1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * IOMMU API for Renesas VMSA-compatible IPMMU
4 * Author: Laurent Pinchart <laurent.pinchart@ideasonboard.com>
5 *
6 * Copyright (C) 2014-2020 Renesas Electronics Corporation
7 */
8
9 #include <linux/bitmap.h>
10 #include <linux/delay.h>
11 #include <linux/dma-mapping.h>
12 #include <linux/err.h>
13 #include <linux/export.h>
14 #include <linux/init.h>
15 #include <linux/interrupt.h>
16 #include <linux/io.h>
17 #include <linux/io-pgtable.h>
18 #include <linux/iommu.h>
19 #include <linux/of.h>
20 #include <linux/of_device.h>
21 #include <linux/of_platform.h>
22 #include <linux/platform_device.h>
23 #include <linux/sizes.h>
24 #include <linux/slab.h>
25 #include <linux/sys_soc.h>
26
27 #if defined(CONFIG_ARM) && !defined(CONFIG_IOMMU_DMA)
28 #include <asm/dma-iommu.h>
29 #else
30 #define arm_iommu_create_mapping(...) NULL
31 #define arm_iommu_attach_device(...) -ENODEV
32 #define arm_iommu_release_mapping(...) do {} while (0)
33 #define arm_iommu_detach_device(...) do {} while (0)
34 #endif
35
36 #define IPMMU_CTX_MAX 16U
37 #define IPMMU_CTX_INVALID -1
38
39 #define IPMMU_UTLB_MAX 64U
40
41 struct ipmmu_features {
42 bool use_ns_alias_offset;
43 bool has_cache_leaf_nodes;
44 unsigned int number_of_contexts;
45 unsigned int num_utlbs;
46 bool setup_imbuscr;
47 bool twobit_imttbcr_sl0;
48 bool reserved_context;
49 bool cache_snoop;
50 unsigned int ctx_offset_base;
51 unsigned int ctx_offset_stride;
52 unsigned int utlb_offset_base;
53 };
54
55 struct ipmmu_vmsa_device {
56 struct device *dev;
57 void __iomem *base;
58 struct iommu_device iommu;
59 struct ipmmu_vmsa_device *root;
60 const struct ipmmu_features *features;
61 unsigned int num_ctx;
62 spinlock_t lock; /* Protects ctx and domains[] */
63 DECLARE_BITMAP(ctx, IPMMU_CTX_MAX);
64 struct ipmmu_vmsa_domain *domains[IPMMU_CTX_MAX];
65 s8 utlb_ctx[IPMMU_UTLB_MAX];
66
67 struct iommu_group *group;
68 struct dma_iommu_mapping *mapping;
69 };
70
71 struct ipmmu_vmsa_domain {
72 struct ipmmu_vmsa_device *mmu;
73 struct iommu_domain io_domain;
74
75 struct io_pgtable_cfg cfg;
76 struct io_pgtable_ops *iop;
77
78 unsigned int context_id;
79 struct mutex mutex; /* Protects mappings */
80 };
81
to_vmsa_domain(struct iommu_domain * dom)82 static struct ipmmu_vmsa_domain *to_vmsa_domain(struct iommu_domain *dom)
83 {
84 return container_of(dom, struct ipmmu_vmsa_domain, io_domain);
85 }
86
to_ipmmu(struct device * dev)87 static struct ipmmu_vmsa_device *to_ipmmu(struct device *dev)
88 {
89 return dev_iommu_priv_get(dev);
90 }
91
92 #define TLB_LOOP_TIMEOUT 100 /* 100us */
93
94 /* -----------------------------------------------------------------------------
95 * Registers Definition
96 */
97
98 #define IM_NS_ALIAS_OFFSET 0x800
99
100 /* MMU "context" registers */
101 #define IMCTR 0x0000 /* R-Car Gen2/3 */
102 #define IMCTR_INTEN (1 << 2) /* R-Car Gen2/3 */
103 #define IMCTR_FLUSH (1 << 1) /* R-Car Gen2/3 */
104 #define IMCTR_MMUEN (1 << 0) /* R-Car Gen2/3 */
105
106 #define IMTTBCR 0x0008 /* R-Car Gen2/3 */
107 #define IMTTBCR_EAE (1 << 31) /* R-Car Gen2/3 */
108 #define IMTTBCR_SH0_INNER_SHAREABLE (3 << 12) /* R-Car Gen2 only */
109 #define IMTTBCR_ORGN0_WB_WA (1 << 10) /* R-Car Gen2 only */
110 #define IMTTBCR_IRGN0_WB_WA (1 << 8) /* R-Car Gen2 only */
111 #define IMTTBCR_SL0_TWOBIT_LVL_1 (2 << 6) /* R-Car Gen3 only */
112 #define IMTTBCR_SL0_LVL_1 (1 << 4) /* R-Car Gen2 only */
113
114 #define IMBUSCR 0x000c /* R-Car Gen2 only */
115 #define IMBUSCR_DVM (1 << 2) /* R-Car Gen2 only */
116 #define IMBUSCR_BUSSEL_MASK (3 << 0) /* R-Car Gen2 only */
117
118 #define IMTTLBR0 0x0010 /* R-Car Gen2/3 */
119 #define IMTTUBR0 0x0014 /* R-Car Gen2/3 */
120
121 #define IMSTR 0x0020 /* R-Car Gen2/3 */
122 #define IMSTR_MHIT (1 << 4) /* R-Car Gen2/3 */
123 #define IMSTR_ABORT (1 << 2) /* R-Car Gen2/3 */
124 #define IMSTR_PF (1 << 1) /* R-Car Gen2/3 */
125 #define IMSTR_TF (1 << 0) /* R-Car Gen2/3 */
126
127 #define IMMAIR0 0x0028 /* R-Car Gen2/3 */
128
129 #define IMELAR 0x0030 /* R-Car Gen2/3, IMEAR on R-Car Gen2 */
130 #define IMEUAR 0x0034 /* R-Car Gen3 only */
131
132 /* uTLB registers */
133 #define IMUCTR(n) ((n) < 32 ? IMUCTR0(n) : IMUCTR32(n))
134 #define IMUCTR0(n) (0x0300 + ((n) * 16)) /* R-Car Gen2/3 */
135 #define IMUCTR32(n) (0x0600 + (((n) - 32) * 16)) /* R-Car Gen3 only */
136 #define IMUCTR_TTSEL_MMU(n) ((n) << 4) /* R-Car Gen2/3 */
137 #define IMUCTR_FLUSH (1 << 1) /* R-Car Gen2/3 */
138 #define IMUCTR_MMUEN (1 << 0) /* R-Car Gen2/3 */
139
140 #define IMUASID(n) ((n) < 32 ? IMUASID0(n) : IMUASID32(n))
141 #define IMUASID0(n) (0x0308 + ((n) * 16)) /* R-Car Gen2/3 */
142 #define IMUASID32(n) (0x0608 + (((n) - 32) * 16)) /* R-Car Gen3 only */
143
144 /* -----------------------------------------------------------------------------
145 * Root device handling
146 */
147
