1 /*
2  * Public API and common code for kernel->userspace relay file support.
3  *
4  * See Documentation/filesystems/relay.txt for an overview.
5  *
6  * Copyright (C) 2002-2005 - Tom Zanussi (zanussi@us.ibm.com), IBM Corp
7  * Copyright (C) 1999-2005 - Karim Yaghmour (karim@opersys.com)
8  *
9  * Moved to kernel/relay.c by Paul Mundt, 2006.
10  * November 2006 - CPU hotplug support by Mathieu Desnoyers
11  * 	(mathieu.desnoyers@polymtl.ca)
12  *
13  * This file is released under the GPL.
14  */
15 #include <linux/errno.h>
16 #include <linux/stddef.h>
17 #include <linux/slab.h>
18 #include <linux/module.h>
19 #include <linux/string.h>
20 #include <linux/relay.h>
21 #include <linux/vmalloc.h>
22 #include <linux/mm.h>
23 #include <linux/cpu.h>
24 #include <linux/splice.h>
25 
26 /* list of open channels, for cpu hotplug */
27 static DEFINE_MUTEX(relay_channels_mutex);
28 static LIST_HEAD(relay_channels);
29 
30 /*
31  * close() vm_op implementation for relay file mapping.
32  */
relay_file_mmap_close(struct vm_area_struct * vma)33 static void relay_file_mmap_close(struct vm_area_struct *vma)
34 {
35 	struct rchan_buf *buf = vma->vm_private_data;
36 	buf->chan->cb->buf_unmapped(buf, vma->vm_file);
37 }
38 
39 /*
40  * fault() vm_op implementation for relay file mapping.
41  */
relay_buf_fault(struct vm_area_struct * vma,struct vm_fault * vmf)42 static int relay_buf_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
43 {
44 	struct page *page;
45 	struct rchan_buf *buf = vma->vm_private_data;
46 	pgoff_t pgoff = vmf->pgoff;
47 
48 	if (!buf)
49 		return VM_FAULT_OOM;
50 
51 	page = vmalloc_to_page(buf->start + (pgoff << PAGE_SHIFT));
52 	if (!page)
53 		return VM_FAULT_SIGBUS;
54 	get_page(page);
55 	vmf->page = page;
56 
57 	return 0;
58 }
59 
60 /*
61  * vm_ops for relay file mappings.
62  */
63 static const struct vm_operations_struct relay_file_mmap_ops = {
64 	.fault = relay_buf_fault,
65 	.close = relay_file_mmap_close,
66 };
67 
68 /*
69  * allocate an array of pointers of struct page
70  */
relay_alloc_page_array(unsigned int n_pages)71 static struct page **relay_alloc_page_array(unsigned int n_pages)
72 {
73 	const size_t pa_size = n_pages * sizeof(struct page *);
74 	if (pa_size > PAGE_SIZE)
75 		return vzalloc(pa_size);
76 	return kzalloc(pa_size, GFP_KERNEL);
77 }
78 
79 /*
80  * free an array of pointers of struct page
81  */
relay_free_page_array(struct page ** array)82 static void relay_free_page_array(struct page **array)
83 {
84 	if (is_vmalloc_addr(array))
85 		vfree(array);
86 	else
87 		kfree(array);
88 }
89 
90 /**
91  *	relay_mmap_buf: - mmap channel buffer to process address space
92  *	@buf: relay channel buffer
93  *	@vma: vm_area_struct describing memory to be mapped
94  *
95  *	Returns 0 if ok, negative on error
96  *
97  *	Caller should already have grabbed mmap_sem.
98  */
relay_mmap_buf(struct rchan_buf * buf,struct vm_area_struct * vma)99 static int relay_mmap_buf(struct rchan_buf *buf, struct vm_area_struct *vma)
100 {
101 	unsigned long length = vma->vm_end - vma->vm_start;
102 	struct file *filp = vma->vm_file;
103 
104 	if (!buf)
105 		return -EBADF;
106 
107 	if (length != (unsigned long)buf->chan->alloc_size)
108 		return -EINVAL;
109 
110 	vma->vm_ops = &relay_file_mmap_ops;
111 	vma->vm_flags |= VM_DONTEXPAND;
112 	vma->vm_private_data = buf;
113 	buf->chan->cb->buf_mapped(buf, filp);
114 
115 	return 0;
116 }
117 
118 /**
119  *	relay_alloc_buf - allocate a channel buffer
120  *	@buf: the buffer struct
121  *	@size: total size of the buffer
122  *
123  *	Returns a pointer to the resulting buffer, %NULL if unsuccessful. The
124  *	passed in size will get page aligned, if it isn't already.
125  */
relay_alloc_buf(struct rchan_buf * buf,size_t * size)126 static void *relay_alloc_buf(struct rchan_buf *buf, size_t *size)
127 {
128 	void *mem;
129 	unsigned int i, j, n_pages;
130 
131 	*size = PAGE_ALIGN(*size);
132 	n_pages = *size >> PAGE_SHIFT;
133 
134 	buf->page_array = relay_alloc_page_array(n_pages);
135 	if (!buf->page_array)
136 		return NULL;
137 
138 	for (i = 0; i < n_pages; i++) {
139 		buf->page_array[i] = alloc_page(GFP_KERNEL);
140 		if (unlikely(!buf->page_array[i]))
141 			goto depopulate;
142 		set_page_private(buf->page_array[i], (unsigned long)buf);
143 	}
144 	mem = vmap(buf->page_array, n_pages, VM_MAP, PAGE_KERNEL);
145 	if (!mem)
146 		goto depopulate;
147 
148 	memset(mem, 0, *size);
149 	buf->page_count = n_pages;
150 	return mem;
151 
152 depopulate:
153 	for (j = 0; j < i; j++)
154 		__free_page(buf->page_array[j]);
155 	relay_free_page_array(buf->page_array);
156 	return NULL;
157 }
158 
159 /**
160  *	relay_create_buf - allocate and initialize a channel buffer
161  *	@chan: the relay channel
162  *
163  *	Returns channel buffer if successful, %NULL otherwise.
164  */
relay_create_buf(struct rchan * chan)165 static struct rchan_buf *relay_create_buf(struct rchan *chan)
166 {
167 	struct rchan_buf *buf = kzalloc(sizeof(struct rchan_buf), GFP_KERNEL);
168 	if (!buf)
169 		return NULL;
170 
171 	buf->padding = kmalloc(chan->n_subbufs * sizeof(size_t *), GFP_KERNEL);
172 	if (!buf->padding)
173 		goto free_buf;
174 
175 	buf->start = relay_alloc_buf(buf, &chan->alloc_size);
176 	if (!buf->start)
177 		goto free_buf;
178 
179 	buf->chan = chan;
180 	kref_get(&buf->chan->kref);
181 	return buf;
182 
183 free_buf:
184 	kfree(buf->padding);
185 	kfree(buf);
186 	return NULL;
187 }
188 
189 /**
190  *	relay_destroy_channel - free the channel struct
191  *	@kref: target kernel reference that contains the relay channel
192  *
193  *	Should only be called from kref_put().
