1 // SPDX-License-Identifier: BSD-3-Clause
2 /*
3 * Loopback test application
4 *
5 * Copyright 2015 Google Inc.
6 * Copyright 2015 Linaro Ltd.
7 */
8 #include <errno.h>
9 #include <fcntl.h>
10 #include <stdio.h>
11 #include <string.h>
12 #include <stdlib.h>
13 #include <stdint.h>
14 #include <poll.h>
15 #include <sys/types.h>
16 #include <time.h>
17 #include <unistd.h>
18 #include <dirent.h>
19 #include <signal.h>
20
21 #define MAX_NUM_DEVICES 10
22 #define MAX_SYSFS_PREFIX 0x80
23 #define MAX_SYSFS_PATH 0x200
24 #define CSV_MAX_LINE 0x1000
25 #define SYSFS_MAX_INT 0x20
26 #define MAX_STR_LEN 255
27 #define DEFAULT_ASYNC_TIMEOUT 200000
28
29 struct dict {
30 char *name;
31 int type;
32 };
33
34 static struct dict dict[] = {
35 {"ping", 2},
36 {"transfer", 3},
37 {"sink", 4},
38 {NULL,} /* list termination */
39 };
40
41 struct loopback_results {
42 float latency_avg;
43 uint32_t latency_max;
44 uint32_t latency_min;
45 uint32_t latency_jitter;
46
47 float request_avg;
48 uint32_t request_max;
49 uint32_t request_min;
50 uint32_t request_jitter;
51
52 float throughput_avg;
53 uint32_t throughput_max;
54 uint32_t throughput_min;
55 uint32_t throughput_jitter;
56
57 float apbridge_unipro_latency_avg;
58 uint32_t apbridge_unipro_latency_max;
59 uint32_t apbridge_unipro_latency_min;
60 uint32_t apbridge_unipro_latency_jitter;
61
62 float gbphy_firmware_latency_avg;
63 uint32_t gbphy_firmware_latency_max;
64 uint32_t gbphy_firmware_latency_min;
65 uint32_t gbphy_firmware_latency_jitter;
66
67 uint32_t error;
68 };
69
70 struct loopback_device {
71 char name[MAX_STR_LEN];
72 char sysfs_entry[MAX_SYSFS_PATH];
73 char debugfs_entry[MAX_SYSFS_PATH];
74 struct loopback_results results;
75 };
76
77 struct loopback_test {
78 int verbose;
79 int debug;
80 int raw_data_dump;
81 int porcelain;
82 int mask;
83 int size;
84 int iteration_max;
85 int aggregate_output;
86 int test_id;
87 int device_count;
88 int list_devices;
89 int use_async;
90 int async_timeout;
91 int async_outstanding_operations;
92 int us_wait;
93 int file_output;
94 int stop_all;
95 int poll_count;
96 char test_name[MAX_STR_LEN];
97 char sysfs_prefix[MAX_SYSFS_PREFIX];
98 char debugfs_prefix[MAX_SYSFS_PREFIX];
99 struct timespec poll_timeout;
100 struct loopback_device devices[MAX_NUM_DEVICES];
101 struct loopback_results aggregate_results;
102 struct pollfd fds[MAX_NUM_DEVICES];
103 };
104
105 struct loopback_test t;
106
107 /* Helper macros to calculate the aggregate results for all devices */
108 static inline int device_enabled(struct loopback_test *t, int dev_idx);
109
110 #define GET_MAX(field) \
111 static int get_##field##_aggregate(struct loopback_test *t) \
112 { \
113 uint32_t max = 0; \
114 int i; \
115 for (i = 0; i < t->device_count; i++) { \
116 if (!device_enabled(t, i)) \
117 continue; \
118 if (t->devices[i].results.field > max) \
119 max = t->devices[i].results.field; \
120 } \
121 return max; \
122 } \
123
124 #define GET_MIN(field) \
125 static int get_##field##_aggregate(struct loopback_test *t) \
126 { \
127 uint32_t min = ~0; \
128 int i; \
129 for (i = 0; i < t->device_count; i++) { \
130 if (!device_enabled(t, i)) \
131 continue; \
132 if (t->devices[i].results.field < min) \
133 min = t->devices[i].results.field; \
134 } \
135 return min; \
136 } \
137
138 #define GET_AVG(field) \
139 static int get_##field##_aggregate(struct loopback_test *t) \
140 { \
141 uint32_t val = 0; \
142 uint32_t count = 0; \
