1 /*
2  * Copyright 2012-15 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  * Authors: AMD
23  *
24  */
25 
26 #include "dm_services.h"
27 
28 #include "resource.h"
29 #include "include/irq_service_interface.h"
30 #include "link_encoder.h"
31 #include "stream_encoder.h"
32 #include "opp.h"
33 #include "timing_generator.h"
34 #include "transform.h"
35 #include "dccg.h"
36 #include "dchubbub.h"
37 #include "dpp.h"
38 #include "core_types.h"
39 #include "set_mode_types.h"
40 #include "virtual/virtual_stream_encoder.h"
41 #include "dpcd_defs.h"
42 #include "link_enc_cfg.h"
43 #include "link.h"
44 #include "virtual/virtual_link_hwss.h"
45 #include "link/hwss/link_hwss_dio.h"
46 #include "link/hwss/link_hwss_dpia.h"
47 #include "link/hwss/link_hwss_hpo_dp.h"
48 #include "link/hwss/link_hwss_dio_fixed_vs_pe_retimer.h"
49 #include "link/hwss/link_hwss_hpo_fixed_vs_pe_retimer_dp.h"
50 
51 #if defined(CONFIG_DRM_AMD_DC_SI)
52 #include "dce60/dce60_resource.h"
53 #endif
54 #include "dce80/dce80_resource.h"
55 #include "dce100/dce100_resource.h"
56 #include "dce110/dce110_resource.h"
57 #include "dce112/dce112_resource.h"
58 #include "dce120/dce120_resource.h"
59 #include "dcn10/dcn10_resource.h"
60 #include "dcn20/dcn20_resource.h"
61 #include "dcn21/dcn21_resource.h"
62 #include "dcn201/dcn201_resource.h"
63 #include "dcn30/dcn30_resource.h"
64 #include "dcn301/dcn301_resource.h"
65 #include "dcn302/dcn302_resource.h"
66 #include "dcn303/dcn303_resource.h"
67 #include "dcn31/dcn31_resource.h"
68 #include "dcn314/dcn314_resource.h"
69 #include "dcn315/dcn315_resource.h"
70 #include "dcn316/dcn316_resource.h"
71 #include "../dcn32/dcn32_resource.h"
72 #include "../dcn321/dcn321_resource.h"
73 
74 #define VISUAL_CONFIRM_BASE_DEFAULT 3
75 #define VISUAL_CONFIRM_BASE_MIN 1
76 #define VISUAL_CONFIRM_BASE_MAX 10
77 /* we choose 240 because it is a common denominator of common v addressable
78  * such as 2160, 1440, 1200, 960. So we take 1/240 portion of v addressable as
79  * the visual confirm dpp offset height. So visual confirm height can stay
80  * relatively the same independent from timing used.
81  */
82 #define VISUAL_CONFIRM_DPP_OFFSET_DENO 240
83 
84 #define DC_LOGGER_INIT(logger)
85 
86 #define UNABLE_TO_SPLIT -1
87 
resource_parse_asic_id(struct hw_asic_id asic_id)88 enum dce_version resource_parse_asic_id(struct hw_asic_id asic_id)
89 {
90 	enum dce_version dc_version = DCE_VERSION_UNKNOWN;
91 
92 	switch (asic_id.chip_family) {
93 
94 #if defined(CONFIG_DRM_AMD_DC_SI)
95 	case FAMILY_SI:
96 		if (ASIC_REV_IS_TAHITI_P(asic_id.hw_internal_rev) ||
97 		    ASIC_REV_IS_PITCAIRN_PM(asic_id.hw_internal_rev) ||
98 		    ASIC_REV_IS_CAPEVERDE_M(asic_id.hw_internal_rev))
99 			dc_version = DCE_VERSION_6_0;
100 		else if (ASIC_REV_IS_OLAND_M(asic_id.hw_internal_rev))
101 			dc_version = DCE_VERSION_6_4;
102 		else
103 			dc_version = DCE_VERSION_6_1;
104 		break;
105 #endif
106 	case FAMILY_CI:
107 		dc_version = DCE_VERSION_8_0;
108 		break;
109 	case FAMILY_KV:
110 		if (ASIC_REV_IS_KALINDI(asic_id.hw_internal_rev) ||
111 		    ASIC_REV_IS_BHAVANI(asic_id.hw_internal_rev) ||
112 		    ASIC_REV_IS_GODAVARI(asic_id.hw_internal_rev))
113 			dc_version = DCE_VERSION_8_3;
114 		else
115 			dc_version = DCE_VERSION_8_1;
116 		break;
117 	case FAMILY_CZ:
118 		dc_version = DCE_VERSION_11_0;
119 		break;
120 
121 	case FAMILY_VI:
122 		if (ASIC_REV_IS_TONGA_P(asic_id.hw_internal_rev) ||
123 				ASIC_REV_IS_FIJI_P(asic_id.hw_internal_rev)) {
124 			dc_version = DCE_VERSION_10_0;
125 			break;
126 		}
127 		if (ASIC_REV_IS_POLARIS10_P(asic_id.hw_internal_rev) ||
128 				ASIC_REV_IS_POLARIS11_M(asic_id.hw_internal_rev) ||
129 				ASIC_REV_IS_POLARIS12_V(asic_id.hw_internal_rev)) {
130 			dc_version = DCE_VERSION_11_2;
131 		}
132 		if (ASIC_REV_IS_VEGAM(asic_id.hw_internal_rev))
133 			dc_version = DCE_VERSION_11_22;
134 		break;
135 	case FAMILY_AI:
136 		if (ASICREV_IS_VEGA20_P(asic_id.hw_internal_rev))
137 			dc_version = DCE_VERSION_12_1;
138 		else
139 			dc_version = DCE_VERSION_12_0;
140 		break;
141 	case FAMILY_RV:
142 		dc_version = DCN_VERSION_1_0;
143 		if (ASICREV_IS_RAVEN2(asic_id.hw_internal_rev))
144 			dc_version = DCN_VERSION_1_01;
145 		if (ASICREV_IS_RENOIR(asic_id.hw_internal_rev))
146 			dc_version = DCN_VERSION_2_1;
147 		if (ASICREV_IS_GREEN_SARDINE(asic_id.hw_internal_rev))
148 			dc_version = DCN_VERSION_2_1;
149 		break;
150 
151 	case FAMILY_NV:
152 		dc_version = DCN_VERSION_2_0;
153 		if (asic_id.chip_id == DEVICE_ID_NV_13FE || asic_id.chip_id == DEVICE_ID_NV_143F) {
154 			dc_version = DCN_VERSION_2_01;
155 			break;
156 		}
157 		if (ASICREV_IS_SIENNA_CICHLID_P(asic_id.hw_internal_rev))
158 			dc_version = DCN_VERSION_3_0;
159 		if (ASICREV_IS_DIMGREY_CAVEFISH_P(asic_id.hw_internal_rev))
160 			dc_version = DCN_VERSION_3_02;
161 		if (ASICREV_IS_BEIGE_GOBY_P(asic_id.hw_internal_rev))
162 			dc_version = DCN_VERSION_3_03;
163 		break;
164 
165 	case FAMILY_VGH:
166 		dc_version = DCN_VERSION_3_01;
167 		break;
168 
169 	case FAMILY_YELLOW_CARP:
170 		if (ASICREV_IS_YELLOW_CARP(asic_id.hw_internal_rev))
171 			dc_version = DCN_VERSION_3_1;
172 		break;
173 	case AMDGPU_FAMILY_GC_10_3_6:
174 		if (ASICREV_IS_GC_10_3_6(asic_id.hw_internal_rev))
175 			dc_version = DCN_VERSION_3_15;
176 		break;
177 	case AMDGPU_FAMILY_GC_10_3_7:
178 		if (ASICREV_IS_GC_10_3_7(asic_id.hw_internal_rev))
179 			dc_version = DCN_VERSION_3_16;
180 		break;
181 	case AMDGPU_FAMILY_GC_11_0_0:
182 		dc_version = DCN_VERSION_3_2;
183 		if (ASICREV_IS_GC_11_0_2(asic_id.hw_internal_rev))
184 			dc_version = DCN_VERSION_3_21;
185 		break;
186 	case AMDGPU_FAMILY_GC_11_0_1:
187 		dc_version = DCN_VERSION_3_14;
188 		break;
189 	default:
190 		dc_version = DCE_VERSION_UNKNOWN;
191 		break;
192 	}
193 	return dc_version;
194 }
195 
dc_create_resource_pool(struct dc * dc,const struct dc_init_data * init_data,enum dce_version dc_version)196 struct resource_pool *dc_create_resource_pool(struct dc  *dc,
197 					      const struct dc_init_data *init_data,
198 					      enum dce_version dc_version)
199 {
200 	struct resource_pool *res_pool = NULL;
201 
202 	switch (dc_version) {
203 #if defined(CONFIG_DRM_AMD_DC_SI)
204 	case DCE_VERSION_6_0:
205 		res_pool = dce60_create_resource_pool(
206 			init_data->num_virtual_links, dc);
207 		break;
208 	case DCE_VERSION_6_1:
209 		res_pool = dce61_create_resource_pool(
210 			init_data->num_virtual_links, dc);
211 		break;
212 	case DCE_VERSION_6_4:
213 		res_pool = dce64_create_resource_pool(
214 			init_data->num_virtual_links, dc);
215 		break;
216 #endif
217 	case DCE_VERSION_8_0:
218 		res_pool = dce80_create_resource_pool(
219 				init_data->num_virtual_links, dc);
220 		break;
221 	case DCE_VERSION_8_1:
222 		res_pool = dce81_create_resource_pool(
223 				init_data->num_virtual_links, dc);
224 		break;
225 	case DCE_VERSION_8_3:
226 		res_pool = dce83_create_resource_pool(
227 				init_data->num_virtual_links, dc);
228 		break;
229 	case DCE_VERSION_10_0:
230 		res_pool = dce100_create_resource_pool(
231 				init_data->num_virtual_links, dc);
232 		break;
233 	case DCE_VERSION_11_0:
234 		res_pool = dce110_create_resource_pool(
235 				init_data->num_virtual_links, dc,
236 				init_data->asic_id);
237 		break;
238 	case DCE_VERSION_11_2:
239 	case DCE_VERSION_11_22:
240 		res_pool = dce112_create_resource_pool(
241 				init_data->num_virtual_links, dc);
242 		break;
243 	case DCE_VERSION_12_0:
244 	case DCE_VERSION_12_1:
245 		res_pool = dce120_create_resource_pool(
246 				init_data->num_virtual_links, dc);
247 		break;
248 
249 #if defined(CONFIG_DRM_AMD_DC_FP)
250 	case DCN_VERSION_1_0:
251 	case DCN_VERSION_1_01:
252 		res_pool = dcn10_create_resource_pool(init_data, dc);
253 		break;
254 	case DCN_VERSION_2_0:
255 		res_pool = dcn20_create_resource_pool(init_data, dc);
256 		break;
257 	case DCN_VERSION_2_1:
258 		res_pool = dcn21_create_resource_pool(init_data, dc);
259 		break;
260 	case DCN_VERSION_2_01:
261 		res_pool = dcn201_create_resource_pool(init_data, dc);
262 		break;
263 	case DCN_VERSION_3_0:
264 		res_pool = dcn30_create_resource_pool(init_data, dc);
265 		break;
266 	case DCN_VERSION_3_01:
267 		res_pool = dcn301_create_resource_pool(init_data, dc);
268 		break;
269 	case DCN_VERSION_3_02:
270 		res_pool = dcn302_create_resource_pool(init_data, dc);
271 		break;
272 	case DCN_VERSION_3_03:
273 		res_pool = dcn303_create_resource_pool(init_data, dc);
274 		break;
275 	case DCN_VERSION_3_1:
276 		res_pool = dcn31_create_resource_pool(init_data, dc);
277 		break;
278 	case DCN_VERSION_3_14:
279 		res_pool = dcn314_create_resource_pool(init_data, dc);
280 		break;
281 	case DCN_VERSION_3_15:
282 		res_pool = dcn315_create_resource_pool(init_data, dc);
283 		break;
284 	case DCN_VERSION_3_16:
285 		res_pool = dcn316_create_resource_pool(init_data, dc);
286 		break;
287 	case DCN_VERSION_3_2:
288 		res_pool = dcn32_create_resource_pool(init_data, dc);
289 		break;
290 	case DCN_VERSION_3_21:
291 		res_pool = dcn321_create_resource_pool(init_data, dc);
292 		break;
293 #endif /* CONFIG_DRM_AMD_DC_FP */
294 	default:
295 		break;
296 	}
297 
298 	if (res_pool != NULL) {
299 		if (dc->ctx->dc_bios->fw_info_valid) {
300 			res_pool->ref_clocks.xtalin_clock_inKhz =
301 				dc->ctx->dc_bios->fw_info.pll_info.crystal_frequency;
302 			/* initialize with firmware data first, no all
303 			 * ASIC have DCCG SW component. FPGA or
304 			 * simulation need initialization of
305 			 * dccg_ref_clock_inKhz, dchub_ref_clock_inKhz
306 			 * with xtalin_clock_inKhz
307 			 */
308 			res_pool->ref_clocks.dccg_ref_clock_inKhz =
309 				res_pool->ref_clocks.xtalin_clock_inKhz;
310 			res_pool->ref_clocks.dchub_ref_clock_inKhz =
311 				res_pool->ref_clocks.xtalin_clock_inKhz;
312 		} else
313 			ASSERT_CRITICAL(false);
314 	}
315 
316 	return res_pool;
317 }
318 
dc_destroy_resource_pool(struct dc * dc)319 void dc_destroy_resource_pool(struct dc  *dc)
320 {
321 	if (dc) {
322 		if (dc->res_pool)
323 			dc->res_pool->funcs->destroy(&dc->res_pool);
324 
325 		kfree(dc->hwseq);
326 	}
327 }
328 
update_num_audio(const struct resource_straps * straps,unsigned int * num_audio,struct audio_support * aud_support)329 static void update_num_audio(
330 	const struct resource_straps *straps,
331 	unsigned int *num_audio,
332 	struct audio_support *aud_support)
333 {
334 	aud_support->dp_audio = true;
335 	aud_support->hdmi_audio_native = false;
336 	aud_support->hdmi_audio_on_dongle = false;
337 
338 	if (straps->hdmi_disable == 0) {
339 		if (straps->dc_pinstraps_audio & 0x2) {
340 			aud_support->hdmi_audio_on_dongle = true;
341 			aud_support->hdmi_audio_native = true;
342 		}
343 	}
344 
345 	switch (straps->audio_stream_number) {
346 	case 0: /* multi streams supported */
347 		break;
348 	case 1: /* multi streams not supported */
349 		*num_audio = 1;
350 		break;
351 	default:
352 		DC_ERR("DC: unexpected audio fuse!\n");
353 	}
354 }
355 
resource_construct(unsigned int num_virtual_links,struct dc * dc,struct resource_pool * pool,const struct resource_create_funcs * create_funcs)356 bool resource_construct(
357 	unsigned int num_virtual_links,
358 	struct dc  *dc,
359 	struct resource_pool *pool,
360 	const struct resource_create_funcs *create_funcs)
361 {
362 	struct dc_context *ctx = dc->ctx;
363 	const struct resource_caps *caps = pool->res_cap;
364 	int i;
365 	unsigned int num_audio = caps->num_audio;
366 	struct resource_straps straps = {0};
367 
368 	if (create_funcs->read_dce_straps)
369 		create_funcs->read_dce_straps(dc->ctx, &straps);
370 
371 	pool->audio_count = 0;
372 	if (create_funcs->create_audio) {
373 		/* find the total number of streams available via the
374 		 * AZALIA_F0_CODEC_PIN_CONTROL_RESPONSE_CONFIGURATION_DEFAULT
375 		 * registers (one for each pin) starting from pin 1
376 		 * up to the max number of audio pins.
377 		 * We stop on the first pin where
378 		 * PORT_CONNECTIVITY == 1 (as instructed by HW team).
379 		 */
380 		update_num_audio(&straps, &num_audio, &pool->audio_support);
381 		for (i = 0; i < caps->num_audio; i++) {
382 			struct audio *aud = create_funcs->create_audio(ctx, i);
383 
384 			if (aud == NULL) {
385 				DC_ERR("DC: failed to create audio!\n");
386 				return false;
387 			}
388 			if (!aud->funcs->endpoint_valid(aud)) {
389 				aud->funcs->destroy(&aud);
390 				break;
391 			}
392 			pool->audios[i] = aud;
393 			pool->audio_count++;
394 		}
395 	}
396 
397 	pool->stream_enc_count = 0;
398 	if (create_funcs->create_stream_encoder) {
399 		for (i = 0; i < caps->num_stream_encoder; i++) {
400 			pool->stream_enc[i] = create_funcs->create_stream_encoder(i, ctx);
401 			if (pool->stream_enc[i] == NULL)
402 				DC_ERR("DC: failed to create stream_encoder!\n");
403 			pool->stream_enc_count++;
404 		}
405 	}
406 
407 	pool->hpo_dp_stream_enc_count = 0;
408 	if (create_funcs->create_hpo_dp_stream_encoder) {
409 		for (i = 0; i < caps->num_hpo_dp_stream_encoder; i++) {
410 			pool->hpo_dp_stream_enc[i] = create_funcs->create_hpo_dp_stream_encoder(i+ENGINE_ID_HPO_DP_0, ctx);
411 			if (pool->hpo_dp_stream_enc[i] == NULL)
412 				DC_ERR("DC: failed to create HPO DP stream encoder!\n");
413 			pool->hpo_dp_stream_enc_count++;
414 
415 		}
416 	}
417 
418 	pool->hpo_dp_link_enc_count = 0;
419 	if (create_funcs->create_hpo_dp_link_encoder) {
420 		for (i = 0; i < caps->num_hpo_dp_link_encoder; i++) {
421 			pool->hpo_dp_link_enc[i] = create_funcs->create_hpo_dp_link_encoder(i, ctx);
422 			if (pool->hpo_dp_link_enc[i] == NULL)
423 				DC_ERR("DC: failed to create HPO DP link encoder!\n");
424 			pool->hpo_dp_link_enc_count++;
425 		}
426 	}
427 
428 	for (i = 0; i < caps->num_mpc_3dlut; i++) {
429 		pool->mpc_lut[i] = dc_create_3dlut_func();
430 		if (pool->mpc_lut[i] == NULL)
431 			DC_ERR("DC: failed to create MPC 3dlut!\n");
432 		pool->mpc_shaper[i] = dc_create_transfer_func();
433 		if (pool->mpc_shaper[i] == NULL)
434 			DC_ERR("DC: failed to create MPC shaper!\n");
435 	}
436 
437 	dc->caps.dynamic_audio = false;
438 	if (pool->audio_count < pool->stream_enc_count) {
439 		dc->caps.dynamic_audio = true;
440 	}
441 	for (i = 0; i < num_virtual_links; i++) {
442 		pool->stream_enc[pool->stream_enc_count] =
443 			virtual_stream_encoder_create(
444 					ctx, ctx->dc_bios);
445 		if (pool->stream_enc[pool->stream_enc_count] == NULL) {
446 			DC_ERR("DC: failed to create stream_encoder!\n");
447 			return false;
448 		}
449 		pool->stream_enc_count++;
450 	}
451 
452 	dc->hwseq = create_funcs->create_hwseq(ctx);
453 
454 	return true;
455 }
find_matching_clock_source(const struct resource_pool * pool,struct clock_source * clock_source)456 static int find_matching_clock_source(
457 		const struct resource_pool *pool,
458 		struct clock_source *clock_source)
459 {
460 
461 	int i;
462 
463 	for (i = 0; i < pool->clk_src_count; i++) {
464 		if (pool->clock_sources[i] == clock_source)
465 			return i;
466 	}
467 	return -1;
468 }
469 
resource_unreference_clock_source(struct resource_context * res_ctx,const struct resource_pool * pool,struct clock_source * clock_source)470 void resource_unreference_clock_source(
471 		struct resource_context *res_ctx,
472 		const struct resource_pool *pool,
473 		struct clock_source *clock_source)
474 {
475 	int i = find_matching_clock_source(pool, clock_source);
476 
477 	if (i > -1)
478 		res_ctx->clock_source_ref_count[i]--;
479 
480 	if (pool->dp_clock_source == clock_source)
481 		res_ctx->dp_clock_source_ref_count--;
482 }
483 
resource_reference_clock_source(struct resource_context * res_ctx,const struct resource_pool * pool,struct clock_source * clock_source)484 void resource_reference_clock_source(
485 		struct resource_context *res_ctx,
486 		const struct resource_pool *pool,
487 		struct clock_source *clock_source)
488 {
489 	int i = find_matching_clock_source(pool, clock_source);
490 
491 	if (i > -1)
492 		res_ctx->clock_source_ref_count[i]++;
493 
494 	if (pool->dp_clock_source == clock_source)
495 		res_ctx->dp_clock_source_ref_count++;
496 }
497 
resource_get_clock_source_reference(struct resource_context * res_ctx,const struct resource_pool * pool,struct clock_source * clock_source)498 int resource_get_clock_source_reference(
499 		struct resource_context *res_ctx,
500 		const struct resource_pool *pool,
501 		struct clock_source *clock_source)
502 {
503 	int i = find_matching_clock_source(pool, clock_source);
504 
505 	if (i > -1)
506 		return res_ctx->clock_source_ref_count[i];
507 
508 	if (pool->dp_clock_source == clock_source)
509 		return res_ctx->dp_clock_source_ref_count;
510 
511 	return -1;
512 }
513 
resource_are_vblanks_synchronizable(struct dc_stream_state * stream1,struct dc_stream_state * stream2)514 bool resource_are_vblanks_synchronizable(
515 	struct dc_stream_state *stream1,
516 	struct dc_stream_state *stream2)
517 {
518 	uint32_t base60_refresh_rates[] = {10, 20, 5};
519 	uint8_t i;
520 	uint8_t rr_count = ARRAY_SIZE(base60_refresh_rates);
521 	uint64_t frame_time_diff;
522 
523 	if (stream1->ctx->dc->config.vblank_alignment_dto_params &&
524 		stream1->ctx->dc->config.vblank_alignment_max_frame_time_diff > 0 &&
525 		dc_is_dp_signal(stream1->signal) &&
526 		dc_is_dp_signal(stream2->signal) &&
527 		false == stream1->has_non_synchronizable_pclk &&
528 		false == stream2->has_non_synchronizable_pclk &&
529 		stream1->timing.flags.VBLANK_SYNCHRONIZABLE &&
530 		stream2->timing.flags.VBLANK_SYNCHRONIZABLE) {
531 		/* disable refresh rates higher than 60Hz for now */
532 		if (stream1->timing.pix_clk_100hz*100/stream1->timing.h_total/
533 				stream1->timing.v_total > 60)
534 			return false;
535 		if (stream2->timing.pix_clk_100hz*100/stream2->timing.h_total/
536 				stream2->timing.v_total > 60)
537 			return false;
538 		frame_time_diff = (uint64_t)10000 *
539 			stream1->timing.h_total *
540 			stream1->timing.v_total *
541 			stream2->timing.pix_clk_100hz;
542 		frame_time_diff = div_u64(frame_time_diff, stream1->timing.pix_clk_100hz);
543 		frame_time_diff = div_u64(frame_time_diff, stream2->timing.h_total);
544 		frame_time_diff = div_u64(frame_time_diff, stream2->timing.v_total);
545 		for (i = 0; i < rr_count; i++) {
546 			int64_t diff = (int64_t)div_u64(frame_time_diff * base60_refresh_rates[i], 10) - 10000;
547 
548 			if (diff < 0)
549 				diff = -diff;
550 			if (diff < stream1->ctx->dc->config.vblank_alignment_max_frame_time_diff)
551 				return true;
552 		}
553 	}
554 	return false;
555 }
556 
resource_are_streams_timing_synchronizable(struct dc_stream_state * stream1,struct dc_stream_state * stream2)557 bool resource_are_streams_timing_synchronizable(
558 	struct dc_stream_state *stream1,
559 	struct dc_stream_state *stream2)
560 {
561 	if (stream1->timing.h_total != stream2->timing.h_total)
562 		return false;
563 
564 	if (stream1->timing.v_total != stream2->timing.v_total)
565 		return false;
566 
567 	if (stream1->timing.h_addressable
568 				!= stream2->timing.h_addressable)
569 		return false;
570 
571 	if (stream1->timing.v_addressable
572 				!= stream2->timing.v_addressable)
573 		return false;
574 
575 	if (stream1->timing.v_front_porch
576 				!= stream2->timing.v_front_porch)
577 		return false;
578 
579 	if (stream1->timing.pix_clk_100hz
580 				!= stream2->timing.pix_clk_100hz)
581 		return false;
582 
583 	if (stream1->clamping.c_depth != stream2->clamping.c_depth)
584 		return false;
585 
586 	if (stream1->phy_pix_clk != stream2->phy_pix_clk
587 			&& (!dc_is_dp_signal(stream1->signal)
588 			|| !dc_is_dp_signal(stream2->signal)))
589 		return false;
590 
591 	if (stream1->view_format != stream2->view_format)
592 		return false;
593 
594 	if (stream1->ignore_msa_timing_param || stream2->ignore_msa_timing_param)
595 		return false;
596 
597 	return true;
598 }
is_dp_and_hdmi_sharable(struct dc_stream_state * stream1,struct dc_stream_state * stream2)599 static bool is_dp_and_hdmi_sharable(
600 		struct dc_stream_state *stream1,
601 		struct dc_stream_state *stream2)
602 {
603 	if (stream1->ctx->dc->caps.disable_dp_clk_share)
604 		return false;
605 
606 	if (stream1->clamping.c_depth != COLOR_DEPTH_888 ||
607 		stream2->clamping.c_depth != COLOR_DEPTH_888)
608 		return false;
609 
610 	return true;
611 
612 }
613 
is_sharable_clk_src(const struct pipe_ctx * pipe_with_clk_src,const struct pipe_ctx * pipe)614 static bool is_sharable_clk_src(
615 	const struct pipe_ctx *pipe_with_clk_src,
616 	const struct pipe_ctx *pipe)
617 {
618 	if (pipe_with_clk_src->clock_source == NULL)
619 		return false;
620 
621 	if (pipe_with_clk_src->stream->signal == SIGNAL_TYPE_VIRTUAL)
622 		return false;
623 
624 	if (dc_is_dp_signal(pipe_with_clk_src->stream->signal) ||
625 		(dc_is_dp_signal(pipe->stream->signal) &&
626 		!is_dp_and_hdmi_sharable(pipe_with_clk_src->stream,
627 				     pipe->stream)))
628 		return false;
629 
630 	if (dc_is_hdmi_signal(pipe_with_clk_src->stream->signal)
631 			&& dc_is_dual_link_signal(pipe->stream->signal))
632 		return false;
633 
634 	if (dc_is_hdmi_signal(pipe->stream->signal)
635 			&& dc_is_dual_link_signal(pipe_with_clk_src->stream->signal))
636 		return false;
637 
