1 /*
2  * Copyright 2000 by Hans Reiser, licensing governed by reiserfs/README
3  */
4 
5 #include <linux/time.h>
6 #include <linux/fs.h>
7 #include "reiserfs.h"
8 #include "acl.h"
9 #include "xattr.h"
10 #include <linux/exportfs.h>
11 #include <linux/pagemap.h>
12 #include <linux/highmem.h>
13 #include <linux/slab.h>
14 #include <asm/uaccess.h>
15 #include <asm/unaligned.h>
16 #include <linux/buffer_head.h>
17 #include <linux/mpage.h>
18 #include <linux/writeback.h>
19 #include <linux/quotaops.h>
20 #include <linux/swap.h>
21 
22 int reiserfs_commit_write(struct file *f, struct page *page,
23 			  unsigned from, unsigned to);
24 
reiserfs_evict_inode(struct inode * inode)25 void reiserfs_evict_inode(struct inode *inode)
26 {
27 	/* We need blocks for transaction + (user+group) quota update (possibly delete) */
28 	int jbegin_count =
29 	    JOURNAL_PER_BALANCE_CNT * 2 +
30 	    2 * REISERFS_QUOTA_INIT_BLOCKS(inode->i_sb);
31 	struct reiserfs_transaction_handle th;
32 	int depth;
33 	int err;
34 
35 	if (!inode->i_nlink && !is_bad_inode(inode))
36 		dquot_initialize(inode);
37 
38 	truncate_inode_pages(&inode->i_data, 0);
39 	if (inode->i_nlink)
40 		goto no_delete;
41 
42 	depth = reiserfs_write_lock_once(inode->i_sb);
43 
44 	/* The = 0 happens when we abort creating a new inode for some reason like lack of space.. */
45 	if (!(inode->i_state & I_NEW) && INODE_PKEY(inode)->k_objectid != 0) {	/* also handles bad_inode case */
46 		reiserfs_delete_xattrs(inode);
47 
48 		if (journal_begin(&th, inode->i_sb, jbegin_count))
49 			goto out;
50 		reiserfs_update_inode_transaction(inode);
51 
52 		reiserfs_discard_prealloc(&th, inode);
53 
54 		err = reiserfs_delete_object(&th, inode);
55 
56 		/* Do quota update inside a transaction for journaled quotas. We must do that
57 		 * after delete_object so that quota updates go into the same transaction as
58 		 * stat data deletion */
59 		if (!err)
60 			dquot_free_inode(inode);
61 
62 		if (journal_end(&th, inode->i_sb, jbegin_count))
63 			goto out;
64 
65 		/* check return value from reiserfs_delete_object after
66 		 * ending the transaction
67 		 */
68 		if (err)
69 		    goto out;
70 
71 		/* all items of file are deleted, so we can remove "save" link */
72 		remove_save_link(inode, 0 /* not truncate */ );	/* we can't do anything
73 								 * about an error here */
74 	} else {
75 		/* no object items are in the tree */
76 		;
77 	}
78       out:
79 	end_writeback(inode);	/* note this must go after the journal_end to prevent deadlock */
80 	dquot_drop(inode);
81 	inode->i_blocks = 0;
82 	reiserfs_write_unlock_once(inode->i_sb, depth);
83 	return;
84 
85 no_delete:
86 	end_writeback(inode);
87 	dquot_drop(inode);
88 }
89 
_make_cpu_key(struct cpu_key * key,int version,__u32 dirid,__u32 objectid,loff_t offset,int type,int length)90 static void _make_cpu_key(struct cpu_key *key, int version, __u32 dirid,
91 			  __u32 objectid, loff_t offset, int type, int length)
92 {
93 	key->version = version;
94 
95 	key->on_disk_key.k_dir_id = dirid;
96 	key->on_disk_key.k_objectid = objectid;
97 	set_cpu_key_k_offset(key, offset);
98 	set_cpu_key_k_type(key, type);
99 	key->key_length = length;
100 }
101 
102 /* take base of inode_key (it comes from inode always) (dirid, objectid) and version from an inode, set
103    offset and type of key */
make_cpu_key(struct cpu_key * key,struct inode * inode,loff_t offset,int type,int length)104 void make_cpu_key(struct cpu_key *key, struct inode *inode, loff_t offset,
105 		  int type, int length)
106 {
107 	_make_cpu_key(key, get_inode_item_key_version(inode),
108 		      le32_to_cpu(INODE_PKEY(inode)->k_dir_id),
109 		      le32_to_cpu(INODE_PKEY(inode)->k_objectid), offset, type,
110 		      length);
111 }
112 
113 //
114 // when key is 0, do not set version and short key
115 //
make_le_item_head(struct item_head * ih,const struct cpu_key * key,int version,loff_t offset,int type,int length,int entry_count)116 inline void make_le_item_head(struct item_head *ih, const struct cpu_key *key,
117 			      int version,
118 			      loff_t offset, int type, int length,
119 			      int entry_count /*or ih_free_space */ )
120 {
121 	if (key) {
122 		ih->ih_key.k_dir_id = cpu_to_le32(key->on_disk_key.k_dir_id);
123 		ih->ih_key.k_objectid =
124 		    cpu_to_le32(key->on_disk_key.k_objectid);
125 	}
126 	put_ih_version(ih, version);
127 	set_le_ih_k_offset(ih, offset);
128 	set_le_ih_k_type(ih, type);
129 	put_ih_item_len(ih, length);
130 	/*    set_ih_free_space (ih, 0); */
131 	// for directory items it is entry count, for directs and stat
132 	// datas - 0xffff, for indirects - 0
133 	put_ih_entry_count(ih, entry_count);
134 }
135 
136 //
137 // FIXME: we might cache recently accessed indirect item
138 
139 // Ugh.  Not too eager for that....
140 //  I cut the code until such time as I see a convincing argument (benchmark).
141 // I don't want a bloated inode struct..., and I don't like code complexity....
142 
143 /* cutting the code is fine, since it really isn't in use yet and is easy
144 ** to add back in.  But, Vladimir has a really good idea here.  Think
145 ** about what happens for reading a file.  For each page,
146 ** The VFS layer calls reiserfs_readpage, who searches the tree to find
147 ** an indirect item.  This indirect item has X number of pointers, where
148 ** X is a big number if we've done the block allocation right.  But,
149 ** we only use one or two of these pointers during each call to readpage,
150 ** needlessly researching again later on.
151 **
152 ** The size of the cache could be dynamic based on the size of the file.
153 **
154 ** I'd also like to see us cache the location the stat data item, since
155 ** we are needlessly researching for that frequently.
156 **
157 ** --chris
158 */
159 
160 /* If this page has a file tail in it, and
161 ** it was read in by get_block_create_0, the page data is valid,
162 ** but tail is still sitting in a direct item, and we can't write to
163 ** it.  So, look through this page, and check all the mapped buffers
164 ** to make sure they have valid block numbers.  Any that don't need
165 ** to be unmapped, so that __block_write_begin will correctly call
166 ** reiserfs_get_block to convert the tail into an unformatted node
167 */
fix_tail_page_for_writing(struct page * page)168 static inline void fix_tail_page_for_writing(struct page *page)
169 {
170 	struct buffer_head *head, *next, *bh;
171 
172 	if (page && page_has_buffers(page)) {
173 		head = page_buffers(page);
174 		bh = head;
175 		do {
176 			next = bh->b_this_page;
177 			if (buffer_mapped(bh) && bh->b_blocknr == 0) {
178 				reiserfs_unmap_buffer(bh);
179 			}
180 			bh = next;
181 		} while (bh != head);
182 	}
183 }
184 
185 /* reiserfs_get_block does not need to allocate a block only if it has been
186    done already or non-hole position has been found in the indirect item */
allocation_needed(int retval,b_blocknr_t allocated,struct item_head * ih,__le32 * item,int pos_in_item)187 static inline int allocation_needed(int retval, b_blocknr_t allocated,
188 				    struct item_head *ih,
189 				    __le32 * item, int pos_in_item)
190 {
191 	if (allocated)
192 		return 0;
193 	if (retval == POSITION_FOUND && is_indirect_le_ih(ih) &&
194 	    get_block_num(item, pos_in_item))
195 		return 0;
196 	return 1;
197 }
198 
indirect_item_found(int retval,struct item_head * ih)199 static inline int indirect_item_found(int retval, struct item_head *ih)
200 {
201 	return (retval == POSITION_FOUND) && is_indirect_le_ih(ih);
202 }
203 
set_block_dev_mapped(struct buffer_head * bh,b_blocknr_t block,struct inode * inode)204 static inline void set_block_dev_mapped(struct buffer_head *bh,
205 					b_blocknr_t block, struct inode *inode)
206 {
207 	map_bh(bh, inode->i_sb, block);
208 }
209 
210 //
211 // files which were created in the earlier version can not be longer,
212 // than 2 gb
213 //
file_capable(struct inode * inode,sector_t block)214 static int file_capable(struct inode *inode, sector_t block)
215 {
216 	if (get_inode_item_key_version(inode) != KEY_FORMAT_3_5 ||	// it is new file.
217 	    block < (1 << (31 - inode->i_sb->s_blocksize_bits)))	// old file, but 'block' is inside of 2gb
218 		return 1;
219 
220 	return 0;
221 }
222 
restart_transaction(struct reiserfs_transaction_handle * th,struct inode * inode,struct treepath * path)223 static int restart_transaction(struct reiserfs_transaction_handle *th,
224 			       struct inode *inode, struct treepath *path)
225 {
226 	struct super_block *s = th->t_super;
227 	int len = th->t_blocks_allocated;
228 	int err;
229 
230 	BUG_ON(!th->t_trans_id);
231 	BUG_ON(!th->t_refcount);
232 
233 	pathrelse(path);
234 
235 	/* we cannot restart while nested */
236 	if (th->t_refcount > 1) {
237 		return 0;
238 	}
239 	reiserfs_update_sd(th, inode);
240 	err = journal_end(th, s, len);
241 	if (!err) {
242 		err = journal_begin(th, s, JOURNAL_PER_BALANCE_CNT * 6);
243 		if (!err)
244 			reiserfs_update_inode_transaction(inode);
245 	}
246 	return err;
247 }
248 
249 // it is called by get_block when create == 0. Returns block number
250 // for 'block'-th logical block of file. When it hits direct item it
251 // returns 0 (being called from bmap) or read direct item into piece
252 // of page (bh_result)
253 
254 // Please improve the english/clarity in the comment above, as it is
255 // hard to understand.
256 
_get_block_create_0(struct inode * inode,sector_t block,struct buffer_head * bh_result,int args)257 static int _get_block_create_0(struct inode *inode, sector_t block,
258 			       struct buffer_head *bh_result, int args)
259 {
260 	INITIALIZE_PATH(path);
261 	struct cpu_key key;
262 	struct buffer_head *bh;
263 	struct item_head *ih, tmp_ih;
264 	b_blocknr_t blocknr;
265 	char *p = NULL;
266 	int chars;
267 	int ret;
268 	int result;
269 	int done = 0;
270 	unsigned long offset;
271 
272 	// prepare the key to look for the 'block'-th block of file
273 	make_cpu_key(&key, inode,
274 		     (loff_t) block * inode->i_sb->s_blocksize + 1, TYPE_ANY,
275 		     3);
276 
277 	result = search_for_position_by_key(inode->i_sb, &key, &path);
278 	if (result != POSITION_FOUND) {
279 		pathrelse(&path);
280 		if (p)
281 			kunmap(bh_result->b_page);
282 		if (result == IO_ERROR)
283 			return -EIO;
284 		// We do not return -ENOENT if there is a hole but page is uptodate, because it means
285 		// That there is some MMAPED data associated with it that is yet to be written to disk.
286 		if ((args & GET_BLOCK_NO_HOLE)
287 		    && !PageUptodate(bh_result->b_page)) {
288 			return -ENOENT;
289 		}
290 		return 0;
291 	}
292 	//
293 	bh = get_last_bh(&path);
294 	ih = get_ih(&path);
295 	if (is_indirect_le_ih(ih)) {
296 		__le32 *ind_item = (__le32 *) B_I_PITEM(bh, ih);
297 
298 		/* FIXME: here we could cache indirect item or part of it in
299 		   the inode to avoid search_by_key in case of subsequent
300 		   access to file */
301 		blocknr = get_block_num(ind_item, path.pos_in_item);
302 		ret = 0;
303 		if (blocknr) {
304 			map_bh(bh_result, inode->i_sb, blocknr);
305 			if (path.pos_in_item ==
306 			    ((ih_item_len(ih) / UNFM_P_SIZE) - 1)) {
307 				set_buffer_boundary(bh_result);
308 			}
309 		} else
310 			// We do not return -ENOENT if there is a hole but page is uptodate, because it means
311 			// That there is some MMAPED data associated with it that is yet to  be written to disk.
312 		if ((args & GET_BLOCK_NO_HOLE)
313 			    && !PageUptodate(bh_result->b_page)) {
314 			ret = -ENOENT;
315 		}
316 
317 		pathrelse(&path);
318 		if (p)
319 			kunmap(bh_result->b_page);
320 		return ret;
321 	}
322 	// requested data are in direct item(s)
323 	if (!(args & GET_BLOCK_READ_DIRECT)) {
324 		// we are called by bmap. FIXME: we can not map block of file
325 		// when it is stored in direct item(s)
326 		pathrelse(&path);
327 		if (p)
328 			kunmap(bh_result->b_page);
329 		return -ENOENT;
330 	}
331 
332 	/* if we've got a direct item, and the buffer or page was uptodate,
333 	 ** we don't want to pull data off disk again.  skip to the
334 	 ** end, where we map the buffer and return
335 	 */
336 	if (buffer_uptodate(bh_result)) {
337 		goto finished;
338 	} else
339 		/*
340 		 ** grab_tail_page can trigger calls to reiserfs_get_block on up to date
341 		 ** pages without any buffers.  If the page is up to date, we don't want
342 		 ** read old data off disk.  Set the up to date bit on the buffer instead
343 		 ** and jump to the end
344 		 */
345 	if (!bh_result->b_page || PageUptodate(bh_result->b_page)) {
346 		set_buffer_uptodate(bh_result);
347 		goto finished;
348 	}
349 	// read file tail into part of page
350 	offset = (cpu_key_k_offset(&key) - 1) & (PAGE_CACHE_SIZE - 1);
351 	copy_item_head(&tmp_ih, ih);
352 
353 	/* we only want to kmap if we are reading the tail into the page.
354 	 ** this is not the common case, so we don't kmap until we are
355 	 ** sure we need to.  But, this means the item might move if
356 	 ** kmap schedules
357 	 */
358 	if (!p)
359 		p = (char *)kmap(bh_result->b_page);
360 
361 	p += offset;
362 	memset(p, 0, inode->i_sb->s_blocksize);
363 	do {
364 		if (!is_direct_le_ih(ih)) {
365 			BUG();
366 		}
367 		/* make sure we don't read more bytes than actually exist in
368 		 ** the file.  This can happen in odd cases where i_size isn't
369 		 ** correct, and when direct item padding results in a few
370 		 ** extra bytes at the end of the direct item
371 		 */
372 		if ((le_ih_k_offset(ih) + path.pos_in_item) > inode->i_size)
373 			break;
374 		if ((le_ih_k_offset(ih) - 1 + ih_item_len(ih)) > inode->i_size) {
375 			chars =
376 			    inode->i_size - (le_ih_k_offset(ih) - 1) -
377 			    path.pos_in_item;
378 			done = 1;
379 		} else {
380 			chars = ih_item_len(ih) - path.pos_in_item;
381 		}
382 		memcpy(p, B_I_PITEM(bh, ih) + path.pos_in_item, chars);
383 
384 		if (done)
385 			break;
386 
387 		p += chars;
388 
389 		if (PATH_LAST_POSITION(&path) != (B_NR_ITEMS(bh) - 1))
390 			// we done, if read direct item is not the last item of
391 			// node FIXME: we could try to check right delimiting key
392 			// to see whether direct item continues in the right
393 			// neighbor or rely on i_size
394 			break;
395 
396 		// update key to look for the next piece
397 		set_cpu_key_k_offset(&key, cpu_key_k_offset(&key) + chars);
398 		result = search_for_position_by_key(inode->i_sb, &key, &path);
399 		if (result != POSITION_FOUND)
400 			// i/o error most likely
401 			break;
402 		bh = get_last_bh(&path);
403 		ih = get_ih(&path);
404 	} while (1);
405 
406 	flush_dcache_page(bh_result->b_page);
407 	kunmap(bh_result->b_page);
408 
409       finished:
410 	pathrelse(&path);
411 
412 	if (result == IO_ERROR)
413 		return -EIO;
414 
415 	/* this buffer has valid data, but isn't valid for io.  mapping it to
416 	 * block #0 tells the rest of reiserfs it just has a tail in it
417 	 */
418 	map_bh(bh_result, inode->i_sb, 0);
419 	set_buffer_uptodate(bh_result);
420 	return 0;
421 }
422 
423 // this is called to create file map. So, _get_block_create_0 will not
424 // read direct item
reiserfs_bmap(struct inode * inode,sector_t block,struct buffer_head * bh_result,int create)425 static int reiserfs_bmap(struct inode *inode, sector_t block,
426 			 struct buffer_head *bh_result, int create)
427 {
428 	if (!file_capable(inode, block))
429 		return -EFBIG;
430 
431 	reiserfs_write_lock(inode->i_sb);
432 	/* do not read the direct item */
433 	_get_block_create_0(inode, block, bh_result, 0);
434 	reiserfs_write_unlock(inode->i_sb);
435 	return 0;
436 }
437 
438 /* special version of get_block that is only used by grab_tail_page right
439 ** now.  It is sent to __block_write_begin, and when you try to get a
440 ** block past the end of the file (or a block from a hole) it returns
441 ** -ENOENT instead of a valid buffer.  __block_write_begin expects to
442 ** be able to do i/o on the buffers returned, unless an error value
443 ** is also returned.