143 int i; \
144 for (i = 0; i < t->device_count; i++) { \
145 if (!device_enabled(t, i)) \
146 continue; \
147 count++; \
148 val += t->devices[i].results.field; \
149 } \
150 if (count) \
151 val /= count; \
152 return val; \
153 } \
154
155 GET_MAX(throughput_max);
156 GET_MAX(request_max);
157 GET_MAX(latency_max);
158 GET_MAX(apbridge_unipro_latency_max);
159 GET_MAX(gbphy_firmware_latency_max);
160 GET_MIN(throughput_min);
161 GET_MIN(request_min);
162 GET_MIN(latency_min);
163 GET_MIN(apbridge_unipro_latency_min);
164 GET_MIN(gbphy_firmware_latency_min);
165 GET_AVG(throughput_avg);
166 GET_AVG(request_avg);
167 GET_AVG(latency_avg);
168 GET_AVG(apbridge_unipro_latency_avg);
169 GET_AVG(gbphy_firmware_latency_avg);
170
abort(void)171 void abort(void)
172 {
173 _exit(1);
174 }
175
usage(void)176 void usage(void)
177 {
178 fprintf(stderr, "Usage: loopback_test TEST [SIZE] ITERATIONS [SYSPATH] [DBGPATH]\n\n"
179 " Run TEST for a number of ITERATIONS with operation data SIZE bytes\n"
180 " TEST may be \'ping\' \'transfer\' or \'sink\'\n"
181 " SIZE indicates the size of transfer <= greybus max payload bytes\n"
182 " ITERATIONS indicates the number of times to execute TEST at SIZE bytes\n"
183 " Note if ITERATIONS is set to zero then this utility will\n"
184 " initiate an infinite (non terminating) test and exit\n"
185 " without logging any metrics data\n"
186 " SYSPATH indicates the sysfs path for the loopback greybus entries e.g.\n"
187 " /sys/bus/greybus/devices\n"
188 " DBGPATH indicates the debugfs path for the loopback greybus entries e.g.\n"
189 " /sys/kernel/debug/gb_loopback/\n"
190 " Mandatory arguments\n"
191 " -t must be one of the test names - sink, transfer or ping\n"
192 " -i iteration count - the number of iterations to run the test over\n"
193 " Optional arguments\n"
194 " -S sysfs location - location for greybus 'endo' entries default /sys/bus/greybus/devices/\n"
195 " -D debugfs location - location for loopback debugfs entries default /sys/kernel/debug/gb_loopback/\n"
196 " -s size of data packet to send during test - defaults to zero\n"
197 " -m mask - a bit mask of connections to include example: -m 8 = 4th connection -m 9 = 1st and 4th connection etc\n"
198 " default is zero which means broadcast to all connections\n"
199 " -v verbose output\n"
200 " -d debug output\n"
201 " -r raw data output - when specified the full list of latency values are included in the output CSV\n"
202 " -p porcelain - when specified printout is in a user-friendly non-CSV format. This option suppresses writing to CSV file\n"
203 " -a aggregate - show aggregation of all enabled devices\n"
204 " -l list found loopback devices and exit\n"
205 " -x Async - Enable async transfers\n"
206 " -o Async Timeout - Timeout in uSec for async operations\n"
207 " -O Poll loop time out in seconds(max time a test is expected to last, default: 30sec)\n"
208 " -c Max number of outstanding operations for async operations\n"
209 " -w Wait in uSec between operations\n"
210 " -z Enable output to a CSV file (incompatible with -p)\n"
211 " -f When starting new loopback test, stop currently running tests on all devices\n"
212 "Examples:\n"
213 " Send 10000 transfers with a packet size of 128 bytes to all active connections\n"
214 " loopback_test -t transfer -s 128 -i 10000 -S /sys/bus/greybus/devices/ -D /sys/kernel/debug/gb_loopback/\n"
215 " loopback_test -t transfer -s 128 -i 10000 -m 0\n"