194  */
relay_destroy_channel(struct kref * kref)195 static void relay_destroy_channel(struct kref *kref)
196 {
197 	struct rchan *chan = container_of(kref, struct rchan, kref);
198 	kfree(chan);
199 }
200 
201 /**
202  *	relay_destroy_buf - destroy an rchan_buf struct and associated buffer
203  *	@buf: the buffer struct
204  */
relay_destroy_buf(struct rchan_buf * buf)205 static void relay_destroy_buf(struct rchan_buf *buf)
206 {
207 	struct rchan *chan = buf->chan;
208 	unsigned int i;
209 
210 	if (likely(buf->start)) {
211 		vunmap(buf->start);
212 		for (i = 0; i < buf->page_count; i++)
213 			__free_page(buf->page_array[i]);
214 		relay_free_page_array(buf->page_array);
215 	}
216 	chan->buf[buf->cpu] = NULL;
217 	kfree(buf->padding);
218 	kfree(buf);
219 	kref_put(&chan->kref, relay_destroy_channel);
220 }
221 
222 /**
223  *	relay_remove_buf - remove a channel buffer
224  *	@kref: target kernel reference that contains the relay buffer
225  *
226  *	Removes the file from the fileystem, which also frees the
227  *	rchan_buf_struct and the channel buffer.  Should only be called from
228  *	kref_put().
229  */
relay_remove_buf(struct kref * kref)230 static void relay_remove_buf(struct kref *kref)
231 {
232 	struct rchan_buf *buf = container_of(kref, struct rchan_buf, kref);
233 	buf->chan->cb->remove_buf_file(buf->dentry);
234 	relay_destroy_buf(buf);
235 }
236 
237 /**
238  *	relay_buf_empty - boolean, is the channel buffer empty?
239  *	@buf: channel buffer
240  *
241  *	Returns 1 if the buffer is empty, 0 otherwise.
242  */
relay_buf_empty(struct rchan_buf * buf)243 static int relay_buf_empty(struct rchan_buf *buf)
244 {
245 	return (buf->subbufs_produced - buf->subbufs_consumed) ? 0 : 1;
246 }
247 
248 /**
249  *	relay_buf_full - boolean, is the channel buffer full?
250  *	@buf: channel buffer
251  *
252  *	Returns 1 if the buffer is full, 0 otherwise.
253  */
relay_buf_full(struct rchan_buf * buf)254 int relay_buf_full(struct rchan_buf *buf)
255 {
256 	size_t ready = buf->subbufs_produced - buf->subbufs_consumed;
257 	return (ready >= buf->chan->n_subbufs) ? 1 : 0;
258 }
259 EXPORT_SYMBOL_GPL(relay_buf_full);
260 
261 /*
262  * High-level relay kernel API and associated functions.
263  */
264 
265 /*
266  * rchan_callback implementations defining default channel behavior.  Used
267  * in place of corresponding NULL values in client callback struct.
268  */
269 
270 /*
271  * subbuf_start() default callback.  Does nothing.
272  */
subbuf_start_default_callback(struct rchan_buf * buf,void * subbuf,void * prev_subbuf,size_t prev_padding)273 static int subbuf_start_default_callback (struct rchan_buf *buf,
274 					  void *subbuf,
275 					  void *prev_subbuf,
276 					  size_t prev_padding)
277 {
278 	if (relay_buf_full(buf))
279 		return 0;
280 
281 	return 1;
282 }
283 
284 /*
285  * buf_mapped() default callback.  Does nothing.
286  */
buf_mapped_default_callback(struct rchan_buf * buf,struct file * filp)287 static void buf_mapped_default_callback(struct rchan_buf *buf,
288 					struct file *filp)
289 {
290 }
291 
292 /*
293  * buf_unmapped() default callback.  Does nothing.
294  */
buf_unmapped_default_callback(struct rchan_buf * buf,struct file * filp)295 static void buf_unmapped_default_callback(struct rchan_buf *buf,
296 					  struct file *filp)
297 {
298 }
299 
300 /*
301  * create_buf_file_create() default callback.  Does nothing.
302  */
create_buf_file_default_callback(const char * filename,struct dentry * parent,int mode,struct rchan_buf * buf,int * is_global)303 static struct dentry *create_buf_file_default_callback(const char *filename,
304 						       struct dentry *parent,
305 						       int mode,
306 						       struct rchan_buf *buf,
307 						       int *is_global)
308 {
309 	return NULL;
310 }
311 
312 /*
313  * remove_buf_file() default callback.  Does nothing.
314  */
remove_buf_file_default_callback(struct dentry * dentry)315 static int remove_buf_file_default_callback(struct dentry *dentry)
316 {
317 	return -EINVAL;
318 }
319 
320 /* relay channel default callbacks */
321 static struct rchan_callbacks default_channel_callbacks = {
322 	.subbuf_start = subbuf_start_default_callback,
323 	.buf_mapped = buf_mapped_default_callback,
324 	.buf_unmapped = buf_unmapped_default_callback,
325 	.create_buf_file = create_buf_file_default_callback,
326 	.remove_buf_file = remove_buf_file_default_callback,
327 };
328 
329 /**
330  *	wakeup_readers - wake up readers waiting on a channel
331  *	@data: contains the channel buffer
332  *
333  *	This is the timer function used to defer reader waking.
334  */
wakeup_readers(unsigned long data)335 static void wakeup_readers(unsigned long data)
336 {
337 	struct rchan_buf *buf = (struct rchan_buf *)data;
338 	wake_up_interruptible(&buf->read_wait);
339 }
340 
341 /**
342  *	__relay_reset - reset a channel buffer
343  *	@buf: the channel buffer
344  *	@init: 1 if this is a first-time initialization
345  *
346  *	See relay_reset() for description of effect.