148 static struct platform_driver ipmmu_driver;
149
ipmmu_is_root(struct ipmmu_vmsa_device * mmu)150 static bool ipmmu_is_root(struct ipmmu_vmsa_device *mmu)
151 {
152 return mmu->root == mmu;
153 }
154
__ipmmu_check_device(struct device * dev,void * data)155 static int __ipmmu_check_device(struct device *dev, void *data)
156 {
157 struct ipmmu_vmsa_device *mmu = dev_get_drvdata(dev);
158 struct ipmmu_vmsa_device **rootp = data;
159
160 if (ipmmu_is_root(mmu))
161 *rootp = mmu;
162
163 return 0;
164 }
165
ipmmu_find_root(void)166 static struct ipmmu_vmsa_device *ipmmu_find_root(void)
167 {
168 struct ipmmu_vmsa_device *root = NULL;
169
170 return driver_for_each_device(&ipmmu_driver.driver, NULL, &root,
171 __ipmmu_check_device) == 0 ? root : NULL;
172 }
173
174 /* -----------------------------------------------------------------------------
175 * Read/Write Access
176 */
177
ipmmu_read(struct ipmmu_vmsa_device * mmu,unsigned int offset)178 static u32 ipmmu_read(struct ipmmu_vmsa_device *mmu, unsigned int offset)
179 {
180 return ioread32(mmu->base + offset);
181 }
182
ipmmu_write(struct ipmmu_vmsa_device * mmu,unsigned int offset,u32 data)183 static void ipmmu_write(struct ipmmu_vmsa_device *mmu, unsigned int offset,
184 u32 data)
185 {
186 iowrite32(data, mmu->base + offset);
187 }
188
ipmmu_ctx_reg(struct ipmmu_vmsa_device * mmu,unsigned int context_id,unsigned int reg)189 static unsigned int ipmmu_ctx_reg(struct ipmmu_vmsa_device *mmu,
190 unsigned int context_id, unsigned int reg)
191 {
192 unsigned int base = mmu->features->ctx_offset_base;
193
194 if (context_id > 7)
195 base += 0x800 - 8 * 0x40;
196
197 return base + context_id * mmu->features->ctx_offset_stride + reg;
198 }
199
ipmmu_ctx_read(struct ipmmu_vmsa_device * mmu,unsigned int context_id,unsigned int reg)200 static u32 ipmmu_ctx_read(struct ipmmu_vmsa_device *mmu,
201 unsigned int context_id, unsigned int reg)
202 {
203 return ipmmu_read(mmu, ipmmu_ctx_reg(mmu, context_id, reg));
204 }
205
ipmmu_ctx_write(struct ipmmu_vmsa_device * mmu,unsigned int context_id,unsigned int reg,u32 data)206 static void ipmmu_ctx_write(struct ipmmu_vmsa_device *mmu,
207 unsigned int context_id, unsigned int reg, u32 data)
208 {
209 ipmmu_write(mmu, ipmmu_ctx_reg(mmu, context_id, reg), data);
210 }
211
ipmmu_ctx_read_root(struct ipmmu_vmsa_domain * domain,unsigned int reg)212 static u32 ipmmu_ctx_read_root(struct ipmmu_vmsa_domain *domain,
213 unsigned int reg)
214 {
215 return ipmmu_ctx_read(domain->mmu->root, domain->context_id, reg);
216 }
217
ipmmu_ctx_write_root(struct ipmmu_vmsa_domain * domain,unsigned int reg,u32 data)218 static void ipmmu_ctx_write_root(struct ipmmu_vmsa_domain *domain,
219 unsigned int reg, u32 data)
220 {
221 ipmmu_ctx_write(domain->mmu->root, domain->context_id, reg, data);
222 }
223
ipmmu_ctx_write_all(struct ipmmu_vmsa_domain * domain,unsigned int reg,u32 data)224 static void ipmmu_ctx_write_all(struct ipmmu_vmsa_domain *domain,
225 unsigned int reg, u32 data)
226 {
227 if (domain->mmu != domain->mmu->root)
228 ipmmu_ctx_write(domain->mmu, domain->context_id, reg, data);
229
230 ipmmu_ctx_write(domain->mmu->root, domain->context_id, reg, data);
231 }
232
ipmmu_utlb_reg(struct ipmmu_vmsa_device * mmu,unsigned int reg)233 static u32 ipmmu_utlb_reg(struct ipmmu_vmsa_device *mmu, unsigned int reg)
234 {
235 return mmu->features->utlb_offset_base + reg;
236 }
237
ipmmu_imuasid_write(struct ipmmu_vmsa_device * mmu,unsigned int utlb,u32 data)238 static void ipmmu_imuasid_write(struct ipmmu_vmsa_device *mmu,
239 unsigned int utlb, u32 data)
240 {
241 ipmmu_write(mmu, ipmmu_utlb_reg(mmu, IMUASID(utlb)), data);
242 }
243
ipmmu_imuctr_write(struct ipmmu_vmsa_device * mmu,unsigned int utlb,u32 data)244 static void ipmmu_imuctr_write(struct ipmmu_vmsa_device *mmu,
245 unsigned int utlb, u32 data)
246 {
247 ipmmu_write(mmu, ipmmu_utlb_reg(mmu, IMUCTR(utlb)), data);
248 }
249
250 /* -----------------------------------------------------------------------------
251 * TLB and microTLB Management
252 */
253
254 /* Wait for any pending TLB invalidations to complete */
ipmmu_tlb_sync(struct ipmmu_vmsa_domain * domain)255 static void ipmmu_tlb_sync(struct ipmmu_vmsa_domain *domain)
256 {
257 unsigned int count = 0;
258
259 while (ipmmu_ctx_read_root(domain, IMCTR) & IMCTR_FLUSH) {
260 cpu_relax();
261 if (++count == TLB_LOOP_TIMEOUT) {
262 dev_err_ratelimited(domain->mmu->dev,
263 "TLB sync timed out -- MMU may be deadlocked\n");
264 return;
265 }
266 udelay(1);
267 }
268 }
269
ipmmu_tlb_invalidate(struct ipmmu_vmsa_domain * domain)270 static void ipmmu_tlb_invalidate(struct ipmmu_vmsa_domain *domain)
271 {
272 u32 reg;
273
274 reg = ipmmu_ctx_read_root(domain, IMCTR);
275 reg |= IMCTR_FLUSH;
276 ipmmu_ctx_write_all(domain, IMCTR, reg);
277
278 ipmmu_tlb_sync(domain);
279 }
280
281 /*
282 * Enable MMU translation for the microTLB.
