1 // SPDX-License-Identifier: GPL-2.0-or-later
2 //
3 // core.c -- Voltage/Current Regulator framework.
4 //
5 // Copyright 2007, 2008 Wolfson Microelectronics PLC.
6 // Copyright 2008 SlimLogic Ltd.
7 //
8 // Author: Liam Girdwood <lrg@slimlogic.co.uk>
9
10 #include <linux/kernel.h>
11 #include <linux/init.h>
12 #include <linux/debugfs.h>
13 #include <linux/device.h>
14 #include <linux/slab.h>
15 #include <linux/async.h>
16 #include <linux/err.h>
17 #include <linux/mutex.h>
18 #include <linux/suspend.h>
19 #include <linux/delay.h>
20 #include <linux/gpio/consumer.h>
21 #include <linux/of.h>
22 #include <linux/regmap.h>
23 #include <linux/regulator/of_regulator.h>
24 #include <linux/regulator/consumer.h>
25 #include <linux/regulator/coupler.h>
26 #include <linux/regulator/driver.h>
27 #include <linux/regulator/machine.h>
28 #include <linux/module.h>
29
30 #define CREATE_TRACE_POINTS
31 #include <trace/events/regulator.h>
32
33 #include "dummy.h"
34 #include "internal.h"
35
36 static DEFINE_WW_CLASS(regulator_ww_class);
37 static DEFINE_MUTEX(regulator_nesting_mutex);
38 static DEFINE_MUTEX(regulator_list_mutex);
39 static LIST_HEAD(regulator_map_list);
40 static LIST_HEAD(regulator_ena_gpio_list);
41 static LIST_HEAD(regulator_supply_alias_list);
42 static LIST_HEAD(regulator_coupler_list);
43 static bool has_full_constraints;
44
45 static struct dentry *debugfs_root;
46
47 /*
48 * struct regulator_map
49 *
50 * Used to provide symbolic supply names to devices.
51 */
52 struct regulator_map {
53 struct list_head list;
54 const char *dev_name; /* The dev_name() for the consumer */
55 const char *supply;
56 struct regulator_dev *regulator;
57 };
58
59 /*
60 * struct regulator_enable_gpio
61 *
62 * Management for shared enable GPIO pin
63 */
64 struct regulator_enable_gpio {
65 struct list_head list;
66 struct gpio_desc *gpiod;
67 u32 enable_count; /* a number of enabled shared GPIO */
68 u32 request_count; /* a number of requested shared GPIO */
69 };
70
71 /*
72 * struct regulator_supply_alias
73 *
74 * Used to map lookups for a supply onto an alternative device.
75 */
76 struct regulator_supply_alias {
77 struct list_head list;
78 struct device *src_dev;
79 const char *src_supply;
80 struct device *alias_dev;
81 const char *alias_supply;
82 };
83
84 static int _regulator_is_enabled(struct regulator_dev *rdev);
85 static int _regulator_disable(struct regulator *regulator);
86 static int _regulator_get_error_flags(struct regulator_dev *rdev, unsigned int *flags);
87 static int _regulator_get_current_limit(struct regulator_dev *rdev);
88 static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
89 static int _notifier_call_chain(struct regulator_dev *rdev,
90 unsigned long event, void *data);
91 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
92 int min_uV, int max_uV);
93 static int regulator_balance_voltage(struct regulator_dev *rdev,
94 suspend_state_t state);
95 static struct regulator *create_regulator(struct regulator_dev *rdev,
96 struct device *dev,
97 const char *supply_name);
98 static void destroy_regulator(struct regulator *regulator);
99 static void _regulator_put(struct regulator *regulator);
100
rdev_get_name(struct regulator_dev * rdev)101 const char *rdev_get_name(struct regulator_dev *rdev)
102 {
103 if (rdev->constraints && rdev->constraints->name)
104 return rdev->constraints->name;
105 else if (rdev->desc->name)
106 return rdev->desc->name;
107 else
108 return "";
109 }
110 EXPORT_SYMBOL_GPL(rdev_get_name);
111
have_full_constraints(void)112 static bool have_full_constraints(void)
113 {
114 return has_full_constraints || of_have_populated_dt();
115 }
116
regulator_ops_is_valid(struct regulator_dev * rdev,int ops)117 static bool regulator_ops_is_valid(struct regulator_dev *rdev, int ops)
118 {
119 if (!rdev->constraints) {
120 rdev_err(rdev, "no constraints\n");
121 return false;
122 }
123
124 if (rdev->constraints->valid_ops_mask & ops)
125 return true;
126
127 return false;
128 }
129
130 /**
131 * regulator_lock_nested - lock a single regulator
132 * @rdev: regulator source
133 * @ww_ctx: w/w mutex acquire context
134 *
135 * This function can be called many times by one task on
136 * a single regulator and its mutex will be locked only
137 * once. If a task, which is calling this function is other
138 * than the one, which initially locked the mutex, it will
139 * wait on mutex.
140 */
regulator_lock_nested(struct regulator_dev * rdev,struct ww_acquire_ctx * ww_ctx)141 static inline int regulator_lock_nested(struct regulator_dev *rdev,
142 struct ww_acquire_ctx *ww_ctx)
143 {
144 bool lock = false;
145 int ret = 0;
146
147 mutex_lock(®ulator_nesting_mutex);
148
149 if (!ww_mutex_trylock(&rdev->mutex, ww_ctx)) {
150 if (rdev->mutex_owner == current)
151 rdev->ref_cnt++;
152 else
153 lock = true;
154
155 if (lock) {
156 mutex_unlock(®ulator_nesting_mutex);
157 ret = ww_mutex_lock(&rdev->mutex, ww_ctx);
158 mutex_lock(®ulator_nesting_mutex);
159 }
160 } else {
161 lock = true;
162 }
163
164 if (lock && ret != -EDEADLK) {
165 rdev->ref_cnt++;
166 rdev->mutex_owner = current;
167 }
168
169 mutex_unlock(®ulator_nesting_mutex);
170
171 return ret;
172 }
173
174 /**
175 * regulator_lock - lock a single regulator
176 * @rdev: regulator source
177 *
178 * This function can be called many times by one task on
179 * a single regulator and its mutex will be locked only
180 * once. If a task, which is calling this function is other
181 * than the one, which initially locked the mutex, it will
182 * wait on mutex.
183 */
regulator_lock(struct regulator_dev * rdev)184 static void regulator_lock(struct regulator_dev *rdev)
185 {
186 regulator_lock_nested(rdev, NULL);
187 }
188
189 /**
190 * regulator_unlock - unlock a single regulator
191 * @rdev: regulator_source
192 *
193 * This function unlocks the mutex when the
194 * reference counter reaches 0.
195 */
regulator_unlock(struct regulator_dev * rdev)196 static void regulator_unlock(struct regulator_dev *rdev)
197 {
198 mutex_lock(®ulator_nesting_mutex);
199
200 if (--rdev->ref_cnt == 0) {
201 rdev->mutex_owner = NULL;
202 ww_mutex_unlock(&rdev->mutex);
203 }
204
205 WARN_ON_ONCE(rdev->ref_cnt < 0);
206
207 mutex_unlock(®ulator_nesting_mutex);
208 }
209
regulator_supply_is_couple(struct regulator_dev * rdev)210 static bool regulator_supply_is_couple(struct regulator_dev *rdev)
211 {
212 struct regulator_dev *c_rdev;
213 int i;
214
215 for (i = 1; i < rdev->coupling_desc.n_coupled; i++) {
216 c_rdev = rdev->coupling_desc.coupled_rdevs[i];
217
218 if (rdev->supply->rdev == c_rdev)
219 return true;
220 }
221
222 return false;
223 }
224
regulator_unlock_recursive(struct regulator_dev * rdev,unsigned int n_coupled)225 static void regulator_unlock_recursive(struct regulator_dev *rdev,
226 unsigned int n_coupled)
227 {
228 struct regulator_dev *c_rdev, *supply_rdev;
229 int i, supply_n_coupled;
230
231 for (i = n_coupled; i > 0; i--) {
232 c_rdev = rdev->coupling_desc.coupled_rdevs[i - 1];
233
234 if (!c_rdev)
235 continue;
236
237 if (c_rdev->supply && !regulator_supply_is_couple(c_rdev)) {
238 supply_rdev = c_rdev->supply->rdev;
239 supply_n_coupled = supply_rdev->coupling_desc.n_coupled;
240
241 regulator_unlock_recursive(supply_rdev,
242 supply_n_coupled);
243 }
244
245 regulator_unlock(c_rdev);
246 }
247 }
248
regulator_lock_recursive(struct regulator_dev * rdev,struct regulator_dev ** new_contended_rdev,struct regulator_dev ** old_contended_rdev,struct ww_acquire_ctx * ww_ctx)249 static int regulator_lock_recursive(struct regulator_dev *rdev,
250 struct regulator_dev **new_contended_rdev,
251 struct regulator_dev **old_contended_rdev,
252 struct ww_acquire_ctx *ww_ctx)
253 {
254 struct regulator_dev *c_rdev;
255 int i, err;
256
257 for (i = 0; i < rdev->coupling_desc.n_coupled; i++) {
258 c_rdev = rdev->coupling_desc.coupled_rdevs[i];
259
260 if (!c_rdev)
261 continue;
262
263 if (c_rdev != *old_contended_rdev) {
264 err = regulator_lock_nested(c_rdev, ww_ctx);
265 if (err) {
266 if (err == -EDEADLK) {
267 *new_contended_rdev = c_rdev;
268 goto err_unlock;
269 }
270
271 /* shouldn't happen */
272 WARN_ON_ONCE(err != -EALREADY);
273 }
274 } else {
275 *old_contended_rdev = NULL;
276 }
277
278 if (c_rdev->supply && !regulator_supply_is_couple(c_rdev)) {
279 err = regulator_lock_recursive(c_rdev->supply->rdev,
280 new_contended_rdev,
281 old_contended_rdev,
282 ww_ctx);
283 if (err) {
284 regulator_unlock(c_rdev);
285 goto err_unlock;
286 }
287 }
288 }
289
290 return 0;
291
292 err_unlock:
293 regulator_unlock_recursive(rdev, i);
294
295 return err;
296 }
297
298 /**
299 * regulator_unlock_dependent - unlock regulator's suppliers and coupled
300 * regulators
301 * @rdev: regulator source
302 * @ww_ctx: w/w mutex acquire context
303 *
304 * Unlock all regulators related with rdev by coupling or supplying.
305 */
regulator_unlock_dependent(struct regulator_dev * rdev,struct ww_acquire_ctx * ww_ctx)306 static void regulator_unlock_dependent(struct regulator_dev *rdev,
307 struct ww_acquire_ctx *ww_ctx)
308 {
309 regulator_unlock_recursive(rdev, rdev->coupling_desc.n_coupled);
310 ww_acquire_fini(ww_ctx);
311 }
312
313 /**
314 * regulator_lock_dependent - lock regulator's suppliers and coupled regulators
315 * @rdev: regulator source
316 * @ww_ctx: w/w mutex acquire context
317 *
318 * This function as a wrapper on regulator_lock_recursive(), which locks
319 * all regulators related with rdev by coupling or supplying.
320 */
regulator_lock_dependent(struct regulator_dev * rdev,struct ww_acquire_ctx * ww_ctx)321 static void regulator_lock_dependent(struct regulator_dev *rdev,
322 struct ww_acquire_ctx *ww_ctx)
323 {
324 struct regulator_dev *new_contended_rdev = NULL;
325 struct regulator_dev *old_contended_rdev = NULL;
326 int err;
327
328 mutex_lock(®ulator_list_mutex);
329
330 ww_acquire_init(ww_ctx, ®ulator_ww_class);
331
332 do {
333 if (new_contended_rdev) {
334 ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx);
335 old_contended_rdev = new_contended_rdev;
336 old_contended_rdev->ref_cnt++;
337 }
338
339 err = regulator_lock_recursive(rdev,
340 &new_contended_rdev,
341 &old_contended_rdev,
342 ww_ctx);
343
344 if (old_contended_rdev)
345 regulator_unlock(old_contended_rdev);
346
347 } while (err == -EDEADLK);
348
349 ww_acquire_done(ww_ctx);
350
351 mutex_unlock(®ulator_list_mutex);
352 }
353
354 /**
355 * of_get_child_regulator - get a child regulator device node
356 * based on supply name
357 * @parent: Parent device node
358 * @prop_name: Combination regulator supply name and "-supply"
359 *
360 * Traverse all child nodes.
361 * Extract the child regulator device node corresponding to the supply name.
362 * returns the device node corresponding to the regulator if found, else
363 * returns NULL.
364 */
of_get_child_regulator(struct device_node * parent,const char * prop_name)365 static struct device_node *of_get_child_regulator(struct device_node *parent,
366 const char *prop_name)
367 {
368 struct device_node *regnode = NULL;
369 struct device_node *child = NULL;
370
371 for_each_child_of_node(parent, child) {
372 regnode = of_parse_phandle(child, prop_name, 0);
373
374 if (!regnode) {
375 regnode = of_get_child_regulator(child, prop_name);
376 if (regnode)
377 goto err_node_put;
378 } else {
379 goto err_node_put;
380 }
381 }
382 return NULL;
383
384 err_node_put:
385 of_node_put(child);
386 return regnode;
387 }
388
389 /**
390 * of_get_regulator - get a regulator device node based on supply name
391 * @dev: Device pointer for the consumer (of regulator) device
392 * @supply: regulator supply name
393 *
394 * Extract the regulator device node corresponding to the supply name.
395 * returns the device node corresponding to the regulator if found, else
396 * returns NULL.
397 */
of_get_regulator(struct device * dev,const char * supply)398 static struct device_node *of_get_regulator(struct device *dev, const char *supply)
399 {
400 struct device_node *regnode = NULL;
401 char prop_name[64]; /* 64 is max size of property name */
402
403 dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
404
405 snprintf(prop_name, 64, "%s-supply", supply);
406 regnode = of_parse_phandle(dev->of_node, prop_name, 0);
407
408 if (!regnode) {
409 regnode = of_get_child_regulator(dev->of_node, prop_name);
410 if (regnode)
411 return regnode;
412
413 dev_dbg(dev, "Looking up %s property in node %pOF failed\n",
414 prop_name, dev->of_node);
415 return NULL;
416 }
417 return regnode;
418 }
419
420 /* Platform voltage constraint check */
regulator_check_voltage(struct regulator_dev * rdev,int * min_uV,int * max_uV)421 int regulator_check_voltage(struct regulator_dev *rdev,
422 int *min_uV, int *max_uV)
423 {
424 BUG_ON(*min_uV > *max_uV);
425
426 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
427 rdev_err(rdev, "voltage operation not allowed\n");
428 return -EPERM;
429 }
430
431 if (*max_uV > rdev->constraints->max_uV)
432 *max_uV = rdev->constraints->max_uV;
433 if (*min_uV < rdev->constraints->min_uV)
434 *min_uV = rdev->constraints->min_uV;
435
436 if (*min_uV > *max_uV) {
437 rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
438 *min_uV, *max_uV);
439 return -EINVAL;
440 }
441
442 return 0;
443 }
444
445 /* return 0 if the state is valid */
regulator_check_states(suspend_state_t state)446 static int regulator_check_states(suspend_state_t state)
447 {
448 return (state > PM_SUSPEND_MAX || state == PM_SUSPEND_TO_IDLE);
449 }
450
451 /* Make sure we select a voltage that suits the needs of all
452 * regulator consumers
453 */
regulator_check_consumers(struct regulator_dev * rdev,int * min_uV,int * max_uV,suspend_state_t state)454 int regulator_check_consumers(struct regulator_dev *rdev,
455 int *min_uV, int *max_uV,
456 suspend_state_t state)
457 {
458 struct regulator *regulator;
459 struct regulator_voltage *voltage;
460
461 list_for_each_entry(regulator, &rdev->consumer_list, list) {
462 voltage = ®ulator->voltage[state];
463 /*
464 * Assume consumers that didn't say anything are OK
465 * with anything in the constraint range.
466 */
467 if (!voltage->min_uV && !voltage->max_uV)
468 continue;
469
470 if (*max_uV > voltage->max_uV)
471 *max_uV = voltage->max_uV;
472 if (*min_uV < voltage->min_uV)
473 *min_uV = voltage->min_uV;
474 }
475
476 if (*min_uV > *max_uV) {
477 rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
478 *min_uV, *max_uV);
479 return -EINVAL;
480 }
481
482 return 0;
483 }
484
485 /* current constraint check */
regulator_check_current_limit(struct regulator_dev * rdev,int * min_uA,int * max_uA)486 static int regulator_check_current_limit(struct regulator_dev *rdev,
487 int *min_uA, int *max_uA)
488 {
489 BUG_ON(*min_uA > *max_uA);
490
491 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_CURRENT)) {
492 rdev_err(rdev, "current operation not allowed\n");
493 return -EPERM;
494 }
495
496 if (*max_uA > rdev->constraints->max_uA)
497 *max_uA = rdev->constraints->max_uA;
498 if (*min_uA < rdev->constraints->min_uA)
499 *min_uA = rdev->constraints->min_uA;
500
501 if (*min_uA > *max_uA) {
502 rdev_err(rdev, "unsupportable current range: %d-%duA\n",
503 *min_uA, *max_uA);
504 return -EINVAL;
505 }
506
507 return 0;
508 }
509
510 /* operating mode constraint check */
regulator_mode_constrain(struct regulator_dev * rdev,unsigned int * mode)511 static int regulator_mode_constrain(struct regulator_dev *rdev,
512 unsigned int *mode)
513 {
514 switch (*mode) {
515 case REGULATOR_MODE_FAST:
516 case REGULATOR_MODE_NORMAL:
517 case REGULATOR_MODE_IDLE:
518 case REGULATOR_MODE_STANDBY:
519 break;
520 default:
521 rdev_err(rdev, "invalid mode %x specified\n", *mode);
522 return -EINVAL;
523 }
524
525 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_MODE)) {
526 rdev_err(rdev, "mode operation not allowed\n");
527 return -EPERM;
528 }
529
530 /* The modes are bitmasks, the most power hungry modes having
531 * the lowest values. If the requested mode isn't supported
532 * try higher modes.
533 */
534 while (*mode) {
535 if (rdev->constraints->valid_modes_mask & *mode)
536 return 0;
537 *mode /= 2;
538 }
539
540 return -EINVAL;
541 }
542
543 static inline struct regulator_state *
regulator_get_suspend_state(struct regulator_dev * rdev,suspend_state_t state)544 regulator_get_suspend_state(struct regulator_dev *rdev, suspend_state_t state)
545 {
546 if (rdev->constraints == NULL)
547 return NULL;
548
549 switch (state) {
550 case PM_SUSPEND_STANDBY:
551 return &rdev->constraints->state_standby;
552 case PM_SUSPEND_MEM:
553 return &rdev->constraints->state_mem;
554 case PM_SUSPEND_MAX:
555 return &rdev->constraints->state_disk;
556 default:
557 return NULL;
558 }
559 }
560
561 static const struct regulator_state *
regulator_get_suspend_state_check(struct regulator_dev * rdev,suspend_state_t state)562 regulator_get_suspend_state_check(struct regulator_dev *rdev, suspend_state_t state)
563 {
564 const struct regulator_state *rstate;
565
566 rstate = regulator_get_suspend_state(rdev, state);
567 if (rstate == NULL)
568 return NULL;
569
570 /* If we have no suspend mode configuration don't set anything;
571 * only warn if the driver implements set_suspend_voltage or
572 * set_suspend_mode callback.