638 	if (!resource_are_streams_timing_synchronizable(
639 			pipe_with_clk_src->stream, pipe->stream))
640 		return false;
641 
642 	return true;
643 }
644 
resource_find_used_clk_src_for_sharing(struct resource_context * res_ctx,struct pipe_ctx * pipe_ctx)645 struct clock_source *resource_find_used_clk_src_for_sharing(
646 					struct resource_context *res_ctx,
647 					struct pipe_ctx *pipe_ctx)
648 {
649 	int i;
650 
651 	for (i = 0; i < MAX_PIPES; i++) {
652 		if (is_sharable_clk_src(&res_ctx->pipe_ctx[i], pipe_ctx))
653 			return res_ctx->pipe_ctx[i].clock_source;
654 	}
655 
656 	return NULL;
657 }
658 
convert_pixel_format_to_dalsurface(enum surface_pixel_format surface_pixel_format)659 static enum pixel_format convert_pixel_format_to_dalsurface(
660 		enum surface_pixel_format surface_pixel_format)
661 {
662 	enum pixel_format dal_pixel_format = PIXEL_FORMAT_UNKNOWN;
663 
664 	switch (surface_pixel_format) {
665 	case SURFACE_PIXEL_FORMAT_GRPH_PALETA_256_COLORS:
666 		dal_pixel_format = PIXEL_FORMAT_INDEX8;
667 		break;
668 	case SURFACE_PIXEL_FORMAT_GRPH_ARGB1555:
669 		dal_pixel_format = PIXEL_FORMAT_RGB565;
670 		break;
671 	case SURFACE_PIXEL_FORMAT_GRPH_RGB565:
672 		dal_pixel_format = PIXEL_FORMAT_RGB565;
673 		break;
674 	case SURFACE_PIXEL_FORMAT_GRPH_ARGB8888:
675 		dal_pixel_format = PIXEL_FORMAT_ARGB8888;
676 		break;
677 	case SURFACE_PIXEL_FORMAT_GRPH_ABGR8888:
678 		dal_pixel_format = PIXEL_FORMAT_ARGB8888;
679 		break;
680 	case SURFACE_PIXEL_FORMAT_GRPH_ARGB2101010:
681 		dal_pixel_format = PIXEL_FORMAT_ARGB2101010;
682 		break;
683 	case SURFACE_PIXEL_FORMAT_GRPH_ABGR2101010:
684 		dal_pixel_format = PIXEL_FORMAT_ARGB2101010;
685 		break;
686 	case SURFACE_PIXEL_FORMAT_GRPH_ABGR2101010_XR_BIAS:
687 		dal_pixel_format = PIXEL_FORMAT_ARGB2101010_XRBIAS;
688 		break;
689 	case SURFACE_PIXEL_FORMAT_GRPH_ABGR16161616F:
690 	case SURFACE_PIXEL_FORMAT_GRPH_ARGB16161616F:
691 		dal_pixel_format = PIXEL_FORMAT_FP16;
692 		break;
693 	case SURFACE_PIXEL_FORMAT_VIDEO_420_YCbCr:
694 	case SURFACE_PIXEL_FORMAT_VIDEO_420_YCrCb:
695 		dal_pixel_format = PIXEL_FORMAT_420BPP8;
696 		break;
697 	case SURFACE_PIXEL_FORMAT_VIDEO_420_10bpc_YCbCr:
698 	case SURFACE_PIXEL_FORMAT_VIDEO_420_10bpc_YCrCb:
699 		dal_pixel_format = PIXEL_FORMAT_420BPP10;
700 		break;
701 	case SURFACE_PIXEL_FORMAT_GRPH_ARGB16161616:
702 	case SURFACE_PIXEL_FORMAT_GRPH_ABGR16161616:
703 	default:
704 		dal_pixel_format = PIXEL_FORMAT_UNKNOWN;
705 		break;
706 	}
707 	return dal_pixel_format;
708 }
709 
get_vp_scan_direction(enum dc_rotation_angle rotation,bool horizontal_mirror,bool * orthogonal_rotation,bool * flip_vert_scan_dir,bool * flip_horz_scan_dir)710 static inline void get_vp_scan_direction(
711 	enum dc_rotation_angle rotation,
712 	bool horizontal_mirror,
713 	bool *orthogonal_rotation,
714 	bool *flip_vert_scan_dir,
715 	bool *flip_horz_scan_dir)
716 {
717 	*orthogonal_rotation = false;
718 	*flip_vert_scan_dir = false;
719 	*flip_horz_scan_dir = false;
720 	if (rotation == ROTATION_ANGLE_180) {
721 		*flip_vert_scan_dir = true;
722 		*flip_horz_scan_dir = true;
723 	} else if (rotation == ROTATION_ANGLE_90) {
724 		*orthogonal_rotation = true;
725 		*flip_horz_scan_dir = true;
726 	} else if (rotation == ROTATION_ANGLE_270) {
727 		*orthogonal_rotation = true;
728 		*flip_vert_scan_dir = true;
729 	}
730 
731 	if (horizontal_mirror)
732 		*flip_horz_scan_dir = !*flip_horz_scan_dir;
733 }
734 
resource_get_num_mpc_splits(const struct pipe_ctx * pipe)735 int resource_get_num_mpc_splits(const struct pipe_ctx *pipe)
736 {
737 	int mpc_split_count = 0;
738 	const struct pipe_ctx *other_pipe = pipe->bottom_pipe;
739 
740 	while (other_pipe && other_pipe->plane_state == pipe->plane_state) {
741 		mpc_split_count++;
742 		other_pipe = other_pipe->bottom_pipe;
743 	}
744 	other_pipe = pipe->top_pipe;
745 	while (other_pipe && other_pipe->plane_state == pipe->plane_state) {
746 		mpc_split_count++;
747 		other_pipe = other_pipe->top_pipe;
748 	}
749 
750 	return mpc_split_count;
751 }
752 
resource_get_num_odm_splits(const struct pipe_ctx * pipe)753 int resource_get_num_odm_splits(const struct pipe_ctx *pipe)
754 {
755 	int odm_split_count = 0;
756 
757 	pipe = resource_get_otg_master(pipe);
758 
759 	while (pipe->next_odm_pipe) {
760 		odm_split_count++;
761 		pipe = pipe->next_odm_pipe;
762 	}
763 	return odm_split_count;
764 }
765 
get_odm_split_index(struct pipe_ctx * pipe_ctx)766 static int get_odm_split_index(struct pipe_ctx *pipe_ctx)
767 {
768 	int index = 0;
769 
770 	pipe_ctx = resource_get_opp_head(pipe_ctx);
771 	if (!pipe_ctx)
772 		return 0;
773 
774 	while (pipe_ctx->prev_odm_pipe) {
775 		index++;
776 		pipe_ctx = pipe_ctx->prev_odm_pipe;
777 	}
778 
779 	return index;
780 }
781 
get_mpc_split_index(struct pipe_ctx * pipe_ctx)782 static int get_mpc_split_index(struct pipe_ctx *pipe_ctx)
783 {
784 	struct pipe_ctx *split_pipe = pipe_ctx->top_pipe;
785 	int index = 0;
786 
787 	while (split_pipe && split_pipe->plane_state == pipe_ctx->plane_state) {
788 		index++;
789 		split_pipe = split_pipe->top_pipe;
790 	}
791 
792 	return index;
793 }
794 
795 /*
796  * This is a preliminary vp size calculation to allow us to check taps support.
797  * The result is completely overridden afterwards.
798  */
calculate_viewport_size(struct pipe_ctx * pipe_ctx)799 static void calculate_viewport_size(struct pipe_ctx *pipe_ctx)
800 {
801 	struct scaler_data *data = &pipe_ctx->plane_res.scl_data;
802 
803 	data->viewport.width = dc_fixpt_ceil(dc_fixpt_mul_int(data->ratios.horz, data->recout.width));
804 	data->viewport.height = dc_fixpt_ceil(dc_fixpt_mul_int(data->ratios.vert, data->recout.height));
805 	data->viewport_c.width = dc_fixpt_ceil(dc_fixpt_mul_int(data->ratios.horz_c, data->recout.width));
806 	data->viewport_c.height = dc_fixpt_ceil(dc_fixpt_mul_int(data->ratios.vert_c, data->recout.height));
807 	if (pipe_ctx->plane_state->rotation == ROTATION_ANGLE_90 ||
808 			pipe_ctx->plane_state->rotation == ROTATION_ANGLE_270) {
809 		swap(data->viewport.width, data->viewport.height);
810 		swap(data->viewport_c.width, data->viewport_c.height);
811 	}
812 }
813 
intersect_rec(const struct rect * r0,const struct rect * r1)814 static struct rect intersect_rec(const struct rect *r0, const struct rect *r1)
815 {
816 	struct rect rec;
817 	int r0_x_end = r0->x + r0->width;
818 	int r1_x_end = r1->x + r1->width;
819 	int r0_y_end = r0->y + r0->height;
820 	int r1_y_end = r1->y + r1->height;
821 
822 	rec.x = r0->x > r1->x ? r0->x : r1->x;
823 	rec.width = r0_x_end > r1_x_end ? r1_x_end - rec.x : r0_x_end - rec.x;
824 	rec.y = r0->y > r1->y ? r0->y : r1->y;
825 	rec.height = r0_y_end > r1_y_end ? r1_y_end - rec.y : r0_y_end - rec.y;
826 
827 	/* in case that there is no intersection */
828 	if (rec.width < 0 || rec.height < 0)
829 		memset(&rec, 0, sizeof(rec));
830 
831 	return rec;
832 }
833 
shift_rec(const struct rect * rec_in,int x,int y)834 static struct rect shift_rec(const struct rect *rec_in, int x, int y)
835 {
836 	struct rect rec_out = *rec_in;
837 
838 	rec_out.x += x;
839 	rec_out.y += y;
840 
841 	return rec_out;
842 }
843 
calculate_odm_slice_in_timing_active(struct pipe_ctx * pipe_ctx)844 static struct rect calculate_odm_slice_in_timing_active(struct pipe_ctx *pipe_ctx)
845 {
846 	const struct dc_stream_state *stream = pipe_ctx->stream;
847 	int odm_slice_count = resource_get_num_odm_splits(pipe_ctx) + 1;
848 	int odm_slice_idx = get_odm_split_index(pipe_ctx);
849 	bool is_last_odm_slice = (odm_slice_idx + 1) == odm_slice_count;
850 	int h_active = stream->timing.h_addressable +
851 			stream->timing.h_border_left +
852 			stream->timing.h_border_right;
853 	int odm_slice_width = h_active / odm_slice_count;
854 	struct rect odm_rec;
855 
856 	odm_rec.x = odm_slice_width * odm_slice_idx;
857 	odm_rec.width = is_last_odm_slice ?
858 			/* last slice width is the reminder of h_active */
859 			h_active - odm_slice_width * (odm_slice_count - 1) :
860 			/* odm slice width is the floor of h_active / count */
861 			odm_slice_width;
862 	odm_rec.y = 0;
863 	odm_rec.height = stream->timing.v_addressable +
864 			stream->timing.v_border_bottom +
865 			stream->timing.v_border_top;
866 
867 	return odm_rec;
868 }
869 
calculate_plane_rec_in_timing_active(struct pipe_ctx * pipe_ctx,const struct rect * rec_in)870 static struct rect calculate_plane_rec_in_timing_active(
871 		struct pipe_ctx *pipe_ctx,
872 		const struct rect *rec_in)
873 {
874 	/*
875 	 * The following diagram shows an example where we map a 1920x1200
876 	 * desktop to a 2560x1440 timing with a plane rect in the middle
877 	 * of the screen. To map a plane rect from Stream Source to Timing
878 	 * Active space, we first multiply stream scaling ratios (i.e 2304/1920
879 	 * horizontal and 1440/1200 vertical) to the plane's x and y, then
880 	 * we add stream destination offsets (i.e 128 horizontal, 0 vertical).
881 	 * This will give us a plane rect's position in Timing Active. However
882 	 * we have to remove the fractional. The rule is that we find left/right
883 	 * and top/bottom positions and round the value to the adjacent integer.
884 	 *
885 	 * Stream Source Space
886 	 * ------------
887 	 *        __________________________________________________
888 	 *       |Stream Source (1920 x 1200) ^                     |
889 	 *       |                            y                     |
890 	 *       |         <------- w --------|>                    |
891 	 *       |          __________________V                     |
892 	 *       |<-- x -->|Plane//////////////| ^                  |
893 	 *       |         |(pre scale)////////| |                  |
894 	 *       |         |///////////////////| |                  |
895 	 *       |         |///////////////////| h                  |
896 	 *       |         |///////////////////| |                  |
897 	 *       |         |///////////////////| |                  |
898 	 *       |         |///////////////////| V                  |
899 	 *       |                                                  |
900 	 *       |                                                  |
901 	 *       |__________________________________________________|
902 	 *
903 	 *
904 	 * Timing Active Space
905 	 * ---------------------------------
906 	 *
907 	 *       Timing Active (2560 x 1440)
908 	 *        __________________________________________________
909 	 *       |*****|  Stteam Destination (2304 x 1440)    |*****|
910 	 *       |*****|                                      |*****|
911 	 *       |<128>|                                      |*****|
912 	 *       |*****|     __________________               |*****|
913 	 *       |*****|    |Plane/////////////|              |*****|
914 	 *       |*****|    |(post scale)//////|              |*****|
915 	 *       |*****|    |//////////////////|              |*****|
916 	 *       |*****|    |//////////////////|              |*****|
917 	 *       |*****|    |//////////////////|              |*****|
918 	 *       |*****|    |//////////////////|              |*****|
919 	 *       |*****|                                      |*****|
920 	 *       |*****|                                      |*****|
921 	 *       |*****|                                      |*****|
922 	 *       |*****|______________________________________|*****|
923 	 *
924 	 * So the resulting formulas are shown below:
925 	 *
926 	 * recout_x = 128 + round(plane_x * 2304 / 1920)
927 	 * recout_w = 128 + round((plane_x + plane_w) * 2304 / 1920) - recout_x
928 	 * recout_y = 0 + round(plane_y * 1440 / 1280)
929 	 * recout_h = 0 + round((plane_y + plane_h) * 1440 / 1200) - recout_y
930 	 *
931 	 * NOTE: fixed point division is not error free. To reduce errors
932 	 * introduced by fixed point division, we divide only after
933 	 * multiplication is complete.
934 	 */
935 	const struct dc_stream_state *stream = pipe_ctx->stream;
936 	struct rect rec_out = {0};
937 	struct fixed31_32 temp;
938 
939 	temp = dc_fixpt_from_fraction(rec_in->x * stream->dst.width,
940 			stream->src.width);
941 	rec_out.x = stream->dst.x + dc_fixpt_round(temp);
942 
943 	temp = dc_fixpt_from_fraction(
944 			(rec_in->x + rec_in->width) * stream->dst.width,
945 			stream->src.width);
946 	rec_out.width = stream->dst.x + dc_fixpt_round(temp) - rec_out.x;
947 
948 	temp = dc_fixpt_from_fraction(rec_in->y * stream->dst.height,
949 			stream->src.height);
950 	rec_out.y = stream->dst.y + dc_fixpt_round(temp);
951 
952 	temp = dc_fixpt_from_fraction(
953 			(rec_in->y + rec_in->height) * stream->dst.height,
954 			stream->src.height);
955 	rec_out.height = stream->dst.y + dc_fixpt_round(temp) - rec_out.y;
956 
957 	return rec_out;
958 }
959 
calculate_mpc_slice_in_timing_active(struct pipe_ctx * pipe_ctx,struct rect * plane_clip_rec)960 static struct rect calculate_mpc_slice_in_timing_active(
961 		struct pipe_ctx *pipe_ctx,
962 		struct rect *plane_clip_rec)
963 {
964 	const struct dc_stream_state *stream = pipe_ctx->stream;
965 	int mpc_slice_count = resource_get_num_mpc_splits(pipe_ctx) + 1;
966 	int mpc_slice_idx = get_mpc_split_index(pipe_ctx);
967 	int epimo = mpc_slice_count - plane_clip_rec->width % mpc_slice_count - 1;
968 	struct rect mpc_rec;
969 
970 	mpc_rec.width = plane_clip_rec->width / mpc_slice_count;
971 	mpc_rec.x = plane_clip_rec->x + mpc_rec.width * mpc_slice_idx;
972 	mpc_rec.height = plane_clip_rec->height;
973 	mpc_rec.y = plane_clip_rec->y;
974 	ASSERT(mpc_slice_count == 1 ||
975 			stream->view_format != VIEW_3D_FORMAT_SIDE_BY_SIDE ||
976 			mpc_rec.width % 2 == 0);
977 
978 	/* extra pixels in the division remainder need to go to pipes after
979 	 * the extra pixel index minus one(epimo) defined here as:
980 	 */
981 	if (mpc_slice_idx > epimo) {
982 		mpc_rec.x += mpc_slice_idx - epimo - 1;
983 		mpc_rec.width += 1;
984 	}
985 
986 	if (stream->view_format == VIEW_3D_FORMAT_TOP_AND_BOTTOM) {
987 		ASSERT(mpc_rec.height % 2 == 0);
988 		mpc_rec.height /= 2;
989 	}
990 	return mpc_rec;
991 }
992 
adjust_recout_for_visual_confirm(struct rect * recout,struct pipe_ctx * pipe_ctx)993 static void adjust_recout_for_visual_confirm(struct rect *recout,
994 		struct pipe_ctx *pipe_ctx)
995 {
996 	struct dc *dc = pipe_ctx->stream->ctx->dc;
997 	int dpp_offset, base_offset;
998 
999 	if (dc->debug.visual_confirm == VISUAL_CONFIRM_DISABLE || !pipe_ctx->plane_res.dpp)
1000 		return;
1001 
1002 	dpp_offset = pipe_ctx->stream->timing.v_addressable / VISUAL_CONFIRM_DPP_OFFSET_DENO;
1003 	dpp_offset *= pipe_ctx->plane_res.dpp->inst;
1004 
1005 	if ((dc->debug.visual_confirm_rect_height >= VISUAL_CONFIRM_BASE_MIN) &&
1006 			dc->debug.visual_confirm_rect_height <= VISUAL_CONFIRM_BASE_MAX)
1007 		base_offset = dc->debug.visual_confirm_rect_height;
1008 	else
1009 		base_offset = VISUAL_CONFIRM_BASE_DEFAULT;
1010 
1011 	recout->height -= base_offset;
1012 	recout->height -= dpp_offset;
1013 }
1014 
1015 /*
1016  * The function maps a plane clip from Stream Source Space to ODM Slice Space
1017  * and calculates the rec of the overlapping area of MPC slice of the plane
1018  * clip, ODM slice associated with the pipe context and stream destination rec.
1019  */
calculate_recout(struct pipe_ctx * pipe_ctx)1020 static void calculate_recout(struct pipe_ctx *pipe_ctx)
1021 {
1022 	/*
1023 	 * A plane clip represents the desired plane size and position in Stream
1024 	 * Source Space. Stream Source is the destination where all planes are
1025 	 * blended (i.e. positioned, scaled and overlaid). It is a canvas where
1026 	 * all planes associated with the current stream are drawn together.
1027 	 * After Stream Source is completed, we will further scale and
1028 	 * reposition the entire canvas of the stream source to Stream
1029 	 * Destination in Timing Active Space. This could be due to display
1030 	 * overscan adjustment where we will need to rescale and reposition all
1031 	 * the planes so they can fit into a TV with overscan or downscale
1032 	 * upscale features such as GPU scaling or VSR.
1033 	 *
1034 	 * This two step blending is a virtual procedure in software. In
1035 	 * hardware there is no such thing as Stream Source. all planes are
1036 	 * blended once in Timing Active Space. Software virtualizes a Stream
1037 	 * Source space to decouple the math complicity so scaling param
1038 	 * calculation focuses on one step at a time.
1039 	 *
1040 	 * In the following two diagrams, user applied 10% overscan adjustment
1041 	 * so the Stream Source needs to be scaled down a little before mapping
1042 	 * to Timing Active Space. As a result the Plane Clip is also scaled
1043 	 * down by the same ratio, Plane Clip position (i.e. x and y) with
1044 	 * respect to Stream Source is also scaled down. To map it in Timing
1045 	 * Active Space additional x and y offsets from Stream Destination are
1046 	 * added to Plane Clip as well.
1047 	 *
1048 	 * Stream Source Space
1049 	 * ------------
1050 	 *        __________________________________________________
1051 	 *       |Stream Source (3840 x 2160) ^                     |
1052 	 *       |                            y                     |
1053 	 *       |                            |                     |
1054 	 *       |          __________________V                     |
1055 	 *       |<-- x -->|Plane Clip/////////|                    |
1056 	 *       |         |(pre scale)////////|                    |
1057 	 *       |         |///////////////////|                    |
1058 	 *       |         |///////////////////|                    |
1059 	 *       |         |///////////////////|                    |
1060 	 *       |         |///////////////////|                    |
1061 	 *       |         |///////////////////|                    |
1062 	 *       |                                                  |
1063 	 *       |                                                  |
1064 	 *       |__________________________________________________|
1065 	 *
1066 	 *
1067 	 * Timing Active Space (3840 x 2160)
1068 	 * ---------------------------------
1069 	 *
1070 	 *       Timing Active
1071 	 *        __________________________________________________
1072 	 *       | y_____________________________________________   |
1073 	 *       |x |Stream Destination (3456 x 1944)            |  |
1074 	 *       |  |                                            |  |
1075 	 *       |  |        __________________                  |  |
1076 	 *       |  |       |Plane Clip////////|                 |  |
1077 	 *       |  |       |(post scale)//////|                 |  |
1078 	 *       |  |       |//////////////////|                 |  |
1079 	 *       |  |       |//////////////////|                 |  |
1080 	 *       |  |       |//////////////////|                 |  |
1081 	 *       |  |       |//////////////////|                 |  |
1082 	 *       |  |                                            |  |
1083 	 *       |  |                                            |  |
1084 	 *       |  |____________________________________________|  |
1085 	 *       |__________________________________________________|
1086 	 *
1087 	 *
1088 	 * In Timing Active Space a plane clip could be further sliced into
1089 	 * pieces called MPC slices. Each Pipe Context is responsible for
1090 	 * processing only one MPC slice so the plane processing workload can be
1091 	 * distributed to multiple DPP Pipes. MPC slices could be blended
1092 	 * together to a single ODM slice. Each ODM slice is responsible for
1093 	 * processing a portion of Timing Active divided horizontally so the
1094 	 * output pixel processing workload can be distributed to multiple OPP
1095 	 * pipes. All ODM slices are mapped together in ODM block so all MPC
1096 	 * slices belong to different ODM slices could be pieced together to
1097 	 * form a single image in Timing Active. MPC slices must belong to
1098 	 * single ODM slice. If an MPC slice goes across ODM slice boundary, it
1099 	 * needs to be divided into two MPC slices one for each ODM slice.
1100 	 *
1101 	 * In the following diagram the output pixel processing workload is
1102 	 * divided horizontally into two ODM slices one for each OPP blend tree.
1103 	 * OPP0 blend tree is responsible for processing left half of Timing
1104 	 * Active, while OPP2 blend tree is responsible for processing right
1105 	 * half.
1106 	 *
1107 	 * The plane has two MPC slices. However since the right MPC slice goes
1108 	 * across ODM boundary, two DPP pipes are needed one for each OPP blend
1109 	 * tree. (i.e. DPP1 for OPP0 blend tree and DPP2 for OPP2 blend tree).
1110 	 *
1111 	 * Assuming that we have a Pipe Context associated with OPP0 and DPP1
1112 	 * working on processing the plane in the diagram. We want to know the
1113 	 * width and height of the shaded rectangle and its relative position
1114 	 * with respect to the ODM slice0. This is called the recout of the pipe
1115 	 * context.
1116 	 *
1117 	 * Planes can be at arbitrary size and position and there could be an
1118 	 * arbitrary number of MPC and ODM slices. The algorithm needs to take
1119 	 * all scenarios into account.
