1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 1992, 1998-2006 Linus Torvalds, Ingo Molnar
4 * Copyright (C) 2005-2006 Thomas Gleixner
5 *
6 * This file contains driver APIs to the irq subsystem.
7 */
8
9 #define pr_fmt(fmt) "genirq: " fmt
10
11 #include <linux/irq.h>
12 #include <linux/kthread.h>
13 #include <linux/module.h>
14 #include <linux/random.h>
15 #include <linux/interrupt.h>
16 #include <linux/irqdomain.h>
17 #include <linux/slab.h>
18 #include <linux/sched.h>
19 #include <linux/sched/rt.h>
20 #include <linux/sched/task.h>
21 #include <linux/sched/isolation.h>
22 #include <uapi/linux/sched/types.h>
23 #include <linux/task_work.h>
24
25 #include "internals.h"
26
27 #if defined(CONFIG_IRQ_FORCED_THREADING) && !defined(CONFIG_PREEMPT_RT)
28 DEFINE_STATIC_KEY_FALSE(force_irqthreads_key);
29
setup_forced_irqthreads(char * arg)30 static int __init setup_forced_irqthreads(char *arg)
31 {
32 static_branch_enable(&force_irqthreads_key);
33 return 0;
34 }
35 early_param("threadirqs", setup_forced_irqthreads);
36 #endif
37
__synchronize_hardirq(struct irq_desc * desc,bool sync_chip)38 static void __synchronize_hardirq(struct irq_desc *desc, bool sync_chip)
39 {
40 struct irq_data *irqd = irq_desc_get_irq_data(desc);
41 bool inprogress;
42
43 do {
44 unsigned long flags;
45
46 /*
47 * Wait until we're out of the critical section. This might
48 * give the wrong answer due to the lack of memory barriers.
49 */
50 while (irqd_irq_inprogress(&desc->irq_data))
51 cpu_relax();
52
53 /* Ok, that indicated we're done: double-check carefully. */
54 raw_spin_lock_irqsave(&desc->lock, flags);
55 inprogress = irqd_irq_inprogress(&desc->irq_data);
56
57 /*
58 * If requested and supported, check at the chip whether it
59 * is in flight at the hardware level, i.e. already pending
60 * in a CPU and waiting for service and acknowledge.
61 */
62 if (!inprogress && sync_chip) {
63 /*
64 * Ignore the return code. inprogress is only updated
65 * when the chip supports it.
66 */
67 __irq_get_irqchip_state(irqd, IRQCHIP_STATE_ACTIVE,
68 &inprogress);
69 }
70 raw_spin_unlock_irqrestore(&desc->lock, flags);
71
72 /* Oops, that failed? */
73 } while (inprogress);
74 }
75
76 /**
77 * synchronize_hardirq - wait for pending hard IRQ handlers (on other CPUs)
78 * @irq: interrupt number to wait for
79 *
80 * This function waits for any pending hard IRQ handlers for this
81 * interrupt to complete before returning. If you use this
82 * function while holding a resource the IRQ handler may need you
83 * will deadlock. It does not take associated threaded handlers
84 * into account.
85 *
86 * Do not use this for shutdown scenarios where you must be sure
87 * that all parts (hardirq and threaded handler) have completed.
88 *
89 * Returns: false if a threaded handler is active.
90 *
91 * This function may be called - with care - from IRQ context.
92 *
93 * It does not check whether there is an interrupt in flight at the
94 * hardware level, but not serviced yet, as this might deadlock when
95 * called with interrupts disabled and the target CPU of the interrupt
96 * is the current CPU.
97 */
synchronize_hardirq(unsigned int irq)98 bool synchronize_hardirq(unsigned int irq)
99 {
100 struct irq_desc *desc = irq_to_desc(irq);
101
102 if (desc) {
103 __synchronize_hardirq(desc, false);
104 return !atomic_read(&desc->threads_active);
105 }
106
107 return true;
108 }
109 EXPORT_SYMBOL(synchronize_hardirq);
110
111 /**
112 * synchronize_irq - wait for pending IRQ handlers (on other CPUs)
113 * @irq: interrupt number to wait for
114 *
115 * This function waits for any pending IRQ handlers for this interrupt
116 * to complete before returning. If you use this function while
117 * holding a resource the IRQ handler may need you will deadlock.
118 *
119 * Can only be called from preemptible code as it might sleep when
120 * an interrupt thread is associated to @irq.
121 *
122 * It optionally makes sure (when the irq chip supports that method)
123 * that the interrupt is not pending in any CPU and waiting for
124 * service.
125 */
synchronize_irq(unsigned int irq)126 void synchronize_irq(unsigned int irq)
127 {
128 struct irq_desc *desc = irq_to_desc(irq);
129
130 if (desc) {
131 __synchronize_hardirq(desc, true);
132 /*
133 * We made sure that no hardirq handler is
134 * running. Now verify that no threaded handlers are
135 * active.
136 */
137 wait_event(desc->wait_for_threads,
138 !atomic_read(&desc->threads_active));
139 }
140 }
141 EXPORT_SYMBOL(synchronize_irq);
142
143 #ifdef CONFIG_SMP
144 cpumask_var_t irq_default_affinity;
145
__irq_can_set_affinity(struct irq_desc * desc)146 static bool __irq_can_set_affinity(struct irq_desc *desc)
147 {
148 if (!desc || !irqd_can_balance(&desc->irq_data) ||
149 !desc->irq_data.chip || !desc->irq_data.chip->irq_set_affinity)
150 return false;
151 return true;
152 }
153
154 /**
155 * irq_can_set_affinity - Check if the affinity of a given irq can be set
156 * @irq: Interrupt to check
157 *
158 */
irq_can_set_affinity(unsigned int irq)159 int irq_can_set_affinity(unsigned int irq)
160 {
161 return __irq_can_set_affinity(irq_to_desc(irq));
162 }
163
164 /**
165 * irq_can_set_affinity_usr - Check if affinity of a irq can be set from user space
166 * @irq: Interrupt to check
167 *
168 * Like irq_can_set_affinity() above, but additionally checks for the
169 * AFFINITY_MANAGED flag.
170 */
irq_can_set_affinity_usr(unsigned int irq)171 bool irq_can_set_affinity_usr(unsigned int irq)
172 {
173 struct irq_desc *desc = irq_to_desc(irq);
174
175 return __irq_can_set_affinity(desc) &&
176 !irqd_affinity_is_managed(&desc->irq_data);
177 }
178
179 /**
180 * irq_set_thread_affinity - Notify irq threads to adjust affinity
181 * @desc: irq descriptor which has affinity changed
182 *
183 * We just set IRQTF_AFFINITY and delegate the affinity setting
184 * to the interrupt thread itself. We can not call
185 * set_cpus_allowed_ptr() here as we hold desc->lock and this
186 * code can be called from hard interrupt context.
187 */
irq_set_thread_affinity(struct irq_desc * desc)188 void irq_set_thread_affinity(struct irq_desc *desc)
189 {
190 struct irqaction *action;
191
192 for_each_action_of_desc(desc, action)
193 if (action->thread)
194 set_bit(IRQTF_AFFINITY, &action->thread_flags);
195 }
196
197 #ifdef CONFIG_GENERIC_IRQ_EFFECTIVE_AFF_MASK
irq_validate_effective_affinity(struct irq_data * data)198 static void irq_validate_effective_affinity(struct irq_data *data)
199 {
200 const struct cpumask *m = irq_data_get_effective_affinity_mask(data);
201 struct irq_chip *chip = irq_data_get_irq_chip(data);
202
203 if (!cpumask_empty(m))
204 return;
205 pr_warn_once("irq_chip %s did not update eff. affinity mask of irq %u\n",
206 chip->name, data->irq);
207 }
208
irq_init_effective_affinity(struct irq_data * data,const struct cpumask * mask)209 static inline void irq_init_effective_affinity(struct irq_data *data,
210 const struct cpumask *mask)
211 {
212 cpumask_copy(irq_data_get_effective_affinity_mask(data), mask);
213 }
214 #else
irq_validate_effective_affinity(struct irq_data * data)215 static inline void irq_validate_effective_affinity(struct irq_data *data) { }
irq_init_effective_affinity(struct irq_data * data,const struct cpumask * mask)216 static inline void irq_init_effective_affinity(struct irq_data *data,
217 const struct cpumask *mask) { }
218 #endif
219
irq_do_set_affinity(struct irq_data * data,const struct cpumask * mask,bool force)220 int irq_do_set_affinity(struct irq_data *data, const struct cpumask *mask,
221 bool force)
222 {
223 struct irq_desc *desc = irq_data_to_desc(data);
224 struct irq_chip *chip = irq_data_get_irq_chip(data);
225 const struct cpumask *prog_mask;
226 int ret;
227
228 static DEFINE_RAW_SPINLOCK(tmp_mask_lock);
229 static struct cpumask tmp_mask;
230
231 if (!chip || !chip->irq_set_affinity)
232 return -EINVAL;
233
234 raw_spin_lock(&tmp_mask_lock);
235 /*
236 * If this is a managed interrupt and housekeeping is enabled on
237 * it check whether the requested affinity mask intersects with
238 * a housekeeping CPU. If so, then remove the isolated CPUs from
239 * the mask and just keep the housekeeping CPU(s). This prevents
240 * the affinity setter from routing the interrupt to an isolated
241 * CPU to avoid that I/O submitted from a housekeeping CPU causes
242 * interrupts on an isolated one.
243 *
244 * If the masks do not intersect or include online CPU(s) then
245 * keep the requested mask. The isolated target CPUs are only
246 * receiving interrupts when the I/O operation was submitted
247 * directly from them.
248 *
249 * If all housekeeping CPUs in the affinity mask are offline, the
250 * interrupt will be migrated by the CPU hotplug code once a
251 * housekeeping CPU which belongs to the affinity mask comes
252 * online.
253 */
254 if (irqd_affinity_is_managed(data) &&
255 housekeeping_enabled(HK_TYPE_MANAGED_IRQ)) {
256 const struct cpumask *hk_mask;
257
258 hk_mask = housekeeping_cpumask(HK_TYPE_MANAGED_IRQ);
259
260 cpumask_and(&tmp_mask, mask, hk_mask);
261 if (!cpumask_intersects(&tmp_mask, cpu_online_mask))
262 prog_mask = mask;
263 else
264 prog_mask = &tmp_mask;
265 } else {
266 prog_mask = mask;
267 }
268
269 /*
270 * Make sure we only provide online CPUs to the irqchip,
271 * unless we are being asked to force the affinity (in which
272 * case we do as we are told).
273 */
274 cpumask_and(&tmp_mask, prog_mask, cpu_online_mask);
275 if (!force && !cpumask_empty(&tmp_mask))
276 ret = chip->irq_set_affinity(data, &tmp_mask, force);
277 else if (force)
278 ret = chip->irq_set_affinity(data, mask, force);
279 else
280 ret = -EINVAL;
281
282 raw_spin_unlock(&tmp_mask_lock);
283
284 switch (ret) {
285 case IRQ_SET_MASK_OK:
286 case IRQ_SET_MASK_OK_DONE:
287 cpumask_copy(desc->irq_common_data.affinity, mask);
288 fallthrough;
289 case IRQ_SET_MASK_OK_NOCOPY:
290 irq_validate_effective_affinity(data);
291 irq_set_thread_affinity(desc);
292 ret = 0;
293 }
294
295 return ret;
296 }
297
298 #ifdef CONFIG_GENERIC_PENDING_IRQ
irq_set_affinity_pending(struct irq_data * data,const struct cpumask * dest)299 static inline int irq_set_affinity_pending(struct irq_data *data,
300 const struct cpumask *dest)
301 {
302 struct irq_desc *desc = irq_data_to_desc(data);
303
304 irqd_set_move_pending(data);
305 irq_copy_pending(desc, dest);
306 return 0;
307 }
308 #else
irq_set_affinity_pending(struct irq_data * data,const struct cpumask * dest)309 static inline int irq_set_affinity_pending(struct irq_data *data,
310 const struct cpumask *dest)
311 {
312 return -EBUSY;
313 }
314 #endif
315
irq_try_set_affinity(struct irq_data * data,const struct cpumask * dest,bool force)316 static int irq_try_set_affinity(struct irq_data *data,
317 const struct cpumask *dest, bool force)
318 {
319 int ret = irq_do_set_affinity(data, dest, force);
320
321 /*
322 * In case that the underlying vector management is busy and the
323 * architecture supports the generic pending mechanism then utilize
324 * this to avoid returning an error to user space.
325 */
326 if (ret == -EBUSY && !force)
327 ret = irq_set_affinity_pending(data, dest);
328 return ret;
329 }
330
irq_set_affinity_deactivated(struct irq_data * data,const struct cpumask * mask,bool force)331 static bool irq_set_affinity_deactivated(struct irq_data *data,
332 const struct cpumask *mask, bool force)
333 {
334 struct irq_desc *desc = irq_data_to_desc(data);
335
336 /*
337 * Handle irq chips which can handle affinity only in activated
338 * state correctly
339 *
340 * If the interrupt is not yet activated, just store the affinity
341 * mask and do not call the chip driver at all. On activation the
342 * driver has to make sure anyway that the interrupt is in a
343 * usable state so startup works.