444 **
445 ** So, this allows __block_write_begin to be used for reading a single block
446 ** in a page.  Where it does not produce a valid page for holes, or past the
447 ** end of the file.  This turns out to be exactly what we need for reading
448 ** tails for conversion.
449 **
450 ** The point of the wrapper is forcing a certain value for create, even
451 ** though the VFS layer is calling this function with create==1.  If you
452 ** don't want to send create == GET_BLOCK_NO_HOLE to reiserfs_get_block,
453 ** don't use this function.
454 */
reiserfs_get_block_create_0(struct inode * inode,sector_t block,struct buffer_head * bh_result,int create)455 static int reiserfs_get_block_create_0(struct inode *inode, sector_t block,
456 				       struct buffer_head *bh_result,
457 				       int create)
458 {
459 	return reiserfs_get_block(inode, block, bh_result, GET_BLOCK_NO_HOLE);
460 }
461 
462 /* This is special helper for reiserfs_get_block in case we are executing
463    direct_IO request. */
reiserfs_get_blocks_direct_io(struct inode * inode,sector_t iblock,struct buffer_head * bh_result,int create)464 static int reiserfs_get_blocks_direct_io(struct inode *inode,
465 					 sector_t iblock,
466 					 struct buffer_head *bh_result,
467 					 int create)
468 {
469 	int ret;
470 
471 	bh_result->b_page = NULL;
472 
473 	/* We set the b_size before reiserfs_get_block call since it is
474 	   referenced in convert_tail_for_hole() that may be called from
475 	   reiserfs_get_block() */
476 	bh_result->b_size = (1 << inode->i_blkbits);
477 
478 	ret = reiserfs_get_block(inode, iblock, bh_result,
479 				 create | GET_BLOCK_NO_DANGLE);
480 	if (ret)
481 		goto out;
482 
483 	/* don't allow direct io onto tail pages */
484 	if (buffer_mapped(bh_result) && bh_result->b_blocknr == 0) {
485 		/* make sure future calls to the direct io funcs for this offset
486 		 ** in the file fail by unmapping the buffer
487 		 */
488 		clear_buffer_mapped(bh_result);
489 		ret = -EINVAL;
490 	}
491 	/* Possible unpacked tail. Flush the data before pages have
492 	   disappeared */
493 	if (REISERFS_I(inode)->i_flags & i_pack_on_close_mask) {
494 		int err;
495 
496 		reiserfs_write_lock(inode->i_sb);
497 
498 		err = reiserfs_commit_for_inode(inode);
499 		REISERFS_I(inode)->i_flags &= ~i_pack_on_close_mask;
500 
501 		reiserfs_write_unlock(inode->i_sb);
502 
503 		if (err < 0)
504 			ret = err;
505 	}
506       out:
507 	return ret;
508 }
509 
510 /*
511 ** helper function for when reiserfs_get_block is called for a hole
512 ** but the file tail is still in a direct item
513 ** bh_result is the buffer head for the hole
514 ** tail_offset is the offset of the start of the tail in the file
515 **
516 ** This calls prepare_write, which will start a new transaction
517 ** you should not be in a transaction, or have any paths held when you
518 ** call this.
519 */
convert_tail_for_hole(struct inode * inode,struct buffer_head * bh_result,loff_t tail_offset)520 static int convert_tail_for_hole(struct inode *inode,
521 				 struct buffer_head *bh_result,
522 				 loff_t tail_offset)
523 {
524 	unsigned long index;
525 	unsigned long tail_end;
526 	unsigned long tail_start;
527 	struct page *tail_page;
528 	struct page *hole_page = bh_result->b_page;
529 	int retval = 0;
530 
531 	if ((tail_offset & (bh_result->b_size - 1)) != 1)
532 		return -EIO;
533 
534 	/* always try to read until the end of the block */
535 	tail_start = tail_offset & (PAGE_CACHE_SIZE - 1);
536 	tail_end = (tail_start | (bh_result->b_size - 1)) + 1;
537 
538 	index = tail_offset >> PAGE_CACHE_SHIFT;
539 	/* hole_page can be zero in case of direct_io, we are sure
540 	   that we cannot get here if we write with O_DIRECT into
541 	   tail page */
542 	if (!hole_page || index != hole_page->index) {
543 		tail_page = grab_cache_page(inode->i_mapping, index);
544 		retval = -ENOMEM;
545 		if (!tail_page) {
546 			goto out;
547 		}
548 	} else {
549 		tail_page = hole_page;
550 	}
551 
552 	/* we don't have to make sure the conversion did not happen while
553 	 ** we were locking the page because anyone that could convert
554 	 ** must first take i_mutex.
555 	 **
556 	 ** We must fix the tail page for writing because it might have buffers
557 	 ** that are mapped, but have a block number of 0.  This indicates tail
558 	 ** data that has been read directly into the page, and
559 	 ** __block_write_begin won't trigger a get_block in this case.
560 	 */
561 	fix_tail_page_for_writing(tail_page);
562 	retval = __reiserfs_write_begin(tail_page, tail_start,
563 				      tail_end - tail_start);
564 	if (retval)
565 		goto unlock;
566 
567 	/* tail conversion might change the data in the page */
568 	flush_dcache_page(tail_page);
569 
570 	retval = reiserfs_commit_write(NULL, tail_page, tail_start, tail_end);
571 
572       unlock:
573 	if (tail_page != hole_page) {
574 		unlock_page(tail_page);
575 		page_cache_release(tail_page);
576 	}
577       out:
578 	return retval;
579 }
580 
_allocate_block(struct reiserfs_transaction_handle * th,sector_t block,struct inode * inode,b_blocknr_t * allocated_block_nr,struct treepath * path,int flags)581 static inline int _allocate_block(struct reiserfs_transaction_handle *th,
582 				  sector_t block,
583 				  struct inode *inode,
584 				  b_blocknr_t * allocated_block_nr,
585 				  struct treepath *path, int flags)
586 {
587 	BUG_ON(!th->t_trans_id);
588 
589 #ifdef REISERFS_PREALLOCATE
590 	if (!(flags & GET_BLOCK_NO_IMUX)) {
591 		return reiserfs_new_unf_blocknrs2(th, inode, allocated_block_nr,
592 						  path, block);
593 	}
594 #endif
595 	return reiserfs_new_unf_blocknrs(th, inode, allocated_block_nr, path,
596 					 block);
597 }
598 
reiserfs_get_block(struct inode * inode,sector_t block,struct buffer_head * bh_result,int create)599 int reiserfs_get_block(struct inode *inode, sector_t block,
600 		       struct buffer_head *bh_result, int create)
601 {
602 	int repeat, retval = 0;
603 	b_blocknr_t allocated_block_nr = 0;	// b_blocknr_t is (unsigned) 32 bit int
604 	INITIALIZE_PATH(path);
605 	int pos_in_item;
606 	struct cpu_key key;
607 	struct buffer_head *bh, *unbh = NULL;
608 	struct item_head *ih, tmp_ih;
609 	__le32 *item;
610 	int done;
611 	int fs_gen;
612 	int lock_depth;
613 	struct reiserfs_transaction_handle *th = NULL;
614 	/* space reserved in transaction batch:
615 	   . 3 balancings in direct->indirect conversion
616 	   . 1 block involved into reiserfs_update_sd()
617 	   XXX in practically impossible worst case direct2indirect()
618 	   can incur (much) more than 3 balancings.
619 	   quota update for user, group */
620 	int jbegin_count =
621 	    JOURNAL_PER_BALANCE_CNT * 3 + 1 +
622 	    2 * REISERFS_QUOTA_TRANS_BLOCKS(inode->i_sb);
623 	int version;
624 	int dangle = 1;
625 	loff_t new_offset =
626 	    (((loff_t) block) << inode->i_sb->s_blocksize_bits) + 1;
627 
628 	lock_depth = reiserfs_write_lock_once(inode->i_sb);
629 	version = get_inode_item_key_version(inode);
630 
631 	if (!file_capable(inode, block)) {
632 		reiserfs_write_unlock_once(inode->i_sb, lock_depth);
633 		return -EFBIG;
634 	}
635 
636 	/* if !create, we aren't changing the FS, so we don't need to
637 	 ** log anything, so we don't need to start a transaction
638 	 */
639 	if (!(create & GET_BLOCK_CREATE)) {
640 		int ret;
641 		/* find number of block-th logical block of the file */
642 		ret = _get_block_create_0(inode, block, bh_result,
643 					  create | GET_BLOCK_READ_DIRECT);
644 		reiserfs_write_unlock_once(inode->i_sb, lock_depth);
645 		return ret;
646 	}
647 	/*
648 	 * if we're already in a transaction, make sure to close
649 	 * any new transactions we start in this func
650 	 */
651 	if ((create & GET_BLOCK_NO_DANGLE) ||
652 	    reiserfs_transaction_running(inode->i_sb))
653 		dangle = 0;
654 
655 	/* If file is of such a size, that it might have a tail and tails are enabled
656 	 ** we should mark it as possibly needing tail packing on close
657 	 */
658 	if ((have_large_tails(inode->i_sb)
659 	     && inode->i_size < i_block_size(inode) * 4)
660 	    || (have_small_tails(inode->i_sb)
661 		&& inode->i_size < i_block_size(inode)))
662 		REISERFS_I(inode)->i_flags |= i_pack_on_close_mask;
663 
664 	/* set the key of the first byte in the 'block'-th block of file */
665 	make_cpu_key(&key, inode, new_offset, TYPE_ANY, 3 /*key length */ );
666 	if ((new_offset + inode->i_sb->s_blocksize - 1) > inode->i_size) {
667 	      start_trans:
668 		th = reiserfs_persistent_transaction(inode->i_sb, jbegin_count);
669 		if (!th) {
670 			retval = -ENOMEM;
671 			goto failure;
672 		}
673 		reiserfs_update_inode_transaction(inode);
674 	}
675       research:
676 
677 	retval = search_for_position_by_key(inode->i_sb, &key, &path);
678 	if (retval == IO_ERROR) {
679 		retval = -EIO;
680 		goto failure;
681 	}
682 
683 	bh = get_last_bh(&path);
684 	ih = get_ih(&path);
685 	item = get_item(&path);
686 	pos_in_item = path.pos_in_item;
687 
688 	fs_gen = get_generation(inode->i_sb);
689 	copy_item_head(&tmp_ih, ih);
690 
691 	if (allocation_needed
692 	    (retval, allocated_block_nr, ih, item, pos_in_item)) {
693 		/* we have to allocate block for the unformatted node */
694 		if (!th) {
695 			pathrelse(&path);
696 			goto start_trans;
697 		}
698 
699 		repeat =
700 		    _allocate_block(th, block, inode, &allocated_block_nr,
701 				    &path, create);
702 
703 		if (repeat == NO_DISK_SPACE || repeat == QUOTA_EXCEEDED) {
704 			/* restart the transaction to give the journal a chance to free
705 			 ** some blocks.  releases the path, so we have to go back to
706 			 ** research if we succeed on the second try
707 			 */
708 			SB_JOURNAL(inode->i_sb)->j_next_async_flush = 1;
709 			retval = restart_transaction(th, inode, &path);
710 			if (retval)
711 				goto failure;
712 			repeat =
713 			    _allocate_block(th, block, inode,
714 					    &allocated_block_nr, NULL, create);
715 
716 			if (repeat != NO_DISK_SPACE && repeat != QUOTA_EXCEEDED) {
717 				goto research;
718 			}
719 			if (repeat == QUOTA_EXCEEDED)
720 				retval = -EDQUOT;
721 			else
722 				retval = -ENOSPC;
723 			goto failure;
724 		}
725 
726 		if (fs_changed(fs_gen, inode->i_sb)
727 		    && item_moved(&tmp_ih, &path)) {
728 			goto research;
729 		}
730 	}
731 
732 	if (indirect_item_found(retval, ih)) {
733 		b_blocknr_t unfm_ptr;
734 		/* 'block'-th block is in the file already (there is
735 		   corresponding cell in some indirect item). But it may be
736 		   zero unformatted node pointer (hole) */
737 		unfm_ptr = get_block_num(item, pos_in_item);
738 		if (unfm_ptr == 0) {
739 			/* use allocated block to plug the hole */
740 			reiserfs_prepare_for_journal(inode->i_sb, bh, 1);
741 			if (fs_changed(fs_gen, inode->i_sb)
742 			    && item_moved(&tmp_ih, &path)) {
743 				reiserfs_restore_prepared_buffer(inode->i_sb,
744 								 bh);
745 				goto research;
746 			}
747 			set_buffer_new(bh_result);
748 			if (buffer_dirty(bh_result)
749 			    && reiserfs_data_ordered(inode->i_sb))
750 				reiserfs_add_ordered_list(inode, bh_result);
751 			put_block_num(item, pos_in_item, allocated_block_nr);
752 			unfm_ptr = allocated_block_nr;
753 			journal_mark_dirty(th, inode->i_sb, bh);
754 			reiserfs_update_sd(th, inode);
755 		}
756 		set_block_dev_mapped(bh_result, unfm_ptr, inode);
757 		pathrelse(&path);
758 		retval = 0;
759 		if (!dangle && th)
760 			retval = reiserfs_end_persistent_transaction(th);
761 
762 		reiserfs_write_unlock_once(inode->i_sb, lock_depth);
763 
764 		/* the item was found, so new blocks were not added to the file
765 		 ** there is no need to make sure the inode is updated with this
766 		 ** transaction
767 		 */
768 		return retval;
769 	}
770 
771 	if (!th) {
772 		pathrelse(&path);
773 		goto start_trans;
774 	}
775 
776 	/* desired position is not found or is in the direct item. We have
777 	   to append file with holes up to 'block'-th block converting
778 	   direct items to indirect one if necessary */
779 	done = 0;
780 	do {
781 		if (is_statdata_le_ih(ih)) {
782 			__le32 unp = 0;
783 			struct cpu_key tmp_key;
784 
785 			/* indirect item has to be inserted */
786 			make_le_item_head(&tmp_ih, &key, version, 1,
787 					  TYPE_INDIRECT, UNFM_P_SIZE,
788 					  0 /* free_space */ );
789 
790 			if (cpu_key_k_offset(&key) == 1) {
791 				/* we are going to add 'block'-th block to the file. Use
792 				   allocated block for that */
793 				unp = cpu_to_le32(allocated_block_nr);
794 				set_block_dev_mapped(bh_result,
795 						     allocated_block_nr, inode);
796 				set_buffer_new(bh_result);
797 				done = 1;
798 			}
799 			tmp_key = key;	// ;)
800 			set_cpu_key_k_offset(&tmp_key, 1);
801 			PATH_LAST_POSITION(&path)++;
802 
803 			retval =
804 			    reiserfs_insert_item(th, &path, &tmp_key, &tmp_ih,
805 						 inode, (char *)&unp);
806 			if (retval) {
807 				reiserfs_free_block(th, inode,
808 						    allocated_block_nr, 1);
809 				goto failure;	// retval == -ENOSPC, -EDQUOT or -EIO or -EEXIST
810 			}
811 			//mark_tail_converted (inode);
812 		} else if (is_direct_le_ih(ih)) {
813 			/* direct item has to be converted */
814 			loff_t tail_offset;
815 
816 			tail_offset =
817 			    ((le_ih_k_offset(ih) -
818 			      1) & ~(inode->i_sb->s_blocksize - 1)) + 1;
819 			if (tail_offset == cpu_key_k_offset(&key)) {
820 				/* direct item we just found fits into block we have
821 				   to map. Convert it into unformatted node: use
822 				   bh_result for the conversion */
823 				set_block_dev_mapped(bh_result,
824 						     allocated_block_nr, inode);
825 				unbh = bh_result;
826 				done = 1;
827 			} else {
828 				/* we have to padd file tail stored in direct item(s)
829 				   up to block size and convert it to unformatted
830 				   node. FIXME: this should also get into page cache */
831 
832 				pathrelse(&path);
833 				/*
834 				 * ugly, but we can only end the transaction if
835 				 * we aren't nested
836 				 */
837 				BUG_ON(!th->t_refcount);
838 				if (th->t_refcount == 1) {
839 					retval =
840 					    reiserfs_end_persistent_transaction
841 					    (th);
842 					th = NULL;
843 					if (retval)
844 						goto failure;
845 				}
846 
847 				retval =
848 				    convert_tail_for_hole(inode, bh_result,
849 							  tail_offset);
850 				if (retval) {
851 					if (retval != -ENOSPC)
852 						reiserfs_error(inode->i_sb,
853 							"clm-6004",
854 							"convert tail failed "
855 							"inode %lu, error %d",
856 							inode->i_ino,
857 							retval);
858 					if (allocated_block_nr) {
859 						/* the bitmap, the super, and the stat data == 3 */
860 						if (!th)
861 							th = reiserfs_persistent_transaction(inode->i_sb, 3);
862 						if (th)
863 							reiserfs_free_block(th,
864 									    inode,
865 									    allocated_block_nr,
866 									    1);
867 					}
868 					goto failure;
869 				}
870 				goto research;
871 			}
872 			retval =
873 			    direct2indirect(th, inode, &path, unbh,
874 					    tail_offset);
875 			if (retval) {
876 				reiserfs_unmap_buffer(unbh);
877 				reiserfs_free_block(th, inode,
878 						    allocated_block_nr, 1);
879 				goto failure;
880 			}
881 			/* it is important the set_buffer_uptodate is done after
882 			 ** the direct2indirect.  The buffer might contain valid
883 			 ** data newer than the data on disk (read by readpage, changed,
884 			 ** and then sent here by writepage).  direct2indirect needs
885 			 ** to know if unbh was already up to date, so it can decide
886 			 ** if the data in unbh needs to be replaced with data from
887 			 ** the disk
888 			 */
889 			set_buffer_uptodate(unbh);
890 
891 			/* unbh->b_page == NULL in case of DIRECT_IO request, this means
892 			   buffer will disappear shortly, so it should not be added to
893 			 */
894 			if (unbh->b_page) {
895 				/* we've converted the tail, so we must
896 				 ** flush unbh before the transaction commits
897 				 */
898 				reiserfs_add_tail_list(inode, unbh);
899 
900 				/* mark it dirty now to prevent commit_write from adding
901 				 ** this buffer to the inode's dirty buffer list
902 				 */
903 				/*
904 				 * AKPM: changed __mark_buffer_dirty to mark_buffer_dirty().
