1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3 * linux/cgroup-defs.h - basic definitions for cgroup
4 *
5 * This file provides basic type and interface. Include this file directly
6 * only if necessary to avoid cyclic dependencies.
7 */
8 #ifndef _LINUX_CGROUP_DEFS_H
9 #define _LINUX_CGROUP_DEFS_H
10
11 #include <linux/limits.h>
12 #include <linux/list.h>
13 #include <linux/idr.h>
14 #include <linux/wait.h>
15 #include <linux/mutex.h>
16 #include <linux/rcupdate.h>
17 #include <linux/refcount.h>
18 #include <linux/percpu-refcount.h>
19 #include <linux/percpu-rwsem.h>
20 #include <linux/u64_stats_sync.h>
21 #include <linux/workqueue.h>
22 #include <linux/bpf-cgroup-defs.h>
23 #include <linux/psi_types.h>
24
25 #ifdef CONFIG_CGROUPS
26
27 struct cgroup;
28 struct cgroup_root;
29 struct cgroup_subsys;
30 struct cgroup_taskset;
31 struct kernfs_node;
32 struct kernfs_ops;
33 struct kernfs_open_file;
34 struct seq_file;
35 struct poll_table_struct;
36
37 #define MAX_CGROUP_TYPE_NAMELEN 32
38 #define MAX_CGROUP_ROOT_NAMELEN 64
39 #define MAX_CFTYPE_NAME 64
40
41 /* define the enumeration of all cgroup subsystems */
42 #define SUBSYS(_x) _x ## _cgrp_id,
43 enum cgroup_subsys_id {
44 #include <linux/cgroup_subsys.h>
45 CGROUP_SUBSYS_COUNT,
46 };
47 #undef SUBSYS
48
49 /* bits in struct cgroup_subsys_state flags field */
50 enum {
51 CSS_NO_REF = (1 << 0), /* no reference counting for this css */
52 CSS_ONLINE = (1 << 1), /* between ->css_online() and ->css_offline() */
53 CSS_RELEASED = (1 << 2), /* refcnt reached zero, released */
54 CSS_VISIBLE = (1 << 3), /* css is visible to userland */
55 CSS_DYING = (1 << 4), /* css is dying */
56 };
57
58 /* bits in struct cgroup flags field */
59 enum {
60 /* Control Group requires release notifications to userspace */
61 CGRP_NOTIFY_ON_RELEASE,
62 /*
63 * Clone the parent's configuration when creating a new child
64 * cpuset cgroup. For historical reasons, this option can be
65 * specified at mount time and thus is implemented here.
66 */
67 CGRP_CPUSET_CLONE_CHILDREN,
68
69 /* Control group has to be frozen. */
70 CGRP_FREEZE,
71
72 /* Cgroup is frozen. */
73 CGRP_FROZEN,
74
75 /* Control group has to be killed. */
76 CGRP_KILL,
77 };
78
79 /* cgroup_root->flags */
80 enum {
81 CGRP_ROOT_NOPREFIX = (1 << 1), /* mounted subsystems have no named prefix */
82 CGRP_ROOT_XATTR = (1 << 2), /* supports extended attributes */
83
84 /*
85 * Consider namespaces as delegation boundaries. If this flag is
86 * set, controller specific interface files in a namespace root
87 * aren't writeable from inside the namespace.
88 */
89 CGRP_ROOT_NS_DELEGATE = (1 << 3),
90
91 /*
92 * Reduce latencies on dynamic cgroup modifications such as task
93 * migrations and controller on/offs by disabling percpu operation on
94 * cgroup_threadgroup_rwsem. This makes hot path operations such as
95 * forks and exits into the slow path and more expensive.
96 *
97 * The static usage pattern of creating a cgroup, enabling controllers,
98 * and then seeding it with CLONE_INTO_CGROUP doesn't require write
99 * locking cgroup_threadgroup_rwsem and thus doesn't benefit from
100 * favordynmod.