344 */
345 if (!IS_ENABLED(CONFIG_IRQ_DOMAIN_HIERARCHY) ||
346 irqd_is_activated(data) || !irqd_affinity_on_activate(data))
347 return false;
348
349 cpumask_copy(desc->irq_common_data.affinity, mask);
350 irq_init_effective_affinity(data, mask);
351 irqd_set(data, IRQD_AFFINITY_SET);
352 return true;
353 }
354
irq_set_affinity_locked(struct irq_data * data,const struct cpumask * mask,bool force)355 int irq_set_affinity_locked(struct irq_data *data, const struct cpumask *mask,
356 bool force)
357 {
358 struct irq_chip *chip = irq_data_get_irq_chip(data);
359 struct irq_desc *desc = irq_data_to_desc(data);
360 int ret = 0;
361
362 if (!chip || !chip->irq_set_affinity)
363 return -EINVAL;
364
365 if (irq_set_affinity_deactivated(data, mask, force))
366 return 0;
367
368 if (irq_can_move_pcntxt(data) && !irqd_is_setaffinity_pending(data)) {
369 ret = irq_try_set_affinity(data, mask, force);
370 } else {
371 irqd_set_move_pending(data);
372 irq_copy_pending(desc, mask);
373 }
374
375 if (desc->affinity_notify) {
376 kref_get(&desc->affinity_notify->kref);
377 if (!schedule_work(&desc->affinity_notify->work)) {
378 /* Work was already scheduled, drop our extra ref */
379 kref_put(&desc->affinity_notify->kref,
380 desc->affinity_notify->release);
381 }
382 }
383 irqd_set(data, IRQD_AFFINITY_SET);
384
385 return ret;
386 }
387
388 /**
389 * irq_update_affinity_desc - Update affinity management for an interrupt
390 * @irq: The interrupt number to update
391 * @affinity: Pointer to the affinity descriptor
392 *
393 * This interface can be used to configure the affinity management of
394 * interrupts which have been allocated already.
395 *
396 * There are certain limitations on when it may be used - attempts to use it
397 * for when the kernel is configured for generic IRQ reservation mode (in
398 * config GENERIC_IRQ_RESERVATION_MODE) will fail, as it may conflict with
399 * managed/non-managed interrupt accounting. In addition, attempts to use it on
400 * an interrupt which is already started or which has already been configured
401 * as managed will also fail, as these mean invalid init state or double init.
402 */
irq_update_affinity_desc(unsigned int irq,struct irq_affinity_desc * affinity)403 int irq_update_affinity_desc(unsigned int irq,
404 struct irq_affinity_desc *affinity)
405 {
406 struct irq_desc *desc;
407 unsigned long flags;
408 bool activated;
409 int ret = 0;
410
411 /*
412 * Supporting this with the reservation scheme used by x86 needs
413 * some more thought. Fail it for now.
414 */
415 if (IS_ENABLED(CONFIG_GENERIC_IRQ_RESERVATION_MODE))
416 return -EOPNOTSUPP;
417
418 desc = irq_get_desc_buslock(irq, &flags, 0);
419 if (!desc)
420 return -EINVAL;
421
422 /* Requires the interrupt to be shut down */
423 if (irqd_is_started(&desc->irq_data)) {
424 ret = -EBUSY;
425 goto out_unlock;
426 }
427
428 /* Interrupts which are already managed cannot be modified */
429 if (irqd_affinity_is_managed(&desc->irq_data)) {
430 ret = -EBUSY;
431 goto out_unlock;
432 }
433
434 /*
435 * Deactivate the interrupt. That's required to undo
436 * anything an earlier activation has established.
437 */
438 activated = irqd_is_activated(&desc->irq_data);
439 if (activated)
440 irq_domain_deactivate_irq(&desc->irq_data);
441
442 if (affinity->is_managed) {
443 irqd_set(&desc->irq_data, IRQD_AFFINITY_MANAGED);
444 irqd_set(&desc->irq_data, IRQD_MANAGED_SHUTDOWN);
445 }
446
447 cpumask_copy(desc->irq_common_data.affinity, &affinity->mask);
448
449 /* Restore the activation state */
450 if (activated)
451 irq_domain_activate_irq(&desc->irq_data, false);
452
453 out_unlock:
454 irq_put_desc_busunlock(desc, flags);
455 return ret;
456 }
457
__irq_set_affinity(unsigned int irq,const struct cpumask * mask,bool force)458 static int __irq_set_affinity(unsigned int irq, const struct cpumask *mask,
459 bool force)
460 {
461 struct irq_desc *desc = irq_to_desc(irq);
462 unsigned long flags;
463 int ret;
464
465 if (!desc)
466 return -EINVAL;
467
468 raw_spin_lock_irqsave(&desc->lock, flags);
469 ret = irq_set_affinity_locked(irq_desc_get_irq_data(desc), mask, force);
470 raw_spin_unlock_irqrestore(&desc->lock, flags);
471 return ret;
472 }
473
474 /**
475 * irq_set_affinity - Set the irq affinity of a given irq
476 * @irq: Interrupt to set affinity
477 * @cpumask: cpumask
478 *
479 * Fails if cpumask does not contain an online CPU
480 */
irq_set_affinity(unsigned int irq,const struct cpumask * cpumask)481 int irq_set_affinity(unsigned int irq, const struct cpumask *cpumask)
482 {
483 return __irq_set_affinity(irq, cpumask, false);
484 }
485 EXPORT_SYMBOL_GPL(irq_set_affinity);
486
487 /**
488 * irq_force_affinity - Force the irq affinity of a given irq
489 * @irq: Interrupt to set affinity
490 * @cpumask: cpumask
491 *
492 * Same as irq_set_affinity, but without checking the mask against
493 * online cpus.
494 *
495 * Solely for low level cpu hotplug code, where we need to make per
496 * cpu interrupts affine before the cpu becomes online.
497 */
irq_force_affinity(unsigned int irq,const struct cpumask * cpumask)498 int irq_force_affinity(unsigned int irq, const struct cpumask *cpumask)
499 {
500 return __irq_set_affinity(irq, cpumask, true);
501 }
502 EXPORT_SYMBOL_GPL(irq_force_affinity);
503
__irq_apply_affinity_hint(unsigned int irq,const struct cpumask * m,bool setaffinity)504 int __irq_apply_affinity_hint(unsigned int irq, const struct cpumask *m,
505 bool setaffinity)
506 {
507 unsigned long flags;
508 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
509
510 if (!desc)
511 return -EINVAL;
512 desc->affinity_hint = m;
513 irq_put_desc_unlock(desc, flags);
514 if (m && setaffinity)
515 __irq_set_affinity(irq, m, false);
516 return 0;
517 }
518 EXPORT_SYMBOL_GPL(__irq_apply_affinity_hint);
519
irq_affinity_notify(struct work_struct * work)520 static void irq_affinity_notify(struct work_struct *work)
521 {
522 struct irq_affinity_notify *notify =
523 container_of(work, struct irq_affinity_notify, work);
524 struct irq_desc *desc = irq_to_desc(notify->irq);
525 cpumask_var_t cpumask;
526 unsigned long flags;
527
528 if (!desc || !alloc_cpumask_var(&cpumask, GFP_KERNEL))
529 goto out;
530
531 raw_spin_lock_irqsave(&desc->lock, flags);
532 if (irq_move_pending(&desc->irq_data))
533 irq_get_pending(cpumask, desc);
534 else
535 cpumask_copy(cpumask, desc->irq_common_data.affinity);
536 raw_spin_unlock_irqrestore(&desc->lock, flags);
537
538 notify->notify(notify, cpumask);
539
540 free_cpumask_var(cpumask);
541 out:
542 kref_put(¬ify->kref, notify->release);
543 }
544
545 /**
546 * irq_set_affinity_notifier - control notification of IRQ affinity changes
547 * @irq: Interrupt for which to enable/disable notification
548 * @notify: Context for notification, or %NULL to disable
549 * notification. Function pointers must be initialised;
550 * the other fields will be initialised by this function.
551 *
552 * Must be called in process context. Notification may only be enabled
553 * after the IRQ is allocated and must be disabled before the IRQ is
554 * freed using free_irq().
555 */
556 int
irq_set_affinity_notifier(unsigned int irq,struct irq_affinity_notify * notify)557 irq_set_affinity_notifier(unsigned int irq, struct irq_affinity_notify *notify)
558 {
559 struct irq_desc *desc = irq_to_desc(irq);
560 struct irq_affinity_notify *old_notify;
561 unsigned long flags;
562
563 /* The release function is promised process context */
564 might_sleep();
565
566 if (!desc || desc->istate & IRQS_NMI)
567 return -EINVAL;
568
569 /* Complete initialisation of *notify */
570 if (notify) {
571 notify->irq = irq;
572 kref_init(¬ify->kref);
573 INIT_WORK(¬ify->work, irq_affinity_notify);
574 }
575
576 raw_spin_lock_irqsave(&desc->lock, flags);
577 old_notify = desc->affinity_notify;
578 desc->affinity_notify = notify;
579 raw_spin_unlock_irqrestore(&desc->lock, flags);
580
581 if (old_notify) {
582 if (cancel_work_sync(&old_notify->work)) {
583 /* Pending work had a ref, put that one too */
584 kref_put(&old_notify->kref, old_notify->release);
585 }
586 kref_put(&old_notify->kref, old_notify->release);
587 }
588
589 return 0;
590 }
591 EXPORT_SYMBOL_GPL(irq_set_affinity_notifier);
592
593 #ifndef CONFIG_AUTO_IRQ_AFFINITY
594 /*
595 * Generic version of the affinity autoselector.
596 */
irq_setup_affinity(struct irq_desc * desc)597 int irq_setup_affinity(struct irq_desc *desc)
598 {
599 struct cpumask *set = irq_default_affinity;
600 int ret, node = irq_desc_get_node(desc);
601 static DEFINE_RAW_SPINLOCK(mask_lock);
602 static struct cpumask mask;
603
604 /* Excludes PER_CPU and NO_BALANCE interrupts */
605 if (!__irq_can_set_affinity(desc))
606 return 0;
607
608 raw_spin_lock(&mask_lock);
609 /*
610 * Preserve the managed affinity setting and a userspace affinity
611 * setup, but make sure that one of the targets is online.
612 */
613 if (irqd_affinity_is_managed(&desc->irq_data) ||
614 irqd_has_set(&desc->irq_data, IRQD_AFFINITY_SET)) {
615 if (cpumask_intersects(desc->irq_common_data.affinity,
616 cpu_online_mask))
617 set = desc->irq_common_data.affinity;
618 else
619 irqd_clear(&desc->irq_data, IRQD_AFFINITY_SET);
620 }
621
622 cpumask_and(&mask, cpu_online_mask, set);
623 if (cpumask_empty(&mask))
624 cpumask_copy(&mask, cpu_online_mask);
625
626 if (node != NUMA_NO_NODE) {
627 const struct cpumask *nodemask = cpumask_of_node(node);
628
629 /* make sure at least one of the cpus in nodemask is online */
630 if (cpumask_intersects(&mask, nodemask))
631 cpumask_and(&mask, &mask, nodemask);
632 }
633 ret = irq_do_set_affinity(&desc->irq_data, &mask, false);
634 raw_spin_unlock(&mask_lock);
635 return ret;
636 }
637 #else
638 /* Wrapper for ALPHA specific affinity selector magic */
irq_setup_affinity(struct irq_desc * desc)639 int irq_setup_affinity(struct irq_desc *desc)
640 {
641 return irq_select_affinity(irq_desc_get_irq(desc));
642 }
643 #endif /* CONFIG_AUTO_IRQ_AFFINITY */
644 #endif /* CONFIG_SMP */
645
646
647 /**
648 * irq_set_vcpu_affinity - Set vcpu affinity for the interrupt
649 * @irq: interrupt number to set affinity
650 * @vcpu_info: vCPU specific data or pointer to a percpu array of vCPU
651 * specific data for percpu_devid interrupts
652 *
653 * This function uses the vCPU specific data to set the vCPU
654 * affinity for an irq. The vCPU specific data is passed from
655 * outside, such as KVM. One example code path is as below:
656 * KVM -> IOMMU -> irq_set_vcpu_affinity().
657 */
irq_set_vcpu_affinity(unsigned int irq,void * vcpu_info)658 int irq_set_vcpu_affinity(unsigned int irq, void *vcpu_info)
659 {
660 unsigned long flags;
661 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0);
662 struct irq_data *data;
663 struct irq_chip *chip;
664 int ret = -ENOSYS;
665
666 if (!desc)
667 return -EINVAL;
668
669 data = irq_desc_get_irq_data(desc);
670 do {
671 chip = irq_data_get_irq_chip(data);
672 if (chip && chip->irq_set_vcpu_affinity)
673 break;
674 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
675 data = data->parent_data;
676 #else
677 data = NULL;
678 #endif
679 } while (data);
680
681 if (data)
682 ret = chip->irq_set_vcpu_affinity(data, vcpu_info);
683 irq_put_desc_unlock(desc, flags);
684
685 return ret;
686 }
687 EXPORT_SYMBOL_GPL(irq_set_vcpu_affinity);
688
__disable_irq(struct irq_desc * desc)689 void __disable_irq(struct irq_desc *desc)
690 {
691 if (!desc->depth++)
692 irq_disable(desc);
693 }
694
__disable_irq_nosync(unsigned int irq)695 static int __disable_irq_nosync(unsigned int irq)
696 {
697 unsigned long flags;
698 struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
699
700 if (!desc)
701 return -EINVAL;
702 __disable_irq(desc);
703 irq_put_desc_busunlock(desc, flags);
704 return 0;
705 }
706
707 /**
708 * disable_irq_nosync - disable an irq without waiting
709 * @irq: Interrupt to disable
710 *
711 * Disable the selected interrupt line. Disables and Enables are
712 * nested.
713 * Unlike disable_irq(), this function does not ensure existing
714 * instances of the IRQ handler have completed before returning.
715 *
716 * This function may be called from IRQ context.
717 */
disable_irq_nosync(unsigned int irq)718 void disable_irq_nosync(unsigned int irq)
719 {
720 __disable_irq_nosync(irq);
721 }
722 EXPORT_SYMBOL(disable_irq_nosync);
723
724 /**
725 * disable_irq - disable an irq and wait for completion
726 * @irq: Interrupt to disable
727 *
728 * Disable the selected interrupt line. Enables and Disables are
729 * nested.
