two countermeasures need
1542  * to be taken.
1543  *
1544  * First, the budget and the timestamps of bfqq need to be updated in
1545  * a special way on bfqq reactivation: they need to be updated as if
1546  * bfqq did not remain idle and did not expire. In fact, if they are
1547  * computed as if bfqq expired and remained idle until reactivation,
1548  * then the process associated with bfqq is treated as if, instead of
1549  * being greedy, it stopped issuing requests when bfqq remained idle,
1550  * and restarts issuing requests only on this reactivation. In other
1551  * words, the scheduler does not help the process recover the "service
1552  * hole" between bfqq expiration and reactivation. As a consequence,
1553  * the process receives a lower bandwidth than its reserved one. In
1554  * contrast, to recover this hole, the budget must be updated as if
1555  * bfqq was not expired at all before this reactivation, i.e., it must
1556  * be set to the value of the remaining budget when bfqq was
1557  * expired. Along the same line, timestamps need to be assigned the
1558  * value they had the last time bfqq was selected for service, i.e.,
1559  * before last expiration. Thus timestamps need to be back-shifted
1560  * with respect to their normal computation (see [1] for more details
1561  * on this tricky aspect).
1562  *
1563  * Secondly, to allow the process to recover the hole, the in-service
1564  * queue must be expired too, to give bfqq the chance to preempt it
1565  * immediately. In fact, if bfqq has to wait for a full budget of the
1566  * in-service queue to be completed, then it may become impossible to
1567  * let the process recover the hole, even if the back-shifted
1568  * timestamps of bfqq are lower than those of the in-service queue. If
1569  * this happens for most or all of the holes, then the process may not
1570  * receive its reserved bandwidth. In this respect, it is worth noting
1571  * that, being the service of outstanding requests unpreemptible, a
1572  * little fraction of the holes may however be unrecoverable, thereby
1573  * causing a little loss of bandwidth.
1574  *
1575  * The last important point is detecting whether bfqq does need this
1576  * bandwidth recovery. In this respect, the next function deems the
1577  * process associated with bfqq greedy, and thus allows it to recover
1578  * the hole, if: 1) the process is waiting for the arrival of a new
1579  * request (which implies that bfqq expired for one of the above two
1580  * reasons), and 2) such a request has arrived soon. The first
1581  * condition is controlled through the flag non_blocking_wait_rq,
1582  * while the second through the flag arrived_in_time. If both
1583  * conditions hold, then the function computes the budget in the
1584  * above-described special way, and signals that the in-service queue
1585  * should be expired. Timestamp back-shifting is done later in
1586  * __bfq_activate_entity.
1587  *
1588  * 2. Reduce latency. Even if timestamps are not backshifted to let
1589  * the process associated with bfqq recover a service hole, bfqq may
1590  * however happen to have, after being (re)activated, a lower finish
1591  * timestamp than the in-service queue.	 That is, the next budget of
1592  * bfqq may have to be completed before the one of the in-service
1593  * queue. If this is the case, then preempting the in-service queue
1594  * allows this goal to be achieved, apart from the unpreemptible,
1595  * outstanding requests mentioned above.
1596  *
1597  * Unfortunately, regardless of which of the above two goals one wants
1598  * to achieve, service trees need first to be updated to know whether
1599  * the in-service queue must be preempted. To have service trees
1600  * correctly updated, the in-service queue must be expired and
1601  * rescheduled, and bfqq must be scheduled too. This is one of the
1602  * most costly operations (in future versions, the scheduling
1603  * mechanism may be re-designed in such a way to make it possible to
1604  * know whether preemption is needed without needing to update service
1605  * trees). In addition, queue preemptions almost always cause random
1606  * I/O, which may in turn cause loss of throughput. Finally, there may
1607  * even be no in-service queue when the next function is invoked (so,
1608  * no queue to compare timestamps with). Because of these facts, the
1609  * next function adopts the following simple scheme to avoid costly
1610  * operations, too frequent preemptions and too many dependencies on
1611  * the state of the scheduler: it requests the expiration of the
1612  * in-service queue (unconditionally) only for queues that need to
1613  * recover a hole. Then it delegates to other parts of the code the
1614  * responsibility of handling the above case 2.
1615  */
bfq_bfqq_update_budg_for_activation(struct bfq_data * bfqd,struct bfq_queue * bfqq,bool arrived_in_time)1616 static bool bfq_bfqq_update_budg_for_activation(struct bfq_data *bfqd,
1617 						struct bfq_queue *bfqq,
1618 						bool arrived_in_time)
1619 {
1620 	struct bfq_entity *entity = &bfqq->entity;
1621 
1622 	/*
1623 	 * In the next compound condition, we check also whether there
1624 	 * is some budget left, because otherwise there is no point in
1625 	 * trying to go on serving bfqq with this same budget: bfqq
1626 	 * would be expired immediately after being selected for
1627 	 * service. This would only cause useless overhead.
1628 	 */
1629 	if (bfq_bfqq_non_blocking_wait_rq(bfqq) && arrived_in_time &&
1630 	    bfq_bfqq_budget_left(bfqq) > 0) {
1631 		/*
1632 		 * We do not clear the flag non_blocking_wait_rq here, as
1633 		 * the latter is used in bfq_activate_bfqq to signal
1634 		 * that timestamps need to be back-shifted (and is
1635 		 * cleared right after).
1636 		 */
1637 
1638 		/*
1639 		 * In next assignment we rely on that either
1640 		 * entity->service or entity->budget are not updated
1641 		 * on expiration if bfqq is empty (see
1642 		 * __bfq_bfqq_recalc_budget). Thus both quantities
1643 		 * remain unchanged after such an expiration, and the
1644 		 * following statement therefore assigns to
1645 		 * entity->budget the remaining budget on such an
1646 		 * expiration.
1647 		 */
1648 		entity->budget = min_t(unsigned long,
1649 				       bfq_bfqq_budget_left(bfqq),
1650 				       bfqq->max_budget);
1651 
1652 		/*
1653 		 * At this point, we have used entity->service to get
1654 		 * the budget left (needed for updating
1655 		 * entity->budget). Thus we finally can, and have to,
1656 		 * reset entity->service. The latter must be reset
1657 		 * because bfqq would otherwise be charged again for
1658 		 * the service it has received during its previous
1659 		 * service slot(s).
1660 		 */
1661 		entity->service = 0;
1662 
1663 		return true;
1664 	}
1665 
1666 	/*
1667 	 * We can finally complete expiration, by setting service to 0.
1668 	 */
1669 	entity->service = 0;
1670 	entity->budget = max_t(unsigned long, bfqq->max_budget,
1671 			       bfq_serv_to_charge(bfqq->next_rq, bfqq));
1672 	bfq_clear_bfqq_non_blocking_wait_rq(bfqq);
1673 	return false;
1674 }
1675 
1676 /*
1677  * Return the farthest past time instant according to jiffies
1678  * macros.
1679  */
bfq_smallest_from_now(void)1680 static unsigned long bfq_smallest_from_now(void)
1681 {
1682 	return jiffies - MAX_JIFFY_OFFSET;
1683 }
1684 
bfq_update_bfqq_wr_on_rq_arrival(struct bfq_data * bfqd,struct bfq_queue * bfqq,unsigned int old_wr_coeff,bool wr_or_deserves_wr,bool interactive,bool in_burst,bool soft_rt)1685 static void bfq_update_bfqq_wr_on_rq_arrival(struct bfq_data *bfqd,
1686 					     struct bfq_queue *bfqq,
1687 					     unsigned int old_wr_coeff,
1688 					     bool wr_or_deserves_wr,
1689 					     bool interactive,
1690 					     bool in_burst,
1691 					     bool soft_rt)
1692 {
1693 	if (old_wr_coeff == 1 && wr_or_deserves_wr) {
1694 		/* start a weight-raising period */
1695 		if (interactive) {
1696 			bfqq->service_from_wr = 0;
1697 			bfqq->wr_coeff = bfqd->bfq_wr_coeff;
1698 			bfqq->wr_cur_max_time = bfq_wr_duration(bfqd);
1699 		} else {
1700 			/*
1701 			 * No interactive weight raising in progress
1702 			 * here: assign minus infinity to
1703 			 * wr_start_at_switch_to_srt, to make sure
1704 			 * that, at the end of the soft-real-time
1705 			 * weight raising periods that is starting
1706 			 * now, no interactive weight-raising period
1707 			 * may be wrongly considered as still in
1708 			 * progress (and thus actually started by
1709 			 * mistake).
1710 			 */
1711 			bfqq->wr_start_at_switch_to_srt =
1712 				bfq_smallest_from_now();
1713 			bfqq->wr_coeff = bfqd->bfq_wr_coeff *
1714 				BFQ_SOFTRT_WEIGHT_FACTOR;
1715 			bfqq->wr_cur_max_time =
1716 				bfqd->bfq_wr_rt_max_time;
1717 		}
1718 
1719 		/*
1720 		 * If needed, further reduce budget to make sure it is
1721 		 * close to bfqq's backlog, so as to reduce the
1722 		 * scheduling-error component due to a too large
1723 		 * budget. Do not care about throughput consequences,
1724 		 * but only about latency. Finally, do not assign a
1725 		 * too small budget either, to avoid increasing
1726 		 * latency by causing too frequent expirations.
1727 		 */
1728 		bfqq->entity.budget = min_t(unsigned long,
1729 					    bfqq->entity.budget,
1730 					    2 * bfq_min_budget(bfqd));
1731 	} else if (old_wr_coeff > 1) {
1732 		if (interactive) { /* update wr coeff and duration */
1733 			bfqq->wr_coeff = bfqd->bfq_wr_coeff;
1734 			bfqq->wr_cur_max_time = bfq_wr_duration(bfqd);
1735 		} else if (in_burst)
1736 			bfqq->wr_coeff = 1;
1737 		else if (soft_rt) {
1738 			/*
1739 			 * The application is now or still meeting the
1740 			 * requirements for being deemed soft rt.  We
1741 			 * can then correctly and safely (re)charge
1742 			 * the weight-raising duration for the
1743 			 * application with the weight-raising
1744 			 * duration for soft rt applications.
1745 			 *
1746 			 * In particular, doing this recharge now, i.e.,
1747 			 * before the weight-raising period for the
1748 			 * application finishes, reduces the probability
1749 			 * of the following negative scenario:
1750 			 * 1) the weight of a soft rt application is
1751 			 *    raised at startup (as for any newly
1752 			 *    created application),
1753 			 * 2) since the application is not interactive,
1754 			 *    at a certain time weight-raising is
1755 			 *    stopped for the application,
1756 			 * 3) at that time the application happens to
1757 			 *    still have pending requests, and hence
1758 			 *    is destined to not have a chance to be
1759 			 *    deemed soft rt before these requests are
1760 			 *    completed (see the comments to the
1761 			 *    function bfq_bfqq_softrt_next_start()
1762 			 *    for details on soft rt detection),
1763 			 * 4) these pending requests experience a high
1764 			 *    latency because the application is not
1765 			 *    weight-raised while they are pending.
1766 			 */
1767 			if (bfqq->wr_cur_max_time !=
1768 				bfqd->bfq_wr_rt_max_time) {
1769 				bfqq->wr_start_at_switch_to_srt =
1770 					bfqq->last_wr_start_finish;
1771 
1772 				bfqq->wr_cur_max_time =
1773 					bfqd->bfq_wr_rt_max_time;
1774 				bfqq->wr_coeff = bfqd->bfq_wr_coeff *
1775 					BFQ_SOFTRT_WEIGHT_FACTOR;
1776 			}
1777 			bfqq->last_wr_start_finish = jiffies;
1778 		}
1779 	}
1780 }
1781 
bfq_bfqq_idle_for_long_time(struct bfq_data * bfqd,struct bfq_queue * bfqq)1782 static bool bfq_bfqq_idle_for_long_time(struct bfq_data *bfqd,
1783 					struct bfq_queue *bfqq)
1784 {
1785 	return bfqq->dispatched == 0 &&
1786 		time_is_before_jiffies(
1787 			bfqq->budget_timeout +
1788 			bfqd->bfq_wr_min_idle_time);
1789 }
1790 
1791 
1792 /*
1793  * Return true if bfqq is in a higher priority class, or has a higher
1794  * weight than the in-service queue.
1795  */
bfq_bfqq_higher_class_or_weight(struct bfq_queue * bfqq,struct bfq_queue * in_serv_bfqq)1796 static bool bfq_bfqq_higher_class_or_weight(struct bfq_queue *bfqq,
1797 					    struct bfq_queue *in_serv_bfqq)
1798 {
1799 	int bfqq_weight, in_serv_weight;
1800 
1801 	if (bfqq->ioprio_class < in_serv_bfqq->ioprio_class)
1802 		return true;
1803 
1804 	if (in_serv_bfqq->entity.parent == bfqq->entity.parent) {
1805 		bfqq_weight = bfqq->entity.weight;
1806 		in_serv_weight = in_serv_bfqq->entity.weight;
1807 	} else {
1808 		if (bfqq->entity.parent)
1809 			bfqq_weight = bfqq->entity.parent->weight;
1810 		else
1811 			bfqq_weight = bfqq->entity.weight;
1812 		if (in_serv_bfqq->entity.parent)
1813 			in_serv_weight = in_serv_bfqq->entity.parent->weight;
1814 		else
1815 			in_serv_weight = in_serv_bfqq->entity.weight;
1816 	}
1817 
1818 	return bfqq_weight > in_serv_weight;
1819 }
1820 
1821 static bool bfq_better_to_idle(struct bfq_queue *bfqq);
1822 
bfq_bfqq_handle_idle_busy_switch(struct bfq_data * bfqd,struct bfq_queue * bfqq,int old_wr_coeff,struct request * rq,bool * interactive)1823 static void bfq_bfqq_handle_idle_busy_switch(struct bfq_data *bfqd,
1824 					     struct bfq_queue *bfqq,
1825 					     int old_wr_coeff,
1826 					     struct request *rq,
1827 					     bool *interactive)
1828 {
1829 	bool soft_rt, in_burst,	wr_or_deserves_wr,
1830 		bfqq_wants_to_preempt,
1831 		idle_for_long_time = bfq_bfqq_idle_for_long_time(bfqd, bfqq),
1832 		/*
1833 		 * See the comments on
1834 		 * bfq_bfqq_update_budg_for_activation for
1835 		 * details on the usage of the next variable.
1836 		 */
1837 		arrived_in_time =  ktime_get_ns() <=
1838 			bfqq->ttime.last_end_request +
1839 			bfqd->bfq_slice_idle * 3;
1840 
1841 
1842 	/*
1843 	 * bfqq deserves to be weight-raised if:
1844 	 * - it is sync,
1845 	 * - it does not belong to a large burst,
1846 	 * - it has been idle for enough time or is soft real-time,
1847 	 * - is linked to a bfq_io_cq (it is not shared in any sense),
1848 	 * - has a default weight (otherwise we assume the user wanted
1849 	 *   to control its weight explicitly)
1850 	 */
1851 	in_burst = bfq_bfqq_in_large_burst(bfqq);
1852 	soft_rt = bfqd->bfq_wr_max_softrt_rate > 0 &&
1853 		!BFQQ_TOTALLY_SEEKY(bfqq) &&
1854 		!in_burst &&
1855 		time_is_before_jiffies(bfqq->soft_rt_next_start) &&
1856 		bfqq->dispatched == 0 &&
1857 		bfqq->entity.new_weight == 40;
1858 	*interactive = !in_burst && idle_for_long_time &&
1859 		bfqq->entity.new_weight == 40;
1860 	/*
1861 	 * Merged bfq_queues are kept out of weight-raising
1862 	 * (low-latency) mechanisms. The reason is that these queues
1863 	 * are usually created for non-interactive and
1864 	 * non-soft-real-time tasks. Yet this is not the case for
1865 	 * stably-merged queues. These queues are merged just because
1866 	 * they are created shortly after each other. So they may
1867 	 * easily serve the I/O of an interactive or soft-real time
1868 	 * application, if the application happens to spawn multiple
1869 	 * processes. So let also stably-merged queued enjoy weight
1870 	 * raising.
1871 	 */
1872 	wr_or_deserves_wr = bfqd->low_latency &&
1873 		(bfqq->wr_coeff > 1 ||
1874 		 (bfq_bfqq_sync(bfqq) &&
1875 		  (bfqq->bic || RQ_BIC(rq)->stably_merged) &&
1876 		   (*interactive || soft_rt)));
1877 
1878 	/*
1879 	 * Using the last flag, update budget and check whether bfqq
1880 	 * may want to preempt the in-service queue.
1881 	 */
1882 	bfqq_wants_to_preempt =
1883 		bfq_bfqq_update_budg_for_activation(bfqd, bfqq,
1884 						    arrived_in_time);
1885 
1886 	/*
1887 	 * If bfqq happened to be activated in a burst, but has been
1888 	 * idle for much more than an interactive queue, then we
1889 	 * assume that, in the overall I/O initiated in the burst, the
1890 	 * I/O associated with bfqq is finished. So bfqq does not need
1891 	 * to be treated as a queue belonging to a burst
1892 	 * anymore. Accordingly, we reset bfqq's in_large_burst flag
1893 	 * if set, and remove bfqq from the burst list if it's
1894 	 * there. We do not decrement burst_size, because the fact
1895 	 * that bfqq does not need to belong to the burst list any
1896 	 * more does not invalidate the fact that bfqq was created in
1897 	 * a burst.
1898 	 */
1899 	if (likely(!bfq_bfqq_just_created(bfqq)) &&
1900 	    idle_for_long_time &&
1901 	    time_is_before_jiffies(
1902 		    bfqq->budget_timeout +
1903 		    msecs_to_jiffies(10000))) {
1904 		hlist_del_init(&bfqq->burst_list_node);
1905 		bfq_clear_bfqq_in_large_burst(bfqq);
1906 	}
1907 
1908 	bfq_clear_bfqq_just_created(bfqq);
1909 
1910 	if (bfqd->low_latency) {
1911 		if (unlikely(time_is_after_jiffies(bfqq->split_time)))
1912 			/* wraparound */
1913 			bfqq->split_time =
1914 				jiffies - bfqd->bfq_wr_min_idle_time - 1;
1915 
1916 		if (time_is_before_jiffies(bfqq->split_time +
1917 					   bfqd->bfq_wr_min_idle_time)) {
1918 			bfq_update_bfqq_wr_on_rq_arrival(bfqd, bfqq,
1919 							 old_wr_coeff,
1920 							 wr_or_deserves_wr,
1921 							 *interactive,
1922 							 in_burst,
1923 							 soft_rt);
1924 
1925 			if (old_wr_coeff != bfqq->wr_coeff)
1926 				bfqq->entity.prio_changed = 1;
1927 		}
1928 	}
1929 
1930 	bfqq->last_idle_bklogged = jiffies;
1931 	bfqq->service_from_backlogged = 0;
1932 	bfq_clear_bfqq_softrt_update(bfqq);
1933 
1934 	bfq_add_bfqq_busy(bfqq);
1935 
1936 	/*
1937 	 * Expire in-service queue if preemption may be needed for
1938 	 * guarantees or throughput. As for guarantees, we care
1939 	 * explicitly about two cases. The first is that bfqq has to
1940 	 * recover a service hole, as explained in the comments on
1941 	 * bfq_bfqq_update_budg_for_activation(), i.e., that
1942 	 * bfqq_wants_to_preempt is true. However, if bfqq does not
1943 	 * carry time-critical I/O, then bfqq's bandwidth is less
1944 	 * important than that of queues that carry time-critical I/O.
1945 	 * So, as a further constraint, we consider this case only if
1946 	 * bfqq is at least as weight-raised, i.e., at least as time
1947 	 * critical, as the in-service queue.
1948 	 *
1949 	 * The second case is that bfqq is in a higher priority class,
1950 	 * or has a higher weight than the in-service queue. If this
1951 	 * condition does not hold, we don't care because, even if
1952 	 * bfqq does not start to be served immediately, the resulting
1953 	 * delay for bfqq's I/O is however lower or much lower than
1954 	 * the ideal completion time to be guaranteed to bfqq's I/O.
1955 	 *
1956 	 * In both cases, preemption is needed only if, according to
1957 	 * the timestamps of both bfqq and of the in-service queue,
1958 	 * bfqq actually is the next queue to serve. So, to reduce
1959 	 * useless preemptions, the return value of
1960 	 * next_queue_may_preempt() is considered in the next compound
1961 	 * condition too. Yet next_queue_may_preempt() just checks a
1962 	 * simple, necessary condition for bfqq to be the next queue
1963 	 * to serve. In fact, to evaluate a sufficient condition, the
1964 	 * timestamps of the in-service queue would need to be
1965 	 * updated, and this operation is quite costly (see the
1966 	 * comments on bfq_bfqq_update_budg_for_activation()).
1967 	 *
1968 	 * As for throughput, we ask bfq_better_to_idle() whether we
1969 	 * still need to plug I/O dispatching. If bfq_better_to_idle()
1970 	 * says no, then plugging is not needed any longer, either to
1971 	 * boost throughput or to perserve service guarantees. Then
1972 	 * the best option is to stop plugging I/O, as not doing so
1973 	 * would certainly lower throughput. We may end up in this
1974 	 * case if: (1) upon a dispatch attempt, we detected that it
1975 	 * was better to plug I/O dispatch, and to wait for a new
1976 	 * request to arrive for the currently in-service queue, but
1977 	 * (2) this switch of bfqq to busy changes the scenario.
1978 	 */
1979 	if (bfqd->in_service_queue &&
1980 	    ((bfqq_wants_to_preempt &&
1981 	      bfqq->wr_coeff >= bfqd->in_service_queue->wr_coeff) ||
1982 	     bfq_bfqq_higher_class_or_weight(bfqq, bfqd->in_service_queue) ||
1983 	     !bfq_better_to_idle(bfqd->in_service_queue)) &&
1984 	    next_queue_may_preempt(bfqd))
1985 		bfq_bfqq_expire(bfqd, bfqd->in_service_queue,
1986 				false, BFQQE_PREEMPTED);
1987 }
1988 
bfq_reset_inject_limit(struct bfq_data * bfqd,struct bfq_queue * bfqq)1989 static void bfq_reset_inject_limit(struct bfq_data *bfqd,
1990 				   struct bfq_queue *bfqq)
1991 {
1992 	/* invalidate baseline total service time */
1993 	bfqq->last_serv_time_ns = 0;
1994 
1995 	/*
1996 	 * Reset pointer in case we are waiting for
1997 	 * some request completion.
1998 	 */
1999 	bfqd->waited_rq = NULL;
2000 
2001 	/*
2002 	 * If bfqq has a short think time, then start by setting the
2003 	 * inject limit to 0 prudentially, because the service time of
2004 	 * an injected I/O request may be higher than the think time
2005 	 * of bfqq, and therefore, if one request was injected when
2006 	 * bfqq remains empty, this injected request might delay the
2007 	 * service of the next I/O request for bfqq significantly. In
2008 	 * case bfqq can actually tolerate some injection, then the
2009 	 * adaptive update will however raise the limit soon. This
2010 	 * lucky circumstance holds exactly because bfqq has a short
2011 	 * think time, and thus, after remaining empty, is likely to
2012 	 * get new I/O enqueued---and then completed---before being
2013 	 * expired. This is the very pattern that gives the
2014 	 * limit-update algorithm the chance to measure the effect of
2015 	 * injection on request service times, and then to update the
2016 	 * limit accordingly.
2017 	 *
2018 	 * However, in the following special case, the inject limit is
2019 	 * left to 1 even if the think time is short: bfqq's I/O is
2020 	 * synchronized with that of some other queue, i.e., bfqq may
2021 	 * receive new I/O only after the I/O of the other queue is
2022 	 * completed. Keeping the inject limit to 1 allows the
2023 	 * blocking I/O to be served while bfqq is in service. And
2024 	 * this is very convenient both for bfqq and for overall
2025 	 * throughput, as explained in detail in the comments in
2026 	 * bfq_update_has_short_ttime().
2027 	 *
2028 	 * On the opposite end, if bfqq has a long think time, then
2029 	 * start directly by 1, because:
2030 	 * a) on the bright side, keeping at most one request in
2031 	 * service in the drive is unlikely to cause any harm to the
2032 	 * latency of bfqq's requests, as the service time of a single
2033 	 * request is likely to be lower than the think time of bfqq;
2034 	 * b) on the downside, after becoming empty, bfqq is likely to
2035 	 * expire before getting its next request. With this request
2036 	 * arrival pattern, it is very hard to sample total service
2037 	 * times and update the inject limit accordingly (see comments
2038 	 * on bfq_update_inject_limit()). So the limit is likely to be
2039 	 * never, or at least seldom, updated.  As a consequence, by
2040 	 * setting the limit to 1, we avoid that no injection ever
2041 	 * occurs with bfqq. On the downside, this proactive step
2042 	 * further reduces chances to actually compute the baseline
2043 	 * total service time. Thus it reduces chances to execute the
2044 	 * limit-update algorithm and possibly raise the limit to more
2045 	 * than 1.
2046 	 */
2047 	if (bfq_bfqq_has_short_ttime(bfqq))
2048 		bfqq->inject_limit = 0;
2049 	else
2050 		bfqq->inject_limit = 1;
2051 
2052 	bfqq->decrease_time_jif = jiffies;
2053 }
2054 
bfq_update_io_intensity(struct bfq_queue * bfqq,u64 now_ns)2055 static void bfq_update_io_intensity(struct bfq_queue *bfqq, u64 now_ns)
2056 {
2057 	u64 tot_io_time = now_ns - bfqq->io_start_time;
2058 
2059 	if (RB_EMPTY_ROOT(&bfqq->sort_list) && bfqq->dispatched == 0)
2060 		bfqq->tot_idle_time +=
2061 			now_ns - bfqq->ttime.last_end_request;
2062 
2063 	if (unlikely(bfq_bfqq_just_created(bfqq)))
2064 		return;
2065 
2066 	/*
2067 	 * Must be busy for at least about 80% of the time to be
2068 	 * considered I/O bound.
2069 	 */
2070 	if (bfqq->tot_idle_time * 5 > tot_io_time)
2071 		bfq_clear_bfqq_IO_bound(bfqq);
2072 	else
2073 		bfq_mark_bfqq_IO_bound(bfqq);
2074 
2075 	/*
2076 	 * Keep an observation window of at most 200 ms in the past
2077 	 * from now.
2078 	 */
2079 	if (tot_io_time > 200 * NSEC_PER_MSEC) {
2080 		bfqq->io_start_time = now_ns - (tot_io_time>>1);
2081 		bfqq->tot_idle_time >>= 1;
2082 	}
2083 }
2084 
2085 /*
2086  * Detect whether bfqq's I/O seems synchronized with that of some
2087  * other queue, i.e., whether bfqq, after remaining empty, happens to
2088  * receive new I/O only right after some I/O request of the other
2089  * queue has been completed. We call waker queue the other queue, and
2090  * we assume, for simplicity, that bfqq may have at most one waker
2091  * queue.
2092  *
2093  * A remarkable throughput boost can be reached by unconditionally
2094  * injecting the I/O of the waker queue, every time a new
2095  * bfq_dispatch_request happens to be invoked while I/O is being
2096  * plugged for bfqq.  In addition to boosting throughput, this
2097  * unblocks bfqq's I/O, thereby improving bandwidth and latency for
2098  * bfqq. Note that these same results may be achieved with the general
2099  * injection mechanism, but less effectively. For details on this
2100  * aspect, see the comments on the choice of the queue for injection
2101  * in bfq_select_queue().
2102  *
2103  * Turning back to the detection of a waker queue, a queue Q is deemed as a
2104  * waker queue for bfqq if, for three consecutive times, bfqq happens to become
2105  * non empty right after a request of Q has been completed within given
2106  * timeout. In this respect, even if bfqq is empty, we do not check for a waker
2107  * if it still has some in-flight I/O. In fact, in this case bfqq is actually
2108  * still being served by the drive, and may receive new I/O on the completion
2109  * of some of the in-flight requests. In particular, on the first time, Q is
2110  * tentatively set as a candidate waker queue, while on the third consecutive
2111  * time that Q is detected, the field waker_bfqq is set to Q, to confirm that Q
2112  * is a waker queue for bfqq. These detection steps are performed only if bfqq
2113  * has a long think time, so as to make it more likely that bfqq's I/O is
2114  * actually being blocked by a synchronization. This last filter, plus the
2115  * above three-times requirement and time limit for detection, make false
2116  * positives less likely.
2117  *
2118  * NOTE
2119  *
2120  * The sooner a waker queue is detected, the sooner throughput can be
2121  * boosted by injecting I/O from the waker queue. Fortunately,
2122  * detection is likely to be actually fast, for the following
2123  * reasons. While blocked by synchronization, bfqq has a long think
2124  * time. This implies that bfqq's inject limit is at least equal to 1
2125  * (see the comments in bfq_update_inject_limit()). So, thanks to
2126  * injection, the waker queue is likely to be served during the very
2127  * first I/O-plugging time interval for bfqq. This triggers the first
2128  * step of the detection mechanism. Thanks again to injection, the
2129  * candidate waker queue is then likely to be confirmed no later than
2130  * during the next I/O-plugging interval for bfqq.
2131  *
2132  * ISSUE
2133  *
2134  * On queue merging all waker information is lost.
2135  */
bfq_check_waker(struct bfq_data * bfqd,struct bfq_queue * bfqq,u64 now_ns)2136 static void bfq_check_waker(struct bfq_data *bfqd, struct bfq_queue *bfqq,
2137 			    u64 now_ns)
2138 {
2139 	char waker_name[MAX_BFQQ_NAME_LENGTH];
2140 
2141 	if (!bfqd->last_completed_rq_bfqq ||
2142 	    bfqd->last_completed_rq_bfqq == bfqq ||
2143 	    bfq_bfqq_has_short_ttime(bfqq) ||
2144 	    now_ns - bfqd->last_completion >= 4 * NSEC_PER_MSEC)
2145 		return;
2146 
2147 	/*
2148 	 * We reset waker detection logic also if too much time has passed
2149  	 * since the first detection. If wakeups are rare, pointless idling
2150 	 * doesn't hurt throughput that much. The condition below makes sure
2151 	 * we do not uselessly idle blocking waker in more than 1/64 cases.
2152 	 */
2153 	if (bfqd->last_completed_rq_bfqq !=
2154 	    bfqq->tentative_waker_bfqq ||
2155 	    now_ns > bfqq->waker_detection_started +
2156 					128 * (u64)bfqd->bfq_slice_idle) {
2157 		/*
2158 		 * First synchronization detected with a
2159 		 * candidate waker queue, or with a different
2160 		 * candidate waker queue from the current one.
2161 		 */
2162 		bfqq->tentative_waker_bfqq =
2163 			bfqd->last_completed_rq_bfqq;
2164 		bfqq->num_waker_detections = 1;
2165 		bfqq->waker_detection_started = now_ns;
2166 		bfq_bfqq_name(bfqq->tentative_waker_bfqq, waker_name,
2167 			      MAX_BFQQ_NAME_LENGTH);
2168 		bfq_log_bfqq(bfqd, bfqq, "set tentative waker %s", waker_name);
2169 	} else /* Same tentative waker queue detected again */
2170 		bfqq->num_waker_detections++;
2171 
2172 	if (bfqq->num_waker_detections == 3) {
2173 		bfqq->waker_bfqq = bfqd->last_completed_rq_bfqq;
2174 		bfqq->tentative_waker_bfqq = NULL;
2175 		bfq_bfqq_name(bfqq->waker_bfqq, waker_name,
2176 			      MAX_BFQQ_NAME_LENGTH);
2177 		bfq_log_bfqq(bfqd, bfqq, "set waker %s", waker_name);
2178 
2179 		/*
2180 		 * If the waker queue disappears, then
2181 		 * bfqq->waker_bfqq must be reset. To
2182 		 * this goal, we maintain in each
2183 		 * waker queue a list, woken_list, of
2184 		 * all the queues that reference the
2185 		 * waker queue through their
2186 		 * waker_bfqq pointer. When the waker
2187 		 * queue exits, the waker_bfqq pointer
2188 		 * of all the queues in the woken_list
2189 		 * is reset.
2190 		 *
2191 		 * In addition, if bfqq is already in
2192 		 * the woken_list of a waker queue,
2193 		 * then, before being inserted into
2194 		 * the woken_list of a new waker
2195 		 * queue, bfqq must be removed from
2196 		 * the woken_list of the old waker
2197 		 * queue.
2198 		 */
2199 		if (!hlist_unhashed(&bfqq->woken_list_node))
2200 			hlist_del_init(&bfqq->woken_list_node);
2201 		hlist_add_head(&bfqq->woken_list_node,
2202 			       &bfqd->last_completed_rq_bfqq->woken_list);
2203 	}
2204 }
2205 
bfq_add_request(struct request * rq)2206 static void bfq_add_request(struct request *rq)
2207 {
2208 	struct bfq_queue *bfqq = RQ_BFQQ(rq);
2209 	struct bfq_data *bfqd = bfqq->bfqd;
2210 	struct request *next_rq, *prev;
2211 	unsigned int old_wr_coeff = bfqq->wr_coeff;
2212 	bool interactive = false;
2213 	u64 now_ns = ktime_get_ns();
2214 
2215 	bfq_log_bfqq(bfqd, bfqq, "add_request %d", rq_is_sync(rq));
2216 	bfqq->queued[rq_is_sync(rq)]++;
2217 	/*
2218 	 * Updating of 'bfqd->queued' is protected by 'bfqd->lock', however, it
2219 	 * may be read without holding the lock in bfq_has_work().
2220 	 */
2221 	WRITE_ONCE(bfqd->queued, bfqd->queued + 1);
2222 
2223 	if (bfq_bfqq_sync(bfqq) && RQ_BIC(rq)->requests <= 1) {
2224 		bfq_check_waker(bfqd, bfqq, now_ns);
2225 
2226 		/*
2227 		 * Periodically reset inject limit, to make sure that
2228 		 * the latter eventually drops in case workload
2229 		 * changes, see step (3) in the comments on
2230 		 * bfq_update_inject_limit().
2231 		 */
2232 		if (time_is_before_eq_jiffies(bfqq->decrease_time_jif +
2233 					     msecs_to_jiffies(1000)))
2234 			bfq_reset_inject_limit(bfqd, bfqq);
2235 
2236 		/*
2237 		 * The following conditions must hold to setup a new
2238 		 * sampling of total service time, and then a new
2239 		 * update of the inject limit:
2240 		 * - bfqq is in service, because the total service
2241 		 *   time is evaluated only for the I/O requests of
2242 		 *   the queues in service;
2243 		 * - this is the right occasion to compute or to
2244 		 *   lower the baseline total service time, because
2245 		 *   there are actually no requests in the drive,
2246 		 *   or
2247 		 *   the baseline total service time is available, and
2248 		 *   this is the right occasion to compute the other
2249 		 *   quantity needed to update the inject limit, i.e.,
2250 		 *   the total service time caused by the amount of
2251 		 *   injection allowed by the current value of the
2252 		 *   limit. It is the right occasion because injection
2253 		 *   has actually been performed during the service
2254 		 *   hole, and there are still in-flight requests,
2255 		 *   which are very likely to be exactly the injected
2256 		 *   requests, or part of them;
2257 		 * - the minimum interval for sampling the total
2258 		 *   service time and updating the inject limit has
2259 		 *   elapsed.