573 */
574 if (rstate->enabled != ENABLE_IN_SUSPEND &&
575 rstate->enabled != DISABLE_IN_SUSPEND) {
576 if (rdev->desc->ops->set_suspend_voltage ||
577 rdev->desc->ops->set_suspend_mode)
578 rdev_warn(rdev, "No configuration\n");
579 return NULL;
580 }
581
582 return rstate;
583 }
584
microvolts_show(struct device * dev,struct device_attribute * attr,char * buf)585 static ssize_t microvolts_show(struct device *dev,
586 struct device_attribute *attr, char *buf)
587 {
588 struct regulator_dev *rdev = dev_get_drvdata(dev);
589 int uV;
590
591 regulator_lock(rdev);
592 uV = regulator_get_voltage_rdev(rdev);
593 regulator_unlock(rdev);
594
595 if (uV < 0)
596 return uV;
597 return sprintf(buf, "%d\n", uV);
598 }
599 static DEVICE_ATTR_RO(microvolts);
600
microamps_show(struct device * dev,struct device_attribute * attr,char * buf)601 static ssize_t microamps_show(struct device *dev,
602 struct device_attribute *attr, char *buf)
603 {
604 struct regulator_dev *rdev = dev_get_drvdata(dev);
605
606 return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
607 }
608 static DEVICE_ATTR_RO(microamps);
609
name_show(struct device * dev,struct device_attribute * attr,char * buf)610 static ssize_t name_show(struct device *dev, struct device_attribute *attr,
611 char *buf)
612 {
613 struct regulator_dev *rdev = dev_get_drvdata(dev);
614
615 return sprintf(buf, "%s\n", rdev_get_name(rdev));
616 }
617 static DEVICE_ATTR_RO(name);
618
regulator_opmode_to_str(int mode)619 static const char *regulator_opmode_to_str(int mode)
620 {
621 switch (mode) {
622 case REGULATOR_MODE_FAST:
623 return "fast";
624 case REGULATOR_MODE_NORMAL:
625 return "normal";
626 case REGULATOR_MODE_IDLE:
627 return "idle";
628 case REGULATOR_MODE_STANDBY:
629 return "standby";
630 }
631 return "unknown";
632 }
633
regulator_print_opmode(char * buf,int mode)634 static ssize_t regulator_print_opmode(char *buf, int mode)
635 {
636 return sprintf(buf, "%s\n", regulator_opmode_to_str(mode));
637 }
638
opmode_show(struct device * dev,struct device_attribute * attr,char * buf)639 static ssize_t opmode_show(struct device *dev,
640 struct device_attribute *attr, char *buf)
641 {
642 struct regulator_dev *rdev = dev_get_drvdata(dev);
643
644 return regulator_print_opmode(buf, _regulator_get_mode(rdev));
645 }
646 static DEVICE_ATTR_RO(opmode);
647
regulator_print_state(char * buf,int state)648 static ssize_t regulator_print_state(char *buf, int state)
649 {
650 if (state > 0)
651 return sprintf(buf, "enabled\n");
652 else if (state == 0)
653 return sprintf(buf, "disabled\n");
654 else
655 return sprintf(buf, "unknown\n");
656 }
657
state_show(struct device * dev,struct device_attribute * attr,char * buf)658 static ssize_t state_show(struct device *dev,
659 struct device_attribute *attr, char *buf)
660 {
661 struct regulator_dev *rdev = dev_get_drvdata(dev);
662 ssize_t ret;
663
664 regulator_lock(rdev);
665 ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
666 regulator_unlock(rdev);
667
668 return ret;
669 }
670 static DEVICE_ATTR_RO(state);
671
status_show(struct device * dev,struct device_attribute * attr,char * buf)672 static ssize_t status_show(struct device *dev,
673 struct device_attribute *attr, char *buf)
674 {
675 struct regulator_dev *rdev = dev_get_drvdata(dev);
676 int status;
677 char *label;
678
679 status = rdev->desc->ops->get_status(rdev);
680 if (status < 0)
681 return status;
682
683 switch (status) {
684 case REGULATOR_STATUS_OFF:
685 label = "off";
686 break;
687 case REGULATOR_STATUS_ON:
688 label = "on";
689 break;
690 case REGULATOR_STATUS_ERROR:
691 label = "error";
692 break;
693 case REGULATOR_STATUS_FAST:
694 label = "fast";
695 break;
696 case REGULATOR_STATUS_NORMAL:
697 label = "normal";
698 break;
699 case REGULATOR_STATUS_IDLE:
700 label = "idle";
701 break;
702 case REGULATOR_STATUS_STANDBY:
703 label = "standby";
704 break;
705 case REGULATOR_STATUS_BYPASS:
706 label = "bypass";
707 break;
708 case REGULATOR_STATUS_UNDEFINED:
709 label = "undefined";
710 break;
711 default:
712 return -ERANGE;
713 }
714
715 return sprintf(buf, "%s\n", label);
716 }
717 static DEVICE_ATTR_RO(status);
718
min_microamps_show(struct device * dev,struct device_attribute * attr,char * buf)719 static ssize_t min_microamps_show(struct device *dev,
720 struct device_attribute *attr, char *buf)
721 {
722 struct regulator_dev *rdev = dev_get_drvdata(dev);
723
724 if (!rdev->constraints)
725 return sprintf(buf, "constraint not defined\n");
726
727 return sprintf(buf, "%d\n", rdev->constraints->min_uA);
728 }
729 static DEVICE_ATTR_RO(min_microamps);
730
max_microamps_show(struct device * dev,struct device_attribute * attr,char * buf)731 static ssize_t max_microamps_show(struct device *dev,
732 struct device_attribute *attr, char *buf)
733 {
734 struct regulator_dev *rdev = dev_get_drvdata(dev);
735
736 if (!rdev->constraints)
737 return sprintf(buf, "constraint not defined\n");
738
739 return sprintf(buf, "%d\n", rdev->constraints->max_uA);
740 }
741 static DEVICE_ATTR_RO(max_microamps);
742
min_microvolts_show(struct device * dev,struct device_attribute * attr,char * buf)743 static ssize_t min_microvolts_show(struct device *dev,
744 struct device_attribute *attr, char *buf)
745 {
746 struct regulator_dev *rdev = dev_get_drvdata(dev);
747
748 if (!rdev->constraints)
749 return sprintf(buf, "constraint not defined\n");
750
751 return sprintf(buf, "%d\n", rdev->constraints->min_uV);
752 }
753 static DEVICE_ATTR_RO(min_microvolts);
754
max_microvolts_show(struct device * dev,struct device_attribute * attr,char * buf)755 static ssize_t max_microvolts_show(struct device *dev,
756 struct device_attribute *attr, char *buf)
757 {
758 struct regulator_dev *rdev = dev_get_drvdata(dev);
759
760 if (!rdev->constraints)
761 return sprintf(buf, "constraint not defined\n");
762
763 return sprintf(buf, "%d\n", rdev->constraints->max_uV);
764 }
765 static DEVICE_ATTR_RO(max_microvolts);
766
requested_microamps_show(struct device * dev,struct device_attribute * attr,char * buf)767 static ssize_t requested_microamps_show(struct device *dev,
768 struct device_attribute *attr, char *buf)
769 {
770 struct regulator_dev *rdev = dev_get_drvdata(dev);
771 struct regulator *regulator;
772 int uA = 0;
773
774 regulator_lock(rdev);
775 list_for_each_entry(regulator, &rdev->consumer_list, list) {
776 if (regulator->enable_count)
777 uA += regulator->uA_load;
778 }
779 regulator_unlock(rdev);
780 return sprintf(buf, "%d\n", uA);
781 }
782 static DEVICE_ATTR_RO(requested_microamps);
783
num_users_show(struct device * dev,struct device_attribute * attr,char * buf)784 static ssize_t num_users_show(struct device *dev, struct device_attribute *attr,
785 char *buf)
786 {
787 struct regulator_dev *rdev = dev_get_drvdata(dev);
788 return sprintf(buf, "%d\n", rdev->use_count);
789 }
790 static DEVICE_ATTR_RO(num_users);
791
type_show(struct device * dev,struct device_attribute * attr,char * buf)792 static ssize_t type_show(struct device *dev, struct device_attribute *attr,
793 char *buf)
794 {
795 struct regulator_dev *rdev = dev_get_drvdata(dev);
796
797 switch (rdev->desc->type) {
798 case REGULATOR_VOLTAGE:
799 return sprintf(buf, "voltage\n");
800 case REGULATOR_CURRENT:
801 return sprintf(buf, "current\n");
802 }
803 return sprintf(buf, "unknown\n");
804 }
805 static DEVICE_ATTR_RO(type);
806
suspend_mem_microvolts_show(struct device * dev,struct device_attribute * attr,char * buf)807 static ssize_t suspend_mem_microvolts_show(struct device *dev,
808 struct device_attribute *attr, char *buf)
809 {
810 struct regulator_dev *rdev = dev_get_drvdata(dev);
811
812 return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
813 }
814 static DEVICE_ATTR_RO(suspend_mem_microvolts);
815
suspend_disk_microvolts_show(struct device * dev,struct device_attribute * attr,char * buf)816 static ssize_t suspend_disk_microvolts_show(struct device *dev,
817 struct device_attribute *attr, char *buf)
818 {
819 struct regulator_dev *rdev = dev_get_drvdata(dev);
820
821 return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
822 }
823 static DEVICE_ATTR_RO(suspend_disk_microvolts);
824
suspend_standby_microvolts_show(struct device * dev,struct device_attribute * attr,char * buf)825 static ssize_t suspend_standby_microvolts_show(struct device *dev,
826 struct device_attribute *attr, char *buf)
827 {
828 struct regulator_dev *rdev = dev_get_drvdata(dev);
829
830 return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
831 }
832 static DEVICE_ATTR_RO(suspend_standby_microvolts);
833
suspend_mem_mode_show(struct device * dev,struct device_attribute * attr,char * buf)834 static ssize_t suspend_mem_mode_show(struct device *dev,
835 struct device_attribute *attr, char *buf)
836 {
837 struct regulator_dev *rdev = dev_get_drvdata(dev);
838
839 return regulator_print_opmode(buf,
840 rdev->constraints->state_mem.mode);
841 }
842 static DEVICE_ATTR_RO(suspend_mem_mode);
843
suspend_disk_mode_show(struct device * dev,struct device_attribute * attr,char * buf)844 static ssize_t suspend_disk_mode_show(struct device *dev,
845 struct device_attribute *attr, char *buf)
846 {
847 struct regulator_dev *rdev = dev_get_drvdata(dev);
848
849 return regulator_print_opmode(buf,
850 rdev->constraints->state_disk.mode);
851 }
852 static DEVICE_ATTR_RO(suspend_disk_mode);
853
suspend_standby_mode_show(struct device * dev,struct device_attribute * attr,char * buf)854 static ssize_t suspend_standby_mode_show(struct device *dev,
855 struct device_attribute *attr, char *buf)
856 {
857 struct regulator_dev *rdev = dev_get_drvdata(dev);
858
859 return regulator_print_opmode(buf,
860 rdev->constraints->state_standby.mode);
861 }
862 static DEVICE_ATTR_RO(suspend_standby_mode);
863
suspend_mem_state_show(struct device * dev,struct device_attribute * attr,char * buf)864 static ssize_t suspend_mem_state_show(struct device *dev,
865 struct device_attribute *attr, char *buf)
866 {
867 struct regulator_dev *rdev = dev_get_drvdata(dev);
868
869 return regulator_print_state(buf,
870 rdev->constraints->state_mem.enabled);
871 }
872 static DEVICE_ATTR_RO(suspend_mem_state);
873
suspend_disk_state_show(struct device * dev,struct device_attribute * attr,char * buf)874 static ssize_t suspend_disk_state_show(struct device *dev,
875 struct device_attribute *attr, char *buf)
876 {
877 struct regulator_dev *rdev = dev_get_drvdata(dev);
878
879 return regulator_print_state(buf,
880 rdev->constraints->state_disk.enabled);
881 }
882 static DEVICE_ATTR_RO(suspend_disk_state);
883
suspend_standby_state_show(struct device * dev,struct device_attribute * attr,char * buf)884 static ssize_t suspend_standby_state_show(struct device *dev,
885 struct device_attribute *attr, char *buf)
886 {
887 struct regulator_dev *rdev = dev_get_drvdata(dev);
888
889 return regulator_print_state(buf,
890 rdev->constraints->state_standby.enabled);
891 }
892 static DEVICE_ATTR_RO(suspend_standby_state);
893
bypass_show(struct device * dev,struct device_attribute * attr,char * buf)894 static ssize_t bypass_show(struct device *dev,
895 struct device_attribute *attr, char *buf)
896 {
897 struct regulator_dev *rdev = dev_get_drvdata(dev);
898 const char *report;
899 bool bypass;
900 int ret;
901
902 ret = rdev->desc->ops->get_bypass(rdev, &bypass);
903
904 if (ret != 0)
905 report = "unknown";
906 else if (bypass)
907 report = "enabled";
908 else
909 report = "disabled";
910
911 return sprintf(buf, "%s\n", report);
912 }
913 static DEVICE_ATTR_RO(bypass);
914
915 #define REGULATOR_ERROR_ATTR(name, bit) \
916 static ssize_t name##_show(struct device *dev, struct device_attribute *attr, \
917 char *buf) \
918 { \
919 int ret; \
920 unsigned int flags; \
921 struct regulator_dev *rdev = dev_get_drvdata(dev); \
922 ret = _regulator_get_error_flags(rdev, &flags); \
923 if (ret) \
924 return ret; \
925 return sysfs_emit(buf, "%d\n", !!(flags & (bit))); \
926 } \
927 static DEVICE_ATTR_RO(name)
928
929 REGULATOR_ERROR_ATTR(under_voltage, REGULATOR_ERROR_UNDER_VOLTAGE);
930 REGULATOR_ERROR_ATTR(over_current, REGULATOR_ERROR_OVER_CURRENT);
931 REGULATOR_ERROR_ATTR(regulation_out, REGULATOR_ERROR_REGULATION_OUT);
932 REGULATOR_ERROR_ATTR(fail, REGULATOR_ERROR_FAIL);
933 REGULATOR_ERROR_ATTR(over_temp, REGULATOR_ERROR_OVER_TEMP);
934 REGULATOR_ERROR_ATTR(under_voltage_warn, REGULATOR_ERROR_UNDER_VOLTAGE_WARN);
935 REGULATOR_ERROR_ATTR(over_current_warn, REGULATOR_ERROR_OVER_CURRENT_WARN);
936 REGULATOR_ERROR_ATTR(over_voltage_warn, REGULATOR_ERROR_OVER_VOLTAGE_WARN);
937 REGULATOR_ERROR_ATTR(over_temp_warn, REGULATOR_ERROR_OVER_TEMP_WARN);
938
939 /* Calculate the new optimum regulator operating mode based on the new total
940 * consumer load. All locks held by caller
941 */
drms_uA_update(struct regulator_dev * rdev)942 static int drms_uA_update(struct regulator_dev *rdev)
943 {
944 struct regulator *sibling;
945 int current_uA = 0, output_uV, input_uV, err;
946 unsigned int mode;
947
948 /*
949 * first check to see if we can set modes at all, otherwise just
950 * tell the consumer everything is OK.
951 */
952 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS)) {
953 rdev_dbg(rdev, "DRMS operation not allowed\n");
954 return 0;
955 }
956
957 if (!rdev->desc->ops->get_optimum_mode &&
958 !rdev->desc->ops->set_load)
959 return 0;
960
961 if (!rdev->desc->ops->set_mode &&
962 !rdev->desc->ops->set_load)
963 return -EINVAL;
964
965 /* calc total requested load */
966 list_for_each_entry(sibling, &rdev->consumer_list, list) {
967 if (sibling->enable_count)
968 current_uA += sibling->uA_load;
969 }
970
971 current_uA += rdev->constraints->system_load;
972
973 if (rdev->desc->ops->set_load) {
974 /* set the optimum mode for our new total regulator load */
975 err = rdev->desc->ops->set_load(rdev, current_uA);
976 if (err < 0)
977 rdev_err(rdev, "failed to set load %d: %pe\n",
978 current_uA, ERR_PTR(err));
979 } else {
980 /*
981 * Unfortunately in some cases the constraints->valid_ops has
982 * REGULATOR_CHANGE_DRMS but there are no valid modes listed.
983 * That's not really legit but we won't consider it a fatal
984 * error here. We'll treat it as if REGULATOR_CHANGE_DRMS
985 * wasn't set.
986 */
987 if (!rdev->constraints->valid_modes_mask) {
988 rdev_dbg(rdev, "Can change modes; but no valid mode\n");
989 return 0;
990 }
991
992 /* get output voltage */
993 output_uV = regulator_get_voltage_rdev(rdev);
994
995 /*
996 * Don't return an error; if regulator driver cares about
997 * output_uV then it's up to the driver to validate.
998 */
999 if (output_uV <= 0)
1000 rdev_dbg(rdev, "invalid output voltage found\n");
1001
1002 /* get input voltage */
1003 input_uV = 0;
1004 if (rdev->supply)
1005 input_uV = regulator_get_voltage_rdev(rdev->supply->rdev);
1006 if (input_uV <= 0)
1007 input_uV = rdev->constraints->input_uV;
1008
1009 /*
1010 * Don't return an error; if regulator driver cares about
1011 * input_uV then it's up to the driver to validate.
1012 */
1013 if (input_uV <= 0)
1014 rdev_dbg(rdev, "invalid input voltage found\n");
1015
1016 /* now get the optimum mode for our new total regulator load */
1017 mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
1018 output_uV, current_uA);
1019
1020 /* check the new mode is allowed */
1021 err = regulator_mode_constrain(rdev, &mode);
1022 if (err < 0) {
1023 rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV: %pe\n",
1024 current_uA, input_uV, output_uV, ERR_PTR(err));
1025 return err;
1026 }
1027
1028 err = rdev->desc->ops->set_mode(rdev, mode);
1029 if (err < 0)
1030 rdev_err(rdev, "failed to set optimum mode %x: %pe\n",
1031 mode, ERR_PTR(err));
1032 }
1033
1034 return err;
1035 }
1036
__suspend_set_state(struct regulator_dev * rdev,const struct regulator_state * rstate)1037 static int __suspend_set_state(struct regulator_dev *rdev,
1038 const struct regulator_state *rstate)
1039 {
1040 int ret = 0;
1041
1042 if (rstate->enabled == ENABLE_IN_SUSPEND &&
1043 rdev->desc->ops->set_suspend_enable)
1044 ret = rdev->desc->ops->set_suspend_enable(rdev);
1045 else if (rstate->enabled == DISABLE_IN_SUSPEND &&
1046 rdev->desc->ops->set_suspend_disable)
1047 ret = rdev->desc->ops->set_suspend_disable(rdev);
1048 else /* OK if set_suspend_enable or set_suspend_disable is NULL */
1049 ret = 0;
1050
1051 if (ret < 0) {
1052 rdev_err(rdev, "failed to enabled/disable: %pe\n", ERR_PTR(ret));
1053 return ret;
1054 }
1055
1056 if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
1057 ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
1058 if (ret < 0) {
1059 rdev_err(rdev, "failed to set voltage: %pe\n", ERR_PTR(ret));
1060 return ret;
1061 }
1062 }
1063
1064 if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
1065 ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
1066 if (ret < 0) {
1067 rdev_err(rdev, "failed to set mode: %pe\n", ERR_PTR(ret));
1068 return ret;
1069 }
1070 }
1071
1072 return ret;
1073 }
1074
suspend_set_initial_state(struct regulator_dev * rdev)1075 static int suspend_set_initial_state(struct regulator_dev *rdev)
1076 {
1077 const struct regulator_state *rstate;
1078
1079 rstate = regulator_get_suspend_state_check(rdev,
1080 rdev->constraints->initial_state);
1081 if (!rstate)
1082 return 0;
1083
1084 return __suspend_set_state(rdev, rstate);
1085 }
1086
1087 #if defined(DEBUG) || defined(CONFIG_DYNAMIC_DEBUG)
print_constraints_debug(struct regulator_dev * rdev)1088 static void print_constraints_debug(struct regulator_dev *rdev)
1089 {
1090 struct regulation_constraints *constraints = rdev->constraints;
1091 char buf[160] = "";
1092 size_t len = sizeof(buf) - 1;
1093 int count = 0;
1094 int ret;
1095
1096 if (constraints->min_uV && constraints->max_uV) {
1097 if (constraints->min_uV == constraints->max_uV)
1098 count += scnprintf(buf + count, len - count, "%d mV ",
1099 constraints->min_uV / 1000);
1100 else
1101 count += scnprintf(buf + count, len - count,
1102 "%d <--> %d mV ",
1103 constraints->min_uV / 1000,
1104 constraints->max_uV / 1000);
1105 }
1106
1107 if (!constraints->min_uV ||
1108 constraints->min_uV != constraints->max_uV) {
1109 ret = regulator_get_voltage_rdev(rdev);
1110 if (ret > 0)
1111 count += scnprintf(buf + count, len - count,
1112 "at %d mV ", ret / 1000);
1113 }
1114
1115 if (constraints->uV_offset)
1116 count += scnprintf(buf + count, len - count, "%dmV offset ",
1117 constraints->uV_offset / 1000);
1118
1119 if (constraints->min_uA && constraints->max_uA) {
1120 if (constraints->min_uA == constraints->max_uA)
1121 count += scnprintf(buf + count, len - count, "%d mA ",
1122 constraints->min_uA / 1000);
1123 else
1124 count += scnprintf(buf + count, len - count,
1125 "%d <--> %d mA ",
1126 constraints->min_uA / 1000,
1127 constraints->max_uA / 1000);
1128 }
1129
1130 if (!constraints->min_uA ||
1131 constraints->min_uA != constraints->max_uA) {
1132 ret = _regulator_get_current_limit(rdev);
1133 if (ret > 0)
1134 count += scnprintf(buf + count, len - count,
1135 "at %d mA ", ret / 1000);
1136 }
1137
1138 if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
1139 count += scnprintf(buf + count, len - count, "fast ");
1140 if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
1141 count += scnprintf(buf + count, len - count, "normal ");
1142 if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
1143 count += scnprintf(buf + count, len - count, "idle ");
1144 if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
1145 count += scnprintf(buf + count, len - count, "standby ");
1146
1147 if (!count)
1148 count = scnprintf(buf, len, "no parameters");
1149 else
1150 --count;
1151
1152 count += scnprintf(buf + count, len - count, ", %s",
1153 _regulator_is_enabled(rdev) ? "enabled" : "disabled");
1154
1155 rdev_dbg(rdev, "%s\n", buf);
1156 }
1157 #else /* !DEBUG && !CONFIG_DYNAMIC_DEBUG */
print_constraints_debug(struct regulator_dev * rdev)1158 static inline void print_constraints_debug(struct regulator_dev *rdev) {}
1159 #endif /* !DEBUG && !CONFIG_DYNAMIC_DEBUG */
1160
print_constraints(struct regulator_dev * rdev)1161 static void print_constraints(struct regulator_dev *rdev)
1162 {
1163 struct regulation_constraints *constraints = rdev->constraints;
1164
1165 print_constraints_debug(rdev);
1166
1167 if ((constraints->min_uV != constraints->max_uV) &&
1168 !regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE))
1169 rdev_warn(rdev,
1170 "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
1171 }
1172
machine_constraints_voltage(struct regulator_dev * rdev,struct regulation_constraints * constraints)1173 static int machine_constraints_voltage(struct regulator_dev *rdev,
1174 struct regulation_constraints *constraints)
1175 {
1176 const struct regulator_ops *ops = rdev->desc->ops;
1177 int ret;
1178
1179 /* do we need to apply the constraint voltage */
1180 if (rdev->constraints->apply_uV &&
1181 rdev->constraints->min_uV && rdev->constraints->max_uV) {
1182 int target_min, target_max;
1183 int current_uV = regulator_get_voltage_rdev(rdev);
1184
1185 if (current_uV == -ENOTRECOVERABLE) {
1186 /* This regulator can't be read and must be initialized */
1187 rdev_info(rdev, "Setting %d-%duV\n",
1188 rdev->constraints->min_uV,
1189 rdev->constraints->max_uV);
1190 _regulator_do_set_voltage(rdev,
1191 rdev->constraints->min_uV,
1192 rdev->constraints->max_uV);
1193 current_uV = regulator_get_voltage_rdev(rdev);
1194 }
1195
1196 if (current_uV < 0) {
1197 if (current_uV != -EPROBE_DEFER)
1198 rdev_err(rdev,
1199 "failed to get the current voltage: %pe\n",
1200 ERR_PTR(current_uV));
1201 return current_uV;
1202 }
1203
1204 /*
1205 * If we're below the minimum voltage move up to the
1206 * minimum voltage, if we're above the maximum voltage
1207 * then move down to the maximum.
1208 */
1209 target_min = current_uV;
1210 target_max = current_uV;
1211
1212 if (current_uV < rdev->constraints->min_uV) {
1213 target_min = rdev->constraints->min_uV;
1214 target_max = rdev->constraints->min_uV;
1215 }
1216
1217 if (current_uV > rdev->constraints->max_uV) {
1218 target_min = rdev->constraints->max_uV;
1219 target_max = rdev->constraints->max_uV;
1220 }
1221
1222 if (target_min != current_uV || target_max != current_uV) {
1223 rdev_info(rdev, "Bringing %duV into %d-%duV\n",
1224 current_uV, target_min, target_max);
1225 ret = _regulator_do_set_voltage(
1226 rdev, target_min, target_max);
1227 if (ret < 0) {
1228 rdev_err(rdev,
1229 "failed to apply %d-%duV constraint: %pe\n",
1230 target_min, target_max, ERR_PTR(ret));
1231 return ret;
1232 }
1233 }
1234 }
1235
1236 /* constrain machine-level voltage specs to fit
1237 * the actual range supported by this regulator.
1238 */
1239 if (ops->list_voltage && rdev->desc->n_voltages) {
1240 int count = rdev->desc->n_voltages;
1241 int i;
1242 int min_uV = INT_MAX;
1243 int max_uV = INT_MIN;
1244 int cmin = constraints->min_uV;
1245 int cmax = constraints->max_uV;
1246
1247 /* it's safe to autoconfigure fixed-voltage supplies
1248 * and the constraints are used by list_voltage.
1249 */
1250 if (count == 1 && !cmin) {
1251 cmin = 1;
1252 cmax = INT_MAX;
1253 constraints->min_uV = cmin;
1254 constraints->max_uV = cmax;
1255 }
1256
1257 /* voltage constraints are optional */
1258 if ((cmin == 0) && (cmax == 0))
1259 return 0;
1260
1261 /* else require explicit machine-level constraints */
1262 if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
1263 rdev_err(rdev, "invalid voltage constraints\n");
1264 return -EINVAL;
1265 }
1266
1267 /* no need to loop voltages if range is continuous */
1268 if (rdev->desc->continuous_voltage_range)
1269 return 0;
1270
1271 /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
1272 for (i = 0; i < count; i++) {
1273 int value;
1274
1275 value = ops->list_voltage(rdev, i);
1276 if (value <= 0)
1277 continue;
1278
1279 /* maybe adjust [min_uV..max_uV] */
1280 if (value >= cmin && value < min_uV)
1281 min_uV = value;
1282 if (value <= cmax && value > max_uV)
1283 max_uV = value;
1284 }
1285
1286 /* final: [min_uV..max_uV] valid iff constraints valid */
1287 if (max_uV < min_uV) {
1288 rdev_err(rdev,
1289 "unsupportable voltage constraints %u-%uuV\n",
1290 min_uV, max_uV);
1291 return -EINVAL;
1292 }
1293
1294 /* use regulator's subset of machine constraints */
1295 if (constraints->min_uV < min_uV) {
1296 rdev_dbg(rdev, "override min_uV, %d -> %d\n",
1297 constraints->min_uV, min_uV);
1298 constraints->min_uV = min_uV;
1299 }
1300 if (constraints->max_uV > max_uV) {
1301 rdev_dbg(rdev, "override max_uV, %d -> %d\n",
1302 constraints->max_uV, max_uV);
1303 constraints->max_uV = max_uV;
1304 }
1305 }
1306
1307 return 0;
1308 }
1309
machine_constraints_current(struct regulator_dev * rdev,struct regulation_constraints * constraints)1310 static int machine_constraints_current(struct regulator_dev *rdev,
1311 struct regulation_constraints *constraints)
1312 {
1313 const struct regulator_ops *ops = rdev->desc->ops;
1314 int ret;
1315
1316 if (!constraints->min_uA && !constraints->max_uA)
1317 return 0;
1318
1319 if (constraints->min_uA > constraints->max_uA) {
1320 rdev_err(rdev, "Invalid current constraints\n");
1321 return -EINVAL;
1322 }
1323
1324 if (!ops->set_current_limit || !ops->get_current_limit) {
1325 rdev_warn(rdev, "Operation of current configuration missing\n");
1326 return 0;
1327 }
1328
1329 /* Set regulator current in constraints range */
1330 ret = ops->set_current_limit(rdev, constraints->min_uA,
1331 constraints->max_uA);
1332 if (ret < 0) {
1333 rdev_err(rdev, "Failed to set current constraint, %d\n", ret);
1334 return ret;
1335 }
1336
1337 return 0;
1338 }
1339
1340 static int _regulator_do_enable(struct regulator_dev *rdev);
1341
notif_set_limit(struct regulator_dev * rdev,int (* set)(struct regulator_dev *,int,int,bool),int limit,int severity)1342 static int notif_set_limit(struct regulator_dev *rdev,
1343 int (*set)(struct regulator_dev *, int, int, bool),
1344 int limit, int severity)
1345 {
1346 bool enable;
1347
1348 if (limit == REGULATOR_NOTIF_LIMIT_DISABLE) {
1349 enable = false;
1350 limit = 0;
1351 } else {
1352 enable = true;
1353 }
1354
1355 if (limit == REGULATOR_NOTIF_LIMIT_ENABLE)
1356 limit = 0;
1357
1358 return set(rdev, limit, severity, enable);
1359 }
1360
handle_notify_limits(struct regulator_dev * rdev,int (* set)(struct regulator_dev *,int,int,bool),struct notification_limit * limits)1361 static int handle_notify_limits(struct regulator_dev *rdev,
1362 int (*set)(struct regulator_dev *, int, int, bool),
1363 struct notification_limit *limits)
1364 {
1365 int ret = 0;
1366
1367 if (!set)
1368 return -EOPNOTSUPP;
1369
1370 if (limits->prot)
1371 ret = notif_set_limit(rdev, set, limits->prot,
1372 REGULATOR_SEVERITY_PROT);
1373 if (ret)
1374 return ret;
1375
1376 if (limits->err)
1377 ret = notif_set_limit(rdev, set, limits->err,
1378 REGULATOR_SEVERITY_ERR);
1379 if (ret)
1380 return ret;
1381
1382 if (limits->warn)
1383 ret = notif_set_limit(rdev, set, limits->warn,
1384 REGULATOR_SEVERITY_WARN);
1385
1386 return ret;
1387 }
1388 /**
1389 * set_machine_constraints - sets regulator constraints
1390 * @rdev: regulator source
1391 *
1392 * Allows platform initialisation code to define and constrain
1393 * regulator circuits e.g. valid voltage/current ranges, etc. NOTE:
1394 * Constraints *must* be set by platform code in order for some
1395 * regulator operations to proceed i.e. set_voltage, set_current_limit,
1396 * set_mode.
1397 */
set_machine_constraints(struct regulator_dev * rdev)1398 static int set_machine_constraints(struct regulator_dev *rdev)
1399 {
1400 int ret = 0;
1401 const struct regulator_ops *ops = rdev->desc->ops;
1402
1403 ret = machine_constraints_voltage(rdev, rdev->constraints);
1404 if (ret != 0)
1405 return ret;
1406
1407 ret = machine_constraints_current(rdev, rdev->constraints);
1408 if (ret != 0)
1409 return ret;
1410
1411 if (rdev->constraints->ilim_uA && ops->set_input_current_limit) {
1412 ret = ops->set_input_current_limit(rdev,
1413 rdev->constraints->ilim_uA);
1414 if (ret < 0) {
1415 rdev_err(rdev, "failed to set input limit: %pe\n", ERR_PTR(ret));
1416 return ret;
1417 }
1418 }
1419
1420 /* do we need to setup our suspend state */
1421 if (rdev->constraints->initial_state) {
1422 ret = suspend_set_initial_state(rdev);
1423 if (ret < 0) {
1424 rdev_err(rdev, "failed to set suspend state: %pe\n", ERR_PTR(ret));
1425 return ret;
1426 }
1427 }
1428
1429 if (rdev->constraints->initial_mode) {
1430 if (!ops->set_mode) {
1431 rdev_err(rdev, "no set_mode operation\n");
1432 return -EINVAL;
1433 }
1434
1435 ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
1436 if (ret < 0) {
1437 rdev_err(rdev, "failed to set initial mode: %pe\n", ERR_PTR(ret));
1438 return ret;
1439 }
1440 } else if (rdev->constraints->system_load) {
1441 /*
1442 * We'll only apply the initial system load if an
1443 * initial mode wasn't specified.
1444 */
1445 drms_uA_update(rdev);
1446 }
1447
1448 if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable)
1449 && ops->set_ramp_delay) {
1450 ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
1451 if (ret < 0) {
1452 rdev_err(rdev, "failed to set ramp_delay: %pe\n", ERR_PTR(ret));
1453 return ret;
1454 }
1455 }
1456
1457 if (rdev->constraints->pull_down && ops->set_pull_down) {
1458 ret = ops->set_pull_down(rdev);
1459 if (ret < 0) {
1460 rdev_err(rdev, "failed to set pull down: %pe\n", ERR_PTR(ret));
1461 return ret;
1462 }
1463 }
1464
1465 if (rdev->constraints->soft_start && ops->set_soft_start) {
1466 ret = ops->set_soft_start(rdev);
1467 if (ret < 0) {
1468 rdev_err(rdev, "failed to set soft start: %pe\n", ERR_PTR(ret));
1469 return ret;
1470 }
1471 }
1472
1473 /*
1474 * Existing logic does not warn if over_current_protection is given as
1475 * a constraint but driver does not support that. I think we should
1476 * warn about this type of issues as it is possible someone changes
1477 * PMIC on board to another type - and the another PMIC's driver does
1478 * not support setting protection. Board composer may happily believe
1479 * the DT limits are respected - especially if the new PMIC HW also
1480 * supports protection but the driver does not. I won't change the logic
1481 * without hearing more experienced opinion on this though.