101 */
102 CGRP_ROOT_FAVOR_DYNMODS = (1 << 4),
103
104 /*
105 * Enable cpuset controller in v1 cgroup to use v2 behavior.
106 */
107 CGRP_ROOT_CPUSET_V2_MODE = (1 << 16),
108
109 /*
110 * Enable legacy local memory.events.
111 */
112 CGRP_ROOT_MEMORY_LOCAL_EVENTS = (1 << 17),
113
114 /*
115 * Enable recursive subtree protection
116 */
117 CGRP_ROOT_MEMORY_RECURSIVE_PROT = (1 << 18),
118 };
119
120 /* cftype->flags */
121 enum {
122 CFTYPE_ONLY_ON_ROOT = (1 << 0), /* only create on root cgrp */
123 CFTYPE_NOT_ON_ROOT = (1 << 1), /* don't create on root cgrp */
124 CFTYPE_NS_DELEGATABLE = (1 << 2), /* writeable beyond delegation boundaries */
125
126 CFTYPE_NO_PREFIX = (1 << 3), /* (DON'T USE FOR NEW FILES) no subsys prefix */
127 CFTYPE_WORLD_WRITABLE = (1 << 4), /* (DON'T USE FOR NEW FILES) S_IWUGO */
128 CFTYPE_DEBUG = (1 << 5), /* create when cgroup_debug */
129
130 /* internal flags, do not use outside cgroup core proper */
131 __CFTYPE_ONLY_ON_DFL = (1 << 16), /* only on default hierarchy */
132 __CFTYPE_NOT_ON_DFL = (1 << 17), /* not on default hierarchy */
133 __CFTYPE_ADDED = (1 << 18),
134 };
135
136 /*
137 * cgroup_file is the handle for a file instance created in a cgroup which
138 * is used, for example, to generate file changed notifications. This can
139 * be obtained by setting cftype->file_offset.
140 */
141 struct cgroup_file {
142 /* do not access any fields from outside cgroup core */
143 struct kernfs_node *kn;
144 unsigned long notified_at;
145 struct timer_list notify_timer;
146 };
147
148 /*
149 * Per-subsystem/per-cgroup state maintained by the system. This is the
150 * fundamental structural building block that controllers deal with.
151 *
152 * Fields marked with "PI:" are public and immutable and may be accessed
153 * directly without synchronization.
154 */
155 struct cgroup_subsys_state {
156 /* PI: the cgroup that this css is attached to */
157 struct cgroup *cgroup;
158
159 /* PI: the cgroup subsystem that this css is attached to */
160 struct cgroup_subsys *ss;
161
162 /* reference count - access via css_[try]get() and css_put() */
163 struct percpu_ref refcnt;
164
165 /* siblings list anchored at the parent's ->children */
166 struct list_head sibling;
167 struct list_head children;
168
169 /* flush target list anchored at cgrp->rstat_css_list */
170 struct list_head rstat_css_node;
171
172 /*
173 * PI: Subsys-unique ID. 0 is unused and root is always 1. The
174 * matching css can be looked up using css_from_id().
175 */
176 int id;
177
178 unsigned int flags;
179
180 /*
181 * Monotonically increasing unique serial number which defines a
182 * uniform order among all csses. It's guaranteed that all
183 * ->children lists are in the ascending order of ->serial_nr and
184 * used to allow interrupting and resuming iterations.
185 */
186 u64 serial_nr;
187
188 /*
189 * Incremented by online self and children. Used to guarantee that
190 * parents are not offlined before their children.
191 */
192 atomic_t online_cnt;
193
194 /* percpu_ref killing and RCU release */
195 struct work_struct destroy_work;
196 struct rcu_work destroy_rwork;
197
198 /*
199 * PI: the parent css. Placed here for cache proximity to following
200 * fields of the containing structure.