730 * This function waits for any pending IRQ handlers for this interrupt
731 * to complete before returning. If you use this function while
732 * holding a resource the IRQ handler may need you will deadlock.
733 *
734 * This function may be called - with care - from IRQ context.
735 */
disable_irq(unsigned int irq)736 void disable_irq(unsigned int irq)
737 {
738 if (!__disable_irq_nosync(irq))
739 synchronize_irq(irq);
740 }
741 EXPORT_SYMBOL(disable_irq);
742
743 /**
744 * disable_hardirq - disables an irq and waits for hardirq completion
745 * @irq: Interrupt to disable
746 *
747 * Disable the selected interrupt line. Enables and Disables are
748 * nested.
749 * This function waits for any pending hard IRQ handlers for this
750 * interrupt to complete before returning. If you use this function while
751 * holding a resource the hard IRQ handler may need you will deadlock.
752 *
753 * When used to optimistically disable an interrupt from atomic context
754 * the return value must be checked.
755 *
756 * Returns: false if a threaded handler is active.
757 *
758 * This function may be called - with care - from IRQ context.
759 */
disable_hardirq(unsigned int irq)760 bool disable_hardirq(unsigned int irq)
761 {
762 if (!__disable_irq_nosync(irq))
763 return synchronize_hardirq(irq);
764
765 return false;
766 }
767 EXPORT_SYMBOL_GPL(disable_hardirq);
768
769 /**
770 * disable_nmi_nosync - disable an nmi without waiting
771 * @irq: Interrupt to disable
772 *
773 * Disable the selected interrupt line. Disables and enables are
774 * nested.
775 * The interrupt to disable must have been requested through request_nmi.
776 * Unlike disable_nmi(), this function does not ensure existing
777 * instances of the IRQ handler have completed before returning.
778 */
disable_nmi_nosync(unsigned int irq)779 void disable_nmi_nosync(unsigned int irq)
780 {
781 disable_irq_nosync(irq);
782 }
783
__enable_irq(struct irq_desc * desc)784 void __enable_irq(struct irq_desc *desc)
785 {
786 switch (desc->depth) {
787 case 0:
788 err_out:
789 WARN(1, KERN_WARNING "Unbalanced enable for IRQ %d\n",
790 irq_desc_get_irq(desc));
791 break;
792 case 1: {
793 if (desc->istate & IRQS_SUSPENDED)
794 goto err_out;
795 /* Prevent probing on this irq: */
796 irq_settings_set_noprobe(desc);
797 /*
798 * Call irq_startup() not irq_enable() here because the
799 * interrupt might be marked NOAUTOEN. So irq_startup()
800 * needs to be invoked when it gets enabled the first
801 * time. If it was already started up, then irq_startup()
802 * will invoke irq_enable() under the hood.
803 */
804 irq_startup(desc, IRQ_RESEND, IRQ_START_FORCE);
805 break;
806 }
807 default:
808 desc->depth--;
809 }
810 }
811
812 /**
813 * enable_irq - enable handling of an irq
814 * @irq: Interrupt to enable
815 *
816 * Undoes the effect of one call to disable_irq(). If this
817 * matches the last disable, processing of interrupts on this
818 * IRQ line is re-enabled.
819 *
820 * This function may be called from IRQ context only when
821 * desc->irq_data.chip->bus_lock and desc->chip->bus_sync_unlock are NULL !
822 */
enable_irq(unsigned int irq)823 void enable_irq(unsigned int irq)
824 {
825 unsigned long flags;
826 struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
827
828 if (!desc)
829 return;
830 if (WARN(!desc->irq_data.chip,
831 KERN_ERR "enable_irq before setup/request_irq: irq %u\n", irq))
832 goto out;
833
834 __enable_irq(desc);
835 out:
836 irq_put_desc_busunlock(desc, flags);
837 }
838 EXPORT_SYMBOL(enable_irq);
839
840 /**
841 * enable_nmi - enable handling of an nmi
842 * @irq: Interrupt to enable
843 *
844 * The interrupt to enable must have been requested through request_nmi.
845 * Undoes the effect of one call to disable_nmi(). If this
846 * matches the last disable, processing of interrupts on this
847 * IRQ line is re-enabled.
848 */
enable_nmi(unsigned int irq)849 void enable_nmi(unsigned int irq)
850 {
851 enable_irq(irq);
852 }
853
set_irq_wake_real(unsigned int irq,unsigned int on)854 static int set_irq_wake_real(unsigned int irq, unsigned int on)
855 {
856 struct irq_desc *desc = irq_to_desc(irq);
857 int ret = -ENXIO;
858
859 if (irq_desc_get_chip(desc)->flags & IRQCHIP_SKIP_SET_WAKE)
860 return 0;
861
862 if (desc->irq_data.chip->irq_set_wake)
863 ret = desc->irq_data.chip->irq_set_wake(&desc->irq_data, on);
864
865 return ret;
866 }
867
868 /**
869 * irq_set_irq_wake - control irq power management wakeup
870 * @irq: interrupt to control
871 * @on: enable/disable power management wakeup
872 *
873 * Enable/disable power management wakeup mode, which is
874 * disabled by default. Enables and disables must match,
875 * just as they match for non-wakeup mode support.
876 *
877 * Wakeup mode lets this IRQ wake the system from sleep
878 * states like "suspend to RAM".
879 *
880 * Note: irq enable/disable state is completely orthogonal
881 * to the enable/disable state of irq wake. An irq can be
882 * disabled with disable_irq() and still wake the system as
883 * long as the irq has wake enabled. If this does not hold,
884 * then the underlying irq chip and the related driver need
885 * to be investigated.
886 */
irq_set_irq_wake(unsigned int irq,unsigned int on)887 int irq_set_irq_wake(unsigned int irq, unsigned int on)
888 {
889 unsigned long flags;
890 struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
891 int ret = 0;
892
893 if (!desc)
894 return -EINVAL;
895
896 /* Don't use NMIs as wake up interrupts please */
897 if (desc->istate & IRQS_NMI) {
898 ret = -EINVAL;
899 goto out_unlock;
900 }
901
902 /* wakeup-capable irqs can be shared between drivers that
903 * don't need to have the same sleep mode behaviors.
904 */
905 if (on) {
906 if (desc->wake_depth++ == 0) {
907 ret = set_irq_wake_real(irq, on);
908 if (ret)
909 desc->wake_depth = 0;
910 else
911 irqd_set(&desc->irq_data, IRQD_WAKEUP_STATE);
912 }
913 } else {
914 if (desc->wake_depth == 0) {
915 WARN(1, "Unbalanced IRQ %d wake disable\n", irq);
916 } else if (--desc->wake_depth == 0) {
917 ret = set_irq_wake_real(irq, on);
918 if (ret)
919 desc->wake_depth = 1;
920 else
921 irqd_clear(&desc->irq_data, IRQD_WAKEUP_STATE);
922 }
923 }
924
925 out_unlock:
926 irq_put_desc_busunlock(desc, flags);
927 return ret;
928 }
929 EXPORT_SYMBOL(irq_set_irq_wake);
930
931 /*
932 * Internal function that tells the architecture code whether a
933 * particular irq has been exclusively allocated or is available
934 * for driver use.
935 */
can_request_irq(unsigned int irq,unsigned long irqflags)936 int can_request_irq(unsigned int irq, unsigned long irqflags)
937 {
938 unsigned long flags;
939 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0);
940 int canrequest = 0;
941
942 if (!desc)
943 return 0;
944
945 if (irq_settings_can_request(desc)) {
946 if (!desc->action ||
947 irqflags & desc->action->flags & IRQF_SHARED)
948 canrequest = 1;
949 }
950 irq_put_desc_unlock(desc, flags);
951 return canrequest;
952 }
953
__irq_set_trigger(struct irq_desc * desc,unsigned long flags)954 int __irq_set_trigger(struct irq_desc *desc, unsigned long flags)
955 {
956 struct irq_chip *chip = desc->irq_data.chip;
957 int ret, unmask = 0;
958
959 if (!chip || !chip->irq_set_type) {
960 /*
961 * IRQF_TRIGGER_* but the PIC does not support multiple
962 * flow-types?
963 */
964 pr_debug("No set_type function for IRQ %d (%s)\n",
965 irq_desc_get_irq(desc),
966 chip ? (chip->name ? : "unknown") : "unknown");
967 return 0;
968 }
969
970 if (chip->flags & IRQCHIP_SET_TYPE_MASKED) {
971 if (!irqd_irq_masked(&desc->irq_data))
972 mask_irq(desc);
973 if (!irqd_irq_disabled(&desc->irq_data))
974 unmask = 1;
975 }
976
977 /* Mask all flags except trigger mode */
978 flags &= IRQ_TYPE_SENSE_MASK;
979 ret = chip->irq_set_type(&desc->irq_data, flags);
980
981 switch (ret) {
982 case IRQ_SET_MASK_OK:
983 case IRQ_SET_MASK_OK_DONE:
984 irqd_clear(&desc->irq_data, IRQD_TRIGGER_MASK);
985 irqd_set(&desc->irq_data, flags);
986 fallthrough;
987
988 case IRQ_SET_MASK_OK_NOCOPY:
989 flags = irqd_get_trigger_type(&desc->irq_data);
990 irq_settings_set_trigger_mask(desc, flags);
991 irqd_clear(&desc->irq_data, IRQD_LEVEL);
992 irq_settings_clr_level(desc);
993 if (flags & IRQ_TYPE_LEVEL_MASK) {
994 irq_settings_set_level(desc);
995 irqd_set(&desc->irq_data, IRQD_LEVEL);
996 }
997
998 ret = 0;
999 break;
1000 default:
1001 pr_err("Setting trigger mode %lu for irq %u failed (%pS)\n",
1002 flags, irq_desc_get_irq(desc), chip->irq_set_type);
1003 }
1004 if (unmask)
1005 unmask_irq(desc);
1006 return ret;
1007 }
1008
1009 #ifdef CONFIG_HARDIRQS_SW_RESEND
irq_set_parent(int irq,int parent_irq)1010 int irq_set_parent(int irq, int parent_irq)
1011 {
1012 unsigned long flags;
1013 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0);
1014
1015 if (!desc)
1016 return -EINVAL;
1017
1018 desc->parent_irq = parent_irq;
1019
1020 irq_put_desc_unlock(desc, flags);
1021 return 0;
1022 }
1023 EXPORT_SYMBOL_GPL(irq_set_parent);
1024 #endif
1025
1026 /*
1027 * Default primary interrupt handler for threaded interrupts. Is
1028 * assigned as primary handler when request_threaded_irq is called
1029 * with handler == NULL. Useful for oneshot interrupts.
1030 */
irq_default_primary_handler(int irq,void * dev_id)1031 static irqreturn_t irq_default_primary_handler(int irq, void *dev_id)
1032 {
1033 return IRQ_WAKE_THREAD;
1034 }
1035
1036 /*
1037 * Primary handler for nested threaded interrupts. Should never be
1038 * called.
1039 */
irq_nested_primary_handler(int irq,void * dev_id)1040 static irqreturn_t irq_nested_primary_handler(int irq, void *dev_id)
1041 {
1042 WARN(1, "Primary handler called for nested irq %d\n", irq);
1043 return IRQ_NONE;
1044 }
1045
irq_forced_secondary_handler(int irq,void * dev_id)1046 static irqreturn_t irq_forced_secondary_handler(int irq, void *dev_id)
1047 {
1048 WARN(1, "Secondary action handler called for irq %d\n", irq);
1049 return IRQ_NONE;
1050 }
1051
irq_wait_for_interrupt(struct irqaction * action)1052 static int irq_wait_for_interrupt(struct irqaction *action)
1053 {
1054 for (;;) {
1055 set_current_state(TASK_INTERRUPTIBLE);
1056
1057 if (kthread_should_stop()) {
1058 /* may need to run one last time */
1059 if (test_and_clear_bit(IRQTF_RUNTHREAD,
1060 &action->thread_flags)) {
1061 __set_current_state(TASK_RUNNING);
1062 return 0;
1063 }
1064 __set_current_state(TASK_RUNNING);
1065 return -1;
1066 }
1067
1068 if (test_and_clear_bit(IRQTF_RUNTHREAD,
1069 &action->thread_flags)) {
1070 __set_current_state(TASK_RUNNING);
1071 return 0;
1072 }
1073 schedule();
1074 }
1075 }
1076
1077 /*
1078 * Oneshot interrupts keep the irq line masked until the threaded
1079 * handler finished. unmask if the interrupt has not been disabled and
1080 * is marked MASKED.
1081 */
irq_finalize_oneshot(struct irq_desc * desc,struct irqaction * action)1082 static void irq_finalize_oneshot(struct irq_desc *desc,
1083 struct irqaction *action)
1084 {
1085 if (!(desc->istate & IRQS_ONESHOT) ||
1086 action->handler == irq_forced_secondary_handler)
1087 return;
1088 again:
1089 chip_bus_lock(desc);
1090 raw_spin_lock_irq(&desc->lock);
1091
1092 /*
1093 * Implausible though it may be we need to protect us against
1094 * the following scenario:
1095 *
1096 * The thread is faster done than the hard interrupt handler
1097 * on the other CPU. If we unmask the irq line then the
1098 * interrupt can come in again and masks the line, leaves due
1099 * to IRQS_INPROGRESS and the irq line is masked forever.
1100 *
1101 * This also serializes the state of shared oneshot handlers
1102 * versus "desc->threads_oneshot |= action->thread_mask;" in
1103 * irq_wake_thread(). See the comment there which explains the
1104 * serialization.