1482 *
1483 * If warning is seen as a good idea then we can merge handling the
1484 * over-curret protection and detection and get rid of this special
1485 * handling.
1486 */
1487 if (rdev->constraints->over_current_protection
1488 && ops->set_over_current_protection) {
1489 int lim = rdev->constraints->over_curr_limits.prot;
1490
1491 ret = ops->set_over_current_protection(rdev, lim,
1492 REGULATOR_SEVERITY_PROT,
1493 true);
1494 if (ret < 0) {
1495 rdev_err(rdev, "failed to set over current protection: %pe\n",
1496 ERR_PTR(ret));
1497 return ret;
1498 }
1499 }
1500
1501 if (rdev->constraints->over_current_detection)
1502 ret = handle_notify_limits(rdev,
1503 ops->set_over_current_protection,
1504 &rdev->constraints->over_curr_limits);
1505 if (ret) {
1506 if (ret != -EOPNOTSUPP) {
1507 rdev_err(rdev, "failed to set over current limits: %pe\n",
1508 ERR_PTR(ret));
1509 return ret;
1510 }
1511 rdev_warn(rdev,
1512 "IC does not support requested over-current limits\n");
1513 }
1514
1515 if (rdev->constraints->over_voltage_detection)
1516 ret = handle_notify_limits(rdev,
1517 ops->set_over_voltage_protection,
1518 &rdev->constraints->over_voltage_limits);
1519 if (ret) {
1520 if (ret != -EOPNOTSUPP) {
1521 rdev_err(rdev, "failed to set over voltage limits %pe\n",
1522 ERR_PTR(ret));
1523 return ret;
1524 }
1525 rdev_warn(rdev,
1526 "IC does not support requested over voltage limits\n");
1527 }
1528
1529 if (rdev->constraints->under_voltage_detection)
1530 ret = handle_notify_limits(rdev,
1531 ops->set_under_voltage_protection,
1532 &rdev->constraints->under_voltage_limits);
1533 if (ret) {
1534 if (ret != -EOPNOTSUPP) {
1535 rdev_err(rdev, "failed to set under voltage limits %pe\n",
1536 ERR_PTR(ret));
1537 return ret;
1538 }
1539 rdev_warn(rdev,
1540 "IC does not support requested under voltage limits\n");
1541 }
1542
1543 if (rdev->constraints->over_temp_detection)
1544 ret = handle_notify_limits(rdev,
1545 ops->set_thermal_protection,
1546 &rdev->constraints->temp_limits);
1547 if (ret) {
1548 if (ret != -EOPNOTSUPP) {
1549 rdev_err(rdev, "failed to set temperature limits %pe\n",
1550 ERR_PTR(ret));
1551 return ret;
1552 }
1553 rdev_warn(rdev,
1554 "IC does not support requested temperature limits\n");
1555 }
1556
1557 if (rdev->constraints->active_discharge && ops->set_active_discharge) {
1558 bool ad_state = (rdev->constraints->active_discharge ==
1559 REGULATOR_ACTIVE_DISCHARGE_ENABLE) ? true : false;
1560
1561 ret = ops->set_active_discharge(rdev, ad_state);
1562 if (ret < 0) {
1563 rdev_err(rdev, "failed to set active discharge: %pe\n", ERR_PTR(ret));
1564 return ret;
1565 }
1566 }
1567
1568 /*
1569 * If there is no mechanism for controlling the regulator then
1570 * flag it as always_on so we don't end up duplicating checks
1571 * for this so much. Note that we could control the state of
1572 * a supply to control the output on a regulator that has no
1573 * direct control.
1574 */
1575 if (!rdev->ena_pin && !ops->enable) {
1576 if (rdev->supply_name && !rdev->supply)
1577 return -EPROBE_DEFER;
1578
1579 if (rdev->supply)
1580 rdev->constraints->always_on =
1581 rdev->supply->rdev->constraints->always_on;
1582 else
1583 rdev->constraints->always_on = true;
1584 }
1585
1586 if (rdev->desc->off_on_delay)
1587 rdev->last_off = ktime_get();
1588
1589 /* If the constraints say the regulator should be on at this point
1590 * and we have control then make sure it is enabled.
1591 */
1592 if (rdev->constraints->always_on || rdev->constraints->boot_on) {
1593 /* If we want to enable this regulator, make sure that we know
1594 * the supplying regulator.
1595 */
1596 if (rdev->supply_name && !rdev->supply)
1597 return -EPROBE_DEFER;
1598
1599 /* If supplying regulator has already been enabled,
1600 * it's not intended to have use_count increment
1601 * when rdev is only boot-on.
1602 */
1603 if (rdev->supply &&
1604 (rdev->constraints->always_on ||
1605 !regulator_is_enabled(rdev->supply))) {
1606 ret = regulator_enable(rdev->supply);
1607 if (ret < 0) {
1608 _regulator_put(rdev->supply);
1609 rdev->supply = NULL;
1610 return ret;
1611 }
1612 }
1613
1614 ret = _regulator_do_enable(rdev);
1615 if (ret < 0 && ret != -EINVAL) {
1616 rdev_err(rdev, "failed to enable: %pe\n", ERR_PTR(ret));
1617 return ret;
1618 }
1619
1620 if (rdev->constraints->always_on)
1621 rdev->use_count++;
1622 }
1623
1624 print_constraints(rdev);
1625 return 0;
1626 }
1627
1628 /**
1629 * set_supply - set regulator supply regulator
1630 * @rdev: regulator name
1631 * @supply_rdev: supply regulator name
1632 *
1633 * Called by platform initialisation code to set the supply regulator for this
1634 * regulator. This ensures that a regulators supply will also be enabled by the
1635 * core if it's child is enabled.
1636 */
set_supply(struct regulator_dev * rdev,struct regulator_dev * supply_rdev)1637 static int set_supply(struct regulator_dev *rdev,
1638 struct regulator_dev *supply_rdev)
1639 {
1640 int err;
1641
1642 rdev_dbg(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
1643
1644 if (!try_module_get(supply_rdev->owner))
1645 return -ENODEV;
1646
1647 rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1648 if (rdev->supply == NULL) {
1649 module_put(supply_rdev->owner);
1650 err = -ENOMEM;
1651 return err;
1652 }
1653 supply_rdev->open_count++;
1654
1655 return 0;
1656 }
1657
1658 /**
1659 * set_consumer_device_supply - Bind a regulator to a symbolic supply
1660 * @rdev: regulator source
1661 * @consumer_dev_name: dev_name() string for device supply applies to
1662 * @supply: symbolic name for supply
1663 *
1664 * Allows platform initialisation code to map physical regulator
1665 * sources to symbolic names for supplies for use by devices. Devices
1666 * should use these symbolic names to request regulators, avoiding the
1667 * need to provide board-specific regulator names as platform data.
1668 */
set_consumer_device_supply(struct regulator_dev * rdev,const char * consumer_dev_name,const char * supply)1669 static int set_consumer_device_supply(struct regulator_dev *rdev,
1670 const char *consumer_dev_name,
1671 const char *supply)
1672 {
1673 struct regulator_map *node, *new_node;
1674 int has_dev;
1675
1676 if (supply == NULL)
1677 return -EINVAL;
1678
1679 if (consumer_dev_name != NULL)
1680 has_dev = 1;
1681 else
1682 has_dev = 0;
1683
1684 new_node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1685 if (new_node == NULL)
1686 return -ENOMEM;
1687
1688 new_node->regulator = rdev;
1689 new_node->supply = supply;
1690
1691 if (has_dev) {
1692 new_node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1693 if (new_node->dev_name == NULL) {
1694 kfree(new_node);
1695 return -ENOMEM;
1696 }
1697 }
1698
1699 mutex_lock(®ulator_list_mutex);
1700 list_for_each_entry(node, ®ulator_map_list, list) {
1701 if (node->dev_name && consumer_dev_name) {
1702 if (strcmp(node->dev_name, consumer_dev_name) != 0)
1703 continue;
1704 } else if (node->dev_name || consumer_dev_name) {
1705 continue;
1706 }
1707
1708 if (strcmp(node->supply, supply) != 0)
1709 continue;
1710
1711 pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1712 consumer_dev_name,
1713 dev_name(&node->regulator->dev),
1714 node->regulator->desc->name,
1715 supply,
1716 dev_name(&rdev->dev), rdev_get_name(rdev));
1717 goto fail;
1718 }
1719
1720 list_add(&new_node->list, ®ulator_map_list);
1721 mutex_unlock(®ulator_list_mutex);
1722
1723 return 0;
1724
1725 fail:
1726 mutex_unlock(®ulator_list_mutex);
1727 kfree(new_node->dev_name);
1728 kfree(new_node);
1729 return -EBUSY;
1730 }
1731
unset_regulator_supplies(struct regulator_dev * rdev)1732 static void unset_regulator_supplies(struct regulator_dev *rdev)
1733 {
1734 struct regulator_map *node, *n;
1735
1736 list_for_each_entry_safe(node, n, ®ulator_map_list, list) {
1737 if (rdev == node->regulator) {
1738 list_del(&node->list);
1739 kfree(node->dev_name);
1740 kfree(node);
1741 }
1742 }
1743 }
1744
1745 #ifdef CONFIG_DEBUG_FS
constraint_flags_read_file(struct file * file,char __user * user_buf,size_t count,loff_t * ppos)1746 static ssize_t constraint_flags_read_file(struct file *file,
1747 char __user *user_buf,
1748 size_t count, loff_t *ppos)
1749 {
1750 const struct regulator *regulator = file->private_data;
1751 const struct regulation_constraints *c = regulator->rdev->constraints;
1752 char *buf;
1753 ssize_t ret;
1754
1755 if (!c)
1756 return 0;
1757
1758 buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
1759 if (!buf)
1760 return -ENOMEM;
1761
1762 ret = snprintf(buf, PAGE_SIZE,
1763 "always_on: %u\n"
1764 "boot_on: %u\n"
1765 "apply_uV: %u\n"
1766 "ramp_disable: %u\n"
1767 "soft_start: %u\n"
1768 "pull_down: %u\n"
1769 "over_current_protection: %u\n",
1770 c->always_on,
1771 c->boot_on,
1772 c->apply_uV,
1773 c->ramp_disable,
1774 c->soft_start,
1775 c->pull_down,
1776 c->over_current_protection);
1777
1778 ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
1779 kfree(buf);
1780
1781 return ret;
1782 }
1783
1784 #endif
1785
1786 static const struct file_operations constraint_flags_fops = {
1787 #ifdef CONFIG_DEBUG_FS
1788 .open = simple_open,
1789 .read = constraint_flags_read_file,
1790 .llseek = default_llseek,
1791 #endif
1792 };
1793
1794 #define REG_STR_SIZE 64
1795
create_regulator(struct regulator_dev * rdev,struct device * dev,const char * supply_name)1796 static struct regulator *create_regulator(struct regulator_dev *rdev,
1797 struct device *dev,
1798 const char *supply_name)
1799 {
1800 struct regulator *regulator;
1801 int err = 0;
1802
1803 if (dev) {
1804 char buf[REG_STR_SIZE];
1805 int size;
1806
1807 size = snprintf(buf, REG_STR_SIZE, "%s-%s",
1808 dev->kobj.name, supply_name);
1809 if (size >= REG_STR_SIZE)
1810 return NULL;
1811
1812 supply_name = kstrdup(buf, GFP_KERNEL);
1813 if (supply_name == NULL)
1814 return NULL;
1815 } else {
1816 supply_name = kstrdup_const(supply_name, GFP_KERNEL);
1817 if (supply_name == NULL)
1818 return NULL;
1819 }
1820
1821 regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1822 if (regulator == NULL) {
1823 kfree_const(supply_name);
1824 return NULL;
1825 }
1826
1827 regulator->rdev = rdev;
1828 regulator->supply_name = supply_name;
1829
1830 regulator_lock(rdev);
1831 list_add(®ulator->list, &rdev->consumer_list);
1832 regulator_unlock(rdev);
1833
1834 if (dev) {
1835 regulator->dev = dev;
1836
1837 /* Add a link to the device sysfs entry */
1838 err = sysfs_create_link_nowarn(&rdev->dev.kobj, &dev->kobj,
1839 supply_name);
1840 if (err) {
1841 rdev_dbg(rdev, "could not add device link %s: %pe\n",
1842 dev->kobj.name, ERR_PTR(err));
1843 /* non-fatal */
1844 }
1845 }
1846
1847 if (err != -EEXIST)
1848 regulator->debugfs = debugfs_create_dir(supply_name, rdev->debugfs);
1849 if (!regulator->debugfs) {
1850 rdev_dbg(rdev, "Failed to create debugfs directory\n");
1851 } else {
1852 debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1853 ®ulator->uA_load);
1854 debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1855 ®ulator->voltage[PM_SUSPEND_ON].min_uV);
1856 debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1857 ®ulator->voltage[PM_SUSPEND_ON].max_uV);
1858 debugfs_create_file("constraint_flags", 0444,
1859 regulator->debugfs, regulator,
1860 &constraint_flags_fops);
1861 }
1862
1863 /*
1864 * Check now if the regulator is an always on regulator - if
1865 * it is then we don't need to do nearly so much work for
1866 * enable/disable calls.
1867 */
1868 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS) &&
1869 _regulator_is_enabled(rdev))
1870 regulator->always_on = true;
1871
1872 return regulator;
1873 }
1874
_regulator_get_enable_time(struct regulator_dev * rdev)1875 static int _regulator_get_enable_time(struct regulator_dev *rdev)
1876 {
1877 if (rdev->constraints && rdev->constraints->enable_time)
1878 return rdev->constraints->enable_time;
1879 if (rdev->desc->ops->enable_time)
1880 return rdev->desc->ops->enable_time(rdev);
1881 return rdev->desc->enable_time;
1882 }
1883
regulator_find_supply_alias(struct device * dev,const char * supply)1884 static struct regulator_supply_alias *regulator_find_supply_alias(
1885 struct device *dev, const char *supply)
1886 {
1887 struct regulator_supply_alias *map;
1888
1889 list_for_each_entry(map, ®ulator_supply_alias_list, list)
1890 if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0)
1891 return map;
1892
1893 return NULL;
1894 }
1895
regulator_supply_alias(struct device ** dev,const char ** supply)1896 static void regulator_supply_alias(struct device **dev, const char **supply)
1897 {
1898 struct regulator_supply_alias *map;
1899
1900 map = regulator_find_supply_alias(*dev, *supply);
1901 if (map) {
1902 dev_dbg(*dev, "Mapping supply %s to %s,%s\n",
1903 *supply, map->alias_supply,
1904 dev_name(map->alias_dev));
1905 *dev = map->alias_dev;
1906 *supply = map->alias_supply;
1907 }
1908 }
1909
regulator_match(struct device * dev,const void * data)1910 static int regulator_match(struct device *dev, const void *data)
1911 {
1912 struct regulator_dev *r = dev_to_rdev(dev);
1913
1914 return strcmp(rdev_get_name(r), data) == 0;
1915 }
1916
regulator_lookup_by_name(const char * name)1917 static struct regulator_dev *regulator_lookup_by_name(const char *name)
1918 {
1919 struct device *dev;
1920
1921 dev = class_find_device(®ulator_class, NULL, name, regulator_match);
1922
1923 return dev ? dev_to_rdev(dev) : NULL;
1924 }
1925
1926 /**
1927 * regulator_dev_lookup - lookup a regulator device.
1928 * @dev: device for regulator "consumer".
1929 * @supply: Supply name or regulator ID.
1930 *
1931 * If successful, returns a struct regulator_dev that corresponds to the name
1932 * @supply and with the embedded struct device refcount incremented by one.
1933 * The refcount must be dropped by calling put_device().
1934 * On failure one of the following ERR-PTR-encoded values is returned:
1935 * -ENODEV if lookup fails permanently, -EPROBE_DEFER if lookup could succeed
1936 * in the future.
1937 */
regulator_dev_lookup(struct device * dev,const char * supply)1938 static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1939 const char *supply)
1940 {
1941 struct regulator_dev *r = NULL;
1942 struct device_node *node;
1943 struct regulator_map *map;
1944 const char *devname = NULL;
1945
1946 regulator_supply_alias(&dev, &supply);
1947
1948 /* first do a dt based lookup */
1949 if (dev && dev->of_node) {
1950 node = of_get_regulator(dev, supply);
1951 if (node) {
1952 r = of_find_regulator_by_node(node);
1953 of_node_put(node);
1954 if (r)
1955 return r;
1956
1957 /*
1958 * We have a node, but there is no device.
1959 * assume it has not registered yet.
1960 */
1961 return ERR_PTR(-EPROBE_DEFER);
1962 }
1963 }
1964
1965 /* if not found, try doing it non-dt way */
1966 if (dev)
1967 devname = dev_name(dev);
1968
1969 mutex_lock(®ulator_list_mutex);
1970 list_for_each_entry(map, ®ulator_map_list, list) {
1971 /* If the mapping has a device set up it must match */
1972 if (map->dev_name &&
1973 (!devname || strcmp(map->dev_name, devname)))
1974 continue;
1975
1976 if (strcmp(map->supply, supply) == 0 &&
1977 get_device(&map->regulator->dev)) {
1978 r = map->regulator;
1979 break;
1980 }
1981 }
1982 mutex_unlock(®ulator_list_mutex);
1983
1984 if (r)
1985 return r;
1986
1987 r = regulator_lookup_by_name(supply);
1988 if (r)
1989 return r;
1990
1991 return ERR_PTR(-ENODEV);
1992 }
1993
regulator_resolve_supply(struct regulator_dev * rdev)1994 static int regulator_resolve_supply(struct regulator_dev *rdev)
1995 {
1996 struct regulator_dev *r;
1997 struct device *dev = rdev->dev.parent;
1998 int ret = 0;
1999
2000 /* No supply to resolve? */
2001 if (!rdev->supply_name)
2002 return 0;
2003
2004 /* Supply already resolved? (fast-path without locking contention) */
2005 if (rdev->supply)
2006 return 0;
2007
2008 r = regulator_dev_lookup(dev, rdev->supply_name);
2009 if (IS_ERR(r)) {
2010 ret = PTR_ERR(r);
2011
2012 /* Did the lookup explicitly defer for us? */
2013 if (ret == -EPROBE_DEFER)
2014 goto out;
2015
2016 if (have_full_constraints()) {
2017 r = dummy_regulator_rdev;
2018 get_device(&r->dev);
2019 } else {
2020 dev_err(dev, "Failed to resolve %s-supply for %s\n",
2021 rdev->supply_name, rdev->desc->name);
2022 ret = -EPROBE_DEFER;
2023 goto out;
2024 }
2025 }
2026
2027 if (r == rdev) {
2028 dev_err(dev, "Supply for %s (%s) resolved to itself\n",
2029 rdev->desc->name, rdev->supply_name);
2030 if (!have_full_constraints()) {
2031 ret = -EINVAL;
2032 goto out;
2033 }
2034 r = dummy_regulator_rdev;
2035 get_device(&r->dev);
2036 }
2037
2038 /*
2039 * If the supply's parent device is not the same as the
2040 * regulator's parent device, then ensure the parent device
2041 * is bound before we resolve the supply, in case the parent
2042 * device get probe deferred and unregisters the supply.
2043 */
2044 if (r->dev.parent && r->dev.parent != rdev->dev.parent) {
2045 if (!device_is_bound(r->dev.parent)) {
2046 put_device(&r->dev);
2047 ret = -EPROBE_DEFER;
2048 goto out;
2049 }
2050 }
2051
2052 /* Recursively resolve the supply of the supply */
2053 ret = regulator_resolve_supply(r);
2054 if (ret < 0) {
2055 put_device(&r->dev);
2056 goto out;
2057 }
2058
2059 /*
2060 * Recheck rdev->supply with rdev->mutex lock held to avoid a race
2061 * between rdev->supply null check and setting rdev->supply in
2062 * set_supply() from concurrent tasks.
2063 */
2064 regulator_lock(rdev);
2065
2066 /* Supply just resolved by a concurrent task? */
2067 if (rdev->supply) {
2068 regulator_unlock(rdev);
2069 put_device(&r->dev);
2070 goto out;
2071 }
2072
2073 ret = set_supply(rdev, r);
2074 if (ret < 0) {
2075 regulator_unlock(rdev);
2076 put_device(&r->dev);
2077 goto out;
2078 }
2079
2080 regulator_unlock(rdev);
2081
2082 /*
2083 * In set_machine_constraints() we may have turned this regulator on
2084 * but we couldn't propagate to the supply if it hadn't been resolved
2085 * yet. Do it now.
2086 */
2087 if (rdev->use_count) {
2088 ret = regulator_enable(rdev->supply);
2089 if (ret < 0) {
2090 _regulator_put(rdev->supply);
2091 rdev->supply = NULL;
2092 goto out;
2093 }
2094 }
2095
2096 out:
2097 return ret;
2098 }
2099
2100 /* Internal regulator request function */
_regulator_get(struct device * dev,const char * id,enum regulator_get_type get_type)2101 struct regulator *_regulator_get(struct device *dev, const char *id,
2102 enum regulator_get_type get_type)
2103 {
2104 struct regulator_dev *rdev;
2105 struct regulator *regulator;
2106 struct device_link *link;
2107 int ret;
2108
2109 if (get_type >= MAX_GET_TYPE) {
2110 dev_err(dev, "invalid type %d in %s\n", get_type, __func__);
2111 return ERR_PTR(-EINVAL);
2112 }
2113
2114 if (id == NULL) {
2115 pr_err("get() with no identifier\n");
2116 return ERR_PTR(-EINVAL);
2117 }
2118
2119 rdev = regulator_dev_lookup(dev, id);
2120 if (IS_ERR(rdev)) {
2121 ret = PTR_ERR(rdev);
2122
2123 /*
2124 * If regulator_dev_lookup() fails with error other
2125 * than -ENODEV our job here is done, we simply return it.
2126 */
2127 if (ret != -ENODEV)
2128 return ERR_PTR(ret);
2129
2130 if (!have_full_constraints()) {
2131 dev_warn(dev,
2132 "incomplete constraints, dummy supplies not allowed\n");
2133 return ERR_PTR(-ENODEV);
2134 }
2135
2136 switch (get_type) {
2137 case NORMAL_GET:
2138 /*
2139 * Assume that a regulator is physically present and
2140 * enabled, even if it isn't hooked up, and just
2141 * provide a dummy.
2142 */
2143 dev_warn(dev, "supply %s not found, using dummy regulator\n", id);
2144 rdev = dummy_regulator_rdev;
2145 get_device(&rdev->dev);
2146 break;
2147
2148 case EXCLUSIVE_GET:
2149 dev_warn(dev,
2150 "dummy supplies not allowed for exclusive requests\n");
2151 fallthrough;
2152
2153 default:
2154 return ERR_PTR(-ENODEV);
2155 }
2156 }
2157
2158 if (rdev->exclusive) {
2159 regulator = ERR_PTR(-EPERM);
2160 put_device(&rdev->dev);
2161 return regulator;
2162 }
2163
2164 if (get_type == EXCLUSIVE_GET && rdev->open_count) {
2165 regulator = ERR_PTR(-EBUSY);
2166 put_device(&rdev->dev);
2167 return regulator;
2168 }
2169
2170 mutex_lock(®ulator_list_mutex);
2171 ret = (rdev->coupling_desc.n_resolved != rdev->coupling_desc.n_coupled);
2172 mutex_unlock(®ulator_list_mutex);
2173
2174 if (ret != 0) {
2175 regulator = ERR_PTR(-EPROBE_DEFER);
2176 put_device(&rdev->dev);
2177 return regulator;
2178 }
2179
2180 ret = regulator_resolve_supply(rdev);
2181 if (ret < 0) {
2182 regulator = ERR_PTR(ret);
2183 put_device(&rdev->dev);
2184 return regulator;
2185 }
2186
2187 if (!try_module_get(rdev->owner)) {
2188 regulator = ERR_PTR(-EPROBE_DEFER);
2189 put_device(&rdev->dev);
2190 return regulator;
2191 }
2192
2193 regulator = create_regulator(rdev, dev, id);
2194 if (regulator == NULL) {
2195 regulator = ERR_PTR(-ENOMEM);
2196 module_put(rdev->owner);
2197 put_device(&rdev->dev);
2198 return regulator;
2199 }
2200
2201 rdev->open_count++;
2202 if (get_type == EXCLUSIVE_GET) {
2203 rdev->exclusive = 1;
2204
2205 ret = _regulator_is_enabled(rdev);
2206 if (ret > 0) {
2207 rdev->use_count = 1;
2208 regulator->enable_count = 1;
2209 } else {
2210 rdev->use_count = 0;
2211 regulator->enable_count = 0;
2212 }
2213 }
2214
2215 link = device_link_add(dev, &rdev->dev, DL_FLAG_STATELESS);
2216 if (!IS_ERR_OR_NULL(link))
2217 regulator->device_link = true;
2218
2219 return regulator;
2220 }
2221
2222 /**
2223 * regulator_get - lookup and obtain a reference to a regulator.
2224 * @dev: device for regulator "consumer"
2225 * @id: Supply name or regulator ID.
2226 *
2227 * Returns a struct regulator corresponding to the regulator producer,
2228 * or IS_ERR() condition containing errno.
2229 *
2230 * Use of supply names configured via set_consumer_device_supply() is
2231 * strongly encouraged. It is recommended that the supply name used
2232 * should match the name used for the supply and/or the relevant
2233 * device pins in the datasheet.
2234 */
regulator_get(struct device * dev,const char * id)2235 struct regulator *regulator_get(struct device *dev, const char *id)
2236 {
2237 return _regulator_get(dev, id, NORMAL_GET);
2238 }
2239 EXPORT_SYMBOL_GPL(regulator_get);
2240
2241 /**
2242 * regulator_get_exclusive - obtain exclusive access to a regulator.
2243 * @dev: device for regulator "consumer"
2244 * @id: Supply name or regulator ID.
2245 *
2246 * Returns a struct regulator corresponding to the regulator producer,
2247 * or IS_ERR() condition containing errno. Other consumers will be
2248 * unable to obtain this regulator while this reference is held and the
2249 * use count for the regulator will be initialised to reflect the current
2250 * state of the regulator.
2251 *
2252 * This is intended for use by consumers which cannot tolerate shared
2253 * use of the regulator such as those which need to force the
2254 * regulator off for correct operation of the hardware they are
2255 * controlling.
2256 *
2257 * Use of supply names configured via set_consumer_device_supply() is
2258 * strongly encouraged. It is recommended that the supply name used
2259 * should match the name used for the supply and/or the relevant
2260 * device pins in the datasheet.
2261 */
regulator_get_exclusive(struct device * dev,const char * id)2262 struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
2263 {
2264 return _regulator_get(dev, id, EXCLUSIVE_GET);
2265 }
2266 EXPORT_SYMBOL_GPL(regulator_get_exclusive);
2267
2268 /**
2269 * regulator_get_optional - obtain optional access to a regulator.
2270 * @dev: device for regulator "consumer"
2271 * @id: Supply name or regulator ID.