347  */
__relay_reset(struct rchan_buf * buf,unsigned int init)348 static void __relay_reset(struct rchan_buf *buf, unsigned int init)
349 {
350 	size_t i;
351 
352 	if (init) {
353 		init_waitqueue_head(&buf->read_wait);
354 		kref_init(&buf->kref);
355 		setup_timer(&buf->timer, wakeup_readers, (unsigned long)buf);
356 	} else
357 		del_timer_sync(&buf->timer);
358 
359 	buf->subbufs_produced = 0;
360 	buf->subbufs_consumed = 0;
361 	buf->bytes_consumed = 0;
362 	buf->finalized = 0;
363 	buf->data = buf->start;
364 	buf->offset = 0;
365 
366 	for (i = 0; i < buf->chan->n_subbufs; i++)
367 		buf->padding[i] = 0;
368 
369 	buf->chan->cb->subbuf_start(buf, buf->data, NULL, 0);
370 }
371 
372 /**
373  *	relay_reset - reset the channel
374  *	@chan: the channel
375  *
376  *	This has the effect of erasing all data from all channel buffers
377  *	and restarting the channel in its initial state.  The buffers
378  *	are not freed, so any mappings are still in effect.
379  *
380  *	NOTE. Care should be taken that the channel isn't actually
381  *	being used by anything when this call is made.
382  */
relay_reset(struct rchan * chan)383 void relay_reset(struct rchan *chan)
384 {
385 	unsigned int i;
386 
387 	if (!chan)
388 		return;
389 
390 	if (chan->is_global && chan->buf[0]) {
391 		__relay_reset(chan->buf[0], 0);
392 		return;
393 	}
394 
395 	mutex_lock(&relay_channels_mutex);
396 	for_each_possible_cpu(i)
397 		if (chan->buf[i])
398 			__relay_reset(chan->buf[i], 0);
399 	mutex_unlock(&relay_channels_mutex);
400 }
401 EXPORT_SYMBOL_GPL(relay_reset);
402 
relay_set_buf_dentry(struct rchan_buf * buf,struct dentry * dentry)403 static inline void relay_set_buf_dentry(struct rchan_buf *buf,
404 					struct dentry *dentry)
405 {
406 	buf->dentry = dentry;
407 	buf->dentry->d_inode->i_size = buf->early_bytes;
408 }
409 
relay_create_buf_file(struct rchan * chan,struct rchan_buf * buf,unsigned int cpu)410 static struct dentry *relay_create_buf_file(struct rchan *chan,
411 					    struct rchan_buf *buf,
412 					    unsigned int cpu)
413 {
414 	struct dentry *dentry;
415 	char *tmpname;
416 
417 	tmpname = kzalloc(NAME_MAX + 1, GFP_KERNEL);
418 	if (!tmpname)
419 		return NULL;
420 	snprintf(tmpname, NAME_MAX, "%s%d", chan->base_filename, cpu);
421 
422 	/* Create file in fs */
423 	dentry = chan->cb->create_buf_file(tmpname, chan->parent,
424 					   S_IRUSR, buf,
425 					   &chan->is_global);
426 
427 	kfree(tmpname);
428 
429 	return dentry;
430 }
431 
432 /*
433  *	relay_open_buf - create a new relay channel buffer
434  *
435  *	used by relay_open() and CPU hotplug.
436  */
relay_open_buf(struct rchan * chan,unsigned int cpu)437 static struct rchan_buf *relay_open_buf(struct rchan *chan, unsigned int cpu)
438 {
439  	struct rchan_buf *buf = NULL;
440 	struct dentry *dentry;
441 
442  	if (chan->is_global)
443 		return chan->buf[0];
444 
445 	buf = relay_create_buf(chan);
446 	if (!buf)
447 		return NULL;
448 
449 	if (chan->has_base_filename) {
450 		dentry = relay_create_buf_file(chan, buf, cpu);
451 		if (!dentry)
452 			goto free_buf;
453 		relay_set_buf_dentry(buf, dentry);
454 	}
455 
456  	buf->cpu = cpu;
457  	__relay_reset(buf, 1);
458 
459  	if(chan->is_global) {
460  		chan->buf[0] = buf;
461  		buf->cpu = 0;
462   	}
463 
464 	return buf;
465 
466 free_buf:
467  	relay_destroy_buf(buf);
468 	return NULL;
469 }
470 
471 /**
472  *	relay_close_buf - close a channel buffer
473  *	@buf: channel buffer
474  *
475  *	Marks the buffer finalized and restores the default callbacks.
476  *	The channel buffer and channel buffer data structure are then freed
477  *	automatically when the last reference is given up.
478  */
relay_close_buf(struct rchan_buf * buf)479 static void relay_close_buf(struct rchan_buf *buf)
480 {
481 	buf->finalized = 1;
482 	del_timer_sync(&buf->timer);
483 	kref_put(&buf->kref, relay_remove_buf);
484 }
485 
setup_callbacks(struct rchan * chan,struct rchan_callbacks * cb)486 static void setup_callbacks(struct rchan *chan,
487 				   struct rchan_callbacks *cb)
488 {
489 	if (!cb) {
490 		chan->cb = &default_channel_callbacks;
491 		return;
492 	}
493 
494 	if (!cb->subbuf_start)
495 		cb->subbuf_start = subbuf_start_default_callback;
496 	if (!cb->buf_mapped)
497 		cb->buf_mapped = buf_mapped_default_callback;
498 	if (!cb->buf_unmapped)
499 		cb->buf_unmapped = buf_unmapped_default_callback;
500 	if (!cb->create_buf_file)
501 		cb->create_buf_file = create_buf_file_default_callback;
502 	if (!cb->remove_buf_file)
503 		cb->remove_buf_file = remove_buf_file_default_callback;
504 	chan->cb = cb;
505 }
506 
507 /**
508  * 	relay_hotcpu_callback - CPU hotplug callback
509  * 	@nb: notifier block
510  * 	@action: hotplug action to take
511  * 	@hcpu: CPU number
512  *
513  * 	Returns the success/failure of the operation. (%NOTIFY_OK, %NOTIFY_BAD)
514  */
relay_hotcpu_callback(struct notifier_block * nb,unsigned long action,void * hcpu)515 static int __cpuinit relay_hotcpu_callback(struct notifier_block *nb,
516 				unsigned long action,
517 				void *hcpu)
518 {
519 	unsigned int hotcpu = (unsigned long)hcpu;
520 	struct rchan *chan;
521 
522 	switch(action) {
523 	case CPU_UP_PREPARE:
524 	case CPU_UP_PREPARE_FROZEN:
525 		mutex_lock(&relay_channels_mutex);
526 		list_for_each_entry(chan, &relay_channels, list) {
527 			if (chan->buf[hotcpu])
528 				continue;
529 			chan->buf[hotcpu] = relay_open_buf(chan, hotcpu);
530 			if(!chan->buf[hotcpu]) {
531 				printk(KERN_ERR
532 					"relay_hotcpu_callback: cpu %d buffer "
533 					"creation failed\n", hotcpu);
534 				mutex_unlock(&relay_channels_mutex);
535 				return notifier_from_errno(-ENOMEM);
536 			}
537 		}
538 		mutex_unlock(&relay_channels_mutex);
539 		break;
540 	case CPU_DEAD:
541 	case CPU_DEAD_FROZEN:
542 		/* No need to flush the cpu : will be flushed upon
543 		 * final relay_flush() call. */
544 		break;
545 	}
546 	return NOTIFY_OK;
547 }
548 
549 /**
550  *	relay_open - create a new relay channel
551  *	@base_filename: base name of files to create, %NULL for buffering only
552  *	@parent: dentry of parent directory, %NULL for root directory or buffer
553  *	@subbuf_size: size of sub-buffers
554  *	@n_subbufs: number of sub-buffers
555  *	@cb: client callback functions
556  *	@private_data: user-defined data
557  *
558  *	Returns channel pointer if successful, %NULL otherwise.