283 */
ipmmu_utlb_enable(struct ipmmu_vmsa_domain * domain,unsigned int utlb)284 static void ipmmu_utlb_enable(struct ipmmu_vmsa_domain *domain,
285 unsigned int utlb)
286 {
287 struct ipmmu_vmsa_device *mmu = domain->mmu;
288
289 /*
290 * TODO: Reference-count the microTLB as several bus masters can be
291 * connected to the same microTLB.
292 */
293
294 /* TODO: What should we set the ASID to ? */
295 ipmmu_imuasid_write(mmu, utlb, 0);
296 /* TODO: Do we need to flush the microTLB ? */
297 ipmmu_imuctr_write(mmu, utlb, IMUCTR_TTSEL_MMU(domain->context_id) |
298 IMUCTR_FLUSH | IMUCTR_MMUEN);
299 mmu->utlb_ctx[utlb] = domain->context_id;
300 }
301
302 /*
303 * Disable MMU translation for the microTLB.
304 */
ipmmu_utlb_disable(struct ipmmu_vmsa_domain * domain,unsigned int utlb)305 static void ipmmu_utlb_disable(struct ipmmu_vmsa_domain *domain,
306 unsigned int utlb)
307 {
308 struct ipmmu_vmsa_device *mmu = domain->mmu;
309
310 ipmmu_imuctr_write(mmu, utlb, 0);
311 mmu->utlb_ctx[utlb] = IPMMU_CTX_INVALID;
312 }
313
ipmmu_tlb_flush_all(void * cookie)314 static void ipmmu_tlb_flush_all(void *cookie)
315 {
316 struct ipmmu_vmsa_domain *domain = cookie;
317
318 ipmmu_tlb_invalidate(domain);
319 }
320
ipmmu_tlb_flush(unsigned long iova,size_t size,size_t granule,void * cookie)321 static void ipmmu_tlb_flush(unsigned long iova, size_t size,
322 size_t granule, void *cookie)
323 {
324 ipmmu_tlb_flush_all(cookie);
325 }
326
327 static const struct iommu_flush_ops ipmmu_flush_ops = {
328 .tlb_flush_all = ipmmu_tlb_flush_all,
329 .tlb_flush_walk = ipmmu_tlb_flush,
330 };
331
332 /* -----------------------------------------------------------------------------
333 * Domain/Context Management
334 */
335
ipmmu_domain_allocate_context(struct ipmmu_vmsa_device * mmu,struct ipmmu_vmsa_domain * domain)336 static int ipmmu_domain_allocate_context(struct ipmmu_vmsa_device *mmu,
337 struct ipmmu_vmsa_domain *domain)
338 {
339 unsigned long flags;
340 int ret;
341
342 spin_lock_irqsave(&mmu->lock, flags);
343
344 ret = find_first_zero_bit(mmu->ctx, mmu->num_ctx);
345 if (ret != mmu->num_ctx) {
346 mmu->domains[ret] = domain;
347 set_bit(ret, mmu->ctx);
348 } else
349 ret = -EBUSY;
350
351 spin_unlock_irqrestore(&mmu->lock, flags);
352
353 return ret;
354 }
355
ipmmu_domain_free_context(struct ipmmu_vmsa_device * mmu,unsigned int context_id)356 static void ipmmu_domain_free_context(struct ipmmu_vmsa_device *mmu,
357 unsigned int context_id)
358 {
359 unsigned long flags;
360
361 spin_lock_irqsave(&mmu->lock, flags);
362
363 clear_bit(context_id, mmu->ctx);
364 mmu->domains[context_id] = NULL;
365
366 spin_unlock_irqrestore(&mmu->lock, flags);
367 }
368
ipmmu_domain_setup_context(struct ipmmu_vmsa_domain * domain)369 static void ipmmu_domain_setup_context(struct ipmmu_vmsa_domain *domain)
370 {
371 u64 ttbr;
372 u32 tmp;
373
374 /* TTBR0 */
375 ttbr = domain->cfg.arm_lpae_s1_cfg.ttbr;
376 ipmmu_ctx_write_root(domain, IMTTLBR0, ttbr);
377 ipmmu_ctx_write_root(domain, IMTTUBR0, ttbr >> 32);
378
379 /*
380 * TTBCR
381 * We use long descriptors and allocate the whole 32-bit VA space to
382 * TTBR0.