2272 *
2273 * Returns a struct regulator corresponding to the regulator producer,
2274 * or IS_ERR() condition containing errno.
2275 *
2276 * This is intended for use by consumers for devices which can have
2277 * some supplies unconnected in normal use, such as some MMC devices.
2278 * It can allow the regulator core to provide stub supplies for other
2279 * supplies requested using normal regulator_get() calls without
2280 * disrupting the operation of drivers that can handle absent
2281 * supplies.
2282 *
2283 * Use of supply names configured via set_consumer_device_supply() is
2284 * strongly encouraged. It is recommended that the supply name used
2285 * should match the name used for the supply and/or the relevant
2286 * device pins in the datasheet.
2287 */
regulator_get_optional(struct device * dev,const char * id)2288 struct regulator *regulator_get_optional(struct device *dev, const char *id)
2289 {
2290 return _regulator_get(dev, id, OPTIONAL_GET);
2291 }
2292 EXPORT_SYMBOL_GPL(regulator_get_optional);
2293
destroy_regulator(struct regulator * regulator)2294 static void destroy_regulator(struct regulator *regulator)
2295 {
2296 struct regulator_dev *rdev = regulator->rdev;
2297
2298 debugfs_remove_recursive(regulator->debugfs);
2299
2300 if (regulator->dev) {
2301 if (regulator->device_link)
2302 device_link_remove(regulator->dev, &rdev->dev);
2303
2304 /* remove any sysfs entries */
2305 sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
2306 }
2307
2308 regulator_lock(rdev);
2309 list_del(®ulator->list);
2310
2311 rdev->open_count--;
2312 rdev->exclusive = 0;
2313 regulator_unlock(rdev);
2314
2315 kfree_const(regulator->supply_name);
2316 kfree(regulator);
2317 }
2318
2319 /* regulator_list_mutex lock held by regulator_put() */
_regulator_put(struct regulator * regulator)2320 static void _regulator_put(struct regulator *regulator)
2321 {
2322 struct regulator_dev *rdev;
2323
2324 if (IS_ERR_OR_NULL(regulator))
2325 return;
2326
2327 lockdep_assert_held_once(®ulator_list_mutex);
2328
2329 /* Docs say you must disable before calling regulator_put() */
2330 WARN_ON(regulator->enable_count);
2331
2332 rdev = regulator->rdev;
2333
2334 destroy_regulator(regulator);
2335
2336 module_put(rdev->owner);
2337 put_device(&rdev->dev);
2338 }
2339
2340 /**
2341 * regulator_put - "free" the regulator source
2342 * @regulator: regulator source
2343 *
2344 * Note: drivers must ensure that all regulator_enable calls made on this
2345 * regulator source are balanced by regulator_disable calls prior to calling
2346 * this function.
2347 */
regulator_put(struct regulator * regulator)2348 void regulator_put(struct regulator *regulator)
2349 {
2350 mutex_lock(®ulator_list_mutex);
2351 _regulator_put(regulator);
2352 mutex_unlock(®ulator_list_mutex);
2353 }
2354 EXPORT_SYMBOL_GPL(regulator_put);
2355
2356 /**
2357 * regulator_register_supply_alias - Provide device alias for supply lookup
2358 *
2359 * @dev: device that will be given as the regulator "consumer"
2360 * @id: Supply name or regulator ID
2361 * @alias_dev: device that should be used to lookup the supply
2362 * @alias_id: Supply name or regulator ID that should be used to lookup the
2363 * supply
2364 *
2365 * All lookups for id on dev will instead be conducted for alias_id on
2366 * alias_dev.
2367 */
regulator_register_supply_alias(struct device * dev,const char * id,struct device * alias_dev,const char * alias_id)2368 int regulator_register_supply_alias(struct device *dev, const char *id,
2369 struct device *alias_dev,
2370 const char *alias_id)
2371 {
2372 struct regulator_supply_alias *map;
2373
2374 map = regulator_find_supply_alias(dev, id);
2375 if (map)
2376 return -EEXIST;
2377
2378 map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL);
2379 if (!map)
2380 return -ENOMEM;
2381
2382 map->src_dev = dev;
2383 map->src_supply = id;
2384 map->alias_dev = alias_dev;
2385 map->alias_supply = alias_id;
2386
2387 list_add(&map->list, ®ulator_supply_alias_list);
2388
2389 pr_info("Adding alias for supply %s,%s -> %s,%s\n",
2390 id, dev_name(dev), alias_id, dev_name(alias_dev));
2391
2392 return 0;
2393 }
2394 EXPORT_SYMBOL_GPL(regulator_register_supply_alias);
2395
2396 /**
2397 * regulator_unregister_supply_alias - Remove device alias
2398 *
2399 * @dev: device that will be given as the regulator "consumer"
2400 * @id: Supply name or regulator ID
2401 *
2402 * Remove a lookup alias if one exists for id on dev.
2403 */
regulator_unregister_supply_alias(struct device * dev,const char * id)2404 void regulator_unregister_supply_alias(struct device *dev, const char *id)
2405 {
2406 struct regulator_supply_alias *map;
2407
2408 map = regulator_find_supply_alias(dev, id);
2409 if (map) {
2410 list_del(&map->list);
2411 kfree(map);
2412 }
2413 }
2414 EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias);
2415
2416 /**
2417 * regulator_bulk_register_supply_alias - register multiple aliases
2418 *
2419 * @dev: device that will be given as the regulator "consumer"
2420 * @id: List of supply names or regulator IDs
2421 * @alias_dev: device that should be used to lookup the supply
2422 * @alias_id: List of supply names or regulator IDs that should be used to
2423 * lookup the supply
2424 * @num_id: Number of aliases to register
2425 *
2426 * @return 0 on success, an errno on failure.
2427 *
2428 * This helper function allows drivers to register several supply
2429 * aliases in one operation. If any of the aliases cannot be
2430 * registered any aliases that were registered will be removed
2431 * before returning to the caller.
2432 */
regulator_bulk_register_supply_alias(struct device * dev,const char * const * id,struct device * alias_dev,const char * const * alias_id,int num_id)2433 int regulator_bulk_register_supply_alias(struct device *dev,
2434 const char *const *id,
2435 struct device *alias_dev,
2436 const char *const *alias_id,
2437 int num_id)
2438 {
2439 int i;
2440 int ret;
2441
2442 for (i = 0; i < num_id; ++i) {
2443 ret = regulator_register_supply_alias(dev, id[i], alias_dev,
2444 alias_id[i]);
2445 if (ret < 0)
2446 goto err;
2447 }
2448
2449 return 0;
2450
2451 err:
2452 dev_err(dev,
2453 "Failed to create supply alias %s,%s -> %s,%s\n",
2454 id[i], dev_name(dev), alias_id[i], dev_name(alias_dev));
2455
2456 while (--i >= 0)
2457 regulator_unregister_supply_alias(dev, id[i]);
2458
2459 return ret;
2460 }
2461 EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias);
2462
2463 /**
2464 * regulator_bulk_unregister_supply_alias - unregister multiple aliases
2465 *
2466 * @dev: device that will be given as the regulator "consumer"
2467 * @id: List of supply names or regulator IDs
2468 * @num_id: Number of aliases to unregister
2469 *
2470 * This helper function allows drivers to unregister several supply
2471 * aliases in one operation.
2472 */
regulator_bulk_unregister_supply_alias(struct device * dev,const char * const * id,int num_id)2473 void regulator_bulk_unregister_supply_alias(struct device *dev,
2474 const char *const *id,
2475 int num_id)
2476 {
2477 int i;
2478
2479 for (i = 0; i < num_id; ++i)
2480 regulator_unregister_supply_alias(dev, id[i]);
2481 }
2482 EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias);
2483
2484
2485 /* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
regulator_ena_gpio_request(struct regulator_dev * rdev,const struct regulator_config * config)2486 static int regulator_ena_gpio_request(struct regulator_dev *rdev,
2487 const struct regulator_config *config)
2488 {
2489 struct regulator_enable_gpio *pin, *new_pin;
2490 struct gpio_desc *gpiod;
2491
2492 gpiod = config->ena_gpiod;
2493 new_pin = kzalloc(sizeof(*new_pin), GFP_KERNEL);
2494
2495 mutex_lock(®ulator_list_mutex);
2496
2497 list_for_each_entry(pin, ®ulator_ena_gpio_list, list) {
2498 if (pin->gpiod == gpiod) {
2499 rdev_dbg(rdev, "GPIO is already used\n");
2500 goto update_ena_gpio_to_rdev;
2501 }
2502 }
2503
2504 if (new_pin == NULL) {
2505 mutex_unlock(®ulator_list_mutex);
2506 return -ENOMEM;
2507 }
2508
2509 pin = new_pin;
2510 new_pin = NULL;
2511
2512 pin->gpiod = gpiod;
2513 list_add(&pin->list, ®ulator_ena_gpio_list);
2514
2515 update_ena_gpio_to_rdev:
2516 pin->request_count++;
2517 rdev->ena_pin = pin;
2518
2519 mutex_unlock(®ulator_list_mutex);
2520 kfree(new_pin);
2521
2522 return 0;
2523 }
2524
regulator_ena_gpio_free(struct regulator_dev * rdev)2525 static void regulator_ena_gpio_free(struct regulator_dev *rdev)
2526 {
2527 struct regulator_enable_gpio *pin, *n;
2528
2529 if (!rdev->ena_pin)
2530 return;
2531
2532 /* Free the GPIO only in case of no use */
2533 list_for_each_entry_safe(pin, n, ®ulator_ena_gpio_list, list) {
2534 if (pin != rdev->ena_pin)
2535 continue;
2536
2537 if (--pin->request_count)
2538 break;
2539
2540 gpiod_put(pin->gpiod);
2541 list_del(&pin->list);
2542 kfree(pin);
2543 break;
2544 }
2545
2546 rdev->ena_pin = NULL;
2547 }
2548
2549 /**
2550 * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
2551 * @rdev: regulator_dev structure
2552 * @enable: enable GPIO at initial use?
2553 *
2554 * GPIO is enabled in case of initial use. (enable_count is 0)
2555 * GPIO is disabled when it is not shared any more. (enable_count <= 1)
2556 */
regulator_ena_gpio_ctrl(struct regulator_dev * rdev,bool enable)2557 static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
2558 {
2559 struct regulator_enable_gpio *pin = rdev->ena_pin;
2560
2561 if (!pin)
2562 return -EINVAL;
2563
2564 if (enable) {
2565 /* Enable GPIO at initial use */
2566 if (pin->enable_count == 0)
2567 gpiod_set_value_cansleep(pin->gpiod, 1);
2568
2569 pin->enable_count++;
2570 } else {
2571 if (pin->enable_count > 1) {
2572 pin->enable_count--;
2573 return 0;
2574 }
2575
2576 /* Disable GPIO if not used */
2577 if (pin->enable_count <= 1) {
2578 gpiod_set_value_cansleep(pin->gpiod, 0);
2579 pin->enable_count = 0;
2580 }
2581 }
2582
2583 return 0;
2584 }
2585
2586 /**
2587 * _regulator_delay_helper - a delay helper function
2588 * @delay: time to delay in microseconds
2589 *
2590 * Delay for the requested amount of time as per the guidelines in:
2591 *
2592 * Documentation/timers/timers-howto.rst
2593 *
2594 * The assumption here is that these regulator operations will never used in
2595 * atomic context and therefore sleeping functions can be used.
2596 */
_regulator_delay_helper(unsigned int delay)2597 static void _regulator_delay_helper(unsigned int delay)
2598 {
2599 unsigned int ms = delay / 1000;
2600 unsigned int us = delay % 1000;
2601
2602 if (ms > 0) {
2603 /*
2604 * For small enough values, handle super-millisecond
2605 * delays in the usleep_range() call below.
2606 */
2607 if (ms < 20)
2608 us += ms * 1000;
2609 else
2610 msleep(ms);
2611 }
2612
2613 /*
2614 * Give the scheduler some room to coalesce with any other
2615 * wakeup sources. For delays shorter than 10 us, don't even
2616 * bother setting up high-resolution timers and just busy-
2617 * loop.
2618 */
2619 if (us >= 10)
2620 usleep_range(us, us + 100);
2621 else
2622 udelay(us);
2623 }
2624
2625 /**
2626 * _regulator_check_status_enabled
2627 *
2628 * A helper function to check if the regulator status can be interpreted
2629 * as 'regulator is enabled'.
2630 * @rdev: the regulator device to check
2631 *
2632 * Return:
2633 * * 1 - if status shows regulator is in enabled state
2634 * * 0 - if not enabled state
2635 * * Error Value - as received from ops->get_status()
2636 */
_regulator_check_status_enabled(struct regulator_dev * rdev)2637 static inline int _regulator_check_status_enabled(struct regulator_dev *rdev)
2638 {
2639 int ret = rdev->desc->ops->get_status(rdev);
2640
2641 if (ret < 0) {
2642 rdev_info(rdev, "get_status returned error: %d\n", ret);
2643 return ret;
2644 }
2645
2646 switch (ret) {
2647 case REGULATOR_STATUS_OFF:
2648 case REGULATOR_STATUS_ERROR:
2649 case REGULATOR_STATUS_UNDEFINED:
2650 return 0;
2651 default:
2652 return 1;
2653 }
2654 }
2655
_regulator_do_enable(struct regulator_dev * rdev)2656 static int _regulator_do_enable(struct regulator_dev *rdev)
2657 {
2658 int ret, delay;
2659
2660 /* Query before enabling in case configuration dependent. */
2661 ret = _regulator_get_enable_time(rdev);
2662 if (ret >= 0) {
2663 delay = ret;
2664 } else {
2665 rdev_warn(rdev, "enable_time() failed: %pe\n", ERR_PTR(ret));
2666 delay = 0;
2667 }
2668
2669 trace_regulator_enable(rdev_get_name(rdev));
2670
2671 if (rdev->desc->off_on_delay && rdev->last_off) {
2672 /* if needed, keep a distance of off_on_delay from last time
2673 * this regulator was disabled.
2674 */
2675 ktime_t end = ktime_add_us(rdev->last_off, rdev->desc->off_on_delay);
2676 s64 remaining = ktime_us_delta(end, ktime_get());
2677
2678 if (remaining > 0)
2679 _regulator_delay_helper(remaining);
2680 }
2681
2682 if (rdev->ena_pin) {
2683 if (!rdev->ena_gpio_state) {
2684 ret = regulator_ena_gpio_ctrl(rdev, true);
2685 if (ret < 0)
2686 return ret;
2687 rdev->ena_gpio_state = 1;
2688 }
2689 } else if (rdev->desc->ops->enable) {
2690 ret = rdev->desc->ops->enable(rdev);
2691 if (ret < 0)
2692 return ret;
2693 } else {
2694 return -EINVAL;
2695 }
2696
2697 /* Allow the regulator to ramp; it would be useful to extend
2698 * this for bulk operations so that the regulators can ramp
2699 * together.
2700 */
2701 trace_regulator_enable_delay(rdev_get_name(rdev));
2702
2703 /* If poll_enabled_time is set, poll upto the delay calculated
2704 * above, delaying poll_enabled_time uS to check if the regulator
2705 * actually got enabled.
2706 * If the regulator isn't enabled after our delay helper has expired,
2707 * return -ETIMEDOUT.
2708 */
2709 if (rdev->desc->poll_enabled_time) {
2710 int time_remaining = delay;
2711
2712 while (time_remaining > 0) {
2713 _regulator_delay_helper(rdev->desc->poll_enabled_time);
2714
2715 if (rdev->desc->ops->get_status) {
2716 ret = _regulator_check_status_enabled(rdev);
2717 if (ret < 0)
2718 return ret;
2719 else if (ret)
2720 break;
2721 } else if (rdev->desc->ops->is_enabled(rdev))
2722 break;
2723
2724 time_remaining -= rdev->desc->poll_enabled_time;
2725 }
2726
2727 if (time_remaining <= 0) {
2728 rdev_err(rdev, "Enabled check timed out\n");
2729 return -ETIMEDOUT;
2730 }
2731 } else {
2732 _regulator_delay_helper(delay);
2733 }
2734
2735 trace_regulator_enable_complete(rdev_get_name(rdev));
2736
2737 return 0;
2738 }
2739
2740 /**
2741 * _regulator_handle_consumer_enable - handle that a consumer enabled
2742 * @regulator: regulator source
2743 *
2744 * Some things on a regulator consumer (like the contribution towards total
2745 * load on the regulator) only have an effect when the consumer wants the
2746 * regulator enabled. Explained in example with two consumers of the same
2747 * regulator:
2748 * consumer A: set_load(100); => total load = 0
2749 * consumer A: regulator_enable(); => total load = 100
2750 * consumer B: set_load(1000); => total load = 100
2751 * consumer B: regulator_enable(); => total load = 1100
2752 * consumer A: regulator_disable(); => total_load = 1000
2753 *
2754 * This function (together with _regulator_handle_consumer_disable) is
2755 * responsible for keeping track of the refcount for a given regulator consumer
2756 * and applying / unapplying these things.
2757 *
2758 * Returns 0 upon no error; -error upon error.
2759 */
_regulator_handle_consumer_enable(struct regulator * regulator)2760 static int _regulator_handle_consumer_enable(struct regulator *regulator)
2761 {
2762 int ret;
2763 struct regulator_dev *rdev = regulator->rdev;
2764
2765 lockdep_assert_held_once(&rdev->mutex.base);
2766
2767 regulator->enable_count++;
2768 if (regulator->uA_load && regulator->enable_count == 1) {
2769 ret = drms_uA_update(rdev);
2770 if (ret)
2771 regulator->enable_count--;
2772 return ret;
2773 }
2774
2775 return 0;
2776 }
2777
2778 /**
2779 * _regulator_handle_consumer_disable - handle that a consumer disabled
2780 * @regulator: regulator source
2781 *
2782 * The opposite of _regulator_handle_consumer_enable().
2783 *
2784 * Returns 0 upon no error; -error upon error.
2785 */
_regulator_handle_consumer_disable(struct regulator * regulator)2786 static int _regulator_handle_consumer_disable(struct regulator *regulator)
2787 {
2788 struct regulator_dev *rdev = regulator->rdev;
2789
2790 lockdep_assert_held_once(&rdev->mutex.base);
2791
2792 if (!regulator->enable_count) {
2793 rdev_err(rdev, "Underflow of regulator enable count\n");
2794 return -EINVAL;
2795 }
2796
2797 regulator->enable_count--;
2798 if (regulator->uA_load && regulator->enable_count == 0)
2799 return drms_uA_update(rdev);
2800
2801 return 0;
2802 }
2803
2804 /* locks held by regulator_enable() */
_regulator_enable(struct regulator * regulator)2805 static int _regulator_enable(struct regulator *regulator)
2806 {
2807 struct regulator_dev *rdev = regulator->rdev;
2808 int ret;
2809
2810 lockdep_assert_held_once(&rdev->mutex.base);
2811
2812 if (rdev->use_count == 0 && rdev->supply) {
2813 ret = _regulator_enable(rdev->supply);
2814 if (ret < 0)
2815 return ret;
2816 }
2817
2818 /* balance only if there are regulators coupled */
2819 if (rdev->coupling_desc.n_coupled > 1) {
2820 ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2821 if (ret < 0)
2822 goto err_disable_supply;
2823 }
2824
2825 ret = _regulator_handle_consumer_enable(regulator);
2826 if (ret < 0)
2827 goto err_disable_supply;
2828
2829 if (rdev->use_count == 0) {
2830 /*
2831 * The regulator may already be enabled if it's not switchable
2832 * or was left on
2833 */
2834 ret = _regulator_is_enabled(rdev);
2835 if (ret == -EINVAL || ret == 0) {
2836 if (!regulator_ops_is_valid(rdev,
2837 REGULATOR_CHANGE_STATUS)) {
2838 ret = -EPERM;
2839 goto err_consumer_disable;
2840 }
2841
2842 ret = _regulator_do_enable(rdev);
2843 if (ret < 0)
2844 goto err_consumer_disable;
2845
2846 _notifier_call_chain(rdev, REGULATOR_EVENT_ENABLE,
2847 NULL);
2848 } else if (ret < 0) {
2849 rdev_err(rdev, "is_enabled() failed: %pe\n", ERR_PTR(ret));
2850 goto err_consumer_disable;
2851 }
2852 /* Fallthrough on positive return values - already enabled */
2853 }
2854
2855 rdev->use_count++;
2856
2857 return 0;
2858
2859 err_consumer_disable:
2860 _regulator_handle_consumer_disable(regulator);
2861
2862 err_disable_supply:
2863 if (rdev->use_count == 0 && rdev->supply)
2864 _regulator_disable(rdev->supply);
2865
2866 return ret;
2867 }
2868
2869 /**
2870 * regulator_enable - enable regulator output
2871 * @regulator: regulator source
2872 *
2873 * Request that the regulator be enabled with the regulator output at
2874 * the predefined voltage or current value. Calls to regulator_enable()
2875 * must be balanced with calls to regulator_disable().
2876 *
2877 * NOTE: the output value can be set by other drivers, boot loader or may be
2878 * hardwired in the regulator.
2879 */
regulator_enable(struct regulator * regulator)2880 int regulator_enable(struct regulator *regulator)
2881 {
2882 struct regulator_dev *rdev = regulator->rdev;
2883 struct ww_acquire_ctx ww_ctx;
2884 int ret;
2885
2886 regulator_lock_dependent(rdev, &ww_ctx);
2887 ret = _regulator_enable(regulator);
2888 regulator_unlock_dependent(rdev, &ww_ctx);
2889
2890 return ret;
2891 }
2892 EXPORT_SYMBOL_GPL(regulator_enable);
2893
_regulator_do_disable(struct regulator_dev * rdev)2894 static int _regulator_do_disable(struct regulator_dev *rdev)
2895 {
2896 int ret;
2897
2898 trace_regulator_disable(rdev_get_name(rdev));
2899
2900 if (rdev->ena_pin) {
2901 if (rdev->ena_gpio_state) {
2902 ret = regulator_ena_gpio_ctrl(rdev, false);
2903 if (ret < 0)
2904 return ret;
2905 rdev->ena_gpio_state = 0;
2906 }
2907
2908 } else if (rdev->desc->ops->disable) {
2909 ret = rdev->desc->ops->disable(rdev);
2910 if (ret != 0)
2911 return ret;
2912 }
2913
2914 if (rdev->desc->off_on_delay)
2915 rdev->last_off = ktime_get();
2916
2917 trace_regulator_disable_complete(rdev_get_name(rdev));
2918
2919 return 0;
2920 }
2921
2922 /* locks held by regulator_disable() */
_regulator_disable(struct regulator * regulator)2923 static int _regulator_disable(struct regulator *regulator)
2924 {
2925 struct regulator_dev *rdev = regulator->rdev;
2926 int ret = 0;
2927
2928 lockdep_assert_held_once(&rdev->mutex.base);
2929
2930 if (WARN(rdev->use_count <= 0,
2931 "unbalanced disables for %s\n", rdev_get_name(rdev)))
2932 return -EIO;
2933
2934 /* are we the last user and permitted to disable ? */
2935 if (rdev->use_count == 1 &&
2936 (rdev->constraints && !rdev->constraints->always_on)) {
2937
2938 /* we are last user */
2939 if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS)) {
2940 ret = _notifier_call_chain(rdev,
2941 REGULATOR_EVENT_PRE_DISABLE,
2942 NULL);
2943 if (ret & NOTIFY_STOP_MASK)
2944 return -EINVAL;
2945
2946 ret = _regulator_do_disable(rdev);
2947 if (ret < 0) {
2948 rdev_err(rdev, "failed to disable: %pe\n", ERR_PTR(ret));
2949 _notifier_call_chain(rdev,
2950 REGULATOR_EVENT_ABORT_DISABLE,
2951 NULL);
2952 return ret;
2953 }
2954 _notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
2955 NULL);
2956 }
2957
2958 rdev->use_count = 0;
2959 } else if (rdev->use_count > 1) {
2960 rdev->use_count--;
2961 }
2962
2963 if (ret == 0)
2964 ret = _regulator_handle_consumer_disable(regulator);
2965
2966 if (ret == 0 && rdev->coupling_desc.n_coupled > 1)
2967 ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2968
2969 if (ret == 0 && rdev->use_count == 0 && rdev->supply)
2970 ret = _regulator_disable(rdev->supply);
2971
2972 return ret;
2973 }
2974
2975 /**
2976 * regulator_disable - disable regulator output
2977 * @regulator: regulator source
2978 *
2979 * Disable the regulator output voltage or current. Calls to
2980 * regulator_enable() must be balanced with calls to
2981 * regulator_disable().
2982 *
2983 * NOTE: this will only disable the regulator output if no other consumer
2984 * devices have it enabled, the regulator device supports disabling and
2985 * machine constraints permit this operation.
2986 */
regulator_disable(struct regulator * regulator)2987 int regulator_disable(struct regulator *regulator)
2988 {
2989 struct regulator_dev *rdev = regulator->rdev;
2990 struct ww_acquire_ctx ww_ctx;
2991 int ret;
2992
2993 regulator_lock_dependent(rdev, &ww_ctx);
2994 ret = _regulator_disable(regulator);
2995 regulator_unlock_dependent(rdev, &ww_ctx);
2996
2997 return ret;
2998 }
2999 EXPORT_SYMBOL_GPL(regulator_disable);
3000
3001 /* locks held by regulator_force_disable() */
_regulator_force_disable(struct regulator_dev * rdev)3002 static int _regulator_force_disable(struct regulator_dev *rdev)
3003 {
3004 int ret = 0;
3005
3006 lockdep_assert_held_once(&rdev->mutex.base);
3007
3008 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
3009 REGULATOR_EVENT_PRE_DISABLE, NULL);
3010 if (ret & NOTIFY_STOP_MASK)
3011 return -EINVAL;
3012
3013 ret = _regulator_do_disable(rdev);
3014 if (ret < 0) {
3015 rdev_err(rdev, "failed to force disable: %pe\n", ERR_PTR(ret));
3016 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
3017 REGULATOR_EVENT_ABORT_DISABLE, NULL);
3018 return ret;
3019 }
3020
3021 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
3022 REGULATOR_EVENT_DISABLE, NULL);
3023
3024 return 0;
3025 }
3026
3027 /**
3028 * regulator_force_disable - force disable regulator output
3029 * @regulator: regulator source
3030 *
3031 * Forcibly disable the regulator output voltage or current.
3032 * NOTE: this *will* disable the regulator output even if other consumer
3033 * devices have it enabled. This should be used for situations when device
3034 * damage will likely occur if the regulator is not disabled (e.g. over temp).