559  *
560  *	Creates a channel buffer for each cpu using the sizes and
561  *	attributes specified.  The created channel buffer files
562  *	will be named base_filename0...base_filenameN-1.  File
563  *	permissions will be %S_IRUSR.
564  */
relay_open(const char * base_filename,struct dentry * parent,size_t subbuf_size,size_t n_subbufs,struct rchan_callbacks * cb,void * private_data)565 struct rchan *relay_open(const char *base_filename,
566 			 struct dentry *parent,
567 			 size_t subbuf_size,
568 			 size_t n_subbufs,
569 			 struct rchan_callbacks *cb,
570 			 void *private_data)
571 {
572 	unsigned int i;
573 	struct rchan *chan;
574 
575 	if (!(subbuf_size && n_subbufs))
576 		return NULL;
577 
578 	chan = kzalloc(sizeof(struct rchan), GFP_KERNEL);
579 	if (!chan)
580 		return NULL;
581 
582 	chan->version = RELAYFS_CHANNEL_VERSION;
583 	chan->n_subbufs = n_subbufs;
584 	chan->subbuf_size = subbuf_size;
585 	chan->alloc_size = FIX_SIZE(subbuf_size * n_subbufs);
586 	chan->parent = parent;
587 	chan->private_data = private_data;
588 	if (base_filename) {
589 		chan->has_base_filename = 1;
590 		strlcpy(chan->base_filename, base_filename, NAME_MAX);
591 	}
592 	setup_callbacks(chan, cb);
593 	kref_init(&chan->kref);
594 
595 	mutex_lock(&relay_channels_mutex);
596 	for_each_online_cpu(i) {
597 		chan->buf[i] = relay_open_buf(chan, i);
598 		if (!chan->buf[i])
599 			goto free_bufs;
600 	}
601 	list_add(&chan->list, &relay_channels);
602 	mutex_unlock(&relay_channels_mutex);
603 
604 	return chan;
605 
606 free_bufs:
607 	for_each_possible_cpu(i) {
608 		if (chan->buf[i])
609 			relay_close_buf(chan->buf[i]);
610 	}
611 
612 	kref_put(&chan->kref, relay_destroy_channel);
613 	mutex_unlock(&relay_channels_mutex);
614 	return NULL;
615 }
616 EXPORT_SYMBOL_GPL(relay_open);
617 
618 struct rchan_percpu_buf_dispatcher {
619 	struct rchan_buf *buf;
620 	struct dentry *dentry;
621 };
622 
623 /* Called in atomic context. */
__relay_set_buf_dentry(void * info)624 static void __relay_set_buf_dentry(void *info)
625 {
626 	struct rchan_percpu_buf_dispatcher *p = info;
627 
628 	relay_set_buf_dentry(p->buf, p->dentry);
629 }
630 
631 /**
632  *	relay_late_setup_files - triggers file creation
633  *	@chan: channel to operate on
634  *	@base_filename: base name of files to create
635  *	@parent: dentry of parent directory, %NULL for root directory
636  *
637  *	Returns 0 if successful, non-zero otherwise.
638  *
639  *	Use to setup files for a previously buffer-only channel.
640  *	Useful to do early tracing in kernel, before VFS is up, for example.
641  */
relay_late_setup_files(struct rchan * chan,const char * base_filename,struct dentry * parent)642 int relay_late_setup_files(struct rchan *chan,
643 			   const char *base_filename,
644 			   struct dentry *parent)
645 {
646 	int err = 0;
647 	unsigned int i, curr_cpu;
648 	unsigned long flags;
649 	struct dentry *dentry;
650 	struct rchan_percpu_buf_dispatcher disp;
651 
652 	if (!chan || !base_filename)
653 		return -EINVAL;
654 
655 	strlcpy(chan->base_filename, base_filename, NAME_MAX);
656 
657 	mutex_lock(&relay_channels_mutex);
658 	/* Is chan already set up? */
659 	if (unlikely(chan->has_base_filename)) {
660 		mutex_unlock(&relay_channels_mutex);
661 		return -EEXIST;
662 	}
663 	chan->has_base_filename = 1;
664 	chan->parent = parent;
665 	curr_cpu = get_cpu();
666 	/*
667 	 * The CPU hotplug notifier ran before us and created buffers with
668 	 * no files associated. So it's safe to call relay_setup_buf_file()
669 	 * on all currently online CPUs.
670 	 */
671 	for_each_online_cpu(i) {
672 		if (unlikely(!chan->buf[i])) {
673 			WARN_ONCE(1, KERN_ERR "CPU has no buffer!\n");
674 			err = -EINVAL;
675 			break;
676 		}
677 
678 		dentry = relay_create_buf_file(chan, chan->buf[i], i);
679 		if (unlikely(!dentry)) {
680 			err = -EINVAL;
681 			break;
682 		}
683 
684 		if (curr_cpu == i) {
685 			local_irq_save(flags);
686 			relay_set_buf_dentry(chan->buf[i], dentry);
687 			local_irq_restore(flags);
688 		} else {
689 			disp.buf = chan->buf[i];
690 			disp.dentry = dentry;
691 			smp_mb();
692 			/* relay_channels_mutex must be held, so wait. */
693 			err = smp_call_function_single(i,
694 						       __relay_set_buf_dentry,
695 						       &disp, 1);
696 		}
697 		if (unlikely(err))
698 			break;
699 	}
700 	put_cpu();
701 	mutex_unlock(&relay_channels_mutex);
702 
703 	return err;
704 }
705 
706 /**
707  *	relay_switch_subbuf - switch to a new sub-buffer
708  *	@buf: channel buffer
709  *	@length: size of current event
710  *
711  *	Returns either the length passed in or 0 if full.