383 */
384 if (domain->mmu->features->twobit_imttbcr_sl0)
385 tmp = IMTTBCR_SL0_TWOBIT_LVL_1;
386 else
387 tmp = IMTTBCR_SL0_LVL_1;
388
389 if (domain->mmu->features->cache_snoop)
390 tmp |= IMTTBCR_SH0_INNER_SHAREABLE | IMTTBCR_ORGN0_WB_WA |
391 IMTTBCR_IRGN0_WB_WA;
392
393 ipmmu_ctx_write_root(domain, IMTTBCR, IMTTBCR_EAE | tmp);
394
395 /* MAIR0 */
396 ipmmu_ctx_write_root(domain, IMMAIR0,
397 domain->cfg.arm_lpae_s1_cfg.mair);
398
399 /* IMBUSCR */
400 if (domain->mmu->features->setup_imbuscr)
401 ipmmu_ctx_write_root(domain, IMBUSCR,
402 ipmmu_ctx_read_root(domain, IMBUSCR) &
403 ~(IMBUSCR_DVM | IMBUSCR_BUSSEL_MASK));
404
405 /*
406 * IMSTR
407 * Clear all interrupt flags.
408 */
409 ipmmu_ctx_write_root(domain, IMSTR, ipmmu_ctx_read_root(domain, IMSTR));
410
411 /*
412 * IMCTR
413 * Enable the MMU and interrupt generation. The long-descriptor
414 * translation table format doesn't use TEX remapping. Don't enable AF
415 * software management as we have no use for it. Flush the TLB as
416 * required when modifying the context registers.
417 */
418 ipmmu_ctx_write_all(domain, IMCTR,
419 IMCTR_INTEN | IMCTR_FLUSH | IMCTR_MMUEN);
420 }
421
ipmmu_domain_init_context(struct ipmmu_vmsa_domain * domain)422 static int ipmmu_domain_init_context(struct ipmmu_vmsa_domain *domain)
423 {
424 int ret;
425
426 /*
427 * Allocate the page table operations.
428 *
429 * VMSA states in section B3.6.3 "Control of Secure or Non-secure memory
430 * access, Long-descriptor format" that the NStable bit being set in a
431 * table descriptor will result in the NStable and NS bits of all child
432 * entries being ignored and considered as being set. The IPMMU seems
433 * not to comply with this, as it generates a secure access page fault
434 * if any of the NStable and NS bits isn't set when running in
435 * non-secure mode.
436 */
437 domain->cfg.quirks = IO_PGTABLE_QUIRK_ARM_NS;
438 domain->cfg.pgsize_bitmap = SZ_1G | SZ_2M | SZ_4K;
439 domain->cfg.ias = 32;
440 domain->cfg.oas = 40;
441 domain->cfg.tlb = &ipmmu_flush_ops;
442 domain->io_domain.geometry.aperture_end = DMA_BIT_MASK(32);
443 domain->io_domain.geometry.force_aperture = true;
444 /*
445 * TODO: Add support for coherent walk through CCI with DVM and remove
446 * cache handling. For now, delegate it to the io-pgtable code.
447 */
448 domain->cfg.coherent_walk = false;
449 domain->cfg.iommu_dev = domain->mmu->root->dev;
450
451 /*
452 * Find an unused context.
453 */
454 ret = ipmmu_domain_allocate_context(domain->mmu->root, domain);
455 if (ret < 0)
456 return ret;
457
458 domain->context_id = ret;
459
460 domain->iop = alloc_io_pgtable_ops(ARM_32_LPAE_S1, &domain->cfg,
461 domain);
462 if (!domain->iop) {
463 ipmmu_domain_free_context(domain->mmu->root,
464 domain->context_id);
465 return -EINVAL;
466 }
467
468 ipmmu_domain_setup_context(domain);
469 return 0;
470 }
471
ipmmu_domain_destroy_context(struct ipmmu_vmsa_domain * domain)472 static void ipmmu_domain_destroy_context(struct ipmmu_vmsa_domain *domain)
473 {
474 if (!domain->mmu)
475 return;
476
477 /*
478 * Disable the context. Flush the TLB as required when modifying the
479 * context registers.
480 *
481 * TODO: Is TLB flush really needed ?
482 */
483 ipmmu_ctx_write_all(domain, IMCTR, IMCTR_FLUSH);
484 ipmmu_tlb_sync(domain);
485 ipmmu_domain_free_context(domain->mmu->root, domain->context_id);
486 }
487
488 /* -----------------------------------------------------------------------------
489 * Fault Handling
490 */
491
ipmmu_domain_irq(struct ipmmu_vmsa_domain * domain)492 static irqreturn_t ipmmu_domain_irq(struct ipmmu_vmsa_domain *domain)
493 {
494 const u32 err_mask = IMSTR_MHIT | IMSTR_ABORT | IMSTR_PF | IMSTR_TF;
495 struct ipmmu_vmsa_device *mmu = domain->mmu;
496 unsigned long iova;
497 u32 status;
498
499 status = ipmmu_ctx_read_root(domain, IMSTR);
500 if (!(status & err_mask))
501 return IRQ_NONE;
502
503 iova = ipmmu_ctx_read_root(domain, IMELAR);
504 if (IS_ENABLED(CONFIG_64BIT))
505 iova |= (u64)ipmmu_ctx_read_root(domain, IMEUAR) << 32;
506
507 /*
508 * Clear the error status flags. Unlike traditional interrupt flag
509 * registers that must be cleared by writing 1, this status register
510 * seems to require 0. The error address register must be read before,
511 * otherwise its value will be 0.
512 */
513 ipmmu_ctx_write_root(domain, IMSTR, 0);
514
515 /* Log fatal errors. */
516 if (status & IMSTR_MHIT)
517 dev_err_ratelimited(mmu->dev, "Multiple TLB hits @0x%lx\n",
518 iova);
519 if (status & IMSTR_ABORT)
520 dev_err_ratelimited(mmu->dev, "Page Table Walk Abort @0x%lx\n",
521 iova);
522
523 if (!(status & (IMSTR_PF | IMSTR_TF)))
524 return IRQ_NONE;
525
526 /*
527 * Try to handle page faults and translation faults.
528 *
529 * TODO: We need to look up the faulty device based on the I/O VA. Use
530 * the IOMMU device for now.