905 				 * It's still atomic, but it sets the page dirty too,
906 				 * which makes it eligible for writeback at any time by the
907 				 * VM (which was also the case with __mark_buffer_dirty())
908 				 */
909 				mark_buffer_dirty(unbh);
910 			}
911 		} else {
912 			/* append indirect item with holes if needed, when appending
913 			   pointer to 'block'-th block use block, which is already
914 			   allocated */
915 			struct cpu_key tmp_key;
916 			unp_t unf_single = 0;	// We use this in case we need to allocate only
917 			// one block which is a fastpath
918 			unp_t *un;
919 			__u64 max_to_insert =
920 			    MAX_ITEM_LEN(inode->i_sb->s_blocksize) /
921 			    UNFM_P_SIZE;
922 			__u64 blocks_needed;
923 
924 			RFALSE(pos_in_item != ih_item_len(ih) / UNFM_P_SIZE,
925 			       "vs-804: invalid position for append");
926 			/* indirect item has to be appended, set up key of that position */
927 			make_cpu_key(&tmp_key, inode,
928 				     le_key_k_offset(version,
929 						     &(ih->ih_key)) +
930 				     op_bytes_number(ih,
931 						     inode->i_sb->s_blocksize),
932 				     //pos_in_item * inode->i_sb->s_blocksize,
933 				     TYPE_INDIRECT, 3);	// key type is unimportant
934 
935 			RFALSE(cpu_key_k_offset(&tmp_key) > cpu_key_k_offset(&key),
936 			       "green-805: invalid offset");
937 			blocks_needed =
938 			    1 +
939 			    ((cpu_key_k_offset(&key) -
940 			      cpu_key_k_offset(&tmp_key)) >> inode->i_sb->
941 			     s_blocksize_bits);
942 
943 			if (blocks_needed == 1) {
944 				un = &unf_single;
945 			} else {
946 				un = kzalloc(min(blocks_needed, max_to_insert) * UNFM_P_SIZE, GFP_NOFS);
947 				if (!un) {
948 					un = &unf_single;
949 					blocks_needed = 1;
950 					max_to_insert = 0;
951 				}
952 			}
953 			if (blocks_needed <= max_to_insert) {
954 				/* we are going to add target block to the file. Use allocated
955 				   block for that */
956 				un[blocks_needed - 1] =
957 				    cpu_to_le32(allocated_block_nr);
958 				set_block_dev_mapped(bh_result,
959 						     allocated_block_nr, inode);
960 				set_buffer_new(bh_result);
961 				done = 1;
962 			} else {
963 				/* paste hole to the indirect item */
964 				/* If kmalloc failed, max_to_insert becomes zero and it means we
965 				   only have space for one block */
966 				blocks_needed =
967 				    max_to_insert ? max_to_insert : 1;
968 			}
969 			retval =
970 			    reiserfs_paste_into_item(th, &path, &tmp_key, inode,
971 						     (char *)un,
972 						     UNFM_P_SIZE *
973 						     blocks_needed);
974 
975 			if (blocks_needed != 1)
976 				kfree(un);
977 
978 			if (retval) {
979 				reiserfs_free_block(th, inode,
980 						    allocated_block_nr, 1);
981 				goto failure;
982 			}
983 			if (!done) {
984 				/* We need to mark new file size in case this function will be
985 				   interrupted/aborted later on. And we may do this only for
986 				   holes. */
987 				inode->i_size +=
988 				    inode->i_sb->s_blocksize * blocks_needed;
989 			}
990 		}
991 
992 		if (done == 1)
993 			break;
994 
995 		/* this loop could log more blocks than we had originally asked
996 		 ** for.  So, we have to allow the transaction to end if it is
997 		 ** too big or too full.  Update the inode so things are
998 		 ** consistent if we crash before the function returns
999 		 **
1000 		 ** release the path so that anybody waiting on the path before
1001 		 ** ending their transaction will be able to continue.
1002 		 */
1003 		if (journal_transaction_should_end(th, th->t_blocks_allocated)) {
1004 			retval = restart_transaction(th, inode, &path);
1005 			if (retval)
1006 				goto failure;
1007 		}
1008 		/*
1009 		 * inserting indirect pointers for a hole can take a
1010 		 * long time.  reschedule if needed and also release the write
1011 		 * lock for others.
1012 		 */
1013 		if (need_resched()) {
1014 			reiserfs_write_unlock_once(inode->i_sb, lock_depth);
1015 			schedule();
1016 			lock_depth = reiserfs_write_lock_once(inode->i_sb);
1017 		}
1018 
1019 		retval = search_for_position_by_key(inode->i_sb, &key, &path);
1020 		if (retval == IO_ERROR) {
1021 			retval = -EIO;
1022 			goto failure;
1023 		}
1024 		if (retval == POSITION_FOUND) {
1025 			reiserfs_warning(inode->i_sb, "vs-825",
1026 					 "%K should not be found", &key);
1027 			retval = -EEXIST;
1028 			if (allocated_block_nr)
1029 				reiserfs_free_block(th, inode,
1030 						    allocated_block_nr, 1);
1031 			pathrelse(&path);
1032 			goto failure;
1033 		}
1034 		bh = get_last_bh(&path);
1035 		ih = get_ih(&path);
1036 		item = get_item(&path);
1037 		pos_in_item = path.pos_in_item;
1038 	} while (1);
1039 
1040 	retval = 0;
1041 
1042       failure:
1043 	if (th && (!dangle || (retval && !th->t_trans_id))) {
1044 		int err;
1045 		if (th->t_trans_id)
1046 			reiserfs_update_sd(th, inode);
1047 		err = reiserfs_end_persistent_transaction(th);
1048 		if (err)
1049 			retval = err;
1050 	}
1051 
1052 	reiserfs_write_unlock_once(inode->i_sb, lock_depth);
1053 	reiserfs_check_path(&path);
1054 	return retval;
1055 }
1056 
1057 static int
reiserfs_readpages(struct file * file,struct address_space * mapping,struct list_head * pages,unsigned nr_pages)1058 reiserfs_readpages(struct file *file, struct address_space *mapping,
1059 		   struct list_head *pages, unsigned nr_pages)
1060 {
1061 	return mpage_readpages(mapping, pages, nr_pages, reiserfs_get_block);
1062 }
1063 
1064 /* Compute real number of used bytes by file
1065  * Following three functions can go away when we'll have enough space in stat item
1066  */
real_space_diff(struct inode * inode,int sd_size)1067 static int real_space_diff(struct inode *inode, int sd_size)
1068 {
1069 	int bytes;
1070 	loff_t blocksize = inode->i_sb->s_blocksize;
1071 
1072 	if (S_ISLNK(inode->i_mode) || S_ISDIR(inode->i_mode))
1073 		return sd_size;
1074 
1075 	/* End of file is also in full block with indirect reference, so round
1076 	 ** up to the next block.
1077 	 **
1078 	 ** there is just no way to know if the tail is actually packed
1079 	 ** on the file, so we have to assume it isn't.  When we pack the
1080 	 ** tail, we add 4 bytes to pretend there really is an unformatted
1081 	 ** node pointer
1082 	 */
1083 	bytes =
1084 	    ((inode->i_size +
1085 	      (blocksize - 1)) >> inode->i_sb->s_blocksize_bits) * UNFM_P_SIZE +
1086 	    sd_size;
1087 	return bytes;
1088 }
1089 
to_real_used_space(struct inode * inode,ulong blocks,int sd_size)1090 static inline loff_t to_real_used_space(struct inode *inode, ulong blocks,
1091 					int sd_size)
1092 {
1093 	if (S_ISLNK(inode->i_mode) || S_ISDIR(inode->i_mode)) {
1094 		return inode->i_size +
1095 		    (loff_t) (real_space_diff(inode, sd_size));
1096 	}
1097 	return ((loff_t) real_space_diff(inode, sd_size)) +
1098 	    (((loff_t) blocks) << 9);
1099 }
1100 
1101 /* Compute number of blocks used by file in ReiserFS counting */
to_fake_used_blocks(struct inode * inode,int sd_size)1102 static inline ulong to_fake_used_blocks(struct inode *inode, int sd_size)
1103 {
1104 	loff_t bytes = inode_get_bytes(inode);
1105 	loff_t real_space = real_space_diff(inode, sd_size);
1106 
1107 	/* keeps fsck and non-quota versions of reiserfs happy */
1108 	if (S_ISLNK(inode->i_mode) || S_ISDIR(inode->i_mode)) {
1109 		bytes += (loff_t) 511;
1110 	}
1111 
1112 	/* files from before the quota patch might i_blocks such that
1113 	 ** bytes < real_space.  Deal with that here to prevent it from
1114 	 ** going negative.
1115 	 */
1116 	if (bytes < real_space)
1117 		return 0;
1118 	return (bytes - real_space) >> 9;
1119 }
1120 
1121 //
1122 // BAD: new directories have stat data of new type and all other items
1123 // of old type. Version stored in the inode says about body items, so
1124 // in update_stat_data we can not rely on inode, but have to check
1125 // item version directly
1126 //
1127 
1128 // called by read_locked_inode
init_inode(struct inode * inode,struct treepath * path)1129 static void init_inode(struct inode *inode, struct treepath *path)
1130 {
1131 	struct buffer_head *bh;
1132 	struct item_head *ih;
1133 	__u32 rdev;
1134 	//int version = ITEM_VERSION_1;
1135 
1136 	bh = PATH_PLAST_BUFFER(path);
1137 	ih = PATH_PITEM_HEAD(path);
1138 
1139 	copy_key(INODE_PKEY(inode), &(ih->ih_key));
1140 
1141 	INIT_LIST_HEAD(&(REISERFS_I(inode)->i_prealloc_list));
1142 	REISERFS_I(inode)->i_flags = 0;
1143 	REISERFS_I(inode)->i_prealloc_block = 0;
1144 	REISERFS_I(inode)->i_prealloc_count = 0;
1145 	REISERFS_I(inode)->i_trans_id = 0;
1146 	REISERFS_I(inode)->i_jl = NULL;
1147 	reiserfs_init_xattr_rwsem(inode);
1148 
1149 	if (stat_data_v1(ih)) {
1150 		struct stat_data_v1 *sd =
1151 		    (struct stat_data_v1 *)B_I_PITEM(bh, ih);
1152 		unsigned long blocks;
1153 
1154 		set_inode_item_key_version(inode, KEY_FORMAT_3_5);
1155 		set_inode_sd_version(inode, STAT_DATA_V1);
1156 		inode->i_mode = sd_v1_mode(sd);
1157 		set_nlink(inode, sd_v1_nlink(sd));
1158 		inode->i_uid = sd_v1_uid(sd);
1159 		inode->i_gid = sd_v1_gid(sd);
1160 		inode->i_size = sd_v1_size(sd);
1161 		inode->i_atime.tv_sec = sd_v1_atime(sd);
1162 		inode->i_mtime.tv_sec = sd_v1_mtime(sd);
1163 		inode->i_ctime.tv_sec = sd_v1_ctime(sd);
1164 		inode->i_atime.tv_nsec = 0;
1165 		inode->i_ctime.tv_nsec = 0;
1166 		inode->i_mtime.tv_nsec = 0;
1167 
1168 		inode->i_blocks = sd_v1_blocks(sd);
1169 		inode->i_generation = le32_to_cpu(INODE_PKEY(inode)->k_dir_id);
1170 		blocks = (inode->i_size + 511) >> 9;
1171 		blocks = _ROUND_UP(blocks, inode->i_sb->s_blocksize >> 9);
1172 		if (inode->i_blocks > blocks) {
1173 			// there was a bug in <=3.5.23 when i_blocks could take negative
1174 			// values. Starting from 3.5.17 this value could even be stored in
1175 			// stat data. For such files we set i_blocks based on file
1176 			// size. Just 2 notes: this can be wrong for sparce files. On-disk value will be
1177 			// only updated if file's inode will ever change
1178 			inode->i_blocks = blocks;
1179 		}
1180 
1181 		rdev = sd_v1_rdev(sd);
1182 		REISERFS_I(inode)->i_first_direct_byte =
1183 		    sd_v1_first_direct_byte(sd);
1184 		/* an early bug in the quota code can give us an odd number for the
1185 		 ** block count.  This is incorrect, fix it here.