712  *
713  *	Performs sub-buffer-switch tasks such as invoking callbacks,
714  *	updating padding counts, waking up readers, etc.
715  */
relay_switch_subbuf(struct rchan_buf * buf,size_t length)716 size_t relay_switch_subbuf(struct rchan_buf *buf, size_t length)
717 {
718 	void *old, *new;
719 	size_t old_subbuf, new_subbuf;
720 
721 	if (unlikely(length > buf->chan->subbuf_size))
722 		goto toobig;
723 
724 	if (buf->offset != buf->chan->subbuf_size + 1) {
725 		buf->prev_padding = buf->chan->subbuf_size - buf->offset;
726 		old_subbuf = buf->subbufs_produced % buf->chan->n_subbufs;
727 		buf->padding[old_subbuf] = buf->prev_padding;
728 		buf->subbufs_produced++;
729 		if (buf->dentry)
730 			buf->dentry->d_inode->i_size +=
731 				buf->chan->subbuf_size -
732 				buf->padding[old_subbuf];
733 		else
734 			buf->early_bytes += buf->chan->subbuf_size -
735 					    buf->padding[old_subbuf];
736 		smp_mb();
737 		if (waitqueue_active(&buf->read_wait))
738 			/*
739 			 * Calling wake_up_interruptible() from here
740 			 * will deadlock if we happen to be logging
741 			 * from the scheduler (trying to re-grab
742 			 * rq->lock), so defer it.
743 			 */
744 			mod_timer(&buf->timer, jiffies + 1);
745 	}
746 
747 	old = buf->data;
748 	new_subbuf = buf->subbufs_produced % buf->chan->n_subbufs;
749 	new = buf->start + new_subbuf * buf->chan->subbuf_size;
750 	buf->offset = 0;
751 	if (!buf->chan->cb->subbuf_start(buf, new, old, buf->prev_padding)) {
752 		buf->offset = buf->chan->subbuf_size + 1;
753 		return 0;
754 	}
755 	buf->data = new;
756 	buf->padding[new_subbuf] = 0;
757 
758 	if (unlikely(length + buf->offset > buf->chan->subbuf_size))
759 		goto toobig;
760 
761 	return length;
762 
763 toobig:
764 	buf->chan->last_toobig = length;
765 	return 0;
766 }
767 EXPORT_SYMBOL_GPL(relay_switch_subbuf);
768 
769 /**
770  *	relay_subbufs_consumed - update the buffer's sub-buffers-consumed count
771  *	@chan: the channel
772  *	@cpu: the cpu associated with the channel buffer to update
773  *	@subbufs_consumed: number of sub-buffers to add to current buf's count
774  *
775  *	Adds to the channel buffer's consumed sub-buffer count.
776  *	subbufs_consumed should be the number of sub-buffers newly consumed,
777  *	not the total consumed.
778  *
779  *	NOTE. Kernel clients don't need to call this function if the channel
780  *	mode is 'overwrite'.
781  */
relay_subbufs_consumed(struct rchan * chan,unsigned int cpu,size_t subbufs_consumed)782 void relay_subbufs_consumed(struct rchan *chan,
783 			    unsigned int cpu,
784 			    size_t subbufs_consumed)
785 {
786 	struct rchan_buf *buf;
787 
788 	if (!chan)
789 		return;
790 
791 	if (cpu >= NR_CPUS || !chan->buf[cpu] ||
792 					subbufs_consumed > chan->n_subbufs)
793 		return;
794 
795 	buf = chan->buf[cpu];
796 	if (subbufs_consumed > buf->subbufs_produced - buf->subbufs_consumed)
797 		buf->subbufs_consumed = buf->subbufs_produced;
798 	else
799 		buf->subbufs_consumed += subbufs_consumed;
800 }
801 EXPORT_SYMBOL_GPL(relay_subbufs_consumed);
802 
803 /**
804  *	relay_close - close the channel
805  *	@chan: the channel
806  *
807  *	Closes all channel buffers and frees the channel.
808  */
relay_close(struct rchan * chan)809 void relay_close(struct rchan *chan)
810 {
811 	unsigned int i;
812 
813 	if (!chan)
814 		return;
815 
816 	mutex_lock(&relay_channels_mutex);
817 	if (chan->is_global && chan->buf[0])
818 		relay_close_buf(chan->buf[0]);
819 	else
820 		for_each_possible_cpu(i)
821 			if (chan->buf[i])
822 				relay_close_buf(chan->buf[i]);
823 
824 	if (chan->last_toobig)
825 		printk(KERN_WARNING "relay: one or more items not logged "
826 		       "[item size (%Zd) > sub-buffer size (%Zd)]\n",
827 		       chan->last_toobig, chan->subbuf_size);
828 
829 	list_del(&chan->list);
830 	kref_put(&chan->kref, relay_destroy_channel);
831 	mutex_unlock(&relay_channels_mutex);
832 }
833 EXPORT_SYMBOL_GPL(relay_close);
834 
835 /**
836  *	relay_flush - close the channel
837  *	@chan: the channel
838  *
839  *	Flushes all channel buffers, i.e. forces buffer switch.
840  */
relay_flush(struct rchan * chan)841 void relay_flush(struct rchan *chan)
842 {
843 	unsigned int i;
844 
845 	if (!chan)
846 		return;
847 
848 	if (chan->is_global && chan->buf[0]) {
849 		relay_switch_subbuf(chan->buf[0], 0);
850 		return;
851 	}
852 
853 	mutex_lock(&relay_channels_mutex);
854 	for_each_possible_cpu(i)
855 		if (chan->buf[i])
856 			relay_switch_subbuf(chan->buf[i], 0);
857 	mutex_unlock(&relay_channels_mutex);
858 }
859 EXPORT_SYMBOL_GPL(relay_flush);
860 
861 /**
862  *	relay_file_open - open file op for relay files
863  *	@inode: the inode
864  *	@filp: the file
865  *
866  *	Increments the channel buffer refcount.
867  */
relay_file_open(struct inode * inode,struct file * filp)868 static int relay_file_open(struct inode *inode, struct file *filp)
869 {
870 	struct rchan_buf *buf = inode->i_private;
871 	kref_get(&buf->kref);
872 	filp->private_data = buf;
873 
874 	return nonseekable_open(inode, filp);
875 }
876 
877 /**
878  *	relay_file_mmap - mmap file op for relay files
879  *	@filp: the file
880  *	@vma: the vma describing what to map
881  *
882  *	Calls upon relay_mmap_buf() to map the file into user space.