531 */
532 if (!report_iommu_fault(&domain->io_domain, mmu->dev, iova, 0))
533 return IRQ_HANDLED;
534
535 dev_err_ratelimited(mmu->dev,
536 "Unhandled fault: status 0x%08x iova 0x%lx\n",
537 status, iova);
538
539 return IRQ_HANDLED;
540 }
541
ipmmu_irq(int irq,void * dev)542 static irqreturn_t ipmmu_irq(int irq, void *dev)
543 {
544 struct ipmmu_vmsa_device *mmu = dev;
545 irqreturn_t status = IRQ_NONE;
546 unsigned int i;
547 unsigned long flags;
548
549 spin_lock_irqsave(&mmu->lock, flags);
550
551 /*
552 * Check interrupts for all active contexts.
553 */
554 for (i = 0; i < mmu->num_ctx; i++) {
555 if (!mmu->domains[i])
556 continue;
557 if (ipmmu_domain_irq(mmu->domains[i]) == IRQ_HANDLED)
558 status = IRQ_HANDLED;
559 }
560
561 spin_unlock_irqrestore(&mmu->lock, flags);
562
563 return status;
564 }
565
566 /* -----------------------------------------------------------------------------
567 * IOMMU Operations
568 */
569
ipmmu_domain_alloc(unsigned type)570 static struct iommu_domain *ipmmu_domain_alloc(unsigned type)
571 {
572 struct ipmmu_vmsa_domain *domain;
573
574 if (type != IOMMU_DOMAIN_UNMANAGED && type != IOMMU_DOMAIN_DMA)
575 return NULL;
576
577 domain = kzalloc(sizeof(*domain), GFP_KERNEL);
578 if (!domain)
579 return NULL;
580
581 mutex_init(&domain->mutex);
582
583 return &domain->io_domain;
584 }
585
ipmmu_domain_free(struct iommu_domain * io_domain)586 static void ipmmu_domain_free(struct iommu_domain *io_domain)
587 {
588 struct ipmmu_vmsa_domain *domain = to_vmsa_domain(io_domain);
589
590 /*
591 * Free the domain resources. We assume that all devices have already
592 * been detached.
593 */
594 ipmmu_domain_destroy_context(domain);
595 free_io_pgtable_ops(domain->iop);
596 kfree(domain);
597 }
598
ipmmu_attach_device(struct iommu_domain * io_domain,struct device * dev)599 static int ipmmu_attach_device(struct iommu_domain *io_domain,
600 struct device *dev)
601 {
602 struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
603 struct ipmmu_vmsa_device *mmu = to_ipmmu(dev);
604 struct ipmmu_vmsa_domain *domain = to_vmsa_domain(io_domain);
605 unsigned int i;
606 int ret = 0;
607
608 if (!mmu) {
609 dev_err(dev, "Cannot attach to IPMMU\n");
610 return -ENXIO;
611 }
612
613 mutex_lock(&domain->mutex);
614
615 if (!domain->mmu) {
616 /* The domain hasn't been used yet, initialize it. */
617 domain->mmu = mmu;
618 ret = ipmmu_domain_init_context(domain);
619 if (ret < 0) {
620 dev_err(dev, "Unable to initialize IPMMU context\n");
621 domain->mmu = NULL;
622 } else {
623 dev_info(dev, "Using IPMMU context %u\n",
624 domain->context_id);
625 }
626 } else if (domain->mmu != mmu) {
627 /*
628 * Something is wrong, we can't attach two devices using
629 * different IOMMUs to the same domain.
630 */
631 dev_err(dev, "Can't attach IPMMU %s to domain on IPMMU %s\n",
632 dev_name(mmu->dev), dev_name(domain->mmu->dev));
633 ret = -EINVAL;
634 } else
635 dev_info(dev, "Reusing IPMMU context %u\n", domain->context_id);
636
637 mutex_unlock(&domain->mutex);
638
639 if (ret < 0)
640 return ret;
641
642 for (i = 0; i < fwspec->num_ids; ++i)
643 ipmmu_utlb_enable(domain, fwspec->ids[i]);
644
645 return 0;
646 }
647
ipmmu_detach_device(struct iommu_domain * io_domain,struct device * dev)648 static void ipmmu_detach_device(struct iommu_domain *io_domain,
649 struct device *dev)
650 {
651 struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
652 struct ipmmu_vmsa_domain *domain = to_vmsa_domain(io_domain);
653 unsigned int i;
654
655 for (i = 0; i < fwspec->num_ids; ++i)
656 ipmmu_utlb_disable(domain, fwspec->ids[i]);
657
658 /*
659 * TODO: Optimize by disabling the context when no device is attached.
660 */
661 }
662
ipmmu_map(struct iommu_domain * io_domain,unsigned long iova,phys_addr_t paddr,size_t size,int prot,gfp_t gfp)663 static int ipmmu_map(struct iommu_domain *io_domain, unsigned long iova,
664 phys_addr_t paddr, size_t size, int prot, gfp_t gfp)
665 {
666 struct ipmmu_vmsa_domain *domain = to_vmsa_domain(io_domain);
667
668 if (!domain)
669 return -ENODEV;
670
671 return domain->iop->map(domain->iop, iova, paddr, size, prot, gfp);
672 }
673
ipmmu_unmap(struct iommu_domain * io_domain,unsigned long iova,size_t size,struct iommu_iotlb_gather * gather)674 static size_t ipmmu_unmap(struct iommu_domain *io_domain, unsigned long iova,
675 size_t size, struct iommu_iotlb_gather *gather)
676 {
677 struct ipmmu_vmsa_domain *domain = to_vmsa_domain(io_domain);
678
679 return domain->iop->unmap(domain->iop, iova, size, gather);
680 }
681
ipmmu_flush_iotlb_all(struct iommu_domain * io_domain)682 static void ipmmu_flush_iotlb_all(struct iommu_domain *io_domain)
683 {
684 struct ipmmu_vmsa_domain *domain = to_vmsa_domain(io_domain);
685
686 if (domain->mmu)
687 ipmmu_tlb_flush_all(domain);
688 }
689
ipmmu_iotlb_sync(struct iommu_domain * io_domain,struct iommu_iotlb_gather * gather)690 static void ipmmu_iotlb_sync(struct iommu_domain *io_domain,