1186 		 */
1187 		if (inode->i_blocks & 1) {
1188 			inode->i_blocks++;
1189 		}
1190 		inode_set_bytes(inode,
1191 				to_real_used_space(inode, inode->i_blocks,
1192 						   SD_V1_SIZE));
1193 		/* nopack is initially zero for v1 objects. For v2 objects,
1194 		   nopack is initialised from sd_attrs */
1195 		REISERFS_I(inode)->i_flags &= ~i_nopack_mask;
1196 	} else {
1197 		// new stat data found, but object may have old items
1198 		// (directories and symlinks)
1199 		struct stat_data *sd = (struct stat_data *)B_I_PITEM(bh, ih);
1200 
1201 		inode->i_mode = sd_v2_mode(sd);
1202 		set_nlink(inode, sd_v2_nlink(sd));
1203 		inode->i_uid = sd_v2_uid(sd);
1204 		inode->i_size = sd_v2_size(sd);
1205 		inode->i_gid = sd_v2_gid(sd);
1206 		inode->i_mtime.tv_sec = sd_v2_mtime(sd);
1207 		inode->i_atime.tv_sec = sd_v2_atime(sd);
1208 		inode->i_ctime.tv_sec = sd_v2_ctime(sd);
1209 		inode->i_ctime.tv_nsec = 0;
1210 		inode->i_mtime.tv_nsec = 0;
1211 		inode->i_atime.tv_nsec = 0;
1212 		inode->i_blocks = sd_v2_blocks(sd);
1213 		rdev = sd_v2_rdev(sd);
1214 		if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode))
1215 			inode->i_generation =
1216 			    le32_to_cpu(INODE_PKEY(inode)->k_dir_id);
1217 		else
1218 			inode->i_generation = sd_v2_generation(sd);
1219 
1220 		if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
1221 			set_inode_item_key_version(inode, KEY_FORMAT_3_5);
1222 		else
1223 			set_inode_item_key_version(inode, KEY_FORMAT_3_6);
1224 		REISERFS_I(inode)->i_first_direct_byte = 0;
1225 		set_inode_sd_version(inode, STAT_DATA_V2);
1226 		inode_set_bytes(inode,
1227 				to_real_used_space(inode, inode->i_blocks,
1228 						   SD_V2_SIZE));
1229 		/* read persistent inode attributes from sd and initialise
1230 		   generic inode flags from them */
1231 		REISERFS_I(inode)->i_attrs = sd_v2_attrs(sd);
1232 		sd_attrs_to_i_attrs(sd_v2_attrs(sd), inode);
1233 	}
1234 
1235 	pathrelse(path);
1236 	if (S_ISREG(inode->i_mode)) {
1237 		inode->i_op = &reiserfs_file_inode_operations;
1238 		inode->i_fop = &reiserfs_file_operations;
1239 		inode->i_mapping->a_ops = &reiserfs_address_space_operations;
1240 	} else if (S_ISDIR(inode->i_mode)) {
1241 		inode->i_op = &reiserfs_dir_inode_operations;
1242 		inode->i_fop = &reiserfs_dir_operations;
1243 	} else if (S_ISLNK(inode->i_mode)) {
1244 		inode->i_op = &reiserfs_symlink_inode_operations;
1245 		inode->i_mapping->a_ops = &reiserfs_address_space_operations;
1246 	} else {
1247 		inode->i_blocks = 0;
1248 		inode->i_op = &reiserfs_special_inode_operations;
1249 		init_special_inode(inode, inode->i_mode, new_decode_dev(rdev));
1250 	}
1251 }
1252 
1253 // update new stat data with inode fields
inode2sd(void * sd,struct inode * inode,loff_t size)1254 static void inode2sd(void *sd, struct inode *inode, loff_t size)
1255 {
1256 	struct stat_data *sd_v2 = (struct stat_data *)sd;
1257 	__u16 flags;
1258 
1259 	set_sd_v2_mode(sd_v2, inode->i_mode);
1260 	set_sd_v2_nlink(sd_v2, inode->i_nlink);
1261 	set_sd_v2_uid(sd_v2, inode->i_uid);
1262 	set_sd_v2_size(sd_v2, size);
1263 	set_sd_v2_gid(sd_v2, inode->i_gid);
1264 	set_sd_v2_mtime(sd_v2, inode->i_mtime.tv_sec);
1265 	set_sd_v2_atime(sd_v2, inode->i_atime.tv_sec);
1266 	set_sd_v2_ctime(sd_v2, inode->i_ctime.tv_sec);
1267 	set_sd_v2_blocks(sd_v2, to_fake_used_blocks(inode, SD_V2_SIZE));
1268 	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode))
1269 		set_sd_v2_rdev(sd_v2, new_encode_dev(inode->i_rdev));
1270 	else
1271 		set_sd_v2_generation(sd_v2, inode->i_generation);
1272 	flags = REISERFS_I(inode)->i_attrs;
1273 	i_attrs_to_sd_attrs(inode, &flags);
1274 	set_sd_v2_attrs(sd_v2, flags);
1275 }
1276 
1277 // used to copy inode's fields to old stat data
inode2sd_v1(void * sd,struct inode * inode,loff_t size)1278 static void inode2sd_v1(void *sd, struct inode *inode, loff_t size)
1279 {
1280 	struct stat_data_v1 *sd_v1 = (struct stat_data_v1 *)sd;
1281 
1282 	set_sd_v1_mode(sd_v1, inode->i_mode);
1283 	set_sd_v1_uid(sd_v1, inode->i_uid);
1284 	set_sd_v1_gid(sd_v1, inode->i_gid);
1285 	set_sd_v1_nlink(sd_v1, inode->i_nlink);
1286 	set_sd_v1_size(sd_v1, size);
1287 	set_sd_v1_atime(sd_v1, inode->i_atime.tv_sec);
1288 	set_sd_v1_ctime(sd_v1, inode->i_ctime.tv_sec);
1289 	set_sd_v1_mtime(sd_v1, inode->i_mtime.tv_sec);
1290 
1291 	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode))
1292 		set_sd_v1_rdev(sd_v1, new_encode_dev(inode->i_rdev));
1293 	else
1294 		set_sd_v1_blocks(sd_v1, to_fake_used_blocks(inode, SD_V1_SIZE));
1295 
1296 	// Sigh. i_first_direct_byte is back
1297 	set_sd_v1_first_direct_byte(sd_v1,
1298 				    REISERFS_I(inode)->i_first_direct_byte);
1299 }
1300 
1301 /* NOTE, you must prepare the buffer head before sending it here,
1302 ** and then log it after the call
1303 */
update_stat_data(struct treepath * path,struct inode * inode,loff_t size)1304 static void update_stat_data(struct treepath *path, struct inode *inode,
1305 			     loff_t size)
1306 {
1307 	struct buffer_head *bh;
1308 	struct item_head *ih;
1309 
1310 	bh = PATH_PLAST_BUFFER(path);
1311 	ih = PATH_PITEM_HEAD(path);
1312 
1313 	if (!is_statdata_le_ih(ih))
1314 		reiserfs_panic(inode->i_sb, "vs-13065", "key %k, found item %h",
1315 			       INODE_PKEY(inode), ih);
1316 
1317 	if (stat_data_v1(ih)) {
1318 		// path points to old stat data
1319 		inode2sd_v1(B_I_PITEM(bh, ih), inode, size);
1320 	} else {
1321 		inode2sd(B_I_PITEM(bh, ih), inode, size);
1322 	}
1323 
1324 	return;
1325 }
1326 
reiserfs_update_sd_size(struct reiserfs_transaction_handle * th,struct inode * inode,loff_t size)1327 void reiserfs_update_sd_size(struct reiserfs_transaction_handle *th,
1328 			     struct inode *inode, loff_t size)
1329 {
1330 	struct cpu_key key;
1331 	INITIALIZE_PATH(path);
1332 	struct buffer_head *bh;
1333 	int fs_gen;
1334 	struct item_head *ih, tmp_ih;
1335 	int retval;
1336 
1337 	BUG_ON(!th->t_trans_id);
1338 
1339 	make_cpu_key(&key, inode, SD_OFFSET, TYPE_STAT_DATA, 3);	//key type is unimportant
1340 
1341 	for (;;) {
1342 		int pos;
1343 		/* look for the object's stat data */
1344 		retval = search_item(inode->i_sb, &key, &path);
1345 		if (retval == IO_ERROR) {
1346 			reiserfs_error(inode->i_sb, "vs-13050",
1347 				       "i/o failure occurred trying to "
1348 				       "update %K stat data", &key);
1349 			return;
1350 		}
1351 		if (retval == ITEM_NOT_FOUND) {
1352 			pos = PATH_LAST_POSITION(&path);
1353 			pathrelse(&path);
1354 			if (inode->i_nlink == 0) {
1355 				/*reiserfs_warning (inode->i_sb, "vs-13050: reiserfs_update_sd: i_nlink == 0, stat data not found"); */
1356 				return;
1357 			}
1358 			reiserfs_warning(inode->i_sb, "vs-13060",
1359 					 "stat data of object %k (nlink == %d) "
1360 					 "not found (pos %d)",
1361 					 INODE_PKEY(inode), inode->i_nlink,
1362 					 pos);
1363 			reiserfs_check_path(&path);
1364 			return;
1365 		}
1366 
1367 		/* sigh, prepare_for_journal might schedule.  When it schedules the
1368 		 ** FS might change.  We have to detect that, and loop back to the
1369 		 ** search if the stat data item has moved
1370 		 */
1371 		bh = get_last_bh(&path);
1372 		ih = get_ih(&path);
1373 		copy_item_head(&tmp_ih, ih);
1374 		fs_gen = get_generation(inode->i_sb);
1375 		reiserfs_prepare_for_journal(inode->i_sb, bh, 1);
1376 		if (fs_changed(fs_gen, inode->i_sb)
1377 		    && item_moved(&tmp_ih, &path)) {
1378 			reiserfs_restore_prepared_buffer(inode->i_sb, bh);
1379 			continue;	/* Stat_data item has been moved after scheduling. */
1380 		}
1381 		break;
1382 	}
1383 	update_stat_data(&path, inode, size);
1384 	journal_mark_dirty(th, th->t_super, bh);
1385 	pathrelse(&path);
1386 	return;
1387 }
1388 
1389 /* reiserfs_read_locked_inode is called to read the inode off disk, and it
1390 ** does a make_bad_inode when things go wrong.  But, we need to make sure
1391 ** and clear the key in the private portion of the inode, otherwise a
1392 ** corresponding iput might try to delete whatever object the inode last
1393 ** represented.
1394 */
reiserfs_make_bad_inode(struct inode * inode)1395 static void reiserfs_make_bad_inode(struct inode *inode)
1396 {
1397 	memset(INODE_PKEY(inode), 0, KEY_SIZE);
1398 	make_bad_inode(inode);
1399 }
1400 
1401 //
1402 // initially this function was derived from minix or ext2's analog and
1403 // evolved as the prototype did
1404 //
1405 
reiserfs_init_locked_inode(struct inode * inode,void * p)1406 int reiserfs_init_locked_inode(struct inode *inode, void *p)
1407 {
1408 	struct reiserfs_iget_args *args = (struct reiserfs_iget_args *)p;
1409 	inode->i_ino = args->objectid;
1410 	INODE_PKEY(inode)->k_dir_id = cpu_to_le32(args->dirid);
1411 	return 0;
1412 }
1413 
1414 /* looks for stat data in the tree, and fills up the fields of in-core
1415    inode stat data fields */
reiserfs_read_locked_inode(struct inode * inode,struct reiserfs_iget_args * args)1416 void reiserfs_read_locked_inode(struct inode *inode,
1417 				struct reiserfs_iget_args *args)
1418 {
1419 	INITIALIZE_PATH(path_to_sd);
1420 	struct cpu_key key;
1421 	unsigned long dirino;
1422 	int retval;
1423 
1424 	dirino = args->dirid;
1425 
1426 	/* set version 1, version 2 could be used too, because stat data
1427 	   key is the same in both versions */
1428 	key.version = KEY_FORMAT_3_5;
1429 	key.on_disk_key.k_dir_id = dirino;
1430 	key.on_disk_key.k_objectid = inode->i_ino;
1431 	key.on_disk_key.k_offset = 0;
1432 	key.on_disk_key.k_type = 0;
1433 
1434 	/* look for the object's stat data */
1435 	retval = search_item(inode->i_sb, &key, &path_to_sd);
1436 	if (retval == IO_ERROR) {
1437 		reiserfs_error(inode->i_sb, "vs-13070",
1438 			       "i/o failure occurred trying to find "
1439 			       "stat data of %K", &key);
1440 		reiserfs_make_bad_inode(inode);
1441 		return;
1442 	}
1443 	if (retval != ITEM_FOUND) {
1444 		/* a stale NFS handle can trigger this without it being an error */
1445 		pathrelse(&path_to_sd);
1446 		reiserfs_make_bad_inode(inode);
1447 		clear_nlink(inode);
1448 		return;
1449 	}
1450 
1451 	init_inode(inode, &path_to_sd);
1452 
1453 	/* It is possible that knfsd is trying to access inode of a file
1454 	   that is being removed from the disk by some other thread. As we
1455 	   update sd on unlink all that is required is to check for nlink
1456 	   here. This bug was first found by Sizif when debugging
1457 	   SquidNG/Butterfly, forgotten, and found again after Philippe
1458 	   Gramoulle <philippe.gramoulle@mmania.com> reproduced it.
1459 
1460 	   More logical fix would require changes in fs/inode.c:iput() to
1461 	   remove inode from hash-table _after_ fs cleaned disk stuff up and
1462 	   in iget() to return NULL if I_FREEING inode is found in
1463 	   hash-table. */
1464 	/* Currently there is one place where it's ok to meet inode with
1465 	   nlink==0: processing of open-unlinked and half-truncated files
1466 	   during mount (fs/reiserfs/super.c:finish_unfinished()). */
1467 	if ((inode->i_nlink == 0) &&
1468 	    !REISERFS_SB(inode->i_sb)->s_is_unlinked_ok) {
1469 		reiserfs_warning(inode->i_sb, "vs-13075",
1470 				 "dead inode read from disk %K. "
1471 				 "This is likely to be race with knfsd. Ignore",
1472 				 &key);
1473 		reiserfs_make_bad_inode(inode);
1474 	}
1475 
1476 	reiserfs_check_path(&path_to_sd);	/* init inode should be relsing */
1477 
1478 	/*
1479 	 * Stat data v1 doesn't support ACLs.
1480 	 */
1481 	if (get_inode_sd_version(inode) == STAT_DATA_V1)
1482 		cache_no_acl(inode);
1483 }
1484 
1485 /**
1486  * reiserfs_find_actor() - "find actor" reiserfs supplies to iget5_locked().
1487  *
1488  * @inode:    inode from hash table to check
1489  * @opaque:   "cookie" passed to iget5_locked(). This is &reiserfs_iget_args.
1490  *
1491  * This function is called by iget5_locked() to distinguish reiserfs inodes
1492  * having the same inode numbers. Such inodes can only exist due to some
1493  * error condition. One of them should be bad. Inodes with identical
1494  * inode numbers (objectids) are distinguished by parent directory ids.
1495  *
1496  */
reiserfs_find_actor(struct inode * inode,void * opaque)1497 int reiserfs_find_actor(struct inode *inode, void *opaque)
1498 {
1499 	struct reiserfs_iget_args *args;
1500 
1501 	args = opaque;
1502 	/* args is already in CPU order */
1503 	return (inode->i_ino == args->objectid) &&
1504 	    (le32_to_cpu(INODE_PKEY(inode)->k_dir_id) == args->dirid);
1505 }
1506 
reiserfs_iget(struct super_block * s,const struct cpu_key * key)1507 struct inode *reiserfs_iget(struct super_block *s, const struct cpu_key *key)
1508 {
1509 	struct inode *inode;
1510 	struct reiserfs_iget_args args;
1511 
1512 	args.objectid = key->on_disk_key.k_objectid;
1513 	args.dirid = key->on_disk_key.k_dir_id;
1514 	reiserfs_write_unlock(s);
1515 	inode = iget5_locked(s, key->on_disk_key.k_objectid,
1516 			     reiserfs_find_actor, reiserfs_init_locked_inode,
1517 			     (void *)(&args));
1518 	reiserfs_write_lock(s);
1519 	if (!inode)
1520 		return ERR_PTR(-ENOMEM);
1521 
1522 	if (inode->i_state & I_NEW) {
1523 		reiserfs_read_locked_inode(inode, &args);
1524 		unlock_new_inode(inode);
1525 	}
1526 
1527 	if (comp_short_keys(INODE_PKEY(inode), key) || is_bad_inode(inode)) {
1528 		/* either due to i/o error or a stale NFS handle */
1529 		iput(inode);
1530 		inode = NULL;
1531 	}
1532 	return inode;
1533 }
1534 
reiserfs_get_dentry(struct super_block * sb,u32 objectid,u32 dir_id,u32 generation)1535 static struct dentry *reiserfs_get_dentry(struct super_block *sb,
1536 	u32 objectid, u32 dir_id, u32 generation)
1537 
1538 {
1539 	struct cpu_key key;
1540 	struct inode *inode;
1541 
1542 	key.on_disk_key.k_objectid = objectid;
1543 	key.on_disk_key.k_dir_id = dir_id;
1544 	reiserfs_write_lock(sb);
1545 	inode = reiserfs_iget(sb, &key);
1546 	if (inode && !IS_ERR(inode) && generation != 0 &&
1547 	    generation != inode->i_generation) {
1548 		iput(inode);
1549 		inode = NULL;
1550 	}
1551 	reiserfs_write_unlock(sb);
1552 
1553 	return d_obtain_alias(inode);
1554 }
1555 
reiserfs_fh_to_dentry(struct super_block * sb,struct fid * fid,int fh_len,int fh_type)1556 struct dentry *reiserfs_fh_to_dentry(struct super_block *sb, struct fid *fid,
1557 		int fh_len, int fh_type)
1558 {
1559 	/* fhtype happens to reflect the number of u32s encoded.
1560 	 * due to a bug in earlier code, fhtype might indicate there
1561 	 * are more u32s then actually fitted.
1562 	 * so if fhtype seems to be more than len, reduce fhtype.
1563 	 * Valid types are:
1564 	 *   2 - objectid + dir_id - legacy support
1565 	 *   3 - objectid + dir_id + generation
1566 	 *   4 - objectid + dir_id + objectid and dirid of parent - legacy
1567 	 *   5 - objectid + dir_id + generation + objectid and dirid of parent
1568 	 *   6 - as above plus generation of directory
1569 	 * 6 does not fit in NFSv2 handles
1570 	 */
1571 	if (fh_type > fh_len) {
1572 		if (fh_type != 6 || fh_len != 5)
1573 			reiserfs_warning(sb, "reiserfs-13077",
1574 				"nfsd/reiserfs, fhtype=%d, len=%d - odd",
1575 				fh_type, fh_len);
1576 		fh_type = fh_len;
1577 	}
1578 	if (fh_len < 2)
1579 		return NULL;
1580 
1581 	return reiserfs_get_dentry(sb, fid->raw[0], fid->raw[1],
1582 		(fh_type == 3 || fh_type >= 5) ? fid->raw[2] : 0);
1583 }
1584 
reiserfs_fh_to_parent(struct super_block * sb,struct fid * fid,int fh_len,int fh_type)1585 struct dentry *reiserfs_fh_to_parent(struct super_block *sb, struct fid *fid,
1586 		int fh_len, int fh_type)
1587 {
1588 	if (fh_type > fh_len)
1589 		fh_type = fh_len;
1590 	if (fh_type < 4)
1591 		return NULL;
1592 
1593 	return reiserfs_get_dentry(sb,
1594 		(fh_type >= 5) ? fid->raw[3] : fid->raw[2],
1595 		(fh_type >= 5) ? fid->raw[4] : fid->raw[3],
1596 		(fh_type == 6) ? fid->raw[5] : 0);
1597 }
1598 
reiserfs_encode_fh(struct dentry * dentry,__u32 * data,int * lenp,int need_parent)1599 int reiserfs_encode_fh(struct dentry *dentry, __u32 * data, int *lenp,
1600 		       int need_parent)
1601 {
1602 	struct inode *inode = dentry->d_inode;
1603 	int maxlen = *lenp;
1604 
1605 	if (need_parent && (maxlen < 5)) {
1606 		*lenp = 5;
1607 		return 255;
1608 	} else if (maxlen < 3) {
1609 		*lenp = 3;
1610 		return 255;
1611 	}
1612 
1613 	data[0] = inode->i_ino;
1614 	data[1] = le32_to_cpu(INODE_PKEY(inode)->k_dir_id);
1615 	data[2] = inode->i_generation;
1616 	*lenp = 3;
1617 	/* no room for directory info? return what we've stored so far */
1618 	if (maxlen < 5 || !need_parent)
1619 		return 3;
1620 
1621 	spin_lock(&dentry->d_lock);
1622 	inode = dentry->d_parent->d_inode;
1623 	data[3] = inode->i_ino;
1624 	data[4] = le32_to_cpu(INODE_PKEY(inode)->k_dir_id);
1625 	*lenp = 5;
1626 	if (maxlen >= 6) {
1627 		data[5] = inode->i_generation;
1628 		*lenp = 6;
1629 	}
1630 	spin_unlock(&dentry->d_lock);
1631 	return *lenp;
1632 }
1633 
1634 /* looks for stat data, then copies fields to it, marks the buffer
1635    containing stat data as dirty */
1636 /* reiserfs inodes are never really dirty, since the dirty inode call
1637 ** always logs them.  This call allows the VFS inode marking routines
1638 ** to properly mark inodes for datasync and such, but only actually
1639 ** does something when called for a synchronous update.