1105 */
1106 if (unlikely(irqd_irq_inprogress(&desc->irq_data))) {
1107 raw_spin_unlock_irq(&desc->lock);
1108 chip_bus_sync_unlock(desc);
1109 cpu_relax();
1110 goto again;
1111 }
1112
1113 /*
1114 * Now check again, whether the thread should run. Otherwise
1115 * we would clear the threads_oneshot bit of this thread which
1116 * was just set.
1117 */
1118 if (test_bit(IRQTF_RUNTHREAD, &action->thread_flags))
1119 goto out_unlock;
1120
1121 desc->threads_oneshot &= ~action->thread_mask;
1122
1123 if (!desc->threads_oneshot && !irqd_irq_disabled(&desc->irq_data) &&
1124 irqd_irq_masked(&desc->irq_data))
1125 unmask_threaded_irq(desc);
1126
1127 out_unlock:
1128 raw_spin_unlock_irq(&desc->lock);
1129 chip_bus_sync_unlock(desc);
1130 }
1131
1132 #ifdef CONFIG_SMP
1133 /*
1134 * Check whether we need to change the affinity of the interrupt thread.
1135 */
1136 static void
irq_thread_check_affinity(struct irq_desc * desc,struct irqaction * action)1137 irq_thread_check_affinity(struct irq_desc *desc, struct irqaction *action)
1138 {
1139 cpumask_var_t mask;
1140 bool valid = true;
1141
1142 if (!test_and_clear_bit(IRQTF_AFFINITY, &action->thread_flags))
1143 return;
1144
1145 /*
1146 * In case we are out of memory we set IRQTF_AFFINITY again and
1147 * try again next time
1148 */
1149 if (!alloc_cpumask_var(&mask, GFP_KERNEL)) {
1150 set_bit(IRQTF_AFFINITY, &action->thread_flags);
1151 return;
1152 }
1153
1154 raw_spin_lock_irq(&desc->lock);
1155 /*
1156 * This code is triggered unconditionally. Check the affinity
1157 * mask pointer. For CPU_MASK_OFFSTACK=n this is optimized out.
1158 */
1159 if (cpumask_available(desc->irq_common_data.affinity)) {
1160 const struct cpumask *m;
1161
1162 m = irq_data_get_effective_affinity_mask(&desc->irq_data);
1163 cpumask_copy(mask, m);
1164 } else {
1165 valid = false;
1166 }
1167 raw_spin_unlock_irq(&desc->lock);
1168
1169 if (valid)
1170 set_cpus_allowed_ptr(current, mask);
1171 free_cpumask_var(mask);
1172 }
1173 #else
1174 static inline void
irq_thread_check_affinity(struct irq_desc * desc,struct irqaction * action)1175 irq_thread_check_affinity(struct irq_desc *desc, struct irqaction *action) { }
1176 #endif
1177
1178 /*
1179 * Interrupts which are not explicitly requested as threaded
1180 * interrupts rely on the implicit bh/preempt disable of the hard irq
1181 * context. So we need to disable bh here to avoid deadlocks and other
1182 * side effects.
1183 */
1184 static irqreturn_t
irq_forced_thread_fn(struct irq_desc * desc,struct irqaction * action)1185 irq_forced_thread_fn(struct irq_desc *desc, struct irqaction *action)
1186 {
1187 irqreturn_t ret;
1188
1189 local_bh_disable();
1190 if (!IS_ENABLED(CONFIG_PREEMPT_RT))
1191 local_irq_disable();
1192 ret = action->thread_fn(action->irq, action->dev_id);
1193 if (ret == IRQ_HANDLED)
1194 atomic_inc(&desc->threads_handled);
1195
1196 irq_finalize_oneshot(desc, action);
1197 if (!IS_ENABLED(CONFIG_PREEMPT_RT))
1198 local_irq_enable();
1199 local_bh_enable();
1200 return ret;
1201 }
1202
1203 /*
1204 * Interrupts explicitly requested as threaded interrupts want to be
1205 * preemptible - many of them need to sleep and wait for slow busses to
1206 * complete.
1207 */
irq_thread_fn(struct irq_desc * desc,struct irqaction * action)1208 static irqreturn_t irq_thread_fn(struct irq_desc *desc,
1209 struct irqaction *action)
1210 {
1211 irqreturn_t ret;
1212
1213 ret = action->thread_fn(action->irq, action->dev_id);
1214 if (ret == IRQ_HANDLED)
1215 atomic_inc(&desc->threads_handled);
1216
1217 irq_finalize_oneshot(desc, action);
1218 return ret;
1219 }
1220
wake_threads_waitq(struct irq_desc * desc)1221 static void wake_threads_waitq(struct irq_desc *desc)
1222 {
1223 if (atomic_dec_and_test(&desc->threads_active))
1224 wake_up(&desc->wait_for_threads);
1225 }
1226
irq_thread_dtor(struct callback_head * unused)1227 static void irq_thread_dtor(struct callback_head *unused)
1228 {
1229 struct task_struct *tsk = current;
1230 struct irq_desc *desc;
1231 struct irqaction *action;
1232
1233 if (WARN_ON_ONCE(!(current->flags & PF_EXITING)))
1234 return;
1235
1236 action = kthread_data(tsk);
1237
1238 pr_err("exiting task \"%s\" (%d) is an active IRQ thread (irq %d)\n",
1239 tsk->comm, tsk->pid, action->irq);
1240
1241
1242 desc = irq_to_desc(action->irq);
1243 /*
1244 * If IRQTF_RUNTHREAD is set, we need to decrement
1245 * desc->threads_active and wake possible waiters.
1246 */
1247 if (test_and_clear_bit(IRQTF_RUNTHREAD, &action->thread_flags))
1248 wake_threads_waitq(desc);
1249
1250 /* Prevent a stale desc->threads_oneshot */
1251 irq_finalize_oneshot(desc, action);
1252 }
1253
irq_wake_secondary(struct irq_desc * desc,struct irqaction * action)1254 static void irq_wake_secondary(struct irq_desc *desc, struct irqaction *action)
1255 {
1256 struct irqaction *secondary = action->secondary;
1257
1258 if (WARN_ON_ONCE(!secondary))
1259 return;
1260
1261 raw_spin_lock_irq(&desc->lock);
1262 __irq_wake_thread(desc, secondary);
1263 raw_spin_unlock_irq(&desc->lock);
1264 }
1265
1266 /*
1267 * Internal function to notify that a interrupt thread is ready.
1268 */
irq_thread_set_ready(struct irq_desc * desc,struct irqaction * action)1269 static void irq_thread_set_ready(struct irq_desc *desc,
1270 struct irqaction *action)
1271 {
1272 set_bit(IRQTF_READY, &action->thread_flags);
1273 wake_up(&desc->wait_for_threads);
1274 }
1275
1276 /*
1277 * Internal function to wake up a interrupt thread and wait until it is
1278 * ready.
1279 */
wake_up_and_wait_for_irq_thread_ready(struct irq_desc * desc,struct irqaction * action)1280 static void wake_up_and_wait_for_irq_thread_ready(struct irq_desc *desc,
1281 struct irqaction *action)
1282 {
1283 if (!action || !action->thread)
1284 return;
1285
1286 wake_up_process(action->thread);
1287 wait_event(desc->wait_for_threads,
1288 test_bit(IRQTF_READY, &action->thread_flags));
1289 }
1290
1291 /*
1292 * Interrupt handler thread
1293 */
irq_thread(void * data)1294 static int irq_thread(void *data)
1295 {
1296 struct callback_head on_exit_work;
1297 struct irqaction *action = data;
1298 struct irq_desc *desc = irq_to_desc(action->irq);
1299 irqreturn_t (*handler_fn)(struct irq_desc *desc,
1300 struct irqaction *action);
1301
1302 irq_thread_set_ready(desc, action);
1303
1304 sched_set_fifo(current);
1305
1306 if (force_irqthreads() && test_bit(IRQTF_FORCED_THREAD,
1307 &action->thread_flags))
1308 handler_fn = irq_forced_thread_fn;
1309 else
1310 handler_fn = irq_thread_fn;
1311
1312 init_task_work(&on_exit_work, irq_thread_dtor);
1313 task_work_add(current, &on_exit_work, TWA_NONE);
1314
1315 irq_thread_check_affinity(desc, action);
1316
1317 while (!irq_wait_for_interrupt(action)) {
1318 irqreturn_t action_ret;
1319
1320 irq_thread_check_affinity(desc, action);
1321
1322 action_ret = handler_fn(desc, action);
1323 if (action_ret == IRQ_WAKE_THREAD)
1324 irq_wake_secondary(desc, action);
1325
1326 wake_threads_waitq(desc);
1327 }
1328
1329 /*
1330 * This is the regular exit path. __free_irq() is stopping the
1331 * thread via kthread_stop() after calling
1332 * synchronize_hardirq(). So neither IRQTF_RUNTHREAD nor the
1333 * oneshot mask bit can be set.
1334 */
1335 task_work_cancel(current, irq_thread_dtor);
1336 return 0;
1337 }
1338
1339 /**
1340 * irq_wake_thread - wake the irq thread for the action identified by dev_id
1341 * @irq: Interrupt line
1342 * @dev_id: Device identity for which the thread should be woken
1343 *
1344 */
irq_wake_thread(unsigned int irq,void * dev_id)1345 void irq_wake_thread(unsigned int irq, void *dev_id)
1346 {
1347 struct irq_desc *desc = irq_to_desc(irq);
1348 struct irqaction *action;
1349 unsigned long flags;
1350
1351 if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1352 return;
1353
1354 raw_spin_lock_irqsave(&desc->lock, flags);
1355 for_each_action_of_desc(desc, action) {
1356 if (action->dev_id == dev_id) {
1357 if (action->thread)
1358 __irq_wake_thread(desc, action);
1359 break;
1360 }
1361 }
1362 raw_spin_unlock_irqrestore(&desc->lock, flags);
1363 }
1364 EXPORT_SYMBOL_GPL(irq_wake_thread);
1365
irq_setup_forced_threading(struct irqaction * new)1366 static int irq_setup_forced_threading(struct irqaction *new)
1367 {
1368 if (!force_irqthreads())
1369 return 0;
1370 if (new->flags & (IRQF_NO_THREAD | IRQF_PERCPU | IRQF_ONESHOT))
1371 return 0;
1372
1373 /*
1374 * No further action required for interrupts which are requested as
1375 * threaded interrupts already
1376 */
1377 if (new->handler == irq_default_primary_handler)
1378 return 0;
1379
1380 new->flags |= IRQF_ONESHOT;
1381
1382 /*
1383 * Handle the case where we have a real primary handler and a
1384 * thread handler. We force thread them as well by creating a
1385 * secondary action.
1386 */
1387 if (new->handler && new->thread_fn) {
1388 /* Allocate the secondary action */
1389 new->secondary = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
1390 if (!new->secondary)
1391 return -ENOMEM;
1392 new->secondary->handler = irq_forced_secondary_handler;
1393 new->secondary->thread_fn = new->thread_fn;
1394 new->secondary->dev_id = new->dev_id;
1395 new->secondary->irq = new->irq;
1396 new->secondary->name = new->name;
1397 }
1398 /* Deal with the primary handler */
1399 set_bit(IRQTF_FORCED_THREAD, &new->thread_flags);
1400 new->thread_fn = new->handler;
1401 new->handler = irq_default_primary_handler;
1402 return 0;
1403 }
1404
irq_request_resources(struct irq_desc * desc)1405 static int irq_request_resources(struct irq_desc *desc)
1406 {
1407 struct irq_data *d = &desc->irq_data;
1408 struct irq_chip *c = d->chip;
1409
1410 return c->irq_request_resources ? c->irq_request_resources(d) : 0;
1411 }
1412
irq_release_resources(struct irq_desc * desc)1413 static void irq_release_resources(struct irq_desc *desc)
1414 {
1415 struct irq_data *d = &desc->irq_data;
1416 struct irq_chip *c = d->chip;
1417
1418 if (c->irq_release_resources)
1419 c->irq_release_resources(d);
1420 }
1421
irq_supports_nmi(struct irq_desc * desc)1422 static bool irq_supports_nmi(struct irq_desc *desc)
1423 {
1424 struct irq_data *d = irq_desc_get_irq_data(desc);
1425
1426 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
1427 /* Only IRQs directly managed by the root irqchip can be set as NMI */
1428 if (d->parent_data)
1429 return false;
1430 #endif
1431 /* Don't support NMIs for chips behind a slow bus */
1432 if (d->chip->irq_bus_lock || d->chip->irq_bus_sync_unlock)
1433 return false;
1434
1435 return d->chip->flags & IRQCHIP_SUPPORTS_NMI;
1436 }
1437
irq_nmi_setup(struct irq_desc * desc)1438 static int irq_nmi_setup(struct irq_desc *desc)
1439 {
1440 struct irq_data *d = irq_desc_get_irq_data(desc);
1441 struct irq_chip *c = d->chip;
1442
1443 return c->irq_nmi_setup ? c->irq_nmi_setup(d) : -EINVAL;
1444 }
1445
irq_nmi_teardown(struct irq_desc * desc)1446 static void irq_nmi_teardown(struct irq_desc *desc)
1447 {
1448 struct irq_data *d = irq_desc_get_irq_data(desc);
1449 struct irq_chip *c = d->chip;
1450
1451 if (c->irq_nmi_teardown)
1452 c->irq_nmi_teardown(d);
1453 }
1454
1455 static int
setup_irq_thread(struct irqaction * new,unsigned int irq,bool secondary)1456 setup_irq_thread(struct irqaction *new, unsigned int irq, bool secondary)
1457 {
1458 struct task_struct *t;
1459
1460 if (!secondary) {
1461 t = kthread_create(irq_thread, new, "irq/%d-%s", irq,
1462 new->name);
1463 } else {
1464 t = kthread_create(irq_thread, new, "irq/%d-s-%s", irq,
1465 new->name);
1466 }
1467
1468 if (IS_ERR(t))
1469 return PTR_ERR(t);
1470
1471 /*
1472 * We keep the reference to the task struct even if
1473 * the thread dies to avoid that the interrupt code
1474 * references an already freed task_struct.