691 struct iommu_iotlb_gather *gather)
692 {
693 ipmmu_flush_iotlb_all(io_domain);
694 }
695
ipmmu_iova_to_phys(struct iommu_domain * io_domain,dma_addr_t iova)696 static phys_addr_t ipmmu_iova_to_phys(struct iommu_domain *io_domain,
697 dma_addr_t iova)
698 {
699 struct ipmmu_vmsa_domain *domain = to_vmsa_domain(io_domain);
700
701 /* TODO: Is locking needed ? */
702
703 return domain->iop->iova_to_phys(domain->iop, iova);
704 }
705
ipmmu_init_platform_device(struct device * dev,struct of_phandle_args * args)706 static int ipmmu_init_platform_device(struct device *dev,
707 struct of_phandle_args *args)
708 {
709 struct platform_device *ipmmu_pdev;
710
711 ipmmu_pdev = of_find_device_by_node(args->np);
712 if (!ipmmu_pdev)
713 return -ENODEV;
714
715 dev_iommu_priv_set(dev, platform_get_drvdata(ipmmu_pdev));
716
717 return 0;
718 }
719
720 static const struct soc_device_attribute soc_needs_opt_in[] = {
721 { .family = "R-Car Gen3", },
722 { .family = "R-Car Gen4", },
723 { .family = "RZ/G2", },
724 { /* sentinel */ }
725 };
726
727 static const struct soc_device_attribute soc_denylist[] = {
728 { .soc_id = "r8a774a1", },
729 { .soc_id = "r8a7795", .revision = "ES1.*" },
730 { .soc_id = "r8a7795", .revision = "ES2.*" },
731 { .soc_id = "r8a7796", },
732 { /* sentinel */ }
733 };
734
735 static const char * const devices_allowlist[] = {
736 "ee100000.mmc",
737 "ee120000.mmc",
738 "ee140000.mmc",
739 "ee160000.mmc"
740 };
741
ipmmu_device_is_allowed(struct device * dev)742 static bool ipmmu_device_is_allowed(struct device *dev)
743 {
744 unsigned int i;
745
746 /*
747 * R-Car Gen3/4 and RZ/G2 use the allow list to opt-in devices.
748 * For Other SoCs, this returns true anyway.
749 */
750 if (!soc_device_match(soc_needs_opt_in))
751 return true;
752
753 /* Check whether this SoC can use the IPMMU correctly or not */
754 if (soc_device_match(soc_denylist))
755 return false;
756
757 /* Check whether this device can work with the IPMMU */
758 for (i = 0; i < ARRAY_SIZE(devices_allowlist); i++) {
759 if (!strcmp(dev_name(dev), devices_allowlist[i]))
760 return true;
761 }
762
763 /* Otherwise, do not allow use of IPMMU */
764 return false;
765 }
766
ipmmu_of_xlate(struct device * dev,struct of_phandle_args * spec)767 static int ipmmu_of_xlate(struct device *dev,
768 struct of_phandle_args *spec)
769 {
770 if (!ipmmu_device_is_allowed(dev))
771 return -ENODEV;
772
773 iommu_fwspec_add_ids(dev, spec->args, 1);
774
775 /* Initialize once - xlate() will call multiple times */
776 if (to_ipmmu(dev))
777 return 0;
778
779 return ipmmu_init_platform_device(dev, spec);
780 }
781
ipmmu_init_arm_mapping(struct device * dev)782 static int ipmmu_init_arm_mapping(struct device *dev)
783 {
784 struct ipmmu_vmsa_device *mmu = to_ipmmu(dev);
785 int ret;
786
787 /*
788 * Create the ARM mapping, used by the ARM DMA mapping core to allocate
789 * VAs. This will allocate a corresponding IOMMU domain.
790 *
791 * TODO:
792 * - Create one mapping per context (TLB).
793 * - Make the mapping size configurable ? We currently use a 2GB mapping
794 * at a 1GB offset to ensure that NULL VAs will fault.
795 */
796 if (!mmu->mapping) {
797 struct dma_iommu_mapping *mapping;
798
799 mapping = arm_iommu_create_mapping(&platform_bus_type,
800 SZ_1G, SZ_2G);
801 if (IS_ERR(mapping)) {
802 dev_err(mmu->dev, "failed to create ARM IOMMU mapping\n");
803 ret = PTR_ERR(mapping);
804 goto error;
805 }
806
807 mmu->mapping = mapping;
808 }
809
810 /* Attach the ARM VA mapping to the device. */
811 ret = arm_iommu_attach_device(dev, mmu->mapping);
812 if (ret < 0) {
813 dev_err(dev, "Failed to attach device to VA mapping\n");
814 goto error;
815 }
816
817 return 0;
818
819 error:
820 if (mmu->mapping)
821 arm_iommu_release_mapping(mmu->mapping);
822
823 return ret;
824 }
825
ipmmu_probe_device(struct device * dev)826 static struct iommu_device *ipmmu_probe_device(struct device *dev)
827 {
828 struct ipmmu_vmsa_device *mmu = to_ipmmu(dev);
829
830 /*
831 * Only let through devices that have been verified in xlate()
832 */
833 if (!mmu)
834 return ERR_PTR(-ENODEV);
835
836 return &mmu->iommu;
837 }
838
ipmmu_probe_finalize(struct device * dev)839 static void ipmmu_probe_finalize(struct device *dev)
840 {
841 int ret = 0;
842
843 if (IS_ENABLED(CONFIG_ARM) && !IS_ENABLED(CONFIG_IOMMU_DMA))
844 ret = ipmmu_init_arm_mapping(dev);
845
846 if (ret)
847 dev_err(dev, "Can't create IOMMU mapping - DMA-OPS will not work\n");
848 }
849
ipmmu_release_device(struct device * dev)850 static void ipmmu_release_device(struct device *dev)
851 {
852 arm_iommu_detach_device(dev);
853 }
854
ipmmu_find_group(struct device * dev)855 static struct iommu_group *ipmmu_find_group(struct device *dev)
856 {
857 struct ipmmu_vmsa_device *mmu = to_ipmmu(dev);
858 struct iommu_group *group;
859
860 if (mmu->group)
861 return iommu_group_ref_get(mmu->group);
862
863 group = iommu_group_alloc();
864 if (!IS_ERR(group))
865 mmu->group = group;