1640 */
reiserfs_write_inode(struct inode * inode,struct writeback_control * wbc)1641 int reiserfs_write_inode(struct inode *inode, struct writeback_control *wbc)
1642 {
1643 	struct reiserfs_transaction_handle th;
1644 	int jbegin_count = 1;
1645 
1646 	if (inode->i_sb->s_flags & MS_RDONLY)
1647 		return -EROFS;
1648 	/* memory pressure can sometimes initiate write_inode calls with sync == 1,
1649 	 ** these cases are just when the system needs ram, not when the
1650 	 ** inode needs to reach disk for safety, and they can safely be
1651 	 ** ignored because the altered inode has already been logged.
1652 	 */
1653 	if (wbc->sync_mode == WB_SYNC_ALL && !(current->flags & PF_MEMALLOC)) {
1654 		reiserfs_write_lock(inode->i_sb);
1655 		if (!journal_begin(&th, inode->i_sb, jbegin_count)) {
1656 			reiserfs_update_sd(&th, inode);
1657 			journal_end_sync(&th, inode->i_sb, jbegin_count);
1658 		}
1659 		reiserfs_write_unlock(inode->i_sb);
1660 	}
1661 	return 0;
1662 }
1663 
1664 /* stat data of new object is inserted already, this inserts the item
1665    containing "." and ".." entries */
reiserfs_new_directory(struct reiserfs_transaction_handle * th,struct inode * inode,struct item_head * ih,struct treepath * path,struct inode * dir)1666 static int reiserfs_new_directory(struct reiserfs_transaction_handle *th,
1667 				  struct inode *inode,
1668 				  struct item_head *ih, struct treepath *path,
1669 				  struct inode *dir)
1670 {
1671 	struct super_block *sb = th->t_super;
1672 	char empty_dir[EMPTY_DIR_SIZE];
1673 	char *body = empty_dir;
1674 	struct cpu_key key;
1675 	int retval;
1676 
1677 	BUG_ON(!th->t_trans_id);
1678 
1679 	_make_cpu_key(&key, KEY_FORMAT_3_5, le32_to_cpu(ih->ih_key.k_dir_id),
1680 		      le32_to_cpu(ih->ih_key.k_objectid), DOT_OFFSET,
1681 		      TYPE_DIRENTRY, 3 /*key length */ );
1682 
1683 	/* compose item head for new item. Directories consist of items of
1684 	   old type (ITEM_VERSION_1). Do not set key (second arg is 0), it
1685 	   is done by reiserfs_new_inode */
1686 	if (old_format_only(sb)) {
1687 		make_le_item_head(ih, NULL, KEY_FORMAT_3_5, DOT_OFFSET,
1688 				  TYPE_DIRENTRY, EMPTY_DIR_SIZE_V1, 2);
1689 
1690 		make_empty_dir_item_v1(body, ih->ih_key.k_dir_id,
1691 				       ih->ih_key.k_objectid,
1692 				       INODE_PKEY(dir)->k_dir_id,
1693 				       INODE_PKEY(dir)->k_objectid);
1694 	} else {
1695 		make_le_item_head(ih, NULL, KEY_FORMAT_3_5, DOT_OFFSET,
1696 				  TYPE_DIRENTRY, EMPTY_DIR_SIZE, 2);
1697 
1698 		make_empty_dir_item(body, ih->ih_key.k_dir_id,
1699 				    ih->ih_key.k_objectid,
1700 				    INODE_PKEY(dir)->k_dir_id,
1701 				    INODE_PKEY(dir)->k_objectid);
1702 	}
1703 
1704 	/* look for place in the tree for new item */
1705 	retval = search_item(sb, &key, path);
1706 	if (retval == IO_ERROR) {
1707 		reiserfs_error(sb, "vs-13080",
1708 			       "i/o failure occurred creating new directory");
1709 		return -EIO;
1710 	}
1711 	if (retval == ITEM_FOUND) {
1712 		pathrelse(path);
1713 		reiserfs_warning(sb, "vs-13070",
1714 				 "object with this key exists (%k)",
1715 				 &(ih->ih_key));
1716 		return -EEXIST;
1717 	}
1718 
1719 	/* insert item, that is empty directory item */
1720 	return reiserfs_insert_item(th, path, &key, ih, inode, body);
1721 }
1722 
1723 /* stat data of object has been inserted, this inserts the item
1724    containing the body of symlink */
reiserfs_new_symlink(struct reiserfs_transaction_handle * th,struct inode * inode,struct item_head * ih,struct treepath * path,const char * symname,int item_len)1725 static int reiserfs_new_symlink(struct reiserfs_transaction_handle *th, struct inode *inode,	/* Inode of symlink */
1726 				struct item_head *ih,
1727 				struct treepath *path, const char *symname,
1728 				int item_len)
1729 {
1730 	struct super_block *sb = th->t_super;
1731 	struct cpu_key key;
1732 	int retval;
1733 
1734 	BUG_ON(!th->t_trans_id);
1735 
1736 	_make_cpu_key(&key, KEY_FORMAT_3_5,
1737 		      le32_to_cpu(ih->ih_key.k_dir_id),
1738 		      le32_to_cpu(ih->ih_key.k_objectid),
1739 		      1, TYPE_DIRECT, 3 /*key length */ );
1740 
1741 	make_le_item_head(ih, NULL, KEY_FORMAT_3_5, 1, TYPE_DIRECT, item_len,
1742 			  0 /*free_space */ );
1743 
1744 	/* look for place in the tree for new item */
1745 	retval = search_item(sb, &key, path);
1746 	if (retval == IO_ERROR) {
1747 		reiserfs_error(sb, "vs-13080",
1748 			       "i/o failure occurred creating new symlink");
1749 		return -EIO;
1750 	}
1751 	if (retval == ITEM_FOUND) {
1752 		pathrelse(path);
1753 		reiserfs_warning(sb, "vs-13080",
1754 				 "object with this key exists (%k)",
1755 				 &(ih->ih_key));
1756 		return -EEXIST;
1757 	}
1758 
1759 	/* insert item, that is body of symlink */
1760 	return reiserfs_insert_item(th, path, &key, ih, inode, symname);
1761 }
1762 
1763 /* inserts the stat data into the tree, and then calls
1764    reiserfs_new_directory (to insert ".", ".." item if new object is
1765    directory) or reiserfs_new_symlink (to insert symlink body if new
1766    object is symlink) or nothing (if new object is regular file)
1767 
1768    NOTE! uid and gid must already be set in the inode.  If we return
1769    non-zero due to an error, we have to drop the quota previously allocated
1770    for the fresh inode.  This can only be done outside a transaction, so
1771    if we return non-zero, we also end the transaction.  */
reiserfs_new_inode(struct reiserfs_transaction_handle * th,struct inode * dir,umode_t mode,const char * symname,loff_t i_size,struct dentry * dentry,struct inode * inode,struct reiserfs_security_handle * security)1772 int reiserfs_new_inode(struct reiserfs_transaction_handle *th,
1773 		       struct inode *dir, umode_t mode, const char *symname,
1774 		       /* 0 for regular, EMTRY_DIR_SIZE for dirs,
1775 		          strlen (symname) for symlinks) */
1776 		       loff_t i_size, struct dentry *dentry,
1777 		       struct inode *inode,
1778 		       struct reiserfs_security_handle *security)
1779 {
1780 	struct super_block *sb;
1781 	struct reiserfs_iget_args args;
1782 	INITIALIZE_PATH(path_to_key);
1783 	struct cpu_key key;
1784 	struct item_head ih;
1785 	struct stat_data sd;
1786 	int retval;
1787 	int err;
1788 
1789 	BUG_ON(!th->t_trans_id);
1790 
1791 	reiserfs_write_unlock(inode->i_sb);
1792 	err = dquot_alloc_inode(inode);
1793 	reiserfs_write_lock(inode->i_sb);
1794 	if (err)
1795 		goto out_end_trans;
1796 	if (!dir->i_nlink) {
1797 		err = -EPERM;
1798 		goto out_bad_inode;
1799 	}
1800 
1801 	sb = dir->i_sb;
1802 
1803 	/* item head of new item */
1804 	ih.ih_key.k_dir_id = reiserfs_choose_packing(dir);
1805 	ih.ih_key.k_objectid = cpu_to_le32(reiserfs_get_unused_objectid(th));
1806 	if (!ih.ih_key.k_objectid) {
1807 		err = -ENOMEM;
1808 		goto out_bad_inode;
1809 	}
1810 	args.objectid = inode->i_ino = le32_to_cpu(ih.ih_key.k_objectid);
1811 	if (old_format_only(sb))
1812 		make_le_item_head(&ih, NULL, KEY_FORMAT_3_5, SD_OFFSET,
1813 				  TYPE_STAT_DATA, SD_V1_SIZE, MAX_US_INT);
1814 	else
1815 		make_le_item_head(&ih, NULL, KEY_FORMAT_3_6, SD_OFFSET,
1816 				  TYPE_STAT_DATA, SD_SIZE, MAX_US_INT);
1817 	memcpy(INODE_PKEY(inode), &(ih.ih_key), KEY_SIZE);
1818 	args.dirid = le32_to_cpu(ih.ih_key.k_dir_id);
1819 	if (insert_inode_locked4(inode, args.objectid,
1820 			     reiserfs_find_actor, &args) < 0) {
1821 		err = -EINVAL;
1822 		goto out_bad_inode;
1823 	}
1824 	if (old_format_only(sb))
1825 		/* not a perfect generation count, as object ids can be reused, but
1826 		 ** this is as good as reiserfs can do right now.
1827 		 ** note that the private part of inode isn't filled in yet, we have
1828 		 ** to use the directory.
1829 		 */
1830 		inode->i_generation = le32_to_cpu(INODE_PKEY(dir)->k_objectid);
1831 	else
1832 #if defined( USE_INODE_GENERATION_COUNTER )
1833 		inode->i_generation =
1834 		    le32_to_cpu(REISERFS_SB(sb)->s_rs->s_inode_generation);
1835 #else
1836 		inode->i_generation = ++event;
1837 #endif
1838 
1839 	/* fill stat data */
1840 	set_nlink(inode, (S_ISDIR(mode) ? 2 : 1));
1841 
1842 	/* uid and gid must already be set by the caller for quota init */
1843 
1844 	/* symlink cannot be immutable or append only, right? */
1845 	if (S_ISLNK(inode->i_mode))
1846 		inode->i_flags &= ~(S_IMMUTABLE | S_APPEND);
1847 
1848 	inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME_SEC;
1849 	inode->i_size = i_size;
1850 	inode->i_blocks = 0;
1851 	inode->i_bytes = 0;
1852 	REISERFS_I(inode)->i_first_direct_byte = S_ISLNK(mode) ? 1 :
1853 	    U32_MAX /*NO_BYTES_IN_DIRECT_ITEM */ ;
1854 
1855 	INIT_LIST_HEAD(&(REISERFS_I(inode)->i_prealloc_list));
1856 	REISERFS_I(inode)->i_flags = 0;
1857 	REISERFS_I(inode)->i_prealloc_block = 0;
1858 	REISERFS_I(inode)->i_prealloc_count = 0;
1859 	REISERFS_I(inode)->i_trans_id = 0;
1860 	REISERFS_I(inode)->i_jl = NULL;
1861 	REISERFS_I(inode)->i_attrs =
1862 	    REISERFS_I(dir)->i_attrs & REISERFS_INHERIT_MASK;
1863 	sd_attrs_to_i_attrs(REISERFS_I(inode)->i_attrs, inode);
1864 	reiserfs_init_xattr_rwsem(inode);
1865 
1866 	/* key to search for correct place for new stat data */
1867 	_make_cpu_key(&key, KEY_FORMAT_3_6, le32_to_cpu(ih.ih_key.k_dir_id),
1868 		      le32_to_cpu(ih.ih_key.k_objectid), SD_OFFSET,
1869 		      TYPE_STAT_DATA, 3 /*key length */ );
1870 
1871 	/* find proper place for inserting of stat data */
1872 	retval = search_item(sb, &key, &path_to_key);
1873 	if (retval == IO_ERROR) {
1874 		err = -EIO;
1875 		goto out_bad_inode;
1876 	}
1877 	if (retval == ITEM_FOUND) {
1878 		pathrelse(&path_to_key);
1879 		err = -EEXIST;
1880 		goto out_bad_inode;
1881 	}
1882 	if (old_format_only(sb)) {
1883 		if (inode->i_uid & ~0xffff || inode->i_gid & ~0xffff) {
1884 			pathrelse(&path_to_key);
1885 			/* i_uid or i_gid is too big to be stored in stat data v3.5 */
1886 			err = -EINVAL;
1887 			goto out_bad_inode;
1888 		}
1889 		inode2sd_v1(&sd, inode, inode->i_size);
1890 	} else {
1891 		inode2sd(&sd, inode, inode->i_size);
1892 	}
1893 	// store in in-core inode the key of stat data and version all
1894 	// object items will have (directory items will have old offset
1895 	// format, other new objects will consist of new items)
1896 	if (old_format_only(sb) || S_ISDIR(mode) || S_ISLNK(mode))
1897 		set_inode_item_key_version(inode, KEY_FORMAT_3_5);
1898 	else
1899 		set_inode_item_key_version(inode, KEY_FORMAT_3_6);
1900 	if (old_format_only(sb))
1901 		set_inode_sd_version(inode, STAT_DATA_V1);
1902 	else
1903 		set_inode_sd_version(inode, STAT_DATA_V2);
1904 
1905 	/* insert the stat data into the tree */
1906 #ifdef DISPLACE_NEW_PACKING_LOCALITIES
1907 	if (REISERFS_I(dir)->new_packing_locality)
1908 		th->displace_new_blocks = 1;
1909 #endif
1910 	retval =
1911 	    reiserfs_insert_item(th, &path_to_key, &key, &ih, inode,
1912 				 (char *)(&sd));
1913 	if (retval) {
1914 		err = retval;
1915 		reiserfs_check_path(&path_to_key);
1916 		goto out_bad_inode;
1917 	}
1918 #ifdef DISPLACE_NEW_PACKING_LOCALITIES
1919 	if (!th->displace_new_blocks)
1920 		REISERFS_I(dir)->new_packing_locality = 0;
1921 #endif
1922 	if (S_ISDIR(mode)) {
1923 		/* insert item with "." and ".." */
1924 		retval =
1925 		    reiserfs_new_directory(th, inode, &ih, &path_to_key, dir);
1926 	}
1927 
1928 	if (S_ISLNK(mode)) {
1929 		/* insert body of symlink */
1930 		if (!old_format_only(sb))
1931 			i_size = ROUND_UP(i_size);
1932 		retval =
1933 		    reiserfs_new_symlink(th, inode, &ih, &path_to_key, symname,
1934 					 i_size);
1935 	}
1936 	if (retval) {
1937 		err = retval;
1938 		reiserfs_check_path(&path_to_key);
1939 		journal_end(th, th->t_super, th->t_blocks_allocated);
1940 		goto out_inserted_sd;
1941 	}
1942 
1943 	if (reiserfs_posixacl(inode->i_sb)) {
1944 		retval = reiserfs_inherit_default_acl(th, dir, dentry, inode);
1945 		if (retval) {
1946 			err = retval;
1947 			reiserfs_check_path(&path_to_key);
1948 			journal_end(th, th->t_super, th->t_blocks_allocated);
1949 			goto out_inserted_sd;
1950 		}
1951 	} else if (inode->i_sb->s_flags & MS_POSIXACL) {
1952 		reiserfs_warning(inode->i_sb, "jdm-13090",
1953 				 "ACLs aren't enabled in the fs, "
1954 				 "but vfs thinks they are!");
1955 	} else if (IS_PRIVATE(dir))
1956 		inode->i_flags |= S_PRIVATE;
1957 
1958 	if (security->name) {
1959 		retval = reiserfs_security_write(th, inode, security);
1960 		if (retval) {
1961 			err = retval;
1962 			reiserfs_check_path(&path_to_key);
1963 			retval = journal_end(th, th->t_super,
1964 					     th->t_blocks_allocated);
1965 			if (retval)
1966 				err = retval;
1967 			goto out_inserted_sd;
1968 		}
1969 	}
1970 
1971 	reiserfs_update_sd(th, inode);
1972 	reiserfs_check_path(&path_to_key);
1973 
1974 	return 0;
1975 
1976 /* it looks like you can easily compress these two goto targets into
1977  * one.  Keeping it like this doesn't actually hurt anything, and they
1978  * are place holders for what the quota code actually needs.