1120 	 *
1121 	 * Timing Active Space (3840 x 2160)
1122 	 * ---------------------------------
1123 	 *
1124 	 *       Timing Active
1125 	 *        __________________________________________________
1126 	 *       |OPP0(ODM slice0)^        |OPP2(ODM slice1)        |
1127 	 *       |                y        |                        |
1128 	 *       |                |  <- w ->                        |
1129 	 *       |           _____V________|____                    |
1130 	 *       |          |DPP0 ^  |DPP1 |DPP2|                   |
1131 	 *       |<------ x |-----|->|/////|    |                   |
1132 	 *       |          |     |  |/////|    |                   |
1133 	 *       |          |     h  |/////|    |                   |
1134 	 *       |          |     |  |/////|    |                   |
1135 	 *       |          |_____V__|/////|____|                   |
1136 	 *       |                         |                        |
1137 	 *       |                         |                        |
1138 	 *       |                         |                        |
1139 	 *       |_________________________|________________________|
1140 	 *
1141 	 *
1142 	 */
1143 	struct rect plane_clip;
1144 	struct rect mpc_slice_of_plane_clip;
1145 	struct rect odm_slice;
1146 	struct rect overlapping_area;
1147 
1148 	plane_clip = calculate_plane_rec_in_timing_active(pipe_ctx,
1149 			&pipe_ctx->plane_state->clip_rect);
1150 	/* guard plane clip from drawing beyond stream dst here */
1151 	plane_clip = intersect_rec(&plane_clip,
1152 				&pipe_ctx->stream->dst);
1153 	mpc_slice_of_plane_clip = calculate_mpc_slice_in_timing_active(
1154 			pipe_ctx, &plane_clip);
1155 	odm_slice = calculate_odm_slice_in_timing_active(pipe_ctx);
1156 	overlapping_area = intersect_rec(&mpc_slice_of_plane_clip, &odm_slice);
1157 	if (overlapping_area.height > 0 &&
1158 			overlapping_area.width > 0) {
1159 		/* shift the overlapping area so it is with respect to current
1160 		 * ODM slice's position
1161 		 */
1162 		pipe_ctx->plane_res.scl_data.recout = shift_rec(
1163 				&overlapping_area,
1164 				-odm_slice.x, -odm_slice.y);
1165 		adjust_recout_for_visual_confirm(
1166 				&pipe_ctx->plane_res.scl_data.recout,
1167 				pipe_ctx);
1168 	} else {
1169 		/* if there is no overlap, zero recout */
1170 		memset(&pipe_ctx->plane_res.scl_data.recout, 0,
1171 				sizeof(struct rect));
1172 	}
1173 
1174 }
1175 
calculate_scaling_ratios(struct pipe_ctx * pipe_ctx)1176 static void calculate_scaling_ratios(struct pipe_ctx *pipe_ctx)
1177 {
1178 	const struct dc_plane_state *plane_state = pipe_ctx->plane_state;
1179 	const struct dc_stream_state *stream = pipe_ctx->stream;
1180 	struct rect surf_src = plane_state->src_rect;
1181 	const int in_w = stream->src.width;
1182 	const int in_h = stream->src.height;
1183 	const int out_w = stream->dst.width;
1184 	const int out_h = stream->dst.height;
1185 
1186 	/*Swap surf_src height and width since scaling ratios are in recout rotation*/
1187 	if (pipe_ctx->plane_state->rotation == ROTATION_ANGLE_90 ||
1188 			pipe_ctx->plane_state->rotation == ROTATION_ANGLE_270)
1189 		swap(surf_src.height, surf_src.width);
1190 
1191 	pipe_ctx->plane_res.scl_data.ratios.horz = dc_fixpt_from_fraction(
1192 					surf_src.width,
1193 					plane_state->dst_rect.width);
1194 	pipe_ctx->plane_res.scl_data.ratios.vert = dc_fixpt_from_fraction(
1195 					surf_src.height,
1196 					plane_state->dst_rect.height);
1197 
1198 	if (stream->view_format == VIEW_3D_FORMAT_SIDE_BY_SIDE)
1199 		pipe_ctx->plane_res.scl_data.ratios.horz.value *= 2;
1200 	else if (stream->view_format == VIEW_3D_FORMAT_TOP_AND_BOTTOM)
1201 		pipe_ctx->plane_res.scl_data.ratios.vert.value *= 2;
1202 
1203 	pipe_ctx->plane_res.scl_data.ratios.vert.value = div64_s64(
1204 		pipe_ctx->plane_res.scl_data.ratios.vert.value * in_h, out_h);
1205 	pipe_ctx->plane_res.scl_data.ratios.horz.value = div64_s64(
1206 		pipe_ctx->plane_res.scl_data.ratios.horz.value * in_w, out_w);
1207 
1208 	pipe_ctx->plane_res.scl_data.ratios.horz_c = pipe_ctx->plane_res.scl_data.ratios.horz;
1209 	pipe_ctx->plane_res.scl_data.ratios.vert_c = pipe_ctx->plane_res.scl_data.ratios.vert;
1210 
1211 	if (pipe_ctx->plane_res.scl_data.format == PIXEL_FORMAT_420BPP8
1212 			|| pipe_ctx->plane_res.scl_data.format == PIXEL_FORMAT_420BPP10) {
1213 		pipe_ctx->plane_res.scl_data.ratios.horz_c.value /= 2;
1214 		pipe_ctx->plane_res.scl_data.ratios.vert_c.value /= 2;
1215 	}
1216 	pipe_ctx->plane_res.scl_data.ratios.horz = dc_fixpt_truncate(
1217 			pipe_ctx->plane_res.scl_data.ratios.horz, 19);
1218 	pipe_ctx->plane_res.scl_data.ratios.vert = dc_fixpt_truncate(
1219 			pipe_ctx->plane_res.scl_data.ratios.vert, 19);
1220 	pipe_ctx->plane_res.scl_data.ratios.horz_c = dc_fixpt_truncate(
1221 			pipe_ctx->plane_res.scl_data.ratios.horz_c, 19);
1222 	pipe_ctx->plane_res.scl_data.ratios.vert_c = dc_fixpt_truncate(
1223 			pipe_ctx->plane_res.scl_data.ratios.vert_c, 19);
1224 }
1225 
1226 
1227 /*
1228  * We completely calculate vp offset, size and inits here based entirely on scaling
1229  * ratios and recout for pixel perfect pipe combine.
1230  */
calculate_init_and_vp(bool flip_scan_dir,int recout_offset_within_recout_full,int recout_size,int src_size,int taps,struct fixed31_32 ratio,struct fixed31_32 * init,int * vp_offset,int * vp_size)1231 static void calculate_init_and_vp(
1232 		bool flip_scan_dir,
1233 		int recout_offset_within_recout_full,
1234 		int recout_size,
1235 		int src_size,
1236 		int taps,
1237 		struct fixed31_32 ratio,
1238 		struct fixed31_32 *init,
1239 		int *vp_offset,
1240 		int *vp_size)
1241 {
1242 	struct fixed31_32 temp;
1243 	int int_part;
1244 
1245 	/*
1246 	 * First of the taps starts sampling pixel number <init_int_part> corresponding to recout
1247 	 * pixel 1. Next recout pixel samples int part of <init + scaling ratio> and so on.
1248 	 * All following calculations are based on this logic.
1249 	 *
1250 	 * Init calculated according to formula:
1251 	 * 	init = (scaling_ratio + number_of_taps + 1) / 2
1252 	 * 	init_bot = init + scaling_ratio
1253 	 * 	to get pixel perfect combine add the fraction from calculating vp offset
1254 	 */
1255 	temp = dc_fixpt_mul_int(ratio, recout_offset_within_recout_full);
1256 	*vp_offset = dc_fixpt_floor(temp);
1257 	temp.value &= 0xffffffff;
1258 	*init = dc_fixpt_truncate(dc_fixpt_add(dc_fixpt_div_int(
1259 			dc_fixpt_add_int(ratio, taps + 1), 2), temp), 19);
1260 	/*
1261 	 * If viewport has non 0 offset and there are more taps than covered by init then
1262 	 * we should decrease the offset and increase init so we are never sampling
1263 	 * outside of viewport.
1264 	 */
1265 	int_part = dc_fixpt_floor(*init);
1266 	if (int_part < taps) {
1267 		int_part = taps - int_part;
1268 		if (int_part > *vp_offset)
1269 			int_part = *vp_offset;
1270 		*vp_offset -= int_part;
1271 		*init = dc_fixpt_add_int(*init, int_part);
1272 	}
1273 	/*
1274 	 * If taps are sampling outside of viewport at end of recout and there are more pixels
1275 	 * available in the surface we should increase the viewport size, regardless set vp to
1276 	 * only what is used.
1277 	 */
1278 	temp = dc_fixpt_add(*init, dc_fixpt_mul_int(ratio, recout_size - 1));
1279 	*vp_size = dc_fixpt_floor(temp);
1280 	if (*vp_size + *vp_offset > src_size)
1281 		*vp_size = src_size - *vp_offset;
1282 
1283 	/* We did all the math assuming we are scanning same direction as display does,
1284 	 * however mirror/rotation changes how vp scans vs how it is offset. If scan direction
1285 	 * is flipped we simply need to calculate offset from the other side of plane.
1286 	 * Note that outside of viewport all scaling hardware works in recout space.
1287 	 */
1288 	if (flip_scan_dir)
1289 		*vp_offset = src_size - *vp_offset - *vp_size;
1290 }
1291 
calculate_inits_and_viewports(struct pipe_ctx * pipe_ctx)1292 static void calculate_inits_and_viewports(struct pipe_ctx *pipe_ctx)
1293 {
1294 	const struct dc_plane_state *plane_state = pipe_ctx->plane_state;
1295 	struct scaler_data *data = &pipe_ctx->plane_res.scl_data;
1296 	struct rect src = plane_state->src_rect;
1297 	struct rect recout_dst_in_active_timing;
1298 	struct rect recout_clip_in_active_timing;
1299 	struct rect recout_clip_in_recout_dst;
1300 	struct rect overlap_in_active_timing;
1301 	struct rect odm_slice = calculate_odm_slice_in_timing_active(pipe_ctx);
1302 	int vpc_div = (data->format == PIXEL_FORMAT_420BPP8
1303 				|| data->format == PIXEL_FORMAT_420BPP10) ? 2 : 1;
1304 	bool orthogonal_rotation, flip_vert_scan_dir, flip_horz_scan_dir;
1305 
1306 	recout_clip_in_active_timing = shift_rec(
1307 			&data->recout, odm_slice.x, odm_slice.y);
1308 	recout_dst_in_active_timing = calculate_plane_rec_in_timing_active(
1309 			pipe_ctx, &plane_state->dst_rect);
1310 	overlap_in_active_timing = intersect_rec(&recout_clip_in_active_timing,
1311 			&recout_dst_in_active_timing);
1312 	if (overlap_in_active_timing.width > 0 &&
1313 			overlap_in_active_timing.height > 0)
1314 		recout_clip_in_recout_dst = shift_rec(&overlap_in_active_timing,
1315 				-recout_dst_in_active_timing.x,
1316 				-recout_dst_in_active_timing.y);
1317 	else
1318 		memset(&recout_clip_in_recout_dst, 0, sizeof(struct rect));
1319 
1320 	/*
1321 	 * Work in recout rotation since that requires less transformations
1322 	 */
1323 	get_vp_scan_direction(
1324 			plane_state->rotation,
1325 			plane_state->horizontal_mirror,
1326 			&orthogonal_rotation,
1327 			&flip_vert_scan_dir,
1328 			&flip_horz_scan_dir);
1329 
1330 	if (orthogonal_rotation) {
1331 		swap(src.width, src.height);
1332 		swap(flip_vert_scan_dir, flip_horz_scan_dir);
1333 	}
1334 
1335 	calculate_init_and_vp(
1336 			flip_horz_scan_dir,
1337 			recout_clip_in_recout_dst.x,
1338 			data->recout.width,
1339 			src.width,
1340 			data->taps.h_taps,
1341 			data->ratios.horz,
1342 			&data->inits.h,
1343 			&data->viewport.x,
1344 			&data->viewport.width);
1345 	calculate_init_and_vp(
1346 			flip_horz_scan_dir,
1347 			recout_clip_in_recout_dst.x,
1348 			data->recout.width,
1349 			src.width / vpc_div,
1350 			data->taps.h_taps_c,
1351 			data->ratios.horz_c,
1352 			&data->inits.h_c,
1353 			&data->viewport_c.x,
1354 			&data->viewport_c.width);
1355 	calculate_init_and_vp(
1356 			flip_vert_scan_dir,
1357 			recout_clip_in_recout_dst.y,
1358 			data->recout.height,
1359 			src.height,
1360 			data->taps.v_taps,
1361 			data->ratios.vert,
1362 			&data->inits.v,
1363 			&data->viewport.y,
1364 			&data->viewport.height);
1365 	calculate_init_and_vp(
1366 			flip_vert_scan_dir,
1367 			recout_clip_in_recout_dst.y,
1368 			data->recout.height,
1369 			src.height / vpc_div,
1370 			data->taps.v_taps_c,
1371 			data->ratios.vert_c,
1372 			&data->inits.v_c,
1373 			&data->viewport_c.y,
1374 			&data->viewport_c.height);
1375 	if (orthogonal_rotation) {
1376 		swap(data->viewport.x, data->viewport.y);
1377 		swap(data->viewport.width, data->viewport.height);
1378 		swap(data->viewport_c.x, data->viewport_c.y);
1379 		swap(data->viewport_c.width, data->viewport_c.height);
1380 	}
1381 	data->viewport.x += src.x;
1382 	data->viewport.y += src.y;
1383 	ASSERT(src.x % vpc_div == 0 && src.y % vpc_div == 0);
1384 	data->viewport_c.x += src.x / vpc_div;
1385 	data->viewport_c.y += src.y / vpc_div;
1386 }
1387 
resource_build_scaling_params(struct pipe_ctx * pipe_ctx)1388 bool resource_build_scaling_params(struct pipe_ctx *pipe_ctx)
1389 {
1390 	const struct dc_plane_state *plane_state = pipe_ctx->plane_state;
1391 	struct dc_crtc_timing *timing = &pipe_ctx->stream->timing;
1392 	const struct rect odm_slice_rec = calculate_odm_slice_in_timing_active(pipe_ctx);
1393 	bool res = false;
1394 	DC_LOGGER_INIT(pipe_ctx->stream->ctx->logger);
1395 
1396 	/* Invalid input */
1397 	if (!plane_state->dst_rect.width ||
1398 			!plane_state->dst_rect.height ||
1399 			!plane_state->src_rect.width ||
1400 			!plane_state->src_rect.height) {
1401 		ASSERT(0);
1402 		return false;
1403 	}
1404 
1405 	pipe_ctx->plane_res.scl_data.format = convert_pixel_format_to_dalsurface(
1406 			pipe_ctx->plane_state->format);
1407 
1408 	/* Timing borders are part of vactive that we are also supposed to skip in addition
1409 	 * to any stream dst offset. Since dm logic assumes dst is in addressable
1410 	 * space we need to add the left and top borders to dst offsets temporarily.
1411 	 * TODO: fix in DM, stream dst is supposed to be in vactive
1412 	 */
1413 	pipe_ctx->stream->dst.x += timing->h_border_left;
1414 	pipe_ctx->stream->dst.y += timing->v_border_top;
1415 
1416 	/* Calculate H and V active size */
1417 	pipe_ctx->plane_res.scl_data.h_active = odm_slice_rec.width;
1418 	pipe_ctx->plane_res.scl_data.v_active = odm_slice_rec.height;
1419 
1420 	/* depends on h_active */
1421 	calculate_recout(pipe_ctx);
1422 	/* depends on pixel format */
1423 	calculate_scaling_ratios(pipe_ctx);
1424 	/* depends on scaling ratios and recout, does not calculate offset yet */
1425 	calculate_viewport_size(pipe_ctx);
1426 
1427 	if (!pipe_ctx->stream->ctx->dc->config.enable_windowed_mpo_odm) {
1428 		/* Stopgap for validation of ODM + MPO on one side of screen case */
1429 		if (pipe_ctx->plane_res.scl_data.viewport.height < 1 ||
1430 				pipe_ctx->plane_res.scl_data.viewport.width < 1)
1431 			return false;
1432 	}
1433 
1434 	/*
1435 	 * LB calculations depend on vp size, h/v_active and scaling ratios
1436 	 * Setting line buffer pixel depth to 24bpp yields banding
1437 	 * on certain displays, such as the Sharp 4k. 36bpp is needed
1438 	 * to support SURFACE_PIXEL_FORMAT_GRPH_ARGB16161616 and
1439 	 * SURFACE_PIXEL_FORMAT_GRPH_ABGR16161616 with actual > 10 bpc
1440 	 * precision on DCN display engines, but apparently not for DCE, as
1441 	 * far as testing on DCE-11.2 and DCE-8 showed. Various DCE parts have
1442 	 * problems: Carrizo with DCE_VERSION_11_0 does not like 36 bpp lb depth,
1443 	 * neither do DCE-8 at 4k resolution, or DCE-11.2 (broken identify pixel
1444 	 * passthrough). Therefore only use 36 bpp on DCN where it is actually needed.
1445 	 */
1446 	if (plane_state->ctx->dce_version > DCE_VERSION_MAX)
1447 		pipe_ctx->plane_res.scl_data.lb_params.depth = LB_PIXEL_DEPTH_36BPP;
1448 	else
1449 		pipe_ctx->plane_res.scl_data.lb_params.depth = LB_PIXEL_DEPTH_30BPP;
1450 
1451 	pipe_ctx->plane_res.scl_data.lb_params.alpha_en = plane_state->per_pixel_alpha;
1452 
1453 	if (pipe_ctx->plane_res.xfm != NULL)
1454 		res = pipe_ctx->plane_res.xfm->funcs->transform_get_optimal_number_of_taps(
1455 				pipe_ctx->plane_res.xfm, &pipe_ctx->plane_res.scl_data, &plane_state->scaling_quality);
1456 
1457 	if (pipe_ctx->plane_res.dpp != NULL)
1458 		res = pipe_ctx->plane_res.dpp->funcs->dpp_get_optimal_number_of_taps(
1459 				pipe_ctx->plane_res.dpp, &pipe_ctx->plane_res.scl_data, &plane_state->scaling_quality);
1460 
1461 
1462 	if (!res) {
1463 		/* Try 24 bpp linebuffer */
1464 		pipe_ctx->plane_res.scl_data.lb_params.depth = LB_PIXEL_DEPTH_24BPP;
1465 
1466 		if (pipe_ctx->plane_res.xfm != NULL)
1467 			res = pipe_ctx->plane_res.xfm->funcs->transform_get_optimal_number_of_taps(
1468 					pipe_ctx->plane_res.xfm,
1469 					&pipe_ctx->plane_res.scl_data,
1470 					&plane_state->scaling_quality);
1471 
1472 		if (pipe_ctx->plane_res.dpp != NULL)
1473 			res = pipe_ctx->plane_res.dpp->funcs->dpp_get_optimal_number_of_taps(
1474 					pipe_ctx->plane_res.dpp,
1475 					&pipe_ctx->plane_res.scl_data,
1476 					&plane_state->scaling_quality);
1477 	}
1478 
1479 	/*
1480 	 * Depends on recout, scaling ratios, h_active and taps
1481 	 * May need to re-check lb size after this in some obscure scenario
1482 	 */
1483 	if (res)
1484 		calculate_inits_and_viewports(pipe_ctx);
1485 
1486 	/*
1487 	 * Handle side by side and top bottom 3d recout offsets after vp calculation
1488 	 * since 3d is special and needs to calculate vp as if there is no recout offset
1489 	 * This may break with rotation, good thing we aren't mixing hw rotation and 3d
1490 	 */
1491 	if (pipe_ctx->top_pipe && pipe_ctx->top_pipe->plane_state == plane_state) {
1492 		ASSERT(plane_state->rotation == ROTATION_ANGLE_0 ||
1493 			(pipe_ctx->stream->view_format != VIEW_3D_FORMAT_TOP_AND_BOTTOM &&
1494 				pipe_ctx->stream->view_format != VIEW_3D_FORMAT_SIDE_BY_SIDE));
1495 		if (pipe_ctx->stream->view_format == VIEW_3D_FORMAT_TOP_AND_BOTTOM)
1496 			pipe_ctx->plane_res.scl_data.recout.y += pipe_ctx->plane_res.scl_data.recout.height;
1497 		else if (pipe_ctx->stream->view_format == VIEW_3D_FORMAT_SIDE_BY_SIDE)
1498 			pipe_ctx->plane_res.scl_data.recout.x += pipe_ctx->plane_res.scl_data.recout.width;
1499 	}
1500 
1501 	/* Clamp minimum viewport size */
1502 	if (pipe_ctx->plane_res.scl_data.viewport.height < MIN_VIEWPORT_SIZE)
1503 		pipe_ctx->plane_res.scl_data.viewport.height = MIN_VIEWPORT_SIZE;
1504 	if (pipe_ctx->plane_res.scl_data.viewport.width < MIN_VIEWPORT_SIZE)
1505 		pipe_ctx->plane_res.scl_data.viewport.width = MIN_VIEWPORT_SIZE;
1506 
1507 
1508 	DC_LOG_SCALER("%s pipe %d:\nViewport: height:%d width:%d x:%d y:%d  Recout: height:%d width:%d x:%d y:%d  HACTIVE:%d VACTIVE:%d\n"
1509 			"src_rect: height:%d width:%d x:%d y:%d  dst_rect: height:%d width:%d x:%d y:%d  clip_rect: height:%d width:%d x:%d y:%d\n",
1510 			__func__,
1511 			pipe_ctx->pipe_idx,
1512 			pipe_ctx->plane_res.scl_data.viewport.height,
1513 			pipe_ctx->plane_res.scl_data.viewport.width,
1514 			pipe_ctx->plane_res.scl_data.viewport.x,
1515 			pipe_ctx->plane_res.scl_data.viewport.y,
1516 			pipe_ctx->plane_res.scl_data.recout.height,
1517 			pipe_ctx->plane_res.scl_data.recout.width,
1518 			pipe_ctx->plane_res.scl_data.recout.x,
1519 			pipe_ctx->plane_res.scl_data.recout.y,
1520 			pipe_ctx->plane_res.scl_data.h_active,
1521 			pipe_ctx->plane_res.scl_data.v_active,
1522 			plane_state->src_rect.height,
1523 			plane_state->src_rect.width,
1524 			plane_state->src_rect.x,
1525 			plane_state->src_rect.y,
1526 			plane_state->dst_rect.height,
1527 			plane_state->dst_rect.width,
1528 			plane_state->dst_rect.x,
1529 			plane_state->dst_rect.y,
1530 			plane_state->clip_rect.height,
1531 			plane_state->clip_rect.width,
1532 			plane_state->clip_rect.x,
1533 			plane_state->clip_rect.y);
1534 
1535 	pipe_ctx->stream->dst.x -= timing->h_border_left;
1536 	pipe_ctx->stream->dst.y -= timing->v_border_top;
1537 
1538 	return res;
1539 }
1540 
1541 
resource_build_scaling_params_for_context(const struct dc * dc,struct dc_state * context)1542 enum dc_status resource_build_scaling_params_for_context(
1543 	const struct dc  *dc,
1544 	struct dc_state *context)
1545 {
1546 	int i;
1547 
1548 	for (i = 0; i < MAX_PIPES; i++) {
1549 		if (context->res_ctx.pipe_ctx[i].plane_state != NULL &&
1550 				context->res_ctx.pipe_ctx[i].stream != NULL)
1551 			if (!resource_build_scaling_params(&context->res_ctx.pipe_ctx[i]))
1552 				return DC_FAIL_SCALING;
1553 	}
1554 
1555 	return DC_OK;
1556 }
1557 
resource_find_free_secondary_pipe_legacy(struct resource_context * res_ctx,const struct resource_pool * pool,const struct pipe_ctx * primary_pipe)1558 struct pipe_ctx *resource_find_free_secondary_pipe_legacy(
1559 		struct resource_context *res_ctx,
1560 		const struct resource_pool *pool,
1561 		const struct pipe_ctx *primary_pipe)
1562 {
1563 	int i;
1564 	struct pipe_ctx *secondary_pipe = NULL;
1565 
1566 	/*
1567 	 * We add a preferred pipe mapping to avoid the chance that
1568 	 * MPCCs already in use will need to be reassigned to other trees.
1569 	 * For example, if we went with the strict, assign backwards logic:
1570 	 *
1571 	 * (State 1)
1572 	 * Display A on, no surface, top pipe = 0
1573 	 * Display B on, no surface, top pipe = 1
1574 	 *
1575 	 * (State 2)
1576 	 * Display A on, no surface, top pipe = 0
1577 	 * Display B on, surface enable, top pipe = 1, bottom pipe = 5
1578 	 *
1579 	 * (State 3)
1580 	 * Display A on, surface enable, top pipe = 0, bottom pipe = 5
1581 	 * Display B on, surface enable, top pipe = 1, bottom pipe = 4
1582 	 *
1583 	 * The state 2->3 transition requires remapping MPCC 5 from display B
1584 	 * to display A.
1585 	 *
1586 	 * However, with the preferred pipe logic, state 2 would look like:
1587 	 *
1588 	 * (State 2)
1589 	 * Display A on, no surface, top pipe = 0
1590 	 * Display B on, surface enable, top pipe = 1, bottom pipe = 4
1591 	 *
1592 	 * This would then cause 2->3 to not require remapping any MPCCs.