216 " Send 10000 transfers with a packet size of 128 bytes to connection 1 and 4\n"
217 " loopback_test -t transfer -s 128 -i 10000 -m 9\n"
218 " loopback_test -t ping -s 0 128 -i -S /sys/bus/greybus/devices/ -D /sys/kernel/debug/gb_loopback/\n"
219 " loopback_test -t sink -s 2030 -i 32768 -S /sys/bus/greybus/devices/ -D /sys/kernel/debug/gb_loopback/\n");
220 abort();
221 }
222
device_enabled(struct loopback_test * t,int dev_idx)223 static inline int device_enabled(struct loopback_test *t, int dev_idx)
224 {
225 if (!t->mask || (t->mask & (1 << dev_idx)))
226 return 1;
227
228 return 0;
229 }
230
show_loopback_devices(struct loopback_test * t)231 static void show_loopback_devices(struct loopback_test *t)
232 {
233 int i;
234
235 if (t->device_count == 0) {
236 printf("No loopback devices.\n");
237 return;
238 }
239
240 for (i = 0; i < t->device_count; i++)
241 printf("device[%d] = %s\n", i, t->devices[i].name);
242
243 }
244
open_sysfs(const char * sys_pfx,const char * node,int flags)245 int open_sysfs(const char *sys_pfx, const char *node, int flags)
246 {
247 int fd;
248 char path[MAX_SYSFS_PATH];
249
250 snprintf(path, sizeof(path), "%s%s", sys_pfx, node);
251 fd = open(path, flags);
252 if (fd < 0) {
253 fprintf(stderr, "unable to open %s\n", path);
254 abort();
255 }
256 return fd;
257 }
258
read_sysfs_int_fd(int fd,const char * sys_pfx,const char * node)259 int read_sysfs_int_fd(int fd, const char *sys_pfx, const char *node)
260 {
261 char buf[SYSFS_MAX_INT];
262
263 if (read(fd, buf, sizeof(buf)) < 0) {
264 fprintf(stderr, "unable to read from %s%s %s\n", sys_pfx, node,
265 strerror(errno));
266 close(fd);
267 abort();
268 }
269 return atoi(buf);
270 }
271
read_sysfs_float_fd(int fd,const char * sys_pfx,const char * node)272 float read_sysfs_float_fd(int fd, const char *sys_pfx, const char *node)
273 {
274 char buf[SYSFS_MAX_INT];
275
276 if (read(fd, buf, sizeof(buf)) < 0) {
277
278 fprintf(stderr, "unable to read from %s%s %s\n", sys_pfx, node,
279 strerror(errno));
280 close(fd);
281 abort();
282 }
283 return atof(buf);
284 }
285
read_sysfs_int(const char * sys_pfx,const char * node)286 int read_sysfs_int(const char *sys_pfx, const char *node)
287 {
288 int fd, val;
289
290 fd = open_sysfs(sys_pfx, node, O_RDONLY);
291 val = read_sysfs_int_fd(fd, sys_pfx, node);
292 close(fd);
293 return val;
294 }
295
read_sysfs_float(const char * sys_pfx,const char * node)296 float read_sysfs_float(const char *sys_pfx, const char *node)
297 {
298 int fd;
299 float val;
300
301 fd = open_sysfs(sys_pfx, node, O_RDONLY);
302 val = read_sysfs_float_fd(fd, sys_pfx, node);
303 close(fd);
304 return val;
305 }
306
write_sysfs_val(const char * sys_pfx,const char * node,int val)307 void write_sysfs_val(const char *sys_pfx, const char *node, int val)
308 {
309 int fd, len;
310 char buf[SYSFS_MAX_INT];
311
312 fd = open_sysfs(sys_pfx, node, O_RDWR);
313 len = snprintf(buf, sizeof(buf), "%d", val);
314 if (write(fd, buf, len) < 0) {
315 fprintf(stderr, "unable to write to %s%s %s\n", sys_pfx, node,
316 strerror(errno));
317 close(fd);
318 abort();
319 }
320 close(fd);
321 }
322
get_results(struct loopback_test * t)323 static int get_results(struct loopback_test *t)
324 {
325 struct loopback_device *d;
326 struct loopback_results *r;
327 int i;
328
329 for (i = 0; i < t->device_count; i++) {
330 if (!device_enabled(t, i))
331 continue;
332
333 d = &t->devices[i];
334 r = &d->results;
335