201 */
202 struct cgroup_subsys_state *parent;
203 };
204
205 /*
206 * A css_set is a structure holding pointers to a set of
207 * cgroup_subsys_state objects. This saves space in the task struct
208 * object and speeds up fork()/exit(), since a single inc/dec and a
209 * list_add()/del() can bump the reference count on the entire cgroup
210 * set for a task.
211 */
212 struct css_set {
213 /*
214 * Set of subsystem states, one for each subsystem. This array is
215 * immutable after creation apart from the init_css_set during
216 * subsystem registration (at boot time).
217 */
218 struct cgroup_subsys_state *subsys[CGROUP_SUBSYS_COUNT];
219
220 /* reference count */
221 refcount_t refcount;
222
223 /*
224 * For a domain cgroup, the following points to self. If threaded,
225 * to the matching cset of the nearest domain ancestor. The
226 * dom_cset provides access to the domain cgroup and its csses to
227 * which domain level resource consumptions should be charged.
228 */
229 struct css_set *dom_cset;
230
231 /* the default cgroup associated with this css_set */
232 struct cgroup *dfl_cgrp;
233
234 /* internal task count, protected by css_set_lock */
235 int nr_tasks;
236
237 /*
238 * Lists running through all tasks using this cgroup group.
239 * mg_tasks lists tasks which belong to this cset but are in the
240 * process of being migrated out or in. Protected by
241 * css_set_rwsem, but, during migration, once tasks are moved to
242 * mg_tasks, it can be read safely while holding cgroup_mutex.
243 */
244 struct list_head tasks;
245 struct list_head mg_tasks;
246 struct list_head dying_tasks;
247
248 /* all css_task_iters currently walking this cset */
249 struct list_head task_iters;
250
251 /*
252 * On the default hierarchy, ->subsys[ssid] may point to a css
253 * attached to an ancestor instead of the cgroup this css_set is
254 * associated with. The following node is anchored at
255 * ->subsys[ssid]->cgroup->e_csets[ssid] and provides a way to
256 * iterate through all css's attached to a given cgroup.
257 */
258 struct list_head e_cset_node[CGROUP_SUBSYS_COUNT];
259
260 /* all threaded csets whose ->dom_cset points to this cset */
261 struct list_head threaded_csets;
262 struct list_head threaded_csets_node;
263
264 /*
265 * List running through all cgroup groups in the same hash
266 * slot. Protected by css_set_lock
267 */
268 struct hlist_node hlist;
269
270 /*
271 * List of cgrp_cset_links pointing at cgroups referenced from this
272 * css_set. Protected by css_set_lock.
273 */
274 struct list_head cgrp_links;
275
276 /*
277 * List of csets participating in the on-going migration either as
278 * source or destination. Protected by cgroup_mutex.
279 */
280 struct list_head mg_src_preload_node;
281 struct list_head mg_dst_preload_node;
282 struct list_head mg_node;
283
284 /*
285 * If this cset is acting as the source of migration the following
286 * two fields are set. mg_src_cgrp and mg_dst_cgrp are
287 * respectively the source and destination cgroups of the on-going
288 * migration. mg_dst_cset is the destination cset the target tasks
289 * on this cset should be migrated to. Protected by cgroup_mutex.
290 */
291 struct cgroup *mg_src_cgrp;
292 struct cgroup *mg_dst_cgrp;
293 struct css_set *mg_dst_cset;
294
295 /* dead and being drained, ignore for migration */
296 bool dead;
297
298 /* For RCU-protected deletion */
299 struct rcu_head rcu_head;
300 };
301
302 struct cgroup_base_stat {
303 struct task_cputime cputime;
304
305 #ifdef CONFIG_SCHED_CORE
306 u64 forceidle_sum;
307 #endif
308 };
309
310 /*
311 * rstat - cgroup scalable recursive statistics. Accounting is done
312 * per-cpu in cgroup_rstat_cpu which is then lazily propagated up the
313 * hierarchy on reads.
314 *
315 * When a stat gets updated, the cgroup_rstat_cpu and its ancestors are
316 * linked into the updated tree. On the following read, propagation only
317 * considers and consumes the updated tree. This makes reading O(the
318 * number of descendants which have been active since last read) instead of
319 * O(the total number of descendants).