1593 	 */
1594 	if (primary_pipe) {
1595 		int preferred_pipe_idx = (pool->pipe_count - 1) - primary_pipe->pipe_idx;
1596 		if (res_ctx->pipe_ctx[preferred_pipe_idx].stream == NULL) {
1597 			secondary_pipe = &res_ctx->pipe_ctx[preferred_pipe_idx];
1598 			secondary_pipe->pipe_idx = preferred_pipe_idx;
1599 		}
1600 	}
1601 
1602 	/*
1603 	 * search backwards for the second pipe to keep pipe
1604 	 * assignment more consistent
1605 	 */
1606 	if (!secondary_pipe)
1607 		for (i = pool->pipe_count - 1; i >= 0; i--) {
1608 			if (res_ctx->pipe_ctx[i].stream == NULL) {
1609 				secondary_pipe = &res_ctx->pipe_ctx[i];
1610 				secondary_pipe->pipe_idx = i;
1611 				break;
1612 			}
1613 		}
1614 
1615 	return secondary_pipe;
1616 }
1617 
resource_find_free_pipe_used_in_cur_mpc_blending_tree(const struct resource_context * cur_res_ctx,struct resource_context * new_res_ctx,const struct pipe_ctx * cur_opp_head)1618 int resource_find_free_pipe_used_in_cur_mpc_blending_tree(
1619 		const struct resource_context *cur_res_ctx,
1620 		struct resource_context *new_res_ctx,
1621 		const struct pipe_ctx *cur_opp_head)
1622 {
1623 	const struct pipe_ctx *cur_sec_dpp = cur_opp_head->bottom_pipe;
1624 	struct pipe_ctx *new_pipe;
1625 	int free_pipe_idx = FREE_PIPE_INDEX_NOT_FOUND;
1626 
1627 	while (cur_sec_dpp) {
1628 		/* find a free pipe used in current opp blend tree,
1629 		 * this is to avoid MPO pipe switching to different opp blending
1630 		 * tree
1631 		 */
1632 		new_pipe = &new_res_ctx->pipe_ctx[cur_sec_dpp->pipe_idx];
1633 		if (resource_is_pipe_type(new_pipe, FREE_PIPE)) {
1634 			free_pipe_idx = cur_sec_dpp->pipe_idx;
1635 			break;
1636 		}
1637 		cur_sec_dpp = cur_sec_dpp->bottom_pipe;
1638 	}
1639 
1640 	return free_pipe_idx;
1641 }
1642 
recource_find_free_pipe_not_used_in_cur_res_ctx(const struct resource_context * cur_res_ctx,struct resource_context * new_res_ctx,const struct resource_pool * pool)1643 int recource_find_free_pipe_not_used_in_cur_res_ctx(
1644 		const struct resource_context *cur_res_ctx,
1645 		struct resource_context *new_res_ctx,
1646 		const struct resource_pool *pool)
1647 {
1648 	int free_pipe_idx = FREE_PIPE_INDEX_NOT_FOUND;
1649 	const struct pipe_ctx *new_pipe, *cur_pipe;
1650 	int i;
1651 
1652 	for (i = 0; i < pool->pipe_count; i++) {
1653 		cur_pipe = &cur_res_ctx->pipe_ctx[i];
1654 		new_pipe = &new_res_ctx->pipe_ctx[i];
1655 
1656 		if (resource_is_pipe_type(cur_pipe, FREE_PIPE) &&
1657 				resource_is_pipe_type(new_pipe, FREE_PIPE)) {
1658 			free_pipe_idx = i;
1659 			break;
1660 		}
1661 	}
1662 
1663 	return free_pipe_idx;
1664 }
1665 
resource_find_free_pipe_used_as_cur_sec_dpp_in_mpcc_combine(const struct resource_context * cur_res_ctx,struct resource_context * new_res_ctx,const struct resource_pool * pool)1666 int resource_find_free_pipe_used_as_cur_sec_dpp_in_mpcc_combine(
1667 		const struct resource_context *cur_res_ctx,
1668 		struct resource_context *new_res_ctx,
1669 		const struct resource_pool *pool)
1670 {
1671 	int free_pipe_idx = FREE_PIPE_INDEX_NOT_FOUND;
1672 	const struct pipe_ctx *new_pipe, *cur_pipe;
1673 	int i;
1674 
1675 	for (i = 0; i < pool->pipe_count; i++) {
1676 		cur_pipe = &cur_res_ctx->pipe_ctx[i];
1677 		new_pipe = &new_res_ctx->pipe_ctx[i];
1678 
1679 		if (resource_is_pipe_type(cur_pipe, DPP_PIPE) &&
1680 				!resource_is_pipe_type(cur_pipe, OPP_HEAD) &&
1681 				resource_is_for_mpcc_combine(cur_pipe) &&
1682 				resource_is_pipe_type(new_pipe, FREE_PIPE)) {
1683 			free_pipe_idx = i;
1684 			break;
1685 		}
1686 	}
1687 
1688 	return free_pipe_idx;
1689 }
1690 
resource_find_any_free_pipe(struct resource_context * new_res_ctx,const struct resource_pool * pool)1691 int resource_find_any_free_pipe(struct resource_context *new_res_ctx,
1692 		const struct resource_pool *pool)
1693 {
1694 	int free_pipe_idx = FREE_PIPE_INDEX_NOT_FOUND;
1695 	const struct pipe_ctx *new_pipe;
1696 	int i;
1697 
1698 	for (i = 0; i < pool->pipe_count; i++) {
1699 		new_pipe = &new_res_ctx->pipe_ctx[i];
1700 
1701 		if (resource_is_pipe_type(new_pipe, FREE_PIPE)) {
1702 			free_pipe_idx = i;
1703 			break;
1704 		}
1705 	}
1706 
1707 	return free_pipe_idx;
1708 }
1709 
resource_is_pipe_type(const struct pipe_ctx * pipe_ctx,enum pipe_type type)1710 bool resource_is_pipe_type(const struct pipe_ctx *pipe_ctx, enum pipe_type type)
1711 {
1712 #ifdef DBG
1713 	if (pipe_ctx->stream == NULL) {
1714 		/* a free pipe with dangling states */
1715 		ASSERT(!pipe_ctx->plane_state);
1716 		ASSERT(!pipe_ctx->prev_odm_pipe);
1717 		ASSERT(!pipe_ctx->next_odm_pipe);
1718 		ASSERT(!pipe_ctx->top_pipe);
1719 		ASSERT(!pipe_ctx->bottom_pipe);
1720 	} else if (pipe_ctx->top_pipe) {
1721 		/* a secondary DPP pipe must be signed to a plane */
1722 		ASSERT(pipe_ctx->plane_state)
1723 	}
1724 	/* Add more checks here to prevent corrupted pipe ctx. It is very hard
1725 	 * to debug this issue afterwards because we can't pinpoint the code
1726 	 * location causing inconsistent pipe context states.
1727 	 */
1728 #endif
1729 	switch (type) {
1730 	case OTG_MASTER:
1731 		return !pipe_ctx->prev_odm_pipe &&
1732 				!pipe_ctx->top_pipe &&
1733 				pipe_ctx->stream;
1734 	case OPP_HEAD:
1735 		return !pipe_ctx->top_pipe && pipe_ctx->stream;
1736 	case DPP_PIPE:
1737 		return pipe_ctx->plane_state && pipe_ctx->stream;
1738 	case FREE_PIPE:
1739 		return !pipe_ctx->plane_state && !pipe_ctx->stream;
1740 	default:
1741 		return false;
1742 	}
1743 }
1744 
resource_is_for_mpcc_combine(const struct pipe_ctx * pipe_ctx)1745 bool resource_is_for_mpcc_combine(const struct pipe_ctx *pipe_ctx)
1746 {
1747 	return resource_get_num_mpc_splits(pipe_ctx) > 0;
1748 }
1749 
resource_get_otg_master_for_stream(struct resource_context * res_ctx,struct dc_stream_state * stream)1750 struct pipe_ctx *resource_get_otg_master_for_stream(
1751 		struct resource_context *res_ctx,
1752 		struct dc_stream_state *stream)
1753 {
1754 	int i;
1755 
1756 	for (i = 0; i < MAX_PIPES; i++) {
1757 		if (res_ctx->pipe_ctx[i].stream == stream &&
1758 				resource_is_pipe_type(&res_ctx->pipe_ctx[i], OTG_MASTER))
1759 			return &res_ctx->pipe_ctx[i];
1760 	}
1761 	return NULL;
1762 }
1763 
resource_get_otg_master(const struct pipe_ctx * pipe_ctx)1764 struct pipe_ctx *resource_get_otg_master(const struct pipe_ctx *pipe_ctx)
1765 {
1766 	struct pipe_ctx *otg_master = resource_get_opp_head(pipe_ctx);
1767 
1768 	while (otg_master->prev_odm_pipe)
1769 		otg_master = otg_master->prev_odm_pipe;
1770 	return otg_master;
1771 }
1772 
resource_get_opp_head(const struct pipe_ctx * pipe_ctx)1773 struct pipe_ctx *resource_get_opp_head(const struct pipe_ctx *pipe_ctx)
1774 {
1775 	struct pipe_ctx *opp_head = (struct pipe_ctx *) pipe_ctx;
1776 
1777 	ASSERT(!resource_is_pipe_type(opp_head, FREE_PIPE));
1778 	while (opp_head->top_pipe)
1779 		opp_head = opp_head->top_pipe;
1780 	return opp_head;
1781 }
1782 
get_tail_pipe(struct pipe_ctx * head_pipe)1783 static struct pipe_ctx *get_tail_pipe(
1784 		struct pipe_ctx *head_pipe)
1785 {
1786 	struct pipe_ctx *tail_pipe = head_pipe->bottom_pipe;
1787 
1788 	while (tail_pipe) {
1789 		head_pipe = tail_pipe;
1790 		tail_pipe = tail_pipe->bottom_pipe;
1791 	}
1792 
1793 	return head_pipe;
1794 }
1795 
acquire_first_split_pipe(struct resource_context * res_ctx,const struct resource_pool * pool,struct dc_stream_state * stream)1796 static int acquire_first_split_pipe(
1797 		struct resource_context *res_ctx,
1798 		const struct resource_pool *pool,
1799 		struct dc_stream_state *stream)
1800 {
1801 	int i;
1802 
1803 	for (i = 0; i < pool->pipe_count; i++) {
1804 		struct pipe_ctx *split_pipe = &res_ctx->pipe_ctx[i];
1805 
1806 		if (split_pipe->top_pipe &&
1807 				split_pipe->top_pipe->plane_state == split_pipe->plane_state) {
1808 			split_pipe->top_pipe->bottom_pipe = split_pipe->bottom_pipe;
1809 			if (split_pipe->bottom_pipe)
1810 				split_pipe->bottom_pipe->top_pipe = split_pipe->top_pipe;
1811 
1812 			if (split_pipe->top_pipe->plane_state)
1813 				resource_build_scaling_params(split_pipe->top_pipe);
1814 
1815 			memset(split_pipe, 0, sizeof(*split_pipe));
1816 			split_pipe->stream_res.tg = pool->timing_generators[i];
1817 			split_pipe->plane_res.hubp = pool->hubps[i];
1818 			split_pipe->plane_res.ipp = pool->ipps[i];
1819 			split_pipe->plane_res.dpp = pool->dpps[i];
1820 			split_pipe->stream_res.opp = pool->opps[i];
1821 			split_pipe->plane_res.mpcc_inst = pool->dpps[i]->inst;
1822 			split_pipe->pipe_idx = i;
1823 
1824 			split_pipe->stream = stream;
1825 			return i;
1826 		}
1827 	}
1828 	return UNABLE_TO_SPLIT;
1829 }
1830 
add_plane_to_opp_head_pipes(struct pipe_ctx * otg_master_pipe,struct dc_plane_state * plane_state,struct dc_state * context)1831 static bool add_plane_to_opp_head_pipes(struct pipe_ctx *otg_master_pipe,
1832 		struct dc_plane_state *plane_state,
1833 		struct dc_state *context)
1834 {
1835 	struct pipe_ctx *opp_head_pipe = otg_master_pipe;
1836 
1837 	while (opp_head_pipe) {
1838 		if (opp_head_pipe->plane_state) {
1839 			ASSERT(0);
1840 			return false;
1841 		}
1842 		opp_head_pipe->plane_state = plane_state;
1843 		opp_head_pipe = opp_head_pipe->next_odm_pipe;
1844 	}
1845 
1846 	return true;
1847 }
1848 
insert_secondary_dpp_pipe_with_plane(struct pipe_ctx * opp_head_pipe,struct pipe_ctx * sec_pipe,struct dc_plane_state * plane_state)1849 static void insert_secondary_dpp_pipe_with_plane(struct pipe_ctx *opp_head_pipe,
1850 		struct pipe_ctx *sec_pipe, struct dc_plane_state *plane_state)
1851 {
1852 	struct pipe_ctx *tail_pipe = get_tail_pipe(opp_head_pipe);
1853 
1854 	tail_pipe->bottom_pipe = sec_pipe;
1855 	sec_pipe->top_pipe = tail_pipe;
1856 	if (tail_pipe->prev_odm_pipe) {
1857 		ASSERT(tail_pipe->prev_odm_pipe->bottom_pipe);
1858 		sec_pipe->prev_odm_pipe = tail_pipe->prev_odm_pipe->bottom_pipe;
1859 		tail_pipe->prev_odm_pipe->bottom_pipe->next_odm_pipe = sec_pipe;
1860 	}
1861 	sec_pipe->plane_state = plane_state;
1862 }
1863 
1864 /* for each opp head pipe of an otg master pipe, acquire a secondary dpp pipe
1865  * and add the plane. So the plane is added to all MPC blend trees associated
1866  * with the otg master pipe.
1867  */
acquire_secondary_dpp_pipes_and_add_plane(struct pipe_ctx * otg_master_pipe,struct dc_plane_state * plane_state,struct dc_state * new_ctx,struct dc_state * cur_ctx,struct resource_pool * pool)1868 static bool acquire_secondary_dpp_pipes_and_add_plane(
1869 		struct pipe_ctx *otg_master_pipe,
1870 		struct dc_plane_state *plane_state,
1871 		struct dc_state *new_ctx,
1872 		struct dc_state *cur_ctx,
1873 		struct resource_pool *pool)
1874 {
1875 	struct pipe_ctx *opp_head_pipe, *sec_pipe;
1876 
1877 	if (!pool->funcs->acquire_free_pipe_as_secondary_dpp_pipe)
1878 		return false;
1879 
1880 	opp_head_pipe = otg_master_pipe;
1881 	while (opp_head_pipe) {
1882 		sec_pipe = pool->funcs->acquire_free_pipe_as_secondary_dpp_pipe(
1883 				cur_ctx,
1884 				new_ctx,
1885 				pool,
1886 				opp_head_pipe);
1887 		if (!sec_pipe) {
1888 			/* try tearing down MPCC combine */
1889 			int pipe_idx = acquire_first_split_pipe(
1890 					&new_ctx->res_ctx, pool,
1891 					otg_master_pipe->stream);
1892 
1893 			if (pipe_idx >= 0)
1894 				sec_pipe = &new_ctx->res_ctx.pipe_ctx[pipe_idx];
1895 		}
1896 
1897 		if (!sec_pipe)
1898 			return false;
1899 
1900 		insert_secondary_dpp_pipe_with_plane(opp_head_pipe, sec_pipe,
1901 				plane_state);
1902 		opp_head_pipe = opp_head_pipe->next_odm_pipe;
1903 	}
1904 	return true;
1905 }
1906 
dc_add_plane_to_context(const struct dc * dc,struct dc_stream_state * stream,struct dc_plane_state * plane_state,struct dc_state * context)1907 bool dc_add_plane_to_context(
1908 		const struct dc *dc,
1909 		struct dc_stream_state *stream,
1910 		struct dc_plane_state *plane_state,
1911 		struct dc_state *context)
1912 {
1913 	struct resource_pool *pool = dc->res_pool;
1914 	struct pipe_ctx *otg_master_pipe;
1915 	struct dc_stream_status *stream_status = NULL;
1916 	bool added = false;
1917 
1918 	stream_status = dc_stream_get_status_from_state(context, stream);
1919 	if (stream_status == NULL) {
1920 		dm_error("Existing stream not found; failed to attach surface!\n");
1921 		goto out;
1922 	} else if (stream_status->plane_count == MAX_SURFACE_NUM) {
1923 		dm_error("Surface: can not attach plane_state %p! Maximum is: %d\n",
1924 				plane_state, MAX_SURFACE_NUM);
1925 		goto out;
1926 	}
1927 
1928 	otg_master_pipe = resource_get_otg_master_for_stream(
1929 			&context->res_ctx, stream);
1930 	if (otg_master_pipe->plane_state == NULL)
1931 		added = add_plane_to_opp_head_pipes(otg_master_pipe,
1932 				plane_state, context);
1933 	else
1934 		added = acquire_secondary_dpp_pipes_and_add_plane(
1935 				otg_master_pipe, plane_state, context,
1936 				dc->current_state, pool);
1937 	if (added) {
1938 		stream_status->plane_states[stream_status->plane_count] =
1939 				plane_state;
1940 		stream_status->plane_count++;
1941 		dc_plane_state_retain(plane_state);
1942 	}
1943 
1944 out:
1945 	return added;
1946 }
1947 
dc_remove_plane_from_context(const struct dc * dc,struct dc_stream_state * stream,struct dc_plane_state * plane_state,struct dc_state * context)1948 bool dc_remove_plane_from_context(
1949 		const struct dc *dc,
1950 		struct dc_stream_state *stream,
1951 		struct dc_plane_state *plane_state,
1952 		struct dc_state *context)
1953 {
1954 	int i;
1955 	struct dc_stream_status *stream_status = NULL;
1956 	struct resource_pool *pool = dc->res_pool;
1957 
1958 	if (!plane_state)
1959 		return true;
1960 
1961 	for (i = 0; i < context->stream_count; i++)
1962 		if (context->streams[i] == stream) {
1963 			stream_status = &context->stream_status[i];
1964 			break;
1965 		}
1966 
1967 	if (stream_status == NULL) {
1968 		dm_error("Existing stream not found; failed to remove plane.\n");
1969 		return false;
1970 	}
1971 
1972 	/* release pipe for plane*/
1973 	for (i = pool->pipe_count - 1; i >= 0; i--) {
1974 		struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
1975 
1976 		if (pipe_ctx->plane_state == plane_state) {
1977 			if (pipe_ctx->top_pipe)
1978 				pipe_ctx->top_pipe->bottom_pipe = pipe_ctx->bottom_pipe;
1979 
1980 			/* Second condition is to avoid setting NULL to top pipe
1981 			 * of tail pipe making it look like head pipe in subsequent
1982 			 * deletes
1983 			 */
1984 			if (pipe_ctx->bottom_pipe && pipe_ctx->top_pipe)
1985 				pipe_ctx->bottom_pipe->top_pipe = pipe_ctx->top_pipe;
1986 
1987 			/*
1988 			 * For head pipe detach surfaces from pipe for tail
1989 			 * pipe just zero it out
1990 			 */
1991 			if (!pipe_ctx->top_pipe)
1992 				pipe_ctx->plane_state = NULL;
1993 			else
1994 				memset(pipe_ctx, 0, sizeof(*pipe_ctx));
1995 		}
1996 	}
1997 
1998 
1999 	for (i = 0; i < stream_status->plane_count; i++) {
2000 		if (stream_status->plane_states[i] == plane_state) {
2001 			dc_plane_state_release(stream_status->plane_states[i]);
2002 			break;
2003 		}
2004 	}
2005 
2006 	if (i == stream_status->plane_count) {
2007 		dm_error("Existing plane_state not found; failed to detach it!\n");
2008 		return false;
2009 	}
2010 
2011 	stream_status->plane_count--;
2012 
2013 	/* Start at the plane we've just released, and move all the planes one index forward to "trim" the array */
2014 	for (; i < stream_status->plane_count; i++)
2015 		stream_status->plane_states[i] = stream_status->plane_states[i + 1];
2016 
2017 	stream_status->plane_states[stream_status->plane_count] = NULL;
2018 
2019 	return true;
2020 }
2021 
2022 /**
2023  * dc_rem_all_planes_for_stream - Remove planes attached to the target stream.
2024  *
2025  * @dc: Current dc state.
2026  * @stream: Target stream, which we want to remove the attached plans.
2027  * @context: New context.
2028  *
2029  * Return:
2030  * Return true if DC was able to remove all planes from the target
2031  * stream, otherwise, return false.
2032  */
dc_rem_all_planes_for_stream(const struct dc * dc,struct dc_stream_state * stream,struct dc_state * context)2033 bool dc_rem_all_planes_for_stream(
2034 		const struct dc *dc,
2035 		struct dc_stream_state *stream,
2036 		struct dc_state *context)
2037 {
2038 	int i, old_plane_count;
2039 	struct dc_stream_status *stream_status = NULL;
2040 	struct dc_plane_state *del_planes[MAX_SURFACE_NUM] = { 0 };
2041 
2042 	for (i = 0; i < context->stream_count; i++)
2043 			if (context->streams[i] == stream) {
2044 				stream_status = &context->stream_status[i];
2045 				break;
2046 			}
2047 
2048 	if (stream_status == NULL) {
2049 		dm_error("Existing stream %p not found!\n", stream);
2050 		return false;
2051 	}
2052 
2053 	old_plane_count = stream_status->plane_count;
2054 
2055 	for (i = 0; i < old_plane_count; i++)
2056 		del_planes[i] = stream_status->plane_states[i];
2057 
2058 	for (i = 0; i < old_plane_count; i++)
2059 		if (!dc_remove_plane_from_context(dc, stream, del_planes[i], context))
2060 			return false;
2061 
2062 	return true;
2063 }
2064 
add_all_planes_for_stream(const struct dc * dc,struct dc_stream_state * stream,const struct dc_validation_set set[],int set_count,struct dc_state * context)2065 static bool add_all_planes_for_stream(
2066 		const struct dc *dc,
2067 		struct dc_stream_state *stream,
2068 		const struct dc_validation_set set[],
2069 		int set_count,
2070 		struct dc_state *context)
2071 {
2072 	int i, j;
2073 
2074 	for (i = 0; i < set_count; i++)
2075 		if (set[i].stream == stream)
2076 			break;
2077 
2078 	if (i == set_count) {
2079 		dm_error("Stream %p not found in set!\n", stream);
2080 		return false;
2081 	}
2082 
2083 	for (j = 0; j < set[i].plane_count; j++)
2084 		if (!dc_add_plane_to_context(dc, stream, set[i].plane_states[j], context))
2085 			return false;
2086 
2087 	return true;
2088 }
2089 
dc_add_all_planes_for_stream(const struct dc * dc,struct dc_stream_state * stream,struct dc_plane_state * const * plane_states,int plane_count,struct dc_state * context)2090 bool dc_add_all_planes_for_stream(
2091 		const struct dc *dc,
2092 		struct dc_stream_state *stream,
2093 		struct dc_plane_state * const *plane_states,
2094 		int plane_count,
2095 		struct dc_state *context)
2096 {
2097 	struct dc_validation_set set;
2098 	int i;
2099 
2100 	set.stream = stream;
2101 	set.plane_count = plane_count;
2102 
2103 	for (i = 0; i < plane_count; i++)
2104 		set.plane_states[i] = plane_states[i];
2105 
2106 	return add_all_planes_for_stream(dc, stream, &set, 1, context);
2107 }
2108 
dc_is_timing_changed(struct dc_stream_state * cur_stream,struct dc_stream_state * new_stream)2109 bool dc_is_timing_changed(struct dc_stream_state *cur_stream,
2110 		       struct dc_stream_state *new_stream)
2111 {
2112 	if (cur_stream == NULL)
2113 		return true;
2114 
2115 	/* If output color space is changed, need to reprogram info frames */
2116 	if (cur_stream->output_color_space != new_stream->output_color_space)
2117 		return true;
2118 
2119 	return memcmp(
2120 		&cur_stream->timing,
2121 		&new_stream->timing,
2122 		sizeof(struct dc_crtc_timing)) != 0;
2123 }
2124 
are_stream_backends_same(struct dc_stream_state * stream_a,struct dc_stream_state * stream_b)2125 static bool are_stream_backends_same(
2126 	struct dc_stream_state *stream_a, struct dc_stream_state *stream_b)
2127 {
2128 	if (stream_a == stream_b)
2129 		return true;
2130 
2131 	if (stream_a == NULL || stream_b == NULL)
2132 		return false;
2133 
2134 	if (dc_is_timing_changed(stream_a, stream_b))
2135 		return false;
2136 
2137 	if (stream_a->signal != stream_b->signal)
2138 		return false;
2139 
2140 	if (stream_a->dpms_off != stream_b->dpms_off)
2141 		return false;
2142 
2143 	return true;
2144 }
2145 
2146 /*
2147  * dc_is_stream_unchanged() - Compare two stream states for equivalence.
2148  *
2149  * Checks if there a difference between the two states
2150  * that would require a mode change.
2151  *
2152  * Does not compare cursor position or attributes.
2153  */
dc_is_stream_unchanged(struct dc_stream_state * old_stream,struct dc_stream_state * stream)2154 bool dc_is_stream_unchanged(
2155 	struct dc_stream_state *old_stream, struct dc_stream_state *stream)
2156 {
2157 
2158 	if (!are_stream_backends_same(old_stream, stream))
2159 		return false;
2160 
2161 	if (old_stream->ignore_msa_timing_param != stream->ignore_msa_timing_param)
2162 		return false;
2163 
2164 	/*compare audio info*/
2165 	if (memcmp(&old_stream->audio_info, &stream->audio_info, sizeof(stream->audio_info)) != 0)
2166 		return false;
2167 
2168 	return true;
2169 }
2170 
2171 /*
2172  * dc_is_stream_scaling_unchanged() - Compare scaling rectangles of two streams.