3035 */
regulator_force_disable(struct regulator * regulator)3036 int regulator_force_disable(struct regulator *regulator)
3037 {
3038 struct regulator_dev *rdev = regulator->rdev;
3039 struct ww_acquire_ctx ww_ctx;
3040 int ret;
3041
3042 regulator_lock_dependent(rdev, &ww_ctx);
3043
3044 ret = _regulator_force_disable(regulator->rdev);
3045
3046 if (rdev->coupling_desc.n_coupled > 1)
3047 regulator_balance_voltage(rdev, PM_SUSPEND_ON);
3048
3049 if (regulator->uA_load) {
3050 regulator->uA_load = 0;
3051 ret = drms_uA_update(rdev);
3052 }
3053
3054 if (rdev->use_count != 0 && rdev->supply)
3055 _regulator_disable(rdev->supply);
3056
3057 regulator_unlock_dependent(rdev, &ww_ctx);
3058
3059 return ret;
3060 }
3061 EXPORT_SYMBOL_GPL(regulator_force_disable);
3062
regulator_disable_work(struct work_struct * work)3063 static void regulator_disable_work(struct work_struct *work)
3064 {
3065 struct regulator_dev *rdev = container_of(work, struct regulator_dev,
3066 disable_work.work);
3067 struct ww_acquire_ctx ww_ctx;
3068 int count, i, ret;
3069 struct regulator *regulator;
3070 int total_count = 0;
3071
3072 regulator_lock_dependent(rdev, &ww_ctx);
3073
3074 /*
3075 * Workqueue functions queue the new work instance while the previous
3076 * work instance is being processed. Cancel the queued work instance
3077 * as the work instance under processing does the job of the queued
3078 * work instance.
3079 */
3080 cancel_delayed_work(&rdev->disable_work);
3081
3082 list_for_each_entry(regulator, &rdev->consumer_list, list) {
3083 count = regulator->deferred_disables;
3084
3085 if (!count)
3086 continue;
3087
3088 total_count += count;
3089 regulator->deferred_disables = 0;
3090
3091 for (i = 0; i < count; i++) {
3092 ret = _regulator_disable(regulator);
3093 if (ret != 0)
3094 rdev_err(rdev, "Deferred disable failed: %pe\n",
3095 ERR_PTR(ret));
3096 }
3097 }
3098 WARN_ON(!total_count);
3099
3100 if (rdev->coupling_desc.n_coupled > 1)
3101 regulator_balance_voltage(rdev, PM_SUSPEND_ON);
3102
3103 regulator_unlock_dependent(rdev, &ww_ctx);
3104 }
3105
3106 /**
3107 * regulator_disable_deferred - disable regulator output with delay
3108 * @regulator: regulator source
3109 * @ms: milliseconds until the regulator is disabled
3110 *
3111 * Execute regulator_disable() on the regulator after a delay. This
3112 * is intended for use with devices that require some time to quiesce.
3113 *
3114 * NOTE: this will only disable the regulator output if no other consumer
3115 * devices have it enabled, the regulator device supports disabling and
3116 * machine constraints permit this operation.
3117 */
regulator_disable_deferred(struct regulator * regulator,int ms)3118 int regulator_disable_deferred(struct regulator *regulator, int ms)
3119 {
3120 struct regulator_dev *rdev = regulator->rdev;
3121
3122 if (!ms)
3123 return regulator_disable(regulator);
3124
3125 regulator_lock(rdev);
3126 regulator->deferred_disables++;
3127 mod_delayed_work(system_power_efficient_wq, &rdev->disable_work,
3128 msecs_to_jiffies(ms));
3129 regulator_unlock(rdev);
3130
3131 return 0;
3132 }
3133 EXPORT_SYMBOL_GPL(regulator_disable_deferred);
3134
_regulator_is_enabled(struct regulator_dev * rdev)3135 static int _regulator_is_enabled(struct regulator_dev *rdev)
3136 {
3137 /* A GPIO control always takes precedence */
3138 if (rdev->ena_pin)
3139 return rdev->ena_gpio_state;
3140
3141 /* If we don't know then assume that the regulator is always on */
3142 if (!rdev->desc->ops->is_enabled)
3143 return 1;
3144
3145 return rdev->desc->ops->is_enabled(rdev);
3146 }
3147
_regulator_list_voltage(struct regulator_dev * rdev,unsigned selector,int lock)3148 static int _regulator_list_voltage(struct regulator_dev *rdev,
3149 unsigned selector, int lock)
3150 {
3151 const struct regulator_ops *ops = rdev->desc->ops;
3152 int ret;
3153
3154 if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector)
3155 return rdev->desc->fixed_uV;
3156
3157 if (ops->list_voltage) {
3158 if (selector >= rdev->desc->n_voltages)
3159 return -EINVAL;
3160 if (selector < rdev->desc->linear_min_sel)
3161 return 0;
3162 if (lock)
3163 regulator_lock(rdev);
3164 ret = ops->list_voltage(rdev, selector);
3165 if (lock)
3166 regulator_unlock(rdev);
3167 } else if (rdev->is_switch && rdev->supply) {
3168 ret = _regulator_list_voltage(rdev->supply->rdev,
3169 selector, lock);
3170 } else {
3171 return -EINVAL;
3172 }
3173
3174 if (ret > 0) {
3175 if (ret < rdev->constraints->min_uV)
3176 ret = 0;
3177 else if (ret > rdev->constraints->max_uV)
3178 ret = 0;
3179 }
3180
3181 return ret;
3182 }
3183
3184 /**
3185 * regulator_is_enabled - is the regulator output enabled
3186 * @regulator: regulator source
3187 *
3188 * Returns positive if the regulator driver backing the source/client
3189 * has requested that the device be enabled, zero if it hasn't, else a
3190 * negative errno code.
3191 *
3192 * Note that the device backing this regulator handle can have multiple
3193 * users, so it might be enabled even if regulator_enable() was never
3194 * called for this particular source.
3195 */
regulator_is_enabled(struct regulator * regulator)3196 int regulator_is_enabled(struct regulator *regulator)
3197 {
3198 int ret;
3199
3200 if (regulator->always_on)
3201 return 1;
3202
3203 regulator_lock(regulator->rdev);
3204 ret = _regulator_is_enabled(regulator->rdev);
3205 regulator_unlock(regulator->rdev);
3206
3207 return ret;
3208 }
3209 EXPORT_SYMBOL_GPL(regulator_is_enabled);
3210
3211 /**
3212 * regulator_count_voltages - count regulator_list_voltage() selectors
3213 * @regulator: regulator source
3214 *
3215 * Returns number of selectors, or negative errno. Selectors are
3216 * numbered starting at zero, and typically correspond to bitfields
3217 * in hardware registers.
3218 */
regulator_count_voltages(struct regulator * regulator)3219 int regulator_count_voltages(struct regulator *regulator)
3220 {
3221 struct regulator_dev *rdev = regulator->rdev;
3222
3223 if (rdev->desc->n_voltages)
3224 return rdev->desc->n_voltages;
3225
3226 if (!rdev->is_switch || !rdev->supply)
3227 return -EINVAL;
3228
3229 return regulator_count_voltages(rdev->supply);
3230 }
3231 EXPORT_SYMBOL_GPL(regulator_count_voltages);
3232
3233 /**
3234 * regulator_list_voltage - enumerate supported voltages
3235 * @regulator: regulator source
3236 * @selector: identify voltage to list
3237 * Context: can sleep
3238 *
3239 * Returns a voltage that can be passed to @regulator_set_voltage(),
3240 * zero if this selector code can't be used on this system, or a
3241 * negative errno.
3242 */
regulator_list_voltage(struct regulator * regulator,unsigned selector)3243 int regulator_list_voltage(struct regulator *regulator, unsigned selector)
3244 {
3245 return _regulator_list_voltage(regulator->rdev, selector, 1);
3246 }
3247 EXPORT_SYMBOL_GPL(regulator_list_voltage);
3248
3249 /**
3250 * regulator_get_regmap - get the regulator's register map
3251 * @regulator: regulator source
3252 *
3253 * Returns the register map for the given regulator, or an ERR_PTR value
3254 * if the regulator doesn't use regmap.
3255 */
regulator_get_regmap(struct regulator * regulator)3256 struct regmap *regulator_get_regmap(struct regulator *regulator)
3257 {
3258 struct regmap *map = regulator->rdev->regmap;
3259
3260 return map ? map : ERR_PTR(-EOPNOTSUPP);
3261 }
3262
3263 /**
3264 * regulator_get_hardware_vsel_register - get the HW voltage selector register
3265 * @regulator: regulator source
3266 * @vsel_reg: voltage selector register, output parameter
3267 * @vsel_mask: mask for voltage selector bitfield, output parameter
3268 *
3269 * Returns the hardware register offset and bitmask used for setting the
3270 * regulator voltage. This might be useful when configuring voltage-scaling
3271 * hardware or firmware that can make I2C requests behind the kernel's back,
3272 * for example.
3273 *
3274 * On success, the output parameters @vsel_reg and @vsel_mask are filled in
3275 * and 0 is returned, otherwise a negative errno is returned.
3276 */
regulator_get_hardware_vsel_register(struct regulator * regulator,unsigned * vsel_reg,unsigned * vsel_mask)3277 int regulator_get_hardware_vsel_register(struct regulator *regulator,
3278 unsigned *vsel_reg,
3279 unsigned *vsel_mask)
3280 {
3281 struct regulator_dev *rdev = regulator->rdev;
3282 const struct regulator_ops *ops = rdev->desc->ops;
3283
3284 if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
3285 return -EOPNOTSUPP;
3286
3287 *vsel_reg = rdev->desc->vsel_reg;
3288 *vsel_mask = rdev->desc->vsel_mask;
3289
3290 return 0;
3291 }
3292 EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register);
3293
3294 /**
3295 * regulator_list_hardware_vsel - get the HW-specific register value for a selector
3296 * @regulator: regulator source
3297 * @selector: identify voltage to list
3298 *
3299 * Converts the selector to a hardware-specific voltage selector that can be
3300 * directly written to the regulator registers. The address of the voltage
3301 * register can be determined by calling @regulator_get_hardware_vsel_register.
3302 *
3303 * On error a negative errno is returned.
3304 */
regulator_list_hardware_vsel(struct regulator * regulator,unsigned selector)3305 int regulator_list_hardware_vsel(struct regulator *regulator,
3306 unsigned selector)
3307 {
3308 struct regulator_dev *rdev = regulator->rdev;
3309 const struct regulator_ops *ops = rdev->desc->ops;
3310
3311 if (selector >= rdev->desc->n_voltages)
3312 return -EINVAL;
3313 if (selector < rdev->desc->linear_min_sel)
3314 return 0;
3315 if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
3316 return -EOPNOTSUPP;
3317
3318 return selector;
3319 }
3320 EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel);
3321
3322 /**
3323 * regulator_get_linear_step - return the voltage step size between VSEL values
3324 * @regulator: regulator source
3325 *
3326 * Returns the voltage step size between VSEL values for linear
3327 * regulators, or return 0 if the regulator isn't a linear regulator.
3328 */
regulator_get_linear_step(struct regulator * regulator)3329 unsigned int regulator_get_linear_step(struct regulator *regulator)
3330 {
3331 struct regulator_dev *rdev = regulator->rdev;
3332
3333 return rdev->desc->uV_step;
3334 }
3335 EXPORT_SYMBOL_GPL(regulator_get_linear_step);
3336
3337 /**
3338 * regulator_is_supported_voltage - check if a voltage range can be supported
3339 *
3340 * @regulator: Regulator to check.
3341 * @min_uV: Minimum required voltage in uV.
3342 * @max_uV: Maximum required voltage in uV.
3343 *
3344 * Returns a boolean.
3345 */
regulator_is_supported_voltage(struct regulator * regulator,int min_uV,int max_uV)3346 int regulator_is_supported_voltage(struct regulator *regulator,
3347 int min_uV, int max_uV)
3348 {
3349 struct regulator_dev *rdev = regulator->rdev;
3350 int i, voltages, ret;
3351
3352 /* If we can't change voltage check the current voltage */
3353 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
3354 ret = regulator_get_voltage(regulator);
3355 if (ret >= 0)
3356 return min_uV <= ret && ret <= max_uV;
3357 else
3358 return ret;
3359 }
3360
3361 /* Any voltage within constrains range is fine? */
3362 if (rdev->desc->continuous_voltage_range)
3363 return min_uV >= rdev->constraints->min_uV &&
3364 max_uV <= rdev->constraints->max_uV;
3365
3366 ret = regulator_count_voltages(regulator);
3367 if (ret < 0)
3368 return 0;
3369 voltages = ret;
3370
3371 for (i = 0; i < voltages; i++) {
3372 ret = regulator_list_voltage(regulator, i);
3373
3374 if (ret >= min_uV && ret <= max_uV)
3375 return 1;
3376 }
3377
3378 return 0;
3379 }
3380 EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
3381
regulator_map_voltage(struct regulator_dev * rdev,int min_uV,int max_uV)3382 static int regulator_map_voltage(struct regulator_dev *rdev, int min_uV,
3383 int max_uV)
3384 {
3385 const struct regulator_desc *desc = rdev->desc;
3386
3387 if (desc->ops->map_voltage)
3388 return desc->ops->map_voltage(rdev, min_uV, max_uV);
3389
3390 if (desc->ops->list_voltage == regulator_list_voltage_linear)
3391 return regulator_map_voltage_linear(rdev, min_uV, max_uV);
3392
3393 if (desc->ops->list_voltage == regulator_list_voltage_linear_range)
3394 return regulator_map_voltage_linear_range(rdev, min_uV, max_uV);
3395
3396 if (desc->ops->list_voltage ==
3397 regulator_list_voltage_pickable_linear_range)
3398 return regulator_map_voltage_pickable_linear_range(rdev,
3399 min_uV, max_uV);
3400
3401 return regulator_map_voltage_iterate(rdev, min_uV, max_uV);
3402 }
3403
_regulator_call_set_voltage(struct regulator_dev * rdev,int min_uV,int max_uV,unsigned * selector)3404 static int _regulator_call_set_voltage(struct regulator_dev *rdev,
3405 int min_uV, int max_uV,
3406 unsigned *selector)
3407 {
3408 struct pre_voltage_change_data data;
3409 int ret;
3410
3411 data.old_uV = regulator_get_voltage_rdev(rdev);
3412 data.min_uV = min_uV;
3413 data.max_uV = max_uV;
3414 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
3415 &data);
3416 if (ret & NOTIFY_STOP_MASK)
3417 return -EINVAL;
3418
3419 ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, selector);
3420 if (ret >= 0)
3421 return ret;
3422
3423 _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
3424 (void *)data.old_uV);
3425
3426 return ret;
3427 }
3428
_regulator_call_set_voltage_sel(struct regulator_dev * rdev,int uV,unsigned selector)3429 static int _regulator_call_set_voltage_sel(struct regulator_dev *rdev,
3430 int uV, unsigned selector)
3431 {
3432 struct pre_voltage_change_data data;
3433 int ret;
3434
3435 data.old_uV = regulator_get_voltage_rdev(rdev);
3436 data.min_uV = uV;
3437 data.max_uV = uV;
3438 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
3439 &data);
3440 if (ret & NOTIFY_STOP_MASK)
3441 return -EINVAL;
3442
3443 ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
3444 if (ret >= 0)
3445 return ret;
3446
3447 _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
3448 (void *)data.old_uV);
3449
3450 return ret;
3451 }
3452
_regulator_set_voltage_sel_step(struct regulator_dev * rdev,int uV,int new_selector)3453 static int _regulator_set_voltage_sel_step(struct regulator_dev *rdev,
3454 int uV, int new_selector)
3455 {
3456 const struct regulator_ops *ops = rdev->desc->ops;
3457 int diff, old_sel, curr_sel, ret;
3458
3459 /* Stepping is only needed if the regulator is enabled. */
3460 if (!_regulator_is_enabled(rdev))
3461 goto final_set;
3462
3463 if (!ops->get_voltage_sel)
3464 return -EINVAL;
3465
3466 old_sel = ops->get_voltage_sel(rdev);
3467 if (old_sel < 0)
3468 return old_sel;
3469
3470 diff = new_selector - old_sel;
3471 if (diff == 0)
3472 return 0; /* No change needed. */
3473
3474 if (diff > 0) {
3475 /* Stepping up. */
3476 for (curr_sel = old_sel + rdev->desc->vsel_step;
3477 curr_sel < new_selector;
3478 curr_sel += rdev->desc->vsel_step) {
3479 /*
3480 * Call the callback directly instead of using
3481 * _regulator_call_set_voltage_sel() as we don't
3482 * want to notify anyone yet. Same in the branch
3483 * below.
3484 */
3485 ret = ops->set_voltage_sel(rdev, curr_sel);
3486 if (ret)
3487 goto try_revert;
3488 }
3489 } else {
3490 /* Stepping down. */
3491 for (curr_sel = old_sel - rdev->desc->vsel_step;
3492 curr_sel > new_selector;
3493 curr_sel -= rdev->desc->vsel_step) {
3494 ret = ops->set_voltage_sel(rdev, curr_sel);
3495 if (ret)
3496 goto try_revert;
3497 }
3498 }
3499
3500 final_set:
3501 /* The final selector will trigger the notifiers. */
3502 return _regulator_call_set_voltage_sel(rdev, uV, new_selector);
3503
3504 try_revert:
3505 /*
3506 * At least try to return to the previous voltage if setting a new
3507 * one failed.
3508 */
3509 (void)ops->set_voltage_sel(rdev, old_sel);
3510 return ret;
3511 }
3512
_regulator_set_voltage_time(struct regulator_dev * rdev,int old_uV,int new_uV)3513 static int _regulator_set_voltage_time(struct regulator_dev *rdev,
3514 int old_uV, int new_uV)
3515 {
3516 unsigned int ramp_delay = 0;
3517
3518 if (rdev->constraints->ramp_delay)
3519 ramp_delay = rdev->constraints->ramp_delay;
3520 else if (rdev->desc->ramp_delay)
3521 ramp_delay = rdev->desc->ramp_delay;
3522 else if (rdev->constraints->settling_time)
3523 return rdev->constraints->settling_time;
3524 else if (rdev->constraints->settling_time_up &&
3525 (new_uV > old_uV))
3526 return rdev->constraints->settling_time_up;
3527 else if (rdev->constraints->settling_time_down &&
3528 (new_uV < old_uV))
3529 return rdev->constraints->settling_time_down;
3530
3531 if (ramp_delay == 0)
3532 return 0;
3533
3534 return DIV_ROUND_UP(abs(new_uV - old_uV), ramp_delay);
3535 }
3536
_regulator_do_set_voltage(struct regulator_dev * rdev,int min_uV,int max_uV)3537 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
3538 int min_uV, int max_uV)
3539 {
3540 int ret;
3541 int delay = 0;
3542 int best_val = 0;
3543 unsigned int selector;
3544 int old_selector = -1;
3545 const struct regulator_ops *ops = rdev->desc->ops;
3546 int old_uV = regulator_get_voltage_rdev(rdev);
3547
3548 trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
3549
3550 min_uV += rdev->constraints->uV_offset;
3551 max_uV += rdev->constraints->uV_offset;
3552
3553 /*
3554 * If we can't obtain the old selector there is not enough
3555 * info to call set_voltage_time_sel().
3556 */
3557 if (_regulator_is_enabled(rdev) &&
3558 ops->set_voltage_time_sel && ops->get_voltage_sel) {
3559 old_selector = ops->get_voltage_sel(rdev);
3560 if (old_selector < 0)
3561 return old_selector;
3562 }
3563
3564 if (ops->set_voltage) {
3565 ret = _regulator_call_set_voltage(rdev, min_uV, max_uV,
3566 &selector);
3567
3568 if (ret >= 0) {
3569 if (ops->list_voltage)
3570 best_val = ops->list_voltage(rdev,
3571 selector);
3572 else
3573 best_val = regulator_get_voltage_rdev(rdev);
3574 }
3575
3576 } else if (ops->set_voltage_sel) {
3577 ret = regulator_map_voltage(rdev, min_uV, max_uV);
3578 if (ret >= 0) {
3579 best_val = ops->list_voltage(rdev, ret);
3580 if (min_uV <= best_val && max_uV >= best_val) {
3581 selector = ret;
3582 if (old_selector == selector)
3583 ret = 0;
3584 else if (rdev->desc->vsel_step)
3585 ret = _regulator_set_voltage_sel_step(
3586 rdev, best_val, selector);
3587 else
3588 ret = _regulator_call_set_voltage_sel(
3589 rdev, best_val, selector);
3590 } else {
3591 ret = -EINVAL;
3592 }
3593 }
3594 } else {
3595 ret = -EINVAL;
3596 }
3597
3598 if (ret)
3599 goto out;
3600
3601 if (ops->set_voltage_time_sel) {
3602 /*
3603 * Call set_voltage_time_sel if successfully obtained
3604 * old_selector
3605 */
3606 if (old_selector >= 0 && old_selector != selector)
3607 delay = ops->set_voltage_time_sel(rdev, old_selector,
3608 selector);
3609 } else {
3610 if (old_uV != best_val) {
3611 if (ops->set_voltage_time)
3612 delay = ops->set_voltage_time(rdev, old_uV,
3613 best_val);
3614 else
3615 delay = _regulator_set_voltage_time(rdev,
3616 old_uV,
3617 best_val);
3618 }
3619 }
3620
3621 if (delay < 0) {
3622 rdev_warn(rdev, "failed to get delay: %pe\n", ERR_PTR(delay));
3623 delay = 0;
3624 }
3625
3626 /* Insert any necessary delays */
3627 _regulator_delay_helper(delay);
3628
3629 if (best_val >= 0) {
3630 unsigned long data = best_val;
3631
3632 _notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
3633 (void *)data);
3634 }
3635
3636 out:
3637 trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
3638
3639 return ret;
3640 }
3641
_regulator_do_set_suspend_voltage(struct regulator_dev * rdev,int min_uV,int max_uV,suspend_state_t state)3642 static int _regulator_do_set_suspend_voltage(struct regulator_dev *rdev,
3643 int min_uV, int max_uV, suspend_state_t state)
3644 {
3645 struct regulator_state *rstate;
3646 int uV, sel;
3647
3648 rstate = regulator_get_suspend_state(rdev, state);
3649 if (rstate == NULL)
3650 return -EINVAL;
3651
3652 if (min_uV < rstate->min_uV)
3653 min_uV = rstate->min_uV;
3654 if (max_uV > rstate->max_uV)
3655 max_uV = rstate->max_uV;
3656
3657 sel = regulator_map_voltage(rdev, min_uV, max_uV);
3658 if (sel < 0)
3659 return sel;
3660
3661 uV = rdev->desc->ops->list_voltage(rdev, sel);
3662 if (uV >= min_uV && uV <= max_uV)
3663 rstate->uV = uV;
3664
3665 return 0;
3666 }
3667
regulator_set_voltage_unlocked(struct regulator * regulator,int min_uV,int max_uV,suspend_state_t state)3668 static int regulator_set_voltage_unlocked(struct regulator *regulator,
3669 int min_uV, int max_uV,
3670 suspend_state_t state)
3671 {
3672 struct regulator_dev *rdev = regulator->rdev;
3673 struct regulator_voltage *voltage = ®ulator->voltage[state];
3674 int ret = 0;
3675 int old_min_uV, old_max_uV;
3676 int current_uV;
3677
3678 /* If we're setting the same range as last time the change
3679 * should be a noop (some cpufreq implementations use the same
3680 * voltage for multiple frequencies, for example).
3681 */
3682 if (voltage->min_uV == min_uV && voltage->max_uV == max_uV)
3683 goto out;
3684
3685 /* If we're trying to set a range that overlaps the current voltage,
3686 * return successfully even though the regulator does not support
3687 * changing the voltage.
3688 */
3689 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
3690 current_uV = regulator_get_voltage_rdev(rdev);
3691 if (min_uV <= current_uV && current_uV <= max_uV) {
3692 voltage->min_uV = min_uV;
3693 voltage->max_uV = max_uV;
3694 goto out;
3695 }
3696 }
3697
3698 /* sanity check */
3699 if (!rdev->desc->ops->set_voltage &&
3700 !rdev->desc->ops->set_voltage_sel) {
3701 ret = -EINVAL;
3702 goto out;
3703 }
3704
3705 /* constraints check */
3706 ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
3707 if (ret < 0)
3708 goto out;
3709
3710 /* restore original values in case of error */
3711 old_min_uV = voltage->min_uV;
3712 old_max_uV = voltage->max_uV;
3713 voltage->min_uV = min_uV;
3714 voltage->max_uV = max_uV;
3715
3716 /* for not coupled regulators this will just set the voltage */
3717 ret = regulator_balance_voltage(rdev, state);
3718 if (ret < 0) {
3719 voltage->min_uV = old_min_uV;
3720 voltage->max_uV = old_max_uV;
3721 }
3722
3723 out:
3724 return ret;
3725 }
3726
regulator_set_voltage_rdev(struct regulator_dev * rdev,int min_uV,int max_uV,suspend_state_t state)3727 int regulator_set_voltage_rdev(struct regulator_dev *rdev, int min_uV,
3728 int max_uV, suspend_state_t state)
3729 {
3730 int best_supply_uV = 0;
3731 int supply_change_uV = 0;
3732 int ret;
3733
3734 if (rdev->supply &&
3735 regulator_ops_is_valid(rdev->supply->rdev,
3736 REGULATOR_CHANGE_VOLTAGE) &&
3737 (rdev->desc->min_dropout_uV || !(rdev->desc->ops->get_voltage ||
3738 rdev->desc->ops->get_voltage_sel))) {
3739 int current_supply_uV;
3740 int selector;
3741
3742 selector = regulator_map_voltage(rdev, min_uV, max_uV);
3743 if (selector < 0) {
3744 ret = selector;
3745 goto out;
3746 }
3747
3748 best_supply_uV = _regulator_list_voltage(rdev, selector, 0);
3749 if (best_supply_uV < 0) {
3750 ret = best_supply_uV;
3751 goto out;
3752 }
3753
3754 best_supply_uV += rdev->desc->min_dropout_uV;
3755
3756 current_supply_uV = regulator_get_voltage_rdev(rdev->supply->rdev);
3757 if (current_supply_uV < 0) {
3758 ret = current_supply_uV;
3759 goto out;
3760 }
3761
3762 supply_change_uV = best_supply_uV - current_supply_uV;
3763 }
3764
3765 if (supply_change_uV > 0) {
3766 ret = regulator_set_voltage_unlocked(rdev->supply,
3767 best_supply_uV, INT_MAX, state);
3768 if (ret) {
3769 dev_err(&rdev->dev, "Failed to increase supply voltage: %pe\n",
3770 ERR_PTR(ret));
3771 goto out;
3772 }
3773 }
3774
3775 if (state == PM_SUSPEND_ON)
3776 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
3777 else
3778 ret = _regulator_do_set_suspend_voltage(rdev, min_uV,
3779 max_uV, state);
3780 if (ret < 0)
3781 goto out;
3782
3783 if (supply_change_uV < 0) {
3784 ret = regulator_set_voltage_unlocked(rdev->supply,
3785 best_supply_uV, INT_MAX, state);
3786 if (ret)
3787 dev_warn(&rdev->dev, "Failed to decrease supply voltage: %pe\n",
3788 ERR_PTR(ret));
3789 /* No need to fail here */
3790 ret = 0;
3791 }
3792
3793 out:
3794 return ret;
3795 }
3796 EXPORT_SYMBOL_GPL(regulator_set_voltage_rdev);
3797
regulator_limit_voltage_step(struct regulator_dev * rdev,int * current_uV,int * min_uV)3798 static int regulator_limit_voltage_step(struct regulator_dev *rdev,
3799 int *current_uV, int *min_uV)
3800 {
3801 struct regulation_constraints *constraints = rdev->constraints;
3802
3803 /* Limit voltage change only if necessary */
3804 if (!constraints->max_uV_step || !_regulator_is_enabled(rdev))
3805 return 1;
3806
3807 if (*current_uV < 0) {
3808 *current_uV = regulator_get_voltage_rdev(rdev);
3809
3810 if (*current_uV < 0)
3811 return *current_uV;
3812 }
3813
3814 if (abs(*current_uV - *min_uV) <= constraints->max_uV_step)
3815 return 1;
3816
3817 /* Clamp target voltage within the given step */
3818 if (*current_uV < *min_uV)
3819 *min_uV = min(*current_uV + constraints->max_uV_step,
3820 *min_uV);
3821 else
3822 *min_uV = max(*current_uV - constraints->max_uV_step,
3823 *min_uV);
3824
3825 return 0;
3826 }
3827
regulator_get_optimal_voltage(struct regulator_dev * rdev,int * current_uV,int * min_uV,int * max_uV,suspend_state_t state,int n_coupled)3828 static int regulator_get_optimal_voltage(struct regulator_dev *rdev,
3829 int *current_uV,
3830 int *min_uV, int *max_uV,
3831 suspend_state_t state,
3832 int n_coupled)
3833 {
3834 struct coupling_desc *c_desc = &rdev->coupling_desc;
3835 struct regulator_dev **c_rdevs = c_desc->coupled_rdevs;
3836 struct regulation_constraints *constraints = rdev->constraints;
3837 int desired_min_uV = 0, desired_max_uV = INT_MAX;
3838 int max_current_uV = 0, min_current_uV = INT_MAX;
3839 int highest_min_uV = 0, target_uV, possible_uV;
3840 int i, ret, max_spread;
3841 bool done;
3842
3843 *current_uV = -1;
3844
3845 /*
3846 * If there are no coupled regulators, simply set the voltage
3847 * demanded by consumers.