320 *
321 * This is important because there can be a lot of (draining) cgroups which
322 * aren't active and stat may be read frequently. The combination can
323 * become very expensive. By propagating selectively, increasing reading
324 * frequency decreases the cost of each read.
325 *
326 * This struct hosts both the fields which implement the above -
327 * updated_children and updated_next - and the fields which track basic
328 * resource statistics on top of it - bsync, bstat and last_bstat.
329 */
330 struct cgroup_rstat_cpu {
331 /*
332 * ->bsync protects ->bstat. These are the only fields which get
333 * updated in the hot path.
334 */
335 struct u64_stats_sync bsync;
336 struct cgroup_base_stat bstat;
337
338 /*
339 * Snapshots at the last reading. These are used to calculate the
340 * deltas to propagate to the global counters.
341 */
342 struct cgroup_base_stat last_bstat;
343
344 /*
345 * Child cgroups with stat updates on this cpu since the last read
346 * are linked on the parent's ->updated_children through
347 * ->updated_next.
348 *
349 * In addition to being more compact, singly-linked list pointing
350 * to the cgroup makes it unnecessary for each per-cpu struct to
351 * point back to the associated cgroup.
352 *
353 * Protected by per-cpu cgroup_rstat_cpu_lock.
354 */
355 struct cgroup *updated_children; /* terminated by self cgroup */
356 struct cgroup *updated_next; /* NULL iff not on the list */
357 };
358
359 struct cgroup_freezer_state {
360 /* Should the cgroup and its descendants be frozen. */
361 bool freeze;
362
363 /* Should the cgroup actually be frozen? */
364 int e_freeze;
365
366 /* Fields below are protected by css_set_lock */
367
368 /* Number of frozen descendant cgroups */
369 int nr_frozen_descendants;
370
371 /*
372 * Number of tasks, which are counted as frozen:
373 * frozen, SIGSTOPped, and PTRACEd.
374 */
375 int nr_frozen_tasks;
376 };
377
378 struct cgroup {
379 /* self css with NULL ->ss, points back to this cgroup */
380 struct cgroup_subsys_state self;
381
382 unsigned long flags; /* "unsigned long" so bitops work */
383
384 /*
385 * The depth this cgroup is at. The root is at depth zero and each
386 * step down the hierarchy increments the level. This along with
387 * ancestors[] can determine whether a given cgroup is a
388 * descendant of another without traversing the hierarchy.
389 */
390 int level;
391
392 /* Maximum allowed descent tree depth */
393 int max_depth;
394
395 /*
396 * Keep track of total numbers of visible and dying descent cgroups.
397 * Dying cgroups are cgroups which were deleted by a user,
398 * but are still existing because someone else is holding a reference.
399 * max_descendants is a maximum allowed number of descent cgroups.
400 *
401 * nr_descendants and nr_dying_descendants are protected
402 * by cgroup_mutex and css_set_lock. It's fine to read them holding
403 * any of cgroup_mutex and css_set_lock; for writing both locks
404 * should be held.
405 */
406 int nr_descendants;
407 int nr_dying_descendants;
408 int max_descendants;
409
410 /*
411 * Each non-empty css_set associated with this cgroup contributes
412 * one to nr_populated_csets. The counter is zero iff this cgroup
413 * doesn't have any tasks.
414 *
415 * All children which have non-zero nr_populated_csets and/or
416 * nr_populated_children of their own contribute one to either
417 * nr_populated_domain_children or nr_populated_threaded_children
418 * depending on their type. Each counter is zero iff all cgroups
419 * of the type in the subtree proper don't have any tasks.