2173  */
dc_is_stream_scaling_unchanged(struct dc_stream_state * old_stream,struct dc_stream_state * stream)2174 bool dc_is_stream_scaling_unchanged(struct dc_stream_state *old_stream,
2175 				    struct dc_stream_state *stream)
2176 {
2177 	if (old_stream == stream)
2178 		return true;
2179 
2180 	if (old_stream == NULL || stream == NULL)
2181 		return false;
2182 
2183 	if (memcmp(&old_stream->src,
2184 			&stream->src,
2185 			sizeof(struct rect)) != 0)
2186 		return false;
2187 
2188 	if (memcmp(&old_stream->dst,
2189 			&stream->dst,
2190 			sizeof(struct rect)) != 0)
2191 		return false;
2192 
2193 	return true;
2194 }
2195 
update_stream_engine_usage(struct resource_context * res_ctx,const struct resource_pool * pool,struct stream_encoder * stream_enc,bool acquired)2196 static void update_stream_engine_usage(
2197 		struct resource_context *res_ctx,
2198 		const struct resource_pool *pool,
2199 		struct stream_encoder *stream_enc,
2200 		bool acquired)
2201 {
2202 	int i;
2203 
2204 	for (i = 0; i < pool->stream_enc_count; i++) {
2205 		if (pool->stream_enc[i] == stream_enc)
2206 			res_ctx->is_stream_enc_acquired[i] = acquired;
2207 	}
2208 }
2209 
update_hpo_dp_stream_engine_usage(struct resource_context * res_ctx,const struct resource_pool * pool,struct hpo_dp_stream_encoder * hpo_dp_stream_enc,bool acquired)2210 static void update_hpo_dp_stream_engine_usage(
2211 		struct resource_context *res_ctx,
2212 		const struct resource_pool *pool,
2213 		struct hpo_dp_stream_encoder *hpo_dp_stream_enc,
2214 		bool acquired)
2215 {
2216 	int i;
2217 
2218 	for (i = 0; i < pool->hpo_dp_stream_enc_count; i++) {
2219 		if (pool->hpo_dp_stream_enc[i] == hpo_dp_stream_enc)
2220 			res_ctx->is_hpo_dp_stream_enc_acquired[i] = acquired;
2221 	}
2222 }
2223 
find_acquired_hpo_dp_link_enc_for_link(const struct resource_context * res_ctx,const struct dc_link * link)2224 static inline int find_acquired_hpo_dp_link_enc_for_link(
2225 		const struct resource_context *res_ctx,
2226 		const struct dc_link *link)
2227 {
2228 	int i;
2229 
2230 	for (i = 0; i < ARRAY_SIZE(res_ctx->hpo_dp_link_enc_to_link_idx); i++)
2231 		if (res_ctx->hpo_dp_link_enc_ref_cnts[i] > 0 &&
2232 				res_ctx->hpo_dp_link_enc_to_link_idx[i] == link->link_index)
2233 			return i;
2234 
2235 	return -1;
2236 }
2237 
find_free_hpo_dp_link_enc(const struct resource_context * res_ctx,const struct resource_pool * pool)2238 static inline int find_free_hpo_dp_link_enc(const struct resource_context *res_ctx,
2239 		const struct resource_pool *pool)
2240 {
2241 	int i;
2242 
2243 	for (i = 0; i < ARRAY_SIZE(res_ctx->hpo_dp_link_enc_ref_cnts); i++)
2244 		if (res_ctx->hpo_dp_link_enc_ref_cnts[i] == 0)
2245 			break;
2246 
2247 	return (i < ARRAY_SIZE(res_ctx->hpo_dp_link_enc_ref_cnts) &&
2248 			i < pool->hpo_dp_link_enc_count) ? i : -1;
2249 }
2250 
acquire_hpo_dp_link_enc(struct resource_context * res_ctx,unsigned int link_index,int enc_index)2251 static inline void acquire_hpo_dp_link_enc(
2252 		struct resource_context *res_ctx,
2253 		unsigned int link_index,
2254 		int enc_index)
2255 {
2256 	res_ctx->hpo_dp_link_enc_to_link_idx[enc_index] = link_index;
2257 	res_ctx->hpo_dp_link_enc_ref_cnts[enc_index] = 1;
2258 }
2259 
retain_hpo_dp_link_enc(struct resource_context * res_ctx,int enc_index)2260 static inline void retain_hpo_dp_link_enc(
2261 		struct resource_context *res_ctx,
2262 		int enc_index)
2263 {
2264 	res_ctx->hpo_dp_link_enc_ref_cnts[enc_index]++;
2265 }
2266 
release_hpo_dp_link_enc(struct resource_context * res_ctx,int enc_index)2267 static inline void release_hpo_dp_link_enc(
2268 		struct resource_context *res_ctx,
2269 		int enc_index)
2270 {
2271 	ASSERT(res_ctx->hpo_dp_link_enc_ref_cnts[enc_index] > 0);
2272 	res_ctx->hpo_dp_link_enc_ref_cnts[enc_index]--;
2273 }
2274 
add_hpo_dp_link_enc_to_ctx(struct resource_context * res_ctx,const struct resource_pool * pool,struct pipe_ctx * pipe_ctx,struct dc_stream_state * stream)2275 static bool add_hpo_dp_link_enc_to_ctx(struct resource_context *res_ctx,
2276 		const struct resource_pool *pool,
2277 		struct pipe_ctx *pipe_ctx,
2278 		struct dc_stream_state *stream)
2279 {
2280 	int enc_index;
2281 
2282 	enc_index = find_acquired_hpo_dp_link_enc_for_link(res_ctx, stream->link);
2283 
2284 	if (enc_index >= 0) {
2285 		retain_hpo_dp_link_enc(res_ctx, enc_index);
2286 	} else {
2287 		enc_index = find_free_hpo_dp_link_enc(res_ctx, pool);
2288 		if (enc_index >= 0)
2289 			acquire_hpo_dp_link_enc(res_ctx, stream->link->link_index, enc_index);
2290 	}
2291 
2292 	if (enc_index >= 0)
2293 		pipe_ctx->link_res.hpo_dp_link_enc = pool->hpo_dp_link_enc[enc_index];
2294 
2295 	return pipe_ctx->link_res.hpo_dp_link_enc != NULL;
2296 }
2297 
remove_hpo_dp_link_enc_from_ctx(struct resource_context * res_ctx,struct pipe_ctx * pipe_ctx,struct dc_stream_state * stream)2298 static void remove_hpo_dp_link_enc_from_ctx(struct resource_context *res_ctx,
2299 		struct pipe_ctx *pipe_ctx,
2300 		struct dc_stream_state *stream)
2301 {
2302 	int enc_index;
2303 
2304 	enc_index = find_acquired_hpo_dp_link_enc_for_link(res_ctx, stream->link);
2305 
2306 	if (enc_index >= 0) {
2307 		release_hpo_dp_link_enc(res_ctx, enc_index);
2308 		pipe_ctx->link_res.hpo_dp_link_enc = NULL;
2309 	}
2310 }
2311 
2312 /* TODO: release audio object */
update_audio_usage(struct resource_context * res_ctx,const struct resource_pool * pool,struct audio * audio,bool acquired)2313 void update_audio_usage(
2314 		struct resource_context *res_ctx,
2315 		const struct resource_pool *pool,
2316 		struct audio *audio,
2317 		bool acquired)
2318 {
2319 	int i;
2320 	for (i = 0; i < pool->audio_count; i++) {
2321 		if (pool->audios[i] == audio)
2322 			res_ctx->is_audio_acquired[i] = acquired;
2323 	}
2324 }
2325 
acquire_first_free_pipe(struct resource_context * res_ctx,const struct resource_pool * pool,struct dc_stream_state * stream)2326 static int acquire_first_free_pipe(
2327 		struct resource_context *res_ctx,
2328 		const struct resource_pool *pool,
2329 		struct dc_stream_state *stream)
2330 {
2331 	int i;
2332 
2333 	for (i = 0; i < pool->pipe_count; i++) {
2334 		if (!res_ctx->pipe_ctx[i].stream) {
2335 			struct pipe_ctx *pipe_ctx = &res_ctx->pipe_ctx[i];
2336 
2337 			pipe_ctx->stream_res.tg = pool->timing_generators[i];
2338 			pipe_ctx->plane_res.mi = pool->mis[i];
2339 			pipe_ctx->plane_res.hubp = pool->hubps[i];
2340 			pipe_ctx->plane_res.ipp = pool->ipps[i];
2341 			pipe_ctx->plane_res.xfm = pool->transforms[i];
2342 			pipe_ctx->plane_res.dpp = pool->dpps[i];
2343 			pipe_ctx->stream_res.opp = pool->opps[i];
2344 			if (pool->dpps[i])
2345 				pipe_ctx->plane_res.mpcc_inst = pool->dpps[i]->inst;
2346 			pipe_ctx->pipe_idx = i;
2347 
2348 			if (i >= pool->timing_generator_count) {
2349 				int tg_inst = pool->timing_generator_count - 1;
2350 
2351 				pipe_ctx->stream_res.tg = pool->timing_generators[tg_inst];
2352 				pipe_ctx->stream_res.opp = pool->opps[tg_inst];
2353 			}
2354 
2355 			pipe_ctx->stream = stream;
2356 			return i;
2357 		}
2358 	}
2359 	return -1;
2360 }
2361 
find_first_free_match_hpo_dp_stream_enc_for_link(struct resource_context * res_ctx,const struct resource_pool * pool,struct dc_stream_state * stream)2362 static struct hpo_dp_stream_encoder *find_first_free_match_hpo_dp_stream_enc_for_link(
2363 		struct resource_context *res_ctx,
2364 		const struct resource_pool *pool,
2365 		struct dc_stream_state *stream)
2366 {
2367 	int i;
2368 
2369 	for (i = 0; i < pool->hpo_dp_stream_enc_count; i++) {
2370 		if (!res_ctx->is_hpo_dp_stream_enc_acquired[i] &&
2371 				pool->hpo_dp_stream_enc[i]) {
2372 
2373 			return pool->hpo_dp_stream_enc[i];
2374 		}
2375 	}
2376 
2377 	return NULL;
2378 }
2379 
find_first_free_audio(struct resource_context * res_ctx,const struct resource_pool * pool,enum engine_id id,enum dce_version dc_version)2380 static struct audio *find_first_free_audio(
2381 		struct resource_context *res_ctx,
2382 		const struct resource_pool *pool,
2383 		enum engine_id id,
2384 		enum dce_version dc_version)
2385 {
2386 	int i, available_audio_count;
2387 
2388 	available_audio_count = pool->audio_count;
2389 
2390 	for (i = 0; i < available_audio_count; i++) {
2391 		if ((res_ctx->is_audio_acquired[i] == false) && (res_ctx->is_stream_enc_acquired[i] == true)) {
2392 			/*we have enough audio endpoint, find the matching inst*/
2393 			if (id != i)
2394 				continue;
2395 			return pool->audios[i];
2396 		}
2397 	}
2398 
2399 	/* use engine id to find free audio */
2400 	if ((id < available_audio_count) && (res_ctx->is_audio_acquired[id] == false)) {
2401 		return pool->audios[id];
2402 	}
2403 	/*not found the matching one, first come first serve*/
2404 	for (i = 0; i < available_audio_count; i++) {
2405 		if (res_ctx->is_audio_acquired[i] == false) {
2406 			return pool->audios[i];
2407 		}
2408 	}
2409 	return NULL;
2410 }
2411 
2412 /*
2413  * dc_add_stream_to_ctx() - Add a new dc_stream_state to a dc_state.
2414  */
dc_add_stream_to_ctx(struct dc * dc,struct dc_state * new_ctx,struct dc_stream_state * stream)2415 enum dc_status dc_add_stream_to_ctx(
2416 		struct dc *dc,
2417 		struct dc_state *new_ctx,
2418 		struct dc_stream_state *stream)
2419 {
2420 	enum dc_status res;
2421 	DC_LOGGER_INIT(dc->ctx->logger);
2422 
2423 	if (new_ctx->stream_count >= dc->res_pool->timing_generator_count) {
2424 		DC_LOG_WARNING("Max streams reached, can't add stream %p !\n", stream);
2425 		return DC_ERROR_UNEXPECTED;
2426 	}
2427 
2428 	new_ctx->streams[new_ctx->stream_count] = stream;
2429 	dc_stream_retain(stream);
2430 	new_ctx->stream_count++;
2431 
2432 	res = dc->res_pool->funcs->add_stream_to_ctx(dc, new_ctx, stream);
2433 	if (res != DC_OK)
2434 		DC_LOG_WARNING("Adding stream %p to context failed with err %d!\n", stream, res);
2435 
2436 	return res;
2437 }
2438 
2439 /*
2440  * dc_remove_stream_from_ctx() - Remove a stream from a dc_state.
2441  */
dc_remove_stream_from_ctx(struct dc * dc,struct dc_state * new_ctx,struct dc_stream_state * stream)2442 enum dc_status dc_remove_stream_from_ctx(
2443 			struct dc *dc,
2444 			struct dc_state *new_ctx,
2445 			struct dc_stream_state *stream)
2446 {
2447 	int i;
2448 	struct dc_context *dc_ctx = dc->ctx;
2449 	struct pipe_ctx *del_pipe = resource_get_otg_master_for_stream(&new_ctx->res_ctx, stream);
2450 	struct pipe_ctx *odm_pipe;
2451 
2452 	if (!del_pipe) {
2453 		DC_ERROR("Pipe not found for stream %p !\n", stream);
2454 		return DC_ERROR_UNEXPECTED;
2455 	}
2456 
2457 	odm_pipe = del_pipe->next_odm_pipe;
2458 
2459 	/* Release primary pipe */
2460 	ASSERT(del_pipe->stream_res.stream_enc);
2461 	update_stream_engine_usage(
2462 			&new_ctx->res_ctx,
2463 				dc->res_pool,
2464 			del_pipe->stream_res.stream_enc,
2465 			false);
2466 
2467 	if (dc->link_srv->dp_is_128b_132b_signal(del_pipe)) {
2468 		update_hpo_dp_stream_engine_usage(
2469 			&new_ctx->res_ctx, dc->res_pool,
2470 			del_pipe->stream_res.hpo_dp_stream_enc,
2471 			false);
2472 		remove_hpo_dp_link_enc_from_ctx(&new_ctx->res_ctx, del_pipe, del_pipe->stream);
2473 	}
2474 
2475 	if (del_pipe->stream_res.audio)
2476 		update_audio_usage(
2477 			&new_ctx->res_ctx,
2478 			dc->res_pool,
2479 			del_pipe->stream_res.audio,
2480 			false);
2481 
2482 	resource_unreference_clock_source(&new_ctx->res_ctx,
2483 					  dc->res_pool,
2484 					  del_pipe->clock_source);
2485 
2486 	if (dc->res_pool->funcs->remove_stream_from_ctx)
2487 		dc->res_pool->funcs->remove_stream_from_ctx(dc, new_ctx, stream);
2488 
2489 	while (odm_pipe) {
2490 		struct pipe_ctx *next_odm_pipe = odm_pipe->next_odm_pipe;
2491 
2492 		memset(odm_pipe, 0, sizeof(*odm_pipe));
2493 		odm_pipe = next_odm_pipe;
2494 	}
2495 	memset(del_pipe, 0, sizeof(*del_pipe));
2496 
2497 	for (i = 0; i < new_ctx->stream_count; i++)
2498 		if (new_ctx->streams[i] == stream)
2499 			break;
2500 
2501 	if (new_ctx->streams[i] != stream) {
2502 		DC_ERROR("Context doesn't have stream %p !\n", stream);
2503 		return DC_ERROR_UNEXPECTED;
2504 	}
2505 
2506 	dc_stream_release(new_ctx->streams[i]);
2507 	new_ctx->stream_count--;
2508 
2509 	/* Trim back arrays */
2510 	for (; i < new_ctx->stream_count; i++) {
2511 		new_ctx->streams[i] = new_ctx->streams[i + 1];
2512 		new_ctx->stream_status[i] = new_ctx->stream_status[i + 1];
2513 	}
2514 
2515 	new_ctx->streams[new_ctx->stream_count] = NULL;
2516 	memset(
2517 			&new_ctx->stream_status[new_ctx->stream_count],
2518 			0,
2519 			sizeof(new_ctx->stream_status[0]));
2520 
2521 	return DC_OK;
2522 }
2523 
find_pll_sharable_stream(struct dc_stream_state * stream_needs_pll,struct dc_state * context)2524 static struct dc_stream_state *find_pll_sharable_stream(
2525 		struct dc_stream_state *stream_needs_pll,
2526 		struct dc_state *context)
2527 {
2528 	int i;
2529 
2530 	for (i = 0; i < context->stream_count; i++) {
2531 		struct dc_stream_state *stream_has_pll = context->streams[i];
2532 
2533 		/* We are looking for non dp, non virtual stream */
2534 		if (resource_are_streams_timing_synchronizable(
2535 			stream_needs_pll, stream_has_pll)
2536 			&& !dc_is_dp_signal(stream_has_pll->signal)
2537 			&& stream_has_pll->link->connector_signal
2538 			!= SIGNAL_TYPE_VIRTUAL)
2539 			return stream_has_pll;
2540 
2541 	}
2542 
2543 	return NULL;
2544 }
2545 
get_norm_pix_clk(const struct dc_crtc_timing * timing)2546 static int get_norm_pix_clk(const struct dc_crtc_timing *timing)
2547 {
2548 	uint32_t pix_clk = timing->pix_clk_100hz;
2549 	uint32_t normalized_pix_clk = pix_clk;
2550 
2551 	if (timing->pixel_encoding == PIXEL_ENCODING_YCBCR420)
2552 		pix_clk /= 2;
2553 	if (timing->pixel_encoding != PIXEL_ENCODING_YCBCR422) {
2554 		switch (timing->display_color_depth) {
2555 		case COLOR_DEPTH_666:
2556 		case COLOR_DEPTH_888:
2557 			normalized_pix_clk = pix_clk;
2558 			break;
2559 		case COLOR_DEPTH_101010:
2560 			normalized_pix_clk = (pix_clk * 30) / 24;
2561 			break;
2562 		case COLOR_DEPTH_121212:
2563 			normalized_pix_clk = (pix_clk * 36) / 24;
2564 		break;
2565 		case COLOR_DEPTH_161616:
2566 			normalized_pix_clk = (pix_clk * 48) / 24;
2567 		break;
2568 		default:
2569 			ASSERT(0);
2570 		break;
2571 		}
2572 	}
2573 	return normalized_pix_clk;
2574 }
2575 
calculate_phy_pix_clks(struct dc_stream_state * stream)2576 static void calculate_phy_pix_clks(struct dc_stream_state *stream)
2577 {
2578 	/* update actual pixel clock on all streams */
2579 	if (dc_is_hdmi_signal(stream->signal))
2580 		stream->phy_pix_clk = get_norm_pix_clk(
2581 			&stream->timing) / 10;
2582 	else
2583 		stream->phy_pix_clk =
2584 			stream->timing.pix_clk_100hz / 10;
2585 
2586 	if (stream->timing.timing_3d_format == TIMING_3D_FORMAT_HW_FRAME_PACKING)
2587 		stream->phy_pix_clk *= 2;
2588 }
2589 
acquire_resource_from_hw_enabled_state(struct resource_context * res_ctx,const struct resource_pool * pool,struct dc_stream_state * stream)2590 static int acquire_resource_from_hw_enabled_state(
2591 		struct resource_context *res_ctx,
2592 		const struct resource_pool *pool,
2593 		struct dc_stream_state *stream)
2594 {
2595 	struct dc_link *link = stream->link;
2596 	unsigned int i, inst, tg_inst = 0;
2597 	uint32_t numPipes = 1;
2598 	uint32_t id_src[4] = {0};
2599 
2600 	/* Check for enabled DIG to identify enabled display */
2601 	if (!link->link_enc->funcs->is_dig_enabled(link->link_enc))
2602 		return -1;
2603 
2604 	inst = link->link_enc->funcs->get_dig_frontend(link->link_enc);
2605 
2606 	if (inst == ENGINE_ID_UNKNOWN)
2607 		return -1;
2608 
2609 	for (i = 0; i < pool->stream_enc_count; i++) {
2610 		if (pool->stream_enc[i]->id == inst) {
2611 			tg_inst = pool->stream_enc[i]->funcs->dig_source_otg(
2612 				pool->stream_enc[i]);
2613 			break;
2614 		}
2615 	}
2616 
2617 	// tg_inst not found
2618 	if (i == pool->stream_enc_count)
2619 		return -1;
2620 
2621 	if (tg_inst >= pool->timing_generator_count)
2622 		return -1;
2623 
2624 	if (!res_ctx->pipe_ctx[tg_inst].stream) {
2625 		struct pipe_ctx *pipe_ctx = &res_ctx->pipe_ctx[tg_inst];
2626 
2627 		pipe_ctx->stream_res.tg = pool->timing_generators[tg_inst];
2628 		id_src[0] = tg_inst;
2629 
2630 		if (pipe_ctx->stream_res.tg->funcs->get_optc_source)
2631 			pipe_ctx->stream_res.tg->funcs->get_optc_source(pipe_ctx->stream_res.tg,
2632 						&numPipes, &id_src[0], &id_src[1]);
2633 
2634 		if (id_src[0] == 0xf && id_src[1] == 0xf) {
2635 			id_src[0] = tg_inst;
2636 			numPipes = 1;
2637 		}
2638 
2639 		for (i = 0; i < numPipes; i++) {
2640 			//Check if src id invalid
2641 			if (id_src[i] == 0xf)
2642 				return -1;
2643 
2644 			pipe_ctx = &res_ctx->pipe_ctx[id_src[i]];
2645 
2646 			pipe_ctx->stream_res.tg = pool->timing_generators[tg_inst];
2647 			pipe_ctx->plane_res.mi = pool->mis[id_src[i]];
2648 			pipe_ctx->plane_res.hubp = pool->hubps[id_src[i]];
2649 			pipe_ctx->plane_res.ipp = pool->ipps[id_src[i]];
2650 			pipe_ctx->plane_res.xfm = pool->transforms[id_src[i]];
2651 			pipe_ctx->plane_res.dpp = pool->dpps[id_src[i]];
2652 			pipe_ctx->stream_res.opp = pool->opps[id_src[i]];
2653 
2654 			if (pool->dpps[id_src[i]]) {
2655 				pipe_ctx->plane_res.mpcc_inst = pool->dpps[id_src[i]]->inst;
2656 
2657 				if (pool->mpc->funcs->read_mpcc_state) {
2658 					struct mpcc_state s = {0};
2659 
2660 					pool->mpc->funcs->read_mpcc_state(pool->mpc, pipe_ctx->plane_res.mpcc_inst, &s);
2661 
2662 					if (s.dpp_id < MAX_MPCC)
2663 						pool->mpc->mpcc_array[pipe_ctx->plane_res.mpcc_inst].dpp_id =
2664 								s.dpp_id;
2665 
2666 					if (s.bot_mpcc_id < MAX_MPCC)
2667 						pool->mpc->mpcc_array[pipe_ctx->plane_res.mpcc_inst].mpcc_bot =
2668 								&pool->mpc->mpcc_array[s.bot_mpcc_id];
2669 
2670 					if (s.opp_id < MAX_OPP)
2671 						pipe_ctx->stream_res.opp->mpc_tree_params.opp_id = s.opp_id;
2672 				}
2673 			}
2674 			pipe_ctx->pipe_idx = id_src[i];
2675 
2676 			if (id_src[i] >= pool->timing_generator_count) {
2677 				id_src[i] = pool->timing_generator_count - 1;
2678 
2679 				pipe_ctx->stream_res.tg = pool->timing_generators[id_src[i]];
2680 				pipe_ctx->stream_res.opp = pool->opps[id_src[i]];
2681 			}
2682 
2683 			pipe_ctx->stream = stream;
2684 		}
2685 
2686 		if (numPipes == 2) {
2687 			stream->apply_boot_odm_mode = dm_odm_combine_policy_2to1;
2688 			res_ctx->pipe_ctx[id_src[0]].next_odm_pipe = &res_ctx->pipe_ctx[id_src[1]];
2689 			res_ctx->pipe_ctx[id_src[0]].prev_odm_pipe = NULL;
2690 			res_ctx->pipe_ctx[id_src[1]].next_odm_pipe = NULL;
2691 			res_ctx->pipe_ctx[id_src[1]].prev_odm_pipe = &res_ctx->pipe_ctx[id_src[0]];
2692 		} else
2693 			stream->apply_boot_odm_mode = dm_odm_combine_mode_disabled;
2694 
2695 		return id_src[0];
2696 	}
2697 
2698 	return -1;
2699 }
2700 
mark_seamless_boot_stream(const struct dc * dc,struct dc_stream_state * stream)2701 static void mark_seamless_boot_stream(
2702 		const struct dc  *dc,
2703 		struct dc_stream_state *stream)
2704 {
2705 	struct dc_bios *dcb = dc->ctx->dc_bios;
2706 
2707 	if (dc->config.allow_seamless_boot_optimization &&
2708 			!dcb->funcs->is_accelerated_mode(dcb)) {
2709 		if (dc_validate_boot_timing(dc, stream->sink, &stream->timing))
2710 			stream->apply_seamless_boot_optimization = true;
2711 	}
2712 }
2713 
resource_map_pool_resources(const struct dc * dc,struct dc_state * context,struct dc_stream_state * stream)2714 enum dc_status resource_map_pool_resources(
2715 		const struct dc  *dc,
2716 		struct dc_state *context,
2717 		struct dc_stream_state *stream)
2718 {
2719 	const struct resource_pool *pool = dc->res_pool;
2720 	int i;
2721 	struct dc_context *dc_ctx = dc->ctx;
2722 	struct pipe_ctx *pipe_ctx = NULL;
2723 	int pipe_idx = -1;
2724 
2725 	calculate_phy_pix_clks(stream);
2726 
2727 	mark_seamless_boot_stream(dc, stream);
2728 
2729 	if (stream->apply_seamless_boot_optimization) {
2730 		pipe_idx = acquire_resource_from_hw_enabled_state(
2731 				&context->res_ctx,
2732 				pool,
2733 				stream);
2734 		if (pipe_idx < 0)
2735 			/* hw resource was assigned to other stream */
2736 			stream->apply_seamless_boot_optimization = false;
2737 	}
2738 
2739 	if (pipe_idx < 0)
2740 		/* acquire new resources */
2741 		pipe_idx = acquire_first_free_pipe(&context->res_ctx, pool, stream);
2742 
2743 	if (pipe_idx < 0)
2744 		pipe_idx = acquire_first_split_pipe(&context->res_ctx, pool, stream);
2745 
2746 	if (pipe_idx < 0 || context->res_ctx.pipe_ctx[pipe_idx].stream_res.tg == NULL)
2747 		return DC_NO_CONTROLLER_RESOURCE;
2748 
2749 	pipe_ctx = &context->res_ctx.pipe_ctx[pipe_idx];
2750 
2751 	pipe_ctx->stream_res.stream_enc =
2752 		dc->res_pool->funcs->find_first_free_match_stream_enc_for_link(
2753 			&context->res_ctx, pool, stream);
2754 
2755 	if (!pipe_ctx->stream_res.stream_enc)
2756 		return DC_NO_STREAM_ENC_RESOURCE;
2757 
2758 	update_stream_engine_usage(
2759 		&context->res_ctx, pool,
2760 		pipe_ctx->stream_res.stream_enc,
2761 		true);
2762 
2763 	/* Allocate DP HPO Stream Encoder based on signal, hw capabilities
2764 	 * and link settings
2765 	 */
2766 	if (dc_is_dp_signal(stream->signal)) {
2767 		if (!dc->link_srv->dp_decide_link_settings(stream, &pipe_ctx->link_config.dp_link_settings))
2768 			return DC_FAIL_DP_LINK_BANDWIDTH;
2769 		if (dc->link_srv->dp_get_encoding_format(
2770 				&pipe_ctx->link_config.dp_link_settings) == DP_128b_132b_ENCODING) {
2771 			pipe_ctx->stream_res.hpo_dp_stream_enc =
2772 					find_first_free_match_hpo_dp_stream_enc_for_link(
2773 							&context->res_ctx, pool, stream);
2774 
2775 			if (!pipe_ctx->stream_res.hpo_dp_stream_enc)
2776 				return DC_NO_STREAM_ENC_RESOURCE;
2777 
2778 			update_hpo_dp_stream_engine_usage(
2779 					&context->res_ctx, pool,
2780 					pipe_ctx->stream_res.hpo_dp_stream_enc,
2781 					true);
2782 			if (!add_hpo_dp_link_enc_to_ctx(&context->res_ctx, pool, pipe_ctx, stream))
2783 				return DC_NO_LINK_ENC_RESOURCE;
2784 		}
2785 	}
2786 
2787 	/* TODO: Add check if ASIC support and EDID audio */
2788 	if (!stream->converter_disable_audio &&
2789 	    dc_is_audio_capable_signal(pipe_ctx->stream->signal) &&
2790 	    stream->audio_info.mode_count && stream->audio_info.flags.all) {
2791 		pipe_ctx->stream_res.audio = find_first_free_audio(
2792 		&context->res_ctx, pool, pipe_ctx->stream_res.stream_enc->id, dc_ctx->dce_version);
2793 
2794 		/*
2795 		 * Audio assigned in order first come first get.