336 r->error = read_sysfs_int(d->sysfs_entry, "error");
337 r->request_min = read_sysfs_int(d->sysfs_entry, "requests_per_second_min");
338 r->request_max = read_sysfs_int(d->sysfs_entry, "requests_per_second_max");
339 r->request_avg = read_sysfs_float(d->sysfs_entry, "requests_per_second_avg");
340
341 r->latency_min = read_sysfs_int(d->sysfs_entry, "latency_min");
342 r->latency_max = read_sysfs_int(d->sysfs_entry, "latency_max");
343 r->latency_avg = read_sysfs_float(d->sysfs_entry, "latency_avg");
344
345 r->throughput_min = read_sysfs_int(d->sysfs_entry, "throughput_min");
346 r->throughput_max = read_sysfs_int(d->sysfs_entry, "throughput_max");
347 r->throughput_avg = read_sysfs_float(d->sysfs_entry, "throughput_avg");
348
349 r->apbridge_unipro_latency_min =
350 read_sysfs_int(d->sysfs_entry, "apbridge_unipro_latency_min");
351 r->apbridge_unipro_latency_max =
352 read_sysfs_int(d->sysfs_entry, "apbridge_unipro_latency_max");
353 r->apbridge_unipro_latency_avg =
354 read_sysfs_float(d->sysfs_entry, "apbridge_unipro_latency_avg");
355
356 r->gbphy_firmware_latency_min =
357 read_sysfs_int(d->sysfs_entry, "gbphy_firmware_latency_min");
358 r->gbphy_firmware_latency_max =
359 read_sysfs_int(d->sysfs_entry, "gbphy_firmware_latency_max");
360 r->gbphy_firmware_latency_avg =
361 read_sysfs_float(d->sysfs_entry, "gbphy_firmware_latency_avg");
362
363 r->request_jitter = r->request_max - r->request_min;
364 r->latency_jitter = r->latency_max - r->latency_min;
365 r->throughput_jitter = r->throughput_max - r->throughput_min;
366 r->apbridge_unipro_latency_jitter =
367 r->apbridge_unipro_latency_max - r->apbridge_unipro_latency_min;
368 r->gbphy_firmware_latency_jitter =
369 r->gbphy_firmware_latency_max - r->gbphy_firmware_latency_min;
370
371 }
372
373 /*calculate the aggregate results of all enabled devices */
374 if (t->aggregate_output) {
375 r = &t->aggregate_results;
376
377 r->request_min = get_request_min_aggregate(t);
378 r->request_max = get_request_max_aggregate(t);
379 r->request_avg = get_request_avg_aggregate(t);
380
381 r->latency_min = get_latency_min_aggregate(t);
382 r->latency_max = get_latency_max_aggregate(t);
383 r->latency_avg = get_latency_avg_aggregate(t);
384
385 r->throughput_min = get_throughput_min_aggregate(t);
386 r->throughput_max = get_throughput_max_aggregate(t);
387 r->throughput_avg = get_throughput_avg_aggregate(t);
388
389 r->apbridge_unipro_latency_min =
390 get_apbridge_unipro_latency_min_aggregate(t);
391 r->apbridge_unipro_latency_max =
392 get_apbridge_unipro_latency_max_aggregate(t);
393 r->apbridge_unipro_latency_avg =
394 get_apbridge_unipro_latency_avg_aggregate(t);
395
396 r->gbphy_firmware_latency_min =
397 get_gbphy_firmware_latency_min_aggregate(t);
398 r->gbphy_firmware_latency_max =
399 get_gbphy_firmware_latency_max_aggregate(t);
400 r->gbphy_firmware_latency_avg =
401 get_gbphy_firmware_latency_avg_aggregate(t);
402
403 r->request_jitter = r->request_max - r->request_min;
404 r->latency_jitter = r->latency_max - r->latency_min;
405 r->throughput_jitter = r->throughput_max - r->throughput_min;
406 r->apbridge_unipro_latency_jitter =
407 r->apbridge_unipro_latency_max - r->apbridge_unipro_latency_min;
408 r->gbphy_firmware_latency_jitter =
409 r->gbphy_firmware_latency_max - r->gbphy_firmware_latency_min;
410
411 }
412
413 return 0;
414 }
415
format_output(struct loopback_test * t,struct loopback_results * r,const char * dev_name,char * buf,int buf_len,struct tm * tm)416 int format_output(struct loopback_test *t,