2260 		 */
2261 		if (bfqq == bfqd->in_service_queue &&
2262 		    (bfqd->rq_in_driver == 0 ||
2263 		     (bfqq->last_serv_time_ns > 0 &&
2264 		      bfqd->rqs_injected && bfqd->rq_in_driver > 0)) &&
2265 		    time_is_before_eq_jiffies(bfqq->decrease_time_jif +
2266 					      msecs_to_jiffies(10))) {
2267 			bfqd->last_empty_occupied_ns = ktime_get_ns();
2268 			/*
2269 			 * Start the state machine for measuring the
2270 			 * total service time of rq: setting
2271 			 * wait_dispatch will cause bfqd->waited_rq to
2272 			 * be set when rq will be dispatched.
2273 			 */
2274 			bfqd->wait_dispatch = true;
2275 			/*
2276 			 * If there is no I/O in service in the drive,
2277 			 * then possible injection occurred before the
2278 			 * arrival of rq will not affect the total
2279 			 * service time of rq. So the injection limit
2280 			 * must not be updated as a function of such
2281 			 * total service time, unless new injection
2282 			 * occurs before rq is completed. To have the
2283 			 * injection limit updated only in the latter
2284 			 * case, reset rqs_injected here (rqs_injected
2285 			 * will be set in case injection is performed
2286 			 * on bfqq before rq is completed).
2287 			 */
2288 			if (bfqd->rq_in_driver == 0)
2289 				bfqd->rqs_injected = false;
2290 		}
2291 	}
2292 
2293 	if (bfq_bfqq_sync(bfqq))
2294 		bfq_update_io_intensity(bfqq, now_ns);
2295 
2296 	elv_rb_add(&bfqq->sort_list, rq);
2297 
2298 	/*
2299 	 * Check if this request is a better next-serve candidate.
2300 	 */
2301 	prev = bfqq->next_rq;
2302 	next_rq = bfq_choose_req(bfqd, bfqq->next_rq, rq, bfqd->last_position);
2303 	bfqq->next_rq = next_rq;
2304 
2305 	/*
2306 	 * Adjust priority tree position, if next_rq changes.
2307 	 * See comments on bfq_pos_tree_add_move() for the unlikely().
2308 	 */
2309 	if (unlikely(!bfqd->nonrot_with_queueing && prev != bfqq->next_rq))
2310 		bfq_pos_tree_add_move(bfqd, bfqq);
2311 
2312 	if (!bfq_bfqq_busy(bfqq)) /* switching to busy ... */
2313 		bfq_bfqq_handle_idle_busy_switch(bfqd, bfqq, old_wr_coeff,
2314 						 rq, &interactive);
2315 	else {
2316 		if (bfqd->low_latency && old_wr_coeff == 1 && !rq_is_sync(rq) &&
2317 		    time_is_before_jiffies(
2318 				bfqq->last_wr_start_finish +
2319 				bfqd->bfq_wr_min_inter_arr_async)) {
2320 			bfqq->wr_coeff = bfqd->bfq_wr_coeff;
2321 			bfqq->wr_cur_max_time = bfq_wr_duration(bfqd);
2322 
2323 			bfqd->wr_busy_queues++;
2324 			bfqq->entity.prio_changed = 1;
2325 		}
2326 		if (prev != bfqq->next_rq)
2327 			bfq_updated_next_req(bfqd, bfqq);
2328 	}
2329 
2330 	/*
2331 	 * Assign jiffies to last_wr_start_finish in the following
2332 	 * cases:
2333 	 *
2334 	 * . if bfqq is not going to be weight-raised, because, for
2335 	 *   non weight-raised queues, last_wr_start_finish stores the
2336 	 *   arrival time of the last request; as of now, this piece
2337 	 *   of information is used only for deciding whether to
2338 	 *   weight-raise async queues
2339 	 *
2340 	 * . if bfqq is not weight-raised, because, if bfqq is now
2341 	 *   switching to weight-raised, then last_wr_start_finish
2342 	 *   stores the time when weight-raising starts
2343 	 *
2344 	 * . if bfqq is interactive, because, regardless of whether
2345 	 *   bfqq is currently weight-raised, the weight-raising
2346 	 *   period must start or restart (this case is considered
2347 	 *   separately because it is not detected by the above
2348 	 *   conditions, if bfqq is already weight-raised)
2349 	 *
2350 	 * last_wr_start_finish has to be updated also if bfqq is soft
2351 	 * real-time, because the weight-raising period is constantly
2352 	 * restarted on idle-to-busy transitions for these queues, but
2353 	 * this is already done in bfq_bfqq_handle_idle_busy_switch if
2354 	 * needed.
2355 	 */
2356 	if (bfqd->low_latency &&
2357 		(old_wr_coeff == 1 || bfqq->wr_coeff == 1 || interactive))
2358 		bfqq->last_wr_start_finish = jiffies;
2359 }
2360 
bfq_find_rq_fmerge(struct bfq_data * bfqd,struct bio * bio,struct request_queue * q)2361 static struct request *bfq_find_rq_fmerge(struct bfq_data *bfqd,
2362 					  struct bio *bio,
2363 					  struct request_queue *q)
2364 {
2365 	struct bfq_queue *bfqq = bfqd->bio_bfqq;
2366 
2367 
2368 	if (bfqq)
2369 		return elv_rb_find(&bfqq->sort_list, bio_end_sector(bio));
2370 
2371 	return NULL;
2372 }
2373 
get_sdist(sector_t last_pos,struct request * rq)2374 static sector_t get_sdist(sector_t last_pos, struct request *rq)
2375 {
2376 	if (last_pos)
2377 		return abs(blk_rq_pos(rq) - last_pos);
2378 
2379 	return 0;
2380 }
2381 
2382 #if 0 /* Still not clear if we can do without next two functions */
2383 static void bfq_activate_request(struct request_queue *q, struct request *rq)
2384 {
2385 	struct bfq_data *bfqd = q->elevator->elevator_data;
2386 
2387 	bfqd->rq_in_driver++;
2388 }
2389 
2390 static void bfq_deactivate_request(struct request_queue *q, struct request *rq)
2391 {
2392 	struct bfq_data *bfqd = q->elevator->elevator_data;
2393 
2394 	bfqd->rq_in_driver--;
2395 }
2396 #endif
2397 
bfq_remove_request(struct request_queue * q,struct request * rq)2398 static void bfq_remove_request(struct request_queue *q,
2399 			       struct request *rq)
2400 {
2401 	struct bfq_queue *bfqq = RQ_BFQQ(rq);
2402 	struct bfq_data *bfqd = bfqq->bfqd;
2403 	const int sync = rq_is_sync(rq);
2404 
2405 	if (bfqq->next_rq == rq) {
2406 		bfqq->next_rq = bfq_find_next_rq(bfqd, bfqq, rq);
2407 		bfq_updated_next_req(bfqd, bfqq);
2408 	}
2409 
2410 	if (rq->queuelist.prev != &rq->queuelist)
2411 		list_del_init(&rq->queuelist);
2412 	bfqq->queued[sync]--;
2413 	/*
2414 	 * Updating of 'bfqd->queued' is protected by 'bfqd->lock', however, it
2415 	 * may be read without holding the lock in bfq_has_work().
2416 	 */
2417 	WRITE_ONCE(bfqd->queued, bfqd->queued - 1);
2418 	elv_rb_del(&bfqq->sort_list, rq);
2419 
2420 	elv_rqhash_del(q, rq);
2421 	if (q->last_merge == rq)
2422 		q->last_merge = NULL;
2423 
2424 	if (RB_EMPTY_ROOT(&bfqq->sort_list)) {
2425 		bfqq->next_rq = NULL;
2426 
2427 		if (bfq_bfqq_busy(bfqq) && bfqq != bfqd->in_service_queue) {
2428 			bfq_del_bfqq_busy(bfqq, false);
2429 			/*
2430 			 * bfqq emptied. In normal operation, when
2431 			 * bfqq is empty, bfqq->entity.service and
2432 			 * bfqq->entity.budget must contain,
2433 			 * respectively, the service received and the
2434 			 * budget used last time bfqq emptied. These
2435 			 * facts do not hold in this case, as at least
2436 			 * this last removal occurred while bfqq is
2437 			 * not in service. To avoid inconsistencies,
2438 			 * reset both bfqq->entity.service and
2439 			 * bfqq->entity.budget, if bfqq has still a
2440 			 * process that may issue I/O requests to it.
2441 			 */
2442 			bfqq->entity.budget = bfqq->entity.service = 0;
2443 		}
2444 
2445 		/*
2446 		 * Remove queue from request-position tree as it is empty.
2447 		 */
2448 		if (bfqq->pos_root) {
2449 			rb_erase(&bfqq->pos_node, bfqq->pos_root);
2450 			bfqq->pos_root = NULL;
2451 		}
2452 	} else {
2453 		/* see comments on bfq_pos_tree_add_move() for the unlikely() */
2454 		if (unlikely(!bfqd->nonrot_with_queueing))
2455 			bfq_pos_tree_add_move(bfqd, bfqq);
2456 	}
2457 
2458 	if (rq->cmd_flags & REQ_META)
2459 		bfqq->meta_pending--;
2460 
2461 }
2462 
bfq_bio_merge(struct request_queue * q,struct bio * bio,unsigned int nr_segs)2463 static bool bfq_bio_merge(struct request_queue *q, struct bio *bio,
2464 		unsigned int nr_segs)
2465 {
2466 	struct bfq_data *bfqd = q->elevator->elevator_data;
2467 	struct request *free = NULL;
2468 	/*
2469 	 * bfq_bic_lookup grabs the queue_lock: invoke it now and
2470 	 * store its return value for later use, to avoid nesting
2471 	 * queue_lock inside the bfqd->lock. We assume that the bic
2472 	 * returned by bfq_bic_lookup does not go away before
2473 	 * bfqd->lock is taken.
2474 	 */
2475 	struct bfq_io_cq *bic = bfq_bic_lookup(q);
2476 	bool ret;
2477 
2478 	spin_lock_irq(&bfqd->lock);
2479 
2480 	if (bic) {
2481 		/*
2482 		 * Make sure cgroup info is uptodate for current process before
2483 		 * considering the merge.
2484 		 */
2485 		bfq_bic_update_cgroup(bic, bio);
2486 
2487 		bfqd->bio_bfqq = bic_to_bfqq(bic, op_is_sync(bio->bi_opf));
2488 	} else {
2489 		bfqd->bio_bfqq = NULL;
2490 	}
2491 	bfqd->bio_bic = bic;
2492 
2493 	ret = blk_mq_sched_try_merge(q, bio, nr_segs, &free);
2494 
2495 	spin_unlock_irq(&bfqd->lock);
2496 	if (free)
2497 		blk_mq_free_request(free);
2498 
2499 	return ret;
2500 }
2501 
bfq_request_merge(struct request_queue * q,struct request ** req,struct bio * bio)2502 static int bfq_request_merge(struct request_queue *q, struct request **req,
2503 			     struct bio *bio)
2504 {
2505 	struct bfq_data *bfqd = q->elevator->elevator_data;
2506 	struct request *__rq;
2507 
2508 	__rq = bfq_find_rq_fmerge(bfqd, bio, q);
2509 	if (__rq && elv_bio_merge_ok(__rq, bio)) {
2510 		*req = __rq;
2511 
2512 		if (blk_discard_mergable(__rq))
2513 			return ELEVATOR_DISCARD_MERGE;
2514 		return ELEVATOR_FRONT_MERGE;
2515 	}
2516 
2517 	return ELEVATOR_NO_MERGE;
2518 }
2519 
bfq_request_merged(struct request_queue * q,struct request * req,enum elv_merge type)2520 static void bfq_request_merged(struct request_queue *q, struct request *req,
2521 			       enum elv_merge type)
2522 {
2523 	if (type == ELEVATOR_FRONT_MERGE &&
2524 	    rb_prev(&req->rb_node) &&
2525 	    blk_rq_pos(req) <
2526 	    blk_rq_pos(container_of(rb_prev(&req->rb_node),
2527 				    struct request, rb_node))) {
2528 		struct bfq_queue *bfqq = RQ_BFQQ(req);
2529 		struct bfq_data *bfqd;
2530 		struct request *prev, *next_rq;
2531 
2532 		if (!bfqq)
2533 			return;
2534 
2535 		bfqd = bfqq->bfqd;
2536 
2537 		/* Reposition request in its sort_list */
2538 		elv_rb_del(&bfqq->sort_list, req);
2539 		elv_rb_add(&bfqq->sort_list, req);
2540 
2541 		/* Choose next request to be served for bfqq */
2542 		prev = bfqq->next_rq;
2543 		next_rq = bfq_choose_req(bfqd, bfqq->next_rq, req,
2544 					 bfqd->last_position);
2545 		bfqq->next_rq = next_rq;
2546 		/*
2547 		 * If next_rq changes, update both the queue's budget to
2548 		 * fit the new request and the queue's position in its
2549 		 * rq_pos_tree.
2550 		 */
2551 		if (prev != bfqq->next_rq) {
2552 			bfq_updated_next_req(bfqd, bfqq);
2553 			/*
2554 			 * See comments on bfq_pos_tree_add_move() for
2555 			 * the unlikely().
2556 			 */
2557 			if (unlikely(!bfqd->nonrot_with_queueing))
2558 				bfq_pos_tree_add_move(bfqd, bfqq);
2559 		}
2560 	}
2561 }
2562 
2563 /*
2564  * This function is called to notify the scheduler that the requests
2565  * rq and 'next' have been merged, with 'next' going away.  BFQ
2566  * exploits this hook to address the following issue: if 'next' has a
2567  * fifo_time lower that rq, then the fifo_time of rq must be set to
2568  * the value of 'next', to not forget the greater age of 'next'.
2569  *
2570  * NOTE: in this function we assume that rq is in a bfq_queue, basing
2571  * on that rq is picked from the hash table q->elevator->hash, which,
2572  * in its turn, is filled only with I/O requests present in
2573  * bfq_queues, while BFQ is in use for the request queue q. In fact,
2574  * the function that fills this hash table (elv_rqhash_add) is called
2575  * only by bfq_insert_request.
2576  */
bfq_requests_merged(struct request_queue * q,struct request * rq,struct request * next)2577 static void bfq_requests_merged(struct request_queue *q, struct request *rq,
2578 				struct request *next)
2579 {
2580 	struct bfq_queue *bfqq = RQ_BFQQ(rq),
2581 		*next_bfqq = RQ_BFQQ(next);
2582 
2583 	if (!bfqq)
2584 		goto remove;
2585 
2586 	/*
2587 	 * If next and rq belong to the same bfq_queue and next is older
2588 	 * than rq, then reposition rq in the fifo (by substituting next
2589 	 * with rq). Otherwise, if next and rq belong to different
2590 	 * bfq_queues, never reposition rq: in fact, we would have to
2591 	 * reposition it with respect to next's position in its own fifo,
2592 	 * which would most certainly be too expensive with respect to
2593 	 * the benefits.
2594 	 */
2595 	if (bfqq == next_bfqq &&
2596 	    !list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
2597 	    next->fifo_time < rq->fifo_time) {
2598 		list_del_init(&rq->queuelist);
2599 		list_replace_init(&next->queuelist, &rq->queuelist);
2600 		rq->fifo_time = next->fifo_time;
2601 	}
2602 
2603 	if (bfqq->next_rq == next)
2604 		bfqq->next_rq = rq;
2605 
2606 	bfqg_stats_update_io_merged(bfqq_group(bfqq), next->cmd_flags);
2607 remove:
2608 	/* Merged request may be in the IO scheduler. Remove it. */
2609 	if (!RB_EMPTY_NODE(&next->rb_node)) {
2610 		bfq_remove_request(next->q, next);
2611 		if (next_bfqq)
2612 			bfqg_stats_update_io_remove(bfqq_group(next_bfqq),
2613 						    next->cmd_flags);
2614 	}
2615 }
2616 
2617 /* Must be called with bfqq != NULL */
bfq_bfqq_end_wr(struct bfq_queue * bfqq)2618 static void bfq_bfqq_end_wr(struct bfq_queue *bfqq)
2619 {
2620 	/*
2621 	 * If bfqq has been enjoying interactive weight-raising, then
2622 	 * reset soft_rt_next_start. We do it for the following
2623 	 * reason. bfqq may have been conveying the I/O needed to load
2624 	 * a soft real-time application. Such an application actually
2625 	 * exhibits a soft real-time I/O pattern after it finishes
2626 	 * loading, and finally starts doing its job. But, if bfqq has
2627 	 * been receiving a lot of bandwidth so far (likely to happen
2628 	 * on a fast device), then soft_rt_next_start now contains a
2629 	 * high value that. So, without this reset, bfqq would be
2630 	 * prevented from being possibly considered as soft_rt for a
2631 	 * very long time.
2632 	 */
2633 
2634 	if (bfqq->wr_cur_max_time !=
2635 	    bfqq->bfqd->bfq_wr_rt_max_time)
2636 		bfqq->soft_rt_next_start = jiffies;
2637 
2638 	if (bfq_bfqq_busy(bfqq))
2639 		bfqq->bfqd->wr_busy_queues--;
2640 	bfqq->wr_coeff = 1;
2641 	bfqq->wr_cur_max_time = 0;
2642 	bfqq->last_wr_start_finish = jiffies;
2643 	/*
2644 	 * Trigger a weight change on the next invocation of
2645 	 * __bfq_entity_update_weight_prio.
2646 	 */
2647 	bfqq->entity.prio_changed = 1;
2648 }
2649 
bfq_end_wr_async_queues(struct bfq_data * bfqd,struct bfq_group * bfqg)2650 void bfq_end_wr_async_queues(struct bfq_data *bfqd,
2651 			     struct bfq_group *bfqg)
2652 {
2653 	int i, j;
2654 
2655 	for (i = 0; i < 2; i++)
2656 		for (j = 0; j < IOPRIO_NR_LEVELS; j++)
2657 			if (bfqg->async_bfqq[i][j])
2658 				bfq_bfqq_end_wr(bfqg->async_bfqq[i][j]);
2659 	if (bfqg->async_idle_bfqq)
2660 		bfq_bfqq_end_wr(bfqg->async_idle_bfqq);
2661 }
2662 
bfq_end_wr(struct bfq_data * bfqd)2663 static void bfq_end_wr(struct bfq_data *bfqd)
2664 {
2665 	struct bfq_queue *bfqq;
2666 
2667 	spin_lock_irq(&bfqd->lock);
2668 
2669 	list_for_each_entry(bfqq, &bfqd->active_list, bfqq_list)
2670 		bfq_bfqq_end_wr(bfqq);
2671 	list_for_each_entry(bfqq, &bfqd->idle_list, bfqq_list)
2672 		bfq_bfqq_end_wr(bfqq);
2673 	bfq_end_wr_async(bfqd);
2674 
2675 	spin_unlock_irq(&bfqd->lock);
2676 }
2677 
bfq_io_struct_pos(void * io_struct,bool request)2678 static sector_t bfq_io_struct_pos(void *io_struct, bool request)
2679 {
2680 	if (request)
2681 		return blk_rq_pos(io_struct);
2682 	else
2683 		return ((struct bio *)io_struct)->bi_iter.bi_sector;
2684 }
2685 
bfq_rq_close_to_sector(void * io_struct,bool request,sector_t sector)2686 static int bfq_rq_close_to_sector(void *io_struct, bool request,
2687 				  sector_t sector)
2688 {
2689 	return abs(bfq_io_struct_pos(io_struct, request) - sector) <=
2690 	       BFQQ_CLOSE_THR;
2691 }
2692 
bfqq_find_close(struct bfq_data * bfqd,struct bfq_queue * bfqq,sector_t sector)2693 static struct bfq_queue *bfqq_find_close(struct bfq_data *bfqd,
2694 					 struct bfq_queue *bfqq,
2695 					 sector_t sector)
2696 {
2697 	struct rb_root *root = &bfqq_group(bfqq)->rq_pos_tree;
2698 	struct rb_node *parent, *node;
2699 	struct bfq_queue *__bfqq;
2700 
2701 	if (RB_EMPTY_ROOT(root))
2702 		return NULL;
2703 
2704 	/*
2705 	 * First, if we find a request starting at the end of the last
2706 	 * request, choose it.
2707 	 */
2708 	__bfqq = bfq_rq_pos_tree_lookup(bfqd, root, sector, &parent, NULL);
2709 	if (__bfqq)
2710 		return __bfqq;
2711 
2712 	/*
2713 	 * If the exact sector wasn't found, the parent of the NULL leaf
2714 	 * will contain the closest sector (rq_pos_tree sorted by
2715 	 * next_request position).
2716 	 */
2717 	__bfqq = rb_entry(parent, struct bfq_queue, pos_node);
2718 	if (bfq_rq_close_to_sector(__bfqq->next_rq, true, sector))
2719 		return __bfqq;
2720 
2721 	if (blk_rq_pos(__bfqq->next_rq) < sector)
2722 		node = rb_next(&__bfqq->pos_node);
2723 	else
2724 		node = rb_prev(&__bfqq->pos_node);
2725 	if (!node)
2726 		return NULL;
2727 
2728 	__bfqq = rb_entry(node, struct bfq_queue, pos_node);
2729 	if (bfq_rq_close_to_sector(__bfqq->next_rq, true, sector))
2730 		return __bfqq;
2731 
2732 	return NULL;
2733 }
2734 
bfq_find_close_cooperator(struct bfq_data * bfqd,struct bfq_queue * cur_bfqq,sector_t sector)2735 static struct bfq_queue *bfq_find_close_cooperator(struct bfq_data *bfqd,
2736 						   struct bfq_queue *cur_bfqq,
2737 						   sector_t sector)
2738 {
2739 	struct bfq_queue *bfqq;
2740 
2741 	/*
2742 	 * We shall notice if some of the queues are cooperating,
2743 	 * e.g., working closely on the same area of the device. In
2744 	 * that case, we can group them together and: 1) don't waste
2745 	 * time idling, and 2) serve the union of their requests in
2746 	 * the best possible order for throughput.
2747 	 */
2748 	bfqq = bfqq_find_close(bfqd, cur_bfqq, sector);
2749 	if (!bfqq || bfqq == cur_bfqq)
2750 		return NULL;
2751 
2752 	return bfqq;
2753 }
2754 
2755 static struct bfq_queue *
bfq_setup_merge(struct bfq_queue * bfqq,struct bfq_queue * new_bfqq)2756 bfq_setup_merge(struct bfq_queue *bfqq, struct bfq_queue *new_bfqq)
2757 {
2758 	int process_refs, new_process_refs;
2759 	struct bfq_queue *__bfqq;
2760 
2761 	/*
2762 	 * If there are no process references on the new_bfqq, then it is
2763 	 * unsafe to follow the ->new_bfqq chain as other bfqq's in the chain
2764 	 * may have dropped their last reference (not just their last process
2765 	 * reference).
2766 	 */
2767 	if (!bfqq_process_refs(new_bfqq))
2768 		return NULL;
2769 
2770 	/* Avoid a circular list and skip interim queue merges. */
2771 	while ((__bfqq = new_bfqq->new_bfqq)) {
2772 		if (__bfqq == bfqq)
2773 			return NULL;
2774 		new_bfqq = __bfqq;
2775 	}
2776 
2777 	process_refs = bfqq_process_refs(bfqq);
2778 	new_process_refs = bfqq_process_refs(new_bfqq);
2779 	/*
2780 	 * If the process for the bfqq has gone away, there is no
2781 	 * sense in merging the queues.
2782 	 */
2783 	if (process_refs == 0 || new_process_refs == 0)
2784 		return NULL;
2785 
2786 	/*
2787 	 * Make sure merged queues belong to the same parent. Parents could
2788 	 * have changed since the time we decided the two queues are suitable
2789 	 * for merging.
2790 	 */
2791 	if (new_bfqq->entity.parent != bfqq->entity.parent)
2792 		return NULL;
2793 
2794 	bfq_log_bfqq(bfqq->bfqd, bfqq, "scheduling merge with queue %d",
2795 		new_bfqq->pid);
2796 
2797 	/*
2798 	 * Merging is just a redirection: the requests of the process
2799 	 * owning one of the two queues are redirected to the other queue.
2800 	 * The latter queue, in its turn, is set as shared if this is the
2801 	 * first time that the requests of some process are redirected to
2802 	 * it.
2803 	 *
2804 	 * We redirect bfqq to new_bfqq and not the opposite, because
2805 	 * we are in the context of the process owning bfqq, thus we
2806 	 * have the io_cq of this process. So we can immediately
2807 	 * configure this io_cq to redirect the requests of the
2808 	 * process to new_bfqq. In contrast, the io_cq of new_bfqq is
2809 	 * not available any more (new_bfqq->bic == NULL).
2810 	 *
2811 	 * Anyway, even in case new_bfqq coincides with the in-service
2812 	 * queue, redirecting requests the in-service queue is the
2813 	 * best option, as we feed the in-service queue with new
2814 	 * requests close to the last request served and, by doing so,
2815 	 * are likely to increase the throughput.
2816 	 */
2817 	bfqq->new_bfqq = new_bfqq;
2818 	/*
2819 	 * The above assignment schedules the following redirections:
2820 	 * each time some I/O for bfqq arrives, the process that
2821 	 * generated that I/O is disassociated from bfqq and
2822 	 * associated with new_bfqq. Here we increases new_bfqq->ref
2823 	 * in advance, adding the number of processes that are
2824 	 * expected to be associated with new_bfqq as they happen to
2825 	 * issue I/O.
2826 	 */
2827 	new_bfqq->ref += process_refs;
2828 	return new_bfqq;
2829 }
2830 
bfq_may_be_close_cooperator(struct bfq_queue * bfqq,struct bfq_queue * new_bfqq)2831 static bool bfq_may_be_close_cooperator(struct bfq_queue *bfqq,
2832 					struct bfq_queue *new_bfqq)
2833 {
2834 	if (bfq_too_late_for_merging(new_bfqq))
2835 		return false;
2836 
2837 	if (bfq_class_idle(bfqq) || bfq_class_idle(new_bfqq) ||
2838 	    (bfqq->ioprio_class != new_bfqq->ioprio_class))
2839 		return false;
2840 
2841 	/*
2842 	 * If either of the queues has already been detected as seeky,
2843 	 * then merging it with the other queue is unlikely to lead to
2844 	 * sequential I/O.
2845 	 */
2846 	if (BFQQ_SEEKY(bfqq) || BFQQ_SEEKY(new_bfqq))
2847 		return false;
2848 
2849 	/*
2850 	 * Interleaved I/O is known to be done by (some) applications
2851 	 * only for reads, so it does not make sense to merge async
2852 	 * queues.
2853 	 */
2854 	if (!bfq_bfqq_sync(bfqq) || !bfq_bfqq_sync(new_bfqq))
2855 		return false;
2856 
2857 	return true;
2858 }
2859 
2860 static bool idling_boosts_thr_without_issues(struct bfq_data *bfqd,
2861 					     struct bfq_queue *bfqq);
2862 
2863 /*
2864  * Attempt to schedule a merge of bfqq with the currently in-service
2865  * queue or with a close queue among the scheduled queues.  Return
2866  * NULL if no merge was scheduled, a pointer to the shared bfq_queue
2867  * structure otherwise.
2868  *
2869  * The OOM queue is not allowed to participate to cooperation: in fact, since
2870  * the requests temporarily redirected to the OOM queue could be redirected
2871  * again to dedicated queues at any time, the state needed to correctly
2872  * handle merging with the OOM queue would be quite complex and expensive
2873  * to maintain. Besides, in such a critical condition as an out of memory,
2874  * the benefits of queue merging may be little relevant, or even negligible.
2875  *
2876  * WARNING: queue merging may impair fairness among non-weight raised
2877  * queues, for at least two reasons: 1) the original weight of a
2878  * merged queue may change during the merged state, 2) even being the
2879  * weight the same, a merged queue may be bloated with many more
2880  * requests than the ones produced by its originally-associated
2881  * process.
2882  */
2883 static struct bfq_queue *
bfq_setup_cooperator(struct bfq_data * bfqd,struct bfq_queue * bfqq,void * io_struct,bool request,struct bfq_io_cq * bic)2884 bfq_setup_cooperator(struct bfq_data *bfqd, struct bfq_queue *bfqq,
2885 		     void *io_struct, bool request, struct bfq_io_cq *bic)
2886 {
2887 	struct bfq_queue *in_service_bfqq, *new_bfqq;
2888 
2889 	/* if a merge has already been setup, then proceed with that first */
2890 	if (bfqq->new_bfqq)
2891 		return bfqq->new_bfqq;
2892 
2893 	/*
2894 	 * Check delayed stable merge for rotational or non-queueing
2895 	 * devs. For this branch to be executed, bfqq must not be
2896 	 * currently merged with some other queue (i.e., bfqq->bic
2897 	 * must be non null). If we considered also merged queues,
2898 	 * then we should also check whether bfqq has already been
2899 	 * merged with bic->stable_merge_bfqq. But this would be
2900 	 * costly and complicated.
2901 	 */
2902 	if (unlikely(!bfqd->nonrot_with_queueing)) {
2903 		/*
2904 		 * Make sure also that bfqq is sync, because
2905 		 * bic->stable_merge_bfqq may point to some queue (for
2906 		 * stable merging) also if bic is associated with a
2907 		 * sync queue, but this bfqq is async
2908 		 */
2909 		if (bfq_bfqq_sync(bfqq) && bic->stable_merge_bfqq &&
2910 		    !bfq_bfqq_just_created(bfqq) &&
2911 		    time_is_before_jiffies(bfqq->split_time +
2912 					  msecs_to_jiffies(bfq_late_stable_merging)) &&
2913 		    time_is_before_jiffies(bfqq->creation_time +
2914 					   msecs_to_jiffies(bfq_late_stable_merging))) {
2915 			struct bfq_queue *stable_merge_bfqq =
2916 				bic->stable_merge_bfqq;
2917 			int proc_ref = min(bfqq_process_refs(bfqq),
2918 					   bfqq_process_refs(stable_merge_bfqq));
2919 
2920 			/* deschedule stable merge, because done or aborted here */
2921 			bfq_put_stable_ref(stable_merge_bfqq);
2922 
2923 			bic->stable_merge_bfqq = NULL;
2924 
2925 			if (!idling_boosts_thr_without_issues(bfqd, bfqq) &&
2926 			    proc_ref > 0) {
2927 				/* next function will take at least one ref */
2928 				struct bfq_queue *new_bfqq =
2929 					bfq_setup_merge(bfqq, stable_merge_bfqq);
2930 
2931 				if (new_bfqq) {
2932 					bic->stably_merged = true;
2933 					if (new_bfqq->bic)
2934 						new_bfqq->bic->stably_merged =
2935 									true;
2936 				}
2937 				return new_bfqq;
2938 			} else
2939 				return NULL;
2940 		}
2941 	}
2942 
2943 	/*
2944 	 * Do not perform queue merging if the device is non
2945 	 * rotational and performs internal queueing. In fact, such a
2946 	 * device reaches a high speed through internal parallelism
2947 	 * and pipelining. This means that, to reach a high
2948 	 * throughput, it must have many requests enqueued at the same
2949 	 * time. But, in this configuration, the internal scheduling
2950 	 * algorithm of the device does exactly the job of queue
2951 	 * merging: it reorders requests so as to obtain as much as
2952 	 * possible a sequential I/O pattern. As a consequence, with
2953 	 * the workload generated by processes doing interleaved I/O,
2954 	 * the throughput reached by the device is likely to be the
2955 	 * same, with and without queue merging.
2956 	 *
2957 	 * Disabling merging also provides a remarkable benefit in
2958 	 * terms of throughput. Merging tends to make many workloads
2959 	 * artificially more uneven, because of shared queues
2960 	 * remaining non empty for incomparably more time than
2961 	 * non-merged queues. This may accentuate workload
2962 	 * asymmetries. For example, if one of the queues in a set of
2963 	 * merged queues has a higher weight than a normal queue, then
2964 	 * the shared queue may inherit such a high weight and, by
2965 	 * staying almost always active, may force BFQ to perform I/O
2966 	 * plugging most of the time. This evidently makes it harder
2967 	 * for BFQ to let the device reach a high throughput.
2968 	 *
2969 	 * Finally, the likely() macro below is not used because one
2970 	 * of the two branches is more likely than the other, but to
2971 	 * have the code path after the following if() executed as
2972 	 * fast as possible for the case of a non rotational device
2973 	 * with queueing. We want it because this is the fastest kind
2974 	 * of device. On the opposite end, the likely() may lengthen
2975 	 * the execution time of BFQ for the case of slower devices
2976 	 * (rotational or at least without queueing). But in this case
2977 	 * the execution time of BFQ matters very little, if not at
2978 	 * all.
2979 	 */
2980 	if (likely(bfqd->nonrot_with_queueing))
2981 		return NULL;
2982 
2983 	/*
2984 	 * Prevent bfqq from being merged if it has been created too
2985 	 * long ago. The idea is that true cooperating processes, and
2986 	 * thus their associated bfq_queues, are supposed to be
2987 	 * created shortly after each other. This is the case, e.g.,
2988 	 * for KVM/QEMU and dump I/O threads. Basing on this
2989 	 * assumption, the following filtering greatly reduces the
2990 	 * probability that two non-cooperating processes, which just
2991 	 * happen to do close I/O for some short time interval, have
2992 	 * their queues merged by mistake.
2993 	 */
2994 	if (bfq_too_late_for_merging(bfqq))
2995 		return NULL;
2996 
2997 	if (!io_struct || unlikely(bfqq == &bfqd->oom_bfqq))
2998 		return NULL;
2999 
3000 	/* If there is only one backlogged queue, don't search. */
3001 	if (bfq_tot_busy_queues(bfqd) == 1)
3002 		return NULL;
3003 
3004 	in_service_bfqq = bfqd->in_service_queue;
3005 
3006 	if (in_service_bfqq && in_service_bfqq != bfqq &&
3007 	    likely(in_service_bfqq != &bfqd->oom_bfqq) &&
3008 	    bfq_rq_close_to_sector(io_struct, request,
3009 				   bfqd->in_serv_last_pos) &&
3010 	    bfqq->entity.parent == in_service_bfqq->entity.parent &&
3011 	    bfq_may_be_close_cooperator(bfqq, in_service_bfqq)) {
3012 		new_bfqq = bfq_setup_merge(bfqq, in_service_bfqq);
3013 		if (new_bfqq)
3014 			return new_bfqq;
3015 	}
3016 	/*
3017 	 * Check whether there is a cooperator among currently scheduled
3018 	 * queues. The only thing we need is that the bio/request is not
3019 	 * NULL, as we need it to establish whether a cooperator exists.
3020 	 */
3021 	new_bfqq = bfq_find_close_cooperator(bfqd, bfqq,
3022 			bfq_io_struct_pos(io_struct, request));
3023 
3024 	if (new_bfqq && likely(new_bfqq != &bfqd->oom_bfqq) &&
3025 	    bfq_may_be_close_cooperator(bfqq, new_bfqq))
3026 		return bfq_setup_merge(bfqq, new_bfqq);
3027 
3028 	return NULL;
3029 }
3030 
bfq_bfqq_save_state(struct bfq_queue * bfqq)3031 static void bfq_bfqq_save_state(struct bfq_queue *bfqq)
3032 {
3033 	struct bfq_io_cq *bic = bfqq->bic;
3034 
3035 	/*
3036 	 * If !bfqq->bic, the queue is already shared or its requests
3037 	 * have already been redirected to a shared queue; both idle window
3038 	 * and weight raising state have already been saved. Do nothing.