2796 		 * There are asics which has number of audio
2797 		 * resources less then number of pipes
2798 		 */
2799 		if (pipe_ctx->stream_res.audio)
2800 			update_audio_usage(&context->res_ctx, pool,
2801 					   pipe_ctx->stream_res.audio, true);
2802 	}
2803 
2804 	/* Add ABM to the resource if on EDP */
2805 	if (pipe_ctx->stream && dc_is_embedded_signal(pipe_ctx->stream->signal)) {
2806 		if (pool->abm)
2807 			pipe_ctx->stream_res.abm = pool->abm;
2808 		else
2809 			pipe_ctx->stream_res.abm = pool->multiple_abms[pipe_ctx->stream_res.tg->inst];
2810 	}
2811 
2812 	for (i = 0; i < context->stream_count; i++)
2813 		if (context->streams[i] == stream) {
2814 			context->stream_status[i].primary_otg_inst = pipe_ctx->stream_res.tg->inst;
2815 			context->stream_status[i].stream_enc_inst = pipe_ctx->stream_res.stream_enc->stream_enc_inst;
2816 			context->stream_status[i].audio_inst =
2817 				pipe_ctx->stream_res.audio ? pipe_ctx->stream_res.audio->inst : -1;
2818 
2819 			return DC_OK;
2820 		}
2821 
2822 	DC_ERROR("Stream %p not found in new ctx!\n", stream);
2823 	return DC_ERROR_UNEXPECTED;
2824 }
2825 
2826 /**
2827  * dc_resource_state_copy_construct_current() - Creates a new dc_state from existing state
2828  *
2829  * @dc: copy out of dc->current_state
2830  * @dst_ctx: copy into this
2831  *
2832  * This function makes a shallow copy of the current DC state and increments
2833  * refcounts on existing streams and planes.
2834  */
dc_resource_state_copy_construct_current(const struct dc * dc,struct dc_state * dst_ctx)2835 void dc_resource_state_copy_construct_current(
2836 		const struct dc *dc,
2837 		struct dc_state *dst_ctx)
2838 {
2839 	dc_resource_state_copy_construct(dc->current_state, dst_ctx);
2840 }
2841 
2842 
dc_resource_state_construct(const struct dc * dc,struct dc_state * dst_ctx)2843 void dc_resource_state_construct(
2844 		const struct dc *dc,
2845 		struct dc_state *dst_ctx)
2846 {
2847 	dst_ctx->clk_mgr = dc->clk_mgr;
2848 
2849 	/* Initialise DIG link encoder resource tracking variables. */
2850 	link_enc_cfg_init(dc, dst_ctx);
2851 }
2852 
2853 
dc_resource_is_dsc_encoding_supported(const struct dc * dc)2854 bool dc_resource_is_dsc_encoding_supported(const struct dc *dc)
2855 {
2856 	if (dc->res_pool == NULL)
2857 		return false;
2858 
2859 	return dc->res_pool->res_cap->num_dsc > 0;
2860 }
2861 
planes_changed_for_existing_stream(struct dc_state * context,struct dc_stream_state * stream,const struct dc_validation_set set[],int set_count)2862 static bool planes_changed_for_existing_stream(struct dc_state *context,
2863 					       struct dc_stream_state *stream,
2864 					       const struct dc_validation_set set[],
2865 					       int set_count)
2866 {
2867 	int i, j;
2868 	struct dc_stream_status *stream_status = NULL;
2869 
2870 	for (i = 0; i < context->stream_count; i++) {
2871 		if (context->streams[i] == stream) {
2872 			stream_status = &context->stream_status[i];
2873 			break;
2874 		}
2875 	}
2876 
2877 	if (!stream_status)
2878 		ASSERT(0);
2879 
2880 	for (i = 0; i < set_count; i++)
2881 		if (set[i].stream == stream)
2882 			break;
2883 
2884 	if (i == set_count)
2885 		ASSERT(0);
2886 
2887 	if (set[i].plane_count != stream_status->plane_count)
2888 		return true;
2889 
2890 	for (j = 0; j < set[i].plane_count; j++)
2891 		if (set[i].plane_states[j] != stream_status->plane_states[j])
2892 			return true;
2893 
2894 	return false;
2895 }
2896 
2897 /**
2898  * dc_validate_with_context - Validate and update the potential new stream in the context object
2899  *
2900  * @dc: Used to get the current state status
2901  * @set: An array of dc_validation_set with all the current streams reference
2902  * @set_count: Total of streams
2903  * @context: New context
2904  * @fast_validate: Enable or disable fast validation
2905  *
2906  * This function updates the potential new stream in the context object. It
2907  * creates multiple lists for the add, remove, and unchanged streams. In
2908  * particular, if the unchanged streams have a plane that changed, it is
2909  * necessary to remove all planes from the unchanged streams. In summary, this
2910  * function is responsible for validating the new context.
2911  *
2912  * Return:
2913  * In case of success, return DC_OK (1), otherwise, return a DC error.
2914  */
dc_validate_with_context(struct dc * dc,const struct dc_validation_set set[],int set_count,struct dc_state * context,bool fast_validate)2915 enum dc_status dc_validate_with_context(struct dc *dc,
2916 					const struct dc_validation_set set[],
2917 					int set_count,
2918 					struct dc_state *context,
2919 					bool fast_validate)
2920 {
2921 	struct dc_stream_state *unchanged_streams[MAX_PIPES] = { 0 };
2922 	struct dc_stream_state *del_streams[MAX_PIPES] = { 0 };
2923 	struct dc_stream_state *add_streams[MAX_PIPES] = { 0 };
2924 	int old_stream_count = context->stream_count;
2925 	enum dc_status res = DC_ERROR_UNEXPECTED;
2926 	int unchanged_streams_count = 0;
2927 	int del_streams_count = 0;
2928 	int add_streams_count = 0;
2929 	bool found = false;
2930 	int i, j, k;
2931 
2932 	DC_LOGGER_INIT(dc->ctx->logger);
2933 
2934 	/* First build a list of streams to be remove from current context */
2935 	for (i = 0; i < old_stream_count; i++) {
2936 		struct dc_stream_state *stream = context->streams[i];
2937 
2938 		for (j = 0; j < set_count; j++) {
2939 			if (stream == set[j].stream) {
2940 				found = true;
2941 				break;
2942 			}
2943 		}
2944 
2945 		if (!found)
2946 			del_streams[del_streams_count++] = stream;
2947 
2948 		found = false;
2949 	}
2950 
2951 	/* Second, build a list of new streams */
2952 	for (i = 0; i < set_count; i++) {
2953 		struct dc_stream_state *stream = set[i].stream;
2954 
2955 		for (j = 0; j < old_stream_count; j++) {
2956 			if (stream == context->streams[j]) {
2957 				found = true;
2958 				break;
2959 			}
2960 		}
2961 
2962 		if (!found)
2963 			add_streams[add_streams_count++] = stream;
2964 
2965 		found = false;
2966 	}
2967 
2968 	/* Build a list of unchanged streams which is necessary for handling
2969 	 * planes change such as added, removed, and updated.
2970 	 */
2971 	for (i = 0; i < set_count; i++) {
2972 		/* Check if stream is part of the delete list */
2973 		for (j = 0; j < del_streams_count; j++) {
2974 			if (set[i].stream == del_streams[j]) {
2975 				found = true;
2976 				break;
2977 			}
2978 		}
2979 
2980 		if (!found) {
2981 			/* Check if stream is part of the add list */
2982 			for (j = 0; j < add_streams_count; j++) {
2983 				if (set[i].stream == add_streams[j]) {
2984 					found = true;
2985 					break;
2986 				}
2987 			}
2988 		}
2989 
2990 		if (!found)
2991 			unchanged_streams[unchanged_streams_count++] = set[i].stream;
2992 
2993 		found = false;
2994 	}
2995 
2996 	/* Remove all planes for unchanged streams if planes changed */
2997 	for (i = 0; i < unchanged_streams_count; i++) {
2998 		if (planes_changed_for_existing_stream(context,
2999 						       unchanged_streams[i],
3000 						       set,
3001 						       set_count)) {
3002 			if (!dc_rem_all_planes_for_stream(dc,
3003 							  unchanged_streams[i],
3004 							  context)) {
3005 				res = DC_FAIL_DETACH_SURFACES;
3006 				goto fail;
3007 			}
3008 		}
3009 	}
3010 
3011 	/* Remove all planes for removed streams and then remove the streams */
3012 	for (i = 0; i < del_streams_count; i++) {
3013 		/* Need to cpy the dwb data from the old stream in order to efc to work */
3014 		if (del_streams[i]->num_wb_info > 0) {
3015 			for (j = 0; j < add_streams_count; j++) {
3016 				if (del_streams[i]->sink == add_streams[j]->sink) {
3017 					add_streams[j]->num_wb_info = del_streams[i]->num_wb_info;
3018 					for (k = 0; k < del_streams[i]->num_wb_info; k++)
3019 						add_streams[j]->writeback_info[k] = del_streams[i]->writeback_info[k];
3020 				}
3021 			}
3022 		}
3023 
3024 		if (!dc_rem_all_planes_for_stream(dc, del_streams[i], context)) {
3025 			res = DC_FAIL_DETACH_SURFACES;
3026 			goto fail;
3027 		}
3028 
3029 		res = dc_remove_stream_from_ctx(dc, context, del_streams[i]);
3030 		if (res != DC_OK)
3031 			goto fail;
3032 	}
3033 
3034 	/* Swap seamless boot stream to pipe 0 (if needed) to ensure pipe_ctx
3035 	 * matches. This may change in the future if seamless_boot_stream can be
3036 	 * multiple.
3037 	 */
3038 	for (i = 0; i < add_streams_count; i++) {
3039 		mark_seamless_boot_stream(dc, add_streams[i]);
3040 		if (add_streams[i]->apply_seamless_boot_optimization && i != 0) {
3041 			struct dc_stream_state *temp = add_streams[0];
3042 
3043 			add_streams[0] = add_streams[i];
3044 			add_streams[i] = temp;
3045 			break;
3046 		}
3047 	}
3048 
3049 	/* Add new streams and then add all planes for the new stream */
3050 	for (i = 0; i < add_streams_count; i++) {
3051 		calculate_phy_pix_clks(add_streams[i]);
3052 		res = dc_add_stream_to_ctx(dc, context, add_streams[i]);
3053 		if (res != DC_OK)
3054 			goto fail;
3055 
3056 		if (!add_all_planes_for_stream(dc, add_streams[i], set, set_count, context)) {
3057 			res = DC_FAIL_ATTACH_SURFACES;
3058 			goto fail;
3059 		}
3060 	}
3061 
3062 	/* Add all planes for unchanged streams if planes changed */
3063 	for (i = 0; i < unchanged_streams_count; i++) {
3064 		if (planes_changed_for_existing_stream(context,
3065 						       unchanged_streams[i],
3066 						       set,
3067 						       set_count)) {
3068 			if (!add_all_planes_for_stream(dc, unchanged_streams[i], set, set_count, context)) {
3069 				res = DC_FAIL_ATTACH_SURFACES;
3070 				goto fail;
3071 			}
3072 		}
3073 	}
3074 
3075 	res = dc_validate_global_state(dc, context, fast_validate);
3076 
3077 fail:
3078 	if (res != DC_OK)
3079 		DC_LOG_WARNING("%s:resource validation failed, dc_status:%d\n",
3080 			       __func__,
3081 			       res);
3082 
3083 	return res;
3084 }
3085 
3086 /**
3087  * dc_validate_global_state() - Determine if hardware can support a given state
3088  *
3089  * @dc: dc struct for this driver
3090  * @new_ctx: state to be validated
3091  * @fast_validate: set to true if only yes/no to support matters
3092  *
3093  * Checks hardware resource availability and bandwidth requirement.
3094  *
3095  * Return:
3096  * DC_OK if the result can be programmed. Otherwise, an error code.
3097  */
dc_validate_global_state(struct dc * dc,struct dc_state * new_ctx,bool fast_validate)3098 enum dc_status dc_validate_global_state(
3099 		struct dc *dc,
3100 		struct dc_state *new_ctx,
3101 		bool fast_validate)
3102 {
3103 	enum dc_status result = DC_ERROR_UNEXPECTED;
3104 	int i, j;
3105 
3106 	if (!new_ctx)
3107 		return DC_ERROR_UNEXPECTED;
3108 
3109 	if (dc->res_pool->funcs->validate_global) {
3110 		result = dc->res_pool->funcs->validate_global(dc, new_ctx);
3111 		if (result != DC_OK)
3112 			return result;
3113 	}
3114 
3115 	for (i = 0; i < new_ctx->stream_count; i++) {
3116 		struct dc_stream_state *stream = new_ctx->streams[i];
3117 
3118 		for (j = 0; j < dc->res_pool->pipe_count; j++) {
3119 			struct pipe_ctx *pipe_ctx = &new_ctx->res_ctx.pipe_ctx[j];
3120 
3121 			if (pipe_ctx->stream != stream)
3122 				continue;
3123 
3124 			if (dc->res_pool->funcs->patch_unknown_plane_state &&
3125 					pipe_ctx->plane_state &&
3126 					pipe_ctx->plane_state->tiling_info.gfx9.swizzle == DC_SW_UNKNOWN) {
3127 				result = dc->res_pool->funcs->patch_unknown_plane_state(pipe_ctx->plane_state);
3128 				if (result != DC_OK)
3129 					return result;
3130 			}
3131 
3132 			/* Switch to dp clock source only if there is
3133 			 * no non dp stream that shares the same timing
3134 			 * with the dp stream.
3135 			 */
3136 			if (dc_is_dp_signal(pipe_ctx->stream->signal) &&
3137 				!find_pll_sharable_stream(stream, new_ctx)) {
3138 
3139 				resource_unreference_clock_source(
3140 						&new_ctx->res_ctx,
3141 						dc->res_pool,
3142 						pipe_ctx->clock_source);
3143 
3144 				pipe_ctx->clock_source = dc->res_pool->dp_clock_source;
3145 				resource_reference_clock_source(
3146 						&new_ctx->res_ctx,
3147 						dc->res_pool,
3148 						 pipe_ctx->clock_source);
3149 			}
3150 		}
3151 	}
3152 
3153 	result = resource_build_scaling_params_for_context(dc, new_ctx);
3154 
3155 	if (result == DC_OK)
3156 		if (!dc->res_pool->funcs->validate_bandwidth(dc, new_ctx, fast_validate))
3157 			result = DC_FAIL_BANDWIDTH_VALIDATE;
3158 
3159 	/*
3160 	 * Only update link encoder to stream assignment after bandwidth validation passed.
3161 	 * TODO: Split out assignment and validation.
3162 	 */
3163 	if (result == DC_OK && dc->res_pool->funcs->link_encs_assign && fast_validate == false)
3164 		dc->res_pool->funcs->link_encs_assign(
3165 			dc, new_ctx, new_ctx->streams, new_ctx->stream_count);
3166 
3167 	return result;
3168 }
3169 
patch_gamut_packet_checksum(struct dc_info_packet * gamut_packet)3170 static void patch_gamut_packet_checksum(
3171 		struct dc_info_packet *gamut_packet)
3172 {
3173 	/* For gamut we recalc checksum */
3174 	if (gamut_packet->valid) {
3175 		uint8_t chk_sum = 0;
3176 		uint8_t *ptr;
3177 		uint8_t i;
3178 
3179 		/*start of the Gamut data. */
3180 		ptr = &gamut_packet->sb[3];
3181 
3182 		for (i = 0; i <= gamut_packet->sb[1]; i++)
3183 			chk_sum += ptr[i];
3184 
3185 		gamut_packet->sb[2] = (uint8_t) (0x100 - chk_sum);
3186 	}
3187 }
3188 
set_avi_info_frame(struct dc_info_packet * info_packet,struct pipe_ctx * pipe_ctx)3189 static void set_avi_info_frame(
3190 		struct dc_info_packet *info_packet,
3191 		struct pipe_ctx *pipe_ctx)
3192 {
3193 	struct dc_stream_state *stream = pipe_ctx->stream;
3194 	enum dc_color_space color_space = COLOR_SPACE_UNKNOWN;
3195 	uint32_t pixel_encoding = 0;
3196 	enum scanning_type scan_type = SCANNING_TYPE_NODATA;
3197 	enum dc_aspect_ratio aspect = ASPECT_RATIO_NO_DATA;
3198 	bool itc = false;
3199 	uint8_t itc_value = 0;
3200 	uint8_t cn0_cn1 = 0;
3201 	unsigned int cn0_cn1_value = 0;
3202 	uint8_t *check_sum = NULL;
3203 	uint8_t byte_index = 0;
3204 	union hdmi_info_packet hdmi_info;
3205 	union display_content_support support = {0};
3206 	unsigned int vic = pipe_ctx->stream->timing.vic;
3207 	unsigned int rid = pipe_ctx->stream->timing.rid;
3208 	unsigned int fr_ind = pipe_ctx->stream->timing.fr_index;
3209 	enum dc_timing_3d_format format;
3210 
3211 	memset(&hdmi_info, 0, sizeof(union hdmi_info_packet));
3212 
3213 	color_space = pipe_ctx->stream->output_color_space;
3214 	if (color_space == COLOR_SPACE_UNKNOWN)
3215 		color_space = (stream->timing.pixel_encoding == PIXEL_ENCODING_RGB) ?
3216 			COLOR_SPACE_SRGB:COLOR_SPACE_YCBCR709;
3217 
3218 	/* Initialize header */
3219 	hdmi_info.bits.header.info_frame_type = HDMI_INFOFRAME_TYPE_AVI;
3220 	/* InfoFrameVersion_3 is defined by CEA861F (Section 6.4), but shall
3221 	* not be used in HDMI 2.0 (Section 10.1) */
3222 	hdmi_info.bits.header.version = 2;
3223 	hdmi_info.bits.header.length = HDMI_AVI_INFOFRAME_SIZE;
3224 
3225 	/*
3226 	 * IDO-defined (Y2,Y1,Y0 = 1,1,1) shall not be used by devices built
3227 	 * according to HDMI 2.0 spec (Section 10.1)
3228 	 */
3229 
3230 	switch (stream->timing.pixel_encoding) {
3231 	case PIXEL_ENCODING_YCBCR422:
3232 		pixel_encoding = 1;
3233 		break;
3234 
3235 	case PIXEL_ENCODING_YCBCR444:
3236 		pixel_encoding = 2;
3237 		break;
3238 	case PIXEL_ENCODING_YCBCR420:
3239 		pixel_encoding = 3;
3240 		break;
3241 
3242 	case PIXEL_ENCODING_RGB:
3243 	default:
3244 		pixel_encoding = 0;
3245 	}
3246 
3247 	/* Y0_Y1_Y2 : The pixel encoding */
3248 	/* H14b AVI InfoFrame has extension on Y-field from 2 bits to 3 bits */
3249 	hdmi_info.bits.Y0_Y1_Y2 = pixel_encoding;
3250 
3251 	/* A0 = 1 Active Format Information valid */
3252 	hdmi_info.bits.A0 = ACTIVE_FORMAT_VALID;
3253 
3254 	/* B0, B1 = 3; Bar info data is valid */
3255 	hdmi_info.bits.B0_B1 = BAR_INFO_BOTH_VALID;
3256 
3257 	hdmi_info.bits.SC0_SC1 = PICTURE_SCALING_UNIFORM;
3258 
3259 	/* S0, S1 : Underscan / Overscan */
3260 	/* TODO: un-hardcode scan type */
3261 	scan_type = SCANNING_TYPE_UNDERSCAN;
3262 	hdmi_info.bits.S0_S1 = scan_type;
3263 
3264 	/* C0, C1 : Colorimetry */
3265 	switch (color_space) {
3266 	case COLOR_SPACE_YCBCR709:
3267 	case COLOR_SPACE_YCBCR709_LIMITED:
3268 		hdmi_info.bits.C0_C1 = COLORIMETRY_ITU709;
3269 		break;
3270 	case COLOR_SPACE_YCBCR601:
3271 	case COLOR_SPACE_YCBCR601_LIMITED:
3272 		hdmi_info.bits.C0_C1 = COLORIMETRY_ITU601;
3273 		break;
3274 	case COLOR_SPACE_2020_RGB_FULLRANGE:
3275 	case COLOR_SPACE_2020_RGB_LIMITEDRANGE:
3276 	case COLOR_SPACE_2020_YCBCR:
3277 		hdmi_info.bits.EC0_EC2 = COLORIMETRYEX_BT2020RGBYCBCR;
3278 		hdmi_info.bits.C0_C1   = COLORIMETRY_EXTENDED;
3279 		break;
3280 	case COLOR_SPACE_ADOBERGB:
3281 		hdmi_info.bits.EC0_EC2 = COLORIMETRYEX_ADOBERGB;
3282 		hdmi_info.bits.C0_C1   = COLORIMETRY_EXTENDED;
3283 		break;
3284 	case COLOR_SPACE_SRGB:
3285 	default:
3286 		hdmi_info.bits.C0_C1 = COLORIMETRY_NO_DATA;
3287 		break;
3288 	}
3289 
3290 	if (pixel_encoding && color_space == COLOR_SPACE_2020_YCBCR &&
3291 			stream->out_transfer_func->tf == TRANSFER_FUNCTION_GAMMA22) {
3292 		hdmi_info.bits.EC0_EC2 = 0;
3293 		hdmi_info.bits.C0_C1 = COLORIMETRY_ITU709;
3294 	}
3295 
3296 	/* TODO: un-hardcode aspect ratio */
3297 	aspect = stream->timing.aspect_ratio;
3298 
3299 	switch (aspect) {
3300 	case ASPECT_RATIO_4_3:
3301 	case ASPECT_RATIO_16_9:
3302 		hdmi_info.bits.M0_M1 = aspect;
3303 		break;
3304 
3305 	case ASPECT_RATIO_NO_DATA:
3306 	case ASPECT_RATIO_64_27:
3307 	case ASPECT_RATIO_256_135:
3308 	default:
3309 		hdmi_info.bits.M0_M1 = 0;
3310 	}
3311 
3312 	/* Active Format Aspect ratio - same as Picture Aspect Ratio. */
3313 	hdmi_info.bits.R0_R3 = ACTIVE_FORMAT_ASPECT_RATIO_SAME_AS_PICTURE;
3314 
3315 	/* TODO: un-hardcode cn0_cn1 and itc */
3316 
3317 	cn0_cn1 = 0;
3318 	cn0_cn1_value = 0;
3319 
3320 	itc = true;
3321 	itc_value = 1;
3322 
3323 	support = stream->content_support;
3324 
3325 	if (itc) {
3326 		if (!support.bits.valid_content_type) {
3327 			cn0_cn1_value = 0;
3328 		} else {
3329 			if (cn0_cn1 == DISPLAY_CONTENT_TYPE_GRAPHICS) {
3330 				if (support.bits.graphics_content == 1) {
3331 					cn0_cn1_value = 0;
3332 				}
3333 			} else if (cn0_cn1 == DISPLAY_CONTENT_TYPE_PHOTO) {
3334 				if (support.bits.photo_content == 1) {
3335 					cn0_cn1_value = 1;
3336 				} else {
3337 					cn0_cn1_value = 0;
3338 					itc_value = 0;
3339 				}
3340 			} else if (cn0_cn1 == DISPLAY_CONTENT_TYPE_CINEMA) {
3341 				if (support.bits.cinema_content == 1) {
3342 					cn0_cn1_value = 2;
3343 				} else {
3344 					cn0_cn1_value = 0;
3345 					itc_value = 0;
3346 				}
3347 			} else if (cn0_cn1 == DISPLAY_CONTENT_TYPE_GAME) {
3348 				if (support.bits.game_content == 1) {
3349 					cn0_cn1_value = 3;
3350 				} else {
3351 					cn0_cn1_value = 0;
3352 					itc_value = 0;
3353 				}
3354 			}
3355 		}
3356 		hdmi_info.bits.CN0_CN1 = cn0_cn1_value;
3357 		hdmi_info.bits.ITC = itc_value;
3358 	}
3359 
3360 	if (stream->qs_bit == 1) {
3361 		if (color_space == COLOR_SPACE_SRGB ||
3362 			color_space == COLOR_SPACE_2020_RGB_FULLRANGE)
3363 			hdmi_info.bits.Q0_Q1   = RGB_QUANTIZATION_FULL_RANGE;
3364 		else if (color_space == COLOR_SPACE_SRGB_LIMITED ||
3365 					color_space == COLOR_SPACE_2020_RGB_LIMITEDRANGE)
3366 			hdmi_info.bits.Q0_Q1   = RGB_QUANTIZATION_LIMITED_RANGE;
3367 		else
3368 			hdmi_info.bits.Q0_Q1   = RGB_QUANTIZATION_DEFAULT_RANGE;
3369 	} else
3370 		hdmi_info.bits.Q0_Q1   = RGB_QUANTIZATION_DEFAULT_RANGE;
3371 
3372 	/* TODO : We should handle YCC quantization */
3373 	/* but we do not have matrix calculation */
3374 	hdmi_info.bits.YQ0_YQ1 = YYC_QUANTIZATION_LIMITED_RANGE;
3375 
3376 	///VIC
3377 	if (pipe_ctx->stream->timing.hdmi_vic != 0)
3378 		vic = 0;
3379 	format = stream->timing.timing_3d_format;
3380 	/*todo, add 3DStereo support*/
3381 	if (format != TIMING_3D_FORMAT_NONE) {
3382 		// Based on HDMI specs hdmi vic needs to be converted to cea vic when 3D is enabled
3383 		switch (pipe_ctx->stream->timing.hdmi_vic) {
3384 		case 1:
3385 			vic = 95;
3386 			break;
3387 		case 2:
3388 			vic = 94;
3389 			break;
3390 		case 3:
3391 			vic = 93;
3392 			break;
3393 		case 4:
3394 			vic = 98;
3395 			break;
3396 		default:
3397 			break;
3398 		}
3399 	}
3400 	/* If VIC >= 128, the Source shall use AVI InfoFrame Version 3*/
3401 	hdmi_info.bits.VIC0_VIC7 = vic;
3402 	if (vic >= 128)
3403 		hdmi_info.bits.header.version = 3;
3404 	/* If (C1, C0)=(1, 1) and (EC2, EC1, EC0)=(1, 1, 1),
3405 	 * the Source shall use 20 AVI InfoFrame Version 4
3406 	 */
3407 	if (hdmi_info.bits.C0_C1 == COLORIMETRY_EXTENDED &&
3408 			hdmi_info.bits.EC0_EC2 == COLORIMETRYEX_RESERVED) {
3409 		hdmi_info.bits.header.version = 4;
3410 		hdmi_info.bits.header.length = 14;
3411 	}
3412 
3413 	if (rid != 0 && fr_ind != 0) {
3414 		hdmi_info.bits.header.version = 5;
3415 		hdmi_info.bits.header.length = 15;
3416 
3417 		hdmi_info.bits.FR0_FR3 = fr_ind & 0xF;
3418 		hdmi_info.bits.FR4 = (fr_ind >> 4) & 0x1;
3419 		hdmi_info.bits.RID0_RID5 = rid;
3420 	}
3421 
3422 	/* pixel repetition
3423 	 * PR0 - PR3 start from 0 whereas pHwPathMode->mode.timing.flags.pixel
3424 	 * repetition start from 1 */
3425 	hdmi_info.bits.PR0_PR3 = 0;
3426 
3427 	/* Bar Info
3428 	 * barTop:    Line Number of End of Top Bar.