417 struct loopback_results *r,
418 const char *dev_name,
419 char *buf, int buf_len,
420 struct tm *tm)
421 {
422 int len = 0;
423
424 memset(buf, 0x00, buf_len);
425 len = snprintf(buf, buf_len, "%u-%u-%u %u:%u:%u",
426 tm->tm_year + 1900, tm->tm_mon + 1, tm->tm_mday,
427 tm->tm_hour, tm->tm_min, tm->tm_sec);
428
429 if (t->porcelain) {
430 len += snprintf(&buf[len], buf_len - len,
431 "\n test:\t\t\t%s\n path:\t\t\t%s\n size:\t\t\t%u\n iterations:\t\t%u\n errors:\t\t%u\n async:\t\t\t%s\n",
432 t->test_name,
433 dev_name,
434 t->size,
435 t->iteration_max,
436 r->error,
437 t->use_async ? "Enabled" : "Disabled");
438
439 len += snprintf(&buf[len], buf_len - len,
440 " requests per-sec:\tmin=%u, max=%u, average=%f, jitter=%u\n",
441 r->request_min,
442 r->request_max,
443 r->request_avg,
444 r->request_jitter);
445
446 len += snprintf(&buf[len], buf_len - len,
447 " ap-throughput B/s:\tmin=%u max=%u average=%f jitter=%u\n",
448 r->throughput_min,
449 r->throughput_max,
450 r->throughput_avg,
451 r->throughput_jitter);
452 len += snprintf(&buf[len], buf_len - len,
453 " ap-latency usec:\tmin=%u max=%u average=%f jitter=%u\n",
454 r->latency_min,
455 r->latency_max,
456 r->latency_avg,
457 r->latency_jitter);
458 len += snprintf(&buf[len], buf_len - len,
459 " apbridge-latency usec:\tmin=%u max=%u average=%f jitter=%u\n",
460 r->apbridge_unipro_latency_min,
461 r->apbridge_unipro_latency_max,
462 r->apbridge_unipro_latency_avg,
463 r->apbridge_unipro_latency_jitter);
464
465 len += snprintf(&buf[len], buf_len - len,
466 " gbphy-latency usec:\tmin=%u max=%u average=%f jitter=%u\n",
467 r->gbphy_firmware_latency_min,
468 r->gbphy_firmware_latency_max,
469 r->gbphy_firmware_latency_avg,
470 r->gbphy_firmware_latency_jitter);
471
472 } else {
473 len += snprintf(&buf[len], buf_len - len, ",%s,%s,%u,%u,%u",
474 t->test_name, dev_name, t->size, t->iteration_max,
475 r->error);
476
477 len += snprintf(&buf[len], buf_len - len, ",%u,%u,%f,%u",
478 r->request_min,
479 r->request_max,
480 r->request_avg,
481 r->request_jitter);
482
483 len += snprintf(&buf[len], buf_len - len, ",%u,%u,%f,%u",
484 r->latency_min,
485 r->latency_max,
486 r->latency_avg,
487 r->latency_jitter);
488
489 len += snprintf(&buf[len], buf_len - len, ",%u,%u,%f,%u",
490 r->throughput_min,
491 r->throughput_max,
492 r->throughput_avg,
493 r->throughput_jitter);
494
495 len += snprintf(&buf[len], buf_len - len, ",%u,%u,%f,%u",
496 r->apbridge_unipro_latency_min,
497 r->apbridge_unipro_latency_max,
498 r->apbridge_unipro_latency_avg,
499 r->apbridge_unipro_latency_jitter);
500
501 len += snprintf(&buf[len], buf_len - len, ",%u,%u,%f,%u",
502 r->gbphy_firmware_latency_min,
503 r->gbphy_firmware_latency_max,
504 r->gbphy_firmware_latency_avg,
505 r->gbphy_firmware_latency_jitter);
506 }
507
508 printf("\n%s\n", buf);
509
510 return len;
511 }
512
log_results(struct loopback_test * t)513 static int log_results(struct loopback_test *t)
514 {
515 int fd, i, len, ret;
516 struct tm tm;
517 time_t local_time;
518 char file_name[MAX_SYSFS_PATH];
519 char data[CSV_MAX_LINE];
520
521 local_time = time(NULL);
522 tm = *localtime(&local_time);
523
524 /*
525 * file name will test_name_size_iteration_max.csv
526 * every time the same test with the same parameters is run we will then
527 * append to the same CSV with datestamp - representing each test
528 * dataset.