1475 */
1476 new->thread = get_task_struct(t);
1477 /*
1478 * Tell the thread to set its affinity. This is
1479 * important for shared interrupt handlers as we do
1480 * not invoke setup_affinity() for the secondary
1481 * handlers as everything is already set up. Even for
1482 * interrupts marked with IRQF_NO_BALANCE this is
1483 * correct as we want the thread to move to the cpu(s)
1484 * on which the requesting code placed the interrupt.
1485 */
1486 set_bit(IRQTF_AFFINITY, &new->thread_flags);
1487 return 0;
1488 }
1489
1490 /*
1491 * Internal function to register an irqaction - typically used to
1492 * allocate special interrupts that are part of the architecture.
1493 *
1494 * Locking rules:
1495 *
1496 * desc->request_mutex Provides serialization against a concurrent free_irq()
1497 * chip_bus_lock Provides serialization for slow bus operations
1498 * desc->lock Provides serialization against hard interrupts
1499 *
1500 * chip_bus_lock and desc->lock are sufficient for all other management and
1501 * interrupt related functions. desc->request_mutex solely serializes
1502 * request/free_irq().
1503 */
1504 static int
__setup_irq(unsigned int irq,struct irq_desc * desc,struct irqaction * new)1505 __setup_irq(unsigned int irq, struct irq_desc *desc, struct irqaction *new)
1506 {
1507 struct irqaction *old, **old_ptr;
1508 unsigned long flags, thread_mask = 0;
1509 int ret, nested, shared = 0;
1510
1511 if (!desc)
1512 return -EINVAL;
1513
1514 if (desc->irq_data.chip == &no_irq_chip)
1515 return -ENOSYS;
1516 if (!try_module_get(desc->owner))
1517 return -ENODEV;
1518
1519 new->irq = irq;
1520
1521 /*
1522 * If the trigger type is not specified by the caller,
1523 * then use the default for this interrupt.
1524 */
1525 if (!(new->flags & IRQF_TRIGGER_MASK))
1526 new->flags |= irqd_get_trigger_type(&desc->irq_data);
1527
1528 /*
1529 * Check whether the interrupt nests into another interrupt
1530 * thread.
1531 */
1532 nested = irq_settings_is_nested_thread(desc);
1533 if (nested) {
1534 if (!new->thread_fn) {
1535 ret = -EINVAL;
1536 goto out_mput;
1537 }
1538 /*
1539 * Replace the primary handler which was provided from
1540 * the driver for non nested interrupt handling by the
1541 * dummy function which warns when called.
1542 */
1543 new->handler = irq_nested_primary_handler;
1544 } else {
1545 if (irq_settings_can_thread(desc)) {
1546 ret = irq_setup_forced_threading(new);
1547 if (ret)
1548 goto out_mput;
1549 }
1550 }
1551
1552 /*
1553 * Create a handler thread when a thread function is supplied
1554 * and the interrupt does not nest into another interrupt
1555 * thread.
1556 */
1557 if (new->thread_fn && !nested) {
1558 ret = setup_irq_thread(new, irq, false);
1559 if (ret)
1560 goto out_mput;
1561 if (new->secondary) {
1562 ret = setup_irq_thread(new->secondary, irq, true);
1563 if (ret)
1564 goto out_thread;
1565 }
1566 }
1567
1568 /*
1569 * Drivers are often written to work w/o knowledge about the
1570 * underlying irq chip implementation, so a request for a
1571 * threaded irq without a primary hard irq context handler
1572 * requires the ONESHOT flag to be set. Some irq chips like
1573 * MSI based interrupts are per se one shot safe. Check the
1574 * chip flags, so we can avoid the unmask dance at the end of
1575 * the threaded handler for those.
1576 */
1577 if (desc->irq_data.chip->flags & IRQCHIP_ONESHOT_SAFE)
1578 new->flags &= ~IRQF_ONESHOT;
1579
1580 /*
1581 * Protects against a concurrent __free_irq() call which might wait
1582 * for synchronize_hardirq() to complete without holding the optional
1583 * chip bus lock and desc->lock. Also protects against handing out
1584 * a recycled oneshot thread_mask bit while it's still in use by
1585 * its previous owner.
1586 */
1587 mutex_lock(&desc->request_mutex);
1588
1589 /*
1590 * Acquire bus lock as the irq_request_resources() callback below
1591 * might rely on the serialization or the magic power management
1592 * functions which are abusing the irq_bus_lock() callback,
1593 */
1594 chip_bus_lock(desc);
1595
1596 /* First installed action requests resources. */
1597 if (!desc->action) {
1598 ret = irq_request_resources(desc);
1599 if (ret) {
1600 pr_err("Failed to request resources for %s (irq %d) on irqchip %s\n",
1601 new->name, irq, desc->irq_data.chip->name);
1602 goto out_bus_unlock;
1603 }
1604 }
1605
1606 /*
1607 * The following block of code has to be executed atomically
1608 * protected against a concurrent interrupt and any of the other
1609 * management calls which are not serialized via
1610 * desc->request_mutex or the optional bus lock.
1611 */
1612 raw_spin_lock_irqsave(&desc->lock, flags);
1613 old_ptr = &desc->action;
1614 old = *old_ptr;
1615 if (old) {
1616 /*
1617 * Can't share interrupts unless both agree to and are
1618 * the same type (level, edge, polarity). So both flag
1619 * fields must have IRQF_SHARED set and the bits which
1620 * set the trigger type must match. Also all must
1621 * agree on ONESHOT.
1622 * Interrupt lines used for NMIs cannot be shared.
1623 */
1624 unsigned int oldtype;
1625
1626 if (desc->istate & IRQS_NMI) {
1627 pr_err("Invalid attempt to share NMI for %s (irq %d) on irqchip %s.\n",
1628 new->name, irq, desc->irq_data.chip->name);
1629 ret = -EINVAL;
1630 goto out_unlock;
1631 }
1632
1633 /*
1634 * If nobody did set the configuration before, inherit
1635 * the one provided by the requester.
1636 */
1637 if (irqd_trigger_type_was_set(&desc->irq_data)) {
1638 oldtype = irqd_get_trigger_type(&desc->irq_data);
1639 } else {
1640 oldtype = new->flags & IRQF_TRIGGER_MASK;
1641 irqd_set_trigger_type(&desc->irq_data, oldtype);
1642 }
1643
1644 if (!((old->flags & new->flags) & IRQF_SHARED) ||
1645 (oldtype != (new->flags & IRQF_TRIGGER_MASK)) ||
1646 ((old->flags ^ new->flags) & IRQF_ONESHOT))
1647 goto mismatch;
1648
1649 /* All handlers must agree on per-cpuness */
1650 if ((old->flags & IRQF_PERCPU) !=
1651 (new->flags & IRQF_PERCPU))
1652 goto mismatch;
1653
1654 /* add new interrupt at end of irq queue */
1655 do {
1656 /*
1657 * Or all existing action->thread_mask bits,
1658 * so we can find the next zero bit for this
1659 * new action.
1660 */
1661 thread_mask |= old->thread_mask;
1662 old_ptr = &old->next;
1663 old = *old_ptr;
1664 } while (old);
1665 shared = 1;
1666 }
1667
1668 /*
1669 * Setup the thread mask for this irqaction for ONESHOT. For
1670 * !ONESHOT irqs the thread mask is 0 so we can avoid a
1671 * conditional in irq_wake_thread().
1672 */
1673 if (new->flags & IRQF_ONESHOT) {
1674 /*
1675 * Unlikely to have 32 resp 64 irqs sharing one line,
1676 * but who knows.
1677 */
1678 if (thread_mask == ~0UL) {
1679 ret = -EBUSY;
1680 goto out_unlock;
1681 }
1682 /*
1683 * The thread_mask for the action is or'ed to
1684 * desc->thread_active to indicate that the
1685 * IRQF_ONESHOT thread handler has been woken, but not
1686 * yet finished. The bit is cleared when a thread
1687 * completes. When all threads of a shared interrupt
1688 * line have completed desc->threads_active becomes
1689 * zero and the interrupt line is unmasked. See
1690 * handle.c:irq_wake_thread() for further information.
1691 *
1692 * If no thread is woken by primary (hard irq context)
1693 * interrupt handlers, then desc->threads_active is
1694 * also checked for zero to unmask the irq line in the
1695 * affected hard irq flow handlers
1696 * (handle_[fasteoi|level]_irq).
1697 *
1698 * The new action gets the first zero bit of
1699 * thread_mask assigned. See the loop above which or's
1700 * all existing action->thread_mask bits.
1701 */
1702 new->thread_mask = 1UL << ffz(thread_mask);
1703
1704 } else if (new->handler == irq_default_primary_handler &&
1705 !(desc->irq_data.chip->flags & IRQCHIP_ONESHOT_SAFE)) {
1706 /*
1707 * The interrupt was requested with handler = NULL, so
1708 * we use the default primary handler for it. But it
1709 * does not have the oneshot flag set. In combination
1710 * with level interrupts this is deadly, because the
1711 * default primary handler just wakes the thread, then
1712 * the irq lines is reenabled, but the device still
1713 * has the level irq asserted. Rinse and repeat....
1714 *
1715 * While this works for edge type interrupts, we play
1716 * it safe and reject unconditionally because we can't
1717 * say for sure which type this interrupt really
1718 * has. The type flags are unreliable as the
1719 * underlying chip implementation can override them.
1720 */
1721 pr_err("Threaded irq requested with handler=NULL and !ONESHOT for %s (irq %d)\n",
1722 new->name, irq);
1723 ret = -EINVAL;
1724 goto out_unlock;
1725 }
1726
1727 if (!shared) {
1728 /* Setup the type (level, edge polarity) if configured: */
1729 if (new->flags & IRQF_TRIGGER_MASK) {
1730 ret = __irq_set_trigger(desc,
1731 new->flags & IRQF_TRIGGER_MASK);
1732
1733 if (ret)
1734 goto out_unlock;
1735 }
1736
1737 /*
1738 * Activate the interrupt. That activation must happen
1739 * independently of IRQ_NOAUTOEN. request_irq() can fail
1740 * and the callers are supposed to handle
1741 * that. enable_irq() of an interrupt requested with
1742 * IRQ_NOAUTOEN is not supposed to fail. The activation
1743 * keeps it in shutdown mode, it merily associates
1744 * resources if necessary and if that's not possible it
1745 * fails. Interrupts which are in managed shutdown mode
1746 * will simply ignore that activation request.
1747 */
1748 ret = irq_activate(desc);
1749 if (ret)
1750 goto out_unlock;
1751
1752 desc->istate &= ~(IRQS_AUTODETECT | IRQS_SPURIOUS_DISABLED | \
1753 IRQS_ONESHOT | IRQS_WAITING);
1754 irqd_clear(&desc->irq_data, IRQD_IRQ_INPROGRESS);
1755
1756 if (new->flags & IRQF_PERCPU) {
1757 irqd_set(&desc->irq_data, IRQD_PER_CPU);
1758 irq_settings_set_per_cpu(desc);
1759 if (new->flags & IRQF_NO_DEBUG)
1760 irq_settings_set_no_debug(desc);
1761 }
1762
1763 if (noirqdebug)
1764 irq_settings_set_no_debug(desc);
1765
1766 if (new->flags & IRQF_ONESHOT)
1767 desc->istate |= IRQS_ONESHOT;
1768
1769 /* Exclude IRQ from balancing if requested */
1770 if (new->flags & IRQF_NOBALANCING) {
1771 irq_settings_set_no_balancing(desc);
1772 irqd_set(&desc->irq_data, IRQD_NO_BALANCING);
1773 }
1774
1775 if (!(new->flags & IRQF_NO_AUTOEN) &&
1776 irq_settings_can_autoenable(desc)) {
1777 irq_startup(desc, IRQ_RESEND, IRQ_START_COND);
1778 } else {
1779 /*
1780 * Shared interrupts do not go well with disabling
1781 * auto enable. The sharing interrupt might request
1782 * it while it's still disabled and then wait for
1783 * interrupts forever.
1784 */
1785 WARN_ON_ONCE(new->flags & IRQF_SHARED);
1786 /* Undo nested disables: */
1787 desc->depth = 1;
1788 }
1789
1790 } else if (new->flags & IRQF_TRIGGER_MASK) {
1791 unsigned int nmsk = new->flags & IRQF_TRIGGER_MASK;
1792 unsigned int omsk = irqd_get_trigger_type(&desc->irq_data);
1793
1794 if (nmsk != omsk)
1795 /* hope the handler works with current trigger mode */
1796 pr_warn("irq %d uses trigger mode %u; requested %u\n",
1797 irq, omsk, nmsk);
1798 }
1799
1800 *old_ptr = new;
1801
1802 irq_pm_install_action(desc, new);
1803
1804 /* Reset broken irq detection when installing new handler */
1805 desc->irq_count = 0;
1806 desc->irqs_unhandled = 0;
1807
1808 /*
1809 * Check whether we disabled the irq via the spurious handler
1810 * before. Reenable it and give it another chance.