1979  */
1980       out_bad_inode:
1981 	/* Invalidate the object, nothing was inserted yet */
1982 	INODE_PKEY(inode)->k_objectid = 0;
1983 
1984 	/* Quota change must be inside a transaction for journaling */
1985 	dquot_free_inode(inode);
1986 
1987       out_end_trans:
1988 	journal_end(th, th->t_super, th->t_blocks_allocated);
1989 	reiserfs_write_unlock(inode->i_sb);
1990 	/* Drop can be outside and it needs more credits so it's better to have it outside */
1991 	dquot_drop(inode);
1992 	reiserfs_write_lock(inode->i_sb);
1993 	inode->i_flags |= S_NOQUOTA;
1994 	make_bad_inode(inode);
1995 
1996       out_inserted_sd:
1997 	clear_nlink(inode);
1998 	th->t_trans_id = 0;	/* so the caller can't use this handle later */
1999 	unlock_new_inode(inode); /* OK to do even if we hadn't locked it */
2000 	iput(inode);
2001 	return err;
2002 }
2003 
2004 /*
2005 ** finds the tail page in the page cache,
2006 ** reads the last block in.
2007 **
2008 ** On success, page_result is set to a locked, pinned page, and bh_result
2009 ** is set to an up to date buffer for the last block in the file.  returns 0.
2010 **
2011 ** tail conversion is not done, so bh_result might not be valid for writing
2012 ** check buffer_mapped(bh_result) and bh_result->b_blocknr != 0 before
2013 ** trying to write the block.
2014 **
2015 ** on failure, nonzero is returned, page_result and bh_result are untouched.
2016 */
grab_tail_page(struct inode * inode,struct page ** page_result,struct buffer_head ** bh_result)2017 static int grab_tail_page(struct inode *inode,
2018 			  struct page **page_result,
2019 			  struct buffer_head **bh_result)
2020 {
2021 
2022 	/* we want the page with the last byte in the file,
2023 	 ** not the page that will hold the next byte for appending
2024 	 */
2025 	unsigned long index = (inode->i_size - 1) >> PAGE_CACHE_SHIFT;
2026 	unsigned long pos = 0;
2027 	unsigned long start = 0;
2028 	unsigned long blocksize = inode->i_sb->s_blocksize;
2029 	unsigned long offset = (inode->i_size) & (PAGE_CACHE_SIZE - 1);
2030 	struct buffer_head *bh;
2031 	struct buffer_head *head;
2032 	struct page *page;
2033 	int error;
2034 
2035 	/* we know that we are only called with inode->i_size > 0.
2036 	 ** we also know that a file tail can never be as big as a block
2037 	 ** If i_size % blocksize == 0, our file is currently block aligned
2038 	 ** and it won't need converting or zeroing after a truncate.
2039 	 */
2040 	if ((offset & (blocksize - 1)) == 0) {
2041 		return -ENOENT;
2042 	}
2043 	page = grab_cache_page(inode->i_mapping, index);
2044 	error = -ENOMEM;
2045 	if (!page) {
2046 		goto out;
2047 	}
2048 	/* start within the page of the last block in the file */
2049 	start = (offset / blocksize) * blocksize;
2050 
2051 	error = __block_write_begin(page, start, offset - start,
2052 				    reiserfs_get_block_create_0);
2053 	if (error)
2054 		goto unlock;
2055 
2056 	head = page_buffers(page);
2057 	bh = head;
2058 	do {
2059 		if (pos >= start) {
2060 			break;
2061 		}
2062 		bh = bh->b_this_page;
2063 		pos += blocksize;
2064 	} while (bh != head);
2065 
2066 	if (!buffer_uptodate(bh)) {
2067 		/* note, this should never happen, prepare_write should
2068 		 ** be taking care of this for us.  If the buffer isn't up to date,
2069 		 ** I've screwed up the code to find the buffer, or the code to
2070 		 ** call prepare_write
2071 		 */
2072 		reiserfs_error(inode->i_sb, "clm-6000",
2073 			       "error reading block %lu", bh->b_blocknr);
2074 		error = -EIO;
2075 		goto unlock;
2076 	}
2077 	*bh_result = bh;
2078 	*page_result = page;
2079 
2080       out:
2081 	return error;
2082 
2083       unlock:
2084 	unlock_page(page);
2085 	page_cache_release(page);
2086 	return error;
2087 }
2088 
2089 /*
2090 ** vfs version of truncate file.  Must NOT be called with
2091 ** a transaction already started.
2092 **
2093 ** some code taken from block_truncate_page
2094 */
reiserfs_truncate_file(struct inode * inode,int update_timestamps)2095 int reiserfs_truncate_file(struct inode *inode, int update_timestamps)
2096 {
2097 	struct reiserfs_transaction_handle th;
2098 	/* we want the offset for the first byte after the end of the file */
2099 	unsigned long offset = inode->i_size & (PAGE_CACHE_SIZE - 1);
2100 	unsigned blocksize = inode->i_sb->s_blocksize;
2101 	unsigned length;
2102 	struct page *page = NULL;
2103 	int error;
2104 	struct buffer_head *bh = NULL;
2105 	int err2;
2106 	int lock_depth;
2107 
2108 	lock_depth = reiserfs_write_lock_once(inode->i_sb);
2109 
2110 	if (inode->i_size > 0) {
2111 		error = grab_tail_page(inode, &page, &bh);
2112 		if (error) {
2113 			// -ENOENT means we truncated past the end of the file,
2114 			// and get_block_create_0 could not find a block to read in,
2115 			// which is ok.
2116 			if (error != -ENOENT)
2117 				reiserfs_error(inode->i_sb, "clm-6001",
2118 					       "grab_tail_page failed %d",
2119 					       error);
2120 			page = NULL;
2121 			bh = NULL;
2122 		}
2123 	}
2124 
2125 	/* so, if page != NULL, we have a buffer head for the offset at
2126 	 ** the end of the file. if the bh is mapped, and bh->b_blocknr != 0,
2127 	 ** then we have an unformatted node.  Otherwise, we have a direct item,
2128 	 ** and no zeroing is required on disk.  We zero after the truncate,
2129 	 ** because the truncate might pack the item anyway
2130 	 ** (it will unmap bh if it packs).
2131 	 */
2132 	/* it is enough to reserve space in transaction for 2 balancings:
2133 	   one for "save" link adding and another for the first
2134 	   cut_from_item. 1 is for update_sd */
2135 	error = journal_begin(&th, inode->i_sb,
2136 			      JOURNAL_PER_BALANCE_CNT * 2 + 1);
2137 	if (error)
2138 		goto out;
2139 	reiserfs_update_inode_transaction(inode);
2140 	if (update_timestamps)
2141 		/* we are doing real truncate: if the system crashes before the last
2142 		   transaction of truncating gets committed - on reboot the file
2143 		   either appears truncated properly or not truncated at all */
2144 		add_save_link(&th, inode, 1);
2145 	err2 = reiserfs_do_truncate(&th, inode, page, update_timestamps);
2146 	error =
2147 	    journal_end(&th, inode->i_sb, JOURNAL_PER_BALANCE_CNT * 2 + 1);
2148 	if (error)
2149 		goto out;
2150 
2151 	/* check reiserfs_do_truncate after ending the transaction */
2152 	if (err2) {
2153 		error = err2;
2154   		goto out;
2155 	}
2156 
2157 	if (update_timestamps) {
2158 		error = remove_save_link(inode, 1 /* truncate */);
2159 		if (error)
2160 			goto out;
2161 	}
2162 
2163 	if (page) {
2164 		length = offset & (blocksize - 1);
2165 		/* if we are not on a block boundary */
2166 		if (length) {
2167 			length = blocksize - length;
2168 			zero_user(page, offset, length);
2169 			if (buffer_mapped(bh) && bh->b_blocknr != 0) {
2170 				mark_buffer_dirty(bh);
2171 			}
2172 		}
2173 		unlock_page(page);
2174 		page_cache_release(page);
2175 	}
2176 
2177 	reiserfs_write_unlock_once(inode->i_sb, lock_depth);
2178 
2179 	return 0;
2180       out:
2181 	if (page) {
2182 		unlock_page(page);
2183 		page_cache_release(page);
2184 	}
2185 
2186 	reiserfs_write_unlock_once(inode->i_sb, lock_depth);
2187 
2188 	return error;
2189 }
2190 
map_block_for_writepage(struct inode * inode,struct buffer_head * bh_result,unsigned long block)2191 static int map_block_for_writepage(struct inode *inode,
2192 				   struct buffer_head *bh_result,
2193 				   unsigned long block)
2194 {
2195 	struct reiserfs_transaction_handle th;
2196 	int fs_gen;
2197 	struct item_head tmp_ih;
2198 	struct item_head *ih;
2199 	struct buffer_head *bh;
2200 	__le32 *item;
2201 	struct cpu_key key;
2202 	INITIALIZE_PATH(path);
2203 	int pos_in_item;
2204 	int jbegin_count = JOURNAL_PER_BALANCE_CNT;
2205 	loff_t byte_offset = ((loff_t)block << inode->i_sb->s_blocksize_bits)+1;
2206 	int retval;
2207 	int use_get_block = 0;
2208 	int bytes_copied = 0;
2209 	int copy_size;
2210 	int trans_running = 0;
2211 
2212 	/* catch places below that try to log something without starting a trans */
2213 	th.t_trans_id = 0;
2214 
2215 	if (!buffer_uptodate(bh_result)) {
2216 		return -EIO;
2217 	}
2218 
2219 	kmap(bh_result->b_page);
2220       start_over:
2221 	reiserfs_write_lock(inode->i_sb);
2222 	make_cpu_key(&key, inode, byte_offset, TYPE_ANY, 3);
2223 
2224       research:
2225 	retval = search_for_position_by_key(inode->i_sb, &key, &path);
2226 	if (retval != POSITION_FOUND) {
2227 		use_get_block = 1;
2228 		goto out;
2229 	}
2230 
2231 	bh = get_last_bh(&path);
2232 	ih = get_ih(&path);
2233 	item = get_item(&path);
2234 	pos_in_item = path.pos_in_item;
2235 
2236 	/* we've found an unformatted node */
2237 	if (indirect_item_found(retval, ih)) {
2238 		if (bytes_copied > 0) {
2239 			reiserfs_warning(inode->i_sb, "clm-6002",
2240 					 "bytes_copied %d", bytes_copied);
2241 		}
2242 		if (!get_block_num(item, pos_in_item)) {
2243 			/* crap, we are writing to a hole */
2244 			use_get_block = 1;
2245 			goto out;
2246 		}
2247 		set_block_dev_mapped(bh_result,
2248 				     get_block_num(item, pos_in_item), inode);
2249 	} else if (is_direct_le_ih(ih)) {
2250 		char *p;
2251 		p = page_address(bh_result->b_page);
2252 		p += (byte_offset - 1) & (PAGE_CACHE_SIZE - 1);
2253 		copy_size = ih_item_len(ih) - pos_in_item;
2254 
2255 		fs_gen = get_generation(inode->i_sb);
2256 		copy_item_head(&tmp_ih, ih);
2257 
2258 		if (!trans_running) {
2259 			/* vs-3050 is gone, no need to drop the path */
2260 			retval = journal_begin(&th, inode->i_sb, jbegin_count);
2261 			if (retval)
2262 				goto out;
2263 			reiserfs_update_inode_transaction(inode);
2264 			trans_running = 1;
2265 			if (fs_changed(fs_gen, inode->i_sb)
2266 			    && item_moved(&tmp_ih, &path)) {
2267 				reiserfs_restore_prepared_buffer(inode->i_sb,
2268 								 bh);
2269 				goto research;
2270 			}
2271 		}
2272 
2273 		reiserfs_prepare_for_journal(inode->i_sb, bh, 1);
2274 
2275 		if (fs_changed(fs_gen, inode->i_sb)
2276 		    && item_moved(&tmp_ih, &path)) {
2277 			reiserfs_restore_prepared_buffer(inode->i_sb, bh);
2278 			goto research;
2279 		}
2280 
2281 		memcpy(B_I_PITEM(bh, ih) + pos_in_item, p + bytes_copied,
2282 		       copy_size);
2283 
2284 		journal_mark_dirty(&th, inode->i_sb, bh);
2285 		bytes_copied += copy_size;
2286 		set_block_dev_mapped(bh_result, 0, inode);
2287 
2288 		/* are there still bytes left? */
2289 		if (bytes_copied < bh_result->b_size &&
2290 		    (byte_offset + bytes_copied) < inode->i_size) {
2291 			set_cpu_key_k_offset(&key,
2292 					     cpu_key_k_offset(&key) +
2293 					     copy_size);
2294 			goto research;
2295 		}
2296 	} else {
2297 		reiserfs_warning(inode->i_sb, "clm-6003",
2298 				 "bad item inode %lu", inode->i_ino);
2299 		retval = -EIO;
2300 		goto out;
2301 	}
2302 	retval = 0;
2303 
2304       out:
2305 	pathrelse(&path);
2306 	if (trans_running) {
2307 		int err = journal_end(&th, inode->i_sb, jbegin_count);
2308 		if (err)
2309 			retval = err;
2310 		trans_running = 0;
2311 	}
2312 	reiserfs_write_unlock(inode->i_sb);
2313 
2314 	/* this is where we fill in holes in the file. */
2315 	if (use_get_block) {
2316 		retval = reiserfs_get_block(inode, block, bh_result,
2317 					    GET_BLOCK_CREATE | GET_BLOCK_NO_IMUX
2318 					    | GET_BLOCK_NO_DANGLE);
2319 		if (!retval) {
2320 			if (!buffer_mapped(bh_result)
2321 			    || bh_result->b_blocknr == 0) {
2322 				/* get_block failed to find a mapped unformatted node. */
2323 				use_get_block = 0;
2324 				goto start_over;
2325 			}
2326 		}
2327 	}
2328 	kunmap(bh_result->b_page);
2329 
2330 	if (!retval && buffer_mapped(bh_result) && bh_result->b_blocknr == 0) {
2331 		/* we've copied data from the page into the direct item, so the
2332 		 * buffer in the page is now clean, mark it to reflect that.
2333 		 */
2334 		lock_buffer(bh_result);
2335 		clear_buffer_dirty(bh_result);
2336 		unlock_buffer(bh_result);
2337 	}
2338 	return retval;
2339 }
2340 
2341 /*
2342  * mason@suse.com: updated in 2.5.54 to follow the same general io
2343  * start/recovery path as __block_write_full_page, along with special
2344  * code to handle reiserfs tails.
2345  */
reiserfs_write_full_page(struct page * page,struct writeback_control * wbc)2346 static int reiserfs_write_full_page(struct page *page,
2347 				    struct writeback_control *wbc)
2348 {
2349 	struct inode *inode = page->mapping->host;
2350 	unsigned long end_index = inode->i_size >> PAGE_CACHE_SHIFT;
2351 	int error = 0;
2352 	unsigned long block;
2353 	sector_t last_block;
2354 	struct buffer_head *head, *bh;
2355 	int partial = 0;
2356 	int nr = 0;
2357 	int checked = PageChecked(page);
2358 	struct reiserfs_transaction_handle th;
2359 	struct super_block *s = inode->i_sb;
2360 	int bh_per_page = PAGE_CACHE_SIZE / s->s_blocksize;
2361 	th.t_trans_id = 0;
2362 
2363 	/* no logging allowed when nonblocking or from PF_MEMALLOC */
2364 	if (checked && (current->flags & PF_MEMALLOC)) {
2365 		redirty_page_for_writepage(wbc, page);
2366 		unlock_page(page);
2367 		return 0;
2368 	}
2369 
2370 	/* The page dirty bit is cleared before writepage is called, which
2371 	 * means we have to tell create_empty_buffers to make dirty buffers
2372 	 * The page really should be up to date at this point, so tossing
2373 	 * in the BH_Uptodate is just a sanity check.