529 */
530 if (t->file_output && !t->porcelain) {
531 snprintf(file_name, sizeof(file_name), "%s_%d_%d.csv",
532 t->test_name, t->size, t->iteration_max);
533
534 fd = open(file_name, O_WRONLY | O_CREAT | O_APPEND, 0644);
535 if (fd < 0) {
536 fprintf(stderr, "unable to open %s for appending\n", file_name);
537 abort();
538 }
539
540 }
541 for (i = 0; i < t->device_count; i++) {
542 if (!device_enabled(t, i))
543 continue;
544
545 len = format_output(t, &t->devices[i].results,
546 t->devices[i].name,
547 data, sizeof(data), &tm);
548 if (t->file_output && !t->porcelain) {
549 ret = write(fd, data, len);
550 if (ret == -1)
551 fprintf(stderr, "unable to write %d bytes to csv.\n", len);
552 }
553
554 }
555
556
557 if (t->aggregate_output) {
558 len = format_output(t, &t->aggregate_results, "aggregate",
559 data, sizeof(data), &tm);
560 if (t->file_output && !t->porcelain) {
561 ret = write(fd, data, len);
562 if (ret == -1)
563 fprintf(stderr, "unable to write %d bytes to csv.\n", len);
564 }
565 }
566
567 if (t->file_output && !t->porcelain)
568 close(fd);
569
570 return 0;
571 }
572
is_loopback_device(const char * path,const char * node)573 int is_loopback_device(const char *path, const char *node)
574 {
575 char file[MAX_SYSFS_PATH];
576
577 snprintf(file, MAX_SYSFS_PATH, "%s%s/iteration_count", path, node);
578 if (access(file, F_OK) == 0)
579 return 1;
580 return 0;
581 }
582
find_loopback_devices(struct loopback_test * t)583 int find_loopback_devices(struct loopback_test *t)
584 {
585 struct dirent **namelist;
586 int i, n, ret;
587 unsigned int dev_id;
588 struct loopback_device *d;
589
590 n = scandir(t->sysfs_prefix, &namelist, NULL, alphasort);
591 if (n < 0) {
592 perror("scandir");
593 ret = -ENODEV;
594 goto baddir;
595 }
596
597 /* Don't include '.' and '..' */
598 if (n <= 2) {
599 ret = -ENOMEM;
600 goto done;
601 }
602
603 for (i = 0; i < n; i++) {
604 ret = sscanf(namelist[i]->d_name, "gb_loopback%u", &dev_id);
605 if (ret != 1)
606 continue;
607
608 if (!is_loopback_device(t->sysfs_prefix, namelist[i]->d_name))
609 continue;
610
611 if (t->device_count == MAX_NUM_DEVICES) {
612 fprintf(stderr, "max number of devices reached!\n");
613 break;
614 }
615
616 d = &t->devices[t->device_count++];
617 snprintf(d->name, MAX_STR_LEN, "gb_loopback%u", dev_id);
618
619 snprintf(d->sysfs_entry, MAX_SYSFS_PATH, "%s%s/",
620 t->sysfs_prefix, d->name);
621
622 snprintf(d->debugfs_entry, MAX_SYSFS_PATH, "%sraw_latency_%s",
623 t->debugfs_prefix, d->name);
624
625 if (t->debug)
626 printf("add %s %s\n", d->sysfs_entry, d->debugfs_entry);
627 }
628
629 ret = 0;
630 done:
631 for (i = 0; i < n; i++)
632 free(namelist[i]);
633 free(namelist);
634 baddir:
635 return ret;
636 }
637
open_poll_files(struct loopback_test * t)638 static int open_poll_files(struct loopback_test *t)
639 {
640 struct loopback_device *dev;
641 char buf[MAX_SYSFS_PATH + MAX_STR_LEN];
642 char dummy;
643 int fds_idx = 0;
644 int i;
645
646 for (i = 0; i < t->device_count; i++) {
647 dev = &t->devices[i];
648
649 if (!device_enabled(t, i))
650 continue;
651
652 snprintf(buf, sizeof(buf), "%s%s", dev->sysfs_entry, "iteration_count");
653 t->fds[fds_idx].fd = open(buf, O_RDONLY);
654 if (t->fds[fds_idx].fd < 0) {
655 fprintf(stderr, "Error opening poll file!\n");
656 goto err;
657 }
658 read(t->fds[fds_idx].fd, &dummy, 1);
659 t->fds[fds_idx].events = POLLERR | POLLPRI;
660 t->fds[fds_idx].revents = 0;
661 fds_idx++;
662 }
663
664 t->poll_count = fds_idx;
665
666 return 0;
667
668 err:
669 for (i = 0; i < fds_idx; i++)
670 close(t->fds[i].fd);