1811 */
1812 if (shared && (desc->istate & IRQS_SPURIOUS_DISABLED)) {
1813 desc->istate &= ~IRQS_SPURIOUS_DISABLED;
1814 __enable_irq(desc);
1815 }
1816
1817 raw_spin_unlock_irqrestore(&desc->lock, flags);
1818 chip_bus_sync_unlock(desc);
1819 mutex_unlock(&desc->request_mutex);
1820
1821 irq_setup_timings(desc, new);
1822
1823 wake_up_and_wait_for_irq_thread_ready(desc, new);
1824 wake_up_and_wait_for_irq_thread_ready(desc, new->secondary);
1825
1826 register_irq_proc(irq, desc);
1827 new->dir = NULL;
1828 register_handler_proc(irq, new);
1829 return 0;
1830
1831 mismatch:
1832 if (!(new->flags & IRQF_PROBE_SHARED)) {
1833 pr_err("Flags mismatch irq %d. %08x (%s) vs. %08x (%s)\n",
1834 irq, new->flags, new->name, old->flags, old->name);
1835 #ifdef CONFIG_DEBUG_SHIRQ
1836 dump_stack();
1837 #endif
1838 }
1839 ret = -EBUSY;
1840
1841 out_unlock:
1842 raw_spin_unlock_irqrestore(&desc->lock, flags);
1843
1844 if (!desc->action)
1845 irq_release_resources(desc);
1846 out_bus_unlock:
1847 chip_bus_sync_unlock(desc);
1848 mutex_unlock(&desc->request_mutex);
1849
1850 out_thread:
1851 if (new->thread) {
1852 struct task_struct *t = new->thread;
1853
1854 new->thread = NULL;
1855 kthread_stop(t);
1856 put_task_struct(t);
1857 }
1858 if (new->secondary && new->secondary->thread) {
1859 struct task_struct *t = new->secondary->thread;
1860
1861 new->secondary->thread = NULL;
1862 kthread_stop(t);
1863 put_task_struct(t);
1864 }
1865 out_mput:
1866 module_put(desc->owner);
1867 return ret;
1868 }
1869
1870 /*
1871 * Internal function to unregister an irqaction - used to free
1872 * regular and special interrupts that are part of the architecture.
1873 */
__free_irq(struct irq_desc * desc,void * dev_id)1874 static struct irqaction *__free_irq(struct irq_desc *desc, void *dev_id)
1875 {
1876 unsigned irq = desc->irq_data.irq;
1877 struct irqaction *action, **action_ptr;
1878 unsigned long flags;
1879
1880 WARN(in_interrupt(), "Trying to free IRQ %d from IRQ context!\n", irq);
1881
1882 mutex_lock(&desc->request_mutex);
1883 chip_bus_lock(desc);
1884 raw_spin_lock_irqsave(&desc->lock, flags);
1885
1886 /*
1887 * There can be multiple actions per IRQ descriptor, find the right
1888 * one based on the dev_id:
1889 */
1890 action_ptr = &desc->action;
1891 for (;;) {
1892 action = *action_ptr;
1893
1894 if (!action) {
1895 WARN(1, "Trying to free already-free IRQ %d\n", irq);
1896 raw_spin_unlock_irqrestore(&desc->lock, flags);
1897 chip_bus_sync_unlock(desc);
1898 mutex_unlock(&desc->request_mutex);
1899 return NULL;
1900 }
1901
1902 if (action->dev_id == dev_id)
1903 break;
1904 action_ptr = &action->next;
1905 }
1906
1907 /* Found it - now remove it from the list of entries: */
1908 *action_ptr = action->next;
1909
1910 irq_pm_remove_action(desc, action);
1911
1912 /* If this was the last handler, shut down the IRQ line: */
1913 if (!desc->action) {
1914 irq_settings_clr_disable_unlazy(desc);
1915 /* Only shutdown. Deactivate after synchronize_hardirq() */
1916 irq_shutdown(desc);
1917 }
1918
1919 #ifdef CONFIG_SMP
1920 /* make sure affinity_hint is cleaned up */
1921 if (WARN_ON_ONCE(desc->affinity_hint))
1922 desc->affinity_hint = NULL;
1923 #endif
1924
1925 raw_spin_unlock_irqrestore(&desc->lock, flags);
1926 /*
1927 * Drop bus_lock here so the changes which were done in the chip
1928 * callbacks above are synced out to the irq chips which hang
1929 * behind a slow bus (I2C, SPI) before calling synchronize_hardirq().
1930 *
1931 * Aside of that the bus_lock can also be taken from the threaded
1932 * handler in irq_finalize_oneshot() which results in a deadlock
1933 * because kthread_stop() would wait forever for the thread to
1934 * complete, which is blocked on the bus lock.
1935 *
1936 * The still held desc->request_mutex() protects against a
1937 * concurrent request_irq() of this irq so the release of resources
1938 * and timing data is properly serialized.
1939 */
1940 chip_bus_sync_unlock(desc);
1941
1942 unregister_handler_proc(irq, action);
1943
1944 /*
1945 * Make sure it's not being used on another CPU and if the chip
1946 * supports it also make sure that there is no (not yet serviced)
1947 * interrupt in flight at the hardware level.
1948 */
1949 __synchronize_hardirq(desc, true);
1950
1951 #ifdef CONFIG_DEBUG_SHIRQ
1952 /*
1953 * It's a shared IRQ -- the driver ought to be prepared for an IRQ
1954 * event to happen even now it's being freed, so let's make sure that
1955 * is so by doing an extra call to the handler ....
1956 *
1957 * ( We do this after actually deregistering it, to make sure that a
1958 * 'real' IRQ doesn't run in parallel with our fake. )
1959 */
1960 if (action->flags & IRQF_SHARED) {
1961 local_irq_save(flags);
1962 action->handler(irq, dev_id);
1963 local_irq_restore(flags);
1964 }
1965 #endif
1966
1967 /*
1968 * The action has already been removed above, but the thread writes
1969 * its oneshot mask bit when it completes. Though request_mutex is
1970 * held across this which prevents __setup_irq() from handing out
1971 * the same bit to a newly requested action.
1972 */
1973 if (action->thread) {
1974 kthread_stop(action->thread);
1975 put_task_struct(action->thread);
1976 if (action->secondary && action->secondary->thread) {
1977 kthread_stop(action->secondary->thread);
1978 put_task_struct(action->secondary->thread);
1979 }
1980 }
1981
1982 /* Last action releases resources */
1983 if (!desc->action) {
1984 /*
1985 * Reacquire bus lock as irq_release_resources() might
1986 * require it to deallocate resources over the slow bus.
1987 */
1988 chip_bus_lock(desc);
1989 /*
1990 * There is no interrupt on the fly anymore. Deactivate it
1991 * completely.
1992 */
1993 raw_spin_lock_irqsave(&desc->lock, flags);
1994 irq_domain_deactivate_irq(&desc->irq_data);
1995 raw_spin_unlock_irqrestore(&desc->lock, flags);
1996
1997 irq_release_resources(desc);
1998 chip_bus_sync_unlock(desc);
1999 irq_remove_timings(desc);
2000 }
2001
2002 mutex_unlock(&desc->request_mutex);
2003
2004 irq_chip_pm_put(&desc->irq_data);
2005 module_put(desc->owner);
2006 kfree(action->secondary);
2007 return action;
2008 }
2009
2010 /**
2011 * free_irq - free an interrupt allocated with request_irq
2012 * @irq: Interrupt line to free
2013 * @dev_id: Device identity to free
2014 *
2015 * Remove an interrupt handler. The handler is removed and if the
2016 * interrupt line is no longer in use by any driver it is disabled.
2017 * On a shared IRQ the caller must ensure the interrupt is disabled
2018 * on the card it drives before calling this function. The function
2019 * does not return until any executing interrupts for this IRQ
2020 * have completed.
2021 *
2022 * This function must not be called from interrupt context.
2023 *
2024 * Returns the devname argument passed to request_irq.
2025 */
free_irq(unsigned int irq,void * dev_id)2026 const void *free_irq(unsigned int irq, void *dev_id)
2027 {
2028 struct irq_desc *desc = irq_to_desc(irq);
2029 struct irqaction *action;
2030 const char *devname;
2031
2032 if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc)))
2033 return NULL;
2034
2035 #ifdef CONFIG_SMP
2036 if (WARN_ON(desc->affinity_notify))
2037 desc->affinity_notify = NULL;
2038 #endif
2039
2040 action = __free_irq(desc, dev_id);
2041
2042 if (!action)
2043 return NULL;
2044
2045 devname = action->name;
2046 kfree(action);
2047 return devname;
2048 }
2049 EXPORT_SYMBOL(free_irq);
2050
2051 /* This function must be called with desc->lock held */
__cleanup_nmi(unsigned int irq,struct irq_desc * desc)2052 static const void *__cleanup_nmi(unsigned int irq, struct irq_desc *desc)
2053 {
2054 const char *devname = NULL;
2055
2056 desc->istate &= ~IRQS_NMI;
2057
2058 if (!WARN_ON(desc->action == NULL)) {
2059 irq_pm_remove_action(desc, desc->action);
2060 devname = desc->action->name;
2061 unregister_handler_proc(irq, desc->action);
2062
2063 kfree(desc->action);
2064 desc->action = NULL;
2065 }
2066
2067 irq_settings_clr_disable_unlazy(desc);
2068 irq_shutdown_and_deactivate(desc);
2069
2070 irq_release_resources(desc);
2071
2072 irq_chip_pm_put(&desc->irq_data);
2073 module_put(desc->owner);
2074
2075 return devname;
2076 }
2077
free_nmi(unsigned int irq,void * dev_id)2078 const void *free_nmi(unsigned int irq, void *dev_id)
2079 {
2080 struct irq_desc *desc = irq_to_desc(irq);
2081 unsigned long flags;
2082 const void *devname;
2083
2084 if (!desc || WARN_ON(!(desc->istate & IRQS_NMI)))
2085 return NULL;
2086
2087 if (WARN_ON(irq_settings_is_per_cpu_devid(desc)))
2088 return NULL;
2089
2090 /* NMI still enabled */
2091 if (WARN_ON(desc->depth == 0))
2092 disable_nmi_nosync(irq);
2093
2094 raw_spin_lock_irqsave(&desc->lock, flags);
2095
2096 irq_nmi_teardown(desc);
2097 devname = __cleanup_nmi(irq, desc);
2098
2099 raw_spin_unlock_irqrestore(&desc->lock, flags);
2100
2101 return devname;
2102 }
2103
2104 /**
2105 * request_threaded_irq - allocate an interrupt line
2106 * @irq: Interrupt line to allocate
2107 * @handler: Function to be called when the IRQ occurs.
2108 * Primary handler for threaded interrupts.
2109 * If handler is NULL and thread_fn != NULL
2110 * the default primary handler is installed.
2111 * @thread_fn: Function called from the irq handler thread
2112 * If NULL, no irq thread is created
2113 * @irqflags: Interrupt type flags
2114 * @devname: An ascii name for the claiming device
2115 * @dev_id: A cookie passed back to the handler function
2116 *
2117 * This call allocates interrupt resources and enables the
2118 * interrupt line and IRQ handling. From the point this
2119 * call is made your handler function may be invoked. Since
2120 * your handler function must clear any interrupt the board
2121 * raises, you must take care both to initialise your hardware
2122 * and to set up the interrupt handler in the right order.
2123 *
2124 * If you want to set up a threaded irq handler for your device
2125 * then you need to supply @handler and @thread_fn. @handler is
2126 * still called in hard interrupt context and has to check
2127 * whether the interrupt originates from the device. If yes it
2128 * needs to disable the interrupt on the device and return
2129 * IRQ_WAKE_THREAD which will wake up the handler thread and run
2130 * @thread_fn. This split handler design is necessary to support
2131 * shared interrupts.
2132 *
2133 * Dev_id must be globally unique. Normally the address of the
2134 * device data structure is used as the cookie. Since the handler
2135 * receives this value it makes sense to use it.
2136 *
2137 * If your interrupt is shared you must pass a non NULL dev_id
2138 * as this is required when freeing the interrupt.
2139 *
2140 * Flags:
2141 *
2142 * IRQF_SHARED Interrupt is shared
2143 * IRQF_TRIGGER_* Specify active edge(s) or level
2144 * IRQF_ONESHOT Run thread_fn with interrupt line masked
2145 */
request_threaded_irq(unsigned int irq,irq_handler_t handler,irq_handler_t thread_fn,unsigned long irqflags,const char * devname,void * dev_id)2146 int request_threaded_irq(unsigned int irq, irq_handler_t handler,
2147 irq_handler_t thread_fn, unsigned long irqflags,
2148 const char *devname, void *dev_id)
2149 {
2150 struct irqaction *action;
2151 struct irq_desc *desc;
2152 int retval;
2153
2154 if (irq == IRQ_NOTCONNECTED)
2155 return -ENOTCONN;
2156
2157 /*
2158 * Sanity-check: shared interrupts must pass in a real dev-ID,
2159 * otherwise we'll have trouble later trying to figure out
2160 * which interrupt is which (messes up the interrupt freeing
2161 * logic etc).
2162 *
2163 * Also shared interrupts do not go well with disabling auto enable.
2164 * The sharing interrupt might request it while it's still disabled
2165 * and then wait for interrupts forever.
2166 *
2167 * Also IRQF_COND_SUSPEND only makes sense for shared interrupts and
2168 * it cannot be set along with IRQF_NO_SUSPEND.