3039 	 */
3040 	if (!bic)
3041 		return;
3042 
3043 	bic->saved_last_serv_time_ns = bfqq->last_serv_time_ns;
3044 	bic->saved_inject_limit = bfqq->inject_limit;
3045 	bic->saved_decrease_time_jif = bfqq->decrease_time_jif;
3046 
3047 	bic->saved_weight = bfqq->entity.orig_weight;
3048 	bic->saved_ttime = bfqq->ttime;
3049 	bic->saved_has_short_ttime = bfq_bfqq_has_short_ttime(bfqq);
3050 	bic->saved_IO_bound = bfq_bfqq_IO_bound(bfqq);
3051 	bic->saved_io_start_time = bfqq->io_start_time;
3052 	bic->saved_tot_idle_time = bfqq->tot_idle_time;
3053 	bic->saved_in_large_burst = bfq_bfqq_in_large_burst(bfqq);
3054 	bic->was_in_burst_list = !hlist_unhashed(&bfqq->burst_list_node);
3055 	if (unlikely(bfq_bfqq_just_created(bfqq) &&
3056 		     !bfq_bfqq_in_large_burst(bfqq) &&
3057 		     bfqq->bfqd->low_latency)) {
3058 		/*
3059 		 * bfqq being merged right after being created: bfqq
3060 		 * would have deserved interactive weight raising, but
3061 		 * did not make it to be set in a weight-raised state,
3062 		 * because of this early merge.	Store directly the
3063 		 * weight-raising state that would have been assigned
3064 		 * to bfqq, so that to avoid that bfqq unjustly fails
3065 		 * to enjoy weight raising if split soon.
3066 		 */
3067 		bic->saved_wr_coeff = bfqq->bfqd->bfq_wr_coeff;
3068 		bic->saved_wr_start_at_switch_to_srt = bfq_smallest_from_now();
3069 		bic->saved_wr_cur_max_time = bfq_wr_duration(bfqq->bfqd);
3070 		bic->saved_last_wr_start_finish = jiffies;
3071 	} else {
3072 		bic->saved_wr_coeff = bfqq->wr_coeff;
3073 		bic->saved_wr_start_at_switch_to_srt =
3074 			bfqq->wr_start_at_switch_to_srt;
3075 		bic->saved_service_from_wr = bfqq->service_from_wr;
3076 		bic->saved_last_wr_start_finish = bfqq->last_wr_start_finish;
3077 		bic->saved_wr_cur_max_time = bfqq->wr_cur_max_time;
3078 	}
3079 }
3080 
3081 
3082 static void
bfq_reassign_last_bfqq(struct bfq_queue * cur_bfqq,struct bfq_queue * new_bfqq)3083 bfq_reassign_last_bfqq(struct bfq_queue *cur_bfqq, struct bfq_queue *new_bfqq)
3084 {
3085 	if (cur_bfqq->entity.parent &&
3086 	    cur_bfqq->entity.parent->last_bfqq_created == cur_bfqq)
3087 		cur_bfqq->entity.parent->last_bfqq_created = new_bfqq;
3088 	else if (cur_bfqq->bfqd && cur_bfqq->bfqd->last_bfqq_created == cur_bfqq)
3089 		cur_bfqq->bfqd->last_bfqq_created = new_bfqq;
3090 }
3091 
bfq_release_process_ref(struct bfq_data * bfqd,struct bfq_queue * bfqq)3092 void bfq_release_process_ref(struct bfq_data *bfqd, struct bfq_queue *bfqq)
3093 {
3094 	/*
3095 	 * To prevent bfqq's service guarantees from being violated,
3096 	 * bfqq may be left busy, i.e., queued for service, even if
3097 	 * empty (see comments in __bfq_bfqq_expire() for
3098 	 * details). But, if no process will send requests to bfqq any
3099 	 * longer, then there is no point in keeping bfqq queued for
3100 	 * service. In addition, keeping bfqq queued for service, but
3101 	 * with no process ref any longer, may have caused bfqq to be
3102 	 * freed when dequeued from service. But this is assumed to
3103 	 * never happen.
3104 	 */
3105 	if (bfq_bfqq_busy(bfqq) && RB_EMPTY_ROOT(&bfqq->sort_list) &&
3106 	    bfqq != bfqd->in_service_queue)
3107 		bfq_del_bfqq_busy(bfqq, false);
3108 
3109 	bfq_reassign_last_bfqq(bfqq, NULL);
3110 
3111 	bfq_put_queue(bfqq);
3112 }
3113 
3114 static void
bfq_merge_bfqqs(struct bfq_data * bfqd,struct bfq_io_cq * bic,struct bfq_queue * bfqq,struct bfq_queue * new_bfqq)3115 bfq_merge_bfqqs(struct bfq_data *bfqd, struct bfq_io_cq *bic,
3116 		struct bfq_queue *bfqq, struct bfq_queue *new_bfqq)
3117 {
3118 	bfq_log_bfqq(bfqd, bfqq, "merging with queue %lu",
3119 		(unsigned long)new_bfqq->pid);
3120 	/* Save weight raising and idle window of the merged queues */
3121 	bfq_bfqq_save_state(bfqq);
3122 	bfq_bfqq_save_state(new_bfqq);
3123 	if (bfq_bfqq_IO_bound(bfqq))
3124 		bfq_mark_bfqq_IO_bound(new_bfqq);
3125 	bfq_clear_bfqq_IO_bound(bfqq);
3126 
3127 	/*
3128 	 * The processes associated with bfqq are cooperators of the
3129 	 * processes associated with new_bfqq. So, if bfqq has a
3130 	 * waker, then assume that all these processes will be happy
3131 	 * to let bfqq's waker freely inject I/O when they have no
3132 	 * I/O.
3133 	 */
3134 	if (bfqq->waker_bfqq && !new_bfqq->waker_bfqq &&
3135 	    bfqq->waker_bfqq != new_bfqq) {
3136 		new_bfqq->waker_bfqq = bfqq->waker_bfqq;
3137 		new_bfqq->tentative_waker_bfqq = NULL;
3138 
3139 		/*
3140 		 * If the waker queue disappears, then
3141 		 * new_bfqq->waker_bfqq must be reset. So insert
3142 		 * new_bfqq into the woken_list of the waker. See
3143 		 * bfq_check_waker for details.
3144 		 */
3145 		hlist_add_head(&new_bfqq->woken_list_node,
3146 			       &new_bfqq->waker_bfqq->woken_list);
3147 
3148 	}
3149 
3150 	/*
3151 	 * If bfqq is weight-raised, then let new_bfqq inherit
3152 	 * weight-raising. To reduce false positives, neglect the case
3153 	 * where bfqq has just been created, but has not yet made it
3154 	 * to be weight-raised (which may happen because EQM may merge
3155 	 * bfqq even before bfq_add_request is executed for the first
3156 	 * time for bfqq). Handling this case would however be very
3157 	 * easy, thanks to the flag just_created.
3158 	 */
3159 	if (new_bfqq->wr_coeff == 1 && bfqq->wr_coeff > 1) {
3160 		new_bfqq->wr_coeff = bfqq->wr_coeff;
3161 		new_bfqq->wr_cur_max_time = bfqq->wr_cur_max_time;
3162 		new_bfqq->last_wr_start_finish = bfqq->last_wr_start_finish;
3163 		new_bfqq->wr_start_at_switch_to_srt =
3164 			bfqq->wr_start_at_switch_to_srt;
3165 		if (bfq_bfqq_busy(new_bfqq))
3166 			bfqd->wr_busy_queues++;
3167 		new_bfqq->entity.prio_changed = 1;
3168 	}
3169 
3170 	if (bfqq->wr_coeff > 1) { /* bfqq has given its wr to new_bfqq */
3171 		bfqq->wr_coeff = 1;
3172 		bfqq->entity.prio_changed = 1;
3173 		if (bfq_bfqq_busy(bfqq))
3174 			bfqd->wr_busy_queues--;
3175 	}
3176 
3177 	bfq_log_bfqq(bfqd, new_bfqq, "merge_bfqqs: wr_busy %d",
3178 		     bfqd->wr_busy_queues);
3179 
3180 	/*
3181 	 * Merge queues (that is, let bic redirect its requests to new_bfqq)
3182 	 */
3183 	bic_set_bfqq(bic, new_bfqq, 1);
3184 	bfq_mark_bfqq_coop(new_bfqq);
3185 	/*
3186 	 * new_bfqq now belongs to at least two bics (it is a shared queue):
3187 	 * set new_bfqq->bic to NULL. bfqq either:
3188 	 * - does not belong to any bic any more, and hence bfqq->bic must
3189 	 *   be set to NULL, or
3190 	 * - is a queue whose owning bics have already been redirected to a
3191 	 *   different queue, hence the queue is destined to not belong to
3192 	 *   any bic soon and bfqq->bic is already NULL (therefore the next
3193 	 *   assignment causes no harm).
3194 	 */
3195 	new_bfqq->bic = NULL;
3196 	/*
3197 	 * If the queue is shared, the pid is the pid of one of the associated
3198 	 * processes. Which pid depends on the exact sequence of merge events
3199 	 * the queue underwent. So printing such a pid is useless and confusing
3200 	 * because it reports a random pid between those of the associated
3201 	 * processes.
3202 	 * We mark such a queue with a pid -1, and then print SHARED instead of
3203 	 * a pid in logging messages.
3204 	 */
3205 	new_bfqq->pid = -1;
3206 	bfqq->bic = NULL;
3207 
3208 	bfq_reassign_last_bfqq(bfqq, new_bfqq);
3209 
3210 	bfq_release_process_ref(bfqd, bfqq);
3211 }
3212 
bfq_allow_bio_merge(struct request_queue * q,struct request * rq,struct bio * bio)3213 static bool bfq_allow_bio_merge(struct request_queue *q, struct request *rq,
3214 				struct bio *bio)
3215 {
3216 	struct bfq_data *bfqd = q->elevator->elevator_data;
3217 	bool is_sync = op_is_sync(bio->bi_opf);
3218 	struct bfq_queue *bfqq = bfqd->bio_bfqq, *new_bfqq;
3219 
3220 	/*
3221 	 * Disallow merge of a sync bio into an async request.
3222 	 */
3223 	if (is_sync && !rq_is_sync(rq))
3224 		return false;
3225 
3226 	/*
3227 	 * Lookup the bfqq that this bio will be queued with. Allow
3228 	 * merge only if rq is queued there.
3229 	 */
3230 	if (!bfqq)
3231 		return false;
3232 
3233 	/*
3234 	 * We take advantage of this function to perform an early merge
3235 	 * of the queues of possible cooperating processes.
3236 	 */
3237 	new_bfqq = bfq_setup_cooperator(bfqd, bfqq, bio, false, bfqd->bio_bic);
3238 	if (new_bfqq) {
3239 		/*
3240 		 * bic still points to bfqq, then it has not yet been
3241 		 * redirected to some other bfq_queue, and a queue
3242 		 * merge between bfqq and new_bfqq can be safely
3243 		 * fulfilled, i.e., bic can be redirected to new_bfqq
3244 		 * and bfqq can be put.
3245 		 */
3246 		bfq_merge_bfqqs(bfqd, bfqd->bio_bic, bfqq,
3247 				new_bfqq);
3248 		/*
3249 		 * If we get here, bio will be queued into new_queue,
3250 		 * so use new_bfqq to decide whether bio and rq can be
3251 		 * merged.
3252 		 */
3253 		bfqq = new_bfqq;
3254 
3255 		/*
3256 		 * Change also bqfd->bio_bfqq, as
3257 		 * bfqd->bio_bic now points to new_bfqq, and
3258 		 * this function may be invoked again (and then may
3259 		 * use again bqfd->bio_bfqq).
3260 		 */
3261 		bfqd->bio_bfqq = bfqq;
3262 	}
3263 
3264 	return bfqq == RQ_BFQQ(rq);
3265 }
3266 
3267 /*
3268  * Set the maximum time for the in-service queue to consume its
3269  * budget. This prevents seeky processes from lowering the throughput.
3270  * In practice, a time-slice service scheme is used with seeky
3271  * processes.
3272  */
bfq_set_budget_timeout(struct bfq_data * bfqd,struct bfq_queue * bfqq)3273 static void bfq_set_budget_timeout(struct bfq_data *bfqd,
3274 				   struct bfq_queue *bfqq)
3275 {
3276 	unsigned int timeout_coeff;
3277 
3278 	if (bfqq->wr_cur_max_time == bfqd->bfq_wr_rt_max_time)
3279 		timeout_coeff = 1;
3280 	else
3281 		timeout_coeff = bfqq->entity.weight / bfqq->entity.orig_weight;
3282 
3283 	bfqd->last_budget_start = ktime_get();
3284 
3285 	bfqq->budget_timeout = jiffies +
3286 		bfqd->bfq_timeout * timeout_coeff;
3287 }
3288 
__bfq_set_in_service_queue(struct bfq_data * bfqd,struct bfq_queue * bfqq)3289 static void __bfq_set_in_service_queue(struct bfq_data *bfqd,
3290 				       struct bfq_queue *bfqq)
3291 {
3292 	if (bfqq) {
3293 		bfq_clear_bfqq_fifo_expire(bfqq);
3294 
3295 		bfqd->budgets_assigned = (bfqd->budgets_assigned * 7 + 256) / 8;
3296 
3297 		if (time_is_before_jiffies(bfqq->last_wr_start_finish) &&
3298 		    bfqq->wr_coeff > 1 &&
3299 		    bfqq->wr_cur_max_time == bfqd->bfq_wr_rt_max_time &&
3300 		    time_is_before_jiffies(bfqq->budget_timeout)) {
3301 			/*
3302 			 * For soft real-time queues, move the start
3303 			 * of the weight-raising period forward by the
3304 			 * time the queue has not received any
3305 			 * service. Otherwise, a relatively long
3306 			 * service delay is likely to cause the
3307 			 * weight-raising period of the queue to end,
3308 			 * because of the short duration of the
3309 			 * weight-raising period of a soft real-time
3310 			 * queue.  It is worth noting that this move
3311 			 * is not so dangerous for the other queues,
3312 			 * because soft real-time queues are not
3313 			 * greedy.
3314 			 *
3315 			 * To not add a further variable, we use the
3316 			 * overloaded field budget_timeout to
3317 			 * determine for how long the queue has not
3318 			 * received service, i.e., how much time has
3319 			 * elapsed since the queue expired. However,
3320 			 * this is a little imprecise, because
3321 			 * budget_timeout is set to jiffies if bfqq
3322 			 * not only expires, but also remains with no
3323 			 * request.
3324 			 */
3325 			if (time_after(bfqq->budget_timeout,
3326 				       bfqq->last_wr_start_finish))
3327 				bfqq->last_wr_start_finish +=
3328 					jiffies - bfqq->budget_timeout;
3329 			else
3330 				bfqq->last_wr_start_finish = jiffies;
3331 		}
3332 
3333 		bfq_set_budget_timeout(bfqd, bfqq);
3334 		bfq_log_bfqq(bfqd, bfqq,
3335 			     "set_in_service_queue, cur-budget = %d",
3336 			     bfqq->entity.budget);
3337 	}
3338 
3339 	bfqd->in_service_queue = bfqq;
3340 	bfqd->in_serv_last_pos = 0;
3341 }
3342 
3343 /*
3344  * Get and set a new queue for service.
3345  */
bfq_set_in_service_queue(struct bfq_data * bfqd)3346 static struct bfq_queue *bfq_set_in_service_queue(struct bfq_data *bfqd)
3347 {
3348 	struct bfq_queue *bfqq = bfq_get_next_queue(bfqd);
3349 
3350 	__bfq_set_in_service_queue(bfqd, bfqq);
3351 	return bfqq;
3352 }
3353 
bfq_arm_slice_timer(struct bfq_data * bfqd)3354 static void bfq_arm_slice_timer(struct bfq_data *bfqd)
3355 {
3356 	struct bfq_queue *bfqq = bfqd->in_service_queue;
3357 	u32 sl;
3358 
3359 	bfq_mark_bfqq_wait_request(bfqq);
3360 
3361 	/*
3362 	 * We don't want to idle for seeks, but we do want to allow
3363 	 * fair distribution of slice time for a process doing back-to-back
3364 	 * seeks. So allow a little bit of time for him to submit a new rq.
3365 	 */
3366 	sl = bfqd->bfq_slice_idle;
3367 	/*
3368 	 * Unless the queue is being weight-raised or the scenario is
3369 	 * asymmetric, grant only minimum idle time if the queue
3370 	 * is seeky. A long idling is preserved for a weight-raised
3371 	 * queue, or, more in general, in an asymmetric scenario,
3372 	 * because a long idling is needed for guaranteeing to a queue
3373 	 * its reserved share of the throughput (in particular, it is
3374 	 * needed if the queue has a higher weight than some other
3375 	 * queue).
3376 	 */
3377 	if (BFQQ_SEEKY(bfqq) && bfqq->wr_coeff == 1 &&
3378 	    !bfq_asymmetric_scenario(bfqd, bfqq))
3379 		sl = min_t(u64, sl, BFQ_MIN_TT);
3380 	else if (bfqq->wr_coeff > 1)
3381 		sl = max_t(u32, sl, 20ULL * NSEC_PER_MSEC);
3382 
3383 	bfqd->last_idling_start = ktime_get();
3384 	bfqd->last_idling_start_jiffies = jiffies;
3385 
3386 	hrtimer_start(&bfqd->idle_slice_timer, ns_to_ktime(sl),
3387 		      HRTIMER_MODE_REL);
3388 	bfqg_stats_set_start_idle_time(bfqq_group(bfqq));
3389 }
3390 
3391 /*
3392  * In autotuning mode, max_budget is dynamically recomputed as the
3393  * amount of sectors transferred in timeout at the estimated peak
3394  * rate. This enables BFQ to utilize a full timeslice with a full
3395  * budget, even if the in-service queue is served at peak rate. And
3396  * this maximises throughput with sequential workloads.
3397  */
bfq_calc_max_budget(struct bfq_data * bfqd)3398 static unsigned long bfq_calc_max_budget(struct bfq_data *bfqd)
3399 {
3400 	return (u64)bfqd->peak_rate * USEC_PER_MSEC *
3401 		jiffies_to_msecs(bfqd->bfq_timeout)>>BFQ_RATE_SHIFT;
3402 }
3403 
3404 /*
3405  * Update parameters related to throughput and responsiveness, as a
3406  * function of the estimated peak rate. See comments on
3407  * bfq_calc_max_budget(), and on the ref_wr_duration array.
3408  */
update_thr_responsiveness_params(struct bfq_data * bfqd)3409 static void update_thr_responsiveness_params(struct bfq_data *bfqd)
3410 {
3411 	if (bfqd->bfq_user_max_budget == 0) {
3412 		bfqd->bfq_max_budget =
3413 			bfq_calc_max_budget(bfqd);
3414 		bfq_log(bfqd, "new max_budget = %d", bfqd->bfq_max_budget);
3415 	}
3416 }
3417 
bfq_reset_rate_computation(struct bfq_data * bfqd,struct request * rq)3418 static void bfq_reset_rate_computation(struct bfq_data *bfqd,
3419 				       struct request *rq)
3420 {
3421 	if (rq != NULL) { /* new rq dispatch now, reset accordingly */
3422 		bfqd->last_dispatch = bfqd->first_dispatch = ktime_get_ns();
3423 		bfqd->peak_rate_samples = 1;
3424 		bfqd->sequential_samples = 0;
3425 		bfqd->tot_sectors_dispatched = bfqd->last_rq_max_size =
3426 			blk_rq_sectors(rq);
3427 	} else /* no new rq dispatched, just reset the number of samples */
3428 		bfqd->peak_rate_samples = 0; /* full re-init on next disp. */
3429 
3430 	bfq_log(bfqd,
3431 		"reset_rate_computation at end, sample %u/%u tot_sects %llu",
3432 		bfqd->peak_rate_samples, bfqd->sequential_samples,
3433 		bfqd->tot_sectors_dispatched);
3434 }
3435 
bfq_update_rate_reset(struct bfq_data * bfqd,struct request * rq)3436 static void bfq_update_rate_reset(struct bfq_data *bfqd, struct request *rq)
3437 {
3438 	u32 rate, weight, divisor;
3439 
3440 	/*
3441 	 * For the convergence property to hold (see comments on
3442 	 * bfq_update_peak_rate()) and for the assessment to be
3443 	 * reliable, a minimum number of samples must be present, and
3444 	 * a minimum amount of time must have elapsed. If not so, do
3445 	 * not compute new rate. Just reset parameters, to get ready
3446 	 * for a new evaluation attempt.
3447 	 */
3448 	if (bfqd->peak_rate_samples < BFQ_RATE_MIN_SAMPLES ||
3449 	    bfqd->delta_from_first < BFQ_RATE_MIN_INTERVAL)
3450 		goto reset_computation;
3451 
3452 	/*
3453 	 * If a new request completion has occurred after last
3454 	 * dispatch, then, to approximate the rate at which requests
3455 	 * have been served by the device, it is more precise to
3456 	 * extend the observation interval to the last completion.
3457 	 */
3458 	bfqd->delta_from_first =
3459 		max_t(u64, bfqd->delta_from_first,
3460 		      bfqd->last_completion - bfqd->first_dispatch);
3461 
3462 	/*
3463 	 * Rate computed in sects/usec, and not sects/nsec, for
3464 	 * precision issues.
3465 	 */
3466 	rate = div64_ul(bfqd->tot_sectors_dispatched<<BFQ_RATE_SHIFT,
3467 			div_u64(bfqd->delta_from_first, NSEC_PER_USEC));
3468 
3469 	/*
3470 	 * Peak rate not updated if:
3471 	 * - the percentage of sequential dispatches is below 3/4 of the
3472 	 *   total, and rate is below the current estimated peak rate
3473 	 * - rate is unreasonably high (> 20M sectors/sec)
3474 	 */
3475 	if ((bfqd->sequential_samples < (3 * bfqd->peak_rate_samples)>>2 &&
3476 	     rate <= bfqd->peak_rate) ||
3477 		rate > 20<<BFQ_RATE_SHIFT)
3478 		goto reset_computation;
3479 
3480 	/*
3481 	 * We have to update the peak rate, at last! To this purpose,
3482 	 * we use a low-pass filter. We compute the smoothing constant
3483 	 * of the filter as a function of the 'weight' of the new
3484 	 * measured rate.
3485 	 *
3486 	 * As can be seen in next formulas, we define this weight as a
3487 	 * quantity proportional to how sequential the workload is,
3488 	 * and to how long the observation time interval is.
3489 	 *
3490 	 * The weight runs from 0 to 8. The maximum value of the
3491 	 * weight, 8, yields the minimum value for the smoothing
3492 	 * constant. At this minimum value for the smoothing constant,
3493 	 * the measured rate contributes for half of the next value of
3494 	 * the estimated peak rate.
3495 	 *
3496 	 * So, the first step is to compute the weight as a function
3497 	 * of how sequential the workload is. Note that the weight
3498 	 * cannot reach 9, because bfqd->sequential_samples cannot
3499 	 * become equal to bfqd->peak_rate_samples, which, in its
3500 	 * turn, holds true because bfqd->sequential_samples is not
3501 	 * incremented for the first sample.
3502 	 */
3503 	weight = (9 * bfqd->sequential_samples) / bfqd->peak_rate_samples;
3504 
3505 	/*
3506 	 * Second step: further refine the weight as a function of the
3507 	 * duration of the observation interval.
3508 	 */
3509 	weight = min_t(u32, 8,
3510 		       div_u64(weight * bfqd->delta_from_first,
3511 			       BFQ_RATE_REF_INTERVAL));
3512 
3513 	/*
3514 	 * Divisor ranging from 10, for minimum weight, to 2, for
3515 	 * maximum weight.
3516 	 */
3517 	divisor = 10 - weight;
3518 
3519 	/*
3520 	 * Finally, update peak rate:
3521 	 *
3522 	 * peak_rate = peak_rate * (divisor-1) / divisor  +  rate / divisor
3523 	 */
3524 	bfqd->peak_rate *= divisor-1;
3525 	bfqd->peak_rate /= divisor;
3526 	rate /= divisor; /* smoothing constant alpha = 1/divisor */
3527 
3528 	bfqd->peak_rate += rate;
3529 
3530 	/*
3531 	 * For a very slow device, bfqd->peak_rate can reach 0 (see
3532 	 * the minimum representable values reported in the comments
3533 	 * on BFQ_RATE_SHIFT). Push to 1 if this happens, to avoid
3534 	 * divisions by zero where bfqd->peak_rate is used as a
3535 	 * divisor.
3536 	 */
3537 	bfqd->peak_rate = max_t(u32, 1, bfqd->peak_rate);
3538 
3539 	update_thr_responsiveness_params(bfqd);
3540 
3541 reset_computation:
3542 	bfq_reset_rate_computation(bfqd, rq);
3543 }
3544 
3545 /*
3546  * Update the read/write peak rate (the main quantity used for
3547  * auto-tuning, see update_thr_responsiveness_params()).
3548  *
3549  * It is not trivial to estimate the peak rate (correctly): because of
3550  * the presence of sw and hw queues between the scheduler and the
3551  * device components that finally serve I/O requests, it is hard to
3552  * say exactly when a given dispatched request is served inside the
3553  * device, and for how long. As a consequence, it is hard to know
3554  * precisely at what rate a given set of requests is actually served
3555  * by the device.
3556  *
3557  * On the opposite end, the dispatch time of any request is trivially
3558  * available, and, from this piece of information, the "dispatch rate"
3559  * of requests can be immediately computed. So, the idea in the next
3560  * function is to use what is known, namely request dispatch times
3561  * (plus, when useful, request completion times), to estimate what is
3562  * unknown, namely in-device request service rate.
3563  *
3564  * The main issue is that, because of the above facts, the rate at
3565  * which a certain set of requests is dispatched over a certain time
3566  * interval can vary greatly with respect to the rate at which the
3567  * same requests are then served. But, since the size of any
3568  * intermediate queue is limited, and the service scheme is lossless
3569  * (no request is silently dropped), the following obvious convergence
3570  * property holds: the number of requests dispatched MUST become
3571  * closer and closer to the number of requests completed as the
3572  * observation interval grows. This is the key property used in
3573  * the next function to estimate the peak service rate as a function
3574  * of the observed dispatch rate. The function assumes to be invoked
3575  * on every request dispatch.
3576  */
bfq_update_peak_rate(struct bfq_data * bfqd,struct request * rq)3577 static void bfq_update_peak_rate(struct bfq_data *bfqd, struct request *rq)
3578 {
3579 	u64 now_ns = ktime_get_ns();
3580 
3581 	if (bfqd->peak_rate_samples == 0) { /* first dispatch */
3582 		bfq_log(bfqd, "update_peak_rate: goto reset, samples %d",
3583 			bfqd->peak_rate_samples);
3584 		bfq_reset_rate_computation(bfqd, rq);
3585 		goto update_last_values; /* will add one sample */
3586 	}
3587 
3588 	/*
3589 	 * Device idle for very long: the observation interval lasting
3590 	 * up to this dispatch cannot be a valid observation interval
3591 	 * for computing a new peak rate (similarly to the late-
3592 	 * completion event in bfq_completed_request()). Go to
3593 	 * update_rate_and_reset to have the following three steps
3594 	 * taken:
3595 	 * - close the observation interval at the last (previous)
3596 	 *   request dispatch or completion
3597 	 * - compute rate, if possible, for that observation interval
3598 	 * - start a new observation interval with this dispatch
3599 	 */
3600 	if (now_ns - bfqd->last_dispatch > 100*NSEC_PER_MSEC &&
3601 	    bfqd->rq_in_driver == 0)
3602 		goto update_rate_and_reset;
3603 
3604 	/* Update sampling information */
3605 	bfqd->peak_rate_samples++;
3606 
3607 	if ((bfqd->rq_in_driver > 0 ||
3608 		now_ns - bfqd->last_completion < BFQ_MIN_TT)
3609 	    && !BFQ_RQ_SEEKY(bfqd, bfqd->last_position, rq))
3610 		bfqd->sequential_samples++;
3611 
3612 	bfqd->tot_sectors_dispatched += blk_rq_sectors(rq);
3613 
3614 	/* Reset max observed rq size every 32 dispatches */
3615 	if (likely(bfqd->peak_rate_samples % 32))
3616 		bfqd->last_rq_max_size =
3617 			max_t(u32, blk_rq_sectors(rq), bfqd->last_rq_max_size);
3618 	else
3619 		bfqd->last_rq_max_size = blk_rq_sectors(rq);
3620 
3621 	bfqd->delta_from_first = now_ns - bfqd->first_dispatch;
3622 
3623 	/* Target observation interval not yet reached, go on sampling */
3624 	if (bfqd->delta_from_first < BFQ_RATE_REF_INTERVAL)
3625 		goto update_last_values;
3626 
3627 update_rate_and_reset:
3628 	bfq_update_rate_reset(bfqd, rq);
3629 update_last_values:
3630 	bfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
3631 	if (RQ_BFQQ(rq) == bfqd->in_service_queue)
3632 		bfqd->in_serv_last_pos = bfqd->last_position;
3633 	bfqd->last_dispatch = now_ns;
3634 }
3635 
3636 /*
3637  * Remove request from internal lists.
3638  */
bfq_dispatch_remove(struct request_queue * q,struct request * rq)3639 static void bfq_dispatch_remove(struct request_queue *q, struct request *rq)
3640 {
3641 	struct bfq_queue *bfqq = RQ_BFQQ(rq);
3642 
3643 	/*
3644 	 * For consistency, the next instruction should have been
3645 	 * executed after removing the request from the queue and
3646 	 * dispatching it.  We execute instead this instruction before
3647 	 * bfq_remove_request() (and hence introduce a temporary
3648 	 * inconsistency), for efficiency.  In fact, should this
3649 	 * dispatch occur for a non in-service bfqq, this anticipated
3650 	 * increment prevents two counters related to bfqq->dispatched
3651 	 * from risking to be, first, uselessly decremented, and then
3652 	 * incremented again when the (new) value of bfqq->dispatched
3653 	 * happens to be taken into account.
3654 	 */
3655 	bfqq->dispatched++;
3656 	bfq_update_peak_rate(q->elevator->elevator_data, rq);
3657 
3658 	bfq_remove_request(q, rq);
3659 }
3660 
3661 /*
3662  * There is a case where idling does not have to be performed for
3663  * throughput concerns, but to preserve the throughput share of
3664  * the process associated with bfqq.
3665  *
3666  * To introduce this case, we can note that allowing the drive
3667  * to enqueue more than one request at a time, and hence
3668  * delegating de facto final scheduling decisions to the
3669  * drive's internal scheduler, entails loss of control on the
3670  * actual request service order. In particular, the critical
3671  * situation is when requests from different processes happen
3672  * to be present, at the same time, in the internal queue(s)
3673  * of the drive. In such a situation, the drive, by deciding
3674  * the service order of the internally-queued requests, does
3675  * determine also the actual throughput distribution among
3676  * these processes. But the drive typically has no notion or
3677  * concern about per-process throughput distribution, and
3678  * makes its decisions only on a per-request basis. Therefore,
3679  * the service distribution enforced by the drive's internal
3680  * scheduler is likely to coincide with the desired throughput
3681  * distribution only in a completely symmetric, or favorably
3682  * skewed scenario where:
3683  * (i-a) each of these processes must get the same throughput as
3684  *	 the others,
3685  * (i-b) in case (i-a) does not hold, it holds that the process
3686  *       associated with bfqq must receive a lower or equal
3687  *	 throughput than any of the other processes;
3688  * (ii)  the I/O of each process has the same properties, in
3689  *       terms of locality (sequential or random), direction
3690  *       (reads or writes), request sizes, greediness
3691  *       (from I/O-bound to sporadic), and so on;
3692 
3693  * In fact, in such a scenario, the drive tends to treat the requests
3694  * of each process in about the same way as the requests of the
3695  * others, and thus to provide each of these processes with about the
3696  * same throughput.  This is exactly the desired throughput
3697  * distribution if (i-a) holds, or, if (i-b) holds instead, this is an
3698  * even more convenient distribution for (the process associated with)
3699  * bfqq.
3700  *
3701  * In contrast, in any asymmetric or unfavorable scenario, device
3702  * idling (I/O-dispatch plugging) is certainly needed to guarantee
3703  * that bfqq receives its assigned fraction of the device throughput
3704  * (see [1] for details).
3705  *
3706  * The problem is that idling may significantly reduce throughput with
3707  * certain combinations of types of I/O and devices. An important
3708  * example is sync random I/O on flash storage with command
3709  * queueing. So, unless bfqq falls in cases where idling also boosts
3710  * throughput, it is important to check conditions (i-a), i(-b) and
3711  * (ii) accurately, so as to avoid idling when not strictly needed for
3712  * service guarantees.
3713  *
3714  * Unfortunately, it is extremely difficult to thoroughly check
3715  * condition (ii). And, in case there are active groups, it becomes
3716  * very difficult to check conditions (i-a) and (i-b) too.  In fact,
3717  * if there are active groups, then, for conditions (i-a) or (i-b) to
3718  * become false 'indirectly', it is enough that an active group
3719  * contains more active processes or sub-groups than some other active
3720  * group. More precisely, for conditions (i-a) or (i-b) to become
3721  * false because of such a group, it is not even necessary that the
3722  * group is (still) active: it is sufficient that, even if the group
3723  * has become inactive, some of its descendant processes still have
3724  * some request already dispatched but still waiting for
3725  * completion. In fact, requests have still to be guaranteed their
3726  * share of the throughput even after being dispatched. In this
3727  * respect, it is easy to show that, if a group frequently becomes
3728  * inactive while still having in-flight requests, and if, when this
3729  * happens, the group is not considered in the calculation of whether
3730  * the scenario is asymmetric, then the group may fail to be
3731  * guaranteed its fair share of the throughput (basically because
3732  * idling may not be performed for the descendant processes of the
3733  * group, but it had to be).  We address this issue with the following
3734  * bi-modal behavior, implemented in the function
3735  * bfq_asymmetric_scenario().
3736  *
3737  * If there are groups with requests waiting for completion
3738  * (as commented above, some of these groups may even be
3739  * already inactive), then the scenario is tagged as
3740  * asymmetric, conservatively, without checking any of the
3741  * conditions (i-a), (i-b) or (ii). So the device is idled for bfqq.
3742  * This behavior matches also the fact that groups are created
3743  * exactly if controlling I/O is a primary concern (to
3744  * preserve bandwidth and latency guarantees).
3745  *
3746  * On the opposite end, if there are no groups with requests waiting
3747  * for completion, then only conditions (i-a) and (i-b) are actually
3748  * controlled, i.e., provided that conditions (i-a) or (i-b) holds,
3749  * idling is not performed, regardless of whether condition (ii)
3750  * holds.  In other words, only if conditions (i-a) and (i-b) do not
3751  * hold, then idling is allowed, and the device tends to be prevented
3752  * from queueing many requests, possibly of several processes. Since
3753  * there are no groups with requests waiting for completion, then, to
3754  * control conditions (i-a) and (i-b) it is enough to check just
3755  * whether all the queues with requests waiting for completion also
3756  * have the same weight.
3757  *
3758  * Not checking condition (ii) evidently exposes bfqq to the
3759  * risk of getting less throughput than its fair share.
3760  * However, for queues with the same weight, a further
3761  * mechanism, preemption, mitigates or even eliminates this
3762  * problem. And it does so without consequences on overall
3763  * throughput. This mechanism and its benefits are explained
3764  * in the next three paragraphs.