420 */
421 int nr_populated_csets;
422 int nr_populated_domain_children;
423 int nr_populated_threaded_children;
424
425 int nr_threaded_children; /* # of live threaded child cgroups */
426
427 struct kernfs_node *kn; /* cgroup kernfs entry */
428 struct cgroup_file procs_file; /* handle for "cgroup.procs" */
429 struct cgroup_file events_file; /* handle for "cgroup.events" */
430
431 /* handles for "{cpu,memory,io,irq}.pressure" */
432 struct cgroup_file psi_files[NR_PSI_RESOURCES];
433
434 /*
435 * The bitmask of subsystems enabled on the child cgroups.
436 * ->subtree_control is the one configured through
437 * "cgroup.subtree_control" while ->subtree_ss_mask is the effective
438 * one which may have more subsystems enabled. Controller knobs
439 * are made available iff it's enabled in ->subtree_control.
440 */
441 u16 subtree_control;
442 u16 subtree_ss_mask;
443 u16 old_subtree_control;
444 u16 old_subtree_ss_mask;
445
446 /* Private pointers for each registered subsystem */
447 struct cgroup_subsys_state __rcu *subsys[CGROUP_SUBSYS_COUNT];
448
449 struct cgroup_root *root;
450
451 /*
452 * List of cgrp_cset_links pointing at css_sets with tasks in this
453 * cgroup. Protected by css_set_lock.
454 */
455 struct list_head cset_links;
456
457 /*
458 * On the default hierarchy, a css_set for a cgroup with some
459 * susbsys disabled will point to css's which are associated with
460 * the closest ancestor which has the subsys enabled. The
461 * following lists all css_sets which point to this cgroup's css
462 * for the given subsystem.
463 */
464 struct list_head e_csets[CGROUP_SUBSYS_COUNT];
465
466 /*
467 * If !threaded, self. If threaded, it points to the nearest
468 * domain ancestor. Inside a threaded subtree, cgroups are exempt
469 * from process granularity and no-internal-task constraint.
470 * Domain level resource consumptions which aren't tied to a
471 * specific task are charged to the dom_cgrp.
472 */
473 struct cgroup *dom_cgrp;
474 struct cgroup *old_dom_cgrp; /* used while enabling threaded */
475
476 /* per-cpu recursive resource statistics */
477 struct cgroup_rstat_cpu __percpu *rstat_cpu;
478 struct list_head rstat_css_list;
479
480 /* cgroup basic resource statistics */
481 struct cgroup_base_stat last_bstat;
482 struct cgroup_base_stat bstat;
483 struct prev_cputime prev_cputime; /* for printing out cputime */
484
485 /*
486 * list of pidlists, up to two for each namespace (one for procs, one
487 * for tasks); created on demand.
488 */
489 struct list_head pidlists;
490 struct mutex pidlist_mutex;
491
492 /* used to wait for offlining of csses */
493 wait_queue_head_t offline_waitq;
494
495 /* used to schedule release agent */
496 struct work_struct release_agent_work;
497
498 /* used to track pressure stalls */
499 struct psi_group *psi;
500
501 /* used to store eBPF programs */
502 struct cgroup_bpf bpf;
503
504 /* If there is block congestion on this cgroup. */
505 atomic_t congestion_count;
506
507 /* Used to store internal freezer state */
508 struct cgroup_freezer_state freezer;
509
510 /* All ancestors including self */
511 struct cgroup *ancestors[];
512 };
513
514 /*
515 * A cgroup_root represents the root of a cgroup hierarchy, and may be
516 * associated with a kernfs_root to form an active hierarchy. This is
517 * internal to cgroup core. Don't access directly from controllers.
518 */
519 struct cgroup_root {
520 struct kernfs_root *kf_root;
521
522 /* The bitmask of subsystems attached to this hierarchy */
523 unsigned int subsys_mask;
524
525 /* Unique id for this hierarchy. */
526 int hierarchy_id;
527
528 /*
529 * The root cgroup. The containing cgroup_root will be destroyed on its
530 * release. cgrp->ancestors[0] will be used overflowing into the
531 * following field. cgrp_ancestor_storage must immediately follow.