883  */
relay_file_mmap(struct file * filp,struct vm_area_struct * vma)884 static int relay_file_mmap(struct file *filp, struct vm_area_struct *vma)
885 {
886 	struct rchan_buf *buf = filp->private_data;
887 	return relay_mmap_buf(buf, vma);
888 }
889 
890 /**
891  *	relay_file_poll - poll file op for relay files
892  *	@filp: the file
893  *	@wait: poll table
894  *
895  *	Poll implemention.
896  */
relay_file_poll(struct file * filp,poll_table * wait)897 static unsigned int relay_file_poll(struct file *filp, poll_table *wait)
898 {
899 	unsigned int mask = 0;
900 	struct rchan_buf *buf = filp->private_data;
901 
902 	if (buf->finalized)
903 		return POLLERR;
904 
905 	if (filp->f_mode & FMODE_READ) {
906 		poll_wait(filp, &buf->read_wait, wait);
907 		if (!relay_buf_empty(buf))
908 			mask |= POLLIN | POLLRDNORM;
909 	}
910 
911 	return mask;
912 }
913 
914 /**
915  *	relay_file_release - release file op for relay files
916  *	@inode: the inode
917  *	@filp: the file
918  *
919  *	Decrements the channel refcount, as the filesystem is
920  *	no longer using it.
921  */
relay_file_release(struct inode * inode,struct file * filp)922 static int relay_file_release(struct inode *inode, struct file *filp)
923 {
924 	struct rchan_buf *buf = filp->private_data;
925 	kref_put(&buf->kref, relay_remove_buf);
926 
927 	return 0;
928 }
929 
930 /*
931  *	relay_file_read_consume - update the consumed count for the buffer
932  */
relay_file_read_consume(struct rchan_buf * buf,size_t read_pos,size_t bytes_consumed)933 static void relay_file_read_consume(struct rchan_buf *buf,
934 				    size_t read_pos,
935 				    size_t bytes_consumed)
936 {
937 	size_t subbuf_size = buf->chan->subbuf_size;
938 	size_t n_subbufs = buf->chan->n_subbufs;
939 	size_t read_subbuf;
940 
941 	if (buf->subbufs_produced == buf->subbufs_consumed &&
942 	    buf->offset == buf->bytes_consumed)
943 		return;
944 
945 	if (buf->bytes_consumed + bytes_consumed > subbuf_size) {
946 		relay_subbufs_consumed(buf->chan, buf->cpu, 1);
947 		buf->bytes_consumed = 0;
948 	}
949 
950 	buf->bytes_consumed += bytes_consumed;
951 	if (!read_pos)
952 		read_subbuf = buf->subbufs_consumed % n_subbufs;
953 	else
954 		read_subbuf = read_pos / buf->chan->subbuf_size;
955 	if (buf->bytes_consumed + buf->padding[read_subbuf] == subbuf_size) {
956 		if ((read_subbuf == buf->subbufs_produced % n_subbufs) &&
957 		    (buf->offset == subbuf_size))
958 			return;
959 		relay_subbufs_consumed(buf->chan, buf->cpu, 1);
960 		buf->bytes_consumed = 0;
961 	}
962 }
963 
964 /*
965  *	relay_file_read_avail - boolean, are there unconsumed bytes available?
966  */
relay_file_read_avail(struct rchan_buf * buf,size_t read_pos)967 static int relay_file_read_avail(struct rchan_buf *buf, size_t read_pos)
968 {
969 	size_t subbuf_size = buf->chan->subbuf_size;
970 	size_t n_subbufs = buf->chan->n_subbufs;
971 	size_t produced = buf->subbufs_produced;
972 	size_t consumed = buf->subbufs_consumed;
973 
974 	relay_file_read_consume(buf, read_pos, 0);
975 
976 	consumed = buf->subbufs_consumed;
977 
978 	if (unlikely(buf->offset > subbuf_size)) {
979 		if (produced == consumed)
980 			return 0;
981 		return 1;
982 	}
983 
984 	if (unlikely(produced - consumed >= n_subbufs)) {
985 		consumed = produced - n_subbufs + 1;
986 		buf->subbufs_consumed = consumed;
987 		buf->bytes_consumed = 0;
988 	}
989 
990 	produced = (produced % n_subbufs) * subbuf_size + buf->offset;
991 	consumed = (consumed % n_subbufs) * subbuf_size + buf->bytes_consumed;
992 
993 	if (consumed > produced)
994 		produced += n_subbufs * subbuf_size;
995 
996 	if (consumed == produced) {
997 		if (buf->offset == subbuf_size &&
998 		    buf->subbufs_produced > buf->subbufs_consumed)
999 			return 1;
1000 		return 0;
1001 	}
1002 
1003 	return 1;
1004 }
1005 
1006 /**
1007  *	relay_file_read_subbuf_avail - return bytes available in sub-buffer
1008  *	@read_pos: file read position
1009  *	@buf: relay channel buffer
1010  */
relay_file_read_subbuf_avail(size_t read_pos,struct rchan_buf * buf)1011 static size_t relay_file_read_subbuf_avail(size_t read_pos,
1012 					   struct rchan_buf *buf)
1013 {
1014 	size_t padding, avail = 0;
1015 	size_t read_subbuf, read_offset, write_subbuf, write_offset;
1016 	size_t subbuf_size = buf->chan->subbuf_size;
1017 
1018 	write_subbuf = (buf->data - buf->start) / subbuf_size;
1019 	write_offset = buf->offset > subbuf_size ? subbuf_size : buf->offset;
1020 	read_subbuf = read_pos / subbuf_size;
1021 	read_offset = read_pos % subbuf_size;
1022 	padding = buf->padding[read_subbuf];
1023 
1024 	if (read_subbuf == write_subbuf) {
1025 		if (read_offset + padding < write_offset)
1026 			avail = write_offset - (read_offset + padding);
1027 	} else
1028 		avail = (subbuf_size - padding) - read_offset;
1029 
1030 	return avail;
1031 }
1032 
1033 /**
1034  *	relay_file_read_start_pos - find the first available byte to read
1035  *	@read_pos: file read position
1036  *	@buf: relay channel buffer
1037  *
1038  *	If the @read_pos is in the middle of padding, return the
1039  *	position of the first actually available byte, otherwise
1040  *	return the original value.