2374 	 */
2375 	if (!page_has_buffers(page)) {
2376 		create_empty_buffers(page, s->s_blocksize,
2377 				     (1 << BH_Dirty) | (1 << BH_Uptodate));
2378 	}
2379 	head = page_buffers(page);
2380 
2381 	/* last page in the file, zero out any contents past the
2382 	 ** last byte in the file
2383 	 */
2384 	if (page->index >= end_index) {
2385 		unsigned last_offset;
2386 
2387 		last_offset = inode->i_size & (PAGE_CACHE_SIZE - 1);
2388 		/* no file contents in this page */
2389 		if (page->index >= end_index + 1 || !last_offset) {
2390 			unlock_page(page);
2391 			return 0;
2392 		}
2393 		zero_user_segment(page, last_offset, PAGE_CACHE_SIZE);
2394 	}
2395 	bh = head;
2396 	block = page->index << (PAGE_CACHE_SHIFT - s->s_blocksize_bits);
2397 	last_block = (i_size_read(inode) - 1) >> inode->i_blkbits;
2398 	/* first map all the buffers, logging any direct items we find */
2399 	do {
2400 		if (block > last_block) {
2401 			/*
2402 			 * This can happen when the block size is less than
2403 			 * the page size.  The corresponding bytes in the page
2404 			 * were zero filled above
2405 			 */
2406 			clear_buffer_dirty(bh);
2407 			set_buffer_uptodate(bh);
2408 		} else if ((checked || buffer_dirty(bh)) &&
2409 		           (!buffer_mapped(bh) || (buffer_mapped(bh)
2410 						       && bh->b_blocknr ==
2411 						       0))) {
2412 			/* not mapped yet, or it points to a direct item, search
2413 			 * the btree for the mapping info, and log any direct
2414 			 * items found
2415 			 */
2416 			if ((error = map_block_for_writepage(inode, bh, block))) {
2417 				goto fail;
2418 			}
2419 		}
2420 		bh = bh->b_this_page;
2421 		block++;
2422 	} while (bh != head);
2423 
2424 	/*
2425 	 * we start the transaction after map_block_for_writepage,
2426 	 * because it can create holes in the file (an unbounded operation).
2427 	 * starting it here, we can make a reliable estimate for how many
2428 	 * blocks we're going to log
2429 	 */
2430 	if (checked) {
2431 		ClearPageChecked(page);
2432 		reiserfs_write_lock(s);
2433 		error = journal_begin(&th, s, bh_per_page + 1);
2434 		if (error) {
2435 			reiserfs_write_unlock(s);
2436 			goto fail;
2437 		}
2438 		reiserfs_update_inode_transaction(inode);
2439 	}
2440 	/* now go through and lock any dirty buffers on the page */
2441 	do {
2442 		get_bh(bh);
2443 		if (!buffer_mapped(bh))
2444 			continue;
2445 		if (buffer_mapped(bh) && bh->b_blocknr == 0)
2446 			continue;
2447 
2448 		if (checked) {
2449 			reiserfs_prepare_for_journal(s, bh, 1);
2450 			journal_mark_dirty(&th, s, bh);
2451 			continue;
2452 		}
2453 		/* from this point on, we know the buffer is mapped to a
2454 		 * real block and not a direct item
2455 		 */
2456 		if (wbc->sync_mode != WB_SYNC_NONE) {
2457 			lock_buffer(bh);
2458 		} else {
2459 			if (!trylock_buffer(bh)) {
2460 				redirty_page_for_writepage(wbc, page);
2461 				continue;
2462 			}
2463 		}
2464 		if (test_clear_buffer_dirty(bh)) {
2465 			mark_buffer_async_write(bh);
2466 		} else {
2467 			unlock_buffer(bh);
2468 		}
2469 	} while ((bh = bh->b_this_page) != head);
2470 
2471 	if (checked) {
2472 		error = journal_end(&th, s, bh_per_page + 1);
2473 		reiserfs_write_unlock(s);
2474 		if (error)
2475 			goto fail;
2476 	}
2477 	BUG_ON(PageWriteback(page));
2478 	set_page_writeback(page);
2479 	unlock_page(page);
2480 
2481 	/*
2482 	 * since any buffer might be the only dirty buffer on the page,
2483 	 * the first submit_bh can bring the page out of writeback.
2484 	 * be careful with the buffers.
2485 	 */
2486 	do {
2487 		struct buffer_head *next = bh->b_this_page;
2488 		if (buffer_async_write(bh)) {
2489 			submit_bh(WRITE, bh);
2490 			nr++;
2491 		}
2492 		put_bh(bh);
2493 		bh = next;
2494 	} while (bh != head);
2495 
2496 	error = 0;
2497       done:
2498 	if (nr == 0) {
2499 		/*
2500 		 * if this page only had a direct item, it is very possible for
2501 		 * no io to be required without there being an error.  Or,
2502 		 * someone else could have locked them and sent them down the
2503 		 * pipe without locking the page
2504 		 */
2505 		bh = head;
2506 		do {
2507 			if (!buffer_uptodate(bh)) {
2508 				partial = 1;
2509 				break;
2510 			}
2511 			bh = bh->b_this_page;
2512 		} while (bh != head);
2513 		if (!partial)
2514 			SetPageUptodate(page);
2515 		end_page_writeback(page);
2516 	}
2517 	return error;
2518 
2519       fail:
2520 	/* catches various errors, we need to make sure any valid dirty blocks
2521 	 * get to the media.  The page is currently locked and not marked for
2522 	 * writeback
2523 	 */
2524 	ClearPageUptodate(page);
2525 	bh = head;
2526 	do {
2527 		get_bh(bh);
2528 		if (buffer_mapped(bh) && buffer_dirty(bh) && bh->b_blocknr) {
2529 			lock_buffer(bh);
2530 			mark_buffer_async_write(bh);
2531 		} else {
2532 			/*
2533 			 * clear any dirty bits that might have come from getting
2534 			 * attached to a dirty page
2535 			 */
2536 			clear_buffer_dirty(bh);
2537 		}
2538 		bh = bh->b_this_page;
2539 	} while (bh != head);
2540 	SetPageError(page);
2541 	BUG_ON(PageWriteback(page));
2542 	set_page_writeback(page);
2543 	unlock_page(page);
2544 	do {
2545 		struct buffer_head *next = bh->b_this_page;
2546 		if (buffer_async_write(bh)) {
2547 			clear_buffer_dirty(bh);
2548 			submit_bh(WRITE, bh);
2549 			nr++;
2550 		}
2551 		put_bh(bh);
2552 		bh = next;
2553 	} while (bh != head);
2554 	goto done;
2555 }
2556 
reiserfs_readpage(struct file * f,struct page * page)2557 static int reiserfs_readpage(struct file *f, struct page *page)
2558 {
2559 	return block_read_full_page(page, reiserfs_get_block);
2560 }
2561 
reiserfs_writepage(struct page * page,struct writeback_control * wbc)2562 static int reiserfs_writepage(struct page *page, struct writeback_control *wbc)
2563 {
2564 	struct inode *inode = page->mapping->host;
2565 	reiserfs_wait_on_write_block(inode->i_sb);
2566 	return reiserfs_write_full_page(page, wbc);
2567 }
2568 
reiserfs_truncate_failed_write(struct inode * inode)2569 static void reiserfs_truncate_failed_write(struct inode *inode)
2570 {
2571 	truncate_inode_pages(inode->i_mapping, inode->i_size);
2572 	reiserfs_truncate_file(inode, 0);
2573 }
2574 
reiserfs_write_begin(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned flags,struct page ** pagep,void ** fsdata)2575 static int reiserfs_write_begin(struct file *file,
2576 				struct address_space *mapping,
2577 				loff_t pos, unsigned len, unsigned flags,
2578 				struct page **pagep, void **fsdata)
2579 {
2580 	struct inode *inode;
2581 	struct page *page;
2582 	pgoff_t index;
2583 	int ret;
2584 	int old_ref = 0;
2585 
2586  	inode = mapping->host;
2587 	*fsdata = 0;
2588  	if (flags & AOP_FLAG_CONT_EXPAND &&
2589  	    (pos & (inode->i_sb->s_blocksize - 1)) == 0) {
2590  		pos ++;
2591 		*fsdata = (void *)(unsigned long)flags;
2592 	}
2593 
2594 	index = pos >> PAGE_CACHE_SHIFT;
2595 	page = grab_cache_page_write_begin(mapping, index, flags);
2596 	if (!page)
2597 		return -ENOMEM;
2598 	*pagep = page;
2599 
2600 	reiserfs_wait_on_write_block(inode->i_sb);
2601 	fix_tail_page_for_writing(page);
2602 	if (reiserfs_transaction_running(inode->i_sb)) {
2603 		struct reiserfs_transaction_handle *th;
2604 		th = (struct reiserfs_transaction_handle *)current->
2605 		    journal_info;
2606 		BUG_ON(!th->t_refcount);
2607 		BUG_ON(!th->t_trans_id);
2608 		old_ref = th->t_refcount;
2609 		th->t_refcount++;
2610 	}
2611 	ret = __block_write_begin(page, pos, len, reiserfs_get_block);
2612 	if (ret && reiserfs_transaction_running(inode->i_sb)) {
2613 		struct reiserfs_transaction_handle *th = current->journal_info;
2614 		/* this gets a little ugly.  If reiserfs_get_block returned an
2615 		 * error and left a transacstion running, we've got to close it,
2616 		 * and we've got to free handle if it was a persistent transaction.
2617 		 *
2618 		 * But, if we had nested into an existing transaction, we need
2619 		 * to just drop the ref count on the handle.
2620 		 *
2621 		 * If old_ref == 0, the transaction is from reiserfs_get_block,
2622 		 * and it was a persistent trans.  Otherwise, it was nested above.
2623 		 */
2624 		if (th->t_refcount > old_ref) {
2625 			if (old_ref)
2626 				th->t_refcount--;
2627 			else {
2628 				int err;
2629 				reiserfs_write_lock(inode->i_sb);
2630 				err = reiserfs_end_persistent_transaction(th);
2631 				reiserfs_write_unlock(inode->i_sb);
2632 				if (err)
2633 					ret = err;
2634 			}
2635 		}
2636 	}
2637 	if (ret) {
2638 		unlock_page(page);
2639 		page_cache_release(page);
2640 		/* Truncate allocated blocks */
2641 		reiserfs_truncate_failed_write(inode);
2642 	}
2643 	return ret;
2644 }
2645 
__reiserfs_write_begin(struct page * page,unsigned from,unsigned len)2646 int __reiserfs_write_begin(struct page *page, unsigned from, unsigned len)
2647 {
2648 	struct inode *inode = page->mapping->host;
2649 	int ret;
2650 	int old_ref = 0;
2651 
2652 	reiserfs_write_unlock(inode->i_sb);
2653 	reiserfs_wait_on_write_block(inode->i_sb);
2654 	reiserfs_write_lock(inode->i_sb);
2655 
2656 	fix_tail_page_for_writing(page);
2657 	if (reiserfs_transaction_running(inode->i_sb)) {
2658 		struct reiserfs_transaction_handle *th;
2659 		th = (struct reiserfs_transaction_handle *)current->
2660 		    journal_info;
2661 		BUG_ON(!th->t_refcount);
2662 		BUG_ON(!th->t_trans_id);
2663 		old_ref = th->t_refcount;
2664 		th->t_refcount++;
2665 	}
2666 
2667 	ret = __block_write_begin(page, from, len, reiserfs_get_block);
2668 	if (ret && reiserfs_transaction_running(inode->i_sb)) {
2669 		struct reiserfs_transaction_handle *th = current->journal_info;
2670 		/* this gets a little ugly.  If reiserfs_get_block returned an
2671 		 * error and left a transacstion running, we've got to close it,
2672 		 * and we've got to free handle if it was a persistent transaction.
2673 		 *
2674 		 * But, if we had nested into an existing transaction, we need
2675 		 * to just drop the ref count on the handle.
2676 		 *
2677 		 * If old_ref == 0, the transaction is from reiserfs_get_block,
2678 		 * and it was a persistent trans.  Otherwise, it was nested above.
2679 		 */
2680 		if (th->t_refcount > old_ref) {
2681 			if (old_ref)
2682 				th->t_refcount--;
2683 			else {
2684 				int err;
2685 				reiserfs_write_lock(inode->i_sb);
2686 				err = reiserfs_end_persistent_transaction(th);
2687 				reiserfs_write_unlock(inode->i_sb);
2688 				if (err)
2689 					ret = err;
2690 			}
2691 		}
2692 	}
2693 	return ret;
2694 
2695 }
2696 
reiserfs_aop_bmap(struct address_space * as,sector_t block)2697 static sector_t reiserfs_aop_bmap(struct address_space *as, sector_t block)
2698 {
2699 	return generic_block_bmap(as, block, reiserfs_bmap);
2700 }
2701 
reiserfs_write_end(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct page * page,void * fsdata)2702 static int reiserfs_write_end(struct file *file, struct address_space *mapping,
2703 			      loff_t pos, unsigned len, unsigned copied,
2704 			      struct page *page, void *fsdata)
2705 {
2706 	struct inode *inode = page->mapping->host;
2707 	int ret = 0;
2708 	int update_sd = 0;
2709 	struct reiserfs_transaction_handle *th;
2710 	unsigned start;
2711 	int lock_depth = 0;
2712 	bool locked = false;
2713 
2714 	if ((unsigned long)fsdata & AOP_FLAG_CONT_EXPAND)
2715 		pos ++;
2716 
2717 	reiserfs_wait_on_write_block(inode->i_sb);
2718 	if (reiserfs_transaction_running(inode->i_sb))
2719 		th = current->journal_info;
2720 	else
2721 		th = NULL;
2722 
2723 	start = pos & (PAGE_CACHE_SIZE - 1);
2724 	if (unlikely(copied < len)) {
2725 		if (!PageUptodate(page))
2726 			copied = 0;
2727 
2728 		page_zero_new_buffers(page, start + copied, start + len);
2729 	}
2730 	flush_dcache_page(page);
2731 
2732 	reiserfs_commit_page(inode, page, start, start + copied);
2733 
2734 	/* generic_commit_write does this for us, but does not update the
2735 	 ** transaction tracking stuff when the size changes.  So, we have
2736 	 ** to do the i_size updates here.
2737 	 */
2738 	if (pos + copied > inode->i_size) {
2739 		struct reiserfs_transaction_handle myth;
2740 		lock_depth = reiserfs_write_lock_once(inode->i_sb);
2741 		locked = true;
2742 		/* If the file have grown beyond the border where it
2743 		   can have a tail, unmark it as needing a tail
2744 		   packing */
2745 		if ((have_large_tails(inode->i_sb)
2746 		     && inode->i_size > i_block_size(inode) * 4)
2747 		    || (have_small_tails(inode->i_sb)
2748 			&& inode->i_size > i_block_size(inode)))
2749 			REISERFS_I(inode)->i_flags &= ~i_pack_on_close_mask;
2750 
2751 		ret = journal_begin(&myth, inode->i_sb, 1);
2752 		if (ret)
2753 			goto journal_error;
2754 
2755 		reiserfs_update_inode_transaction(inode);
2756 		inode->i_size = pos + copied;
2757 		/*
2758 		 * this will just nest into our transaction.  It's important
2759 		 * to use mark_inode_dirty so the inode gets pushed around on the
2760 		 * dirty lists, and so that O_SYNC works as expected
2761 		 */
2762 		mark_inode_dirty(inode);
2763 		reiserfs_update_sd(&myth, inode);
2764 		update_sd = 1;
2765 		ret = journal_end(&myth, inode->i_sb, 1);
2766 		if (ret)
2767 			goto journal_error;
2768 	}
2769 	if (th) {
2770 		if (!locked) {
2771 			lock_depth = reiserfs_write_lock_once(inode->i_sb);
2772 			locked = true;
2773 		}
2774 		if (!update_sd)
2775 			mark_inode_dirty(inode);
2776 		ret = reiserfs_end_persistent_transaction(th);
2777 		if (ret)
2778 			goto out;
2779 	}
2780 
2781       out:
2782 	if (locked)
2783 		reiserfs_write_unlock_once(inode->i_sb, lock_depth);
2784 	unlock_page(page);
2785 	page_cache_release(page);
2786 
2787 	if (pos + len > inode->i_size)
2788 		reiserfs_truncate_failed_write(inode);
2789 
2790 	return ret == 0 ? copied : ret;
2791 
2792       journal_error:
2793 	reiserfs_write_unlock_once(inode->i_sb, lock_depth);
2794 	locked = false;
2795 	if (th) {
2796 		if (!update_sd)
2797 			reiserfs_update_sd(th, inode);
2798 		ret = reiserfs_end_persistent_transaction(th);
2799 	}
2800 	goto out;
2801 }
2802 
reiserfs_commit_write(struct file * f,struct page * page,unsigned from,unsigned to)2803 int reiserfs_commit_write(struct file *f, struct page *page,
2804 			  unsigned from, unsigned to)
2805 {
2806 	struct inode *inode = page->mapping->host;
2807 	loff_t pos = ((loff_t) page->index << PAGE_CACHE_SHIFT) + to;
2808 	int ret = 0;
2809 	int update_sd = 0;
2810 	struct reiserfs_transaction_handle *th = NULL;
2811 
2812 	reiserfs_write_unlock(inode->i_sb);
2813 	reiserfs_wait_on_write_block(inode->i_sb);
2814 	reiserfs_write_lock(inode->i_sb);
2815 
2816 	if (reiserfs_transaction_running(inode->i_sb)) {
2817 		th = current->journal_info;
2818 	}
2819 	reiserfs_commit_page(inode, page, from, to);
2820 
2821 	/* generic_commit_write does this for us, but does not update the
2822 	 ** transaction tracking stuff when the size changes.  So, we have
2823 	 ** to do the i_size updates here.