671
672 return -1;
673 }
674
close_poll_files(struct loopback_test * t)675 static int close_poll_files(struct loopback_test *t)
676 {
677 int i;
678 for (i = 0; i < t->poll_count; i++)
679 close(t->fds[i].fd);
680
681 return 0;
682 }
is_complete(struct loopback_test * t)683 static int is_complete(struct loopback_test *t)
684 {
685 int iteration_count;
686 int i;
687
688 for (i = 0; i < t->device_count; i++) {
689 if (!device_enabled(t, i))
690 continue;
691
692 iteration_count = read_sysfs_int(t->devices[i].sysfs_entry,
693 "iteration_count");
694
695 /* at least one device did not finish yet */
696 if (iteration_count != t->iteration_max)
697 return 0;
698 }
699
700 return 1;
701 }
702
stop_tests(struct loopback_test * t)703 static void stop_tests(struct loopback_test *t)
704 {
705 int i;
706
707 for (i = 0; i < t->device_count; i++) {
708 if (!device_enabled(t, i))
709 continue;
710 write_sysfs_val(t->devices[i].sysfs_entry, "type", 0);
711 }
712 }
713
handler(int sig)714 static void handler(int sig) { /* do nothing */ }
715
wait_for_complete(struct loopback_test * t)716 static int wait_for_complete(struct loopback_test *t)
717 {
718 int number_of_events = 0;
719 char dummy;
720 int ret;
721 int i;
722 struct timespec *ts = NULL;
723 struct sigaction sa;
724 sigset_t mask_old, mask;
725
726 sigemptyset(&mask);
727 sigemptyset(&mask_old);
728 sigaddset(&mask, SIGINT);
729 sigprocmask(SIG_BLOCK, &mask, &mask_old);
730
731 sa.sa_handler = handler;
732 sa.sa_flags = 0;
733 sigemptyset(&sa.sa_mask);
734 if (sigaction(SIGINT, &sa, NULL) == -1) {
735 fprintf(stderr, "sigaction error\n");
736 return -1;
737 }
738
739 if (t->poll_timeout.tv_sec != 0)
740 ts = &t->poll_timeout;
741
742 while (1) {
743
744 ret = ppoll(t->fds, t->poll_count, ts, &mask_old);
745 if (ret <= 0) {
746 stop_tests(t);
747 fprintf(stderr, "Poll exit with errno %d\n", errno);
748 return -1;
749 }
750
751 for (i = 0; i < t->poll_count; i++) {
752 if (t->fds[i].revents & POLLPRI) {
753 /* Dummy read to clear the event */
754 read(t->fds[i].fd, &dummy, 1);
755 number_of_events++;
756 }
757 }
758
759 if (number_of_events == t->poll_count)
760 break;
761 }
762
763 if (!is_complete(t)) {
764 fprintf(stderr, "Iteration count did not finish!\n");
765 return -1;
766 }
767
768 return 0;
769 }
770
prepare_devices(struct loopback_test * t)771 static void prepare_devices(struct loopback_test *t)
772 {
773 int i;
774
775 /*
776 * Cancel any running tests on enabled devices. If
777 * stop_all option is given, stop test on all devices.
778 */
779 for (i = 0; i < t->device_count; i++)
780 if (t->stop_all || device_enabled(t, i))
781 write_sysfs_val(t->devices[i].sysfs_entry, "type", 0);
782
783
784 for (i = 0; i < t->device_count; i++) {
785 if (!device_enabled(t, i))
786 continue;
787
788 write_sysfs_val(t->devices[i].sysfs_entry, "us_wait",
789 t->us_wait);
790
791 /* Set operation size */
792 write_sysfs_val(t->devices[i].sysfs_entry, "size", t->size);
793
794 /* Set iterations */
795 write_sysfs_val(t->devices[i].sysfs_entry, "iteration_max",
796 t->iteration_max);
797
798 if (t->use_async) {
799 write_sysfs_val(t->devices[i].sysfs_entry, "async", 1);
800 write_sysfs_val(t->devices[i].sysfs_entry,
801 "timeout", t->async_timeout);
802 write_sysfs_val(t->devices[i].sysfs_entry,
803 "outstanding_operations_max",
804 t->async_outstanding_operations);
805 } else {
806 write_sysfs_val(t->devices[i].sysfs_entry, "async", 0);
807 }
808 }
809 }
810
start(struct loopback_test * t)811 static int start(struct loopback_test *t)
812 {
813 int i;
814