1041  */
relay_file_read_start_pos(size_t read_pos,struct rchan_buf * buf)1042 static size_t relay_file_read_start_pos(size_t read_pos,
1043 					struct rchan_buf *buf)
1044 {
1045 	size_t read_subbuf, padding, padding_start, padding_end;
1046 	size_t subbuf_size = buf->chan->subbuf_size;
1047 	size_t n_subbufs = buf->chan->n_subbufs;
1048 	size_t consumed = buf->subbufs_consumed % n_subbufs;
1049 
1050 	if (!read_pos)
1051 		read_pos = consumed * subbuf_size + buf->bytes_consumed;
1052 	read_subbuf = read_pos / subbuf_size;
1053 	padding = buf->padding[read_subbuf];
1054 	padding_start = (read_subbuf + 1) * subbuf_size - padding;
1055 	padding_end = (read_subbuf + 1) * subbuf_size;
1056 	if (read_pos >= padding_start && read_pos < padding_end) {
1057 		read_subbuf = (read_subbuf + 1) % n_subbufs;
1058 		read_pos = read_subbuf * subbuf_size;
1059 	}
1060 
1061 	return read_pos;
1062 }
1063 
1064 /**
1065  *	relay_file_read_end_pos - return the new read position
1066  *	@read_pos: file read position
1067  *	@buf: relay channel buffer
1068  *	@count: number of bytes to be read
1069  */
relay_file_read_end_pos(struct rchan_buf * buf,size_t read_pos,size_t count)1070 static size_t relay_file_read_end_pos(struct rchan_buf *buf,
1071 				      size_t read_pos,
1072 				      size_t count)
1073 {
1074 	size_t read_subbuf, padding, end_pos;
1075 	size_t subbuf_size = buf->chan->subbuf_size;
1076 	size_t n_subbufs = buf->chan->n_subbufs;
1077 
1078 	read_subbuf = read_pos / subbuf_size;
1079 	padding = buf->padding[read_subbuf];
1080 	if (read_pos % subbuf_size + count + padding == subbuf_size)
1081 		end_pos = (read_subbuf + 1) * subbuf_size;
1082 	else
1083 		end_pos = read_pos + count;
1084 	if (end_pos >= subbuf_size * n_subbufs)
1085 		end_pos = 0;
1086 
1087 	return end_pos;
1088 }
1089 
1090 /*
1091  *	subbuf_read_actor - read up to one subbuf's worth of data
1092  */
subbuf_read_actor(size_t read_start,struct rchan_buf * buf,size_t avail,read_descriptor_t * desc,read_actor_t actor)1093 static int subbuf_read_actor(size_t read_start,
1094 			     struct rchan_buf *buf,
1095 			     size_t avail,
1096 			     read_descriptor_t *desc,
1097 			     read_actor_t actor)
1098 {
1099 	void *from;
1100 	int ret = 0;
1101 
1102 	from = buf->start + read_start;
1103 	ret = avail;
1104 	if (copy_to_user(desc->arg.buf, from, avail)) {
1105 		desc->error = -EFAULT;
1106 		ret = 0;
1107 	}
1108 	desc->arg.data += ret;
1109 	desc->written += ret;
1110 	desc->count -= ret;
1111 
1112 	return ret;
1113 }
1114 
1115 typedef int (*subbuf_actor_t) (size_t read_start,
1116 			       struct rchan_buf *buf,
1117 			       size_t avail,
1118 			       read_descriptor_t *desc,
1119 			       read_actor_t actor);
1120 
1121 /*
1122  *	relay_file_read_subbufs - read count bytes, bridging subbuf boundaries
1123  */
relay_file_read_subbufs(struct file * filp,loff_t * ppos,subbuf_actor_t subbuf_actor,read_actor_t actor,read_descriptor_t * desc)1124 static ssize_t relay_file_read_subbufs(struct file *filp, loff_t *ppos,
1125 					subbuf_actor_t subbuf_actor,
1126 					read_actor_t actor,
1127 					read_descriptor_t *desc)
1128 {
1129 	struct rchan_buf *buf = filp->private_data;
1130 	size_t read_start, avail;
1131 	int ret;
1132 
1133 	if (!desc->count)
1134 		return 0;
1135 
1136 	mutex_lock(&filp->f_path.dentry->d_inode->i_mutex);
1137 	do {
1138 		if (!relay_file_read_avail(buf, *ppos))
1139 			break;
1140 
1141 		read_start = relay_file_read_start_pos(*ppos, buf);
1142 		avail = relay_file_read_subbuf_avail(read_start, buf);
1143 		if (!avail)
1144 			break;
1145 
1146 		avail = min(desc->count, avail);
1147 		ret = subbuf_actor(read_start, buf, avail, desc, actor);
1148 		if (desc->error < 0)
1149 			break;
1150 
1151 		if (ret) {
1152 			relay_file_read_consume(buf, read_start, ret);
1153 			*ppos = relay_file_read_end_pos(buf, read_start, ret);
1154 		}
1155 	} while (desc->count && ret);
1156 	mutex_unlock(&filp->f_path.dentry->d_inode->i_mutex);
1157 
1158 	return desc->written;
1159 }
1160 
relay_file_read(struct file * filp,char __user * buffer,size_t count,loff_t * ppos)1161 static ssize_t relay_file_read(struct file *filp,
1162 			       char __user *buffer,
1163 			       size_t count,
1164 			       loff_t *ppos)
1165 {
1166 	read_descriptor_t desc;
1167 	desc.written = 0;
1168 	desc.count = count;
1169 	desc.arg.buf = buffer;
1170 	desc.error = 0;
1171 	return relay_file_read_subbufs(filp, ppos, subbuf_read_actor,
1172 				       NULL, &desc);
1173 }
1174 
relay_consume_bytes(struct rchan_buf * rbuf,int bytes_consumed)1175 static void relay_consume_bytes(struct rchan_buf *rbuf, int bytes_consumed)
1176 {
1177 	rbuf->bytes_consumed += bytes_consumed;
1178 
1179 	if (rbuf->bytes_consumed >= rbuf->chan->subbuf_size) {
1180 		relay_subbufs_consumed(rbuf->chan, rbuf->cpu, 1);
1181 		rbuf->bytes_consumed %= rbuf->chan->subbuf_size;
1182 	}
1183 }
1184 
relay_pipe_buf_release(struct pipe_inode_info * pipe,struct pipe_buffer * buf)1185 static void relay_pipe_buf_release(struct pipe_inode_info *pipe,
1186 				   struct pipe_buffer *buf)
1187 {
1188 	struct rchan_buf *rbuf;
1189 
1190 	rbuf = (struct rchan_buf *)page_private(buf->page);