3848 */
3849 if (n_coupled == 1) {
3850 /*
3851 * If consumers don't provide any demands, set voltage
3852 * to min_uV
3853 */
3854 desired_min_uV = constraints->min_uV;
3855 desired_max_uV = constraints->max_uV;
3856
3857 ret = regulator_check_consumers(rdev,
3858 &desired_min_uV,
3859 &desired_max_uV, state);
3860 if (ret < 0)
3861 return ret;
3862
3863 possible_uV = desired_min_uV;
3864 done = true;
3865
3866 goto finish;
3867 }
3868
3869 /* Find highest min desired voltage */
3870 for (i = 0; i < n_coupled; i++) {
3871 int tmp_min = 0;
3872 int tmp_max = INT_MAX;
3873
3874 lockdep_assert_held_once(&c_rdevs[i]->mutex.base);
3875
3876 ret = regulator_check_consumers(c_rdevs[i],
3877 &tmp_min,
3878 &tmp_max, state);
3879 if (ret < 0)
3880 return ret;
3881
3882 ret = regulator_check_voltage(c_rdevs[i], &tmp_min, &tmp_max);
3883 if (ret < 0)
3884 return ret;
3885
3886 highest_min_uV = max(highest_min_uV, tmp_min);
3887
3888 if (i == 0) {
3889 desired_min_uV = tmp_min;
3890 desired_max_uV = tmp_max;
3891 }
3892 }
3893
3894 max_spread = constraints->max_spread[0];
3895
3896 /*
3897 * Let target_uV be equal to the desired one if possible.
3898 * If not, set it to minimum voltage, allowed by other coupled
3899 * regulators.
3900 */
3901 target_uV = max(desired_min_uV, highest_min_uV - max_spread);
3902
3903 /*
3904 * Find min and max voltages, which currently aren't violating
3905 * max_spread.
3906 */
3907 for (i = 1; i < n_coupled; i++) {
3908 int tmp_act;
3909
3910 if (!_regulator_is_enabled(c_rdevs[i]))
3911 continue;
3912
3913 tmp_act = regulator_get_voltage_rdev(c_rdevs[i]);
3914 if (tmp_act < 0)
3915 return tmp_act;
3916
3917 min_current_uV = min(tmp_act, min_current_uV);
3918 max_current_uV = max(tmp_act, max_current_uV);
3919 }
3920
3921 /* There aren't any other regulators enabled */
3922 if (max_current_uV == 0) {
3923 possible_uV = target_uV;
3924 } else {
3925 /*
3926 * Correct target voltage, so as it currently isn't
3927 * violating max_spread
3928 */
3929 possible_uV = max(target_uV, max_current_uV - max_spread);
3930 possible_uV = min(possible_uV, min_current_uV + max_spread);
3931 }
3932
3933 if (possible_uV > desired_max_uV)
3934 return -EINVAL;
3935
3936 done = (possible_uV == target_uV);
3937 desired_min_uV = possible_uV;
3938
3939 finish:
3940 /* Apply max_uV_step constraint if necessary */
3941 if (state == PM_SUSPEND_ON) {
3942 ret = regulator_limit_voltage_step(rdev, current_uV,
3943 &desired_min_uV);
3944 if (ret < 0)
3945 return ret;
3946
3947 if (ret == 0)
3948 done = false;
3949 }
3950
3951 /* Set current_uV if wasn't done earlier in the code and if necessary */
3952 if (n_coupled > 1 && *current_uV == -1) {
3953
3954 if (_regulator_is_enabled(rdev)) {
3955 ret = regulator_get_voltage_rdev(rdev);
3956 if (ret < 0)
3957 return ret;
3958
3959 *current_uV = ret;
3960 } else {
3961 *current_uV = desired_min_uV;
3962 }
3963 }
3964
3965 *min_uV = desired_min_uV;
3966 *max_uV = desired_max_uV;
3967
3968 return done;
3969 }
3970
regulator_do_balance_voltage(struct regulator_dev * rdev,suspend_state_t state,bool skip_coupled)3971 int regulator_do_balance_voltage(struct regulator_dev *rdev,
3972 suspend_state_t state, bool skip_coupled)
3973 {
3974 struct regulator_dev **c_rdevs;
3975 struct regulator_dev *best_rdev;
3976 struct coupling_desc *c_desc = &rdev->coupling_desc;
3977 int i, ret, n_coupled, best_min_uV, best_max_uV, best_c_rdev;
3978 unsigned int delta, best_delta;
3979 unsigned long c_rdev_done = 0;
3980 bool best_c_rdev_done;
3981
3982 c_rdevs = c_desc->coupled_rdevs;
3983 n_coupled = skip_coupled ? 1 : c_desc->n_coupled;
3984
3985 /*
3986 * Find the best possible voltage change on each loop. Leave the loop
3987 * if there isn't any possible change.
3988 */
3989 do {
3990 best_c_rdev_done = false;
3991 best_delta = 0;
3992 best_min_uV = 0;
3993 best_max_uV = 0;
3994 best_c_rdev = 0;
3995 best_rdev = NULL;
3996
3997 /*
3998 * Find highest difference between optimal voltage
3999 * and current voltage.
4000 */
4001 for (i = 0; i < n_coupled; i++) {
4002 /*
4003 * optimal_uV is the best voltage that can be set for
4004 * i-th regulator at the moment without violating
4005 * max_spread constraint in order to balance
4006 * the coupled voltages.
4007 */
4008 int optimal_uV = 0, optimal_max_uV = 0, current_uV = 0;
4009
4010 if (test_bit(i, &c_rdev_done))
4011 continue;
4012
4013 ret = regulator_get_optimal_voltage(c_rdevs[i],
4014 ¤t_uV,
4015 &optimal_uV,
4016 &optimal_max_uV,
4017 state, n_coupled);
4018 if (ret < 0)
4019 goto out;
4020
4021 delta = abs(optimal_uV - current_uV);
4022
4023 if (delta && best_delta <= delta) {
4024 best_c_rdev_done = ret;
4025 best_delta = delta;
4026 best_rdev = c_rdevs[i];
4027 best_min_uV = optimal_uV;
4028 best_max_uV = optimal_max_uV;
4029 best_c_rdev = i;
4030 }
4031 }
4032
4033 /* Nothing to change, return successfully */
4034 if (!best_rdev) {
4035 ret = 0;
4036 goto out;
4037 }
4038
4039 ret = regulator_set_voltage_rdev(best_rdev, best_min_uV,
4040 best_max_uV, state);
4041
4042 if (ret < 0)
4043 goto out;
4044
4045 if (best_c_rdev_done)
4046 set_bit(best_c_rdev, &c_rdev_done);
4047
4048 } while (n_coupled > 1);
4049
4050 out:
4051 return ret;
4052 }
4053
regulator_balance_voltage(struct regulator_dev * rdev,suspend_state_t state)4054 static int regulator_balance_voltage(struct regulator_dev *rdev,
4055 suspend_state_t state)
4056 {
4057 struct coupling_desc *c_desc = &rdev->coupling_desc;
4058 struct regulator_coupler *coupler = c_desc->coupler;
4059 bool skip_coupled = false;
4060
4061 /*
4062 * If system is in a state other than PM_SUSPEND_ON, don't check
4063 * other coupled regulators.
4064 */
4065 if (state != PM_SUSPEND_ON)
4066 skip_coupled = true;
4067
4068 if (c_desc->n_resolved < c_desc->n_coupled) {
4069 rdev_err(rdev, "Not all coupled regulators registered\n");
4070 return -EPERM;
4071 }
4072
4073 /* Invoke custom balancer for customized couplers */
4074 if (coupler && coupler->balance_voltage)
4075 return coupler->balance_voltage(coupler, rdev, state);
4076
4077 return regulator_do_balance_voltage(rdev, state, skip_coupled);
4078 }
4079
4080 /**
4081 * regulator_set_voltage - set regulator output voltage
4082 * @regulator: regulator source
4083 * @min_uV: Minimum required voltage in uV
4084 * @max_uV: Maximum acceptable voltage in uV
4085 *
4086 * Sets a voltage regulator to the desired output voltage. This can be set
4087 * during any regulator state. IOW, regulator can be disabled or enabled.
4088 *
4089 * If the regulator is enabled then the voltage will change to the new value
4090 * immediately otherwise if the regulator is disabled the regulator will
4091 * output at the new voltage when enabled.
4092 *
4093 * NOTE: If the regulator is shared between several devices then the lowest
4094 * request voltage that meets the system constraints will be used.
4095 * Regulator system constraints must be set for this regulator before
4096 * calling this function otherwise this call will fail.
4097 */
regulator_set_voltage(struct regulator * regulator,int min_uV,int max_uV)4098 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
4099 {
4100 struct ww_acquire_ctx ww_ctx;
4101 int ret;
4102
4103 regulator_lock_dependent(regulator->rdev, &ww_ctx);
4104
4105 ret = regulator_set_voltage_unlocked(regulator, min_uV, max_uV,
4106 PM_SUSPEND_ON);
4107
4108 regulator_unlock_dependent(regulator->rdev, &ww_ctx);
4109
4110 return ret;
4111 }
4112 EXPORT_SYMBOL_GPL(regulator_set_voltage);
4113
regulator_suspend_toggle(struct regulator_dev * rdev,suspend_state_t state,bool en)4114 static inline int regulator_suspend_toggle(struct regulator_dev *rdev,
4115 suspend_state_t state, bool en)
4116 {
4117 struct regulator_state *rstate;
4118
4119 rstate = regulator_get_suspend_state(rdev, state);
4120 if (rstate == NULL)
4121 return -EINVAL;
4122
4123 if (!rstate->changeable)
4124 return -EPERM;
4125
4126 rstate->enabled = (en) ? ENABLE_IN_SUSPEND : DISABLE_IN_SUSPEND;
4127
4128 return 0;
4129 }
4130
regulator_suspend_enable(struct regulator_dev * rdev,suspend_state_t state)4131 int regulator_suspend_enable(struct regulator_dev *rdev,
4132 suspend_state_t state)
4133 {
4134 return regulator_suspend_toggle(rdev, state, true);
4135 }
4136 EXPORT_SYMBOL_GPL(regulator_suspend_enable);
4137
regulator_suspend_disable(struct regulator_dev * rdev,suspend_state_t state)4138 int regulator_suspend_disable(struct regulator_dev *rdev,
4139 suspend_state_t state)
4140 {
4141 struct regulator *regulator;
4142 struct regulator_voltage *voltage;
4143
4144 /*
4145 * if any consumer wants this regulator device keeping on in
4146 * suspend states, don't set it as disabled.
4147 */
4148 list_for_each_entry(regulator, &rdev->consumer_list, list) {
4149 voltage = ®ulator->voltage[state];
4150 if (voltage->min_uV || voltage->max_uV)
4151 return 0;
4152 }
4153
4154 return regulator_suspend_toggle(rdev, state, false);
4155 }
4156 EXPORT_SYMBOL_GPL(regulator_suspend_disable);
4157
_regulator_set_suspend_voltage(struct regulator * regulator,int min_uV,int max_uV,suspend_state_t state)4158 static int _regulator_set_suspend_voltage(struct regulator *regulator,
4159 int min_uV, int max_uV,
4160 suspend_state_t state)
4161 {
4162 struct regulator_dev *rdev = regulator->rdev;
4163 struct regulator_state *rstate;
4164
4165 rstate = regulator_get_suspend_state(rdev, state);
4166 if (rstate == NULL)
4167 return -EINVAL;
4168
4169 if (rstate->min_uV == rstate->max_uV) {
4170 rdev_err(rdev, "The suspend voltage can't be changed!\n");
4171 return -EPERM;
4172 }
4173
4174 return regulator_set_voltage_unlocked(regulator, min_uV, max_uV, state);
4175 }
4176
regulator_set_suspend_voltage(struct regulator * regulator,int min_uV,int max_uV,suspend_state_t state)4177 int regulator_set_suspend_voltage(struct regulator *regulator, int min_uV,
4178 int max_uV, suspend_state_t state)
4179 {
4180 struct ww_acquire_ctx ww_ctx;
4181 int ret;
4182
4183 /* PM_SUSPEND_ON is handled by regulator_set_voltage() */
4184 if (regulator_check_states(state) || state == PM_SUSPEND_ON)
4185 return -EINVAL;
4186
4187 regulator_lock_dependent(regulator->rdev, &ww_ctx);
4188
4189 ret = _regulator_set_suspend_voltage(regulator, min_uV,
4190 max_uV, state);
4191
4192 regulator_unlock_dependent(regulator->rdev, &ww_ctx);
4193
4194 return ret;
4195 }
4196 EXPORT_SYMBOL_GPL(regulator_set_suspend_voltage);
4197
4198 /**
4199 * regulator_set_voltage_time - get raise/fall time
4200 * @regulator: regulator source
4201 * @old_uV: starting voltage in microvolts
4202 * @new_uV: target voltage in microvolts
4203 *
4204 * Provided with the starting and ending voltage, this function attempts to
4205 * calculate the time in microseconds required to rise or fall to this new
4206 * voltage.
4207 */
regulator_set_voltage_time(struct regulator * regulator,int old_uV,int new_uV)4208 int regulator_set_voltage_time(struct regulator *regulator,
4209 int old_uV, int new_uV)
4210 {
4211 struct regulator_dev *rdev = regulator->rdev;
4212 const struct regulator_ops *ops = rdev->desc->ops;
4213 int old_sel = -1;
4214 int new_sel = -1;
4215 int voltage;
4216 int i;
4217
4218 if (ops->set_voltage_time)
4219 return ops->set_voltage_time(rdev, old_uV, new_uV);
4220 else if (!ops->set_voltage_time_sel)
4221 return _regulator_set_voltage_time(rdev, old_uV, new_uV);
4222
4223 /* Currently requires operations to do this */
4224 if (!ops->list_voltage || !rdev->desc->n_voltages)
4225 return -EINVAL;
4226
4227 for (i = 0; i < rdev->desc->n_voltages; i++) {
4228 /* We only look for exact voltage matches here */
4229 if (i < rdev->desc->linear_min_sel)
4230 continue;
4231
4232 if (old_sel >= 0 && new_sel >= 0)
4233 break;
4234
4235 voltage = regulator_list_voltage(regulator, i);
4236 if (voltage < 0)
4237 return -EINVAL;
4238 if (voltage == 0)
4239 continue;
4240 if (voltage == old_uV)
4241 old_sel = i;
4242 if (voltage == new_uV)
4243 new_sel = i;
4244 }
4245
4246 if (old_sel < 0 || new_sel < 0)
4247 return -EINVAL;
4248
4249 return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
4250 }
4251 EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
4252
4253 /**
4254 * regulator_set_voltage_time_sel - get raise/fall time
4255 * @rdev: regulator source device
4256 * @old_selector: selector for starting voltage
4257 * @new_selector: selector for target voltage
4258 *
4259 * Provided with the starting and target voltage selectors, this function
4260 * returns time in microseconds required to rise or fall to this new voltage
4261 *
4262 * Drivers providing ramp_delay in regulation_constraints can use this as their
4263 * set_voltage_time_sel() operation.
4264 */
regulator_set_voltage_time_sel(struct regulator_dev * rdev,unsigned int old_selector,unsigned int new_selector)4265 int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
4266 unsigned int old_selector,
4267 unsigned int new_selector)
4268 {
4269 int old_volt, new_volt;
4270
4271 /* sanity check */
4272 if (!rdev->desc->ops->list_voltage)
4273 return -EINVAL;
4274
4275 old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
4276 new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);
4277
4278 if (rdev->desc->ops->set_voltage_time)
4279 return rdev->desc->ops->set_voltage_time(rdev, old_volt,
4280 new_volt);
4281 else
4282 return _regulator_set_voltage_time(rdev, old_volt, new_volt);
4283 }
4284 EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
4285
regulator_sync_voltage_rdev(struct regulator_dev * rdev)4286 int regulator_sync_voltage_rdev(struct regulator_dev *rdev)
4287 {
4288 int ret;
4289
4290 regulator_lock(rdev);
4291
4292 if (!rdev->desc->ops->set_voltage &&
4293 !rdev->desc->ops->set_voltage_sel) {
4294 ret = -EINVAL;
4295 goto out;
4296 }
4297
4298 /* balance only, if regulator is coupled */
4299 if (rdev->coupling_desc.n_coupled > 1)
4300 ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
4301 else
4302 ret = -EOPNOTSUPP;
4303
4304 out:
4305 regulator_unlock(rdev);
4306 return ret;
4307 }
4308
4309 /**
4310 * regulator_sync_voltage - re-apply last regulator output voltage
4311 * @regulator: regulator source
4312 *
4313 * Re-apply the last configured voltage. This is intended to be used
4314 * where some external control source the consumer is cooperating with
4315 * has caused the configured voltage to change.
4316 */
regulator_sync_voltage(struct regulator * regulator)4317 int regulator_sync_voltage(struct regulator *regulator)
4318 {
4319 struct regulator_dev *rdev = regulator->rdev;
4320 struct regulator_voltage *voltage = ®ulator->voltage[PM_SUSPEND_ON];
4321 int ret, min_uV, max_uV;
4322
4323 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE))
4324 return 0;
4325
4326 regulator_lock(rdev);
4327
4328 if (!rdev->desc->ops->set_voltage &&
4329 !rdev->desc->ops->set_voltage_sel) {
4330 ret = -EINVAL;
4331 goto out;
4332 }
4333
4334 /* This is only going to work if we've had a voltage configured. */
4335 if (!voltage->min_uV && !voltage->max_uV) {
4336 ret = -EINVAL;
4337 goto out;
4338 }
4339
4340 min_uV = voltage->min_uV;
4341 max_uV = voltage->max_uV;
4342
4343 /* This should be a paranoia check... */
4344 ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
4345 if (ret < 0)
4346 goto out;
4347
4348 ret = regulator_check_consumers(rdev, &min_uV, &max_uV, 0);
4349 if (ret < 0)
4350 goto out;
4351
4352 /* balance only, if regulator is coupled */
4353 if (rdev->coupling_desc.n_coupled > 1)
4354 ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
4355 else
4356 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
4357
4358 out:
4359 regulator_unlock(rdev);
4360 return ret;
4361 }
4362 EXPORT_SYMBOL_GPL(regulator_sync_voltage);
4363
regulator_get_voltage_rdev(struct regulator_dev * rdev)4364 int regulator_get_voltage_rdev(struct regulator_dev *rdev)
4365 {
4366 int sel, ret;
4367 bool bypassed;
4368
4369 if (rdev->desc->ops->get_bypass) {
4370 ret = rdev->desc->ops->get_bypass(rdev, &bypassed);
4371 if (ret < 0)
4372 return ret;
4373 if (bypassed) {
4374 /* if bypassed the regulator must have a supply */
4375 if (!rdev->supply) {
4376 rdev_err(rdev,
4377 "bypassed regulator has no supply!\n");
4378 return -EPROBE_DEFER;
4379 }
4380
4381 return regulator_get_voltage_rdev(rdev->supply->rdev);
4382 }
4383 }
4384
4385 if (rdev->desc->ops->get_voltage_sel) {
4386 sel = rdev->desc->ops->get_voltage_sel(rdev);
4387 if (sel < 0)
4388 return sel;
4389 ret = rdev->desc->ops->list_voltage(rdev, sel);
4390 } else if (rdev->desc->ops->get_voltage) {
4391 ret = rdev->desc->ops->get_voltage(rdev);
4392 } else if (rdev->desc->ops->list_voltage) {
4393 ret = rdev->desc->ops->list_voltage(rdev, 0);
4394 } else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) {
4395 ret = rdev->desc->fixed_uV;
4396 } else if (rdev->supply) {
4397 ret = regulator_get_voltage_rdev(rdev->supply->rdev);
4398 } else if (rdev->supply_name) {
4399 return -EPROBE_DEFER;
4400 } else {
4401 return -EINVAL;
4402 }
4403
4404 if (ret < 0)
4405 return ret;
4406 return ret - rdev->constraints->uV_offset;
4407 }
4408 EXPORT_SYMBOL_GPL(regulator_get_voltage_rdev);
4409
4410 /**
4411 * regulator_get_voltage - get regulator output voltage
4412 * @regulator: regulator source
4413 *
4414 * This returns the current regulator voltage in uV.
4415 *
4416 * NOTE: If the regulator is disabled it will return the voltage value. This
4417 * function should not be used to determine regulator state.
4418 */
regulator_get_voltage(struct regulator * regulator)4419 int regulator_get_voltage(struct regulator *regulator)
4420 {
4421 struct ww_acquire_ctx ww_ctx;
4422 int ret;
4423
4424 regulator_lock_dependent(regulator->rdev, &ww_ctx);
4425 ret = regulator_get_voltage_rdev(regulator->rdev);
4426 regulator_unlock_dependent(regulator->rdev, &ww_ctx);
4427
4428 return ret;
4429 }
4430 EXPORT_SYMBOL_GPL(regulator_get_voltage);
4431
4432 /**
4433 * regulator_set_current_limit - set regulator output current limit
4434 * @regulator: regulator source
4435 * @min_uA: Minimum supported current in uA
4436 * @max_uA: Maximum supported current in uA
4437 *
4438 * Sets current sink to the desired output current. This can be set during
4439 * any regulator state. IOW, regulator can be disabled or enabled.
4440 *
4441 * If the regulator is enabled then the current will change to the new value
4442 * immediately otherwise if the regulator is disabled the regulator will
4443 * output at the new current when enabled.
4444 *
4445 * NOTE: Regulator system constraints must be set for this regulator before
4446 * calling this function otherwise this call will fail.
4447 */
regulator_set_current_limit(struct regulator * regulator,int min_uA,int max_uA)4448 int regulator_set_current_limit(struct regulator *regulator,
4449 int min_uA, int max_uA)
4450 {
4451 struct regulator_dev *rdev = regulator->rdev;
4452 int ret;
4453
4454 regulator_lock(rdev);
4455
4456 /* sanity check */
4457 if (!rdev->desc->ops->set_current_limit) {
4458 ret = -EINVAL;
4459 goto out;
4460 }
4461
4462 /* constraints check */
4463 ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
4464 if (ret < 0)
4465 goto out;
4466
4467 ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
4468 out:
4469 regulator_unlock(rdev);
4470 return ret;
4471 }
4472 EXPORT_SYMBOL_GPL(regulator_set_current_limit);
4473
_regulator_get_current_limit_unlocked(struct regulator_dev * rdev)4474 static int _regulator_get_current_limit_unlocked(struct regulator_dev *rdev)
4475 {
4476 /* sanity check */
4477 if (!rdev->desc->ops->get_current_limit)
4478 return -EINVAL;
4479
4480 return rdev->desc->ops->get_current_limit(rdev);
4481 }
4482
_regulator_get_current_limit(struct regulator_dev * rdev)4483 static int _regulator_get_current_limit(struct regulator_dev *rdev)
4484 {
4485 int ret;
4486
4487 regulator_lock(rdev);
4488 ret = _regulator_get_current_limit_unlocked(rdev);
4489 regulator_unlock(rdev);
4490
4491 return ret;
4492 }
4493
4494 /**
4495 * regulator_get_current_limit - get regulator output current
4496 * @regulator: regulator source
4497 *
4498 * This returns the current supplied by the specified current sink in uA.
4499 *
4500 * NOTE: If the regulator is disabled it will return the current value. This
4501 * function should not be used to determine regulator state.
4502 */
regulator_get_current_limit(struct regulator * regulator)4503 int regulator_get_current_limit(struct regulator *regulator)
4504 {
4505 return _regulator_get_current_limit(regulator->rdev);
4506 }
4507 EXPORT_SYMBOL_GPL(regulator_get_current_limit);
4508
4509 /**
4510 * regulator_set_mode - set regulator operating mode
4511 * @regulator: regulator source
4512 * @mode: operating mode - one of the REGULATOR_MODE constants
4513 *
4514 * Set regulator operating mode to increase regulator efficiency or improve
4515 * regulation performance.
4516 *
4517 * NOTE: Regulator system constraints must be set for this regulator before
4518 * calling this function otherwise this call will fail.