3765  *
3766  * Even if a queue, say Q, is expired when it remains idle, Q
3767  * can still preempt the new in-service queue if the next
3768  * request of Q arrives soon (see the comments on
3769  * bfq_bfqq_update_budg_for_activation). If all queues and
3770  * groups have the same weight, this form of preemption,
3771  * combined with the hole-recovery heuristic described in the
3772  * comments on function bfq_bfqq_update_budg_for_activation,
3773  * are enough to preserve a correct bandwidth distribution in
3774  * the mid term, even without idling. In fact, even if not
3775  * idling allows the internal queues of the device to contain
3776  * many requests, and thus to reorder requests, we can rather
3777  * safely assume that the internal scheduler still preserves a
3778  * minimum of mid-term fairness.
3779  *
3780  * More precisely, this preemption-based, idleless approach
3781  * provides fairness in terms of IOPS, and not sectors per
3782  * second. This can be seen with a simple example. Suppose
3783  * that there are two queues with the same weight, but that
3784  * the first queue receives requests of 8 sectors, while the
3785  * second queue receives requests of 1024 sectors. In
3786  * addition, suppose that each of the two queues contains at
3787  * most one request at a time, which implies that each queue
3788  * always remains idle after it is served. Finally, after
3789  * remaining idle, each queue receives very quickly a new
3790  * request. It follows that the two queues are served
3791  * alternatively, preempting each other if needed. This
3792  * implies that, although both queues have the same weight,
3793  * the queue with large requests receives a service that is
3794  * 1024/8 times as high as the service received by the other
3795  * queue.
3796  *
3797  * The motivation for using preemption instead of idling (for
3798  * queues with the same weight) is that, by not idling,
3799  * service guarantees are preserved (completely or at least in
3800  * part) without minimally sacrificing throughput. And, if
3801  * there is no active group, then the primary expectation for
3802  * this device is probably a high throughput.
3803  *
3804  * We are now left only with explaining the two sub-conditions in the
3805  * additional compound condition that is checked below for deciding
3806  * whether the scenario is asymmetric. To explain the first
3807  * sub-condition, we need to add that the function
3808  * bfq_asymmetric_scenario checks the weights of only
3809  * non-weight-raised queues, for efficiency reasons (see comments on
3810  * bfq_weights_tree_add()). Then the fact that bfqq is weight-raised
3811  * is checked explicitly here. More precisely, the compound condition
3812  * below takes into account also the fact that, even if bfqq is being
3813  * weight-raised, the scenario is still symmetric if all queues with
3814  * requests waiting for completion happen to be
3815  * weight-raised. Actually, we should be even more precise here, and
3816  * differentiate between interactive weight raising and soft real-time
3817  * weight raising.
3818  *
3819  * The second sub-condition checked in the compound condition is
3820  * whether there is a fair amount of already in-flight I/O not
3821  * belonging to bfqq. If so, I/O dispatching is to be plugged, for the
3822  * following reason. The drive may decide to serve in-flight
3823  * non-bfqq's I/O requests before bfqq's ones, thereby delaying the
3824  * arrival of new I/O requests for bfqq (recall that bfqq is sync). If
3825  * I/O-dispatching is not plugged, then, while bfqq remains empty, a
3826  * basically uncontrolled amount of I/O from other queues may be
3827  * dispatched too, possibly causing the service of bfqq's I/O to be
3828  * delayed even longer in the drive. This problem gets more and more
3829  * serious as the speed and the queue depth of the drive grow,
3830  * because, as these two quantities grow, the probability to find no
3831  * queue busy but many requests in flight grows too. By contrast,
3832  * plugging I/O dispatching minimizes the delay induced by already
3833  * in-flight I/O, and enables bfqq to recover the bandwidth it may
3834  * lose because of this delay.
3835  *
3836  * As a side note, it is worth considering that the above
3837  * device-idling countermeasures may however fail in the following
3838  * unlucky scenario: if I/O-dispatch plugging is (correctly) disabled
3839  * in a time period during which all symmetry sub-conditions hold, and
3840  * therefore the device is allowed to enqueue many requests, but at
3841  * some later point in time some sub-condition stops to hold, then it
3842  * may become impossible to make requests be served in the desired
3843  * order until all the requests already queued in the device have been
3844  * served. The last sub-condition commented above somewhat mitigates
3845  * this problem for weight-raised queues.
3846  *
3847  * However, as an additional mitigation for this problem, we preserve
3848  * plugging for a special symmetric case that may suddenly turn into
3849  * asymmetric: the case where only bfqq is busy. In this case, not
3850  * expiring bfqq does not cause any harm to any other queues in terms
3851  * of service guarantees. In contrast, it avoids the following unlucky
3852  * sequence of events: (1) bfqq is expired, (2) a new queue with a
3853  * lower weight than bfqq becomes busy (or more queues), (3) the new
3854  * queue is served until a new request arrives for bfqq, (4) when bfqq
3855  * is finally served, there are so many requests of the new queue in
3856  * the drive that the pending requests for bfqq take a lot of time to
3857  * be served. In particular, event (2) may case even already
3858  * dispatched requests of bfqq to be delayed, inside the drive. So, to
3859  * avoid this series of events, the scenario is preventively declared
3860  * as asymmetric also if bfqq is the only busy queues
3861  */
idling_needed_for_service_guarantees(struct bfq_data * bfqd,struct bfq_queue * bfqq)3862 static bool idling_needed_for_service_guarantees(struct bfq_data *bfqd,
3863 						 struct bfq_queue *bfqq)
3864 {
3865 	int tot_busy_queues = bfq_tot_busy_queues(bfqd);
3866 
3867 	/* No point in idling for bfqq if it won't get requests any longer */
3868 	if (unlikely(!bfqq_process_refs(bfqq)))
3869 		return false;
3870 
3871 	return (bfqq->wr_coeff > 1 &&
3872 		(bfqd->wr_busy_queues <
3873 		 tot_busy_queues ||
3874 		 bfqd->rq_in_driver >=
3875 		 bfqq->dispatched + 4)) ||
3876 		bfq_asymmetric_scenario(bfqd, bfqq) ||
3877 		tot_busy_queues == 1;
3878 }
3879 
__bfq_bfqq_expire(struct bfq_data * bfqd,struct bfq_queue * bfqq,enum bfqq_expiration reason)3880 static bool __bfq_bfqq_expire(struct bfq_data *bfqd, struct bfq_queue *bfqq,
3881 			      enum bfqq_expiration reason)
3882 {
3883 	/*
3884 	 * If this bfqq is shared between multiple processes, check
3885 	 * to make sure that those processes are still issuing I/Os
3886 	 * within the mean seek distance. If not, it may be time to
3887 	 * break the queues apart again.
3888 	 */
3889 	if (bfq_bfqq_coop(bfqq) && BFQQ_SEEKY(bfqq))
3890 		bfq_mark_bfqq_split_coop(bfqq);
3891 
3892 	/*
3893 	 * Consider queues with a higher finish virtual time than
3894 	 * bfqq. If idling_needed_for_service_guarantees(bfqq) returns
3895 	 * true, then bfqq's bandwidth would be violated if an
3896 	 * uncontrolled amount of I/O from these queues were
3897 	 * dispatched while bfqq is waiting for its new I/O to
3898 	 * arrive. This is exactly what may happen if this is a forced
3899 	 * expiration caused by a preemption attempt, and if bfqq is
3900 	 * not re-scheduled. To prevent this from happening, re-queue
3901 	 * bfqq if it needs I/O-dispatch plugging, even if it is
3902 	 * empty. By doing so, bfqq is granted to be served before the
3903 	 * above queues (provided that bfqq is of course eligible).
3904 	 */
3905 	if (RB_EMPTY_ROOT(&bfqq->sort_list) &&
3906 	    !(reason == BFQQE_PREEMPTED &&
3907 	      idling_needed_for_service_guarantees(bfqd, bfqq))) {
3908 		if (bfqq->dispatched == 0)
3909 			/*
3910 			 * Overloading budget_timeout field to store
3911 			 * the time at which the queue remains with no
3912 			 * backlog and no outstanding request; used by
3913 			 * the weight-raising mechanism.
3914 			 */
3915 			bfqq->budget_timeout = jiffies;
3916 
3917 		bfq_del_bfqq_busy(bfqq, true);
3918 	} else {
3919 		bfq_requeue_bfqq(bfqd, bfqq, true);
3920 		/*
3921 		 * Resort priority tree of potential close cooperators.
3922 		 * See comments on bfq_pos_tree_add_move() for the unlikely().
3923 		 */
3924 		if (unlikely(!bfqd->nonrot_with_queueing &&
3925 			     !RB_EMPTY_ROOT(&bfqq->sort_list)))
3926 			bfq_pos_tree_add_move(bfqd, bfqq);
3927 	}
3928 
3929 	/*
3930 	 * All in-service entities must have been properly deactivated
3931 	 * or requeued before executing the next function, which
3932 	 * resets all in-service entities as no more in service. This
3933 	 * may cause bfqq to be freed. If this happens, the next
3934 	 * function returns true.
3935 	 */
3936 	return __bfq_bfqd_reset_in_service(bfqd);
3937 }
3938 
3939 /**
3940  * __bfq_bfqq_recalc_budget - try to adapt the budget to the @bfqq behavior.
3941  * @bfqd: device data.
3942  * @bfqq: queue to update.
3943  * @reason: reason for expiration.
3944  *
3945  * Handle the feedback on @bfqq budget at queue expiration.
3946  * See the body for detailed comments.
3947  */
__bfq_bfqq_recalc_budget(struct bfq_data * bfqd,struct bfq_queue * bfqq,enum bfqq_expiration reason)3948 static void __bfq_bfqq_recalc_budget(struct bfq_data *bfqd,
3949 				     struct bfq_queue *bfqq,
3950 				     enum bfqq_expiration reason)
3951 {
3952 	struct request *next_rq;
3953 	int budget, min_budget;
3954 
3955 	min_budget = bfq_min_budget(bfqd);
3956 
3957 	if (bfqq->wr_coeff == 1)
3958 		budget = bfqq->max_budget;
3959 	else /*
3960 	      * Use a constant, low budget for weight-raised queues,
3961 	      * to help achieve a low latency. Keep it slightly higher
3962 	      * than the minimum possible budget, to cause a little
3963 	      * bit fewer expirations.
3964 	      */
3965 		budget = 2 * min_budget;
3966 
3967 	bfq_log_bfqq(bfqd, bfqq, "recalc_budg: last budg %d, budg left %d",
3968 		bfqq->entity.budget, bfq_bfqq_budget_left(bfqq));
3969 	bfq_log_bfqq(bfqd, bfqq, "recalc_budg: last max_budg %d, min budg %d",
3970 		budget, bfq_min_budget(bfqd));
3971 	bfq_log_bfqq(bfqd, bfqq, "recalc_budg: sync %d, seeky %d",
3972 		bfq_bfqq_sync(bfqq), BFQQ_SEEKY(bfqd->in_service_queue));
3973 
3974 	if (bfq_bfqq_sync(bfqq) && bfqq->wr_coeff == 1) {
3975 		switch (reason) {
3976 		/*
3977 		 * Caveat: in all the following cases we trade latency
3978 		 * for throughput.
3979 		 */
3980 		case BFQQE_TOO_IDLE:
3981 			/*
3982 			 * This is the only case where we may reduce
3983 			 * the budget: if there is no request of the
3984 			 * process still waiting for completion, then
3985 			 * we assume (tentatively) that the timer has
3986 			 * expired because the batch of requests of
3987 			 * the process could have been served with a
3988 			 * smaller budget.  Hence, betting that
3989 			 * process will behave in the same way when it
3990 			 * becomes backlogged again, we reduce its
3991 			 * next budget.  As long as we guess right,
3992 			 * this budget cut reduces the latency
3993 			 * experienced by the process.
3994 			 *
3995 			 * However, if there are still outstanding
3996 			 * requests, then the process may have not yet
3997 			 * issued its next request just because it is
3998 			 * still waiting for the completion of some of
3999 			 * the still outstanding ones.  So in this
4000 			 * subcase we do not reduce its budget, on the
4001 			 * contrary we increase it to possibly boost
4002 			 * the throughput, as discussed in the
4003 			 * comments to the BUDGET_TIMEOUT case.
4004 			 */
4005 			if (bfqq->dispatched > 0) /* still outstanding reqs */
4006 				budget = min(budget * 2, bfqd->bfq_max_budget);
4007 			else {
4008 				if (budget > 5 * min_budget)
4009 					budget -= 4 * min_budget;
4010 				else
4011 					budget = min_budget;
4012 			}
4013 			break;
4014 		case BFQQE_BUDGET_TIMEOUT:
4015 			/*
4016 			 * We double the budget here because it gives
4017 			 * the chance to boost the throughput if this
4018 			 * is not a seeky process (and has bumped into
4019 			 * this timeout because of, e.g., ZBR).
4020 			 */
4021 			budget = min(budget * 2, bfqd->bfq_max_budget);
4022 			break;
4023 		case BFQQE_BUDGET_EXHAUSTED:
4024 			/*
4025 			 * The process still has backlog, and did not
4026 			 * let either the budget timeout or the disk
4027 			 * idling timeout expire. Hence it is not
4028 			 * seeky, has a short thinktime and may be
4029 			 * happy with a higher budget too. So
4030 			 * definitely increase the budget of this good
4031 			 * candidate to boost the disk throughput.
4032 			 */
4033 			budget = min(budget * 4, bfqd->bfq_max_budget);
4034 			break;
4035 		case BFQQE_NO_MORE_REQUESTS:
4036 			/*
4037 			 * For queues that expire for this reason, it
4038 			 * is particularly important to keep the
4039 			 * budget close to the actual service they
4040 			 * need. Doing so reduces the timestamp
4041 			 * misalignment problem described in the
4042 			 * comments in the body of
4043 			 * __bfq_activate_entity. In fact, suppose
4044 			 * that a queue systematically expires for
4045 			 * BFQQE_NO_MORE_REQUESTS and presents a
4046 			 * new request in time to enjoy timestamp
4047 			 * back-shifting. The larger the budget of the
4048 			 * queue is with respect to the service the
4049 			 * queue actually requests in each service
4050 			 * slot, the more times the queue can be
4051 			 * reactivated with the same virtual finish
4052 			 * time. It follows that, even if this finish
4053 			 * time is pushed to the system virtual time
4054 			 * to reduce the consequent timestamp
4055 			 * misalignment, the queue unjustly enjoys for
4056 			 * many re-activations a lower finish time
4057 			 * than all newly activated queues.
4058 			 *
4059 			 * The service needed by bfqq is measured
4060 			 * quite precisely by bfqq->entity.service.
4061 			 * Since bfqq does not enjoy device idling,
4062 			 * bfqq->entity.service is equal to the number
4063 			 * of sectors that the process associated with
4064 			 * bfqq requested to read/write before waiting
4065 			 * for request completions, or blocking for
4066 			 * other reasons.
4067 			 */
4068 			budget = max_t(int, bfqq->entity.service, min_budget);
4069 			break;
4070 		default:
4071 			return;
4072 		}
4073 	} else if (!bfq_bfqq_sync(bfqq)) {
4074 		/*
4075 		 * Async queues get always the maximum possible
4076 		 * budget, as for them we do not care about latency
4077 		 * (in addition, their ability to dispatch is limited
4078 		 * by the charging factor).
4079 		 */
4080 		budget = bfqd->bfq_max_budget;
4081 	}
4082 
4083 	bfqq->max_budget = budget;
4084 
4085 	if (bfqd->budgets_assigned >= bfq_stats_min_budgets &&
4086 	    !bfqd->bfq_user_max_budget)
4087 		bfqq->max_budget = min(bfqq->max_budget, bfqd->bfq_max_budget);
4088 
4089 	/*
4090 	 * If there is still backlog, then assign a new budget, making
4091 	 * sure that it is large enough for the next request.  Since
4092 	 * the finish time of bfqq must be kept in sync with the
4093 	 * budget, be sure to call __bfq_bfqq_expire() *after* this
4094 	 * update.
4095 	 *
4096 	 * If there is no backlog, then no need to update the budget;
4097 	 * it will be updated on the arrival of a new request.
4098 	 */
4099 	next_rq = bfqq->next_rq;
4100 	if (next_rq)
4101 		bfqq->entity.budget = max_t(unsigned long, bfqq->max_budget,
4102 					    bfq_serv_to_charge(next_rq, bfqq));
4103 
4104 	bfq_log_bfqq(bfqd, bfqq, "head sect: %u, new budget %d",
4105 			next_rq ? blk_rq_sectors(next_rq) : 0,
4106 			bfqq->entity.budget);
4107 }
4108 
4109 /*
4110  * Return true if the process associated with bfqq is "slow". The slow
4111  * flag is used, in addition to the budget timeout, to reduce the
4112  * amount of service provided to seeky processes, and thus reduce
4113  * their chances to lower the throughput. More details in the comments
4114  * on the function bfq_bfqq_expire().
4115  *
4116  * An important observation is in order: as discussed in the comments
4117  * on the function bfq_update_peak_rate(), with devices with internal
4118  * queues, it is hard if ever possible to know when and for how long
4119  * an I/O request is processed by the device (apart from the trivial
4120  * I/O pattern where a new request is dispatched only after the
4121  * previous one has been completed). This makes it hard to evaluate
4122  * the real rate at which the I/O requests of each bfq_queue are
4123  * served.  In fact, for an I/O scheduler like BFQ, serving a
4124  * bfq_queue means just dispatching its requests during its service
4125  * slot (i.e., until the budget of the queue is exhausted, or the
4126  * queue remains idle, or, finally, a timeout fires). But, during the
4127  * service slot of a bfq_queue, around 100 ms at most, the device may
4128  * be even still processing requests of bfq_queues served in previous
4129  * service slots. On the opposite end, the requests of the in-service
4130  * bfq_queue may be completed after the service slot of the queue
4131  * finishes.
4132  *
4133  * Anyway, unless more sophisticated solutions are used
4134  * (where possible), the sum of the sizes of the requests dispatched
4135  * during the service slot of a bfq_queue is probably the only
4136  * approximation available for the service received by the bfq_queue
4137  * during its service slot. And this sum is the quantity used in this
4138  * function to evaluate the I/O speed of a process.
4139  */
bfq_bfqq_is_slow(struct bfq_data * bfqd,struct bfq_queue * bfqq,bool compensate,enum bfqq_expiration reason,unsigned long * delta_ms)4140 static bool bfq_bfqq_is_slow(struct bfq_data *bfqd, struct bfq_queue *bfqq,
4141 				 bool compensate, enum bfqq_expiration reason,
4142 				 unsigned long *delta_ms)
4143 {
4144 	ktime_t delta_ktime;
4145 	u32 delta_usecs;
4146 	bool slow = BFQQ_SEEKY(bfqq); /* if delta too short, use seekyness */
4147 
4148 	if (!bfq_bfqq_sync(bfqq))
4149 		return false;
4150 
4151 	if (compensate)
4152 		delta_ktime = bfqd->last_idling_start;
4153 	else
4154 		delta_ktime = ktime_get();
4155 	delta_ktime = ktime_sub(delta_ktime, bfqd->last_budget_start);
4156 	delta_usecs = ktime_to_us(delta_ktime);
4157 
4158 	/* don't use too short time intervals */
4159 	if (delta_usecs < 1000) {
4160 		if (blk_queue_nonrot(bfqd->queue))
4161 			 /*
4162 			  * give same worst-case guarantees as idling
4163 			  * for seeky
4164 			  */
4165 			*delta_ms = BFQ_MIN_TT / NSEC_PER_MSEC;
4166 		else /* charge at least one seek */
4167 			*delta_ms = bfq_slice_idle / NSEC_PER_MSEC;
4168 
4169 		return slow;
4170 	}
4171 
4172 	*delta_ms = delta_usecs / USEC_PER_MSEC;
4173 
4174 	/*
4175 	 * Use only long (> 20ms) intervals to filter out excessive
4176 	 * spikes in service rate estimation.
4177 	 */
4178 	if (delta_usecs > 20000) {
4179 		/*
4180 		 * Caveat for rotational devices: processes doing I/O
4181 		 * in the slower disk zones tend to be slow(er) even
4182 		 * if not seeky. In this respect, the estimated peak
4183 		 * rate is likely to be an average over the disk
4184 		 * surface. Accordingly, to not be too harsh with
4185 		 * unlucky processes, a process is deemed slow only if
4186 		 * its rate has been lower than half of the estimated
4187 		 * peak rate.
4188 		 */
4189 		slow = bfqq->entity.service < bfqd->bfq_max_budget / 2;
4190 	}
4191 
4192 	bfq_log_bfqq(bfqd, bfqq, "bfq_bfqq_is_slow: slow %d", slow);
4193 
4194 	return slow;
4195 }
4196 
4197 /*
4198  * To be deemed as soft real-time, an application must meet two
4199  * requirements. First, the application must not require an average
4200  * bandwidth higher than the approximate bandwidth required to playback or
4201  * record a compressed high-definition video.
4202  * The next function is invoked on the completion of the last request of a
4203  * batch, to compute the next-start time instant, soft_rt_next_start, such
4204  * that, if the next request of the application does not arrive before
4205  * soft_rt_next_start, then the above requirement on the bandwidth is met.
4206  *
4207  * The second requirement is that the request pattern of the application is
4208  * isochronous, i.e., that, after issuing a request or a batch of requests,
4209  * the application stops issuing new requests until all its pending requests
4210  * have been completed. After that, the application may issue a new batch,
4211  * and so on.
4212  * For this reason the next function is invoked to compute
4213  * soft_rt_next_start only for applications that meet this requirement,
4214  * whereas soft_rt_next_start is set to infinity for applications that do
4215  * not.
4216  *
4217  * Unfortunately, even a greedy (i.e., I/O-bound) application may
4218  * happen to meet, occasionally or systematically, both the above
4219  * bandwidth and isochrony requirements. This may happen at least in
4220  * the following circumstances. First, if the CPU load is high. The
4221  * application may stop issuing requests while the CPUs are busy
4222  * serving other processes, then restart, then stop again for a while,
4223  * and so on. The other circumstances are related to the storage
4224  * device: the storage device is highly loaded or reaches a low-enough
4225  * throughput with the I/O of the application (e.g., because the I/O
4226  * is random and/or the device is slow). In all these cases, the
4227  * I/O of the application may be simply slowed down enough to meet
4228  * the bandwidth and isochrony requirements. To reduce the probability
4229  * that greedy applications are deemed as soft real-time in these
4230  * corner cases, a further rule is used in the computation of
4231  * soft_rt_next_start: the return value of this function is forced to
4232  * be higher than the maximum between the following two quantities.
4233  *
4234  * (a) Current time plus: (1) the maximum time for which the arrival
4235  *     of a request is waited for when a sync queue becomes idle,
4236  *     namely bfqd->bfq_slice_idle, and (2) a few extra jiffies. We
4237  *     postpone for a moment the reason for adding a few extra
4238  *     jiffies; we get back to it after next item (b).  Lower-bounding
4239  *     the return value of this function with the current time plus
4240  *     bfqd->bfq_slice_idle tends to filter out greedy applications,
4241  *     because the latter issue their next request as soon as possible
4242  *     after the last one has been completed. In contrast, a soft
4243  *     real-time application spends some time processing data, after a
4244  *     batch of its requests has been completed.
4245  *
4246  * (b) Current value of bfqq->soft_rt_next_start. As pointed out
4247  *     above, greedy applications may happen to meet both the
4248  *     bandwidth and isochrony requirements under heavy CPU or
4249  *     storage-device load. In more detail, in these scenarios, these
4250  *     applications happen, only for limited time periods, to do I/O
4251  *     slowly enough to meet all the requirements described so far,
4252  *     including the filtering in above item (a). These slow-speed
4253  *     time intervals are usually interspersed between other time
4254  *     intervals during which these applications do I/O at a very high
4255  *     speed. Fortunately, exactly because of the high speed of the
4256  *     I/O in the high-speed intervals, the values returned by this
4257  *     function happen to be so high, near the end of any such
4258  *     high-speed interval, to be likely to fall *after* the end of
4259  *     the low-speed time interval that follows. These high values are
4260  *     stored in bfqq->soft_rt_next_start after each invocation of
4261  *     this function. As a consequence, if the last value of
4262  *     bfqq->soft_rt_next_start is constantly used to lower-bound the
4263  *     next value that this function may return, then, from the very
4264  *     beginning of a low-speed interval, bfqq->soft_rt_next_start is
4265  *     likely to be constantly kept so high that any I/O request
4266  *     issued during the low-speed interval is considered as arriving
4267  *     to soon for the application to be deemed as soft
4268  *     real-time. Then, in the high-speed interval that follows, the
4269  *     application will not be deemed as soft real-time, just because
4270  *     it will do I/O at a high speed. And so on.
4271  *
4272  * Getting back to the filtering in item (a), in the following two
4273  * cases this filtering might be easily passed by a greedy
4274  * application, if the reference quantity was just
4275  * bfqd->bfq_slice_idle:
4276  * 1) HZ is so low that the duration of a jiffy is comparable to or
4277  *    higher than bfqd->bfq_slice_idle. This happens, e.g., on slow
4278  *    devices with HZ=100. The time granularity may be so coarse
4279  *    that the approximation, in jiffies, of bfqd->bfq_slice_idle
4280  *    is rather lower than the exact value.
4281  * 2) jiffies, instead of increasing at a constant rate, may stop increasing
4282  *    for a while, then suddenly 'jump' by several units to recover the lost
4283  *    increments. This seems to happen, e.g., inside virtual machines.
4284  * To address this issue, in the filtering in (a) we do not use as a
4285  * reference time interval just bfqd->bfq_slice_idle, but
4286  * bfqd->bfq_slice_idle plus a few jiffies. In particular, we add the
4287  * minimum number of jiffies for which the filter seems to be quite
4288  * precise also in embedded systems and KVM/QEMU virtual machines.
4289  */
bfq_bfqq_softrt_next_start(struct bfq_data * bfqd,struct bfq_queue * bfqq)4290 static unsigned long bfq_bfqq_softrt_next_start(struct bfq_data *bfqd,
4291 						struct bfq_queue *bfqq)
4292 {
4293 	return max3(bfqq->soft_rt_next_start,
4294 		    bfqq->last_idle_bklogged +
4295 		    HZ * bfqq->service_from_backlogged /
4296 		    bfqd->bfq_wr_max_softrt_rate,
4297 		    jiffies + nsecs_to_jiffies(bfqq->bfqd->bfq_slice_idle) + 4);
4298 }
4299 
4300 /**
4301  * bfq_bfqq_expire - expire a queue.
4302  * @bfqd: device owning the queue.
4303  * @bfqq: the queue to expire.
4304  * @compensate: if true, compensate for the time spent idling.
4305  * @reason: the reason causing the expiration.
4306  *
4307  * If the process associated with bfqq does slow I/O (e.g., because it
4308  * issues random requests), we charge bfqq with the time it has been
4309  * in service instead of the service it has received (see
4310  * bfq_bfqq_charge_time for details on how this goal is achieved). As
4311  * a consequence, bfqq will typically get higher timestamps upon
4312  * reactivation, and hence it will be rescheduled as if it had
4313  * received more service than what it has actually received. In the
4314  * end, bfqq receives less service in proportion to how slowly its
4315  * associated process consumes its budgets (and hence how seriously it
4316  * tends to lower the throughput). In addition, this time-charging
4317  * strategy guarantees time fairness among slow processes. In
4318  * contrast, if the process associated with bfqq is not slow, we
4319  * charge bfqq exactly with the service it has received.
4320  *
4321  * Charging time to the first type of queues and the exact service to
4322  * the other has the effect of using the WF2Q+ policy to schedule the
4323  * former on a timeslice basis, without violating service domain
4324  * guarantees among the latter.
4325  */
bfq_bfqq_expire(struct bfq_data * bfqd,struct bfq_queue * bfqq,bool compensate,enum bfqq_expiration reason)4326 void bfq_bfqq_expire(struct bfq_data *bfqd,
4327 		     struct bfq_queue *bfqq,
4328 		     bool compensate,
4329 		     enum bfqq_expiration reason)
4330 {
4331 	bool slow;
4332 	unsigned long delta = 0;
4333 	struct bfq_entity *entity = &bfqq->entity;
4334 
4335 	/*
4336 	 * Check whether the process is slow (see bfq_bfqq_is_slow).
4337 	 */
4338 	slow = bfq_bfqq_is_slow(bfqd, bfqq, compensate, reason, &delta);
4339 
4340 	/*
4341 	 * As above explained, charge slow (typically seeky) and
4342 	 * timed-out queues with the time and not the service
4343 	 * received, to favor sequential workloads.
4344 	 *
4345 	 * Processes doing I/O in the slower disk zones will tend to
4346 	 * be slow(er) even if not seeky. Therefore, since the
4347 	 * estimated peak rate is actually an average over the disk
4348 	 * surface, these processes may timeout just for bad luck. To
4349 	 * avoid punishing them, do not charge time to processes that
4350 	 * succeeded in consuming at least 2/3 of their budget. This
4351 	 * allows BFQ to preserve enough elasticity to still perform
4352 	 * bandwidth, and not time, distribution with little unlucky
4353 	 * or quasi-sequential processes.
4354 	 */
4355 	if (bfqq->wr_coeff == 1 &&
4356 	    (slow ||
4357 	     (reason == BFQQE_BUDGET_TIMEOUT &&
4358 	      bfq_bfqq_budget_left(bfqq) >=  entity->budget / 3)))
4359 		bfq_bfqq_charge_time(bfqd, bfqq, delta);
4360 
4361 	if (bfqd->low_latency && bfqq->wr_coeff == 1)
4362 		bfqq->last_wr_start_finish = jiffies;
4363 
4364 	if (bfqd->low_latency && bfqd->bfq_wr_max_softrt_rate > 0 &&
4365 	    RB_EMPTY_ROOT(&bfqq->sort_list)) {
4366 		/*
4367 		 * If we get here, and there are no outstanding
4368 		 * requests, then the request pattern is isochronous
4369 		 * (see the comments on the function
4370 		 * bfq_bfqq_softrt_next_start()). Therefore we can
4371 		 * compute soft_rt_next_start.
4372 		 *
4373 		 * If, instead, the queue still has outstanding
4374 		 * requests, then we have to wait for the completion
4375 		 * of all the outstanding requests to discover whether
4376 		 * the request pattern is actually isochronous.
4377 		 */
4378 		if (bfqq->dispatched == 0)
4379 			bfqq->soft_rt_next_start =
4380 				bfq_bfqq_softrt_next_start(bfqd, bfqq);
4381 		else if (bfqq->dispatched > 0) {
4382 			/*
4383 			 * Schedule an update of soft_rt_next_start to when
4384 			 * the task may be discovered to be isochronous.
4385 			 */
4386 			bfq_mark_bfqq_softrt_update(bfqq);
4387 		}
4388 	}
4389 
4390 	bfq_log_bfqq(bfqd, bfqq,
4391 		"expire (%d, slow %d, num_disp %d, short_ttime %d)", reason,
4392 		slow, bfqq->dispatched, bfq_bfqq_has_short_ttime(bfqq));
4393 
4394 	/*
4395 	 * bfqq expired, so no total service time needs to be computed
4396 	 * any longer: reset state machine for measuring total service
4397 	 * times.
4398 	 */
4399 	bfqd->rqs_injected = bfqd->wait_dispatch = false;
4400 	bfqd->waited_rq = NULL;
4401 
4402 	/*
4403 	 * Increase, decrease or leave budget unchanged according to
4404 	 * reason.
4405 	 */
4406 	__bfq_bfqq_recalc_budget(bfqd, bfqq, reason);
4407 	if (__bfq_bfqq_expire(bfqd, bfqq, reason))
4408 		/* bfqq is gone, no more actions on it */
4409 		return;
4410 
4411 	/* mark bfqq as waiting a request only if a bic still points to it */
4412 	if (!bfq_bfqq_busy(bfqq) &&
4413 	    reason != BFQQE_BUDGET_TIMEOUT &&
4414 	    reason != BFQQE_BUDGET_EXHAUSTED) {
4415 		bfq_mark_bfqq_non_blocking_wait_rq(bfqq);
4416 		/*
4417 		 * Not setting service to 0, because, if the next rq
4418 		 * arrives in time, the queue will go on receiving
4419 		 * service with this same budget (as if it never expired)
4420 		 */
4421 	} else
4422 		entity->service = 0;
4423 
4424 	/*
4425 	 * Reset the received-service counter for every parent entity.
4426 	 * Differently from what happens with bfqq->entity.service,
4427 	 * the resetting of this counter never needs to be postponed
4428 	 * for parent entities. In fact, in case bfqq may have a
4429 	 * chance to go on being served using the last, partially
4430 	 * consumed budget, bfqq->entity.service needs to be kept,
4431 	 * because if bfqq then actually goes on being served using
4432 	 * the same budget, the last value of bfqq->entity.service is
4433 	 * needed to properly decrement bfqq->entity.budget by the
4434 	 * portion already consumed. In contrast, it is not necessary
4435 	 * to keep entity->service for parent entities too, because
4436 	 * the bubble up of the new value of bfqq->entity.budget will
4437 	 * make sure that the budgets of parent entities are correct,
4438 	 * even in case bfqq and thus parent entities go on receiving
4439 	 * service with the same budget.
4440 	 */
4441 	entity = entity->parent;
4442 	for_each_entity(entity)
4443 		entity->service = 0;
4444 }
4445 
4446 /*
4447  * Budget timeout is not implemented through a dedicated timer, but
4448  * just checked on request arrivals and completions, as well as on
4449  * idle timer expirations.
4450  */
bfq_bfqq_budget_timeout(struct bfq_queue * bfqq)4451 static bool bfq_bfqq_budget_timeout(struct bfq_queue *bfqq)
4452 {
4453 	return time_is_before_eq_jiffies(bfqq->budget_timeout);
4454 }
4455 
4456 /*
4457  * If we expire a queue that is actively waiting (i.e., with the
4458  * device idled) for the arrival of a new request, then we may incur
4459  * the timestamp misalignment problem described in the body of the
4460  * function __bfq_activate_entity. Hence we return true only if this
4461  * condition does not hold, or if the queue is slow enough to deserve
4462  * only to be kicked off for preserving a high throughput.
4463  */
bfq_may_expire_for_budg_timeout(struct bfq_queue * bfqq)4464 static bool bfq_may_expire_for_budg_timeout(struct bfq_queue *bfqq)
4465 {
4466 	bfq_log_bfqq(bfqq->bfqd, bfqq,
4467 		"may_budget_timeout: wait_request %d left %d timeout %d",
4468 		bfq_bfqq_wait_request(bfqq),
4469 			bfq_bfqq_budget_left(bfqq) >=  bfqq->entity.budget / 3,
4470 		bfq_bfqq_budget_timeout(bfqq));
4471 
4472 	return (!bfq_bfqq_wait_request(bfqq) ||
4473 		bfq_bfqq_budget_left(bfqq) >=  bfqq->entity.budget / 3)
4474 		&&
4475 		bfq_bfqq_budget_timeout(bfqq);
4476 }
4477 
idling_boosts_thr_without_issues(struct bfq_data * bfqd,struct bfq_queue * bfqq)4478 static bool idling_boosts_thr_without_issues(struct bfq_data *bfqd,
4479 					     struct bfq_queue *bfqq)
4480 {
4481 	bool rot_without_queueing =
4482 		!blk_queue_nonrot(bfqd->queue) && !bfqd->hw_tag,
4483 		bfqq_sequential_and_IO_bound,
4484 		idling_boosts_thr;
4485 
4486 	/* No point in idling for bfqq if it won't get requests any longer */
4487 	if (unlikely(!bfqq_process_refs(bfqq)))
4488 		return false;
4489 
4490 	bfqq_sequential_and_IO_bound = !BFQQ_SEEKY(bfqq) &&
4491 		bfq_bfqq_IO_bound(bfqq) && bfq_bfqq_has_short_ttime(bfqq);
4492 
4493 	/*
4494 	 * The next variable takes into account the cases where idling
4495 	 * boosts the throughput.