866
867 return group;
868 }
869
870 static const struct iommu_ops ipmmu_ops = {
871 .domain_alloc = ipmmu_domain_alloc,
872 .probe_device = ipmmu_probe_device,
873 .release_device = ipmmu_release_device,
874 .probe_finalize = ipmmu_probe_finalize,
875 .device_group = IS_ENABLED(CONFIG_ARM) && !IS_ENABLED(CONFIG_IOMMU_DMA)
876 ? generic_device_group : ipmmu_find_group,
877 .pgsize_bitmap = SZ_1G | SZ_2M | SZ_4K,
878 .of_xlate = ipmmu_of_xlate,
879 .default_domain_ops = &(const struct iommu_domain_ops) {
880 .attach_dev = ipmmu_attach_device,
881 .detach_dev = ipmmu_detach_device,
882 .map = ipmmu_map,
883 .unmap = ipmmu_unmap,
884 .flush_iotlb_all = ipmmu_flush_iotlb_all,
885 .iotlb_sync = ipmmu_iotlb_sync,
886 .iova_to_phys = ipmmu_iova_to_phys,
887 .free = ipmmu_domain_free,
888 }
889 };
890
891 /* -----------------------------------------------------------------------------
892 * Probe/remove and init
893 */
894
ipmmu_device_reset(struct ipmmu_vmsa_device * mmu)895 static void ipmmu_device_reset(struct ipmmu_vmsa_device *mmu)
896 {
897 unsigned int i;
898
899 /* Disable all contexts. */
900 for (i = 0; i < mmu->num_ctx; ++i)
901 ipmmu_ctx_write(mmu, i, IMCTR, 0);
902 }
903
904 static const struct ipmmu_features ipmmu_features_default = {
905 .use_ns_alias_offset = true,
906 .has_cache_leaf_nodes = false,
907 .number_of_contexts = 1, /* software only tested with one context */
908 .num_utlbs = 32,
909 .setup_imbuscr = true,
910 .twobit_imttbcr_sl0 = false,
911 .reserved_context = false,
912 .cache_snoop = true,
913 .ctx_offset_base = 0,
914 .ctx_offset_stride = 0x40,
915 .utlb_offset_base = 0,
916 };
917
918 static const struct ipmmu_features ipmmu_features_rcar_gen3 = {
919 .use_ns_alias_offset = false,
920 .has_cache_leaf_nodes = true,
921 .number_of_contexts = 8,
922 .num_utlbs = 48,
923 .setup_imbuscr = false,
924 .twobit_imttbcr_sl0 = true,
925 .reserved_context = true,
926 .cache_snoop = false,
927 .ctx_offset_base = 0,
928 .ctx_offset_stride = 0x40,
929 .utlb_offset_base = 0,
930 };
931
932 static const struct ipmmu_features ipmmu_features_rcar_gen4 = {
933 .use_ns_alias_offset = false,
934 .has_cache_leaf_nodes = true,
935 .number_of_contexts = 16,
936 .num_utlbs = 64,
937 .setup_imbuscr = false,
938 .twobit_imttbcr_sl0 = true,
939 .reserved_context = true,
940 .cache_snoop = false,
941 .ctx_offset_base = 0x10000,
942 .ctx_offset_stride = 0x1040,
943 .utlb_offset_base = 0x3000,
944 };
945
946 static const struct of_device_id ipmmu_of_ids[] = {
947 {
948 .compatible = "renesas,ipmmu-vmsa",
949 .data = &ipmmu_features_default,
950 }, {
951 .compatible = "renesas,ipmmu-r8a774a1",
952 .data = &ipmmu_features_rcar_gen3,
953 }, {
954 .compatible = "renesas,ipmmu-r8a774b1",
955 .data = &ipmmu_features_rcar_gen3,
956 }, {
957 .compatible = "renesas,ipmmu-r8a774c0",
958 .data = &ipmmu_features_rcar_gen3,
959 }, {
960 .compatible = "renesas,ipmmu-r8a774e1",
961 .data = &ipmmu_features_rcar_gen3,
962 }, {
963 .compatible = "renesas,ipmmu-r8a7795",
964 .data = &ipmmu_features_rcar_gen3,
965 }, {
966 .compatible = "renesas,ipmmu-r8a7796",
967 .data = &ipmmu_features_rcar_gen3,
968 }, {
969 .compatible = "renesas,ipmmu-r8a77961",
970 .data = &ipmmu_features_rcar_gen3,
971 }, {
972 .compatible = "renesas,ipmmu-r8a77965",
973 .data = &ipmmu_features_rcar_gen3,
974 }, {
975 .compatible = "renesas,ipmmu-r8a77970",
976 .data = &ipmmu_features_rcar_gen3,
977 }, {
978 .compatible = "renesas,ipmmu-r8a77980",
979 .data = &ipmmu_features_rcar_gen3,
980 }, {
981 .compatible = "renesas,ipmmu-r8a77990",
982 .data = &ipmmu_features_rcar_gen3,
983 }, {
984 .compatible = "renesas,ipmmu-r8a77995",
985 .data = &ipmmu_features_rcar_gen3,
986 }, {
987 .compatible = "renesas,ipmmu-r8a779a0",
988 .data = &ipmmu_features_rcar_gen4,
989 }, {
990 .compatible = "renesas,rcar-gen4-ipmmu-vmsa",
991 .data = &ipmmu_features_rcar_gen4,
992 }, {
993 /* Terminator */
994 },
995 };
996
ipmmu_probe(struct platform_device * pdev)997 static int ipmmu_probe(struct platform_device *pdev)
998 {
999 struct ipmmu_vmsa_device *mmu;
1000 struct resource *res;
1001 int irq;
1002 int ret;
1003
1004 mmu = devm_kzalloc(&pdev->dev, sizeof(*mmu), GFP_KERNEL);
1005 if (!mmu) {
1006 dev_err(&pdev->dev, "cannot allocate device data\n");
1007 return -ENOMEM;
1008 }
1009
1010 mmu->dev = &pdev->dev;
1011 spin_lock_init(&mmu->lock);
1012 bitmap_zero(mmu->ctx, IPMMU_CTX_MAX);
1013 mmu->features = of_device_get_match_data(&pdev->dev);
1014 memset(mmu->utlb_ctx, IPMMU_CTX_INVALID, mmu->features->num_utlbs);
1015 ret = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(40));
1016 if (ret)
1017 return ret;
1018
1019 /* Map I/O memory and request IRQ. */
1020 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1021 mmu->base = devm_ioremap_resource(&pdev->dev, res);
1022 if (IS_ERR(mmu->base))
1023 return PTR_ERR(mmu->base);
1024
1025 /*
1026 * The IPMMU has two register banks, for secure and non-secure modes.