4519 */
regulator_set_mode(struct regulator * regulator,unsigned int mode)4520 int regulator_set_mode(struct regulator *regulator, unsigned int mode)
4521 {
4522 struct regulator_dev *rdev = regulator->rdev;
4523 int ret;
4524 int regulator_curr_mode;
4525
4526 regulator_lock(rdev);
4527
4528 /* sanity check */
4529 if (!rdev->desc->ops->set_mode) {
4530 ret = -EINVAL;
4531 goto out;
4532 }
4533
4534 /* return if the same mode is requested */
4535 if (rdev->desc->ops->get_mode) {
4536 regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
4537 if (regulator_curr_mode == mode) {
4538 ret = 0;
4539 goto out;
4540 }
4541 }
4542
4543 /* constraints check */
4544 ret = regulator_mode_constrain(rdev, &mode);
4545 if (ret < 0)
4546 goto out;
4547
4548 ret = rdev->desc->ops->set_mode(rdev, mode);
4549 out:
4550 regulator_unlock(rdev);
4551 return ret;
4552 }
4553 EXPORT_SYMBOL_GPL(regulator_set_mode);
4554
_regulator_get_mode_unlocked(struct regulator_dev * rdev)4555 static unsigned int _regulator_get_mode_unlocked(struct regulator_dev *rdev)
4556 {
4557 /* sanity check */
4558 if (!rdev->desc->ops->get_mode)
4559 return -EINVAL;
4560
4561 return rdev->desc->ops->get_mode(rdev);
4562 }
4563
_regulator_get_mode(struct regulator_dev * rdev)4564 static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
4565 {
4566 int ret;
4567
4568 regulator_lock(rdev);
4569 ret = _regulator_get_mode_unlocked(rdev);
4570 regulator_unlock(rdev);
4571
4572 return ret;
4573 }
4574
4575 /**
4576 * regulator_get_mode - get regulator operating mode
4577 * @regulator: regulator source
4578 *
4579 * Get the current regulator operating mode.
4580 */
regulator_get_mode(struct regulator * regulator)4581 unsigned int regulator_get_mode(struct regulator *regulator)
4582 {
4583 return _regulator_get_mode(regulator->rdev);
4584 }
4585 EXPORT_SYMBOL_GPL(regulator_get_mode);
4586
rdev_get_cached_err_flags(struct regulator_dev * rdev)4587 static int rdev_get_cached_err_flags(struct regulator_dev *rdev)
4588 {
4589 int ret = 0;
4590
4591 if (rdev->use_cached_err) {
4592 spin_lock(&rdev->err_lock);
4593 ret = rdev->cached_err;
4594 spin_unlock(&rdev->err_lock);
4595 }
4596 return ret;
4597 }
4598
_regulator_get_error_flags(struct regulator_dev * rdev,unsigned int * flags)4599 static int _regulator_get_error_flags(struct regulator_dev *rdev,
4600 unsigned int *flags)
4601 {
4602 int cached_flags, ret = 0;
4603
4604 regulator_lock(rdev);
4605
4606 cached_flags = rdev_get_cached_err_flags(rdev);
4607
4608 if (rdev->desc->ops->get_error_flags)
4609 ret = rdev->desc->ops->get_error_flags(rdev, flags);
4610 else if (!rdev->use_cached_err)
4611 ret = -EINVAL;
4612
4613 *flags |= cached_flags;
4614
4615 regulator_unlock(rdev);
4616
4617 return ret;
4618 }
4619
4620 /**
4621 * regulator_get_error_flags - get regulator error information
4622 * @regulator: regulator source
4623 * @flags: pointer to store error flags
4624 *
4625 * Get the current regulator error information.
4626 */
regulator_get_error_flags(struct regulator * regulator,unsigned int * flags)4627 int regulator_get_error_flags(struct regulator *regulator,
4628 unsigned int *flags)
4629 {
4630 return _regulator_get_error_flags(regulator->rdev, flags);
4631 }
4632 EXPORT_SYMBOL_GPL(regulator_get_error_flags);
4633
4634 /**
4635 * regulator_set_load - set regulator load
4636 * @regulator: regulator source
4637 * @uA_load: load current
4638 *
4639 * Notifies the regulator core of a new device load. This is then used by
4640 * DRMS (if enabled by constraints) to set the most efficient regulator
4641 * operating mode for the new regulator loading.
4642 *
4643 * Consumer devices notify their supply regulator of the maximum power
4644 * they will require (can be taken from device datasheet in the power
4645 * consumption tables) when they change operational status and hence power
4646 * state. Examples of operational state changes that can affect power
4647 * consumption are :-
4648 *
4649 * o Device is opened / closed.
4650 * o Device I/O is about to begin or has just finished.
4651 * o Device is idling in between work.
4652 *
4653 * This information is also exported via sysfs to userspace.
4654 *
4655 * DRMS will sum the total requested load on the regulator and change
4656 * to the most efficient operating mode if platform constraints allow.
4657 *
4658 * NOTE: when a regulator consumer requests to have a regulator
4659 * disabled then any load that consumer requested no longer counts
4660 * toward the total requested load. If the regulator is re-enabled
4661 * then the previously requested load will start counting again.
4662 *
4663 * If a regulator is an always-on regulator then an individual consumer's
4664 * load will still be removed if that consumer is fully disabled.
4665 *
4666 * On error a negative errno is returned.
4667 */
regulator_set_load(struct regulator * regulator,int uA_load)4668 int regulator_set_load(struct regulator *regulator, int uA_load)
4669 {
4670 struct regulator_dev *rdev = regulator->rdev;
4671 int old_uA_load;
4672 int ret = 0;
4673
4674 regulator_lock(rdev);
4675 old_uA_load = regulator->uA_load;
4676 regulator->uA_load = uA_load;
4677 if (regulator->enable_count && old_uA_load != uA_load) {
4678 ret = drms_uA_update(rdev);
4679 if (ret < 0)
4680 regulator->uA_load = old_uA_load;
4681 }
4682 regulator_unlock(rdev);
4683
4684 return ret;
4685 }
4686 EXPORT_SYMBOL_GPL(regulator_set_load);
4687
4688 /**
4689 * regulator_allow_bypass - allow the regulator to go into bypass mode
4690 *
4691 * @regulator: Regulator to configure
4692 * @enable: enable or disable bypass mode
4693 *
4694 * Allow the regulator to go into bypass mode if all other consumers
4695 * for the regulator also enable bypass mode and the machine
4696 * constraints allow this. Bypass mode means that the regulator is
4697 * simply passing the input directly to the output with no regulation.
4698 */
regulator_allow_bypass(struct regulator * regulator,bool enable)4699 int regulator_allow_bypass(struct regulator *regulator, bool enable)
4700 {
4701 struct regulator_dev *rdev = regulator->rdev;
4702 const char *name = rdev_get_name(rdev);
4703 int ret = 0;
4704
4705 if (!rdev->desc->ops->set_bypass)
4706 return 0;
4707
4708 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_BYPASS))
4709 return 0;
4710
4711 regulator_lock(rdev);
4712
4713 if (enable && !regulator->bypass) {
4714 rdev->bypass_count++;
4715
4716 if (rdev->bypass_count == rdev->open_count) {
4717 trace_regulator_bypass_enable(name);
4718
4719 ret = rdev->desc->ops->set_bypass(rdev, enable);
4720 if (ret != 0)
4721 rdev->bypass_count--;
4722 else
4723 trace_regulator_bypass_enable_complete(name);
4724 }
4725
4726 } else if (!enable && regulator->bypass) {
4727 rdev->bypass_count--;
4728
4729 if (rdev->bypass_count != rdev->open_count) {
4730 trace_regulator_bypass_disable(name);
4731
4732 ret = rdev->desc->ops->set_bypass(rdev, enable);
4733 if (ret != 0)
4734 rdev->bypass_count++;
4735 else
4736 trace_regulator_bypass_disable_complete(name);
4737 }
4738 }
4739
4740 if (ret == 0)
4741 regulator->bypass = enable;
4742
4743 regulator_unlock(rdev);
4744
4745 return ret;
4746 }
4747 EXPORT_SYMBOL_GPL(regulator_allow_bypass);
4748
4749 /**
4750 * regulator_register_notifier - register regulator event notifier
4751 * @regulator: regulator source
4752 * @nb: notifier block
4753 *
4754 * Register notifier block to receive regulator events.
4755 */
regulator_register_notifier(struct regulator * regulator,struct notifier_block * nb)4756 int regulator_register_notifier(struct regulator *regulator,
4757 struct notifier_block *nb)
4758 {
4759 return blocking_notifier_chain_register(®ulator->rdev->notifier,
4760 nb);
4761 }
4762 EXPORT_SYMBOL_GPL(regulator_register_notifier);
4763
4764 /**
4765 * regulator_unregister_notifier - unregister regulator event notifier
4766 * @regulator: regulator source
4767 * @nb: notifier block
4768 *
4769 * Unregister regulator event notifier block.
4770 */
regulator_unregister_notifier(struct regulator * regulator,struct notifier_block * nb)4771 int regulator_unregister_notifier(struct regulator *regulator,
4772 struct notifier_block *nb)
4773 {
4774 return blocking_notifier_chain_unregister(®ulator->rdev->notifier,
4775 nb);
4776 }
4777 EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
4778
4779 /* notify regulator consumers and downstream regulator consumers.
4780 * Note mutex must be held by caller.
4781 */
_notifier_call_chain(struct regulator_dev * rdev,unsigned long event,void * data)4782 static int _notifier_call_chain(struct regulator_dev *rdev,
4783 unsigned long event, void *data)
4784 {
4785 /* call rdev chain first */
4786 return blocking_notifier_call_chain(&rdev->notifier, event, data);
4787 }
4788
4789 /**
4790 * regulator_bulk_get - get multiple regulator consumers
4791 *
4792 * @dev: Device to supply
4793 * @num_consumers: Number of consumers to register
4794 * @consumers: Configuration of consumers; clients are stored here.
4795 *
4796 * @return 0 on success, an errno on failure.
4797 *
4798 * This helper function allows drivers to get several regulator
4799 * consumers in one operation. If any of the regulators cannot be
4800 * acquired then any regulators that were allocated will be freed
4801 * before returning to the caller.
4802 */
regulator_bulk_get(struct device * dev,int num_consumers,struct regulator_bulk_data * consumers)4803 int regulator_bulk_get(struct device *dev, int num_consumers,
4804 struct regulator_bulk_data *consumers)
4805 {
4806 int i;
4807 int ret;
4808
4809 for (i = 0; i < num_consumers; i++)
4810 consumers[i].consumer = NULL;
4811
4812 for (i = 0; i < num_consumers; i++) {
4813 consumers[i].consumer = regulator_get(dev,
4814 consumers[i].supply);
4815 if (IS_ERR(consumers[i].consumer)) {
4816 ret = dev_err_probe(dev, PTR_ERR(consumers[i].consumer),
4817 "Failed to get supply '%s'",
4818 consumers[i].supply);
4819 consumers[i].consumer = NULL;
4820 goto err;
4821 }
4822
4823 if (consumers[i].init_load_uA > 0) {
4824 ret = regulator_set_load(consumers[i].consumer,
4825 consumers[i].init_load_uA);
4826 if (ret) {
4827 i++;
4828 goto err;
4829 }
4830 }
4831 }
4832
4833 return 0;
4834
4835 err:
4836 while (--i >= 0)
4837 regulator_put(consumers[i].consumer);
4838
4839 return ret;
4840 }
4841 EXPORT_SYMBOL_GPL(regulator_bulk_get);
4842
regulator_bulk_enable_async(void * data,async_cookie_t cookie)4843 static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
4844 {
4845 struct regulator_bulk_data *bulk = data;
4846
4847 bulk->ret = regulator_enable(bulk->consumer);
4848 }
4849
4850 /**
4851 * regulator_bulk_enable - enable multiple regulator consumers
4852 *
4853 * @num_consumers: Number of consumers
4854 * @consumers: Consumer data; clients are stored here.
4855 * @return 0 on success, an errno on failure
4856 *
4857 * This convenience API allows consumers to enable multiple regulator
4858 * clients in a single API call. If any consumers cannot be enabled
4859 * then any others that were enabled will be disabled again prior to
4860 * return.
4861 */
regulator_bulk_enable(int num_consumers,struct regulator_bulk_data * consumers)4862 int regulator_bulk_enable(int num_consumers,
4863 struct regulator_bulk_data *consumers)
4864 {
4865 ASYNC_DOMAIN_EXCLUSIVE(async_domain);
4866 int i;
4867 int ret = 0;
4868
4869 for (i = 0; i < num_consumers; i++) {
4870 async_schedule_domain(regulator_bulk_enable_async,
4871 &consumers[i], &async_domain);
4872 }
4873
4874 async_synchronize_full_domain(&async_domain);
4875
4876 /* If any consumer failed we need to unwind any that succeeded */
4877 for (i = 0; i < num_consumers; i++) {
4878 if (consumers[i].ret != 0) {
4879 ret = consumers[i].ret;
4880 goto err;
4881 }
4882 }
4883
4884 return 0;
4885
4886 err:
4887 for (i = 0; i < num_consumers; i++) {
4888 if (consumers[i].ret < 0)
4889 pr_err("Failed to enable %s: %pe\n", consumers[i].supply,
4890 ERR_PTR(consumers[i].ret));
4891 else
4892 regulator_disable(consumers[i].consumer);
4893 }
4894
4895 return ret;
4896 }
4897 EXPORT_SYMBOL_GPL(regulator_bulk_enable);
4898
4899 /**
4900 * regulator_bulk_disable - disable multiple regulator consumers
4901 *
4902 * @num_consumers: Number of consumers
4903 * @consumers: Consumer data; clients are stored here.
4904 * @return 0 on success, an errno on failure
4905 *
4906 * This convenience API allows consumers to disable multiple regulator
4907 * clients in a single API call. If any consumers cannot be disabled
4908 * then any others that were disabled will be enabled again prior to
4909 * return.
4910 */
regulator_bulk_disable(int num_consumers,struct regulator_bulk_data * consumers)4911 int regulator_bulk_disable(int num_consumers,
4912 struct regulator_bulk_data *consumers)
4913 {
4914 int i;
4915 int ret, r;
4916
4917 for (i = num_consumers - 1; i >= 0; --i) {
4918 ret = regulator_disable(consumers[i].consumer);
4919 if (ret != 0)
4920 goto err;
4921 }
4922
4923 return 0;
4924
4925 err:
4926 pr_err("Failed to disable %s: %pe\n", consumers[i].supply, ERR_PTR(ret));
4927 for (++i; i < num_consumers; ++i) {
4928 r = regulator_enable(consumers[i].consumer);
4929 if (r != 0)
4930 pr_err("Failed to re-enable %s: %pe\n",
4931 consumers[i].supply, ERR_PTR(r));
4932 }
4933
4934 return ret;
4935 }
4936 EXPORT_SYMBOL_GPL(regulator_bulk_disable);
4937
4938 /**
4939 * regulator_bulk_force_disable - force disable multiple regulator consumers
4940 *
4941 * @num_consumers: Number of consumers
4942 * @consumers: Consumer data; clients are stored here.
4943 * @return 0 on success, an errno on failure
4944 *
4945 * This convenience API allows consumers to forcibly disable multiple regulator
4946 * clients in a single API call.
4947 * NOTE: This should be used for situations when device damage will
4948 * likely occur if the regulators are not disabled (e.g. over temp).
4949 * Although regulator_force_disable function call for some consumers can
4950 * return error numbers, the function is called for all consumers.
4951 */
regulator_bulk_force_disable(int num_consumers,struct regulator_bulk_data * consumers)4952 int regulator_bulk_force_disable(int num_consumers,
4953 struct regulator_bulk_data *consumers)
4954 {
4955 int i;
4956 int ret = 0;
4957
4958 for (i = 0; i < num_consumers; i++) {
4959 consumers[i].ret =
4960 regulator_force_disable(consumers[i].consumer);
4961
4962 /* Store first error for reporting */
4963 if (consumers[i].ret && !ret)
4964 ret = consumers[i].ret;
4965 }
4966
4967 return ret;
4968 }
4969 EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
4970
4971 /**
4972 * regulator_bulk_free - free multiple regulator consumers
4973 *
4974 * @num_consumers: Number of consumers
4975 * @consumers: Consumer data; clients are stored here.
4976 *
4977 * This convenience API allows consumers to free multiple regulator
4978 * clients in a single API call.
4979 */
regulator_bulk_free(int num_consumers,struct regulator_bulk_data * consumers)4980 void regulator_bulk_free(int num_consumers,
4981 struct regulator_bulk_data *consumers)
4982 {
4983 int i;
4984
4985 for (i = 0; i < num_consumers; i++) {
4986 regulator_put(consumers[i].consumer);
4987 consumers[i].consumer = NULL;
4988 }
4989 }
4990 EXPORT_SYMBOL_GPL(regulator_bulk_free);
4991
4992 /**
4993 * regulator_notifier_call_chain - call regulator event notifier
4994 * @rdev: regulator source
4995 * @event: notifier block
4996 * @data: callback-specific data.
4997 *
4998 * Called by regulator drivers to notify clients a regulator event has
4999 * occurred.
5000 */
regulator_notifier_call_chain(struct regulator_dev * rdev,unsigned long event,void * data)5001 int regulator_notifier_call_chain(struct regulator_dev *rdev,
5002 unsigned long event, void *data)
5003 {
5004 _notifier_call_chain(rdev, event, data);
5005 return NOTIFY_DONE;
5006
5007 }
5008 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
5009
5010 /**
5011 * regulator_mode_to_status - convert a regulator mode into a status
5012 *
5013 * @mode: Mode to convert
5014 *
5015 * Convert a regulator mode into a status.
5016 */
regulator_mode_to_status(unsigned int mode)5017 int regulator_mode_to_status(unsigned int mode)
5018 {
5019 switch (mode) {
5020 case REGULATOR_MODE_FAST:
5021 return REGULATOR_STATUS_FAST;
5022 case REGULATOR_MODE_NORMAL:
5023 return REGULATOR_STATUS_NORMAL;
5024 case REGULATOR_MODE_IDLE:
5025 return REGULATOR_STATUS_IDLE;
5026 case REGULATOR_MODE_STANDBY:
5027 return REGULATOR_STATUS_STANDBY;
5028 default:
5029 return REGULATOR_STATUS_UNDEFINED;
5030 }
5031 }
5032 EXPORT_SYMBOL_GPL(regulator_mode_to_status);
5033
5034 static struct attribute *regulator_dev_attrs[] = {
5035 &dev_attr_name.attr,
5036 &dev_attr_num_users.attr,
5037 &dev_attr_type.attr,
5038 &dev_attr_microvolts.attr,
5039 &dev_attr_microamps.attr,
5040 &dev_attr_opmode.attr,
5041 &dev_attr_state.attr,
5042 &dev_attr_status.attr,
5043 &dev_attr_bypass.attr,
5044 &dev_attr_requested_microamps.attr,
5045 &dev_attr_min_microvolts.attr,
5046 &dev_attr_max_microvolts.attr,
5047 &dev_attr_min_microamps.attr,
5048 &dev_attr_max_microamps.attr,
5049 &dev_attr_under_voltage.attr,
5050 &dev_attr_over_current.attr,
5051 &dev_attr_regulation_out.attr,
5052 &dev_attr_fail.attr,
5053 &dev_attr_over_temp.attr,
5054 &dev_attr_under_voltage_warn.attr,
5055 &dev_attr_over_current_warn.attr,
5056 &dev_attr_over_voltage_warn.attr,
5057 &dev_attr_over_temp_warn.attr,
5058 &dev_attr_suspend_standby_state.attr,
5059 &dev_attr_suspend_mem_state.attr,
5060 &dev_attr_suspend_disk_state.attr,
5061 &dev_attr_suspend_standby_microvolts.attr,
5062 &dev_attr_suspend_mem_microvolts.attr,
5063 &dev_attr_suspend_disk_microvolts.attr,
5064 &dev_attr_suspend_standby_mode.attr,
5065 &dev_attr_suspend_mem_mode.attr,
5066 &dev_attr_suspend_disk_mode.attr,
5067 NULL
5068 };
5069
5070 /*
5071 * To avoid cluttering sysfs (and memory) with useless state, only
5072 * create attributes that can be meaningfully displayed.
5073 */
regulator_attr_is_visible(struct kobject * kobj,struct attribute * attr,int idx)5074 static umode_t regulator_attr_is_visible(struct kobject *kobj,
5075 struct attribute *attr, int idx)
5076 {
5077 struct device *dev = kobj_to_dev(kobj);
5078 struct regulator_dev *rdev = dev_to_rdev(dev);
5079 const struct regulator_ops *ops = rdev->desc->ops;
5080 umode_t mode = attr->mode;
5081
5082 /* these three are always present */
5083 if (attr == &dev_attr_name.attr ||
5084 attr == &dev_attr_num_users.attr ||
5085 attr == &dev_attr_type.attr)
5086 return mode;
5087
5088 /* some attributes need specific methods to be displayed */
5089 if (attr == &dev_attr_microvolts.attr) {
5090 if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
5091 (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
5092 (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) ||
5093 (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1))
5094 return mode;
5095 return 0;
5096 }
5097
5098 if (attr == &dev_attr_microamps.attr)
5099 return ops->get_current_limit ? mode : 0;
5100
5101 if (attr == &dev_attr_opmode.attr)
5102 return ops->get_mode ? mode : 0;
5103
5104 if (attr == &dev_attr_state.attr)
5105 return (rdev->ena_pin || ops->is_enabled) ? mode : 0;
5106
5107 if (attr == &dev_attr_status.attr)
5108 return ops->get_status ? mode : 0;
5109
5110 if (attr == &dev_attr_bypass.attr)
5111 return ops->get_bypass ? mode : 0;
5112
5113 if (attr == &dev_attr_under_voltage.attr ||
5114 attr == &dev_attr_over_current.attr ||
5115 attr == &dev_attr_regulation_out.attr ||
5116 attr == &dev_attr_fail.attr ||
5117 attr == &dev_attr_over_temp.attr ||
5118 attr == &dev_attr_under_voltage_warn.attr ||
5119 attr == &dev_attr_over_current_warn.attr ||
5120 attr == &dev_attr_over_voltage_warn.attr ||
5121 attr == &dev_attr_over_temp_warn.attr)
5122 return ops->get_error_flags ? mode : 0;
5123
5124 /* constraints need specific supporting methods */
5125 if (attr == &dev_attr_min_microvolts.attr ||
5126 attr == &dev_attr_max_microvolts.attr)
5127 return (ops->set_voltage || ops->set_voltage_sel) ? mode : 0;
5128
5129 if (attr == &dev_attr_min_microamps.attr ||
5130 attr == &dev_attr_max_microamps.attr)
5131 return ops->set_current_limit ? mode : 0;
5132
5133 if (attr == &dev_attr_suspend_standby_state.attr ||
5134 attr == &dev_attr_suspend_mem_state.attr ||
5135 attr == &dev_attr_suspend_disk_state.attr)
5136 return mode;
5137
5138 if (attr == &dev_attr_suspend_standby_microvolts.attr ||
5139 attr == &dev_attr_suspend_mem_microvolts.attr ||
5140 attr == &dev_attr_suspend_disk_microvolts.attr)
5141 return ops->set_suspend_voltage ? mode : 0;
5142
5143 if (attr == &dev_attr_suspend_standby_mode.attr ||
5144 attr == &dev_attr_suspend_mem_mode.attr ||
5145 attr == &dev_attr_suspend_disk_mode.attr)
5146 return ops->set_suspend_mode ? mode : 0;
5147
5148 return mode;
5149 }
5150
5151 static const struct attribute_group regulator_dev_group = {
5152 .attrs = regulator_dev_attrs,
5153 .is_visible = regulator_attr_is_visible,
5154 };
5155
5156 static const struct attribute_group *regulator_dev_groups[] = {
5157 ®ulator_dev_group,
5158 NULL
5159 };
5160
regulator_dev_release(struct device * dev)5161 static void regulator_dev_release(struct device *dev)
5162 {
5163 struct regulator_dev *rdev = dev_get_drvdata(dev);
5164
5165 debugfs_remove_recursive(rdev->debugfs);
5166 kfree(rdev->constraints);
5167 of_node_put(rdev->dev.of_node);
5168 kfree(rdev);
5169 }
5170
rdev_init_debugfs(struct regulator_dev * rdev)5171 static void rdev_init_debugfs(struct regulator_dev *rdev)
5172 {
5173 struct device *parent = rdev->dev.parent;
5174 const char *rname = rdev_get_name(rdev);
5175 char name[NAME_MAX];
5176
5177 /* Avoid duplicate debugfs directory names */
5178 if (parent && rname == rdev->desc->name) {
5179 snprintf(name, sizeof(name), "%s-%s", dev_name(parent),
5180 rname);
5181 rname = name;
5182 }
5183
5184 rdev->debugfs = debugfs_create_dir(rname, debugfs_root);
5185 if (!rdev->debugfs) {
5186 rdev_warn(rdev, "Failed to create debugfs directory\n");
5187 return;
5188 }
5189
5190 debugfs_create_u32("use_count", 0444, rdev->debugfs,
5191 &rdev->use_count);
5192 debugfs_create_u32("open_count", 0444, rdev->debugfs,
5193 &rdev->open_count);
5194 debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
5195 &rdev->bypass_count);
5196 }
5197
regulator_register_resolve_supply(struct device * dev,void * data)5198 static int regulator_register_resolve_supply(struct device *dev, void *data)
5199 {
5200 struct regulator_dev *rdev = dev_to_rdev(dev);
5201
5202 if (regulator_resolve_supply(rdev))
5203 rdev_dbg(rdev, "unable to resolve supply\n");
5204
5205 return 0;
5206 }
5207
regulator_coupler_register(struct regulator_coupler * coupler)5208 int regulator_coupler_register(struct regulator_coupler *coupler)
5209 {
5210 mutex_lock(®ulator_list_mutex);
5211 list_add_tail(&coupler->list, ®ulator_coupler_list);
5212 mutex_unlock(®ulator_list_mutex);
5213
5214 return 0;
5215 }
5216
5217 static struct regulator_coupler *
regulator_find_coupler(struct regulator_dev * rdev)5218 regulator_find_coupler(struct regulator_dev *rdev)
5219 {
5220 struct regulator_coupler *coupler;
5221 int err;
5222
5223 /*
5224 * Note that regulators are appended to the list and the generic
5225 * coupler is registered first, hence it will be attached at last
5226 * if nobody cared.