4496 	 *
4497 	 * The value of the variable is computed considering, first, that
4498 	 * idling is virtually always beneficial for the throughput if:
4499 	 * (a) the device is not NCQ-capable and rotational, or
4500 	 * (b) regardless of the presence of NCQ, the device is rotational and
4501 	 *     the request pattern for bfqq is I/O-bound and sequential, or
4502 	 * (c) regardless of whether it is rotational, the device is
4503 	 *     not NCQ-capable and the request pattern for bfqq is
4504 	 *     I/O-bound and sequential.
4505 	 *
4506 	 * Secondly, and in contrast to the above item (b), idling an
4507 	 * NCQ-capable flash-based device would not boost the
4508 	 * throughput even with sequential I/O; rather it would lower
4509 	 * the throughput in proportion to how fast the device
4510 	 * is. Accordingly, the next variable is true if any of the
4511 	 * above conditions (a), (b) or (c) is true, and, in
4512 	 * particular, happens to be false if bfqd is an NCQ-capable
4513 	 * flash-based device.
4514 	 */
4515 	idling_boosts_thr = rot_without_queueing ||
4516 		((!blk_queue_nonrot(bfqd->queue) || !bfqd->hw_tag) &&
4517 		 bfqq_sequential_and_IO_bound);
4518 
4519 	/*
4520 	 * The return value of this function is equal to that of
4521 	 * idling_boosts_thr, unless a special case holds. In this
4522 	 * special case, described below, idling may cause problems to
4523 	 * weight-raised queues.
4524 	 *
4525 	 * When the request pool is saturated (e.g., in the presence
4526 	 * of write hogs), if the processes associated with
4527 	 * non-weight-raised queues ask for requests at a lower rate,
4528 	 * then processes associated with weight-raised queues have a
4529 	 * higher probability to get a request from the pool
4530 	 * immediately (or at least soon) when they need one. Thus
4531 	 * they have a higher probability to actually get a fraction
4532 	 * of the device throughput proportional to their high
4533 	 * weight. This is especially true with NCQ-capable drives,
4534 	 * which enqueue several requests in advance, and further
4535 	 * reorder internally-queued requests.
4536 	 *
4537 	 * For this reason, we force to false the return value if
4538 	 * there are weight-raised busy queues. In this case, and if
4539 	 * bfqq is not weight-raised, this guarantees that the device
4540 	 * is not idled for bfqq (if, instead, bfqq is weight-raised,
4541 	 * then idling will be guaranteed by another variable, see
4542 	 * below). Combined with the timestamping rules of BFQ (see
4543 	 * [1] for details), this behavior causes bfqq, and hence any
4544 	 * sync non-weight-raised queue, to get a lower number of
4545 	 * requests served, and thus to ask for a lower number of
4546 	 * requests from the request pool, before the busy
4547 	 * weight-raised queues get served again. This often mitigates
4548 	 * starvation problems in the presence of heavy write
4549 	 * workloads and NCQ, thereby guaranteeing a higher
4550 	 * application and system responsiveness in these hostile
4551 	 * scenarios.
4552 	 */
4553 	return idling_boosts_thr &&
4554 		bfqd->wr_busy_queues == 0;
4555 }
4556 
4557 /*
4558  * For a queue that becomes empty, device idling is allowed only if
4559  * this function returns true for that queue. As a consequence, since
4560  * device idling plays a critical role for both throughput boosting
4561  * and service guarantees, the return value of this function plays a
4562  * critical role as well.
4563  *
4564  * In a nutshell, this function returns true only if idling is
4565  * beneficial for throughput or, even if detrimental for throughput,
4566  * idling is however necessary to preserve service guarantees (low
4567  * latency, desired throughput distribution, ...). In particular, on
4568  * NCQ-capable devices, this function tries to return false, so as to
4569  * help keep the drives' internal queues full, whenever this helps the
4570  * device boost the throughput without causing any service-guarantee
4571  * issue.
4572  *
4573  * Most of the issues taken into account to get the return value of
4574  * this function are not trivial. We discuss these issues in the two
4575  * functions providing the main pieces of information needed by this
4576  * function.
4577  */
bfq_better_to_idle(struct bfq_queue * bfqq)4578 static bool bfq_better_to_idle(struct bfq_queue *bfqq)
4579 {
4580 	struct bfq_data *bfqd = bfqq->bfqd;
4581 	bool idling_boosts_thr_with_no_issue, idling_needed_for_service_guar;
4582 
4583 	/* No point in idling for bfqq if it won't get requests any longer */
4584 	if (unlikely(!bfqq_process_refs(bfqq)))
4585 		return false;
4586 
4587 	if (unlikely(bfqd->strict_guarantees))
4588 		return true;
4589 
4590 	/*
4591 	 * Idling is performed only if slice_idle > 0. In addition, we
4592 	 * do not idle if
4593 	 * (a) bfqq is async
4594 	 * (b) bfqq is in the idle io prio class: in this case we do
4595 	 * not idle because we want to minimize the bandwidth that
4596 	 * queues in this class can steal to higher-priority queues
4597 	 */
4598 	if (bfqd->bfq_slice_idle == 0 || !bfq_bfqq_sync(bfqq) ||
4599 	   bfq_class_idle(bfqq))
4600 		return false;
4601 
4602 	idling_boosts_thr_with_no_issue =
4603 		idling_boosts_thr_without_issues(bfqd, bfqq);
4604 
4605 	idling_needed_for_service_guar =
4606 		idling_needed_for_service_guarantees(bfqd, bfqq);
4607 
4608 	/*
4609 	 * We have now the two components we need to compute the
4610 	 * return value of the function, which is true only if idling
4611 	 * either boosts the throughput (without issues), or is
4612 	 * necessary to preserve service guarantees.
4613 	 */
4614 	return idling_boosts_thr_with_no_issue ||
4615 		idling_needed_for_service_guar;
4616 }
4617 
4618 /*
4619  * If the in-service queue is empty but the function bfq_better_to_idle
4620  * returns true, then:
4621  * 1) the queue must remain in service and cannot be expired, and
4622  * 2) the device must be idled to wait for the possible arrival of a new
4623  *    request for the queue.
4624  * See the comments on the function bfq_better_to_idle for the reasons
4625  * why performing device idling is the best choice to boost the throughput
4626  * and preserve service guarantees when bfq_better_to_idle itself
4627  * returns true.
4628  */
bfq_bfqq_must_idle(struct bfq_queue * bfqq)4629 static bool bfq_bfqq_must_idle(struct bfq_queue *bfqq)
4630 {
4631 	return RB_EMPTY_ROOT(&bfqq->sort_list) && bfq_better_to_idle(bfqq);
4632 }
4633 
4634 /*
4635  * This function chooses the queue from which to pick the next extra
4636  * I/O request to inject, if it finds a compatible queue. See the
4637  * comments on bfq_update_inject_limit() for details on the injection
4638  * mechanism, and for the definitions of the quantities mentioned
4639  * below.
4640  */
4641 static struct bfq_queue *
bfq_choose_bfqq_for_injection(struct bfq_data * bfqd)4642 bfq_choose_bfqq_for_injection(struct bfq_data *bfqd)
4643 {
4644 	struct bfq_queue *bfqq, *in_serv_bfqq = bfqd->in_service_queue;
4645 	unsigned int limit = in_serv_bfqq->inject_limit;
4646 	/*
4647 	 * If
4648 	 * - bfqq is not weight-raised and therefore does not carry
4649 	 *   time-critical I/O,
4650 	 * or
4651 	 * - regardless of whether bfqq is weight-raised, bfqq has
4652 	 *   however a long think time, during which it can absorb the
4653 	 *   effect of an appropriate number of extra I/O requests
4654 	 *   from other queues (see bfq_update_inject_limit for
4655 	 *   details on the computation of this number);
4656 	 * then injection can be performed without restrictions.
4657 	 */
4658 	bool in_serv_always_inject = in_serv_bfqq->wr_coeff == 1 ||
4659 		!bfq_bfqq_has_short_ttime(in_serv_bfqq);
4660 
4661 	/*
4662 	 * If
4663 	 * - the baseline total service time could not be sampled yet,
4664 	 *   so the inject limit happens to be still 0, and
4665 	 * - a lot of time has elapsed since the plugging of I/O
4666 	 *   dispatching started, so drive speed is being wasted
4667 	 *   significantly;
4668 	 * then temporarily raise inject limit to one request.
4669 	 */
4670 	if (limit == 0 && in_serv_bfqq->last_serv_time_ns == 0 &&
4671 	    bfq_bfqq_wait_request(in_serv_bfqq) &&
4672 	    time_is_before_eq_jiffies(bfqd->last_idling_start_jiffies +
4673 				      bfqd->bfq_slice_idle)
4674 		)
4675 		limit = 1;
4676 
4677 	if (bfqd->rq_in_driver >= limit)
4678 		return NULL;
4679 
4680 	/*
4681 	 * Linear search of the source queue for injection; but, with
4682 	 * a high probability, very few steps are needed to find a
4683 	 * candidate queue, i.e., a queue with enough budget left for
4684 	 * its next request. In fact:
4685 	 * - BFQ dynamically updates the budget of every queue so as
4686 	 *   to accommodate the expected backlog of the queue;
4687 	 * - if a queue gets all its requests dispatched as injected
4688 	 *   service, then the queue is removed from the active list
4689 	 *   (and re-added only if it gets new requests, but then it
4690 	 *   is assigned again enough budget for its new backlog).
4691 	 */
4692 	list_for_each_entry(bfqq, &bfqd->active_list, bfqq_list)
4693 		if (!RB_EMPTY_ROOT(&bfqq->sort_list) &&
4694 		    (in_serv_always_inject || bfqq->wr_coeff > 1) &&
4695 		    bfq_serv_to_charge(bfqq->next_rq, bfqq) <=
4696 		    bfq_bfqq_budget_left(bfqq)) {
4697 			/*
4698 			 * Allow for only one large in-flight request
4699 			 * on non-rotational devices, for the
4700 			 * following reason. On non-rotationl drives,
4701 			 * large requests take much longer than
4702 			 * smaller requests to be served. In addition,
4703 			 * the drive prefers to serve large requests
4704 			 * w.r.t. to small ones, if it can choose. So,
4705 			 * having more than one large requests queued
4706 			 * in the drive may easily make the next first
4707 			 * request of the in-service queue wait for so
4708 			 * long to break bfqq's service guarantees. On
4709 			 * the bright side, large requests let the
4710 			 * drive reach a very high throughput, even if
4711 			 * there is only one in-flight large request
4712 			 * at a time.
4713 			 */
4714 			if (blk_queue_nonrot(bfqd->queue) &&
4715 			    blk_rq_sectors(bfqq->next_rq) >=
4716 			    BFQQ_SECT_THR_NONROT)
4717 				limit = min_t(unsigned int, 1, limit);
4718 			else
4719 				limit = in_serv_bfqq->inject_limit;
4720 
4721 			if (bfqd->rq_in_driver < limit) {
4722 				bfqd->rqs_injected = true;
4723 				return bfqq;
4724 			}
4725 		}
4726 
4727 	return NULL;
4728 }
4729 
4730 /*
4731  * Select a queue for service.  If we have a current queue in service,
4732  * check whether to continue servicing it, or retrieve and set a new one.
4733  */
bfq_select_queue(struct bfq_data * bfqd)4734 static struct bfq_queue *bfq_select_queue(struct bfq_data *bfqd)
4735 {
4736 	struct bfq_queue *bfqq;
4737 	struct request *next_rq;
4738 	enum bfqq_expiration reason = BFQQE_BUDGET_TIMEOUT;
4739 
4740 	bfqq = bfqd->in_service_queue;
4741 	if (!bfqq)
4742 		goto new_queue;
4743 
4744 	bfq_log_bfqq(bfqd, bfqq, "select_queue: already in-service queue");
4745 
4746 	/*
4747 	 * Do not expire bfqq for budget timeout if bfqq may be about
4748 	 * to enjoy device idling. The reason why, in this case, we
4749 	 * prevent bfqq from expiring is the same as in the comments
4750 	 * on the case where bfq_bfqq_must_idle() returns true, in
4751 	 * bfq_completed_request().
4752 	 */
4753 	if (bfq_may_expire_for_budg_timeout(bfqq) &&
4754 	    !bfq_bfqq_must_idle(bfqq))
4755 		goto expire;
4756 
4757 check_queue:
4758 	/*
4759 	 * This loop is rarely executed more than once. Even when it
4760 	 * happens, it is much more convenient to re-execute this loop
4761 	 * than to return NULL and trigger a new dispatch to get a
4762 	 * request served.
4763 	 */
4764 	next_rq = bfqq->next_rq;
4765 	/*
4766 	 * If bfqq has requests queued and it has enough budget left to
4767 	 * serve them, keep the queue, otherwise expire it.
4768 	 */
4769 	if (next_rq) {
4770 		if (bfq_serv_to_charge(next_rq, bfqq) >
4771 			bfq_bfqq_budget_left(bfqq)) {
4772 			/*
4773 			 * Expire the queue for budget exhaustion,
4774 			 * which makes sure that the next budget is
4775 			 * enough to serve the next request, even if
4776 			 * it comes from the fifo expired path.
4777 			 */
4778 			reason = BFQQE_BUDGET_EXHAUSTED;
4779 			goto expire;
4780 		} else {
4781 			/*
4782 			 * The idle timer may be pending because we may
4783 			 * not disable disk idling even when a new request
4784 			 * arrives.
4785 			 */
4786 			if (bfq_bfqq_wait_request(bfqq)) {
4787 				/*
4788 				 * If we get here: 1) at least a new request
4789 				 * has arrived but we have not disabled the
4790 				 * timer because the request was too small,
4791 				 * 2) then the block layer has unplugged
4792 				 * the device, causing the dispatch to be
4793 				 * invoked.
4794 				 *
4795 				 * Since the device is unplugged, now the
4796 				 * requests are probably large enough to
4797 				 * provide a reasonable throughput.
4798 				 * So we disable idling.
4799 				 */
4800 				bfq_clear_bfqq_wait_request(bfqq);
4801 				hrtimer_try_to_cancel(&bfqd->idle_slice_timer);
4802 			}
4803 			goto keep_queue;
4804 		}
4805 	}
4806 
4807 	/*
4808 	 * No requests pending. However, if the in-service queue is idling
4809 	 * for a new request, or has requests waiting for a completion and
4810 	 * may idle after their completion, then keep it anyway.
4811 	 *
4812 	 * Yet, inject service from other queues if it boosts
4813 	 * throughput and is possible.
4814 	 */
4815 	if (bfq_bfqq_wait_request(bfqq) ||
4816 	    (bfqq->dispatched != 0 && bfq_better_to_idle(bfqq))) {
4817 		struct bfq_queue *async_bfqq =
4818 			bfqq->bic && bfqq->bic->bfqq[0] &&
4819 			bfq_bfqq_busy(bfqq->bic->bfqq[0]) &&
4820 			bfqq->bic->bfqq[0]->next_rq ?
4821 			bfqq->bic->bfqq[0] : NULL;
4822 		struct bfq_queue *blocked_bfqq =
4823 			!hlist_empty(&bfqq->woken_list) ?
4824 			container_of(bfqq->woken_list.first,
4825 				     struct bfq_queue,
4826 				     woken_list_node)
4827 			: NULL;
4828 
4829 		/*
4830 		 * The next four mutually-exclusive ifs decide
4831 		 * whether to try injection, and choose the queue to
4832 		 * pick an I/O request from.
4833 		 *
4834 		 * The first if checks whether the process associated
4835 		 * with bfqq has also async I/O pending. If so, it
4836 		 * injects such I/O unconditionally. Injecting async
4837 		 * I/O from the same process can cause no harm to the
4838 		 * process. On the contrary, it can only increase
4839 		 * bandwidth and reduce latency for the process.
4840 		 *
4841 		 * The second if checks whether there happens to be a
4842 		 * non-empty waker queue for bfqq, i.e., a queue whose
4843 		 * I/O needs to be completed for bfqq to receive new
4844 		 * I/O. This happens, e.g., if bfqq is associated with
4845 		 * a process that does some sync. A sync generates
4846 		 * extra blocking I/O, which must be completed before
4847 		 * the process associated with bfqq can go on with its
4848 		 * I/O. If the I/O of the waker queue is not served,
4849 		 * then bfqq remains empty, and no I/O is dispatched,
4850 		 * until the idle timeout fires for bfqq. This is
4851 		 * likely to result in lower bandwidth and higher
4852 		 * latencies for bfqq, and in a severe loss of total
4853 		 * throughput. The best action to take is therefore to
4854 		 * serve the waker queue as soon as possible. So do it
4855 		 * (without relying on the third alternative below for
4856 		 * eventually serving waker_bfqq's I/O; see the last
4857 		 * paragraph for further details). This systematic
4858 		 * injection of I/O from the waker queue does not
4859 		 * cause any delay to bfqq's I/O. On the contrary,
4860 		 * next bfqq's I/O is brought forward dramatically,
4861 		 * for it is not blocked for milliseconds.
4862 		 *
4863 		 * The third if checks whether there is a queue woken
4864 		 * by bfqq, and currently with pending I/O. Such a
4865 		 * woken queue does not steal bandwidth from bfqq,
4866 		 * because it remains soon without I/O if bfqq is not
4867 		 * served. So there is virtually no risk of loss of
4868 		 * bandwidth for bfqq if this woken queue has I/O
4869 		 * dispatched while bfqq is waiting for new I/O.
4870 		 *
4871 		 * The fourth if checks whether bfqq is a queue for
4872 		 * which it is better to avoid injection. It is so if
4873 		 * bfqq delivers more throughput when served without
4874 		 * any further I/O from other queues in the middle, or
4875 		 * if the service times of bfqq's I/O requests both
4876 		 * count more than overall throughput, and may be
4877 		 * easily increased by injection (this happens if bfqq
4878 		 * has a short think time). If none of these
4879 		 * conditions holds, then a candidate queue for
4880 		 * injection is looked for through
4881 		 * bfq_choose_bfqq_for_injection(). Note that the
4882 		 * latter may return NULL (for example if the inject
4883 		 * limit for bfqq is currently 0).
4884 		 *
4885 		 * NOTE: motivation for the second alternative
4886 		 *
4887 		 * Thanks to the way the inject limit is updated in
4888 		 * bfq_update_has_short_ttime(), it is rather likely
4889 		 * that, if I/O is being plugged for bfqq and the
4890 		 * waker queue has pending I/O requests that are
4891 		 * blocking bfqq's I/O, then the fourth alternative
4892 		 * above lets the waker queue get served before the
4893 		 * I/O-plugging timeout fires. So one may deem the
4894 		 * second alternative superfluous. It is not, because
4895 		 * the fourth alternative may be way less effective in
4896 		 * case of a synchronization. For two main
4897 		 * reasons. First, throughput may be low because the
4898 		 * inject limit may be too low to guarantee the same
4899 		 * amount of injected I/O, from the waker queue or
4900 		 * other queues, that the second alternative
4901 		 * guarantees (the second alternative unconditionally
4902 		 * injects a pending I/O request of the waker queue
4903 		 * for each bfq_dispatch_request()). Second, with the
4904 		 * fourth alternative, the duration of the plugging,
4905 		 * i.e., the time before bfqq finally receives new I/O,
4906 		 * may not be minimized, because the waker queue may
4907 		 * happen to be served only after other queues.
4908 		 */
4909 		if (async_bfqq &&
4910 		    icq_to_bic(async_bfqq->next_rq->elv.icq) == bfqq->bic &&
4911 		    bfq_serv_to_charge(async_bfqq->next_rq, async_bfqq) <=
4912 		    bfq_bfqq_budget_left(async_bfqq))
4913 			bfqq = bfqq->bic->bfqq[0];
4914 		else if (bfqq->waker_bfqq &&
4915 			   bfq_bfqq_busy(bfqq->waker_bfqq) &&
4916 			   bfqq->waker_bfqq->next_rq &&
4917 			   bfq_serv_to_charge(bfqq->waker_bfqq->next_rq,
4918 					      bfqq->waker_bfqq) <=
4919 			   bfq_bfqq_budget_left(bfqq->waker_bfqq)
4920 			)
4921 			bfqq = bfqq->waker_bfqq;
4922 		else if (blocked_bfqq &&
4923 			   bfq_bfqq_busy(blocked_bfqq) &&
4924 			   blocked_bfqq->next_rq &&
4925 			   bfq_serv_to_charge(blocked_bfqq->next_rq,
4926 					      blocked_bfqq) <=
4927 			   bfq_bfqq_budget_left(blocked_bfqq)
4928 			)
4929 			bfqq = blocked_bfqq;
4930 		else if (!idling_boosts_thr_without_issues(bfqd, bfqq) &&
4931 			 (bfqq->wr_coeff == 1 || bfqd->wr_busy_queues > 1 ||
4932 			  !bfq_bfqq_has_short_ttime(bfqq)))
4933 			bfqq = bfq_choose_bfqq_for_injection(bfqd);
4934 		else
4935 			bfqq = NULL;
4936 
4937 		goto keep_queue;
4938 	}
4939 
4940 	reason = BFQQE_NO_MORE_REQUESTS;
4941 expire:
4942 	bfq_bfqq_expire(bfqd, bfqq, false, reason);
4943 new_queue:
4944 	bfqq = bfq_set_in_service_queue(bfqd);
4945 	if (bfqq) {
4946 		bfq_log_bfqq(bfqd, bfqq, "select_queue: checking new queue");
4947 		goto check_queue;
4948 	}
4949 keep_queue:
4950 	if (bfqq)
4951 		bfq_log_bfqq(bfqd, bfqq, "select_queue: returned this queue");
4952 	else
4953 		bfq_log(bfqd, "select_queue: no queue returned");
4954 
4955 	return bfqq;
4956 }
4957 
bfq_update_wr_data(struct bfq_data * bfqd,struct bfq_queue * bfqq)4958 static void bfq_update_wr_data(struct bfq_data *bfqd, struct bfq_queue *bfqq)
4959 {
4960 	struct bfq_entity *entity = &bfqq->entity;
4961 
4962 	if (bfqq->wr_coeff > 1) { /* queue is being weight-raised */
4963 		bfq_log_bfqq(bfqd, bfqq,
4964 			"raising period dur %u/%u msec, old coeff %u, w %d(%d)",
4965 			jiffies_to_msecs(jiffies - bfqq->last_wr_start_finish),
4966 			jiffies_to_msecs(bfqq->wr_cur_max_time),
4967 			bfqq->wr_coeff,
4968 			bfqq->entity.weight, bfqq->entity.orig_weight);
4969 
4970 		if (entity->prio_changed)
4971 			bfq_log_bfqq(bfqd, bfqq, "WARN: pending prio change");
4972 
4973 		/*
4974 		 * If the queue was activated in a burst, or too much
4975 		 * time has elapsed from the beginning of this
4976 		 * weight-raising period, then end weight raising.
4977 		 */
4978 		if (bfq_bfqq_in_large_burst(bfqq))
4979 			bfq_bfqq_end_wr(bfqq);
4980 		else if (time_is_before_jiffies(bfqq->last_wr_start_finish +
4981 						bfqq->wr_cur_max_time)) {
4982 			if (bfqq->wr_cur_max_time != bfqd->bfq_wr_rt_max_time ||
4983 			time_is_before_jiffies(bfqq->wr_start_at_switch_to_srt +
4984 					       bfq_wr_duration(bfqd))) {
4985 				/*
4986 				 * Either in interactive weight
4987 				 * raising, or in soft_rt weight
4988 				 * raising with the
4989 				 * interactive-weight-raising period
4990 				 * elapsed (so no switch back to
4991 				 * interactive weight raising).
4992 				 */
4993 				bfq_bfqq_end_wr(bfqq);
4994 			} else { /*
4995 				  * soft_rt finishing while still in
4996 				  * interactive period, switch back to
4997 				  * interactive weight raising
4998 				  */
4999 				switch_back_to_interactive_wr(bfqq, bfqd);
5000 				bfqq->entity.prio_changed = 1;
5001 			}
5002 		}
5003 		if (bfqq->wr_coeff > 1 &&
5004 		    bfqq->wr_cur_max_time != bfqd->bfq_wr_rt_max_time &&
5005 		    bfqq->service_from_wr > max_service_from_wr) {
5006 			/* see comments on max_service_from_wr */
5007 			bfq_bfqq_end_wr(bfqq);
5008 		}
5009 	}
5010 	/*
5011 	 * To improve latency (for this or other queues), immediately
5012 	 * update weight both if it must be raised and if it must be
5013 	 * lowered. Since, entity may be on some active tree here, and
5014 	 * might have a pending change of its ioprio class, invoke
5015 	 * next function with the last parameter unset (see the
5016 	 * comments on the function).
5017 	 */
5018 	if ((entity->weight > entity->orig_weight) != (bfqq->wr_coeff > 1))
5019 		__bfq_entity_update_weight_prio(bfq_entity_service_tree(entity),
5020 						entity, false);
5021 }
5022 
5023 /*
5024  * Dispatch next request from bfqq.
5025  */
bfq_dispatch_rq_from_bfqq(struct bfq_data * bfqd,struct bfq_queue * bfqq)5026 static struct request *bfq_dispatch_rq_from_bfqq(struct bfq_data *bfqd,
5027 						 struct bfq_queue *bfqq)
5028 {
5029 	struct request *rq = bfqq->next_rq;
5030 	unsigned long service_to_charge;
5031 
5032 	service_to_charge = bfq_serv_to_charge(rq, bfqq);
5033 
5034 	bfq_bfqq_served(bfqq, service_to_charge);
5035 
5036 	if (bfqq == bfqd->in_service_queue && bfqd->wait_dispatch) {
5037 		bfqd->wait_dispatch = false;
5038 		bfqd->waited_rq = rq;
5039 	}
5040 
5041 	bfq_dispatch_remove(bfqd->queue, rq);
5042 
5043 	if (bfqq != bfqd->in_service_queue)
5044 		goto return_rq;
5045 
5046 	/*
5047 	 * If weight raising has to terminate for bfqq, then next
5048 	 * function causes an immediate update of bfqq's weight,
5049 	 * without waiting for next activation. As a consequence, on
5050 	 * expiration, bfqq will be timestamped as if has never been
5051 	 * weight-raised during this service slot, even if it has
5052 	 * received part or even most of the service as a
5053 	 * weight-raised queue. This inflates bfqq's timestamps, which
5054 	 * is beneficial, as bfqq is then more willing to leave the
5055 	 * device immediately to possible other weight-raised queues.
5056 	 */
5057 	bfq_update_wr_data(bfqd, bfqq);
5058 
5059 	/*
5060 	 * Expire bfqq, pretending that its budget expired, if bfqq
5061 	 * belongs to CLASS_IDLE and other queues are waiting for
5062 	 * service.
5063 	 */
5064 	if (!(bfq_tot_busy_queues(bfqd) > 1 && bfq_class_idle(bfqq)))
5065 		goto return_rq;
5066 
5067 	bfq_bfqq_expire(bfqd, bfqq, false, BFQQE_BUDGET_EXHAUSTED);
5068 
5069 return_rq:
5070 	return rq;
5071 }
5072 
bfq_has_work(struct blk_mq_hw_ctx * hctx)5073 static bool bfq_has_work(struct blk_mq_hw_ctx *hctx)
5074 {
5075 	struct bfq_data *bfqd = hctx->queue->elevator->elevator_data;
5076 
5077 	/*
5078 	 * Avoiding lock: a race on bfqd->queued should cause at
5079 	 * most a call to dispatch for nothing
5080 	 */
5081 	return !list_empty_careful(&bfqd->dispatch) ||
5082 		READ_ONCE(bfqd->queued);
5083 }
5084 
__bfq_dispatch_request(struct blk_mq_hw_ctx * hctx)5085 static struct request *__bfq_dispatch_request(struct blk_mq_hw_ctx *hctx)
5086 {
5087 	struct bfq_data *bfqd = hctx->queue->elevator->elevator_data;
5088 	struct request *rq = NULL;
5089 	struct bfq_queue *bfqq = NULL;
5090 
5091 	if (!list_empty(&bfqd->dispatch)) {
5092 		rq = list_first_entry(&bfqd->dispatch, struct request,
5093 				      queuelist);
5094 		list_del_init(&rq->queuelist);
5095 
5096 		bfqq = RQ_BFQQ(rq);
5097 
5098 		if (bfqq) {
5099 			/*
5100 			 * Increment counters here, because this
5101 			 * dispatch does not follow the standard
5102 			 * dispatch flow (where counters are
5103 			 * incremented)
5104 			 */
5105 			bfqq->dispatched++;
5106 
5107 			goto inc_in_driver_start_rq;
5108 		}
5109 
5110 		/*
5111 		 * We exploit the bfq_finish_requeue_request hook to
5112 		 * decrement rq_in_driver, but
5113 		 * bfq_finish_requeue_request will not be invoked on
5114 		 * this request. So, to avoid unbalance, just start
5115 		 * this request, without incrementing rq_in_driver. As
5116 		 * a negative consequence, rq_in_driver is deceptively
5117 		 * lower than it should be while this request is in
5118 		 * service. This may cause bfq_schedule_dispatch to be
5119 		 * invoked uselessly.
5120 		 *
5121 		 * As for implementing an exact solution, the
5122 		 * bfq_finish_requeue_request hook, if defined, is
5123 		 * probably invoked also on this request. So, by
5124 		 * exploiting this hook, we could 1) increment
5125 		 * rq_in_driver here, and 2) decrement it in
5126 		 * bfq_finish_requeue_request. Such a solution would
5127 		 * let the value of the counter be always accurate,
5128 		 * but it would entail using an extra interface
5129 		 * function. This cost seems higher than the benefit,
5130 		 * being the frequency of non-elevator-private
5131 		 * requests very low.
5132 		 */
5133 		goto start_rq;
5134 	}
5135 
5136 	bfq_log(bfqd, "dispatch requests: %d busy queues",
5137 		bfq_tot_busy_queues(bfqd));
5138 
5139 	if (bfq_tot_busy_queues(bfqd) == 0)
5140 		goto exit;
5141 
5142 	/*
5143 	 * Force device to serve one request at a time if
5144 	 * strict_guarantees is true. Forcing this service scheme is
5145 	 * currently the ONLY way to guarantee that the request
5146 	 * service order enforced by the scheduler is respected by a
5147 	 * queueing device. Otherwise the device is free even to make
5148 	 * some unlucky request wait for as long as the device
5149 	 * wishes.
5150 	 *
5151 	 * Of course, serving one request at a time may cause loss of
5152 	 * throughput.
5153 	 */
5154 	if (bfqd->strict_guarantees && bfqd->rq_in_driver > 0)
5155 		goto exit;
5156 
5157 	bfqq = bfq_select_queue(bfqd);
5158 	if (!bfqq)
5159 		goto exit;
5160 
5161 	rq = bfq_dispatch_rq_from_bfqq(bfqd, bfqq);
5162 
5163 	if (rq) {
5164 inc_in_driver_start_rq:
5165 		bfqd->rq_in_driver++;
5166 start_rq:
5167 		rq->rq_flags |= RQF_STARTED;
5168 	}
5169 exit:
5170 	return rq;
5171 }
5172 
5173 #ifdef CONFIG_BFQ_CGROUP_DEBUG
bfq_update_dispatch_stats(struct request_queue * q,struct request * rq,struct bfq_queue * in_serv_queue,bool idle_timer_disabled)5174 static void bfq_update_dispatch_stats(struct request_queue *q,
5175 				      struct request *rq,
5176 				      struct bfq_queue *in_serv_queue,
5177 				      bool idle_timer_disabled)
5178 {
5179 	struct bfq_queue *bfqq = rq ? RQ_BFQQ(rq) : NULL;
5180 
5181 	if (!idle_timer_disabled && !bfqq)
5182 		return;
5183 
5184 	/*
5185 	 * rq and bfqq are guaranteed to exist until this function
5186 	 * ends, for the following reasons. First, rq can be
5187 	 * dispatched to the device, and then can be completed and
5188 	 * freed, only after this function ends. Second, rq cannot be
5189 	 * merged (and thus freed because of a merge) any longer,
5190 	 * because it has already started. Thus rq cannot be freed
5191 	 * before this function ends, and, since rq has a reference to
5192 	 * bfqq, the same guarantee holds for bfqq too.
5193 	 *
5194 	 * In addition, the following queue lock guarantees that
5195 	 * bfqq_group(bfqq) exists as well.
5196 	 */
5197 	spin_lock_irq(&q->queue_lock);
5198 	if (idle_timer_disabled)
5199 		/*
5200 		 * Since the idle timer has been disabled,
5201 		 * in_serv_queue contained some request when
5202 		 * __bfq_dispatch_request was invoked above, which
5203 		 * implies that rq was picked exactly from
5204 		 * in_serv_queue. Thus in_serv_queue == bfqq, and is
5205 		 * therefore guaranteed to exist because of the above
5206 		 * arguments.
5207 		 */
5208 		bfqg_stats_update_idle_time(bfqq_group(in_serv_queue));
5209 	if (bfqq) {
5210 		struct bfq_group *bfqg = bfqq_group(bfqq);
5211 
5212 		bfqg_stats_update_avg_queue_size(bfqg);
5213 		bfqg_stats_set_start_empty_time(bfqg);
5214 		bfqg_stats_update_io_remove(bfqg, rq->cmd_flags);
5215 	}
5216 	spin_unlock_irq(&q->queue_lock);
5217 }
5218 #else
bfq_update_dispatch_stats(struct request_queue * q,struct request * rq,struct bfq_queue * in_serv_queue,bool idle_timer_disabled)5219 static inline void bfq_update_dispatch_stats(struct request_queue *q,
5220 					     struct request *rq,
5221 					     struct bfq_queue *in_serv_queue,
5222 					     bool idle_timer_disabled) {}
5223 #endif /* CONFIG_BFQ_CGROUP_DEBUG */
5224 
bfq_dispatch_request(struct blk_mq_hw_ctx * hctx)5225 static struct request *bfq_dispatch_request(struct blk_mq_hw_ctx *hctx)
5226 {
5227 	struct bfq_data *bfqd = hctx->queue->elevator->elevator_data;
5228 	struct request *rq;
5229 	struct bfq_queue *in_serv_queue;
5230 	bool waiting_rq, idle_timer_disabled = false;
5231 
5232 	spin_lock_irq(&bfqd->lock);
5233 
5234 	in_serv_queue = bfqd->in_service_queue;
5235 	waiting_rq = in_serv_queue && bfq_bfqq_wait_request(in_serv_queue);
5236 
5237 	rq = __bfq_dispatch_request(hctx);
5238 	if (in_serv_queue == bfqd->in_service_queue) {
5239 		idle_timer_disabled =
5240 			waiting_rq && !bfq_bfqq_wait_request(in_serv_queue);
5241 	}
5242 
5243 	spin_unlock_irq(&bfqd->lock);
5244 	bfq_update_dispatch_stats(hctx->queue, rq,
5245 			idle_timer_disabled ? in_serv_queue : NULL,
5246 				idle_timer_disabled);
5247 
5248 	return rq;
5249 }
5250 
5251 /*
5252  * Task holds one reference to the queue, dropped when task exits.  Each rq
5253  * in-flight on this queue also holds a reference, dropped when rq is freed.