532 */
533 struct cgroup cgrp;
534
535 /* must follow cgrp for cgrp->ancestors[0], see above */
536 struct cgroup *cgrp_ancestor_storage;
537
538 /* Number of cgroups in the hierarchy, used only for /proc/cgroups */
539 atomic_t nr_cgrps;
540
541 /* A list running through the active hierarchies */
542 struct list_head root_list;
543
544 /* Hierarchy-specific flags */
545 unsigned int flags;
546
547 /* The path to use for release notifications. */
548 char release_agent_path[PATH_MAX];
549
550 /* The name for this hierarchy - may be empty */
551 char name[MAX_CGROUP_ROOT_NAMELEN];
552 };
553
554 /*
555 * struct cftype: handler definitions for cgroup control files
556 *
557 * When reading/writing to a file:
558 * - the cgroup to use is file->f_path.dentry->d_parent->d_fsdata
559 * - the 'cftype' of the file is file->f_path.dentry->d_fsdata
560 */
561 struct cftype {
562 /*
563 * By convention, the name should begin with the name of the
564 * subsystem, followed by a period. Zero length string indicates
565 * end of cftype array.
566 */
567 char name[MAX_CFTYPE_NAME];
568 unsigned long private;
569
570 /*
571 * The maximum length of string, excluding trailing nul, that can
572 * be passed to write. If < PAGE_SIZE-1, PAGE_SIZE-1 is assumed.
573 */
574 size_t max_write_len;
575
576 /* CFTYPE_* flags */
577 unsigned int flags;
578
579 /*
580 * If non-zero, should contain the offset from the start of css to
581 * a struct cgroup_file field. cgroup will record the handle of
582 * the created file into it. The recorded handle can be used as
583 * long as the containing css remains accessible.
584 */
585 unsigned int file_offset;
586
587 /*
588 * Fields used for internal bookkeeping. Initialized automatically
589 * during registration.
590 */
591 struct cgroup_subsys *ss; /* NULL for cgroup core files */
592 struct list_head node; /* anchored at ss->cfts */
593 struct kernfs_ops *kf_ops;
594
595 int (*open)(struct kernfs_open_file *of);
596 void (*release)(struct kernfs_open_file *of);
597
598 /*
599 * read_u64() is a shortcut for the common case of returning a
600 * single integer. Use it in place of read()
601 */
602 u64 (*read_u64)(struct cgroup_subsys_state *css, struct cftype *cft);
603 /*
604 * read_s64() is a signed version of read_u64()
605 */
606 s64 (*read_s64)(struct cgroup_subsys_state *css, struct cftype *cft);
607
608 /* generic seq_file read interface */
609 int (*seq_show)(struct seq_file *sf, void *v);
610
611 /* optional ops, implement all or none */
612 void *(*seq_start)(struct seq_file *sf, loff_t *ppos);
613 void *(*seq_next)(struct seq_file *sf, void *v, loff_t *ppos);
614 void (*seq_stop)(struct seq_file *sf, void *v);
615
616 /*
617 * write_u64() is a shortcut for the common case of accepting
618 * a single integer (as parsed by simple_strtoull) from
619 * userspace. Use in place of write(); return 0 or error.
620 */
621 int (*write_u64)(struct cgroup_subsys_state *css, struct cftype *cft,
622 u64 val);
623 /*
624 * write_s64() is a signed version of write_u64()
625 */
626 int (*write_s64)(struct cgroup_subsys_state *css, struct cftype *cft,
627 s64 val);
628
629 /*
630 * write() is the generic write callback which maps directly to
631 * kernfs write operation and overrides all other operations.
632 * Maximum write size is determined by ->max_write_len. Use
633 * of_css/cft() to access the associated css and cft.
634 */
635 ssize_t (*write)(struct kernfs_open_file *of,
636 char *buf, size_t nbytes, loff_t off);
637
638 __poll_t (*poll)(struct kernfs_open_file *of,
639 struct poll_table_struct *pt);
640
641 #ifdef CONFIG_DEBUG_LOCK_ALLOC
642 struct lock_class_key lockdep_key;
643 #endif
644 };
645
646 /*
647 * Control Group subsystem type.