815 /* the test starts by writing test_id to the type file. */
816 for (i = 0; i < t->device_count; i++) {
817 if (!device_enabled(t, i))
818 continue;
819
820 write_sysfs_val(t->devices[i].sysfs_entry, "type", t->test_id);
821 }
822
823 return 0;
824 }
825
826
loopback_run(struct loopback_test * t)827 void loopback_run(struct loopback_test *t)
828 {
829 int i;
830 int ret;
831
832 for (i = 0; dict[i].name != NULL; i++) {
833 if (strstr(dict[i].name, t->test_name))
834 t->test_id = dict[i].type;
835 }
836 if (!t->test_id) {
837 fprintf(stderr, "invalid test %s\n", t->test_name);
838 usage();
839 return;
840 }
841
842 prepare_devices(t);
843
844 ret = open_poll_files(t);
845 if (ret)
846 goto err;
847
848 start(t);
849
850 ret = wait_for_complete(t);
851 close_poll_files(t);
852 if (ret)
853 goto err;
854
855
856 get_results(t);
857
858 log_results(t);
859
860 return;
861
862 err:
863 printf("Error running test\n");
864 return;
865 }
866
sanity_check(struct loopback_test * t)867 static int sanity_check(struct loopback_test *t)
868 {
869 int i;
870
871 if (t->device_count == 0) {
872 fprintf(stderr, "No loopback devices found\n");
873 return -1;
874 }
875
876 for (i = 0; i < MAX_NUM_DEVICES; i++) {
877 if (!device_enabled(t, i))
878 continue;
879
880 if (t->mask && !strcmp(t->devices[i].name, "")) {
881 fprintf(stderr, "Bad device mask %x\n", (1 << i));
882 return -1;
883 }
884
885 }
886
887
888 return 0;
889 }
890
main(int argc,char * argv[])891 int main(int argc, char *argv[])
892 {
893 int o, ret;
894 char *sysfs_prefix = "/sys/class/gb_loopback/";
895 char *debugfs_prefix = "/sys/kernel/debug/gb_loopback/";
896
897 memset(&t, 0, sizeof(t));
898
899 while ((o = getopt(argc, argv,
900 "t:s:i:S:D:m:v::d::r::p::a::l::x::o:O:c:w:z::f::")) != -1) {
901 switch (o) {
902 case 't':
903 snprintf(t.test_name, MAX_STR_LEN, "%s", optarg);
904 break;
905 case 's':
906 t.size = atoi(optarg);
907 break;
908 case 'i':
909 t.iteration_max = atoi(optarg);
910 break;
911 case 'S':
912 snprintf(t.sysfs_prefix, MAX_SYSFS_PREFIX, "%s", optarg);
913 break;
914 case 'D':
915 snprintf(t.debugfs_prefix, MAX_SYSFS_PREFIX, "%s", optarg);
916 break;
917 case 'm':
918 t.mask = atol(optarg);
919 break;
920 case 'v':
921 t.verbose = 1;
922 break;
923 case 'd':
924 t.debug = 1;
925 break;
926 case 'r':
927 t.raw_data_dump = 1;
928 break;
929 case 'p':
930 t.porcelain = 1;
931 break;
932 case 'a':
933 t.aggregate_output = 1;
934 break;
935 case 'l':
936 t.list_devices = 1;
937 break;
938 case 'x':
939 t.use_async = 1;
940 break;
941 case 'o':
942 t.async_timeout = atoi(optarg);
943 break;
944 case 'O':
945 t.poll_timeout.tv_sec = atoi(optarg);
946 break;
947 case 'c':
948 t.async_outstanding_operations = atoi(optarg);
949 break;
950 case 'w':
951 t.us_wait = atoi(optarg);
952 break;
953 case 'z':
954 t.file_output = 1;
955 break;
956 case 'f':
957 t.stop_all = 1;
958 break;
959 default:
960 usage();
961 return -EINVAL;
962 }
963 }
964
965 if (!strcmp(t.sysfs_prefix, ""))
966 snprintf(t.sysfs_prefix, MAX_SYSFS_PREFIX, "%s", sysfs_prefix);
967
968 if (!strcmp(t.debugfs_prefix, ""))
969 snprintf(t.debugfs_prefix, MAX_SYSFS_PREFIX, "%s", debugfs_prefix);
970
971 ret = find_loopback_devices(&t);
972 if (ret)
973 return ret;
974 ret = sanity_check(&t);
975 if (ret)
976 return ret;
977
978 if (t.list_devices) {
979 show_loopback_devices(&t);
980 return 0;
981 }
982
983 if (t.test_name[0] == '\0' || t.iteration_max == 0)
984 usage();
985
986 if (t.async_timeout == 0)
987 t.async_timeout = DEFAULT_ASYNC_TIMEOUT;
988
989 loopback_run(&t);
990
991 return 0;
992 }
993