5254  *
5255  * Scheduler lock must be held here. Recall not to use bfqq after calling
5256  * this function on it.
5257  */
bfq_put_queue(struct bfq_queue * bfqq)5258 void bfq_put_queue(struct bfq_queue *bfqq)
5259 {
5260 	struct bfq_queue *item;
5261 	struct hlist_node *n;
5262 	struct bfq_group *bfqg = bfqq_group(bfqq);
5263 
5264 	bfq_log_bfqq(bfqq->bfqd, bfqq, "put_queue: %p %d", bfqq, bfqq->ref);
5265 
5266 	bfqq->ref--;
5267 	if (bfqq->ref)
5268 		return;
5269 
5270 	if (!hlist_unhashed(&bfqq->burst_list_node)) {
5271 		hlist_del_init(&bfqq->burst_list_node);
5272 		/*
5273 		 * Decrement also burst size after the removal, if the
5274 		 * process associated with bfqq is exiting, and thus
5275 		 * does not contribute to the burst any longer. This
5276 		 * decrement helps filter out false positives of large
5277 		 * bursts, when some short-lived process (often due to
5278 		 * the execution of commands by some service) happens
5279 		 * to start and exit while a complex application is
5280 		 * starting, and thus spawning several processes that
5281 		 * do I/O (and that *must not* be treated as a large
5282 		 * burst, see comments on bfq_handle_burst).
5283 		 *
5284 		 * In particular, the decrement is performed only if:
5285 		 * 1) bfqq is not a merged queue, because, if it is,
5286 		 * then this free of bfqq is not triggered by the exit
5287 		 * of the process bfqq is associated with, but exactly
5288 		 * by the fact that bfqq has just been merged.
5289 		 * 2) burst_size is greater than 0, to handle
5290 		 * unbalanced decrements. Unbalanced decrements may
5291 		 * happen in te following case: bfqq is inserted into
5292 		 * the current burst list--without incrementing
5293 		 * bust_size--because of a split, but the current
5294 		 * burst list is not the burst list bfqq belonged to
5295 		 * (see comments on the case of a split in
5296 		 * bfq_set_request).
5297 		 */
5298 		if (bfqq->bic && bfqq->bfqd->burst_size > 0)
5299 			bfqq->bfqd->burst_size--;
5300 	}
5301 
5302 	/*
5303 	 * bfqq does not exist any longer, so it cannot be woken by
5304 	 * any other queue, and cannot wake any other queue. Then bfqq
5305 	 * must be removed from the woken list of its possible waker
5306 	 * queue, and all queues in the woken list of bfqq must stop
5307 	 * having a waker queue. Strictly speaking, these updates
5308 	 * should be performed when bfqq remains with no I/O source
5309 	 * attached to it, which happens before bfqq gets freed. In
5310 	 * particular, this happens when the last process associated
5311 	 * with bfqq exits or gets associated with a different
5312 	 * queue. However, both events lead to bfqq being freed soon,
5313 	 * and dangling references would come out only after bfqq gets
5314 	 * freed. So these updates are done here, as a simple and safe
5315 	 * way to handle all cases.
5316 	 */
5317 	/* remove bfqq from woken list */
5318 	if (!hlist_unhashed(&bfqq->woken_list_node))
5319 		hlist_del_init(&bfqq->woken_list_node);
5320 
5321 	/* reset waker for all queues in woken list */
5322 	hlist_for_each_entry_safe(item, n, &bfqq->woken_list,
5323 				  woken_list_node) {
5324 		item->waker_bfqq = NULL;
5325 		hlist_del_init(&item->woken_list_node);
5326 	}
5327 
5328 	if (bfqq->bfqd->last_completed_rq_bfqq == bfqq)
5329 		bfqq->bfqd->last_completed_rq_bfqq = NULL;
5330 
5331 	kmem_cache_free(bfq_pool, bfqq);
5332 	bfqg_and_blkg_put(bfqg);
5333 }
5334 
bfq_put_stable_ref(struct bfq_queue * bfqq)5335 static void bfq_put_stable_ref(struct bfq_queue *bfqq)
5336 {
5337 	bfqq->stable_ref--;
5338 	bfq_put_queue(bfqq);
5339 }
5340 
bfq_put_cooperator(struct bfq_queue * bfqq)5341 void bfq_put_cooperator(struct bfq_queue *bfqq)
5342 {
5343 	struct bfq_queue *__bfqq, *next;
5344 
5345 	/*
5346 	 * If this queue was scheduled to merge with another queue, be
5347 	 * sure to drop the reference taken on that queue (and others in
5348 	 * the merge chain). See bfq_setup_merge and bfq_merge_bfqqs.
5349 	 */
5350 	__bfqq = bfqq->new_bfqq;
5351 	while (__bfqq) {
5352 		if (__bfqq == bfqq)
5353 			break;
5354 		next = __bfqq->new_bfqq;
5355 		bfq_put_queue(__bfqq);
5356 		__bfqq = next;
5357 	}
5358 }
5359 
bfq_exit_bfqq(struct bfq_data * bfqd,struct bfq_queue * bfqq)5360 static void bfq_exit_bfqq(struct bfq_data *bfqd, struct bfq_queue *bfqq)
5361 {
5362 	if (bfqq == bfqd->in_service_queue) {
5363 		__bfq_bfqq_expire(bfqd, bfqq, BFQQE_BUDGET_TIMEOUT);
5364 		bfq_schedule_dispatch(bfqd);
5365 	}
5366 
5367 	bfq_log_bfqq(bfqd, bfqq, "exit_bfqq: %p, %d", bfqq, bfqq->ref);
5368 
5369 	bfq_put_cooperator(bfqq);
5370 
5371 	bfq_release_process_ref(bfqd, bfqq);
5372 }
5373 
bfq_exit_icq_bfqq(struct bfq_io_cq * bic,bool is_sync)5374 static void bfq_exit_icq_bfqq(struct bfq_io_cq *bic, bool is_sync)
5375 {
5376 	struct bfq_queue *bfqq = bic_to_bfqq(bic, is_sync);
5377 	struct bfq_data *bfqd;
5378 
5379 	if (bfqq)
5380 		bfqd = bfqq->bfqd; /* NULL if scheduler already exited */
5381 
5382 	if (bfqq && bfqd) {
5383 		unsigned long flags;
5384 
5385 		spin_lock_irqsave(&bfqd->lock, flags);
5386 		bic_set_bfqq(bic, NULL, is_sync);
5387 		bfq_exit_bfqq(bfqd, bfqq);
5388 		spin_unlock_irqrestore(&bfqd->lock, flags);
5389 	}
5390 }
5391 
bfq_exit_icq(struct io_cq * icq)5392 static void bfq_exit_icq(struct io_cq *icq)
5393 {
5394 	struct bfq_io_cq *bic = icq_to_bic(icq);
5395 
5396 	if (bic->stable_merge_bfqq) {
5397 		struct bfq_data *bfqd = bic->stable_merge_bfqq->bfqd;
5398 
5399 		/*
5400 		 * bfqd is NULL if scheduler already exited, and in
5401 		 * that case this is the last time bfqq is accessed.
5402 		 */
5403 		if (bfqd) {
5404 			unsigned long flags;
5405 
5406 			spin_lock_irqsave(&bfqd->lock, flags);
5407 			bfq_put_stable_ref(bic->stable_merge_bfqq);
5408 			spin_unlock_irqrestore(&bfqd->lock, flags);
5409 		} else {
5410 			bfq_put_stable_ref(bic->stable_merge_bfqq);
5411 		}
5412 	}
5413 
5414 	bfq_exit_icq_bfqq(bic, true);
5415 	bfq_exit_icq_bfqq(bic, false);
5416 }
5417 
5418 /*
5419  * Update the entity prio values; note that the new values will not
5420  * be used until the next (re)activation.
5421  */
5422 static void
bfq_set_next_ioprio_data(struct bfq_queue * bfqq,struct bfq_io_cq * bic)5423 bfq_set_next_ioprio_data(struct bfq_queue *bfqq, struct bfq_io_cq *bic)
5424 {
5425 	struct task_struct *tsk = current;
5426 	int ioprio_class;
5427 	struct bfq_data *bfqd = bfqq->bfqd;
5428 
5429 	if (!bfqd)
5430 		return;
5431 
5432 	ioprio_class = IOPRIO_PRIO_CLASS(bic->ioprio);
5433 	switch (ioprio_class) {
5434 	default:
5435 		pr_err("bdi %s: bfq: bad prio class %d\n",
5436 			bdi_dev_name(bfqq->bfqd->queue->disk->bdi),
5437 			ioprio_class);
5438 		fallthrough;
5439 	case IOPRIO_CLASS_NONE:
5440 		/*
5441 		 * No prio set, inherit CPU scheduling settings.
5442 		 */
5443 		bfqq->new_ioprio = task_nice_ioprio(tsk);
5444 		bfqq->new_ioprio_class = task_nice_ioclass(tsk);
5445 		break;
5446 	case IOPRIO_CLASS_RT:
5447 		bfqq->new_ioprio = IOPRIO_PRIO_DATA(bic->ioprio);
5448 		bfqq->new_ioprio_class = IOPRIO_CLASS_RT;
5449 		break;
5450 	case IOPRIO_CLASS_BE:
5451 		bfqq->new_ioprio = IOPRIO_PRIO_DATA(bic->ioprio);
5452 		bfqq->new_ioprio_class = IOPRIO_CLASS_BE;
5453 		break;
5454 	case IOPRIO_CLASS_IDLE:
5455 		bfqq->new_ioprio_class = IOPRIO_CLASS_IDLE;
5456 		bfqq->new_ioprio = 7;
5457 		break;
5458 	}
5459 
5460 	if (bfqq->new_ioprio >= IOPRIO_NR_LEVELS) {
5461 		pr_crit("bfq_set_next_ioprio_data: new_ioprio %d\n",
5462 			bfqq->new_ioprio);
5463 		bfqq->new_ioprio = IOPRIO_NR_LEVELS - 1;
5464 	}
5465 
5466 	bfqq->entity.new_weight = bfq_ioprio_to_weight(bfqq->new_ioprio);
5467 	bfq_log_bfqq(bfqd, bfqq, "new_ioprio %d new_weight %d",
5468 		     bfqq->new_ioprio, bfqq->entity.new_weight);
5469 	bfqq->entity.prio_changed = 1;
5470 }
5471 
5472 static struct bfq_queue *bfq_get_queue(struct bfq_data *bfqd,
5473 				       struct bio *bio, bool is_sync,
5474 				       struct bfq_io_cq *bic,
5475 				       bool respawn);
5476 
bfq_check_ioprio_change(struct bfq_io_cq * bic,struct bio * bio)5477 static void bfq_check_ioprio_change(struct bfq_io_cq *bic, struct bio *bio)
5478 {
5479 	struct bfq_data *bfqd = bic_to_bfqd(bic);
5480 	struct bfq_queue *bfqq;
5481 	int ioprio = bic->icq.ioc->ioprio;
5482 
5483 	/*
5484 	 * This condition may trigger on a newly created bic, be sure to
5485 	 * drop the lock before returning.
5486 	 */
5487 	if (unlikely(!bfqd) || likely(bic->ioprio == ioprio))
5488 		return;
5489 
5490 	bic->ioprio = ioprio;
5491 
5492 	bfqq = bic_to_bfqq(bic, false);
5493 	if (bfqq) {
5494 		bfq_release_process_ref(bfqd, bfqq);
5495 		bfqq = bfq_get_queue(bfqd, bio, false, bic, true);
5496 		bic_set_bfqq(bic, bfqq, false);
5497 	}
5498 
5499 	bfqq = bic_to_bfqq(bic, true);
5500 	if (bfqq)
5501 		bfq_set_next_ioprio_data(bfqq, bic);
5502 }
5503 
bfq_init_bfqq(struct bfq_data * bfqd,struct bfq_queue * bfqq,struct bfq_io_cq * bic,pid_t pid,int is_sync)5504 static void bfq_init_bfqq(struct bfq_data *bfqd, struct bfq_queue *bfqq,
5505 			  struct bfq_io_cq *bic, pid_t pid, int is_sync)
5506 {
5507 	u64 now_ns = ktime_get_ns();
5508 
5509 	RB_CLEAR_NODE(&bfqq->entity.rb_node);
5510 	INIT_LIST_HEAD(&bfqq->fifo);
5511 	INIT_HLIST_NODE(&bfqq->burst_list_node);
5512 	INIT_HLIST_NODE(&bfqq->woken_list_node);
5513 	INIT_HLIST_HEAD(&bfqq->woken_list);
5514 
5515 	bfqq->ref = 0;
5516 	bfqq->bfqd = bfqd;
5517 
5518 	if (bic)
5519 		bfq_set_next_ioprio_data(bfqq, bic);
5520 
5521 	if (is_sync) {
5522 		/*
5523 		 * No need to mark as has_short_ttime if in
5524 		 * idle_class, because no device idling is performed
5525 		 * for queues in idle class
5526 		 */
5527 		if (!bfq_class_idle(bfqq))
5528 			/* tentatively mark as has_short_ttime */
5529 			bfq_mark_bfqq_has_short_ttime(bfqq);
5530 		bfq_mark_bfqq_sync(bfqq);
5531 		bfq_mark_bfqq_just_created(bfqq);
5532 	} else
5533 		bfq_clear_bfqq_sync(bfqq);
5534 
5535 	/* set end request to minus infinity from now */
5536 	bfqq->ttime.last_end_request = now_ns + 1;
5537 
5538 	bfqq->creation_time = jiffies;
5539 
5540 	bfqq->io_start_time = now_ns;
5541 
5542 	bfq_mark_bfqq_IO_bound(bfqq);
5543 
5544 	bfqq->pid = pid;
5545 
5546 	/* Tentative initial value to trade off between thr and lat */
5547 	bfqq->max_budget = (2 * bfq_max_budget(bfqd)) / 3;
5548 	bfqq->budget_timeout = bfq_smallest_from_now();
5549 
5550 	bfqq->wr_coeff = 1;
5551 	bfqq->last_wr_start_finish = jiffies;
5552 	bfqq->wr_start_at_switch_to_srt = bfq_smallest_from_now();
5553 	bfqq->split_time = bfq_smallest_from_now();
5554 
5555 	/*
5556 	 * To not forget the possibly high bandwidth consumed by a
5557 	 * process/queue in the recent past,
5558 	 * bfq_bfqq_softrt_next_start() returns a value at least equal
5559 	 * to the current value of bfqq->soft_rt_next_start (see
5560 	 * comments on bfq_bfqq_softrt_next_start).  Set
5561 	 * soft_rt_next_start to now, to mean that bfqq has consumed
5562 	 * no bandwidth so far.
5563 	 */
5564 	bfqq->soft_rt_next_start = jiffies;
5565 
5566 	/* first request is almost certainly seeky */
5567 	bfqq->seek_history = 1;
5568 }
5569 
bfq_async_queue_prio(struct bfq_data * bfqd,struct bfq_group * bfqg,int ioprio_class,int ioprio)5570 static struct bfq_queue **bfq_async_queue_prio(struct bfq_data *bfqd,
5571 					       struct bfq_group *bfqg,
5572 					       int ioprio_class, int ioprio)
5573 {
5574 	switch (ioprio_class) {
5575 	case IOPRIO_CLASS_RT:
5576 		return &bfqg->async_bfqq[0][ioprio];
5577 	case IOPRIO_CLASS_NONE:
5578 		ioprio = IOPRIO_BE_NORM;
5579 		fallthrough;
5580 	case IOPRIO_CLASS_BE:
5581 		return &bfqg->async_bfqq[1][ioprio];
5582 	case IOPRIO_CLASS_IDLE:
5583 		return &bfqg->async_idle_bfqq;
5584 	default:
5585 		return NULL;
5586 	}
5587 }
5588 
5589 static struct bfq_queue *
bfq_do_early_stable_merge(struct bfq_data * bfqd,struct bfq_queue * bfqq,struct bfq_io_cq * bic,struct bfq_queue * last_bfqq_created)5590 bfq_do_early_stable_merge(struct bfq_data *bfqd, struct bfq_queue *bfqq,
5591 			  struct bfq_io_cq *bic,
5592 			  struct bfq_queue *last_bfqq_created)
5593 {
5594 	struct bfq_queue *new_bfqq =
5595 		bfq_setup_merge(bfqq, last_bfqq_created);
5596 
5597 	if (!new_bfqq)
5598 		return bfqq;
5599 
5600 	if (new_bfqq->bic)
5601 		new_bfqq->bic->stably_merged = true;
5602 	bic->stably_merged = true;
5603 
5604 	/*
5605 	 * Reusing merge functions. This implies that
5606 	 * bfqq->bic must be set too, for
5607 	 * bfq_merge_bfqqs to correctly save bfqq's
5608 	 * state before killing it.
5609 	 */
5610 	bfqq->bic = bic;
5611 	bfq_merge_bfqqs(bfqd, bic, bfqq, new_bfqq);
5612 
5613 	return new_bfqq;
5614 }
5615 
5616 /*
5617  * Many throughput-sensitive workloads are made of several parallel
5618  * I/O flows, with all flows generated by the same application, or
5619  * more generically by the same task (e.g., system boot). The most
5620  * counterproductive action with these workloads is plugging I/O
5621  * dispatch when one of the bfq_queues associated with these flows
5622  * remains temporarily empty.
5623  *
5624  * To avoid this plugging, BFQ has been using a burst-handling
5625  * mechanism for years now. This mechanism has proven effective for
5626  * throughput, and not detrimental for service guarantees. The
5627  * following function pushes this mechanism a little bit further,
5628  * basing on the following two facts.
5629  *
5630  * First, all the I/O flows of a the same application or task
5631  * contribute to the execution/completion of that common application
5632  * or task. So the performance figures that matter are total
5633  * throughput of the flows and task-wide I/O latency.  In particular,
5634  * these flows do not need to be protected from each other, in terms
5635  * of individual bandwidth or latency.
5636  *
5637  * Second, the above fact holds regardless of the number of flows.
5638  *
5639  * Putting these two facts together, this commits merges stably the
5640  * bfq_queues associated with these I/O flows, i.e., with the
5641  * processes that generate these IO/ flows, regardless of how many the
5642  * involved processes are.
5643  *
5644  * To decide whether a set of bfq_queues is actually associated with
5645  * the I/O flows of a common application or task, and to merge these
5646  * queues stably, this function operates as follows: given a bfq_queue,
5647  * say Q2, currently being created, and the last bfq_queue, say Q1,
5648  * created before Q2, Q2 is merged stably with Q1 if
5649  * - very little time has elapsed since when Q1 was created
5650  * - Q2 has the same ioprio as Q1
5651  * - Q2 belongs to the same group as Q1
5652  *
5653  * Merging bfq_queues also reduces scheduling overhead. A fio test
5654  * with ten random readers on /dev/nullb shows a throughput boost of
5655  * 40%, with a quadcore. Since BFQ's execution time amounts to ~50% of
5656  * the total per-request processing time, the above throughput boost
5657  * implies that BFQ's overhead is reduced by more than 50%.
5658  *
5659  * This new mechanism most certainly obsoletes the current
5660  * burst-handling heuristics. We keep those heuristics for the moment.
5661  */
bfq_do_or_sched_stable_merge(struct bfq_data * bfqd,struct bfq_queue * bfqq,struct bfq_io_cq * bic)5662 static struct bfq_queue *bfq_do_or_sched_stable_merge(struct bfq_data *bfqd,
5663 						      struct bfq_queue *bfqq,
5664 						      struct bfq_io_cq *bic)
5665 {
5666 	struct bfq_queue **source_bfqq = bfqq->entity.parent ?
5667 		&bfqq->entity.parent->last_bfqq_created :
5668 		&bfqd->last_bfqq_created;
5669 
5670 	struct bfq_queue *last_bfqq_created = *source_bfqq;
5671 
5672 	/*
5673 	 * If last_bfqq_created has not been set yet, then init it. If
5674 	 * it has been set already, but too long ago, then move it
5675 	 * forward to bfqq. Finally, move also if bfqq belongs to a
5676 	 * different group than last_bfqq_created, or if bfqq has a
5677 	 * different ioprio or ioprio_class. If none of these
5678 	 * conditions holds true, then try an early stable merge or
5679 	 * schedule a delayed stable merge.
5680 	 *
5681 	 * A delayed merge is scheduled (instead of performing an
5682 	 * early merge), in case bfqq might soon prove to be more
5683 	 * throughput-beneficial if not merged. Currently this is
5684 	 * possible only if bfqd is rotational with no queueing. For
5685 	 * such a drive, not merging bfqq is better for throughput if
5686 	 * bfqq happens to contain sequential I/O. So, we wait a
5687 	 * little bit for enough I/O to flow through bfqq. After that,
5688 	 * if such an I/O is sequential, then the merge is
5689 	 * canceled. Otherwise the merge is finally performed.
5690 	 */
5691 	if (!last_bfqq_created ||
5692 	    time_before(last_bfqq_created->creation_time +
5693 			msecs_to_jiffies(bfq_activation_stable_merging),
5694 			bfqq->creation_time) ||
5695 		bfqq->entity.parent != last_bfqq_created->entity.parent ||
5696 		bfqq->ioprio != last_bfqq_created->ioprio ||
5697 		bfqq->ioprio_class != last_bfqq_created->ioprio_class)
5698 		*source_bfqq = bfqq;
5699 	else if (time_after_eq(last_bfqq_created->creation_time +
5700 				 bfqd->bfq_burst_interval,
5701 				 bfqq->creation_time)) {
5702 		if (likely(bfqd->nonrot_with_queueing))
5703 			/*
5704 			 * With this type of drive, leaving
5705 			 * bfqq alone may provide no
5706 			 * throughput benefits compared with
5707 			 * merging bfqq. So merge bfqq now.
5708 			 */
5709 			bfqq = bfq_do_early_stable_merge(bfqd, bfqq,
5710 							 bic,
5711 							 last_bfqq_created);
5712 		else { /* schedule tentative stable merge */
5713 			/*
5714 			 * get reference on last_bfqq_created,
5715 			 * to prevent it from being freed,
5716 			 * until we decide whether to merge
5717 			 */
5718 			last_bfqq_created->ref++;
5719 			/*
5720 			 * need to keep track of stable refs, to
5721 			 * compute process refs correctly
5722 			 */
5723 			last_bfqq_created->stable_ref++;
5724 			/*
5725 			 * Record the bfqq to merge to.
5726 			 */
5727 			bic->stable_merge_bfqq = last_bfqq_created;
5728 		}
5729 	}
5730 
5731 	return bfqq;
5732 }
5733 
5734 
bfq_get_queue(struct bfq_data * bfqd,struct bio * bio,bool is_sync,struct bfq_io_cq * bic,bool respawn)5735 static struct bfq_queue *bfq_get_queue(struct bfq_data *bfqd,
5736 				       struct bio *bio, bool is_sync,
5737 				       struct bfq_io_cq *bic,
5738 				       bool respawn)
5739 {
5740 	const int ioprio = IOPRIO_PRIO_DATA(bic->ioprio);
5741 	const int ioprio_class = IOPRIO_PRIO_CLASS(bic->ioprio);
5742 	struct bfq_queue **async_bfqq = NULL;
5743 	struct bfq_queue *bfqq;
5744 	struct bfq_group *bfqg;
5745 
5746 	bfqg = bfq_bio_bfqg(bfqd, bio);
5747 	if (!is_sync) {
5748 		async_bfqq = bfq_async_queue_prio(bfqd, bfqg, ioprio_class,
5749 						  ioprio);
5750 		bfqq = *async_bfqq;
5751 		if (bfqq)
5752 			goto out;
5753 	}
5754 
5755 	bfqq = kmem_cache_alloc_node(bfq_pool,
5756 				     GFP_NOWAIT | __GFP_ZERO | __GFP_NOWARN,
5757 				     bfqd->queue->node);
5758 
5759 	if (bfqq) {
5760 		bfq_init_bfqq(bfqd, bfqq, bic, current->pid,
5761 			      is_sync);
5762 		bfq_init_entity(&bfqq->entity, bfqg);
5763 		bfq_log_bfqq(bfqd, bfqq, "allocated");
5764 	} else {
5765 		bfqq = &bfqd->oom_bfqq;
5766 		bfq_log_bfqq(bfqd, bfqq, "using oom bfqq");
5767 		goto out;
5768 	}
5769 
5770 	/*
5771 	 * Pin the queue now that it's allocated, scheduler exit will
5772 	 * prune it.
5773 	 */
5774 	if (async_bfqq) {
5775 		bfqq->ref++; /*
5776 			      * Extra group reference, w.r.t. sync
5777 			      * queue. This extra reference is removed
5778 			      * only if bfqq->bfqg disappears, to
5779 			      * guarantee that this queue is not freed
5780 			      * until its group goes away.
5781 			      */
5782 		bfq_log_bfqq(bfqd, bfqq, "get_queue, bfqq not in async: %p, %d",
5783 			     bfqq, bfqq->ref);
5784 		*async_bfqq = bfqq;
5785 	}
5786 
5787 out:
5788 	bfqq->ref++; /* get a process reference to this queue */
5789 
5790 	if (bfqq != &bfqd->oom_bfqq && is_sync && !respawn)
5791 		bfqq = bfq_do_or_sched_stable_merge(bfqd, bfqq, bic);
5792 	return bfqq;
5793 }
5794 
bfq_update_io_thinktime(struct bfq_data * bfqd,struct bfq_queue * bfqq)5795 static void bfq_update_io_thinktime(struct bfq_data *bfqd,
5796 				    struct bfq_queue *bfqq)
5797 {
5798 	struct bfq_ttime *ttime = &bfqq->ttime;
5799 	u64 elapsed;
5800 
5801 	/*
5802 	 * We are really interested in how long it takes for the queue to
5803 	 * become busy when there is no outstanding IO for this queue. So
5804 	 * ignore cases when the bfq queue has already IO queued.
5805 	 */
5806 	if (bfqq->dispatched || bfq_bfqq_busy(bfqq))
5807 		return;
5808 	elapsed = ktime_get_ns() - bfqq->ttime.last_end_request;
5809 	elapsed = min_t(u64, elapsed, 2ULL * bfqd->bfq_slice_idle);
5810 
5811 	ttime->ttime_samples = (7*ttime->ttime_samples + 256) / 8;
5812 	ttime->ttime_total = div_u64(7*ttime->ttime_total + 256*elapsed,  8);
5813 	ttime->ttime_mean = div64_ul(ttime->ttime_total + 128,
5814 				     ttime->ttime_samples);
5815 }
5816 
5817 static void
bfq_update_io_seektime(struct bfq_data * bfqd,struct bfq_queue * bfqq,struct request * rq)5818 bfq_update_io_seektime(struct bfq_data *bfqd, struct bfq_queue *bfqq,
5819 		       struct request *rq)
5820 {
5821 	bfqq->seek_history <<= 1;
5822 	bfqq->seek_history |= BFQ_RQ_SEEKY(bfqd, bfqq->last_request_pos, rq);
5823 
5824 	if (bfqq->wr_coeff > 1 &&
5825 	    bfqq->wr_cur_max_time == bfqd->bfq_wr_rt_max_time &&
5826 	    BFQQ_TOTALLY_SEEKY(bfqq)) {
5827 		if (time_is_before_jiffies(bfqq->wr_start_at_switch_to_srt +
5828 					   bfq_wr_duration(bfqd))) {
5829 			/*
5830 			 * In soft_rt weight raising with the
5831 			 * interactive-weight-raising period
5832 			 * elapsed (so no switch back to
5833 			 * interactive weight raising).
5834 			 */
5835 			bfq_bfqq_end_wr(bfqq);
5836 		} else { /*
5837 			  * stopping soft_rt weight raising
5838 			  * while still in interactive period,
5839 			  * switch back to interactive weight
5840 			  * raising
5841 			  */
5842 			switch_back_to_interactive_wr(bfqq, bfqd);
5843 			bfqq->entity.prio_changed = 1;
5844 		}
5845 	}
5846 }
5847 
bfq_update_has_short_ttime(struct bfq_data * bfqd,struct bfq_queue * bfqq,struct bfq_io_cq * bic)5848 static void bfq_update_has_short_ttime(struct bfq_data *bfqd,
5849 				       struct bfq_queue *bfqq,
5850 				       struct bfq_io_cq *bic)
5851 {
5852 	bool has_short_ttime = true, state_changed;
5853 
5854 	/*
5855 	 * No need to update has_short_ttime if bfqq is async or in
5856 	 * idle io prio class, or if bfq_slice_idle is zero, because
5857 	 * no device idling is performed for bfqq in this case.
5858 	 */
5859 	if (!bfq_bfqq_sync(bfqq) || bfq_class_idle(bfqq) ||
5860 	    bfqd->bfq_slice_idle == 0)
5861 		return;
5862 
5863 	/* Idle window just restored, statistics are meaningless. */
5864 	if (time_is_after_eq_jiffies(bfqq->split_time +
5865 				     bfqd->bfq_wr_min_idle_time))
5866 		return;
5867 
5868 	/* Think time is infinite if no process is linked to
5869 	 * bfqq. Otherwise check average think time to decide whether
5870 	 * to mark as has_short_ttime. To this goal, compare average
5871 	 * think time with half the I/O-plugging timeout.
5872 	 */
5873 	if (atomic_read(&bic->icq.ioc->active_ref) == 0 ||
5874 	    (bfq_sample_valid(bfqq->ttime.ttime_samples) &&
5875 	     bfqq->ttime.ttime_mean > bfqd->bfq_slice_idle>>1))
5876 		has_short_ttime = false;
5877 
5878 	state_changed = has_short_ttime != bfq_bfqq_has_short_ttime(bfqq);
5879 
5880 	if (has_short_ttime)
5881 		bfq_mark_bfqq_has_short_ttime(bfqq);
5882 	else
5883 		bfq_clear_bfqq_has_short_ttime(bfqq);
5884 
5885 	/*
5886 	 * Until the base value for the total service time gets
5887 	 * finally computed for bfqq, the inject limit does depend on
5888 	 * the think-time state (short|long). In particular, the limit
5889 	 * is 0 or 1 if the think time is deemed, respectively, as
5890 	 * short or long (details in the comments in
5891 	 * bfq_update_inject_limit()). Accordingly, the next
5892 	 * instructions reset the inject limit if the think-time state
5893 	 * has changed and the above base value is still to be
5894 	 * computed.
5895 	 *
5896 	 * However, the reset is performed only if more than 100 ms
5897 	 * have elapsed since the last update of the inject limit, or
5898 	 * (inclusive) if the change is from short to long think
5899 	 * time. The reason for this waiting is as follows.
5900 	 *
5901 	 * bfqq may have a long think time because of a
5902 	 * synchronization with some other queue, i.e., because the
5903 	 * I/O of some other queue may need to be completed for bfqq
5904 	 * to receive new I/O. Details in the comments on the choice
5905 	 * of the queue for injection in bfq_select_queue().
5906 	 *
5907 	 * As stressed in those comments, if such a synchronization is
5908 	 * actually in place, then, without injection on bfqq, the
5909 	 * blocking I/O cannot happen to served while bfqq is in
5910 	 * service. As a consequence, if bfqq is granted
5911 	 * I/O-dispatch-plugging, then bfqq remains empty, and no I/O
5912 	 * is dispatched, until the idle timeout fires. This is likely
5913 	 * to result in lower bandwidth and higher latencies for bfqq,
5914 	 * and in a severe loss of total throughput.
5915 	 *
5916 	 * On the opposite end, a non-zero inject limit may allow the
5917 	 * I/O that blocks bfqq to be executed soon, and therefore
5918 	 * bfqq to receive new I/O soon.
5919 	 *
5920 	 * But, if the blocking gets actually eliminated, then the
5921 	 * next think-time sample for bfqq may be very low. This in
5922 	 * turn may cause bfqq's think time to be deemed
5923 	 * short. Without the 100 ms barrier, this new state change
5924 	 * would cause the body of the next if to be executed
5925 	 * immediately. But this would set to 0 the inject
5926 	 * limit. Without injection, the blocking I/O would cause the
5927 	 * think time of bfqq to become long again, and therefore the
5928 	 * inject limit to be raised again, and so on. The only effect
5929 	 * of such a steady oscillation between the two think-time
5930 	 * states would be to prevent effective injection on bfqq.
5931 	 *
5932 	 * In contrast, if the inject limit is not reset during such a
5933 	 * long time interval as 100 ms, then the number of short
5934 	 * think time samples can grow significantly before the reset
5935 	 * is performed. As a consequence, the think time state can
5936 	 * become stable before the reset. Therefore there will be no
5937 	 * state change when the 100 ms elapse, and no reset of the
5938 	 * inject limit. The inject limit remains steadily equal to 1
5939 	 * both during and after the 100 ms. So injection can be
5940 	 * performed at all times, and throughput gets boosted.
5941 	 *
5942 	 * An inject limit equal to 1 is however in conflict, in
5943 	 * general, with the fact that the think time of bfqq is
5944 	 * short, because injection may be likely to delay bfqq's I/O
5945 	 * (as explained in the comments in
5946 	 * bfq_update_inject_limit()). But this does not happen in
5947 	 * this special case, because bfqq's low think time is due to
5948 	 * an effective handling of a synchronization, through
5949 	 * injection. In this special case, bfqq's I/O does not get
5950 	 * delayed by injection; on the contrary, bfqq's I/O is
5951 	 * brought forward, because it is not blocked for
5952 	 * milliseconds.
5953 	 *
5954 	 * In addition, serving the blocking I/O much sooner, and much
5955 	 * more frequently than once per I/O-plugging timeout, makes
5956 	 * it much quicker to detect a waker queue (the concept of
5957 	 * waker queue is defined in the comments in
5958 	 * bfq_add_request()). This makes it possible to start sooner
5959 	 * to boost throughput more effectively, by injecting the I/O
5960 	 * of the waker queue unconditionally on every
5961 	 * bfq_dispatch_request().
5962 	 *
5963 	 * One last, important benefit of not resetting the inject
5964 	 * limit before 100 ms is that, during this time interval, the
5965 	 * base value for the total service time is likely to get
5966 	 * finally computed for bfqq, freeing the inject limit from
5967 	 * its relation with the think time.
5968 	 */
5969 	if (state_changed && bfqq->last_serv_time_ns == 0 &&
5970 	    (time_is_before_eq_jiffies(bfqq->decrease_time_jif +
5971 				      msecs_to_jiffies(100)) ||
5972 	     !has_short_ttime))
5973 		bfq_reset_inject_limit(bfqd, bfqq);
5974 }
5975 
5976 /*
5977  * Called when a new fs request (rq) is added to bfqq.  Check if there's
5978  * something we should do about it.