648 * See Documentation/admin-guide/cgroup-v1/cgroups.rst for details
649 */
650 struct cgroup_subsys {
651 struct cgroup_subsys_state *(*css_alloc)(struct cgroup_subsys_state *parent_css);
652 int (*css_online)(struct cgroup_subsys_state *css);
653 void (*css_offline)(struct cgroup_subsys_state *css);
654 void (*css_released)(struct cgroup_subsys_state *css);
655 void (*css_free)(struct cgroup_subsys_state *css);
656 void (*css_reset)(struct cgroup_subsys_state *css);
657 void (*css_rstat_flush)(struct cgroup_subsys_state *css, int cpu);
658 int (*css_extra_stat_show)(struct seq_file *seq,
659 struct cgroup_subsys_state *css);
660
661 int (*can_attach)(struct cgroup_taskset *tset);
662 void (*cancel_attach)(struct cgroup_taskset *tset);
663 void (*attach)(struct cgroup_taskset *tset);
664 void (*post_attach)(void);
665 int (*can_fork)(struct task_struct *task,
666 struct css_set *cset);
667 void (*cancel_fork)(struct task_struct *task, struct css_set *cset);
668 void (*fork)(struct task_struct *task);
669 void (*exit)(struct task_struct *task);
670 void (*release)(struct task_struct *task);
671 void (*bind)(struct cgroup_subsys_state *root_css);
672
673 bool early_init:1;
674
675 /*
676 * If %true, the controller, on the default hierarchy, doesn't show
677 * up in "cgroup.controllers" or "cgroup.subtree_control", is
678 * implicitly enabled on all cgroups on the default hierarchy, and
679 * bypasses the "no internal process" constraint. This is for
680 * utility type controllers which is transparent to userland.
681 *
682 * An implicit controller can be stolen from the default hierarchy
683 * anytime and thus must be okay with offline csses from previous
684 * hierarchies coexisting with csses for the current one.
685 */
686 bool implicit_on_dfl:1;
687
688 /*
689 * If %true, the controller, supports threaded mode on the default
690 * hierarchy. In a threaded subtree, both process granularity and
691 * no-internal-process constraint are ignored and a threaded
692 * controllers should be able to handle that.
693 *
694 * Note that as an implicit controller is automatically enabled on
695 * all cgroups on the default hierarchy, it should also be
696 * threaded. implicit && !threaded is not supported.
697 */
698 bool threaded:1;
699
700 /* the following two fields are initialized automatically during boot */
701 int id;
702 const char *name;
703
704 /* optional, initialized automatically during boot if not set */
705 const char *legacy_name;
706
707 /* link to parent, protected by cgroup_lock() */
708 struct cgroup_root *root;
709
710 /* idr for css->id */
711 struct idr css_idr;
712
713 /*
714 * List of cftypes. Each entry is the first entry of an array
715 * terminated by zero length name.
716 */
717 struct list_head cfts;
718
719 /*
720 * Base cftypes which are automatically registered. The two can
721 * point to the same array.
722 */
723 struct cftype *dfl_cftypes; /* for the default hierarchy */
724 struct cftype *legacy_cftypes; /* for the legacy hierarchies */
725
726 /*
727 * A subsystem may depend on other subsystems. When such subsystem
728 * is enabled on a cgroup, the depended-upon subsystems are enabled
729 * together if available. Subsystems enabled due to dependency are
730 * not visible to userland until explicitly enabled. The following
731 * specifies the mask of subsystems that this one depends on.
732 */
733 unsigned int depends_on;
734 };
735
736 extern struct percpu_rw_semaphore cgroup_threadgroup_rwsem;
737
738 /**
739 * cgroup_threadgroup_change_begin - threadgroup exclusion for cgroups
740 * @tsk: target task
741 *
742 * Allows cgroup operations to synchronize against threadgroup changes
743 * using a percpu_rw_semaphore.