1027 * The bank mapped at the beginning of the IPMMU address space
1028 * corresponds to the running mode of the CPU. When running in secure
1029 * mode the non-secure register bank is also available at an offset.
1030 *
1031 * Secure mode operation isn't clearly documented and is thus currently
1032 * not implemented in the driver. Furthermore, preliminary tests of
1033 * non-secure operation with the main register bank were not successful.
1034 * Offset the registers base unconditionally to point to the non-secure
1035 * alias space for now.
1036 */
1037 if (mmu->features->use_ns_alias_offset)
1038 mmu->base += IM_NS_ALIAS_OFFSET;
1039
1040 mmu->num_ctx = min(IPMMU_CTX_MAX, mmu->features->number_of_contexts);
1041
1042 /*
1043 * Determine if this IPMMU instance is a root device by checking for
1044 * the lack of has_cache_leaf_nodes flag or renesas,ipmmu-main property.
1045 */
1046 if (!mmu->features->has_cache_leaf_nodes ||
1047 !of_find_property(pdev->dev.of_node, "renesas,ipmmu-main", NULL))
1048 mmu->root = mmu;
1049 else
1050 mmu->root = ipmmu_find_root();
1051
1052 /*
1053 * Wait until the root device has been registered for sure.
1054 */
1055 if (!mmu->root)
1056 return -EPROBE_DEFER;
1057
1058 /* Root devices have mandatory IRQs */
1059 if (ipmmu_is_root(mmu)) {
1060 irq = platform_get_irq(pdev, 0);
1061 if (irq < 0)
1062 return irq;
1063
1064 ret = devm_request_irq(&pdev->dev, irq, ipmmu_irq, 0,
1065 dev_name(&pdev->dev), mmu);
1066 if (ret < 0) {
1067 dev_err(&pdev->dev, "failed to request IRQ %d\n", irq);
1068 return ret;
1069 }
1070
1071 ipmmu_device_reset(mmu);
1072
1073 if (mmu->features->reserved_context) {
1074 dev_info(&pdev->dev, "IPMMU context 0 is reserved\n");
1075 set_bit(0, mmu->ctx);
1076 }
1077 }
1078
1079 /*
1080 * Register the IPMMU to the IOMMU subsystem in the following cases:
1081 * - R-Car Gen2 IPMMU (all devices registered)
1082 * - R-Car Gen3 IPMMU (leaf devices only - skip root IPMMU-MM device)
1083 */
1084 if (!mmu->features->has_cache_leaf_nodes || !ipmmu_is_root(mmu)) {
1085 ret = iommu_device_sysfs_add(&mmu->iommu, &pdev->dev, NULL,
1086 dev_name(&pdev->dev));
1087 if (ret)
1088 return ret;
1089
1090 ret = iommu_device_register(&mmu->iommu, &ipmmu_ops, &pdev->dev);
1091 if (ret)
1092 return ret;
1093 }
1094
1095 /*
1096 * We can't create the ARM mapping here as it requires the bus to have
1097 * an IOMMU, which only happens when bus_set_iommu() is called in
1098 * ipmmu_init() after the probe function returns.
1099 */
1100
1101 platform_set_drvdata(pdev, mmu);
1102
1103 return 0;
1104 }
1105
ipmmu_remove(struct platform_device * pdev)1106 static int ipmmu_remove(struct platform_device *pdev)
1107 {
1108 struct ipmmu_vmsa_device *mmu = platform_get_drvdata(pdev);
1109
1110 iommu_device_sysfs_remove(&mmu->iommu);
1111 iommu_device_unregister(&mmu->iommu);
1112
1113 arm_iommu_release_mapping(mmu->mapping);
1114
1115 ipmmu_device_reset(mmu);
1116
1117 return 0;
1118 }
1119
1120 #ifdef CONFIG_PM_SLEEP
ipmmu_resume_noirq(struct device * dev)1121 static int ipmmu_resume_noirq(struct device *dev)
1122 {
1123 struct ipmmu_vmsa_device *mmu = dev_get_drvdata(dev);
1124 unsigned int i;
1125
1126 /* Reset root MMU and restore contexts */
1127 if (ipmmu_is_root(mmu)) {
1128 ipmmu_device_reset(mmu);
1129
1130 for (i = 0; i < mmu->num_ctx; i++) {
1131 if (!mmu->domains[i])
1132 continue;
1133
1134 ipmmu_domain_setup_context(mmu->domains[i]);
1135 }
1136 }
1137
1138 /* Re-enable active micro-TLBs */
1139 for (i = 0; i < mmu->features->num_utlbs; i++) {
1140 if (mmu->utlb_ctx[i] == IPMMU_CTX_INVALID)
1141 continue;
1142
1143 ipmmu_utlb_enable(mmu->root->domains[mmu->utlb_ctx[i]], i);
1144 }
1145
1146 return 0;
1147 }
1148
1149 static const struct dev_pm_ops ipmmu_pm = {
1150 SET_NOIRQ_SYSTEM_SLEEP_PM_OPS(NULL, ipmmu_resume_noirq)
1151 };
1152 #define DEV_PM_OPS &ipmmu_pm
1153 #else
1154 #define DEV_PM_OPS NULL
1155 #endif /* CONFIG_PM_SLEEP */
1156
1157 static struct platform_driver ipmmu_driver = {
1158 .driver = {
1159 .name = "ipmmu-vmsa",
1160 .of_match_table = of_match_ptr(ipmmu_of_ids),
1161 .pm = DEV_PM_OPS,
1162 },
1163 .probe = ipmmu_probe,
1164 .remove = ipmmu_remove,
1165 };
1166 builtin_platform_driver(ipmmu_driver);
1167