3429 	 * barBottom: Line Number of Start of Bottom Bar.
3430 	 * barLeft:   Pixel Number of End of Left Bar.
3431 	 * barRight:  Pixel Number of Start of Right Bar. */
3432 	hdmi_info.bits.bar_top = stream->timing.v_border_top;
3433 	hdmi_info.bits.bar_bottom = (stream->timing.v_total
3434 			- stream->timing.v_border_bottom + 1);
3435 	hdmi_info.bits.bar_left  = stream->timing.h_border_left;
3436 	hdmi_info.bits.bar_right = (stream->timing.h_total
3437 			- stream->timing.h_border_right + 1);
3438 
3439     /* Additional Colorimetry Extension
3440      * Used in conduction with C0-C1 and EC0-EC2
3441      * 0 = DCI-P3 RGB (D65)
3442      * 1 = DCI-P3 RGB (theater)
3443      */
3444 	hdmi_info.bits.ACE0_ACE3 = 0;
3445 
3446 	/* check_sum - Calculate AFMT_AVI_INFO0 ~ AFMT_AVI_INFO3 */
3447 	check_sum = &hdmi_info.packet_raw_data.sb[0];
3448 
3449 	*check_sum = HDMI_INFOFRAME_TYPE_AVI + hdmi_info.bits.header.length + hdmi_info.bits.header.version;
3450 
3451 	for (byte_index = 1; byte_index <= hdmi_info.bits.header.length; byte_index++)
3452 		*check_sum += hdmi_info.packet_raw_data.sb[byte_index];
3453 
3454 	/* one byte complement */
3455 	*check_sum = (uint8_t) (0x100 - *check_sum);
3456 
3457 	/* Store in hw_path_mode */
3458 	info_packet->hb0 = hdmi_info.packet_raw_data.hb0;
3459 	info_packet->hb1 = hdmi_info.packet_raw_data.hb1;
3460 	info_packet->hb2 = hdmi_info.packet_raw_data.hb2;
3461 
3462 	for (byte_index = 0; byte_index < sizeof(hdmi_info.packet_raw_data.sb); byte_index++)
3463 		info_packet->sb[byte_index] = hdmi_info.packet_raw_data.sb[byte_index];
3464 
3465 	info_packet->valid = true;
3466 }
3467 
set_vendor_info_packet(struct dc_info_packet * info_packet,struct dc_stream_state * stream)3468 static void set_vendor_info_packet(
3469 		struct dc_info_packet *info_packet,
3470 		struct dc_stream_state *stream)
3471 {
3472 	/* SPD info packet for FreeSync */
3473 
3474 	/* Check if Freesync is supported. Return if false. If true,
3475 	 * set the corresponding bit in the info packet
3476 	 */
3477 	if (!stream->vsp_infopacket.valid)
3478 		return;
3479 
3480 	*info_packet = stream->vsp_infopacket;
3481 }
3482 
set_spd_info_packet(struct dc_info_packet * info_packet,struct dc_stream_state * stream)3483 static void set_spd_info_packet(
3484 		struct dc_info_packet *info_packet,
3485 		struct dc_stream_state *stream)
3486 {
3487 	/* SPD info packet for FreeSync */
3488 
3489 	/* Check if Freesync is supported. Return if false. If true,
3490 	 * set the corresponding bit in the info packet
3491 	 */
3492 	if (!stream->vrr_infopacket.valid)
3493 		return;
3494 
3495 	*info_packet = stream->vrr_infopacket;
3496 }
3497 
set_hdr_static_info_packet(struct dc_info_packet * info_packet,struct dc_stream_state * stream)3498 static void set_hdr_static_info_packet(
3499 		struct dc_info_packet *info_packet,
3500 		struct dc_stream_state *stream)
3501 {
3502 	/* HDR Static Metadata info packet for HDR10 */
3503 
3504 	if (!stream->hdr_static_metadata.valid ||
3505 			stream->use_dynamic_meta)
3506 		return;
3507 
3508 	*info_packet = stream->hdr_static_metadata;
3509 }
3510 
set_vsc_info_packet(struct dc_info_packet * info_packet,struct dc_stream_state * stream)3511 static void set_vsc_info_packet(
3512 		struct dc_info_packet *info_packet,
3513 		struct dc_stream_state *stream)
3514 {
3515 	if (!stream->vsc_infopacket.valid)
3516 		return;
3517 
3518 	*info_packet = stream->vsc_infopacket;
3519 }
set_hfvs_info_packet(struct dc_info_packet * info_packet,struct dc_stream_state * stream)3520 static void set_hfvs_info_packet(
3521 		struct dc_info_packet *info_packet,
3522 		struct dc_stream_state *stream)
3523 {
3524 	if (!stream->hfvsif_infopacket.valid)
3525 		return;
3526 
3527 	*info_packet = stream->hfvsif_infopacket;
3528 }
3529 
adaptive_sync_override_dp_info_packets_sdp_line_num(const struct dc_crtc_timing * timing,struct enc_sdp_line_num * sdp_line_num,struct _vcs_dpi_display_pipe_dest_params_st * pipe_dlg_param)3530 static void adaptive_sync_override_dp_info_packets_sdp_line_num(
3531 		const struct dc_crtc_timing *timing,
3532 		struct enc_sdp_line_num *sdp_line_num,
3533 		struct _vcs_dpi_display_pipe_dest_params_st *pipe_dlg_param)
3534 {
3535 	uint32_t asic_blank_start = 0;
3536 	uint32_t asic_blank_end   = 0;
3537 	uint32_t v_update = 0;
3538 
3539 	const struct dc_crtc_timing *tg = timing;
3540 
3541 	/* blank_start = frame end - front porch */
3542 	asic_blank_start = tg->v_total - tg->v_front_porch;
3543 
3544 	/* blank_end = blank_start - active */
3545 	asic_blank_end = (asic_blank_start - tg->v_border_bottom -
3546 						tg->v_addressable - tg->v_border_top);
3547 
3548 	if (pipe_dlg_param->vstartup_start > asic_blank_end) {
3549 		v_update = (tg->v_total - (pipe_dlg_param->vstartup_start - asic_blank_end));
3550 		sdp_line_num->adaptive_sync_line_num_valid = true;
3551 		sdp_line_num->adaptive_sync_line_num = (tg->v_total - v_update - 1);
3552 	} else {
3553 		sdp_line_num->adaptive_sync_line_num_valid = false;
3554 		sdp_line_num->adaptive_sync_line_num = 0;
3555 	}
3556 }
3557 
set_adaptive_sync_info_packet(struct dc_info_packet * info_packet,const struct dc_stream_state * stream,struct encoder_info_frame * info_frame,struct _vcs_dpi_display_pipe_dest_params_st * pipe_dlg_param)3558 static void set_adaptive_sync_info_packet(
3559 		struct dc_info_packet *info_packet,
3560 		const struct dc_stream_state *stream,
3561 		struct encoder_info_frame *info_frame,
3562 		struct _vcs_dpi_display_pipe_dest_params_st *pipe_dlg_param)
3563 {
3564 	if (!stream->adaptive_sync_infopacket.valid)
3565 		return;
3566 
3567 	adaptive_sync_override_dp_info_packets_sdp_line_num(
3568 			&stream->timing,
3569 			&info_frame->sdp_line_num,
3570 			pipe_dlg_param);
3571 
3572 	*info_packet = stream->adaptive_sync_infopacket;
3573 }
3574 
set_vtem_info_packet(struct dc_info_packet * info_packet,struct dc_stream_state * stream)3575 static void set_vtem_info_packet(
3576 		struct dc_info_packet *info_packet,
3577 		struct dc_stream_state *stream)
3578 {
3579 	if (!stream->vtem_infopacket.valid)
3580 		return;
3581 
3582 	*info_packet = stream->vtem_infopacket;
3583 }
3584 
dc_resource_state_destruct(struct dc_state * context)3585 void dc_resource_state_destruct(struct dc_state *context)
3586 {
3587 	int i, j;
3588 
3589 	for (i = 0; i < context->stream_count; i++) {
3590 		for (j = 0; j < context->stream_status[i].plane_count; j++)
3591 			dc_plane_state_release(
3592 				context->stream_status[i].plane_states[j]);
3593 
3594 		context->stream_status[i].plane_count = 0;
3595 		dc_stream_release(context->streams[i]);
3596 		context->streams[i] = NULL;
3597 	}
3598 	context->stream_count = 0;
3599 }
3600 
dc_resource_state_copy_construct(const struct dc_state * src_ctx,struct dc_state * dst_ctx)3601 void dc_resource_state_copy_construct(
3602 		const struct dc_state *src_ctx,
3603 		struct dc_state *dst_ctx)
3604 {
3605 	int i, j;
3606 	struct kref refcount = dst_ctx->refcount;
3607 
3608 	*dst_ctx = *src_ctx;
3609 
3610 	for (i = 0; i < MAX_PIPES; i++) {
3611 		struct pipe_ctx *cur_pipe = &dst_ctx->res_ctx.pipe_ctx[i];
3612 
3613 		if (cur_pipe->top_pipe)
3614 			cur_pipe->top_pipe =  &dst_ctx->res_ctx.pipe_ctx[cur_pipe->top_pipe->pipe_idx];
3615 
3616 		if (cur_pipe->bottom_pipe)
3617 			cur_pipe->bottom_pipe = &dst_ctx->res_ctx.pipe_ctx[cur_pipe->bottom_pipe->pipe_idx];
3618 
3619 		if (cur_pipe->next_odm_pipe)
3620 			cur_pipe->next_odm_pipe =  &dst_ctx->res_ctx.pipe_ctx[cur_pipe->next_odm_pipe->pipe_idx];
3621 
3622 		if (cur_pipe->prev_odm_pipe)
3623 			cur_pipe->prev_odm_pipe = &dst_ctx->res_ctx.pipe_ctx[cur_pipe->prev_odm_pipe->pipe_idx];
3624 	}
3625 
3626 	for (i = 0; i < dst_ctx->stream_count; i++) {
3627 		dc_stream_retain(dst_ctx->streams[i]);
3628 		for (j = 0; j < dst_ctx->stream_status[i].plane_count; j++)
3629 			dc_plane_state_retain(
3630 				dst_ctx->stream_status[i].plane_states[j]);
3631 	}
3632 
3633 	/* context refcount should not be overridden */
3634 	dst_ctx->refcount = refcount;
3635 
3636 }
3637 
dc_resource_find_first_free_pll(struct resource_context * res_ctx,const struct resource_pool * pool)3638 struct clock_source *dc_resource_find_first_free_pll(
3639 		struct resource_context *res_ctx,
3640 		const struct resource_pool *pool)
3641 {
3642 	int i;
3643 
3644 	for (i = 0; i < pool->clk_src_count; ++i) {
3645 		if (res_ctx->clock_source_ref_count[i] == 0)
3646 			return pool->clock_sources[i];
3647 	}
3648 
3649 	return NULL;
3650 }
3651 
resource_build_info_frame(struct pipe_ctx * pipe_ctx)3652 void resource_build_info_frame(struct pipe_ctx *pipe_ctx)
3653 {
3654 	enum signal_type signal = SIGNAL_TYPE_NONE;
3655 	struct encoder_info_frame *info = &pipe_ctx->stream_res.encoder_info_frame;
3656 
3657 	/* default all packets to invalid */
3658 	info->avi.valid = false;
3659 	info->gamut.valid = false;
3660 	info->vendor.valid = false;
3661 	info->spd.valid = false;
3662 	info->hdrsmd.valid = false;
3663 	info->vsc.valid = false;
3664 	info->hfvsif.valid = false;
3665 	info->vtem.valid = false;
3666 	info->adaptive_sync.valid = false;
3667 	signal = pipe_ctx->stream->signal;
3668 
3669 	/* HDMi and DP have different info packets*/
3670 	if (dc_is_hdmi_signal(signal)) {
3671 		set_avi_info_frame(&info->avi, pipe_ctx);
3672 
3673 		set_vendor_info_packet(&info->vendor, pipe_ctx->stream);
3674 		set_hfvs_info_packet(&info->hfvsif, pipe_ctx->stream);
3675 		set_vtem_info_packet(&info->vtem, pipe_ctx->stream);
3676 
3677 		set_spd_info_packet(&info->spd, pipe_ctx->stream);
3678 
3679 		set_hdr_static_info_packet(&info->hdrsmd, pipe_ctx->stream);
3680 
3681 	} else if (dc_is_dp_signal(signal)) {
3682 		set_vsc_info_packet(&info->vsc, pipe_ctx->stream);
3683 
3684 		set_spd_info_packet(&info->spd, pipe_ctx->stream);
3685 
3686 		set_hdr_static_info_packet(&info->hdrsmd, pipe_ctx->stream);
3687 		set_adaptive_sync_info_packet(&info->adaptive_sync,
3688 										pipe_ctx->stream,
3689 										info,
3690 										&pipe_ctx->pipe_dlg_param);
3691 	}
3692 
3693 	patch_gamut_packet_checksum(&info->gamut);
3694 }
3695 
resource_map_clock_resources(const struct dc * dc,struct dc_state * context,struct dc_stream_state * stream)3696 enum dc_status resource_map_clock_resources(
3697 		const struct dc  *dc,
3698 		struct dc_state *context,
3699 		struct dc_stream_state *stream)
3700 {
3701 	/* acquire new resources */
3702 	const struct resource_pool *pool = dc->res_pool;
3703 	struct pipe_ctx *pipe_ctx = resource_get_otg_master_for_stream(
3704 				&context->res_ctx, stream);
3705 
3706 	if (!pipe_ctx)
3707 		return DC_ERROR_UNEXPECTED;
3708 
3709 	if (dc_is_dp_signal(pipe_ctx->stream->signal)
3710 		|| pipe_ctx->stream->signal == SIGNAL_TYPE_VIRTUAL)
3711 		pipe_ctx->clock_source = pool->dp_clock_source;
3712 	else {
3713 		pipe_ctx->clock_source = NULL;
3714 
3715 		if (!dc->config.disable_disp_pll_sharing)
3716 			pipe_ctx->clock_source = resource_find_used_clk_src_for_sharing(
3717 				&context->res_ctx,
3718 				pipe_ctx);
3719 
3720 		if (pipe_ctx->clock_source == NULL)
3721 			pipe_ctx->clock_source =
3722 				dc_resource_find_first_free_pll(
3723 					&context->res_ctx,
3724 					pool);
3725 	}
3726 
3727 	if (pipe_ctx->clock_source == NULL)
3728 		return DC_NO_CLOCK_SOURCE_RESOURCE;
3729 
3730 	resource_reference_clock_source(
3731 		&context->res_ctx, pool,
3732 		pipe_ctx->clock_source);
3733 
3734 	return DC_OK;
3735 }
3736 
3737 /*
3738  * Note: We need to disable output if clock sources change,
3739  * since bios does optimization and doesn't apply if changing
3740  * PHY when not already disabled.
3741  */
pipe_need_reprogram(struct pipe_ctx * pipe_ctx_old,struct pipe_ctx * pipe_ctx)3742 bool pipe_need_reprogram(
3743 		struct pipe_ctx *pipe_ctx_old,
3744 		struct pipe_ctx *pipe_ctx)
3745 {
3746 	if (!pipe_ctx_old->stream)
3747 		return false;
3748 
3749 	if (pipe_ctx_old->stream->sink != pipe_ctx->stream->sink)
3750 		return true;
3751 
3752 	if (pipe_ctx_old->stream->signal != pipe_ctx->stream->signal)
3753 		return true;
3754 
3755 	if (pipe_ctx_old->stream_res.audio != pipe_ctx->stream_res.audio)
3756 		return true;
3757 
3758 	if (pipe_ctx_old->clock_source != pipe_ctx->clock_source
3759 			&& pipe_ctx_old->stream != pipe_ctx->stream)
3760 		return true;
3761 
3762 	if (pipe_ctx_old->stream_res.stream_enc != pipe_ctx->stream_res.stream_enc)
3763 		return true;
3764 
3765 	if (dc_is_timing_changed(pipe_ctx_old->stream, pipe_ctx->stream))
3766 		return true;
3767 
3768 	if (pipe_ctx_old->stream->dpms_off != pipe_ctx->stream->dpms_off)
3769 		return true;
3770 
3771 	if (false == pipe_ctx_old->stream->link->link_state_valid &&
3772 		false == pipe_ctx_old->stream->dpms_off)
3773 		return true;
3774 
3775 	if (pipe_ctx_old->stream_res.dsc != pipe_ctx->stream_res.dsc)
3776 		return true;
3777 
3778 	if (pipe_ctx_old->stream_res.hpo_dp_stream_enc != pipe_ctx->stream_res.hpo_dp_stream_enc)
3779 		return true;
3780 	if (pipe_ctx_old->link_res.hpo_dp_link_enc != pipe_ctx->link_res.hpo_dp_link_enc)
3781 		return true;
3782 
3783 	/* DIG link encoder resource assignment for stream changed. */
3784 	if (pipe_ctx_old->stream->ctx->dc->res_pool->funcs->link_encs_assign) {
3785 		bool need_reprogram = false;
3786 		struct dc *dc = pipe_ctx_old->stream->ctx->dc;
3787 		struct link_encoder *link_enc_prev =
3788 			link_enc_cfg_get_link_enc_used_by_stream_current(dc, pipe_ctx_old->stream);
3789 
3790 		if (link_enc_prev != pipe_ctx->stream->link_enc)
3791 			need_reprogram = true;
3792 
3793 		return need_reprogram;
3794 	}
3795 
3796 	return false;
3797 }
3798 
resource_build_bit_depth_reduction_params(struct dc_stream_state * stream,struct bit_depth_reduction_params * fmt_bit_depth)3799 void resource_build_bit_depth_reduction_params(struct dc_stream_state *stream,
3800 		struct bit_depth_reduction_params *fmt_bit_depth)
3801 {
3802 	enum dc_dither_option option = stream->dither_option;
3803 	enum dc_pixel_encoding pixel_encoding =
3804 			stream->timing.pixel_encoding;
3805 
3806 	memset(fmt_bit_depth, 0, sizeof(*fmt_bit_depth));
3807 
3808 	if (option == DITHER_OPTION_DEFAULT) {
3809 		switch (stream->timing.display_color_depth) {
3810 		case COLOR_DEPTH_666:
3811 			option = DITHER_OPTION_SPATIAL6;
3812 			break;
3813 		case COLOR_DEPTH_888:
3814 			option = DITHER_OPTION_SPATIAL8;
3815 			break;
3816 		case COLOR_DEPTH_101010:
3817 			option = DITHER_OPTION_SPATIAL10;
3818 			break;
3819 		default:
3820 			option = DITHER_OPTION_DISABLE;
3821 		}
3822 	}
3823 
3824 	if (option == DITHER_OPTION_DISABLE)
3825 		return;
3826 
3827 	if (option == DITHER_OPTION_TRUN6) {
3828 		fmt_bit_depth->flags.TRUNCATE_ENABLED = 1;
3829 		fmt_bit_depth->flags.TRUNCATE_DEPTH = 0;
3830 	} else if (option == DITHER_OPTION_TRUN8 ||
3831 			option == DITHER_OPTION_TRUN8_SPATIAL6 ||
3832 			option == DITHER_OPTION_TRUN8_FM6) {
3833 		fmt_bit_depth->flags.TRUNCATE_ENABLED = 1;
3834 		fmt_bit_depth->flags.TRUNCATE_DEPTH = 1;
3835 	} else if (option == DITHER_OPTION_TRUN10        ||
3836 			option == DITHER_OPTION_TRUN10_SPATIAL6   ||
3837 			option == DITHER_OPTION_TRUN10_SPATIAL8   ||
3838 			option == DITHER_OPTION_TRUN10_FM8     ||
3839 			option == DITHER_OPTION_TRUN10_FM6     ||
3840 			option == DITHER_OPTION_TRUN10_SPATIAL8_FM6) {
3841 		fmt_bit_depth->flags.TRUNCATE_ENABLED = 1;
3842 		fmt_bit_depth->flags.TRUNCATE_DEPTH = 2;
3843 	}
3844 
3845 	/* special case - Formatter can only reduce by 4 bits at most.
3846 	 * When reducing from 12 to 6 bits,
3847 	 * HW recommends we use trunc with round mode
3848 	 * (if we did nothing, trunc to 10 bits would be used)
3849 	 * note that any 12->10 bit reduction is ignored prior to DCE8,
3850 	 * as the input was 10 bits.