1191 	relay_consume_bytes(rbuf, buf->private);
1192 }
1193 
1194 static const struct pipe_buf_operations relay_pipe_buf_ops = {
1195 	.can_merge = 0,
1196 	.map = generic_pipe_buf_map,
1197 	.unmap = generic_pipe_buf_unmap,
1198 	.confirm = generic_pipe_buf_confirm,
1199 	.release = relay_pipe_buf_release,
1200 	.steal = generic_pipe_buf_steal,
1201 	.get = generic_pipe_buf_get,
1202 };
1203 
relay_page_release(struct splice_pipe_desc * spd,unsigned int i)1204 static void relay_page_release(struct splice_pipe_desc *spd, unsigned int i)
1205 {
1206 }
1207 
1208 /*
1209  *	subbuf_splice_actor - splice up to one subbuf's worth of data
1210  */
subbuf_splice_actor(struct file * in,loff_t * ppos,struct pipe_inode_info * pipe,size_t len,unsigned int flags,int * nonpad_ret)1211 static ssize_t subbuf_splice_actor(struct file *in,
1212 			       loff_t *ppos,
1213 			       struct pipe_inode_info *pipe,
1214 			       size_t len,
1215 			       unsigned int flags,
1216 			       int *nonpad_ret)
1217 {
1218 	unsigned int pidx, poff, total_len, subbuf_pages, nr_pages;
1219 	struct rchan_buf *rbuf = in->private_data;
1220 	unsigned int subbuf_size = rbuf->chan->subbuf_size;
1221 	uint64_t pos = (uint64_t) *ppos;
1222 	uint32_t alloc_size = (uint32_t) rbuf->chan->alloc_size;
1223 	size_t read_start = (size_t) do_div(pos, alloc_size);
1224 	size_t read_subbuf = read_start / subbuf_size;
1225 	size_t padding = rbuf->padding[read_subbuf];
1226 	size_t nonpad_end = read_subbuf * subbuf_size + subbuf_size - padding;
1227 	struct page *pages[PIPE_DEF_BUFFERS];
1228 	struct partial_page partial[PIPE_DEF_BUFFERS];
1229 	struct splice_pipe_desc spd = {
1230 		.pages = pages,
1231 		.nr_pages = 0,
1232 		.partial = partial,
1233 		.flags = flags,
1234 		.ops = &relay_pipe_buf_ops,
1235 		.spd_release = relay_page_release,
1236 	};
1237 	ssize_t ret;
1238 
1239 	if (rbuf->subbufs_produced == rbuf->subbufs_consumed)
1240 		return 0;
1241 	if (splice_grow_spd(pipe, &spd))
1242 		return -ENOMEM;
1243 
1244 	/*
1245 	 * Adjust read len, if longer than what is available
1246 	 */
1247 	if (len > (subbuf_size - read_start % subbuf_size))
1248 		len = subbuf_size - read_start % subbuf_size;
1249 
1250 	subbuf_pages = rbuf->chan->alloc_size >> PAGE_SHIFT;
1251 	pidx = (read_start / PAGE_SIZE) % subbuf_pages;
1252 	poff = read_start & ~PAGE_MASK;
1253 	nr_pages = min_t(unsigned int, subbuf_pages, pipe->buffers);
1254 
1255 	for (total_len = 0; spd.nr_pages < nr_pages; spd.nr_pages++) {
1256 		unsigned int this_len, this_end, private;
1257 		unsigned int cur_pos = read_start + total_len;
1258 
1259 		if (!len)
1260 			break;
1261 
1262 		this_len = min_t(unsigned long, len, PAGE_SIZE - poff);
1263 		private = this_len;
1264 
1265 		spd.pages[spd.nr_pages] = rbuf->page_array[pidx];
1266 		spd.partial[spd.nr_pages].offset = poff;
1267 
1268 		this_end = cur_pos + this_len;
1269 		if (this_end >= nonpad_end) {
1270 			this_len = nonpad_end - cur_pos;
1271 			private = this_len + padding;
1272 		}
1273 		spd.partial[spd.nr_pages].len = this_len;
1274 		spd.partial[spd.nr_pages].private = private;
1275 
1276 		len -= this_len;
1277 		total_len += this_len;
1278 		poff = 0;
1279 		pidx = (pidx + 1) % subbuf_pages;
1280 
1281 		if (this_end >= nonpad_end) {
1282 			spd.nr_pages++;
1283 			break;
1284 		}
1285 	}
1286 
1287 	ret = 0;
1288 	if (!spd.nr_pages)
1289 		goto out;
1290 
1291 	ret = *nonpad_ret = splice_to_pipe(pipe, &spd);
1292 	if (ret < 0 || ret < total_len)
1293 		goto out;
1294 
1295         if (read_start + ret == nonpad_end)
1296                 ret += padding;
1297 
1298 out:
1299 	splice_shrink_spd(pipe, &spd);
1300         return ret;
1301 }
1302 
relay_file_splice_read(struct file * in,loff_t * ppos,struct pipe_inode_info * pipe,size_t len,unsigned int flags)1303 static ssize_t relay_file_splice_read(struct file *in,
1304 				      loff_t *ppos,
1305 				      struct pipe_inode_info *pipe,
1306 				      size_t len,
1307 				      unsigned int flags)
1308 {
1309 	ssize_t spliced;
1310 	int ret;
1311 	int nonpad_ret = 0;
1312 
1313 	ret = 0;
1314 	spliced = 0;
1315 
1316 	while (len && !spliced) {
1317 		ret = subbuf_splice_actor(in, ppos, pipe, len, flags, &nonpad_ret);
1318 		if (ret < 0)
1319 			break;
1320 		else if (!ret) {
1321 			if (flags & SPLICE_F_NONBLOCK)
1322 				ret = -EAGAIN;
1323 			break;
1324 		}
1325 
1326 		*ppos += ret;
1327 		if (ret > len)
1328 			len = 0;
1329 		else
1330 			len -= ret;
1331 		spliced += nonpad_ret;
1332 		nonpad_ret = 0;
1333 	}
1334 
1335 	if (spliced)
1336 		return spliced;
1337 
1338 	return ret;
1339 }
1340 
1341 const struct file_operations relay_file_operations = {
1342 	.open		= relay_file_open,
1343 	.poll		= relay_file_poll,
1344 	.mmap		= relay_file_mmap,
1345 	.read		= relay_file_read,
1346 	.llseek		= no_llseek,
1347 	.release	= relay_file_release,
1348 	.splice_read	= relay_file_splice_read,
1349 };
1350 EXPORT_SYMBOL_GPL(relay_file_operations);
1351 
relay_init(void)1352 static __init int relay_init(void)
1353 {
1354 
1355 	hotcpu_notifier(relay_hotcpu_callback, 0);
1356 	return 0;
1357 }
1358 
1359 early_initcall(relay_init);
1360