2824 	 */
2825 	if (pos > inode->i_size) {
2826 		struct reiserfs_transaction_handle myth;
2827 		/* If the file have grown beyond the border where it
2828 		   can have a tail, unmark it as needing a tail
2829 		   packing */
2830 		if ((have_large_tails(inode->i_sb)
2831 		     && inode->i_size > i_block_size(inode) * 4)
2832 		    || (have_small_tails(inode->i_sb)
2833 			&& inode->i_size > i_block_size(inode)))
2834 			REISERFS_I(inode)->i_flags &= ~i_pack_on_close_mask;
2835 
2836 		ret = journal_begin(&myth, inode->i_sb, 1);
2837 		if (ret)
2838 			goto journal_error;
2839 
2840 		reiserfs_update_inode_transaction(inode);
2841 		inode->i_size = pos;
2842 		/*
2843 		 * this will just nest into our transaction.  It's important
2844 		 * to use mark_inode_dirty so the inode gets pushed around on the
2845 		 * dirty lists, and so that O_SYNC works as expected
2846 		 */
2847 		mark_inode_dirty(inode);
2848 		reiserfs_update_sd(&myth, inode);
2849 		update_sd = 1;
2850 		ret = journal_end(&myth, inode->i_sb, 1);
2851 		if (ret)
2852 			goto journal_error;
2853 	}
2854 	if (th) {
2855 		if (!update_sd)
2856 			mark_inode_dirty(inode);
2857 		ret = reiserfs_end_persistent_transaction(th);
2858 		if (ret)
2859 			goto out;
2860 	}
2861 
2862       out:
2863 	return ret;
2864 
2865       journal_error:
2866 	if (th) {
2867 		if (!update_sd)
2868 			reiserfs_update_sd(th, inode);
2869 		ret = reiserfs_end_persistent_transaction(th);
2870 	}
2871 
2872 	return ret;
2873 }
2874 
sd_attrs_to_i_attrs(__u16 sd_attrs,struct inode * inode)2875 void sd_attrs_to_i_attrs(__u16 sd_attrs, struct inode *inode)
2876 {
2877 	if (reiserfs_attrs(inode->i_sb)) {
2878 		if (sd_attrs & REISERFS_SYNC_FL)
2879 			inode->i_flags |= S_SYNC;
2880 		else
2881 			inode->i_flags &= ~S_SYNC;
2882 		if (sd_attrs & REISERFS_IMMUTABLE_FL)
2883 			inode->i_flags |= S_IMMUTABLE;
2884 		else
2885 			inode->i_flags &= ~S_IMMUTABLE;
2886 		if (sd_attrs & REISERFS_APPEND_FL)
2887 			inode->i_flags |= S_APPEND;
2888 		else
2889 			inode->i_flags &= ~S_APPEND;
2890 		if (sd_attrs & REISERFS_NOATIME_FL)
2891 			inode->i_flags |= S_NOATIME;
2892 		else
2893 			inode->i_flags &= ~S_NOATIME;
2894 		if (sd_attrs & REISERFS_NOTAIL_FL)
2895 			REISERFS_I(inode)->i_flags |= i_nopack_mask;
2896 		else
2897 			REISERFS_I(inode)->i_flags &= ~i_nopack_mask;
2898 	}
2899 }
2900 
i_attrs_to_sd_attrs(struct inode * inode,__u16 * sd_attrs)2901 void i_attrs_to_sd_attrs(struct inode *inode, __u16 * sd_attrs)
2902 {
2903 	if (reiserfs_attrs(inode->i_sb)) {
2904 		if (inode->i_flags & S_IMMUTABLE)
2905 			*sd_attrs |= REISERFS_IMMUTABLE_FL;
2906 		else
2907 			*sd_attrs &= ~REISERFS_IMMUTABLE_FL;
2908 		if (inode->i_flags & S_SYNC)
2909 			*sd_attrs |= REISERFS_SYNC_FL;
2910 		else
2911 			*sd_attrs &= ~REISERFS_SYNC_FL;
2912 		if (inode->i_flags & S_NOATIME)
2913 			*sd_attrs |= REISERFS_NOATIME_FL;
2914 		else
2915 			*sd_attrs &= ~REISERFS_NOATIME_FL;
2916 		if (REISERFS_I(inode)->i_flags & i_nopack_mask)
2917 			*sd_attrs |= REISERFS_NOTAIL_FL;
2918 		else
2919 			*sd_attrs &= ~REISERFS_NOTAIL_FL;
2920 	}
2921 }
2922 
2923 /* decide if this buffer needs to stay around for data logging or ordered
2924 ** write purposes
2925 */
invalidatepage_can_drop(struct inode * inode,struct buffer_head * bh)2926 static int invalidatepage_can_drop(struct inode *inode, struct buffer_head *bh)
2927 {
2928 	int ret = 1;
2929 	struct reiserfs_journal *j = SB_JOURNAL(inode->i_sb);
2930 
2931 	lock_buffer(bh);
2932 	spin_lock(&j->j_dirty_buffers_lock);
2933 	if (!buffer_mapped(bh)) {
2934 		goto free_jh;
2935 	}
2936 	/* the page is locked, and the only places that log a data buffer
2937 	 * also lock the page.
2938 	 */
2939 	if (reiserfs_file_data_log(inode)) {
2940 		/*
2941 		 * very conservative, leave the buffer pinned if
2942 		 * anyone might need it.
2943 		 */
2944 		if (buffer_journaled(bh) || buffer_journal_dirty(bh)) {
2945 			ret = 0;
2946 		}
2947 	} else  if (buffer_dirty(bh)) {
2948 		struct reiserfs_journal_list *jl;
2949 		struct reiserfs_jh *jh = bh->b_private;
2950 
2951 		/* why is this safe?
2952 		 * reiserfs_setattr updates i_size in the on disk
2953 		 * stat data before allowing vmtruncate to be called.
2954 		 *
2955 		 * If buffer was put onto the ordered list for this
2956 		 * transaction, we know for sure either this transaction
2957 		 * or an older one already has updated i_size on disk,
2958 		 * and this ordered data won't be referenced in the file
2959 		 * if we crash.
2960 		 *
2961 		 * if the buffer was put onto the ordered list for an older
2962 		 * transaction, we need to leave it around
2963 		 */
2964 		if (jh && (jl = jh->jl)
2965 		    && jl != SB_JOURNAL(inode->i_sb)->j_current_jl)
2966 			ret = 0;
2967 	}
2968       free_jh:
2969 	if (ret && bh->b_private) {
2970 		reiserfs_free_jh(bh);
2971 	}
2972 	spin_unlock(&j->j_dirty_buffers_lock);
2973 	unlock_buffer(bh);
2974 	return ret;
2975 }
2976 
2977 /* clm -- taken from fs/buffer.c:block_invalidate_page */
reiserfs_invalidatepage(struct page * page,unsigned long offset)2978 static void reiserfs_invalidatepage(struct page *page, unsigned long offset)
2979 {
2980 	struct buffer_head *head, *bh, *next;
2981 	struct inode *inode = page->mapping->host;
2982 	unsigned int curr_off = 0;
2983 	int ret = 1;
2984 
2985 	BUG_ON(!PageLocked(page));
2986 
2987 	if (offset == 0)
2988 		ClearPageChecked(page);
2989 
2990 	if (!page_has_buffers(page))
2991 		goto out;
2992 
2993 	head = page_buffers(page);
2994 	bh = head;
2995 	do {
2996 		unsigned int next_off = curr_off + bh->b_size;
2997 		next = bh->b_this_page;
2998 
2999 		/*
3000 		 * is this block fully invalidated?
3001 		 */
3002 		if (offset <= curr_off) {
3003 			if (invalidatepage_can_drop(inode, bh))
3004 				reiserfs_unmap_buffer(bh);
3005 			else
3006 				ret = 0;
3007 		}
3008 		curr_off = next_off;
3009 		bh = next;
3010 	} while (bh != head);
3011 
3012 	/*
3013 	 * We release buffers only if the entire page is being invalidated.
3014 	 * The get_block cached value has been unconditionally invalidated,
3015 	 * so real IO is not possible anymore.
3016 	 */
3017 	if (!offset && ret) {
3018 		ret = try_to_release_page(page, 0);
3019 		/* maybe should BUG_ON(!ret); - neilb */
3020 	}
3021       out:
3022 	return;
3023 }
3024 
reiserfs_set_page_dirty(struct page * page)3025 static int reiserfs_set_page_dirty(struct page *page)
3026 {
3027 	struct inode *inode = page->mapping->host;
3028 	if (reiserfs_file_data_log(inode)) {
3029 		SetPageChecked(page);
3030 		return __set_page_dirty_nobuffers(page);
3031 	}
3032 	return __set_page_dirty_buffers(page);
3033 }
3034 
3035 /*
3036  * Returns 1 if the page's buffers were dropped.  The page is locked.
3037  *
3038  * Takes j_dirty_buffers_lock to protect the b_assoc_buffers list_heads
3039  * in the buffers at page_buffers(page).
3040  *
3041  * even in -o notail mode, we can't be sure an old mount without -o notail
3042  * didn't create files with tails.
3043  */
reiserfs_releasepage(struct page * page,gfp_t unused_gfp_flags)3044 static int reiserfs_releasepage(struct page *page, gfp_t unused_gfp_flags)
3045 {
3046 	struct inode *inode = page->mapping->host;
3047 	struct reiserfs_journal *j = SB_JOURNAL(inode->i_sb);
3048 	struct buffer_head *head;
3049 	struct buffer_head *bh;
3050 	int ret = 1;
3051 
3052 	WARN_ON(PageChecked(page));
3053 	spin_lock(&j->j_dirty_buffers_lock);
3054 	head = page_buffers(page);
3055 	bh = head;
3056 	do {
3057 		if (bh->b_private) {
3058 			if (!buffer_dirty(bh) && !buffer_locked(bh)) {
3059 				reiserfs_free_jh(bh);
3060 			} else {
3061 				ret = 0;
3062 				break;
3063 			}
3064 		}
3065 		bh = bh->b_this_page;
3066 	} while (bh != head);
3067 	if (ret)
3068 		ret = try_to_free_buffers(page);
3069 	spin_unlock(&j->j_dirty_buffers_lock);
3070 	return ret;
3071 }
3072 
3073 /* We thank Mingming Cao for helping us understand in great detail what
3074    to do in this section of the code. */
reiserfs_direct_IO(int rw,struct kiocb * iocb,const struct iovec * iov,loff_t offset,unsigned long nr_segs)3075 static ssize_t reiserfs_direct_IO(int rw, struct kiocb *iocb,
3076 				  const struct iovec *iov, loff_t offset,
3077 				  unsigned long nr_segs)
3078 {
3079 	struct file *file = iocb->ki_filp;
3080 	struct inode *inode = file->f_mapping->host;
3081 	ssize_t ret;
3082 
3083 	ret = blockdev_direct_IO(rw, iocb, inode, iov, offset, nr_segs,
3084 				  reiserfs_get_blocks_direct_io);
3085 
3086 	/*
3087 	 * In case of error extending write may have instantiated a few
3088 	 * blocks outside i_size. Trim these off again.
3089 	 */
3090 	if (unlikely((rw & WRITE) && ret < 0)) {
3091 		loff_t isize = i_size_read(inode);
3092 		loff_t end = offset + iov_length(iov, nr_segs);
3093 
3094 		if (end > isize)
3095 			vmtruncate(inode, isize);
3096 	}
3097 
3098 	return ret;
3099 }
3100 
reiserfs_setattr(struct dentry * dentry,struct iattr * attr)3101 int reiserfs_setattr(struct dentry *dentry, struct iattr *attr)
3102 {
3103 	struct inode *inode = dentry->d_inode;
3104 	unsigned int ia_valid;
3105 	int depth;
3106 	int error;
3107 
3108 	error = inode_change_ok(inode, attr);
3109 	if (error)
3110 		return error;
3111 
3112 	/* must be turned off for recursive notify_change calls */
3113 	ia_valid = attr->ia_valid &= ~(ATTR_KILL_SUID|ATTR_KILL_SGID);
3114 
3115 	if (is_quota_modification(inode, attr))
3116 		dquot_initialize(inode);
3117 	depth = reiserfs_write_lock_once(inode->i_sb);
3118 	if (attr->ia_valid & ATTR_SIZE) {
3119 		/* version 2 items will be caught by the s_maxbytes check
3120 		 ** done for us in vmtruncate
3121 		 */
3122 		if (get_inode_item_key_version(inode) == KEY_FORMAT_3_5 &&
3123 		    attr->ia_size > MAX_NON_LFS) {
3124 			error = -EFBIG;
3125 			goto out;
3126 		}
3127 
3128 		inode_dio_wait(inode);
3129 
3130 		/* fill in hole pointers in the expanding truncate case. */
3131 		if (attr->ia_size > inode->i_size) {
3132 			error = generic_cont_expand_simple(inode, attr->ia_size);
3133 			if (REISERFS_I(inode)->i_prealloc_count > 0) {
3134 				int err;
3135 				struct reiserfs_transaction_handle th;
3136 				/* we're changing at most 2 bitmaps, inode + super */
3137 				err = journal_begin(&th, inode->i_sb, 4);
3138 				if (!err) {
3139 					reiserfs_discard_prealloc(&th, inode);
3140 					err = journal_end(&th, inode->i_sb, 4);
3141 				}
3142 				if (err)
3143 					error = err;
3144 			}
3145 			if (error)
3146 				goto out;
3147 			/*
3148 			 * file size is changed, ctime and mtime are
3149 			 * to be updated
3150 			 */
3151 			attr->ia_valid |= (ATTR_MTIME | ATTR_CTIME);
3152 		}
3153 	}
3154 
3155 	if ((((attr->ia_valid & ATTR_UID) && (attr->ia_uid & ~0xffff)) ||
3156 	     ((attr->ia_valid & ATTR_GID) && (attr->ia_gid & ~0xffff))) &&
3157 	    (get_inode_sd_version(inode) == STAT_DATA_V1)) {
3158 		/* stat data of format v3.5 has 16 bit uid and gid */
3159 		error = -EINVAL;
3160 		goto out;
3161 	}
3162 
3163 	if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
3164 	    (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
3165 		struct reiserfs_transaction_handle th;
3166 		int jbegin_count =
3167 		    2 *
3168 		    (REISERFS_QUOTA_INIT_BLOCKS(inode->i_sb) +
3169 		     REISERFS_QUOTA_DEL_BLOCKS(inode->i_sb)) +
3170 		    2;
3171 
3172 		error = reiserfs_chown_xattrs(inode, attr);
3173 
3174 		if (error)
3175 			return error;
3176 
3177 		/* (user+group)*(old+new) structure - we count quota info and , inode write (sb, inode) */
3178 		error = journal_begin(&th, inode->i_sb, jbegin_count);
3179 		if (error)
3180 			goto out;
3181 		reiserfs_write_unlock_once(inode->i_sb, depth);
3182 		error = dquot_transfer(inode, attr);
3183 		depth = reiserfs_write_lock_once(inode->i_sb);
3184 		if (error) {
3185 			journal_end(&th, inode->i_sb, jbegin_count);
3186 			goto out;
3187 		}
3188 
3189 		/* Update corresponding info in inode so that everything is in
3190 		 * one transaction */
3191 		if (attr->ia_valid & ATTR_UID)
3192 			inode->i_uid = attr->ia_uid;
3193 		if (attr->ia_valid & ATTR_GID)
3194 			inode->i_gid = attr->ia_gid;
3195 		mark_inode_dirty(inode);
3196 		error = journal_end(&th, inode->i_sb, jbegin_count);
3197 		if (error)
3198 			goto out;
3199 	}
3200 
3201 	/*
3202 	 * Relax the lock here, as it might truncate the
3203 	 * inode pages and wait for inode pages locks.
3204 	 * To release such page lock, the owner needs the
3205 	 * reiserfs lock
3206 	 */
3207 	reiserfs_write_unlock_once(inode->i_sb, depth);
3208 	if ((attr->ia_valid & ATTR_SIZE) &&
3209 	    attr->ia_size != i_size_read(inode))
3210 		error = vmtruncate(inode, attr->ia_size);
3211 
3212 	if (!error) {
3213 		setattr_copy(inode, attr);
3214 		mark_inode_dirty(inode);
3215 	}
3216 	depth = reiserfs_write_lock_once(inode->i_sb);
3217 
3218 	if (!error && reiserfs_posixacl(inode->i_sb)) {
3219 		if (attr->ia_valid & ATTR_MODE)
3220 			error = reiserfs_acl_chmod(inode);
3221 	}
3222 
3223       out:
3224 	reiserfs_write_unlock_once(inode->i_sb, depth);
3225 
3226 	return error;
3227 }
3228 
3229 const struct address_space_operations reiserfs_address_space_operations = {
3230 	.writepage = reiserfs_writepage,
3231 	.readpage = reiserfs_readpage,
3232 	.readpages = reiserfs_readpages,
3233 	.releasepage = reiserfs_releasepage,
3234 	.invalidatepage = reiserfs_invalidatepage,
3235 	.write_begin = reiserfs_write_begin,
3236 	.write_end = reiserfs_write_end,
3237 	.bmap = reiserfs_aop_bmap,
3238 	.direct_IO = reiserfs_direct_IO,
3239 	.set_page_dirty = reiserfs_set_page_dirty,
3240 };
3241