2169 */
2170 if (((irqflags & IRQF_SHARED) && !dev_id) ||
2171 ((irqflags & IRQF_SHARED) && (irqflags & IRQF_NO_AUTOEN)) ||
2172 (!(irqflags & IRQF_SHARED) && (irqflags & IRQF_COND_SUSPEND)) ||
2173 ((irqflags & IRQF_NO_SUSPEND) && (irqflags & IRQF_COND_SUSPEND)))
2174 return -EINVAL;
2175
2176 desc = irq_to_desc(irq);
2177 if (!desc)
2178 return -EINVAL;
2179
2180 if (!irq_settings_can_request(desc) ||
2181 WARN_ON(irq_settings_is_per_cpu_devid(desc)))
2182 return -EINVAL;
2183
2184 if (!handler) {
2185 if (!thread_fn)
2186 return -EINVAL;
2187 handler = irq_default_primary_handler;
2188 }
2189
2190 action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
2191 if (!action)
2192 return -ENOMEM;
2193
2194 action->handler = handler;
2195 action->thread_fn = thread_fn;
2196 action->flags = irqflags;
2197 action->name = devname;
2198 action->dev_id = dev_id;
2199
2200 retval = irq_chip_pm_get(&desc->irq_data);
2201 if (retval < 0) {
2202 kfree(action);
2203 return retval;
2204 }
2205
2206 retval = __setup_irq(irq, desc, action);
2207
2208 if (retval) {
2209 irq_chip_pm_put(&desc->irq_data);
2210 kfree(action->secondary);
2211 kfree(action);
2212 }
2213
2214 #ifdef CONFIG_DEBUG_SHIRQ_FIXME
2215 if (!retval && (irqflags & IRQF_SHARED)) {
2216 /*
2217 * It's a shared IRQ -- the driver ought to be prepared for it
2218 * to happen immediately, so let's make sure....
2219 * We disable the irq to make sure that a 'real' IRQ doesn't
2220 * run in parallel with our fake.
2221 */
2222 unsigned long flags;
2223
2224 disable_irq(irq);
2225 local_irq_save(flags);
2226
2227 handler(irq, dev_id);
2228
2229 local_irq_restore(flags);
2230 enable_irq(irq);
2231 }
2232 #endif
2233 return retval;
2234 }
2235 EXPORT_SYMBOL(request_threaded_irq);
2236
2237 /**
2238 * request_any_context_irq - allocate an interrupt line
2239 * @irq: Interrupt line to allocate
2240 * @handler: Function to be called when the IRQ occurs.
2241 * Threaded handler for threaded interrupts.
2242 * @flags: Interrupt type flags
2243 * @name: An ascii name for the claiming device
2244 * @dev_id: A cookie passed back to the handler function
2245 *
2246 * This call allocates interrupt resources and enables the
2247 * interrupt line and IRQ handling. It selects either a
2248 * hardirq or threaded handling method depending on the
2249 * context.
2250 *
2251 * On failure, it returns a negative value. On success,
2252 * it returns either IRQC_IS_HARDIRQ or IRQC_IS_NESTED.
2253 */
request_any_context_irq(unsigned int irq,irq_handler_t handler,unsigned long flags,const char * name,void * dev_id)2254 int request_any_context_irq(unsigned int irq, irq_handler_t handler,
2255 unsigned long flags, const char *name, void *dev_id)
2256 {
2257 struct irq_desc *desc;
2258 int ret;
2259
2260 if (irq == IRQ_NOTCONNECTED)
2261 return -ENOTCONN;
2262
2263 desc = irq_to_desc(irq);
2264 if (!desc)
2265 return -EINVAL;
2266
2267 if (irq_settings_is_nested_thread(desc)) {
2268 ret = request_threaded_irq(irq, NULL, handler,
2269 flags, name, dev_id);
2270 return !ret ? IRQC_IS_NESTED : ret;
2271 }
2272
2273 ret = request_irq(irq, handler, flags, name, dev_id);
2274 return !ret ? IRQC_IS_HARDIRQ : ret;
2275 }
2276 EXPORT_SYMBOL_GPL(request_any_context_irq);
2277
2278 /**
2279 * request_nmi - allocate an interrupt line for NMI delivery
2280 * @irq: Interrupt line to allocate
2281 * @handler: Function to be called when the IRQ occurs.
2282 * Threaded handler for threaded interrupts.
2283 * @irqflags: Interrupt type flags
2284 * @name: An ascii name for the claiming device
2285 * @dev_id: A cookie passed back to the handler function
2286 *
2287 * This call allocates interrupt resources and enables the
2288 * interrupt line and IRQ handling. It sets up the IRQ line
2289 * to be handled as an NMI.
2290 *
2291 * An interrupt line delivering NMIs cannot be shared and IRQ handling
2292 * cannot be threaded.
2293 *
2294 * Interrupt lines requested for NMI delivering must produce per cpu
2295 * interrupts and have auto enabling setting disabled.
2296 *
2297 * Dev_id must be globally unique. Normally the address of the
2298 * device data structure is used as the cookie. Since the handler
2299 * receives this value it makes sense to use it.
2300 *
2301 * If the interrupt line cannot be used to deliver NMIs, function
2302 * will fail and return a negative value.
2303 */
request_nmi(unsigned int irq,irq_handler_t handler,unsigned long irqflags,const char * name,void * dev_id)2304 int request_nmi(unsigned int irq, irq_handler_t handler,
2305 unsigned long irqflags, const char *name, void *dev_id)
2306 {
2307 struct irqaction *action;
2308 struct irq_desc *desc;
2309 unsigned long flags;
2310 int retval;
2311
2312 if (irq == IRQ_NOTCONNECTED)
2313 return -ENOTCONN;
2314
2315 /* NMI cannot be shared, used for Polling */
2316 if (irqflags & (IRQF_SHARED | IRQF_COND_SUSPEND | IRQF_IRQPOLL))
2317 return -EINVAL;
2318
2319 if (!(irqflags & IRQF_PERCPU))
2320 return -EINVAL;
2321
2322 if (!handler)
2323 return -EINVAL;
2324
2325 desc = irq_to_desc(irq);
2326
2327 if (!desc || (irq_settings_can_autoenable(desc) &&
2328 !(irqflags & IRQF_NO_AUTOEN)) ||
2329 !irq_settings_can_request(desc) ||
2330 WARN_ON(irq_settings_is_per_cpu_devid(desc)) ||
2331 !irq_supports_nmi(desc))
2332 return -EINVAL;
2333
2334 action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
2335 if (!action)
2336 return -ENOMEM;
2337
2338 action->handler = handler;
2339 action->flags = irqflags | IRQF_NO_THREAD | IRQF_NOBALANCING;
2340 action->name = name;
2341 action->dev_id = dev_id;
2342
2343 retval = irq_chip_pm_get(&desc->irq_data);
2344 if (retval < 0)
2345 goto err_out;
2346
2347 retval = __setup_irq(irq, desc, action);
2348 if (retval)
2349 goto err_irq_setup;
2350
2351 raw_spin_lock_irqsave(&desc->lock, flags);
2352
2353 /* Setup NMI state */
2354 desc->istate |= IRQS_NMI;
2355 retval = irq_nmi_setup(desc);
2356 if (retval) {
2357 __cleanup_nmi(irq, desc);
2358 raw_spin_unlock_irqrestore(&desc->lock, flags);
2359 return -EINVAL;
2360 }
2361
2362 raw_spin_unlock_irqrestore(&desc->lock, flags);
2363
2364 return 0;
2365
2366 err_irq_setup:
2367 irq_chip_pm_put(&desc->irq_data);
2368 err_out:
2369 kfree(action);
2370
2371 return retval;
2372 }
2373
enable_percpu_irq(unsigned int irq,unsigned int type)2374 void enable_percpu_irq(unsigned int irq, unsigned int type)
2375 {
2376 unsigned int cpu = smp_processor_id();
2377 unsigned long flags;
2378 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU);
2379
2380 if (!desc)
2381 return;
2382
2383 /*
2384 * If the trigger type is not specified by the caller, then
2385 * use the default for this interrupt.
2386 */
2387 type &= IRQ_TYPE_SENSE_MASK;
2388 if (type == IRQ_TYPE_NONE)
2389 type = irqd_get_trigger_type(&desc->irq_data);
2390
2391 if (type != IRQ_TYPE_NONE) {
2392 int ret;
2393
2394 ret = __irq_set_trigger(desc, type);
2395
2396 if (ret) {
2397 WARN(1, "failed to set type for IRQ%d\n", irq);
2398 goto out;
2399 }
2400 }
2401
2402 irq_percpu_enable(desc, cpu);
2403 out:
2404 irq_put_desc_unlock(desc, flags);
2405 }
2406 EXPORT_SYMBOL_GPL(enable_percpu_irq);
2407
enable_percpu_nmi(unsigned int irq,unsigned int type)2408 void enable_percpu_nmi(unsigned int irq, unsigned int type)
2409 {
2410 enable_percpu_irq(irq, type);
2411 }
2412
2413 /**
2414 * irq_percpu_is_enabled - Check whether the per cpu irq is enabled
2415 * @irq: Linux irq number to check for
2416 *
2417 * Must be called from a non migratable context. Returns the enable
2418 * state of a per cpu interrupt on the current cpu.
2419 */
irq_percpu_is_enabled(unsigned int irq)2420 bool irq_percpu_is_enabled(unsigned int irq)
2421 {
2422 unsigned int cpu = smp_processor_id();
2423 struct irq_desc *desc;
2424 unsigned long flags;
2425 bool is_enabled;
2426
2427 desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU);
2428 if (!desc)
2429 return false;
2430
2431 is_enabled = cpumask_test_cpu(cpu, desc->percpu_enabled);
2432 irq_put_desc_unlock(desc, flags);
2433
2434 return is_enabled;
2435 }
2436 EXPORT_SYMBOL_GPL(irq_percpu_is_enabled);
2437
disable_percpu_irq(unsigned int irq)2438 void disable_percpu_irq(unsigned int irq)
2439 {
2440 unsigned int cpu = smp_processor_id();
2441 unsigned long flags;
2442 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU);
2443
2444 if (!desc)
2445 return;
2446
2447 irq_percpu_disable(desc, cpu);
2448 irq_put_desc_unlock(desc, flags);
2449 }
2450 EXPORT_SYMBOL_GPL(disable_percpu_irq);
2451
disable_percpu_nmi(unsigned int irq)2452 void disable_percpu_nmi(unsigned int irq)
2453 {
2454 disable_percpu_irq(irq);
2455 }
2456
2457 /*
2458 * Internal function to unregister a percpu irqaction.
2459 */
__free_percpu_irq(unsigned int irq,void __percpu * dev_id)2460 static struct irqaction *__free_percpu_irq(unsigned int irq, void __percpu *dev_id)
2461 {
2462 struct irq_desc *desc = irq_to_desc(irq);
2463 struct irqaction *action;
2464 unsigned long flags;
2465
2466 WARN(in_interrupt(), "Trying to free IRQ %d from IRQ context!\n", irq);
2467
2468 if (!desc)
2469 return NULL;
2470
2471 raw_spin_lock_irqsave(&desc->lock, flags);
2472
2473 action = desc->action;
2474 if (!action || action->percpu_dev_id != dev_id) {
2475 WARN(1, "Trying to free already-free IRQ %d\n", irq);
2476 goto bad;
2477 }
2478
2479 if (!cpumask_empty(desc->percpu_enabled)) {
2480 WARN(1, "percpu IRQ %d still enabled on CPU%d!\n",
2481 irq, cpumask_first(desc->percpu_enabled));
2482 goto bad;
2483 }
2484
2485 /* Found it - now remove it from the list of entries: */
2486 desc->action = NULL;
2487
2488 desc->istate &= ~IRQS_NMI;
2489
2490 raw_spin_unlock_irqrestore(&desc->lock, flags);
2491
2492 unregister_handler_proc(irq, action);
2493
2494 irq_chip_pm_put(&desc->irq_data);
2495 module_put(desc->owner);
2496 return action;
2497
2498 bad:
2499 raw_spin_unlock_irqrestore(&desc->lock, flags);
2500 return NULL;
2501 }
2502
2503 /**
2504 * remove_percpu_irq - free a per-cpu interrupt
2505 * @irq: Interrupt line to free
2506 * @act: irqaction for the interrupt
2507 *
2508 * Used to remove interrupts statically setup by the early boot process.
2509 */
remove_percpu_irq(unsigned int irq,struct irqaction * act)2510 void remove_percpu_irq(unsigned int irq, struct irqaction *act)
2511 {
2512 struct irq_desc *desc = irq_to_desc(irq);
2513
2514 if (desc && irq_settings_is_per_cpu_devid(desc))
2515 __free_percpu_irq(irq, act->percpu_dev_id);
2516 }
2517
2518 /**
2519 * free_percpu_irq - free an interrupt allocated with request_percpu_irq
2520 * @irq: Interrupt line to free
2521 * @dev_id: Device identity to free
2522 *
2523 * Remove a percpu interrupt handler. The handler is removed, but
2524 * the interrupt line is not disabled. This must be done on each
2525 * CPU before calling this function. The function does not return
2526 * until any executing interrupts for this IRQ have completed.
2527 *
2528 * This function must not be called from interrupt context.
2529 */
free_percpu_irq(unsigned int irq,void __percpu * dev_id)2530 void free_percpu_irq(unsigned int irq, void __percpu *dev_id)
2531 {
2532 struct irq_desc *desc = irq_to_desc(irq);
2533
2534 if (!desc || !irq_settings_is_per_cpu_devid(desc))
2535 return;
2536
2537 chip_bus_lock(desc);
2538 kfree(__free_percpu_irq(irq, dev_id));
2539 chip_bus_sync_unlock(desc);
2540 }
2541 EXPORT_SYMBOL_GPL(free_percpu_irq);
2542
free_percpu_nmi(unsigned int irq,void __percpu * dev_id)2543 void free_percpu_nmi(unsigned int irq, void __percpu *dev_id)
2544 {
2545 struct irq_desc *desc = irq_to_desc(irq);
2546
2547 if (!desc || !irq_settings_is_per_cpu_devid(desc))
2548 return;
2549
2550 if (WARN_ON(!(desc->istate & IRQS_NMI)))
2551 return;
2552
2553 kfree(__free_percpu_irq(irq, dev_id));
2554 }
2555
2556 /**
2557 * setup_percpu_irq - setup a per-cpu interrupt
2558 * @irq: Interrupt line to setup
2559 * @act: irqaction for the interrupt
2560 *
2561 * Used to statically setup per-cpu interrupts in the early boot process.