3851 	 */
3852 	if (option == DITHER_OPTION_SPATIAL6_FRAME_RANDOM ||
3853 			option == DITHER_OPTION_SPATIAL6 ||
3854 			option == DITHER_OPTION_FM6) {
3855 		fmt_bit_depth->flags.TRUNCATE_ENABLED = 1;
3856 		fmt_bit_depth->flags.TRUNCATE_DEPTH = 2;
3857 		fmt_bit_depth->flags.TRUNCATE_MODE = 1;
3858 	}
3859 
3860 	/* spatial dither
3861 	 * note that spatial modes 1-3 are never used
3862 	 */
3863 	if (option == DITHER_OPTION_SPATIAL6_FRAME_RANDOM            ||
3864 			option == DITHER_OPTION_SPATIAL6 ||
3865 			option == DITHER_OPTION_TRUN10_SPATIAL6      ||
3866 			option == DITHER_OPTION_TRUN8_SPATIAL6) {
3867 		fmt_bit_depth->flags.SPATIAL_DITHER_ENABLED = 1;
3868 		fmt_bit_depth->flags.SPATIAL_DITHER_DEPTH = 0;
3869 		fmt_bit_depth->flags.HIGHPASS_RANDOM = 1;
3870 		fmt_bit_depth->flags.RGB_RANDOM =
3871 				(pixel_encoding == PIXEL_ENCODING_RGB) ? 1 : 0;
3872 	} else if (option == DITHER_OPTION_SPATIAL8_FRAME_RANDOM            ||
3873 			option == DITHER_OPTION_SPATIAL8 ||
3874 			option == DITHER_OPTION_SPATIAL8_FM6        ||
3875 			option == DITHER_OPTION_TRUN10_SPATIAL8      ||
3876 			option == DITHER_OPTION_TRUN10_SPATIAL8_FM6) {
3877 		fmt_bit_depth->flags.SPATIAL_DITHER_ENABLED = 1;
3878 		fmt_bit_depth->flags.SPATIAL_DITHER_DEPTH = 1;
3879 		fmt_bit_depth->flags.HIGHPASS_RANDOM = 1;
3880 		fmt_bit_depth->flags.RGB_RANDOM =
3881 				(pixel_encoding == PIXEL_ENCODING_RGB) ? 1 : 0;
3882 	} else if (option == DITHER_OPTION_SPATIAL10_FRAME_RANDOM ||
3883 			option == DITHER_OPTION_SPATIAL10 ||
3884 			option == DITHER_OPTION_SPATIAL10_FM8 ||
3885 			option == DITHER_OPTION_SPATIAL10_FM6) {
3886 		fmt_bit_depth->flags.SPATIAL_DITHER_ENABLED = 1;
3887 		fmt_bit_depth->flags.SPATIAL_DITHER_DEPTH = 2;
3888 		fmt_bit_depth->flags.HIGHPASS_RANDOM = 1;
3889 		fmt_bit_depth->flags.RGB_RANDOM =
3890 				(pixel_encoding == PIXEL_ENCODING_RGB) ? 1 : 0;
3891 	}
3892 
3893 	if (option == DITHER_OPTION_SPATIAL6 ||
3894 			option == DITHER_OPTION_SPATIAL8 ||
3895 			option == DITHER_OPTION_SPATIAL10) {
3896 		fmt_bit_depth->flags.FRAME_RANDOM = 0;
3897 	} else {
3898 		fmt_bit_depth->flags.FRAME_RANDOM = 1;
3899 	}
3900 
3901 	//////////////////////
3902 	//// temporal dither
3903 	//////////////////////
3904 	if (option == DITHER_OPTION_FM6           ||
3905 			option == DITHER_OPTION_SPATIAL8_FM6     ||
3906 			option == DITHER_OPTION_SPATIAL10_FM6     ||
3907 			option == DITHER_OPTION_TRUN10_FM6     ||
3908 			option == DITHER_OPTION_TRUN8_FM6      ||
3909 			option == DITHER_OPTION_TRUN10_SPATIAL8_FM6) {
3910 		fmt_bit_depth->flags.FRAME_MODULATION_ENABLED = 1;
3911 		fmt_bit_depth->flags.FRAME_MODULATION_DEPTH = 0;
3912 	} else if (option == DITHER_OPTION_FM8        ||
3913 			option == DITHER_OPTION_SPATIAL10_FM8  ||
3914 			option == DITHER_OPTION_TRUN10_FM8) {
3915 		fmt_bit_depth->flags.FRAME_MODULATION_ENABLED = 1;
3916 		fmt_bit_depth->flags.FRAME_MODULATION_DEPTH = 1;
3917 	} else if (option == DITHER_OPTION_FM10) {
3918 		fmt_bit_depth->flags.FRAME_MODULATION_ENABLED = 1;
3919 		fmt_bit_depth->flags.FRAME_MODULATION_DEPTH = 2;
3920 	}
3921 
3922 	fmt_bit_depth->pixel_encoding = pixel_encoding;
3923 }
3924 
dc_validate_stream(struct dc * dc,struct dc_stream_state * stream)3925 enum dc_status dc_validate_stream(struct dc *dc, struct dc_stream_state *stream)
3926 {
3927 	struct dc_link *link = stream->link;
3928 	struct timing_generator *tg = dc->res_pool->timing_generators[0];
3929 	enum dc_status res = DC_OK;
3930 
3931 	calculate_phy_pix_clks(stream);
3932 
3933 	if (!tg->funcs->validate_timing(tg, &stream->timing))
3934 		res = DC_FAIL_CONTROLLER_VALIDATE;
3935 
3936 	if (res == DC_OK) {
3937 		if (link->ep_type == DISPLAY_ENDPOINT_PHY &&
3938 				!link->link_enc->funcs->validate_output_with_stream(
3939 						link->link_enc, stream))
3940 			res = DC_FAIL_ENC_VALIDATE;
3941 	}
3942 
3943 	/* TODO: validate audio ASIC caps, encoder */
3944 
3945 	if (res == DC_OK)
3946 		res = dc->link_srv->validate_mode_timing(stream,
3947 		      link,
3948 		      &stream->timing);
3949 
3950 	return res;
3951 }
3952 
dc_validate_plane(struct dc * dc,const struct dc_plane_state * plane_state)3953 enum dc_status dc_validate_plane(struct dc *dc, const struct dc_plane_state *plane_state)
3954 {
3955 	enum dc_status res = DC_OK;
3956 
3957 	/* check if surface has invalid dimensions */
3958 	if (plane_state->src_rect.width == 0 || plane_state->src_rect.height == 0 ||
3959 		plane_state->dst_rect.width == 0 || plane_state->dst_rect.height == 0)
3960 		return DC_FAIL_SURFACE_VALIDATE;
3961 
3962 	/* TODO For now validates pixel format only */
3963 	if (dc->res_pool->funcs->validate_plane)
3964 		return dc->res_pool->funcs->validate_plane(plane_state, &dc->caps);
3965 
3966 	return res;
3967 }
3968 
resource_pixel_format_to_bpp(enum surface_pixel_format format)3969 unsigned int resource_pixel_format_to_bpp(enum surface_pixel_format format)
3970 {
3971 	switch (format) {
3972 	case SURFACE_PIXEL_FORMAT_GRPH_PALETA_256_COLORS:
3973 		return 8;
3974 	case SURFACE_PIXEL_FORMAT_VIDEO_420_YCbCr:
3975 	case SURFACE_PIXEL_FORMAT_VIDEO_420_YCrCb:
3976 		return 12;
3977 	case SURFACE_PIXEL_FORMAT_GRPH_ARGB1555:
3978 	case SURFACE_PIXEL_FORMAT_GRPH_RGB565:
3979 	case SURFACE_PIXEL_FORMAT_VIDEO_420_10bpc_YCbCr:
3980 	case SURFACE_PIXEL_FORMAT_VIDEO_420_10bpc_YCrCb:
3981 		return 16;
3982 	case SURFACE_PIXEL_FORMAT_GRPH_ARGB8888:
3983 	case SURFACE_PIXEL_FORMAT_GRPH_ABGR8888:
3984 	case SURFACE_PIXEL_FORMAT_GRPH_ARGB2101010:
3985 	case SURFACE_PIXEL_FORMAT_GRPH_ABGR2101010:
3986 	case SURFACE_PIXEL_FORMAT_GRPH_ABGR2101010_XR_BIAS:
3987 	case SURFACE_PIXEL_FORMAT_GRPH_RGBE:
3988 	case SURFACE_PIXEL_FORMAT_GRPH_RGBE_ALPHA:
3989 		return 32;
3990 	case SURFACE_PIXEL_FORMAT_GRPH_ARGB16161616:
3991 	case SURFACE_PIXEL_FORMAT_GRPH_ABGR16161616:
3992 	case SURFACE_PIXEL_FORMAT_GRPH_ARGB16161616F:
3993 	case SURFACE_PIXEL_FORMAT_GRPH_ABGR16161616F:
3994 		return 64;
3995 	default:
3996 		ASSERT_CRITICAL(false);
3997 		return -1;
3998 	}
3999 }
get_max_audio_sample_rate(struct audio_mode * modes)4000 static unsigned int get_max_audio_sample_rate(struct audio_mode *modes)
4001 {
4002 	if (modes) {
4003 		if (modes->sample_rates.rate.RATE_192)
4004 			return 192000;
4005 		if (modes->sample_rates.rate.RATE_176_4)
4006 			return 176400;
4007 		if (modes->sample_rates.rate.RATE_96)
4008 			return 96000;
4009 		if (modes->sample_rates.rate.RATE_88_2)
4010 			return 88200;
4011 		if (modes->sample_rates.rate.RATE_48)
4012 			return 48000;
4013 		if (modes->sample_rates.rate.RATE_44_1)
4014 			return 44100;
4015 		if (modes->sample_rates.rate.RATE_32)
4016 			return 32000;
4017 	}
4018 	/*original logic when no audio info*/
4019 	return 441000;
4020 }
4021 
get_audio_check(struct audio_info * aud_modes,struct audio_check * audio_chk)4022 void get_audio_check(struct audio_info *aud_modes,
4023 	struct audio_check *audio_chk)
4024 {
4025 	unsigned int i;
4026 	unsigned int max_sample_rate = 0;
4027 
4028 	if (aud_modes) {
4029 		audio_chk->audio_packet_type = 0x2;/*audio sample packet AP = .25 for layout0, 1 for layout1*/
4030 
4031 		audio_chk->max_audiosample_rate = 0;
4032 		for (i = 0; i < aud_modes->mode_count; i++) {
4033 			max_sample_rate = get_max_audio_sample_rate(&aud_modes->modes[i]);
4034 			if (audio_chk->max_audiosample_rate < max_sample_rate)
4035 				audio_chk->max_audiosample_rate = max_sample_rate;
4036 			/*dts takes the same as type 2: AP = 0.25*/
4037 		}
4038 		/*check which one take more bandwidth*/
4039 		if (audio_chk->max_audiosample_rate > 192000)
4040 			audio_chk->audio_packet_type = 0x9;/*AP =1*/
4041 		audio_chk->acat = 0;/*not support*/
4042 	}
4043 }
4044 
get_temp_hpo_dp_link_enc(const struct resource_context * res_ctx,const struct resource_pool * const pool,const struct dc_link * link)4045 static struct hpo_dp_link_encoder *get_temp_hpo_dp_link_enc(
4046 		const struct resource_context *res_ctx,
4047 		const struct resource_pool *const pool,
4048 		const struct dc_link *link)
4049 {
4050 	struct hpo_dp_link_encoder *hpo_dp_link_enc = NULL;
4051 	int enc_index;
4052 
4053 	enc_index = find_acquired_hpo_dp_link_enc_for_link(res_ctx, link);
4054 
4055 	if (enc_index < 0)
4056 		enc_index = find_free_hpo_dp_link_enc(res_ctx, pool);
4057 
4058 	if (enc_index >= 0)
4059 		hpo_dp_link_enc = pool->hpo_dp_link_enc[enc_index];
4060 
4061 	return hpo_dp_link_enc;
4062 }
4063 
get_temp_dp_link_res(struct dc_link * link,struct link_resource * link_res,struct dc_link_settings * link_settings)4064 bool get_temp_dp_link_res(struct dc_link *link,
4065 		struct link_resource *link_res,
4066 		struct dc_link_settings *link_settings)
4067 {
4068 	const struct dc *dc  = link->dc;
4069 	const struct resource_context *res_ctx = &dc->current_state->res_ctx;
4070 
4071 	memset(link_res, 0, sizeof(*link_res));
4072 
4073 	if (dc->link_srv->dp_get_encoding_format(link_settings) == DP_128b_132b_ENCODING) {
4074 		link_res->hpo_dp_link_enc = get_temp_hpo_dp_link_enc(res_ctx,
4075 				dc->res_pool, link);
4076 		if (!link_res->hpo_dp_link_enc)
4077 			return false;
4078 	}
4079 	return true;
4080 }
4081 
reset_syncd_pipes_from_disabled_pipes(struct dc * dc,struct dc_state * context)4082 void reset_syncd_pipes_from_disabled_pipes(struct dc *dc,
4083 		struct dc_state *context)
4084 {
4085 	int i, j;
4086 	struct pipe_ctx *pipe_ctx_old, *pipe_ctx, *pipe_ctx_syncd;
4087 
4088 	/* If pipe backend is reset, need to reset pipe syncd status */
4089 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
4090 		pipe_ctx_old =	&dc->current_state->res_ctx.pipe_ctx[i];
4091 		pipe_ctx = &context->res_ctx.pipe_ctx[i];
4092 
4093 		if (!resource_is_pipe_type(pipe_ctx_old, OTG_MASTER))
4094 			continue;
4095 
4096 		if (!pipe_ctx->stream ||
4097 				pipe_need_reprogram(pipe_ctx_old, pipe_ctx)) {
4098 
4099 			/* Reset all the syncd pipes from the disabled pipe */
4100 			for (j = 0; j < dc->res_pool->pipe_count; j++) {
4101 				pipe_ctx_syncd = &context->res_ctx.pipe_ctx[j];
4102 				if ((GET_PIPE_SYNCD_FROM_PIPE(pipe_ctx_syncd) == pipe_ctx_old->pipe_idx) ||
4103 					!IS_PIPE_SYNCD_VALID(pipe_ctx_syncd))
4104 					SET_PIPE_SYNCD_TO_PIPE(pipe_ctx_syncd, j);
4105 			}
4106 		}
4107 	}
4108 }
4109 
check_syncd_pipes_for_disabled_master_pipe(struct dc * dc,struct dc_state * context,uint8_t disabled_master_pipe_idx)4110 void check_syncd_pipes_for_disabled_master_pipe(struct dc *dc,
4111 	struct dc_state *context,
4112 	uint8_t disabled_master_pipe_idx)
4113 {
4114 	int i;
4115 	struct pipe_ctx *pipe_ctx, *pipe_ctx_check;
4116 
4117 	pipe_ctx = &context->res_ctx.pipe_ctx[disabled_master_pipe_idx];
4118 	if ((GET_PIPE_SYNCD_FROM_PIPE(pipe_ctx) != disabled_master_pipe_idx) ||
4119 		!IS_PIPE_SYNCD_VALID(pipe_ctx))
4120 		SET_PIPE_SYNCD_TO_PIPE(pipe_ctx, disabled_master_pipe_idx);
4121 
4122 	/* for the pipe disabled, check if any slave pipe exists and assert */
4123 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
4124 		pipe_ctx_check = &context->res_ctx.pipe_ctx[i];
4125 
4126 		if ((GET_PIPE_SYNCD_FROM_PIPE(pipe_ctx_check) == disabled_master_pipe_idx) &&
4127 		    IS_PIPE_SYNCD_VALID(pipe_ctx_check) && (i != disabled_master_pipe_idx)) {
4128 			struct pipe_ctx *first_pipe = pipe_ctx_check;
4129 
4130 			while (first_pipe->prev_odm_pipe)
4131 				first_pipe = first_pipe->prev_odm_pipe;
4132 			/* When ODM combine is enabled, this case is expected. If the disabled pipe
4133 			 * is part of the ODM tree, then we should not print an error.
4134 			 * */
4135 			if (first_pipe->pipe_idx == disabled_master_pipe_idx)
4136 				continue;
4137 
4138 			DC_ERR("DC: Failure: pipe_idx[%d] syncd with disabled master pipe_idx[%d]\n",
4139 				   i, disabled_master_pipe_idx);
4140 		}
4141 	}
4142 }
4143 
reset_sync_context_for_pipe(const struct dc * dc,struct dc_state * context,uint8_t pipe_idx)4144 void reset_sync_context_for_pipe(const struct dc *dc,
4145 	struct dc_state *context,
4146 	uint8_t pipe_idx)
4147 {
4148 	int i;
4149 	struct pipe_ctx *pipe_ctx_reset;
4150 
4151 	/* reset the otg sync context for the pipe and its slave pipes if any */
4152 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
4153 		pipe_ctx_reset = &context->res_ctx.pipe_ctx[i];
4154 
4155 		if (((GET_PIPE_SYNCD_FROM_PIPE(pipe_ctx_reset) == pipe_idx) &&
4156 			IS_PIPE_SYNCD_VALID(pipe_ctx_reset)) || (i == pipe_idx))
4157 			SET_PIPE_SYNCD_TO_PIPE(pipe_ctx_reset, i);
4158 	}
4159 }
4160 
resource_transmitter_to_phy_idx(const struct dc * dc,enum transmitter transmitter)4161 uint8_t resource_transmitter_to_phy_idx(const struct dc *dc, enum transmitter transmitter)
4162 {
4163 	/* TODO - get transmitter to phy idx mapping from DMUB */
4164 	uint8_t phy_idx = transmitter - TRANSMITTER_UNIPHY_A;
4165 
4166 	if (dc->ctx->dce_version == DCN_VERSION_3_1 &&
4167 			dc->ctx->asic_id.hw_internal_rev == YELLOW_CARP_B0) {
4168 		switch (transmitter) {
4169 		case TRANSMITTER_UNIPHY_A:
4170 			phy_idx = 0;
4171 			break;
4172 		case TRANSMITTER_UNIPHY_B:
4173 			phy_idx = 1;
4174 			break;
4175 		case TRANSMITTER_UNIPHY_C:
4176 			phy_idx = 5;
4177 			break;
4178 		case TRANSMITTER_UNIPHY_D:
4179 			phy_idx = 6;
4180 			break;
4181 		case TRANSMITTER_UNIPHY_E:
4182 			phy_idx = 4;
4183 			break;
4184 		default:
4185 			phy_idx = 0;
4186 			break;
4187 		}
4188 	}
4189 
4190 	return phy_idx;
4191 }
4192 
get_link_hwss(const struct dc_link * link,const struct link_resource * link_res)4193 const struct link_hwss *get_link_hwss(const struct dc_link *link,
4194 		const struct link_resource *link_res)
4195 {
4196 	/* Link_hwss is only accessible by getter function instead of accessing
4197 	 * by pointers in dc with the intent to protect against breaking polymorphism.
4198 	 */
4199 	if (can_use_hpo_dp_link_hwss(link, link_res))
4200 		/* TODO: some assumes that if decided link settings is 128b/132b
4201 		 * channel coding format hpo_dp_link_enc should be used.
4202 		 * Others believe that if hpo_dp_link_enc is available in link
4203 		 * resource then hpo_dp_link_enc must be used. This bound between
4204 		 * hpo_dp_link_enc != NULL and decided link settings is loosely coupled
4205 		 * with a premise that both hpo_dp_link_enc pointer and decided link
4206 		 * settings are determined based on single policy function like
4207 		 * "decide_link_settings" from upper layer. This "convention"
4208 		 * cannot be maintained and enforced at current level.
4209 		 * Therefore a refactor is due so we can enforce a strong bound
4210 		 * between those two parameters at this level.
4211 		 *
4212 		 * To put it simple, we want to make enforcement at low level so that
4213 		 * we will not return link hwss if caller plans to do 8b/10b
4214 		 * with an hpo encoder. Or we can return a very dummy one that doesn't
4215 		 * do work for all functions
4216 		 */
4217 		return (requires_fixed_vs_pe_retimer_hpo_link_hwss(link) ?
4218 				get_hpo_fixed_vs_pe_retimer_dp_link_hwss() : get_hpo_dp_link_hwss());
4219 	else if (can_use_dpia_link_hwss(link, link_res))
4220 		return get_dpia_link_hwss();
4221 	else if (can_use_dio_link_hwss(link, link_res))
4222 		return (requires_fixed_vs_pe_retimer_dio_link_hwss(link)) ?
4223 				get_dio_fixed_vs_pe_retimer_link_hwss() : get_dio_link_hwss();
4224 	else
4225 		return get_virtual_link_hwss();
4226 }
4227 
is_h_timing_divisible_by_2(struct dc_stream_state * stream)4228 bool is_h_timing_divisible_by_2(struct dc_stream_state *stream)
4229 {
4230 	bool divisible = false;
4231 	uint16_t h_blank_start = 0;
4232 	uint16_t h_blank_end = 0;
4233 
4234 	if (stream) {
4235 		h_blank_start = stream->timing.h_total - stream->timing.h_front_porch;
4236 		h_blank_end = h_blank_start - stream->timing.h_addressable;
4237 
4238 		/* HTOTAL, Hblank start/end, and Hsync start/end all must be
4239 		 * divisible by 2 in order for the horizontal timing params
4240 		 * to be considered divisible by 2. Hsync start is always 0.
4241 		 */
4242 		divisible = (stream->timing.h_total % 2 == 0) &&
4243 				(h_blank_start % 2 == 0) &&
4244 				(h_blank_end % 2 == 0) &&
4245 				(stream->timing.h_sync_width % 2 == 0);
4246 	}
4247 	return divisible;
4248 }
4249 
dc_resource_acquire_secondary_pipe_for_mpc_odm(const struct dc * dc,struct dc_state * state,struct pipe_ctx * pri_pipe,struct pipe_ctx * sec_pipe,bool odm)4250 bool dc_resource_acquire_secondary_pipe_for_mpc_odm(
4251 		const struct dc *dc,
4252 		struct dc_state *state,
4253 		struct pipe_ctx *pri_pipe,
4254 		struct pipe_ctx *sec_pipe,
4255 		bool odm)
4256 {
4257 	int pipe_idx = sec_pipe->pipe_idx;
4258 	struct pipe_ctx *sec_top, *sec_bottom, *sec_next, *sec_prev;
4259 	const struct resource_pool *pool = dc->res_pool;
4260 
4261 	sec_top = sec_pipe->top_pipe;
4262 	sec_bottom = sec_pipe->bottom_pipe;
4263 	sec_next = sec_pipe->next_odm_pipe;
4264 	sec_prev = sec_pipe->prev_odm_pipe;
4265 
4266 	*sec_pipe = *pri_pipe;
4267 
4268 	sec_pipe->top_pipe = sec_top;
4269 	sec_pipe->bottom_pipe = sec_bottom;
4270 	sec_pipe->next_odm_pipe = sec_next;
4271 	sec_pipe->prev_odm_pipe = sec_prev;
4272 
4273 	sec_pipe->pipe_idx = pipe_idx;
4274 	sec_pipe->plane_res.mi = pool->mis[pipe_idx];
4275 	sec_pipe->plane_res.hubp = pool->hubps[pipe_idx];
4276 	sec_pipe->plane_res.ipp = pool->ipps[pipe_idx];
4277 	sec_pipe->plane_res.xfm = pool->transforms[pipe_idx];
4278 	sec_pipe->plane_res.dpp = pool->dpps[pipe_idx];
4279 	sec_pipe->plane_res.mpcc_inst = pool->dpps[pipe_idx]->inst;
4280 	sec_pipe->stream_res.dsc = NULL;
4281 	if (odm) {
4282 		if (!sec_pipe->top_pipe)
4283 			sec_pipe->stream_res.opp = pool->opps[pipe_idx];
4284 		else
4285 			sec_pipe->stream_res.opp = sec_pipe->top_pipe->stream_res.opp;
4286 		if (sec_pipe->stream->timing.flags.DSC == 1) {
4287 #if defined(CONFIG_DRM_AMD_DC_FP)
4288 			dcn20_acquire_dsc(dc, &state->res_ctx, &sec_pipe->stream_res.dsc, pipe_idx);
4289 #endif
4290 			ASSERT(sec_pipe->stream_res.dsc);
4291 			if (sec_pipe->stream_res.dsc == NULL)
4292 				return false;
4293 		}
4294 #if defined(CONFIG_DRM_AMD_DC_FP)
4295 		dcn20_build_mapped_resource(dc, state, sec_pipe->stream);
4296 #endif
4297 	}
4298 
4299 	return true;
4300 }
4301 
update_dp_encoder_resources_for_test_harness(const struct dc * dc,struct dc_state * context,struct pipe_ctx * pipe_ctx)4302 enum dc_status update_dp_encoder_resources_for_test_harness(const struct dc *dc,
4303 		struct dc_state *context,
4304 		struct pipe_ctx *pipe_ctx)
4305 {
4306 	if (dc->link_srv->dp_get_encoding_format(&pipe_ctx->link_config.dp_link_settings) == DP_128b_132b_ENCODING) {
4307 		if (pipe_ctx->stream_res.hpo_dp_stream_enc == NULL) {
4308 			pipe_ctx->stream_res.hpo_dp_stream_enc =
4309 					find_first_free_match_hpo_dp_stream_enc_for_link(
4310 							&context->res_ctx, dc->res_pool, pipe_ctx->stream);
4311 
4312 			if (!pipe_ctx->stream_res.hpo_dp_stream_enc)
4313 				return DC_NO_STREAM_ENC_RESOURCE;
4314 
4315 			update_hpo_dp_stream_engine_usage(
4316 					&context->res_ctx, dc->res_pool,
4317 					pipe_ctx->stream_res.hpo_dp_stream_enc,
4318 					true);
4319 		}
4320 
4321 		if (pipe_ctx->link_res.hpo_dp_link_enc == NULL) {
4322 			if (!add_hpo_dp_link_enc_to_ctx(&context->res_ctx, dc->res_pool, pipe_ctx, pipe_ctx->stream))
4323 				return DC_NO_LINK_ENC_RESOURCE;
4324 		}
4325 	} else {
4326 		if (pipe_ctx->stream_res.hpo_dp_stream_enc) {
4327 			update_hpo_dp_stream_engine_usage(
4328 					&context->res_ctx, dc->res_pool,
4329 					pipe_ctx->stream_res.hpo_dp_stream_enc,
4330 					false);
4331 			pipe_ctx->stream_res.hpo_dp_stream_enc = NULL;
4332 		}
4333 		if (pipe_ctx->link_res.hpo_dp_link_enc)
4334 			remove_hpo_dp_link_enc_from_ctx(&context->res_ctx, pipe_ctx, pipe_ctx->stream);
4335 	}
4336 
4337 	return DC_OK;
4338 }
4339 
4340