744 */
cgroup_threadgroup_change_begin(struct task_struct * tsk)745 static inline void cgroup_threadgroup_change_begin(struct task_struct *tsk)
746 {
747 percpu_down_read(&cgroup_threadgroup_rwsem);
748 }
749
750 /**
751 * cgroup_threadgroup_change_end - threadgroup exclusion for cgroups
752 * @tsk: target task
753 *
754 * Counterpart of cgroup_threadcgroup_change_begin().
755 */
cgroup_threadgroup_change_end(struct task_struct * tsk)756 static inline void cgroup_threadgroup_change_end(struct task_struct *tsk)
757 {
758 percpu_up_read(&cgroup_threadgroup_rwsem);
759 }
760
761 #else /* CONFIG_CGROUPS */
762
763 #define CGROUP_SUBSYS_COUNT 0
764
cgroup_threadgroup_change_begin(struct task_struct * tsk)765 static inline void cgroup_threadgroup_change_begin(struct task_struct *tsk)
766 {
767 might_sleep();
768 }
769
cgroup_threadgroup_change_end(struct task_struct * tsk)770 static inline void cgroup_threadgroup_change_end(struct task_struct *tsk) {}
771
772 #endif /* CONFIG_CGROUPS */
773
774 #ifdef CONFIG_SOCK_CGROUP_DATA
775
776 /*
777 * sock_cgroup_data is embedded at sock->sk_cgrp_data and contains
778 * per-socket cgroup information except for memcg association.
779 *
780 * On legacy hierarchies, net_prio and net_cls controllers directly
781 * set attributes on each sock which can then be tested by the network
782 * layer. On the default hierarchy, each sock is associated with the
783 * cgroup it was created in and the networking layer can match the
784 * cgroup directly.
785 */
786 struct sock_cgroup_data {
787 struct cgroup *cgroup; /* v2 */
788 #ifdef CONFIG_CGROUP_NET_CLASSID
789 u32 classid; /* v1 */
790 #endif
791 #ifdef CONFIG_CGROUP_NET_PRIO
792 u16 prioidx; /* v1 */
793 #endif
794 };
795
sock_cgroup_prioidx(const struct sock_cgroup_data * skcd)796 static inline u16 sock_cgroup_prioidx(const struct sock_cgroup_data *skcd)
797 {
798 #ifdef CONFIG_CGROUP_NET_PRIO
799 return READ_ONCE(skcd->prioidx);
800 #else
801 return 1;
802 #endif
803 }
804
sock_cgroup_classid(const struct sock_cgroup_data * skcd)805 static inline u32 sock_cgroup_classid(const struct sock_cgroup_data *skcd)
806 {
807 #ifdef CONFIG_CGROUP_NET_CLASSID
808 return READ_ONCE(skcd->classid);
809 #else
810 return 0;
811 #endif
812 }
813
sock_cgroup_set_prioidx(struct sock_cgroup_data * skcd,u16 prioidx)814 static inline void sock_cgroup_set_prioidx(struct sock_cgroup_data *skcd,
815 u16 prioidx)
816 {
817 #ifdef CONFIG_CGROUP_NET_PRIO
818 WRITE_ONCE(skcd->prioidx, prioidx);
819 #endif
820 }
821
sock_cgroup_set_classid(struct sock_cgroup_data * skcd,u32 classid)822 static inline void sock_cgroup_set_classid(struct sock_cgroup_data *skcd,
823 u32 classid)
824 {
825 #ifdef CONFIG_CGROUP_NET_CLASSID
826 WRITE_ONCE(skcd->classid, classid);
827 #endif
828 }
829
830 #else /* CONFIG_SOCK_CGROUP_DATA */
831
832 struct sock_cgroup_data {
833 };
834
835 #endif /* CONFIG_SOCK_CGROUP_DATA */
836
837 #endif /* _LINUX_CGROUP_DEFS_H */
838