5979  */
bfq_rq_enqueued(struct bfq_data * bfqd,struct bfq_queue * bfqq,struct request * rq)5980 static void bfq_rq_enqueued(struct bfq_data *bfqd, struct bfq_queue *bfqq,
5981 			    struct request *rq)
5982 {
5983 	if (rq->cmd_flags & REQ_META)
5984 		bfqq->meta_pending++;
5985 
5986 	bfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
5987 
5988 	if (bfqq == bfqd->in_service_queue && bfq_bfqq_wait_request(bfqq)) {
5989 		bool small_req = bfqq->queued[rq_is_sync(rq)] == 1 &&
5990 				 blk_rq_sectors(rq) < 32;
5991 		bool budget_timeout = bfq_bfqq_budget_timeout(bfqq);
5992 
5993 		/*
5994 		 * There is just this request queued: if
5995 		 * - the request is small, and
5996 		 * - we are idling to boost throughput, and
5997 		 * - the queue is not to be expired,
5998 		 * then just exit.
5999 		 *
6000 		 * In this way, if the device is being idled to wait
6001 		 * for a new request from the in-service queue, we
6002 		 * avoid unplugging the device and committing the
6003 		 * device to serve just a small request. In contrast
6004 		 * we wait for the block layer to decide when to
6005 		 * unplug the device: hopefully, new requests will be
6006 		 * merged to this one quickly, then the device will be
6007 		 * unplugged and larger requests will be dispatched.
6008 		 */
6009 		if (small_req && idling_boosts_thr_without_issues(bfqd, bfqq) &&
6010 		    !budget_timeout)
6011 			return;
6012 
6013 		/*
6014 		 * A large enough request arrived, or idling is being
6015 		 * performed to preserve service guarantees, or
6016 		 * finally the queue is to be expired: in all these
6017 		 * cases disk idling is to be stopped, so clear
6018 		 * wait_request flag and reset timer.
6019 		 */
6020 		bfq_clear_bfqq_wait_request(bfqq);
6021 		hrtimer_try_to_cancel(&bfqd->idle_slice_timer);
6022 
6023 		/*
6024 		 * The queue is not empty, because a new request just
6025 		 * arrived. Hence we can safely expire the queue, in
6026 		 * case of budget timeout, without risking that the
6027 		 * timestamps of the queue are not updated correctly.
6028 		 * See [1] for more details.
6029 		 */
6030 		if (budget_timeout)
6031 			bfq_bfqq_expire(bfqd, bfqq, false,
6032 					BFQQE_BUDGET_TIMEOUT);
6033 	}
6034 }
6035 
bfqq_request_allocated(struct bfq_queue * bfqq)6036 static void bfqq_request_allocated(struct bfq_queue *bfqq)
6037 {
6038 	struct bfq_entity *entity = &bfqq->entity;
6039 
6040 	for_each_entity(entity)
6041 		entity->allocated++;
6042 }
6043 
bfqq_request_freed(struct bfq_queue * bfqq)6044 static void bfqq_request_freed(struct bfq_queue *bfqq)
6045 {
6046 	struct bfq_entity *entity = &bfqq->entity;
6047 
6048 	for_each_entity(entity)
6049 		entity->allocated--;
6050 }
6051 
6052 /* returns true if it causes the idle timer to be disabled */
__bfq_insert_request(struct bfq_data * bfqd,struct request * rq)6053 static bool __bfq_insert_request(struct bfq_data *bfqd, struct request *rq)
6054 {
6055 	struct bfq_queue *bfqq = RQ_BFQQ(rq),
6056 		*new_bfqq = bfq_setup_cooperator(bfqd, bfqq, rq, true,
6057 						 RQ_BIC(rq));
6058 	bool waiting, idle_timer_disabled = false;
6059 
6060 	if (new_bfqq) {
6061 		/*
6062 		 * Release the request's reference to the old bfqq
6063 		 * and make sure one is taken to the shared queue.
6064 		 */
6065 		bfqq_request_allocated(new_bfqq);
6066 		bfqq_request_freed(bfqq);
6067 		new_bfqq->ref++;
6068 		/*
6069 		 * If the bic associated with the process
6070 		 * issuing this request still points to bfqq
6071 		 * (and thus has not been already redirected
6072 		 * to new_bfqq or even some other bfq_queue),
6073 		 * then complete the merge and redirect it to
6074 		 * new_bfqq.
6075 		 */
6076 		if (bic_to_bfqq(RQ_BIC(rq), 1) == bfqq)
6077 			bfq_merge_bfqqs(bfqd, RQ_BIC(rq),
6078 					bfqq, new_bfqq);
6079 
6080 		bfq_clear_bfqq_just_created(bfqq);
6081 		/*
6082 		 * rq is about to be enqueued into new_bfqq,
6083 		 * release rq reference on bfqq
6084 		 */
6085 		bfq_put_queue(bfqq);
6086 		rq->elv.priv[1] = new_bfqq;
6087 		bfqq = new_bfqq;
6088 	}
6089 
6090 	bfq_update_io_thinktime(bfqd, bfqq);
6091 	bfq_update_has_short_ttime(bfqd, bfqq, RQ_BIC(rq));
6092 	bfq_update_io_seektime(bfqd, bfqq, rq);
6093 
6094 	waiting = bfqq && bfq_bfqq_wait_request(bfqq);
6095 	bfq_add_request(rq);
6096 	idle_timer_disabled = waiting && !bfq_bfqq_wait_request(bfqq);
6097 
6098 	rq->fifo_time = ktime_get_ns() + bfqd->bfq_fifo_expire[rq_is_sync(rq)];
6099 	list_add_tail(&rq->queuelist, &bfqq->fifo);
6100 
6101 	bfq_rq_enqueued(bfqd, bfqq, rq);
6102 
6103 	return idle_timer_disabled;
6104 }
6105 
6106 #ifdef CONFIG_BFQ_CGROUP_DEBUG
bfq_update_insert_stats(struct request_queue * q,struct bfq_queue * bfqq,bool idle_timer_disabled,blk_opf_t cmd_flags)6107 static void bfq_update_insert_stats(struct request_queue *q,
6108 				    struct bfq_queue *bfqq,
6109 				    bool idle_timer_disabled,
6110 				    blk_opf_t cmd_flags)
6111 {
6112 	if (!bfqq)
6113 		return;
6114 
6115 	/*
6116 	 * bfqq still exists, because it can disappear only after
6117 	 * either it is merged with another queue, or the process it
6118 	 * is associated with exits. But both actions must be taken by
6119 	 * the same process currently executing this flow of
6120 	 * instructions.
6121 	 *
6122 	 * In addition, the following queue lock guarantees that
6123 	 * bfqq_group(bfqq) exists as well.
6124 	 */
6125 	spin_lock_irq(&q->queue_lock);
6126 	bfqg_stats_update_io_add(bfqq_group(bfqq), bfqq, cmd_flags);
6127 	if (idle_timer_disabled)
6128 		bfqg_stats_update_idle_time(bfqq_group(bfqq));
6129 	spin_unlock_irq(&q->queue_lock);
6130 }
6131 #else
bfq_update_insert_stats(struct request_queue * q,struct bfq_queue * bfqq,bool idle_timer_disabled,blk_opf_t cmd_flags)6132 static inline void bfq_update_insert_stats(struct request_queue *q,
6133 					   struct bfq_queue *bfqq,
6134 					   bool idle_timer_disabled,
6135 					   blk_opf_t cmd_flags) {}
6136 #endif /* CONFIG_BFQ_CGROUP_DEBUG */
6137 
6138 static struct bfq_queue *bfq_init_rq(struct request *rq);
6139 
bfq_insert_request(struct blk_mq_hw_ctx * hctx,struct request * rq,bool at_head)6140 static void bfq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
6141 			       bool at_head)
6142 {
6143 	struct request_queue *q = hctx->queue;
6144 	struct bfq_data *bfqd = q->elevator->elevator_data;
6145 	struct bfq_queue *bfqq;
6146 	bool idle_timer_disabled = false;
6147 	blk_opf_t cmd_flags;
6148 	LIST_HEAD(free);
6149 
6150 #ifdef CONFIG_BFQ_GROUP_IOSCHED
6151 	if (!cgroup_subsys_on_dfl(io_cgrp_subsys) && rq->bio)
6152 		bfqg_stats_update_legacy_io(q, rq);
6153 #endif
6154 	spin_lock_irq(&bfqd->lock);
6155 	bfqq = bfq_init_rq(rq);
6156 	if (blk_mq_sched_try_insert_merge(q, rq, &free)) {
6157 		spin_unlock_irq(&bfqd->lock);
6158 		blk_mq_free_requests(&free);
6159 		return;
6160 	}
6161 
6162 	trace_block_rq_insert(rq);
6163 
6164 	if (!bfqq || at_head) {
6165 		if (at_head)
6166 			list_add(&rq->queuelist, &bfqd->dispatch);
6167 		else
6168 			list_add_tail(&rq->queuelist, &bfqd->dispatch);
6169 	} else {
6170 		idle_timer_disabled = __bfq_insert_request(bfqd, rq);
6171 		/*
6172 		 * Update bfqq, because, if a queue merge has occurred
6173 		 * in __bfq_insert_request, then rq has been
6174 		 * redirected into a new queue.
6175 		 */
6176 		bfqq = RQ_BFQQ(rq);
6177 
6178 		if (rq_mergeable(rq)) {
6179 			elv_rqhash_add(q, rq);
6180 			if (!q->last_merge)
6181 				q->last_merge = rq;
6182 		}
6183 	}
6184 
6185 	/*
6186 	 * Cache cmd_flags before releasing scheduler lock, because rq
6187 	 * may disappear afterwards (for example, because of a request
6188 	 * merge).
6189 	 */
6190 	cmd_flags = rq->cmd_flags;
6191 	spin_unlock_irq(&bfqd->lock);
6192 
6193 	bfq_update_insert_stats(q, bfqq, idle_timer_disabled,
6194 				cmd_flags);
6195 }
6196 
bfq_insert_requests(struct blk_mq_hw_ctx * hctx,struct list_head * list,bool at_head)6197 static void bfq_insert_requests(struct blk_mq_hw_ctx *hctx,
6198 				struct list_head *list, bool at_head)
6199 {
6200 	while (!list_empty(list)) {
6201 		struct request *rq;
6202 
6203 		rq = list_first_entry(list, struct request, queuelist);
6204 		list_del_init(&rq->queuelist);
6205 		bfq_insert_request(hctx, rq, at_head);
6206 	}
6207 }
6208 
bfq_update_hw_tag(struct bfq_data * bfqd)6209 static void bfq_update_hw_tag(struct bfq_data *bfqd)
6210 {
6211 	struct bfq_queue *bfqq = bfqd->in_service_queue;
6212 
6213 	bfqd->max_rq_in_driver = max_t(int, bfqd->max_rq_in_driver,
6214 				       bfqd->rq_in_driver);
6215 
6216 	if (bfqd->hw_tag == 1)
6217 		return;
6218 
6219 	/*
6220 	 * This sample is valid if the number of outstanding requests
6221 	 * is large enough to allow a queueing behavior.  Note that the
6222 	 * sum is not exact, as it's not taking into account deactivated
6223 	 * requests.
6224 	 */
6225 	if (bfqd->rq_in_driver + bfqd->queued <= BFQ_HW_QUEUE_THRESHOLD)
6226 		return;
6227 
6228 	/*
6229 	 * If active queue hasn't enough requests and can idle, bfq might not
6230 	 * dispatch sufficient requests to hardware. Don't zero hw_tag in this
6231 	 * case
6232 	 */
6233 	if (bfqq && bfq_bfqq_has_short_ttime(bfqq) &&
6234 	    bfqq->dispatched + bfqq->queued[0] + bfqq->queued[1] <
6235 	    BFQ_HW_QUEUE_THRESHOLD &&
6236 	    bfqd->rq_in_driver < BFQ_HW_QUEUE_THRESHOLD)
6237 		return;
6238 
6239 	if (bfqd->hw_tag_samples++ < BFQ_HW_QUEUE_SAMPLES)
6240 		return;
6241 
6242 	bfqd->hw_tag = bfqd->max_rq_in_driver > BFQ_HW_QUEUE_THRESHOLD;
6243 	bfqd->max_rq_in_driver = 0;
6244 	bfqd->hw_tag_samples = 0;
6245 
6246 	bfqd->nonrot_with_queueing =
6247 		blk_queue_nonrot(bfqd->queue) && bfqd->hw_tag;
6248 }
6249 
bfq_completed_request(struct bfq_queue * bfqq,struct bfq_data * bfqd)6250 static void bfq_completed_request(struct bfq_queue *bfqq, struct bfq_data *bfqd)
6251 {
6252 	u64 now_ns;
6253 	u32 delta_us;
6254 
6255 	bfq_update_hw_tag(bfqd);
6256 
6257 	bfqd->rq_in_driver--;
6258 	bfqq->dispatched--;
6259 
6260 	if (!bfqq->dispatched && !bfq_bfqq_busy(bfqq)) {
6261 		/*
6262 		 * Set budget_timeout (which we overload to store the
6263 		 * time at which the queue remains with no backlog and
6264 		 * no outstanding request; used by the weight-raising
6265 		 * mechanism).
6266 		 */
6267 		bfqq->budget_timeout = jiffies;
6268 
6269 		bfq_weights_tree_remove(bfqd, bfqq);
6270 	}
6271 
6272 	now_ns = ktime_get_ns();
6273 
6274 	bfqq->ttime.last_end_request = now_ns;
6275 
6276 	/*
6277 	 * Using us instead of ns, to get a reasonable precision in
6278 	 * computing rate in next check.
6279 	 */
6280 	delta_us = div_u64(now_ns - bfqd->last_completion, NSEC_PER_USEC);
6281 
6282 	/*
6283 	 * If the request took rather long to complete, and, according
6284 	 * to the maximum request size recorded, this completion latency
6285 	 * implies that the request was certainly served at a very low
6286 	 * rate (less than 1M sectors/sec), then the whole observation
6287 	 * interval that lasts up to this time instant cannot be a
6288 	 * valid time interval for computing a new peak rate.  Invoke
6289 	 * bfq_update_rate_reset to have the following three steps
6290 	 * taken:
6291 	 * - close the observation interval at the last (previous)
6292 	 *   request dispatch or completion
6293 	 * - compute rate, if possible, for that observation interval
6294 	 * - reset to zero samples, which will trigger a proper
6295 	 *   re-initialization of the observation interval on next
6296 	 *   dispatch
6297 	 */
6298 	if (delta_us > BFQ_MIN_TT/NSEC_PER_USEC &&
6299 	   (bfqd->last_rq_max_size<<BFQ_RATE_SHIFT)/delta_us <
6300 			1UL<<(BFQ_RATE_SHIFT - 10))
6301 		bfq_update_rate_reset(bfqd, NULL);
6302 	bfqd->last_completion = now_ns;
6303 	/*
6304 	 * Shared queues are likely to receive I/O at a high
6305 	 * rate. This may deceptively let them be considered as wakers
6306 	 * of other queues. But a false waker will unjustly steal
6307 	 * bandwidth to its supposedly woken queue. So considering
6308 	 * also shared queues in the waking mechanism may cause more
6309 	 * control troubles than throughput benefits. Then reset
6310 	 * last_completed_rq_bfqq if bfqq is a shared queue.
6311 	 */
6312 	if (!bfq_bfqq_coop(bfqq))
6313 		bfqd->last_completed_rq_bfqq = bfqq;
6314 	else
6315 		bfqd->last_completed_rq_bfqq = NULL;
6316 
6317 	/*
6318 	 * If we are waiting to discover whether the request pattern
6319 	 * of the task associated with the queue is actually
6320 	 * isochronous, and both requisites for this condition to hold
6321 	 * are now satisfied, then compute soft_rt_next_start (see the
6322 	 * comments on the function bfq_bfqq_softrt_next_start()). We
6323 	 * do not compute soft_rt_next_start if bfqq is in interactive
6324 	 * weight raising (see the comments in bfq_bfqq_expire() for
6325 	 * an explanation). We schedule this delayed update when bfqq
6326 	 * expires, if it still has in-flight requests.
6327 	 */
6328 	if (bfq_bfqq_softrt_update(bfqq) && bfqq->dispatched == 0 &&
6329 	    RB_EMPTY_ROOT(&bfqq->sort_list) &&
6330 	    bfqq->wr_coeff != bfqd->bfq_wr_coeff)
6331 		bfqq->soft_rt_next_start =
6332 			bfq_bfqq_softrt_next_start(bfqd, bfqq);
6333 
6334 	/*
6335 	 * If this is the in-service queue, check if it needs to be expired,
6336 	 * or if we want to idle in case it has no pending requests.
6337 	 */
6338 	if (bfqd->in_service_queue == bfqq) {
6339 		if (bfq_bfqq_must_idle(bfqq)) {
6340 			if (bfqq->dispatched == 0)
6341 				bfq_arm_slice_timer(bfqd);
6342 			/*
6343 			 * If we get here, we do not expire bfqq, even
6344 			 * if bfqq was in budget timeout or had no
6345 			 * more requests (as controlled in the next
6346 			 * conditional instructions). The reason for
6347 			 * not expiring bfqq is as follows.
6348 			 *
6349 			 * Here bfqq->dispatched > 0 holds, but
6350 			 * bfq_bfqq_must_idle() returned true. This
6351 			 * implies that, even if no request arrives
6352 			 * for bfqq before bfqq->dispatched reaches 0,
6353 			 * bfqq will, however, not be expired on the
6354 			 * completion event that causes bfqq->dispatch
6355 			 * to reach zero. In contrast, on this event,
6356 			 * bfqq will start enjoying device idling
6357 			 * (I/O-dispatch plugging).
6358 			 *
6359 			 * But, if we expired bfqq here, bfqq would
6360 			 * not have the chance to enjoy device idling
6361 			 * when bfqq->dispatched finally reaches
6362 			 * zero. This would expose bfqq to violation
6363 			 * of its reserved service guarantees.
6364 			 */
6365 			return;
6366 		} else if (bfq_may_expire_for_budg_timeout(bfqq))
6367 			bfq_bfqq_expire(bfqd, bfqq, false,
6368 					BFQQE_BUDGET_TIMEOUT);
6369 		else if (RB_EMPTY_ROOT(&bfqq->sort_list) &&
6370 			 (bfqq->dispatched == 0 ||
6371 			  !bfq_better_to_idle(bfqq)))
6372 			bfq_bfqq_expire(bfqd, bfqq, false,
6373 					BFQQE_NO_MORE_REQUESTS);
6374 	}
6375 
6376 	if (!bfqd->rq_in_driver)
6377 		bfq_schedule_dispatch(bfqd);
6378 }
6379 
6380 /*
6381  * The processes associated with bfqq may happen to generate their
6382  * cumulative I/O at a lower rate than the rate at which the device
6383  * could serve the same I/O. This is rather probable, e.g., if only
6384  * one process is associated with bfqq and the device is an SSD. It
6385  * results in bfqq becoming often empty while in service. In this
6386  * respect, if BFQ is allowed to switch to another queue when bfqq
6387  * remains empty, then the device goes on being fed with I/O requests,
6388  * and the throughput is not affected. In contrast, if BFQ is not
6389  * allowed to switch to another queue---because bfqq is sync and
6390  * I/O-dispatch needs to be plugged while bfqq is temporarily
6391  * empty---then, during the service of bfqq, there will be frequent
6392  * "service holes", i.e., time intervals during which bfqq gets empty
6393  * and the device can only consume the I/O already queued in its
6394  * hardware queues. During service holes, the device may even get to
6395  * remaining idle. In the end, during the service of bfqq, the device
6396  * is driven at a lower speed than the one it can reach with the kind
6397  * of I/O flowing through bfqq.
6398  *
6399  * To counter this loss of throughput, BFQ implements a "request
6400  * injection mechanism", which tries to fill the above service holes
6401  * with I/O requests taken from other queues. The hard part in this
6402  * mechanism is finding the right amount of I/O to inject, so as to
6403  * both boost throughput and not break bfqq's bandwidth and latency
6404  * guarantees. In this respect, the mechanism maintains a per-queue
6405  * inject limit, computed as below. While bfqq is empty, the injection
6406  * mechanism dispatches extra I/O requests only until the total number
6407  * of I/O requests in flight---i.e., already dispatched but not yet
6408  * completed---remains lower than this limit.
6409  *
6410  * A first definition comes in handy to introduce the algorithm by
6411  * which the inject limit is computed.  We define as first request for
6412  * bfqq, an I/O request for bfqq that arrives while bfqq is in
6413  * service, and causes bfqq to switch from empty to non-empty. The
6414  * algorithm updates the limit as a function of the effect of
6415  * injection on the service times of only the first requests of
6416  * bfqq. The reason for this restriction is that these are the
6417  * requests whose service time is affected most, because they are the
6418  * first to arrive after injection possibly occurred.
6419  *
6420  * To evaluate the effect of injection, the algorithm measures the
6421  * "total service time" of first requests. We define as total service
6422  * time of an I/O request, the time that elapses since when the
6423  * request is enqueued into bfqq, to when it is completed. This
6424  * quantity allows the whole effect of injection to be measured. It is
6425  * easy to see why. Suppose that some requests of other queues are
6426  * actually injected while bfqq is empty, and that a new request R
6427  * then arrives for bfqq. If the device does start to serve all or
6428  * part of the injected requests during the service hole, then,
6429  * because of this extra service, it may delay the next invocation of
6430  * the dispatch hook of BFQ. Then, even after R gets eventually
6431  * dispatched, the device may delay the actual service of R if it is
6432  * still busy serving the extra requests, or if it decides to serve,
6433  * before R, some extra request still present in its queues. As a
6434  * conclusion, the cumulative extra delay caused by injection can be
6435  * easily evaluated by just comparing the total service time of first
6436  * requests with and without injection.
6437  *
6438  * The limit-update algorithm works as follows. On the arrival of a
6439  * first request of bfqq, the algorithm measures the total time of the
6440  * request only if one of the three cases below holds, and, for each
6441  * case, it updates the limit as described below:
6442  *
6443  * (1) If there is no in-flight request. This gives a baseline for the
6444  *     total service time of the requests of bfqq. If the baseline has
6445  *     not been computed yet, then, after computing it, the limit is
6446  *     set to 1, to start boosting throughput, and to prepare the
6447  *     ground for the next case. If the baseline has already been
6448  *     computed, then it is updated, in case it results to be lower
6449  *     than the previous value.
6450  *
6451  * (2) If the limit is higher than 0 and there are in-flight
6452  *     requests. By comparing the total service time in this case with
6453  *     the above baseline, it is possible to know at which extent the
6454  *     current value of the limit is inflating the total service
6455  *     time. If the inflation is below a certain threshold, then bfqq
6456  *     is assumed to be suffering from no perceivable loss of its
6457  *     service guarantees, and the limit is even tentatively
6458  *     increased. If the inflation is above the threshold, then the
6459  *     limit is decreased. Due to the lack of any hysteresis, this
6460  *     logic makes the limit oscillate even in steady workload
6461  *     conditions. Yet we opted for it, because it is fast in reaching
6462  *     the best value for the limit, as a function of the current I/O
6463  *     workload. To reduce oscillations, this step is disabled for a
6464  *     short time interval after the limit happens to be decreased.
6465  *
6466  * (3) Periodically, after resetting the limit, to make sure that the
6467  *     limit eventually drops in case the workload changes. This is
6468  *     needed because, after the limit has gone safely up for a
6469  *     certain workload, it is impossible to guess whether the
6470  *     baseline total service time may have changed, without measuring
6471  *     it again without injection. A more effective version of this
6472  *     step might be to just sample the baseline, by interrupting
6473  *     injection only once, and then to reset/lower the limit only if
6474  *     the total service time with the current limit does happen to be
6475  *     too large.
6476  *
6477  * More details on each step are provided in the comments on the
6478  * pieces of code that implement these steps: the branch handling the
6479  * transition from empty to non empty in bfq_add_request(), the branch
6480  * handling injection in bfq_select_queue(), and the function
6481  * bfq_choose_bfqq_for_injection(). These comments also explain some
6482  * exceptions, made by the injection mechanism in some special cases.
6483  */
bfq_update_inject_limit(struct bfq_data * bfqd,struct bfq_queue * bfqq)6484 static void bfq_update_inject_limit(struct bfq_data *bfqd,
6485 				    struct bfq_queue *bfqq)
6486 {
6487 	u64 tot_time_ns = ktime_get_ns() - bfqd->last_empty_occupied_ns;
6488 	unsigned int old_limit = bfqq->inject_limit;
6489 
6490 	if (bfqq->last_serv_time_ns > 0 && bfqd->rqs_injected) {
6491 		u64 threshold = (bfqq->last_serv_time_ns * 3)>>1;
6492 
6493 		if (tot_time_ns >= threshold && old_limit > 0) {
6494 			bfqq->inject_limit--;
6495 			bfqq->decrease_time_jif = jiffies;
6496 		} else if (tot_time_ns < threshold &&
6497 			   old_limit <= bfqd->max_rq_in_driver)
6498 			bfqq->inject_limit++;
6499 	}
6500 
6501 	/*
6502 	 * Either we still have to compute the base value for the
6503 	 * total service time, and there seem to be the right
6504 	 * conditions to do it, or we can lower the last base value
6505 	 * computed.
6506 	 *
6507 	 * NOTE: (bfqd->rq_in_driver == 1) means that there is no I/O
6508 	 * request in flight, because this function is in the code
6509 	 * path that handles the completion of a request of bfqq, and,
6510 	 * in particular, this function is executed before
6511 	 * bfqd->rq_in_driver is decremented in such a code path.
6512 	 */
6513 	if ((bfqq->last_serv_time_ns == 0 && bfqd->rq_in_driver == 1) ||
6514 	    tot_time_ns < bfqq->last_serv_time_ns) {
6515 		if (bfqq->last_serv_time_ns == 0) {
6516 			/*
6517 			 * Now we certainly have a base value: make sure we
6518 			 * start trying injection.
6519 			 */
6520 			bfqq->inject_limit = max_t(unsigned int, 1, old_limit);
6521 		}
6522 		bfqq->last_serv_time_ns = tot_time_ns;
6523 	} else if (!bfqd->rqs_injected && bfqd->rq_in_driver == 1)
6524 		/*
6525 		 * No I/O injected and no request still in service in
6526 		 * the drive: these are the exact conditions for
6527 		 * computing the base value of the total service time
6528 		 * for bfqq. So let's update this value, because it is
6529 		 * rather variable. For example, it varies if the size
6530 		 * or the spatial locality of the I/O requests in bfqq
6531 		 * change.
6532 		 */
6533 		bfqq->last_serv_time_ns = tot_time_ns;
6534 
6535 
6536 	/* update complete, not waiting for any request completion any longer */
6537 	bfqd->waited_rq = NULL;
6538 	bfqd->rqs_injected = false;
6539 }
6540 
6541 /*
6542  * Handle either a requeue or a finish for rq. The things to do are
6543  * the same in both cases: all references to rq are to be dropped. In
6544  * particular, rq is considered completed from the point of view of
6545  * the scheduler.
6546  */
bfq_finish_requeue_request(struct request * rq)6547 static void bfq_finish_requeue_request(struct request *rq)
6548 {
6549 	struct bfq_queue *bfqq = RQ_BFQQ(rq);
6550 	struct bfq_data *bfqd;
6551 	unsigned long flags;
6552 
6553 	/*
6554 	 * rq either is not associated with any icq, or is an already
6555 	 * requeued request that has not (yet) been re-inserted into
6556 	 * a bfq_queue.
6557 	 */
6558 	if (!rq->elv.icq || !bfqq)
6559 		return;
6560 
6561 	bfqd = bfqq->bfqd;
6562 
6563 	if (rq->rq_flags & RQF_STARTED)
6564 		bfqg_stats_update_completion(bfqq_group(bfqq),
6565 					     rq->start_time_ns,
6566 					     rq->io_start_time_ns,
6567 					     rq->cmd_flags);
6568 
6569 	spin_lock_irqsave(&bfqd->lock, flags);
6570 	if (likely(rq->rq_flags & RQF_STARTED)) {
6571 		if (rq == bfqd->waited_rq)
6572 			bfq_update_inject_limit(bfqd, bfqq);
6573 
6574 		bfq_completed_request(bfqq, bfqd);
6575 	}
6576 	bfqq_request_freed(bfqq);
6577 	bfq_put_queue(bfqq);
6578 	RQ_BIC(rq)->requests--;
6579 	spin_unlock_irqrestore(&bfqd->lock, flags);
6580 
6581 	/*
6582 	 * Reset private fields. In case of a requeue, this allows
6583 	 * this function to correctly do nothing if it is spuriously
6584 	 * invoked again on this same request (see the check at the
6585 	 * beginning of the function). Probably, a better general
6586 	 * design would be to prevent blk-mq from invoking the requeue
6587 	 * or finish hooks of an elevator, for a request that is not
6588 	 * referred by that elevator.
6589 	 *
6590 	 * Resetting the following fields would break the
6591 	 * request-insertion logic if rq is re-inserted into a bfq
6592 	 * internal queue, without a re-preparation. Here we assume
6593 	 * that re-insertions of requeued requests, without
6594 	 * re-preparation, can happen only for pass_through or at_head
6595 	 * requests (which are not re-inserted into bfq internal
6596 	 * queues).
6597 	 */
6598 	rq->elv.priv[0] = NULL;
6599 	rq->elv.priv[1] = NULL;
6600 }
6601 
bfq_finish_request(struct request * rq)6602 static void bfq_finish_request(struct request *rq)
6603 {
6604 	bfq_finish_requeue_request(rq);
6605 
6606 	if (rq->elv.icq) {
6607 		put_io_context(rq->elv.icq->ioc);
6608 		rq->elv.icq = NULL;
6609 	}
6610 }
6611 
6612 /*
6613  * Removes the association between the current task and bfqq, assuming
6614  * that bic points to the bfq iocontext of the task.
6615  * Returns NULL if a new bfqq should be allocated, or the old bfqq if this
6616  * was the last process referring to that bfqq.
6617  */
6618 static struct bfq_queue *
bfq_split_bfqq(struct bfq_io_cq * bic,struct bfq_queue * bfqq)6619 bfq_split_bfqq(struct bfq_io_cq *bic, struct bfq_queue *bfqq)
6620 {
6621 	bfq_log_bfqq(bfqq->bfqd, bfqq, "splitting queue");
6622 
6623 	if (bfqq_process_refs(bfqq) == 1) {
6624 		bfqq->pid = current->pid;
6625 		bfq_clear_bfqq_coop(bfqq);
6626 		bfq_clear_bfqq_split_coop(bfqq);
6627 		return bfqq;
6628 	}
6629 
6630 	bic_set_bfqq(bic, NULL, 1);
6631 
6632 	bfq_put_cooperator(bfqq);
6633 
6634 	bfq_release_process_ref(bfqq->bfqd, bfqq);
6635 	return NULL;
6636 }
6637 
bfq_get_bfqq_handle_split(struct bfq_data * bfqd,struct bfq_io_cq * bic,struct bio * bio,bool split,bool is_sync,bool * new_queue)6638 static struct bfq_queue *bfq_get_bfqq_handle_split(struct bfq_data *bfqd,
6639 						   struct bfq_io_cq *bic,
6640 						   struct bio *bio,
6641 						   bool split, bool is_sync,
6642 						   bool *new_queue)
6643 {
6644 	struct bfq_queue *bfqq = bic_to_bfqq(bic, is_sync);
6645 
6646 	if (likely(bfqq && bfqq != &bfqd->oom_bfqq))
6647 		return bfqq;
6648 
6649 	if (new_queue)
6650 		*new_queue = true;
6651 
6652 	if (bfqq)
6653 		bfq_put_queue(bfqq);
6654 	bfqq = bfq_get_queue(bfqd, bio, is_sync, bic, split);
6655 
6656 	bic_set_bfqq(bic, bfqq, is_sync);
6657 	if (split && is_sync) {
6658 		if ((bic->was_in_burst_list && bfqd->large_burst) ||
6659 		    bic->saved_in_large_burst)
6660 			bfq_mark_bfqq_in_large_burst(bfqq);
6661 		else {
6662 			bfq_clear_bfqq_in_large_burst(bfqq);
6663 			if (bic->was_in_burst_list)
6664 				/*
6665 				 * If bfqq was in the current
6666 				 * burst list before being
6667 				 * merged, then we have to add
6668 				 * it back. And we do not need
6669 				 * to increase burst_size, as
6670 				 * we did not decrement
6671 				 * burst_size when we removed
6672 				 * bfqq from the burst list as
6673 				 * a consequence of a merge
6674 				 * (see comments in
6675 				 * bfq_put_queue). In this
6676 				 * respect, it would be rather
6677 				 * costly to know whether the
6678 				 * current burst list is still
6679 				 * the same burst list from
6680 				 * which bfqq was removed on
6681 				 * the merge. To avoid this
6682 				 * cost, if bfqq was in a
6683 				 * burst list, then we add
6684 				 * bfqq to the current burst
6685 				 * list without any further
6686 				 * check. This can cause
6687 				 * inappropriate insertions,
6688 				 * but rarely enough to not
6689 				 * harm the detection of large
6690 				 * bursts significantly.
6691 				 */
6692 				hlist_add_head(&bfqq->burst_list_node,
6693 					       &bfqd->burst_list);
6694 		}
6695 		bfqq->split_time = jiffies;
6696 	}
6697 
6698 	return bfqq;
6699 }
6700 
6701 /*
6702  * Only reset private fields. The actual request preparation will be
6703  * performed by bfq_init_rq, when rq is either inserted or merged. See
6704  * comments on bfq_init_rq for the reason behind this delayed
6705  * preparation.
6706  */
bfq_prepare_request(struct request * rq)6707 static void bfq_prepare_request(struct request *rq)
6708 {
6709 	rq->elv.icq = ioc_find_get_icq(rq->q);
6710 
6711 	/*
6712 	 * Regardless of whether we have an icq attached, we have to
6713 	 * clear the scheduler pointers, as they might point to
6714 	 * previously allocated bic/bfqq structs.
6715 	 */
6716 	rq->elv.priv[0] = rq->elv.priv[1] = NULL;
6717 }
6718 
6719 /*
6720  * If needed, init rq, allocate bfq data structures associated with
6721  * rq, and increment reference counters in the destination bfq_queue
6722  * for rq. Return the destination bfq_queue for rq, or NULL is rq is
6723  * not associated with any bfq_queue.
6724  *
6725  * This function is invoked by the functions that perform rq insertion
6726  * or merging. One may have expected the above preparation operations
6727  * to be performed in bfq_prepare_request, and not delayed to when rq
6728  * is inserted or merged. The rationale behind this delayed
6729  * preparation is that, after the prepare_request hook is invoked for
6730  * rq, rq may still be transformed into a request with no icq, i.e., a
6731  * request not associated with any queue. No bfq hook is invoked to
6732  * signal this transformation. As a consequence, should these
6733  * preparation operations be performed when the prepare_request hook
6734  * is invoked, and should rq be transformed one moment later, bfq
6735  * would end up in an inconsistent state, because it would have
6736  * incremented some queue counters for an rq destined to
6737  * transformation, without any chance to correctly lower these
6738  * counters back. In contrast, no transformation can still happen for
6739  * rq after rq has been inserted or merged. So, it is safe to execute
6740  * these preparation operations when rq is finally inserted or merged.
6741  */
bfq_init_rq(struct request * rq)6742 static struct bfq_queue *bfq_init_rq(struct request *rq)
6743 {
6744 	struct request_queue *q = rq->q;
6745 	struct bio *bio = rq->bio;
6746 	struct bfq_data *bfqd = q->elevator->elevator_data;
6747 	struct bfq_io_cq *bic;
6748 	const int is_sync = rq_is_sync(rq);
6749 	struct bfq_queue *bfqq;
6750 	bool new_queue = false;
6751 	bool bfqq_already_existing = false, split = false;
6752 
6753 	if (unlikely(!rq->elv.icq))
6754 		return NULL;
6755 
6756 	/*
6757 	 * Assuming that elv.priv[1] is set only if everything is set
6758 	 * for this rq. This holds true, because this function is
6759 	 * invoked only for insertion or merging, and, after such
6760 	 * events, a request cannot be manipulated any longer before
6761 	 * being removed from bfq.