2562 */
setup_percpu_irq(unsigned int irq,struct irqaction * act)2563 int setup_percpu_irq(unsigned int irq, struct irqaction *act)
2564 {
2565 struct irq_desc *desc = irq_to_desc(irq);
2566 int retval;
2567
2568 if (!desc || !irq_settings_is_per_cpu_devid(desc))
2569 return -EINVAL;
2570
2571 retval = irq_chip_pm_get(&desc->irq_data);
2572 if (retval < 0)
2573 return retval;
2574
2575 retval = __setup_irq(irq, desc, act);
2576
2577 if (retval)
2578 irq_chip_pm_put(&desc->irq_data);
2579
2580 return retval;
2581 }
2582
2583 /**
2584 * __request_percpu_irq - allocate a percpu interrupt line
2585 * @irq: Interrupt line to allocate
2586 * @handler: Function to be called when the IRQ occurs.
2587 * @flags: Interrupt type flags (IRQF_TIMER only)
2588 * @devname: An ascii name for the claiming device
2589 * @dev_id: A percpu cookie passed back to the handler function
2590 *
2591 * This call allocates interrupt resources and enables the
2592 * interrupt on the local CPU. If the interrupt is supposed to be
2593 * enabled on other CPUs, it has to be done on each CPU using
2594 * enable_percpu_irq().
2595 *
2596 * Dev_id must be globally unique. It is a per-cpu variable, and
2597 * the handler gets called with the interrupted CPU's instance of
2598 * that variable.
2599 */
__request_percpu_irq(unsigned int irq,irq_handler_t handler,unsigned long flags,const char * devname,void __percpu * dev_id)2600 int __request_percpu_irq(unsigned int irq, irq_handler_t handler,
2601 unsigned long flags, const char *devname,
2602 void __percpu *dev_id)
2603 {
2604 struct irqaction *action;
2605 struct irq_desc *desc;
2606 int retval;
2607
2608 if (!dev_id)
2609 return -EINVAL;
2610
2611 desc = irq_to_desc(irq);
2612 if (!desc || !irq_settings_can_request(desc) ||
2613 !irq_settings_is_per_cpu_devid(desc))
2614 return -EINVAL;
2615
2616 if (flags && flags != IRQF_TIMER)
2617 return -EINVAL;
2618
2619 action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
2620 if (!action)
2621 return -ENOMEM;
2622
2623 action->handler = handler;
2624 action->flags = flags | IRQF_PERCPU | IRQF_NO_SUSPEND;
2625 action->name = devname;
2626 action->percpu_dev_id = dev_id;
2627
2628 retval = irq_chip_pm_get(&desc->irq_data);
2629 if (retval < 0) {
2630 kfree(action);
2631 return retval;
2632 }
2633
2634 retval = __setup_irq(irq, desc, action);
2635
2636 if (retval) {
2637 irq_chip_pm_put(&desc->irq_data);
2638 kfree(action);
2639 }
2640
2641 return retval;
2642 }
2643 EXPORT_SYMBOL_GPL(__request_percpu_irq);
2644
2645 /**
2646 * request_percpu_nmi - allocate a percpu interrupt line for NMI delivery
2647 * @irq: Interrupt line to allocate
2648 * @handler: Function to be called when the IRQ occurs.
2649 * @name: An ascii name for the claiming device
2650 * @dev_id: A percpu cookie passed back to the handler function
2651 *
2652 * This call allocates interrupt resources for a per CPU NMI. Per CPU NMIs
2653 * have to be setup on each CPU by calling prepare_percpu_nmi() before
2654 * being enabled on the same CPU by using enable_percpu_nmi().
2655 *
2656 * Dev_id must be globally unique. It is a per-cpu variable, and
2657 * the handler gets called with the interrupted CPU's instance of
2658 * that variable.
2659 *
2660 * Interrupt lines requested for NMI delivering should have auto enabling
2661 * setting disabled.
2662 *
2663 * If the interrupt line cannot be used to deliver NMIs, function
2664 * will fail returning a negative value.
2665 */
request_percpu_nmi(unsigned int irq,irq_handler_t handler,const char * name,void __percpu * dev_id)2666 int request_percpu_nmi(unsigned int irq, irq_handler_t handler,
2667 const char *name, void __percpu *dev_id)
2668 {
2669 struct irqaction *action;
2670 struct irq_desc *desc;
2671 unsigned long flags;
2672 int retval;
2673
2674 if (!handler)
2675 return -EINVAL;
2676
2677 desc = irq_to_desc(irq);
2678
2679 if (!desc || !irq_settings_can_request(desc) ||
2680 !irq_settings_is_per_cpu_devid(desc) ||
2681 irq_settings_can_autoenable(desc) ||
2682 !irq_supports_nmi(desc))
2683 return -EINVAL;
2684
2685 /* The line cannot already be NMI */
2686 if (desc->istate & IRQS_NMI)
2687 return -EINVAL;
2688
2689 action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
2690 if (!action)
2691 return -ENOMEM;
2692
2693 action->handler = handler;
2694 action->flags = IRQF_PERCPU | IRQF_NO_SUSPEND | IRQF_NO_THREAD
2695 | IRQF_NOBALANCING;
2696 action->name = name;
2697 action->percpu_dev_id = dev_id;
2698
2699 retval = irq_chip_pm_get(&desc->irq_data);
2700 if (retval < 0)
2701 goto err_out;
2702
2703 retval = __setup_irq(irq, desc, action);
2704 if (retval)
2705 goto err_irq_setup;
2706
2707 raw_spin_lock_irqsave(&desc->lock, flags);
2708 desc->istate |= IRQS_NMI;
2709 raw_spin_unlock_irqrestore(&desc->lock, flags);
2710
2711 return 0;
2712
2713 err_irq_setup:
2714 irq_chip_pm_put(&desc->irq_data);
2715 err_out:
2716 kfree(action);
2717
2718 return retval;
2719 }
2720
2721 /**
2722 * prepare_percpu_nmi - performs CPU local setup for NMI delivery
2723 * @irq: Interrupt line to prepare for NMI delivery
2724 *
2725 * This call prepares an interrupt line to deliver NMI on the current CPU,
2726 * before that interrupt line gets enabled with enable_percpu_nmi().
2727 *
2728 * As a CPU local operation, this should be called from non-preemptible
2729 * context.
2730 *
2731 * If the interrupt line cannot be used to deliver NMIs, function
2732 * will fail returning a negative value.
2733 */
prepare_percpu_nmi(unsigned int irq)2734 int prepare_percpu_nmi(unsigned int irq)
2735 {
2736 unsigned long flags;
2737 struct irq_desc *desc;
2738 int ret = 0;
2739
2740 WARN_ON(preemptible());
2741
2742 desc = irq_get_desc_lock(irq, &flags,
2743 IRQ_GET_DESC_CHECK_PERCPU);
2744 if (!desc)
2745 return -EINVAL;
2746
2747 if (WARN(!(desc->istate & IRQS_NMI),
2748 KERN_ERR "prepare_percpu_nmi called for a non-NMI interrupt: irq %u\n",
2749 irq)) {
2750 ret = -EINVAL;
2751 goto out;
2752 }
2753
2754 ret = irq_nmi_setup(desc);
2755 if (ret) {
2756 pr_err("Failed to setup NMI delivery: irq %u\n", irq);
2757 goto out;
2758 }
2759
2760 out:
2761 irq_put_desc_unlock(desc, flags);
2762 return ret;
2763 }
2764
2765 /**
2766 * teardown_percpu_nmi - undoes NMI setup of IRQ line
2767 * @irq: Interrupt line from which CPU local NMI configuration should be
2768 * removed
2769 *
2770 * This call undoes the setup done by prepare_percpu_nmi().
2771 *
2772 * IRQ line should not be enabled for the current CPU.
2773 *
2774 * As a CPU local operation, this should be called from non-preemptible
2775 * context.
2776 */
teardown_percpu_nmi(unsigned int irq)2777 void teardown_percpu_nmi(unsigned int irq)
2778 {
2779 unsigned long flags;
2780 struct irq_desc *desc;
2781
2782 WARN_ON(preemptible());
2783
2784 desc = irq_get_desc_lock(irq, &flags,
2785 IRQ_GET_DESC_CHECK_PERCPU);
2786 if (!desc)
2787 return;
2788
2789 if (WARN_ON(!(desc->istate & IRQS_NMI)))
2790 goto out;
2791
2792 irq_nmi_teardown(desc);
2793 out:
2794 irq_put_desc_unlock(desc, flags);
2795 }
2796
__irq_get_irqchip_state(struct irq_data * data,enum irqchip_irq_state which,bool * state)2797 int __irq_get_irqchip_state(struct irq_data *data, enum irqchip_irq_state which,
2798 bool *state)
2799 {
2800 struct irq_chip *chip;
2801 int err = -EINVAL;
2802
2803 do {
2804 chip = irq_data_get_irq_chip(data);
2805 if (WARN_ON_ONCE(!chip))
2806 return -ENODEV;
2807 if (chip->irq_get_irqchip_state)
2808 break;
2809 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
2810 data = data->parent_data;
2811 #else
2812 data = NULL;
2813 #endif
2814 } while (data);
2815
2816 if (data)
2817 err = chip->irq_get_irqchip_state(data, which, state);
2818 return err;
2819 }
2820
2821 /**
2822 * irq_get_irqchip_state - returns the irqchip state of a interrupt.
2823 * @irq: Interrupt line that is forwarded to a VM
2824 * @which: One of IRQCHIP_STATE_* the caller wants to know about
2825 * @state: a pointer to a boolean where the state is to be stored
2826 *
2827 * This call snapshots the internal irqchip state of an
2828 * interrupt, returning into @state the bit corresponding to
2829 * stage @which
2830 *
2831 * This function should be called with preemption disabled if the
2832 * interrupt controller has per-cpu registers.
2833 */
irq_get_irqchip_state(unsigned int irq,enum irqchip_irq_state which,bool * state)2834 int irq_get_irqchip_state(unsigned int irq, enum irqchip_irq_state which,
2835 bool *state)
2836 {
2837 struct irq_desc *desc;
2838 struct irq_data *data;
2839 unsigned long flags;
2840 int err = -EINVAL;
2841
2842 desc = irq_get_desc_buslock(irq, &flags, 0);
2843 if (!desc)
2844 return err;
2845
2846 data = irq_desc_get_irq_data(desc);
2847
2848 err = __irq_get_irqchip_state(data, which, state);
2849
2850 irq_put_desc_busunlock(desc, flags);
2851 return err;
2852 }
2853 EXPORT_SYMBOL_GPL(irq_get_irqchip_state);
2854
2855 /**
2856 * irq_set_irqchip_state - set the state of a forwarded interrupt.
2857 * @irq: Interrupt line that is forwarded to a VM
2858 * @which: State to be restored (one of IRQCHIP_STATE_*)
2859 * @val: Value corresponding to @which
2860 *
2861 * This call sets the internal irqchip state of an interrupt,
2862 * depending on the value of @which.
2863 *
2864 * This function should be called with migration disabled if the
2865 * interrupt controller has per-cpu registers.
2866 */
irq_set_irqchip_state(unsigned int irq,enum irqchip_irq_state which,bool val)2867 int irq_set_irqchip_state(unsigned int irq, enum irqchip_irq_state which,
2868 bool val)
2869 {
2870 struct irq_desc *desc;
2871 struct irq_data *data;
2872 struct irq_chip *chip;
2873 unsigned long flags;
2874 int err = -EINVAL;
2875
2876 desc = irq_get_desc_buslock(irq, &flags, 0);
2877 if (!desc)
2878 return err;
2879
2880 data = irq_desc_get_irq_data(desc);
2881
2882 do {
2883 chip = irq_data_get_irq_chip(data);
2884 if (WARN_ON_ONCE(!chip)) {
2885 err = -ENODEV;
2886 goto out_unlock;
2887 }
2888 if (chip->irq_set_irqchip_state)
2889 break;
2890 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
2891 data = data->parent_data;
2892 #else
2893 data = NULL;
2894 #endif
2895 } while (data);
2896
2897 if (data)
2898 err = chip->irq_set_irqchip_state(data, which, val);
2899
2900 out_unlock:
2901 irq_put_desc_busunlock(desc, flags);
2902 return err;
2903 }
2904 EXPORT_SYMBOL_GPL(irq_set_irqchip_state);
2905
2906 /**
2907 * irq_has_action - Check whether an interrupt is requested
2908 * @irq: The linux irq number
2909 *
2910 * Returns: A snapshot of the current state
2911 */
irq_has_action(unsigned int irq)2912 bool irq_has_action(unsigned int irq)
2913 {
2914 bool res;
2915
2916 rcu_read_lock();
2917 res = irq_desc_has_action(irq_to_desc(irq));
2918 rcu_read_unlock();
2919 return res;
2920 }
2921 EXPORT_SYMBOL_GPL(irq_has_action);
2922
2923 /**
2924 * irq_check_status_bit - Check whether bits in the irq descriptor status are set
2925 * @irq: The linux irq number
2926 * @bitmask: The bitmask to evaluate
2927 *
2928 * Returns: True if one of the bits in @bitmask is set
2929 */
irq_check_status_bit(unsigned int irq,unsigned int bitmask)2930 bool irq_check_status_bit(unsigned int irq, unsigned int bitmask)
2931 {
2932 struct irq_desc *desc;
2933 bool res = false;
2934
2935 rcu_read_lock();
2936 desc = irq_to_desc(irq);
2937 if (desc)
2938 res = !!(desc->status_use_accessors & bitmask);
2939 rcu_read_unlock();
2940 return res;
2941 }
2942 EXPORT_SYMBOL_GPL(irq_check_status_bit);
2943