6762 	 */
6763 	if (rq->elv.priv[1])
6764 		return rq->elv.priv[1];
6765 
6766 	bic = icq_to_bic(rq->elv.icq);
6767 
6768 	bfq_check_ioprio_change(bic, bio);
6769 
6770 	bfq_bic_update_cgroup(bic, bio);
6771 
6772 	bfqq = bfq_get_bfqq_handle_split(bfqd, bic, bio, false, is_sync,
6773 					 &new_queue);
6774 
6775 	if (likely(!new_queue)) {
6776 		/* If the queue was seeky for too long, break it apart. */
6777 		if (bfq_bfqq_coop(bfqq) && bfq_bfqq_split_coop(bfqq) &&
6778 			!bic->stably_merged) {
6779 			struct bfq_queue *old_bfqq = bfqq;
6780 
6781 			/* Update bic before losing reference to bfqq */
6782 			if (bfq_bfqq_in_large_burst(bfqq))
6783 				bic->saved_in_large_burst = true;
6784 
6785 			bfqq = bfq_split_bfqq(bic, bfqq);
6786 			split = true;
6787 
6788 			if (!bfqq) {
6789 				bfqq = bfq_get_bfqq_handle_split(bfqd, bic, bio,
6790 								 true, is_sync,
6791 								 NULL);
6792 				if (unlikely(bfqq == &bfqd->oom_bfqq))
6793 					bfqq_already_existing = true;
6794 			} else
6795 				bfqq_already_existing = true;
6796 
6797 			if (!bfqq_already_existing) {
6798 				bfqq->waker_bfqq = old_bfqq->waker_bfqq;
6799 				bfqq->tentative_waker_bfqq = NULL;
6800 
6801 				/*
6802 				 * If the waker queue disappears, then
6803 				 * new_bfqq->waker_bfqq must be
6804 				 * reset. So insert new_bfqq into the
6805 				 * woken_list of the waker. See
6806 				 * bfq_check_waker for details.
6807 				 */
6808 				if (bfqq->waker_bfqq)
6809 					hlist_add_head(&bfqq->woken_list_node,
6810 						       &bfqq->waker_bfqq->woken_list);
6811 			}
6812 		}
6813 	}
6814 
6815 	bfqq_request_allocated(bfqq);
6816 	bfqq->ref++;
6817 	bic->requests++;
6818 	bfq_log_bfqq(bfqd, bfqq, "get_request %p: bfqq %p, %d",
6819 		     rq, bfqq, bfqq->ref);
6820 
6821 	rq->elv.priv[0] = bic;
6822 	rq->elv.priv[1] = bfqq;
6823 
6824 	/*
6825 	 * If a bfq_queue has only one process reference, it is owned
6826 	 * by only this bic: we can then set bfqq->bic = bic. in
6827 	 * addition, if the queue has also just been split, we have to
6828 	 * resume its state.
6829 	 */
6830 	if (likely(bfqq != &bfqd->oom_bfqq) && bfqq_process_refs(bfqq) == 1) {
6831 		bfqq->bic = bic;
6832 		if (split) {
6833 			/*
6834 			 * The queue has just been split from a shared
6835 			 * queue: restore the idle window and the
6836 			 * possible weight raising period.
6837 			 */
6838 			bfq_bfqq_resume_state(bfqq, bfqd, bic,
6839 					      bfqq_already_existing);
6840 		}
6841 	}
6842 
6843 	/*
6844 	 * Consider bfqq as possibly belonging to a burst of newly
6845 	 * created queues only if:
6846 	 * 1) A burst is actually happening (bfqd->burst_size > 0)
6847 	 * or
6848 	 * 2) There is no other active queue. In fact, if, in
6849 	 *    contrast, there are active queues not belonging to the
6850 	 *    possible burst bfqq may belong to, then there is no gain
6851 	 *    in considering bfqq as belonging to a burst, and
6852 	 *    therefore in not weight-raising bfqq. See comments on
6853 	 *    bfq_handle_burst().
6854 	 *
6855 	 * This filtering also helps eliminating false positives,
6856 	 * occurring when bfqq does not belong to an actual large
6857 	 * burst, but some background task (e.g., a service) happens
6858 	 * to trigger the creation of new queues very close to when
6859 	 * bfqq and its possible companion queues are created. See
6860 	 * comments on bfq_handle_burst() for further details also on
6861 	 * this issue.
6862 	 */
6863 	if (unlikely(bfq_bfqq_just_created(bfqq) &&
6864 		     (bfqd->burst_size > 0 ||
6865 		      bfq_tot_busy_queues(bfqd) == 0)))
6866 		bfq_handle_burst(bfqd, bfqq);
6867 
6868 	return bfqq;
6869 }
6870 
6871 static void
bfq_idle_slice_timer_body(struct bfq_data * bfqd,struct bfq_queue * bfqq)6872 bfq_idle_slice_timer_body(struct bfq_data *bfqd, struct bfq_queue *bfqq)
6873 {
6874 	enum bfqq_expiration reason;
6875 	unsigned long flags;
6876 
6877 	spin_lock_irqsave(&bfqd->lock, flags);
6878 
6879 	/*
6880 	 * Considering that bfqq may be in race, we should firstly check
6881 	 * whether bfqq is in service before doing something on it. If
6882 	 * the bfqq in race is not in service, it has already been expired
6883 	 * through __bfq_bfqq_expire func and its wait_request flags has
6884 	 * been cleared in __bfq_bfqd_reset_in_service func.
6885 	 */
6886 	if (bfqq != bfqd->in_service_queue) {
6887 		spin_unlock_irqrestore(&bfqd->lock, flags);
6888 		return;
6889 	}
6890 
6891 	bfq_clear_bfqq_wait_request(bfqq);
6892 
6893 	if (bfq_bfqq_budget_timeout(bfqq))
6894 		/*
6895 		 * Also here the queue can be safely expired
6896 		 * for budget timeout without wasting
6897 		 * guarantees
6898 		 */
6899 		reason = BFQQE_BUDGET_TIMEOUT;
6900 	else if (bfqq->queued[0] == 0 && bfqq->queued[1] == 0)
6901 		/*
6902 		 * The queue may not be empty upon timer expiration,
6903 		 * because we may not disable the timer when the
6904 		 * first request of the in-service queue arrives
6905 		 * during disk idling.
6906 		 */
6907 		reason = BFQQE_TOO_IDLE;
6908 	else
6909 		goto schedule_dispatch;
6910 
6911 	bfq_bfqq_expire(bfqd, bfqq, true, reason);
6912 
6913 schedule_dispatch:
6914 	bfq_schedule_dispatch(bfqd);
6915 	spin_unlock_irqrestore(&bfqd->lock, flags);
6916 }
6917 
6918 /*
6919  * Handler of the expiration of the timer running if the in-service queue
6920  * is idling inside its time slice.
6921  */
bfq_idle_slice_timer(struct hrtimer * timer)6922 static enum hrtimer_restart bfq_idle_slice_timer(struct hrtimer *timer)
6923 {
6924 	struct bfq_data *bfqd = container_of(timer, struct bfq_data,
6925 					     idle_slice_timer);
6926 	struct bfq_queue *bfqq = bfqd->in_service_queue;
6927 
6928 	/*
6929 	 * Theoretical race here: the in-service queue can be NULL or
6930 	 * different from the queue that was idling if a new request
6931 	 * arrives for the current queue and there is a full dispatch
6932 	 * cycle that changes the in-service queue.  This can hardly
6933 	 * happen, but in the worst case we just expire a queue too
6934 	 * early.
6935 	 */
6936 	if (bfqq)
6937 		bfq_idle_slice_timer_body(bfqd, bfqq);
6938 
6939 	return HRTIMER_NORESTART;
6940 }
6941 
__bfq_put_async_bfqq(struct bfq_data * bfqd,struct bfq_queue ** bfqq_ptr)6942 static void __bfq_put_async_bfqq(struct bfq_data *bfqd,
6943 				 struct bfq_queue **bfqq_ptr)
6944 {
6945 	struct bfq_queue *bfqq = *bfqq_ptr;
6946 
6947 	bfq_log(bfqd, "put_async_bfqq: %p", bfqq);
6948 	if (bfqq) {
6949 		bfq_bfqq_move(bfqd, bfqq, bfqd->root_group);
6950 
6951 		bfq_log_bfqq(bfqd, bfqq, "put_async_bfqq: putting %p, %d",
6952 			     bfqq, bfqq->ref);
6953 		bfq_put_queue(bfqq);
6954 		*bfqq_ptr = NULL;
6955 	}
6956 }
6957 
6958 /*
6959  * Release all the bfqg references to its async queues.  If we are
6960  * deallocating the group these queues may still contain requests, so
6961  * we reparent them to the root cgroup (i.e., the only one that will
6962  * exist for sure until all the requests on a device are gone).
6963  */
bfq_put_async_queues(struct bfq_data * bfqd,struct bfq_group * bfqg)6964 void bfq_put_async_queues(struct bfq_data *bfqd, struct bfq_group *bfqg)
6965 {
6966 	int i, j;
6967 
6968 	for (i = 0; i < 2; i++)
6969 		for (j = 0; j < IOPRIO_NR_LEVELS; j++)
6970 			__bfq_put_async_bfqq(bfqd, &bfqg->async_bfqq[i][j]);
6971 
6972 	__bfq_put_async_bfqq(bfqd, &bfqg->async_idle_bfqq);
6973 }
6974 
6975 /*
6976  * See the comments on bfq_limit_depth for the purpose of
6977  * the depths set in the function. Return minimum shallow depth we'll use.
6978  */
bfq_update_depths(struct bfq_data * bfqd,struct sbitmap_queue * bt)6979 static void bfq_update_depths(struct bfq_data *bfqd, struct sbitmap_queue *bt)
6980 {
6981 	unsigned int depth = 1U << bt->sb.shift;
6982 
6983 	bfqd->full_depth_shift = bt->sb.shift;
6984 	/*
6985 	 * In-word depths if no bfq_queue is being weight-raised:
6986 	 * leaving 25% of tags only for sync reads.
6987 	 *
6988 	 * In next formulas, right-shift the value
6989 	 * (1U<<bt->sb.shift), instead of computing directly
6990 	 * (1U<<(bt->sb.shift - something)), to be robust against
6991 	 * any possible value of bt->sb.shift, without having to
6992 	 * limit 'something'.
6993 	 */
6994 	/* no more than 50% of tags for async I/O */
6995 	bfqd->word_depths[0][0] = max(depth >> 1, 1U);
6996 	/*
6997 	 * no more than 75% of tags for sync writes (25% extra tags
6998 	 * w.r.t. async I/O, to prevent async I/O from starving sync
6999 	 * writes)
7000 	 */
7001 	bfqd->word_depths[0][1] = max((depth * 3) >> 2, 1U);
7002 
7003 	/*
7004 	 * In-word depths in case some bfq_queue is being weight-
7005 	 * raised: leaving ~63% of tags for sync reads. This is the
7006 	 * highest percentage for which, in our tests, application
7007 	 * start-up times didn't suffer from any regression due to tag
7008 	 * shortage.
7009 	 */
7010 	/* no more than ~18% of tags for async I/O */
7011 	bfqd->word_depths[1][0] = max((depth * 3) >> 4, 1U);
7012 	/* no more than ~37% of tags for sync writes (~20% extra tags) */
7013 	bfqd->word_depths[1][1] = max((depth * 6) >> 4, 1U);
7014 }
7015 
bfq_depth_updated(struct blk_mq_hw_ctx * hctx)7016 static void bfq_depth_updated(struct blk_mq_hw_ctx *hctx)
7017 {
7018 	struct bfq_data *bfqd = hctx->queue->elevator->elevator_data;
7019 	struct blk_mq_tags *tags = hctx->sched_tags;
7020 
7021 	bfq_update_depths(bfqd, &tags->bitmap_tags);
7022 	sbitmap_queue_min_shallow_depth(&tags->bitmap_tags, 1);
7023 }
7024 
bfq_init_hctx(struct blk_mq_hw_ctx * hctx,unsigned int index)7025 static int bfq_init_hctx(struct blk_mq_hw_ctx *hctx, unsigned int index)
7026 {
7027 	bfq_depth_updated(hctx);
7028 	return 0;
7029 }
7030 
bfq_exit_queue(struct elevator_queue * e)7031 static void bfq_exit_queue(struct elevator_queue *e)
7032 {
7033 	struct bfq_data *bfqd = e->elevator_data;
7034 	struct bfq_queue *bfqq, *n;
7035 
7036 	hrtimer_cancel(&bfqd->idle_slice_timer);
7037 
7038 	spin_lock_irq(&bfqd->lock);
7039 	list_for_each_entry_safe(bfqq, n, &bfqd->idle_list, bfqq_list)
7040 		bfq_deactivate_bfqq(bfqd, bfqq, false, false);
7041 	spin_unlock_irq(&bfqd->lock);
7042 
7043 	hrtimer_cancel(&bfqd->idle_slice_timer);
7044 
7045 	/* release oom-queue reference to root group */
7046 	bfqg_and_blkg_put(bfqd->root_group);
7047 
7048 #ifdef CONFIG_BFQ_GROUP_IOSCHED
7049 	blkcg_deactivate_policy(bfqd->queue, &blkcg_policy_bfq);
7050 #else
7051 	spin_lock_irq(&bfqd->lock);
7052 	bfq_put_async_queues(bfqd, bfqd->root_group);
7053 	kfree(bfqd->root_group);
7054 	spin_unlock_irq(&bfqd->lock);
7055 #endif
7056 
7057 	blk_stat_disable_accounting(bfqd->queue);
7058 	wbt_enable_default(bfqd->queue);
7059 
7060 	kfree(bfqd);
7061 }
7062 
bfq_init_root_group(struct bfq_group * root_group,struct bfq_data * bfqd)7063 static void bfq_init_root_group(struct bfq_group *root_group,
7064 				struct bfq_data *bfqd)
7065 {
7066 	int i;
7067 
7068 #ifdef CONFIG_BFQ_GROUP_IOSCHED
7069 	root_group->entity.parent = NULL;
7070 	root_group->my_entity = NULL;
7071 	root_group->bfqd = bfqd;
7072 #endif
7073 	root_group->rq_pos_tree = RB_ROOT;
7074 	for (i = 0; i < BFQ_IOPRIO_CLASSES; i++)
7075 		root_group->sched_data.service_tree[i] = BFQ_SERVICE_TREE_INIT;
7076 	root_group->sched_data.bfq_class_idle_last_service = jiffies;
7077 }
7078 
bfq_init_queue(struct request_queue * q,struct elevator_type * e)7079 static int bfq_init_queue(struct request_queue *q, struct elevator_type *e)
7080 {
7081 	struct bfq_data *bfqd;
7082 	struct elevator_queue *eq;
7083 
7084 	eq = elevator_alloc(q, e);
7085 	if (!eq)
7086 		return -ENOMEM;
7087 
7088 	bfqd = kzalloc_node(sizeof(*bfqd), GFP_KERNEL, q->node);
7089 	if (!bfqd) {
7090 		kobject_put(&eq->kobj);
7091 		return -ENOMEM;
7092 	}
7093 	eq->elevator_data = bfqd;
7094 
7095 	spin_lock_irq(&q->queue_lock);
7096 	q->elevator = eq;
7097 	spin_unlock_irq(&q->queue_lock);
7098 
7099 	/*
7100 	 * Our fallback bfqq if bfq_find_alloc_queue() runs into OOM issues.
7101 	 * Grab a permanent reference to it, so that the normal code flow
7102 	 * will not attempt to free it.
7103 	 */
7104 	bfq_init_bfqq(bfqd, &bfqd->oom_bfqq, NULL, 1, 0);
7105 	bfqd->oom_bfqq.ref++;
7106 	bfqd->oom_bfqq.new_ioprio = BFQ_DEFAULT_QUEUE_IOPRIO;
7107 	bfqd->oom_bfqq.new_ioprio_class = IOPRIO_CLASS_BE;
7108 	bfqd->oom_bfqq.entity.new_weight =
7109 		bfq_ioprio_to_weight(bfqd->oom_bfqq.new_ioprio);
7110 
7111 	/* oom_bfqq does not participate to bursts */
7112 	bfq_clear_bfqq_just_created(&bfqd->oom_bfqq);
7113 
7114 	/*
7115 	 * Trigger weight initialization, according to ioprio, at the
7116 	 * oom_bfqq's first activation. The oom_bfqq's ioprio and ioprio
7117 	 * class won't be changed any more.
7118 	 */
7119 	bfqd->oom_bfqq.entity.prio_changed = 1;
7120 
7121 	bfqd->queue = q;
7122 
7123 	INIT_LIST_HEAD(&bfqd->dispatch);
7124 
7125 	hrtimer_init(&bfqd->idle_slice_timer, CLOCK_MONOTONIC,
7126 		     HRTIMER_MODE_REL);
7127 	bfqd->idle_slice_timer.function = bfq_idle_slice_timer;
7128 
7129 	bfqd->queue_weights_tree = RB_ROOT_CACHED;
7130 	bfqd->num_groups_with_pending_reqs = 0;
7131 
7132 	INIT_LIST_HEAD(&bfqd->active_list);
7133 	INIT_LIST_HEAD(&bfqd->idle_list);
7134 	INIT_HLIST_HEAD(&bfqd->burst_list);
7135 
7136 	bfqd->hw_tag = -1;
7137 	bfqd->nonrot_with_queueing = blk_queue_nonrot(bfqd->queue);
7138 
7139 	bfqd->bfq_max_budget = bfq_default_max_budget;
7140 
7141 	bfqd->bfq_fifo_expire[0] = bfq_fifo_expire[0];
7142 	bfqd->bfq_fifo_expire[1] = bfq_fifo_expire[1];
7143 	bfqd->bfq_back_max = bfq_back_max;
7144 	bfqd->bfq_back_penalty = bfq_back_penalty;
7145 	bfqd->bfq_slice_idle = bfq_slice_idle;
7146 	bfqd->bfq_timeout = bfq_timeout;
7147 
7148 	bfqd->bfq_large_burst_thresh = 8;
7149 	bfqd->bfq_burst_interval = msecs_to_jiffies(180);
7150 
7151 	bfqd->low_latency = true;
7152 
7153 	/*
7154 	 * Trade-off between responsiveness and fairness.
7155 	 */
7156 	bfqd->bfq_wr_coeff = 30;
7157 	bfqd->bfq_wr_rt_max_time = msecs_to_jiffies(300);
7158 	bfqd->bfq_wr_max_time = 0;
7159 	bfqd->bfq_wr_min_idle_time = msecs_to_jiffies(2000);
7160 	bfqd->bfq_wr_min_inter_arr_async = msecs_to_jiffies(500);
7161 	bfqd->bfq_wr_max_softrt_rate = 7000; /*
7162 					      * Approximate rate required
7163 					      * to playback or record a
7164 					      * high-definition compressed
7165 					      * video.
7166 					      */
7167 	bfqd->wr_busy_queues = 0;
7168 
7169 	/*
7170 	 * Begin by assuming, optimistically, that the device peak
7171 	 * rate is equal to 2/3 of the highest reference rate.
7172 	 */
7173 	bfqd->rate_dur_prod = ref_rate[blk_queue_nonrot(bfqd->queue)] *
7174 		ref_wr_duration[blk_queue_nonrot(bfqd->queue)];
7175 	bfqd->peak_rate = ref_rate[blk_queue_nonrot(bfqd->queue)] * 2 / 3;
7176 
7177 	spin_lock_init(&bfqd->lock);
7178 
7179 	/*
7180 	 * The invocation of the next bfq_create_group_hierarchy
7181 	 * function is the head of a chain of function calls
7182 	 * (bfq_create_group_hierarchy->blkcg_activate_policy->
7183 	 * blk_mq_freeze_queue) that may lead to the invocation of the
7184 	 * has_work hook function. For this reason,
7185 	 * bfq_create_group_hierarchy is invoked only after all
7186 	 * scheduler data has been initialized, apart from the fields
7187 	 * that can be initialized only after invoking
7188 	 * bfq_create_group_hierarchy. This, in particular, enables
7189 	 * has_work to correctly return false. Of course, to avoid
7190 	 * other inconsistencies, the blk-mq stack must then refrain
7191 	 * from invoking further scheduler hooks before this init
7192 	 * function is finished.
7193 	 */
7194 	bfqd->root_group = bfq_create_group_hierarchy(bfqd, q->node);
7195 	if (!bfqd->root_group)
7196 		goto out_free;
7197 	bfq_init_root_group(bfqd->root_group, bfqd);
7198 	bfq_init_entity(&bfqd->oom_bfqq.entity, bfqd->root_group);
7199 
7200 	/* We dispatch from request queue wide instead of hw queue */
7201 	blk_queue_flag_set(QUEUE_FLAG_SQ_SCHED, q);
7202 
7203 	wbt_disable_default(q);
7204 	blk_stat_enable_accounting(q);
7205 
7206 	return 0;
7207 
7208 out_free:
7209 	kfree(bfqd);
7210 	kobject_put(&eq->kobj);
7211 	return -ENOMEM;
7212 }
7213 
bfq_slab_kill(void)7214 static void bfq_slab_kill(void)
7215 {
7216 	kmem_cache_destroy(bfq_pool);
7217 }
7218 
bfq_slab_setup(void)7219 static int __init bfq_slab_setup(void)
7220 {
7221 	bfq_pool = KMEM_CACHE(bfq_queue, 0);
7222 	if (!bfq_pool)
7223 		return -ENOMEM;
7224 	return 0;
7225 }
7226 
bfq_var_show(unsigned int var,char * page)7227 static ssize_t bfq_var_show(unsigned int var, char *page)
7228 {
7229 	return sprintf(page, "%u\n", var);
7230 }
7231 
bfq_var_store(unsigned long * var,const char * page)7232 static int bfq_var_store(unsigned long *var, const char *page)
7233 {
7234 	unsigned long new_val;
7235 	int ret = kstrtoul(page, 10, &new_val);
7236 
7237 	if (ret)
7238 		return ret;
7239 	*var = new_val;
7240 	return 0;
7241 }
7242 
7243 #define SHOW_FUNCTION(__FUNC, __VAR, __CONV)				\
7244 static ssize_t __FUNC(struct elevator_queue *e, char *page)		\
7245 {									\
7246 	struct bfq_data *bfqd = e->elevator_data;			\
7247 	u64 __data = __VAR;						\
7248 	if (__CONV == 1)						\
7249 		__data = jiffies_to_msecs(__data);			\
7250 	else if (__CONV == 2)						\
7251 		__data = div_u64(__data, NSEC_PER_MSEC);		\
7252 	return bfq_var_show(__data, (page));				\
7253 }
7254 SHOW_FUNCTION(bfq_fifo_expire_sync_show, bfqd->bfq_fifo_expire[1], 2);
7255 SHOW_FUNCTION(bfq_fifo_expire_async_show, bfqd->bfq_fifo_expire[0], 2);
7256 SHOW_FUNCTION(bfq_back_seek_max_show, bfqd->bfq_back_max, 0);
7257 SHOW_FUNCTION(bfq_back_seek_penalty_show, bfqd->bfq_back_penalty, 0);
7258 SHOW_FUNCTION(bfq_slice_idle_show, bfqd->bfq_slice_idle, 2);
7259 SHOW_FUNCTION(bfq_max_budget_show, bfqd->bfq_user_max_budget, 0);
7260 SHOW_FUNCTION(bfq_timeout_sync_show, bfqd->bfq_timeout, 1);
7261 SHOW_FUNCTION(bfq_strict_guarantees_show, bfqd->strict_guarantees, 0);
7262 SHOW_FUNCTION(bfq_low_latency_show, bfqd->low_latency, 0);
7263 #undef SHOW_FUNCTION
7264 
7265 #define USEC_SHOW_FUNCTION(__FUNC, __VAR)				\
7266 static ssize_t __FUNC(struct elevator_queue *e, char *page)		\
7267 {									\
7268 	struct bfq_data *bfqd = e->elevator_data;			\
7269 	u64 __data = __VAR;						\
7270 	__data = div_u64(__data, NSEC_PER_USEC);			\
7271 	return bfq_var_show(__data, (page));				\
7272 }
7273 USEC_SHOW_FUNCTION(bfq_slice_idle_us_show, bfqd->bfq_slice_idle);
7274 #undef USEC_SHOW_FUNCTION
7275 
7276 #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV)			\
7277 static ssize_t								\
7278 __FUNC(struct elevator_queue *e, const char *page, size_t count)	\
7279 {									\
7280 	struct bfq_data *bfqd = e->elevator_data;			\
7281 	unsigned long __data, __min = (MIN), __max = (MAX);		\
7282 	int ret;							\
7283 									\
7284 	ret = bfq_var_store(&__data, (page));				\
7285 	if (ret)							\
7286 		return ret;						\
7287 	if (__data < __min)						\
7288 		__data = __min;						\
7289 	else if (__data > __max)					\
7290 		__data = __max;						\
7291 	if (__CONV == 1)						\
7292 		*(__PTR) = msecs_to_jiffies(__data);			\
7293 	else if (__CONV == 2)						\
7294 		*(__PTR) = (u64)__data * NSEC_PER_MSEC;			\
7295 	else								\
7296 		*(__PTR) = __data;					\
7297 	return count;							\
7298 }
7299 STORE_FUNCTION(bfq_fifo_expire_sync_store, &bfqd->bfq_fifo_expire[1], 1,
7300 		INT_MAX, 2);
7301 STORE_FUNCTION(bfq_fifo_expire_async_store, &bfqd->bfq_fifo_expire[0], 1,
7302 		INT_MAX, 2);
7303 STORE_FUNCTION(bfq_back_seek_max_store, &bfqd->bfq_back_max, 0, INT_MAX, 0);
7304 STORE_FUNCTION(bfq_back_seek_penalty_store, &bfqd->bfq_back_penalty, 1,
7305 		INT_MAX, 0);
7306 STORE_FUNCTION(bfq_slice_idle_store, &bfqd->bfq_slice_idle, 0, INT_MAX, 2);
7307 #undef STORE_FUNCTION
7308 
7309 #define USEC_STORE_FUNCTION(__FUNC, __PTR, MIN, MAX)			\
7310 static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count)\
7311 {									\
7312 	struct bfq_data *bfqd = e->elevator_data;			\
7313 	unsigned long __data, __min = (MIN), __max = (MAX);		\
7314 	int ret;							\
7315 									\
7316 	ret = bfq_var_store(&__data, (page));				\
7317 	if (ret)							\
7318 		return ret;						\
7319 	if (__data < __min)						\
7320 		__data = __min;						\
7321 	else if (__data > __max)					\
7322 		__data = __max;						\
7323 	*(__PTR) = (u64)__data * NSEC_PER_USEC;				\
7324 	return count;							\
7325 }
7326 USEC_STORE_FUNCTION(bfq_slice_idle_us_store, &bfqd->bfq_slice_idle, 0,
7327 		    UINT_MAX);
7328 #undef USEC_STORE_FUNCTION
7329 
bfq_max_budget_store(struct elevator_queue * e,const char * page,size_t count)7330 static ssize_t bfq_max_budget_store(struct elevator_queue *e,
7331 				    const char *page, size_t count)
7332 {
7333 	struct bfq_data *bfqd = e->elevator_data;
7334 	unsigned long __data;
7335 	int ret;
7336 
7337 	ret = bfq_var_store(&__data, (page));
7338 	if (ret)
7339 		return ret;
7340 
7341 	if (__data == 0)
7342 		bfqd->bfq_max_budget = bfq_calc_max_budget(bfqd);
7343 	else {
7344 		if (__data > INT_MAX)
7345 			__data = INT_MAX;
7346 		bfqd->bfq_max_budget = __data;
7347 	}
7348 
7349 	bfqd->bfq_user_max_budget = __data;
7350 
7351 	return count;
7352 }
7353 
7354 /*
7355  * Leaving this name to preserve name compatibility with cfq
7356  * parameters, but this timeout is used for both sync and async.
7357  */
bfq_timeout_sync_store(struct elevator_queue * e,const char * page,size_t count)7358 static ssize_t bfq_timeout_sync_store(struct elevator_queue *e,
7359 				      const char *page, size_t count)
7360 {
7361 	struct bfq_data *bfqd = e->elevator_data;
7362 	unsigned long __data;
7363 	int ret;
7364 
7365 	ret = bfq_var_store(&__data, (page));
7366 	if (ret)
7367 		return ret;
7368 
7369 	if (__data < 1)
7370 		__data = 1;
7371 	else if (__data > INT_MAX)
7372 		__data = INT_MAX;
7373 
7374 	bfqd->bfq_timeout = msecs_to_jiffies(__data);
7375 	if (bfqd->bfq_user_max_budget == 0)
7376 		bfqd->bfq_max_budget = bfq_calc_max_budget(bfqd);
7377 
7378 	return count;
7379 }
7380 
bfq_strict_guarantees_store(struct elevator_queue * e,const char * page,size_t count)7381 static ssize_t bfq_strict_guarantees_store(struct elevator_queue *e,
7382 				     const char *page, size_t count)
7383 {
7384 	struct bfq_data *bfqd = e->elevator_data;
7385 	unsigned long __data;
7386 	int ret;
7387 
7388 	ret = bfq_var_store(&__data, (page));
7389 	if (ret)
7390 		return ret;
7391 
7392 	if (__data > 1)
7393 		__data = 1;
7394 	if (!bfqd->strict_guarantees && __data == 1
7395 	    && bfqd->bfq_slice_idle < 8 * NSEC_PER_MSEC)
7396 		bfqd->bfq_slice_idle = 8 * NSEC_PER_MSEC;
7397 
7398 	bfqd->strict_guarantees = __data;
7399 
7400 	return count;
7401 }
7402 
bfq_low_latency_store(struct elevator_queue * e,const char * page,size_t count)7403 static ssize_t bfq_low_latency_store(struct elevator_queue *e,
7404 				     const char *page, size_t count)
7405 {
7406 	struct bfq_data *bfqd = e->elevator_data;
7407 	unsigned long __data;
7408 	int ret;
7409 
7410 	ret = bfq_var_store(&__data, (page));
7411 	if (ret)
7412 		return ret;
7413 
7414 	if (__data > 1)
7415 		__data = 1;
7416 	if (__data == 0 && bfqd->low_latency != 0)
7417 		bfq_end_wr(bfqd);
7418 	bfqd->low_latency = __data;
7419 
7420 	return count;
7421 }
7422 
7423 #define BFQ_ATTR(name) \
7424 	__ATTR(name, 0644, bfq_##name##_show, bfq_##name##_store)
7425 
7426 static struct elv_fs_entry bfq_attrs[] = {
7427 	BFQ_ATTR(fifo_expire_sync),
7428 	BFQ_ATTR(fifo_expire_async),
7429 	BFQ_ATTR(back_seek_max),
7430 	BFQ_ATTR(back_seek_penalty),
7431 	BFQ_ATTR(slice_idle),
7432 	BFQ_ATTR(slice_idle_us),
7433 	BFQ_ATTR(max_budget),
7434 	BFQ_ATTR(timeout_sync),
7435 	BFQ_ATTR(strict_guarantees),
7436 	BFQ_ATTR(low_latency),
7437 	__ATTR_NULL
7438 };
7439 
7440 static struct elevator_type iosched_bfq_mq = {
7441 	.ops = {
7442 		.limit_depth		= bfq_limit_depth,
7443 		.prepare_request	= bfq_prepare_request,
7444 		.requeue_request        = bfq_finish_requeue_request,
7445 		.finish_request		= bfq_finish_request,
7446 		.exit_icq		= bfq_exit_icq,
7447 		.insert_requests	= bfq_insert_requests,
7448 		.dispatch_request	= bfq_dispatch_request,
7449 		.next_request		= elv_rb_latter_request,
7450 		.former_request		= elv_rb_former_request,
7451 		.allow_merge		= bfq_allow_bio_merge,
7452 		.bio_merge		= bfq_bio_merge,
7453 		.request_merge		= bfq_request_merge,
7454 		.requests_merged	= bfq_requests_merged,
7455 		.request_merged		= bfq_request_merged,
7456 		.has_work		= bfq_has_work,
7457 		.depth_updated		= bfq_depth_updated,
7458 		.init_hctx		= bfq_init_hctx,
7459 		.init_sched		= bfq_init_queue,
7460 		.exit_sched		= bfq_exit_queue,
7461 	},
7462 
7463 	.icq_size =		sizeof(struct bfq_io_cq),
7464 	.icq_align =		__alignof__(struct bfq_io_cq),
7465 	.elevator_attrs =	bfq_attrs,
7466 	.elevator_name =	"bfq",
7467 	.elevator_owner =	THIS_MODULE,
7468 };
7469 MODULE_ALIAS("bfq-iosched");
7470 
bfq_init(void)7471 static int __init bfq_init(void)
7472 {
7473 	int ret;
7474 
7475 #ifdef CONFIG_BFQ_GROUP_IOSCHED
7476 	ret = blkcg_policy_register(&blkcg_policy_bfq);
7477 	if (ret)
7478 		return ret;
7479 #endif
7480 
7481 	ret = -ENOMEM;
7482 	if (bfq_slab_setup())
7483 		goto err_pol_unreg;
7484 
7485 	/*
7486 	 * Times to load large popular applications for the typical
7487 	 * systems installed on the reference devices (see the
7488 	 * comments before the definition of the next
7489 	 * array). Actually, we use slightly lower values, as the
7490 	 * estimated peak rate tends to be smaller than the actual
7491 	 * peak rate.  The reason for this last fact is that estimates
7492 	 * are computed over much shorter time intervals than the long
7493 	 * intervals typically used for benchmarking. Why? First, to
7494 	 * adapt more quickly to variations. Second, because an I/O
7495 	 * scheduler cannot rely on a peak-rate-evaluation workload to
7496 	 * be run for a long time.
7497 	 */
7498 	ref_wr_duration[0] = msecs_to_jiffies(7000); /* actually 8 sec */
7499 	ref_wr_duration[1] = msecs_to_jiffies(2500); /* actually 3 sec */
7500 
7501 	ret = elv_register(&iosched_bfq_mq);
7502 	if (ret)
7503 		goto slab_kill;
7504 
7505 	return 0;
7506 
7507 slab_kill:
7508 	bfq_slab_kill();
7509 err_pol_unreg:
7510 #ifdef CONFIG_BFQ_GROUP_IOSCHED
7511 	blkcg_policy_unregister(&blkcg_policy_bfq);
7512 #endif
7513 	return ret;
7514 }
7515 
bfq_exit(void)7516 static void __exit bfq_exit(void)
7517 {
7518 	elv_unregister(&iosched_bfq_mq);
7519 #ifdef CONFIG_BFQ_GROUP_IOSCHED
7520 	blkcg_policy_unregister(&blkcg_policy_bfq);
7521 #endif
7522 	bfq_slab_kill();
7523 }
7524 
7525 module_init(bfq_init);
7526 module_exit(bfq_exit);
7527 
7528 MODULE_AUTHOR("Paolo Valente");
7529 MODULE_LICENSE("GPL");
7530 MODULE_DESCRIPTION("MQ Budget Fair Queueing I/O Scheduler");
7531