5227 */
5228 list_for_each_entry_reverse(coupler, ®ulator_coupler_list, list) {
5229 err = coupler->attach_regulator(coupler, rdev);
5230 if (!err) {
5231 if (!coupler->balance_voltage &&
5232 rdev->coupling_desc.n_coupled > 2)
5233 goto err_unsupported;
5234
5235 return coupler;
5236 }
5237
5238 if (err < 0)
5239 return ERR_PTR(err);
5240
5241 if (err == 1)
5242 continue;
5243
5244 break;
5245 }
5246
5247 return ERR_PTR(-EINVAL);
5248
5249 err_unsupported:
5250 if (coupler->detach_regulator)
5251 coupler->detach_regulator(coupler, rdev);
5252
5253 rdev_err(rdev,
5254 "Voltage balancing for multiple regulator couples is unimplemented\n");
5255
5256 return ERR_PTR(-EPERM);
5257 }
5258
regulator_resolve_coupling(struct regulator_dev * rdev)5259 static void regulator_resolve_coupling(struct regulator_dev *rdev)
5260 {
5261 struct regulator_coupler *coupler = rdev->coupling_desc.coupler;
5262 struct coupling_desc *c_desc = &rdev->coupling_desc;
5263 int n_coupled = c_desc->n_coupled;
5264 struct regulator_dev *c_rdev;
5265 int i;
5266
5267 for (i = 1; i < n_coupled; i++) {
5268 /* already resolved */
5269 if (c_desc->coupled_rdevs[i])
5270 continue;
5271
5272 c_rdev = of_parse_coupled_regulator(rdev, i - 1);
5273
5274 if (!c_rdev)
5275 continue;
5276
5277 if (c_rdev->coupling_desc.coupler != coupler) {
5278 rdev_err(rdev, "coupler mismatch with %s\n",
5279 rdev_get_name(c_rdev));
5280 return;
5281 }
5282
5283 c_desc->coupled_rdevs[i] = c_rdev;
5284 c_desc->n_resolved++;
5285
5286 regulator_resolve_coupling(c_rdev);
5287 }
5288 }
5289
regulator_remove_coupling(struct regulator_dev * rdev)5290 static void regulator_remove_coupling(struct regulator_dev *rdev)
5291 {
5292 struct regulator_coupler *coupler = rdev->coupling_desc.coupler;
5293 struct coupling_desc *__c_desc, *c_desc = &rdev->coupling_desc;
5294 struct regulator_dev *__c_rdev, *c_rdev;
5295 unsigned int __n_coupled, n_coupled;
5296 int i, k;
5297 int err;
5298
5299 n_coupled = c_desc->n_coupled;
5300
5301 for (i = 1; i < n_coupled; i++) {
5302 c_rdev = c_desc->coupled_rdevs[i];
5303
5304 if (!c_rdev)
5305 continue;
5306
5307 regulator_lock(c_rdev);
5308
5309 __c_desc = &c_rdev->coupling_desc;
5310 __n_coupled = __c_desc->n_coupled;
5311
5312 for (k = 1; k < __n_coupled; k++) {
5313 __c_rdev = __c_desc->coupled_rdevs[k];
5314
5315 if (__c_rdev == rdev) {
5316 __c_desc->coupled_rdevs[k] = NULL;
5317 __c_desc->n_resolved--;
5318 break;
5319 }
5320 }
5321
5322 regulator_unlock(c_rdev);
5323
5324 c_desc->coupled_rdevs[i] = NULL;
5325 c_desc->n_resolved--;
5326 }
5327
5328 if (coupler && coupler->detach_regulator) {
5329 err = coupler->detach_regulator(coupler, rdev);
5330 if (err)
5331 rdev_err(rdev, "failed to detach from coupler: %pe\n",
5332 ERR_PTR(err));
5333 }
5334
5335 kfree(rdev->coupling_desc.coupled_rdevs);
5336 rdev->coupling_desc.coupled_rdevs = NULL;
5337 }
5338
regulator_init_coupling(struct regulator_dev * rdev)5339 static int regulator_init_coupling(struct regulator_dev *rdev)
5340 {
5341 struct regulator_dev **coupled;
5342 int err, n_phandles;
5343
5344 if (!IS_ENABLED(CONFIG_OF))
5345 n_phandles = 0;
5346 else
5347 n_phandles = of_get_n_coupled(rdev);
5348
5349 coupled = kcalloc(n_phandles + 1, sizeof(*coupled), GFP_KERNEL);
5350 if (!coupled)
5351 return -ENOMEM;
5352
5353 rdev->coupling_desc.coupled_rdevs = coupled;
5354
5355 /*
5356 * Every regulator should always have coupling descriptor filled with
5357 * at least pointer to itself.
5358 */
5359 rdev->coupling_desc.coupled_rdevs[0] = rdev;
5360 rdev->coupling_desc.n_coupled = n_phandles + 1;
5361 rdev->coupling_desc.n_resolved++;
5362
5363 /* regulator isn't coupled */
5364 if (n_phandles == 0)
5365 return 0;
5366
5367 if (!of_check_coupling_data(rdev))
5368 return -EPERM;
5369
5370 mutex_lock(®ulator_list_mutex);
5371 rdev->coupling_desc.coupler = regulator_find_coupler(rdev);
5372 mutex_unlock(®ulator_list_mutex);
5373
5374 if (IS_ERR(rdev->coupling_desc.coupler)) {
5375 err = PTR_ERR(rdev->coupling_desc.coupler);
5376 rdev_err(rdev, "failed to get coupler: %pe\n", ERR_PTR(err));
5377 return err;
5378 }
5379
5380 return 0;
5381 }
5382
generic_coupler_attach(struct regulator_coupler * coupler,struct regulator_dev * rdev)5383 static int generic_coupler_attach(struct regulator_coupler *coupler,
5384 struct regulator_dev *rdev)
5385 {
5386 if (rdev->coupling_desc.n_coupled > 2) {
5387 rdev_err(rdev,
5388 "Voltage balancing for multiple regulator couples is unimplemented\n");
5389 return -EPERM;
5390 }
5391
5392 if (!rdev->constraints->always_on) {
5393 rdev_err(rdev,
5394 "Coupling of a non always-on regulator is unimplemented\n");
5395 return -ENOTSUPP;
5396 }
5397
5398 return 0;
5399 }
5400
5401 static struct regulator_coupler generic_regulator_coupler = {
5402 .attach_regulator = generic_coupler_attach,
5403 };
5404
5405 /**
5406 * regulator_register - register regulator
5407 * @dev: the device that drive the regulator
5408 * @regulator_desc: regulator to register
5409 * @cfg: runtime configuration for regulator
5410 *
5411 * Called by regulator drivers to register a regulator.
5412 * Returns a valid pointer to struct regulator_dev on success
5413 * or an ERR_PTR() on error.
5414 */
5415 struct regulator_dev *
regulator_register(struct device * dev,const struct regulator_desc * regulator_desc,const struct regulator_config * cfg)5416 regulator_register(struct device *dev,
5417 const struct regulator_desc *regulator_desc,
5418 const struct regulator_config *cfg)
5419 {
5420 const struct regulator_init_data *init_data;
5421 struct regulator_config *config = NULL;
5422 static atomic_t regulator_no = ATOMIC_INIT(-1);
5423 struct regulator_dev *rdev;
5424 bool dangling_cfg_gpiod = false;
5425 bool dangling_of_gpiod = false;
5426 int ret, i;
5427 bool resolved_early = false;
5428
5429 if (cfg == NULL)
5430 return ERR_PTR(-EINVAL);
5431 if (cfg->ena_gpiod)
5432 dangling_cfg_gpiod = true;
5433 if (regulator_desc == NULL) {
5434 ret = -EINVAL;
5435 goto rinse;
5436 }
5437
5438 WARN_ON(!dev || !cfg->dev);
5439
5440 if (regulator_desc->name == NULL || regulator_desc->ops == NULL) {
5441 ret = -EINVAL;
5442 goto rinse;
5443 }
5444
5445 if (regulator_desc->type != REGULATOR_VOLTAGE &&
5446 regulator_desc->type != REGULATOR_CURRENT) {
5447 ret = -EINVAL;
5448 goto rinse;
5449 }
5450
5451 /* Only one of each should be implemented */
5452 WARN_ON(regulator_desc->ops->get_voltage &&
5453 regulator_desc->ops->get_voltage_sel);
5454 WARN_ON(regulator_desc->ops->set_voltage &&
5455 regulator_desc->ops->set_voltage_sel);
5456
5457 /* If we're using selectors we must implement list_voltage. */
5458 if (regulator_desc->ops->get_voltage_sel &&
5459 !regulator_desc->ops->list_voltage) {
5460 ret = -EINVAL;
5461 goto rinse;
5462 }
5463 if (regulator_desc->ops->set_voltage_sel &&
5464 !regulator_desc->ops->list_voltage) {
5465 ret = -EINVAL;
5466 goto rinse;
5467 }
5468
5469 rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
5470 if (rdev == NULL) {
5471 ret = -ENOMEM;
5472 goto rinse;
5473 }
5474 device_initialize(&rdev->dev);
5475 spin_lock_init(&rdev->err_lock);
5476
5477 /*
5478 * Duplicate the config so the driver could override it after
5479 * parsing init data.
5480 */
5481 config = kmemdup(cfg, sizeof(*cfg), GFP_KERNEL);
5482 if (config == NULL) {
5483 ret = -ENOMEM;
5484 goto clean;
5485 }
5486
5487 init_data = regulator_of_get_init_data(dev, regulator_desc, config,
5488 &rdev->dev.of_node);
5489
5490 /*
5491 * Sometimes not all resources are probed already so we need to take
5492 * that into account. This happens most the time if the ena_gpiod comes
5493 * from a gpio extender or something else.
5494 */
5495 if (PTR_ERR(init_data) == -EPROBE_DEFER) {
5496 ret = -EPROBE_DEFER;
5497 goto clean;
5498 }
5499
5500 /*
5501 * We need to keep track of any GPIO descriptor coming from the
5502 * device tree until we have handled it over to the core. If the
5503 * config that was passed in to this function DOES NOT contain
5504 * a descriptor, and the config after this call DOES contain
5505 * a descriptor, we definitely got one from parsing the device
5506 * tree.
5507 */
5508 if (!cfg->ena_gpiod && config->ena_gpiod)
5509 dangling_of_gpiod = true;
5510 if (!init_data) {
5511 init_data = config->init_data;
5512 rdev->dev.of_node = of_node_get(config->of_node);
5513 }
5514
5515 ww_mutex_init(&rdev->mutex, ®ulator_ww_class);
5516 rdev->reg_data = config->driver_data;
5517 rdev->owner = regulator_desc->owner;
5518 rdev->desc = regulator_desc;
5519 if (config->regmap)
5520 rdev->regmap = config->regmap;
5521 else if (dev_get_regmap(dev, NULL))
5522 rdev->regmap = dev_get_regmap(dev, NULL);
5523 else if (dev->parent)
5524 rdev->regmap = dev_get_regmap(dev->parent, NULL);
5525 INIT_LIST_HEAD(&rdev->consumer_list);
5526 INIT_LIST_HEAD(&rdev->list);
5527 BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
5528 INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
5529
5530 if (init_data && init_data->supply_regulator)
5531 rdev->supply_name = init_data->supply_regulator;
5532 else if (regulator_desc->supply_name)
5533 rdev->supply_name = regulator_desc->supply_name;
5534
5535 /* register with sysfs */
5536 rdev->dev.class = ®ulator_class;
5537 rdev->dev.parent = config->dev;
5538 dev_set_name(&rdev->dev, "regulator.%lu",
5539 (unsigned long) atomic_inc_return(®ulator_no));
5540 dev_set_drvdata(&rdev->dev, rdev);
5541
5542 /* set regulator constraints */
5543 if (init_data)
5544 rdev->constraints = kmemdup(&init_data->constraints,
5545 sizeof(*rdev->constraints),
5546 GFP_KERNEL);
5547 else
5548 rdev->constraints = kzalloc(sizeof(*rdev->constraints),
5549 GFP_KERNEL);
5550 if (!rdev->constraints) {
5551 ret = -ENOMEM;
5552 goto wash;
5553 }
5554
5555 if ((rdev->supply_name && !rdev->supply) &&
5556 (rdev->constraints->always_on ||
5557 rdev->constraints->boot_on)) {
5558 ret = regulator_resolve_supply(rdev);
5559 if (ret)
5560 rdev_dbg(rdev, "unable to resolve supply early: %pe\n",
5561 ERR_PTR(ret));
5562
5563 resolved_early = true;
5564 }
5565
5566 /* perform any regulator specific init */
5567 if (init_data && init_data->regulator_init) {
5568 ret = init_data->regulator_init(rdev->reg_data);
5569 if (ret < 0)
5570 goto wash;
5571 }
5572
5573 if (config->ena_gpiod) {
5574 ret = regulator_ena_gpio_request(rdev, config);
5575 if (ret != 0) {
5576 rdev_err(rdev, "Failed to request enable GPIO: %pe\n",
5577 ERR_PTR(ret));
5578 goto wash;
5579 }
5580 /* The regulator core took over the GPIO descriptor */
5581 dangling_cfg_gpiod = false;
5582 dangling_of_gpiod = false;
5583 }
5584
5585 ret = set_machine_constraints(rdev);
5586 if (ret == -EPROBE_DEFER && !resolved_early) {
5587 /* Regulator might be in bypass mode and so needs its supply
5588 * to set the constraints
5589 */
5590 /* FIXME: this currently triggers a chicken-and-egg problem
5591 * when creating -SUPPLY symlink in sysfs to a regulator
5592 * that is just being created
5593 */
5594 rdev_dbg(rdev, "will resolve supply early: %s\n",
5595 rdev->supply_name);
5596 ret = regulator_resolve_supply(rdev);
5597 if (!ret)
5598 ret = set_machine_constraints(rdev);
5599 else
5600 rdev_dbg(rdev, "unable to resolve supply early: %pe\n",
5601 ERR_PTR(ret));
5602 }
5603 if (ret < 0)
5604 goto wash;
5605
5606 ret = regulator_init_coupling(rdev);
5607 if (ret < 0)
5608 goto wash;
5609
5610 /* add consumers devices */
5611 if (init_data) {
5612 for (i = 0; i < init_data->num_consumer_supplies; i++) {
5613 ret = set_consumer_device_supply(rdev,
5614 init_data->consumer_supplies[i].dev_name,
5615 init_data->consumer_supplies[i].supply);
5616 if (ret < 0) {
5617 dev_err(dev, "Failed to set supply %s\n",
5618 init_data->consumer_supplies[i].supply);
5619 goto unset_supplies;
5620 }
5621 }
5622 }
5623
5624 if (!rdev->desc->ops->get_voltage &&
5625 !rdev->desc->ops->list_voltage &&
5626 !rdev->desc->fixed_uV)
5627 rdev->is_switch = true;
5628
5629 ret = device_add(&rdev->dev);
5630 if (ret != 0)
5631 goto unset_supplies;
5632
5633 rdev_init_debugfs(rdev);
5634
5635 /* try to resolve regulators coupling since a new one was registered */
5636 mutex_lock(®ulator_list_mutex);
5637 regulator_resolve_coupling(rdev);
5638 mutex_unlock(®ulator_list_mutex);
5639
5640 /* try to resolve regulators supply since a new one was registered */
5641 class_for_each_device(®ulator_class, NULL, NULL,
5642 regulator_register_resolve_supply);
5643 kfree(config);
5644 return rdev;
5645
5646 unset_supplies:
5647 mutex_lock(®ulator_list_mutex);
5648 unset_regulator_supplies(rdev);
5649 regulator_remove_coupling(rdev);
5650 mutex_unlock(®ulator_list_mutex);
5651 wash:
5652 regulator_put(rdev->supply);
5653 kfree(rdev->coupling_desc.coupled_rdevs);
5654 mutex_lock(®ulator_list_mutex);
5655 regulator_ena_gpio_free(rdev);
5656 mutex_unlock(®ulator_list_mutex);
5657 put_device(&rdev->dev);
5658 rdev = NULL;
5659 clean:
5660 if (dangling_of_gpiod)
5661 gpiod_put(config->ena_gpiod);
5662 if (rdev && rdev->dev.of_node)
5663 of_node_put(rdev->dev.of_node);
5664 kfree(rdev);
5665 kfree(config);
5666 rinse:
5667 if (dangling_cfg_gpiod)
5668 gpiod_put(cfg->ena_gpiod);
5669 return ERR_PTR(ret);
5670 }
5671 EXPORT_SYMBOL_GPL(regulator_register);
5672
5673 /**
5674 * regulator_unregister - unregister regulator
5675 * @rdev: regulator to unregister
5676 *
5677 * Called by regulator drivers to unregister a regulator.
5678 */
regulator_unregister(struct regulator_dev * rdev)5679 void regulator_unregister(struct regulator_dev *rdev)
5680 {
5681 if (rdev == NULL)
5682 return;
5683
5684 if (rdev->supply) {
5685 while (rdev->use_count--)
5686 regulator_disable(rdev->supply);
5687 regulator_put(rdev->supply);
5688 }
5689
5690 flush_work(&rdev->disable_work.work);
5691
5692 mutex_lock(®ulator_list_mutex);
5693
5694 WARN_ON(rdev->open_count);
5695 regulator_remove_coupling(rdev);
5696 unset_regulator_supplies(rdev);
5697 list_del(&rdev->list);
5698 regulator_ena_gpio_free(rdev);
5699 device_unregister(&rdev->dev);
5700
5701 mutex_unlock(®ulator_list_mutex);
5702 }
5703 EXPORT_SYMBOL_GPL(regulator_unregister);
5704
5705 #ifdef CONFIG_SUSPEND
5706 /**
5707 * regulator_suspend - prepare regulators for system wide suspend
5708 * @dev: ``&struct device`` pointer that is passed to _regulator_suspend()
5709 *
5710 * Configure each regulator with it's suspend operating parameters for state.
5711 */
regulator_suspend(struct device * dev)5712 static int regulator_suspend(struct device *dev)
5713 {
5714 struct regulator_dev *rdev = dev_to_rdev(dev);
5715 suspend_state_t state = pm_suspend_target_state;
5716 int ret;
5717 const struct regulator_state *rstate;
5718
5719 rstate = regulator_get_suspend_state_check(rdev, state);
5720 if (!rstate)
5721 return 0;
5722
5723 regulator_lock(rdev);
5724 ret = __suspend_set_state(rdev, rstate);
5725 regulator_unlock(rdev);
5726
5727 return ret;
5728 }
5729
regulator_resume(struct device * dev)5730 static int regulator_resume(struct device *dev)
5731 {
5732 suspend_state_t state = pm_suspend_target_state;
5733 struct regulator_dev *rdev = dev_to_rdev(dev);
5734 struct regulator_state *rstate;
5735 int ret = 0;
5736
5737 rstate = regulator_get_suspend_state(rdev, state);
5738 if (rstate == NULL)
5739 return 0;
5740
5741 /* Avoid grabbing the lock if we don't need to */
5742 if (!rdev->desc->ops->resume)
5743 return 0;
5744
5745 regulator_lock(rdev);
5746
5747 if (rstate->enabled == ENABLE_IN_SUSPEND ||
5748 rstate->enabled == DISABLE_IN_SUSPEND)
5749 ret = rdev->desc->ops->resume(rdev);
5750
5751 regulator_unlock(rdev);
5752
5753 return ret;
5754 }
5755 #else /* !CONFIG_SUSPEND */
5756
5757 #define regulator_suspend NULL
5758 #define regulator_resume NULL
5759
5760 #endif /* !CONFIG_SUSPEND */
5761
5762 #ifdef CONFIG_PM
5763 static const struct dev_pm_ops __maybe_unused regulator_pm_ops = {
5764 .suspend = regulator_suspend,
5765 .resume = regulator_resume,
5766 };
5767 #endif
5768
5769 struct class regulator_class = {
5770 .name = "regulator",
5771 .dev_release = regulator_dev_release,
5772 .dev_groups = regulator_dev_groups,
5773 #ifdef CONFIG_PM
5774 .pm = ®ulator_pm_ops,
5775 #endif
5776 };
5777 /**
5778 * regulator_has_full_constraints - the system has fully specified constraints
5779 *
5780 * Calling this function will cause the regulator API to disable all
5781 * regulators which have a zero use count and don't have an always_on
5782 * constraint in a late_initcall.
5783 *
5784 * The intention is that this will become the default behaviour in a
5785 * future kernel release so users are encouraged to use this facility
5786 * now.
5787 */
regulator_has_full_constraints(void)5788 void regulator_has_full_constraints(void)
5789 {
5790 has_full_constraints = 1;
5791 }
5792 EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
5793
5794 /**
5795 * rdev_get_drvdata - get rdev regulator driver data
5796 * @rdev: regulator
5797 *
5798 * Get rdev regulator driver private data. This call can be used in the
5799 * regulator driver context.
5800 */
rdev_get_drvdata(struct regulator_dev * rdev)5801 void *rdev_get_drvdata(struct regulator_dev *rdev)
5802 {
5803 return rdev->reg_data;
5804 }
5805 EXPORT_SYMBOL_GPL(rdev_get_drvdata);
5806
5807 /**
5808 * regulator_get_drvdata - get regulator driver data
5809 * @regulator: regulator
5810 *
5811 * Get regulator driver private data. This call can be used in the consumer
5812 * driver context when non API regulator specific functions need to be called.
5813 */
regulator_get_drvdata(struct regulator * regulator)5814 void *regulator_get_drvdata(struct regulator *regulator)
5815 {
5816 return regulator->rdev->reg_data;
5817 }
5818 EXPORT_SYMBOL_GPL(regulator_get_drvdata);
5819
5820 /**
5821 * regulator_set_drvdata - set regulator driver data
5822 * @regulator: regulator
5823 * @data: data
5824 */
regulator_set_drvdata(struct regulator * regulator,void * data)5825 void regulator_set_drvdata(struct regulator *regulator, void *data)
5826 {
5827 regulator->rdev->reg_data = data;
5828 }
5829 EXPORT_SYMBOL_GPL(regulator_set_drvdata);
5830
5831 /**
5832 * rdev_get_id - get regulator ID
5833 * @rdev: regulator
5834 */
rdev_get_id(struct regulator_dev * rdev)5835 int rdev_get_id(struct regulator_dev *rdev)
5836 {
5837 return rdev->desc->id;
5838 }
5839 EXPORT_SYMBOL_GPL(rdev_get_id);
5840
rdev_get_dev(struct regulator_dev * rdev)5841 struct device *rdev_get_dev(struct regulator_dev *rdev)
5842 {
5843 return &rdev->dev;
5844 }
5845 EXPORT_SYMBOL_GPL(rdev_get_dev);
5846
rdev_get_regmap(struct regulator_dev * rdev)5847 struct regmap *rdev_get_regmap(struct regulator_dev *rdev)
5848 {
5849 return rdev->regmap;
5850 }
5851 EXPORT_SYMBOL_GPL(rdev_get_regmap);
5852
regulator_get_init_drvdata(struct regulator_init_data * reg_init_data)5853 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
5854 {
5855 return reg_init_data->driver_data;
5856 }
5857 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
5858
5859 #ifdef CONFIG_DEBUG_FS
supply_map_show(struct seq_file * sf,void * data)5860 static int supply_map_show(struct seq_file *sf, void *data)
5861 {
5862 struct regulator_map *map;
5863
5864 list_for_each_entry(map, ®ulator_map_list, list) {
5865 seq_printf(sf, "%s -> %s.%s\n",
5866 rdev_get_name(map->regulator), map->dev_name,
5867 map->supply);
5868 }
5869
5870 return 0;
5871 }
5872 DEFINE_SHOW_ATTRIBUTE(supply_map);
5873
5874 struct summary_data {
5875 struct seq_file *s;
5876 struct regulator_dev *parent;
5877 int level;
5878 };
5879
5880 static void regulator_summary_show_subtree(struct seq_file *s,
5881 struct regulator_dev *rdev,
5882 int level);
5883
regulator_summary_show_children(struct device * dev,void * data)5884 static int regulator_summary_show_children(struct device *dev, void *data)
5885 {
5886 struct regulator_dev *rdev = dev_to_rdev(dev);
5887 struct summary_data *summary_data = data;
5888
5889 if (rdev->supply && rdev->supply->rdev == summary_data->parent)
5890 regulator_summary_show_subtree(summary_data->s, rdev,
5891 summary_data->level + 1);
5892
5893 return 0;
5894 }
5895
regulator_summary_show_subtree(struct seq_file * s,struct regulator_dev * rdev,int level)5896 static void regulator_summary_show_subtree(struct seq_file *s,
5897 struct regulator_dev *rdev,
5898 int level)
5899 {
5900 struct regulation_constraints *c;
5901 struct regulator *consumer;
5902 struct summary_data summary_data;
5903 unsigned int opmode;
5904
5905 if (!rdev)
5906 return;
5907
5908 opmode = _regulator_get_mode_unlocked(rdev);
5909 seq_printf(s, "%*s%-*s %3d %4d %6d %7s ",
5910 level * 3 + 1, "",
5911 30 - level * 3, rdev_get_name(rdev),
5912 rdev->use_count, rdev->open_count, rdev->bypass_count,
5913 regulator_opmode_to_str(opmode));
5914
5915 seq_printf(s, "%5dmV ", regulator_get_voltage_rdev(rdev) / 1000);
5916 seq_printf(s, "%5dmA ",
5917 _regulator_get_current_limit_unlocked(rdev) / 1000);
5918
5919 c = rdev->constraints;
5920 if (c) {
5921 switch (rdev->desc->type) {
5922 case REGULATOR_VOLTAGE:
5923 seq_printf(s, "%5dmV %5dmV ",
5924 c->min_uV / 1000, c->max_uV / 1000);
5925 break;
5926 case REGULATOR_CURRENT:
5927 seq_printf(s, "%5dmA %5dmA ",
5928 c->min_uA / 1000, c->max_uA / 1000);
5929 break;
5930 }
5931 }
5932
5933 seq_puts(s, "\n");
5934
5935 list_for_each_entry(consumer, &rdev->consumer_list, list) {
5936 if (consumer->dev && consumer->dev->class == ®ulator_class)
5937 continue;
5938
5939 seq_printf(s, "%*s%-*s ",
5940 (level + 1) * 3 + 1, "",
5941 30 - (level + 1) * 3,
5942 consumer->supply_name ? consumer->supply_name :
5943 consumer->dev ? dev_name(consumer->dev) : "deviceless");
5944
5945 switch (rdev->desc->type) {
5946 case REGULATOR_VOLTAGE:
5947 seq_printf(s, "%3d %33dmA%c%5dmV %5dmV",
5948 consumer->enable_count,
5949 consumer->uA_load / 1000,
5950 consumer->uA_load && !consumer->enable_count ?
5951 '*' : ' ',
5952 consumer->voltage[PM_SUSPEND_ON].min_uV / 1000,
5953 consumer->voltage[PM_SUSPEND_ON].max_uV / 1000);
5954 break;
5955 case REGULATOR_CURRENT:
5956 break;
5957 }
5958
5959 seq_puts(s, "\n");
5960 }
5961
5962 summary_data.s = s;
5963 summary_data.level = level;
5964 summary_data.parent = rdev;
5965
5966 class_for_each_device(®ulator_class, NULL, &summary_data,
5967 regulator_summary_show_children);
5968 }
5969
5970 struct summary_lock_data {
5971 struct ww_acquire_ctx *ww_ctx;
5972 struct regulator_dev **new_contended_rdev;
5973 struct regulator_dev **old_contended_rdev;
5974 };
5975
regulator_summary_lock_one(struct device * dev,void * data)5976 static int regulator_summary_lock_one(struct device *dev, void *data)
5977 {
5978 struct regulator_dev *rdev = dev_to_rdev(dev);
5979 struct summary_lock_data *lock_data = data;
5980 int ret = 0;
5981
5982 if (rdev != *lock_data->old_contended_rdev) {
5983 ret = regulator_lock_nested(rdev, lock_data->ww_ctx);
5984
5985 if (ret == -EDEADLK)
5986 *lock_data->new_contended_rdev = rdev;
5987 else
5988 WARN_ON_ONCE(ret);
5989 } else {
5990 *lock_data->old_contended_rdev = NULL;
5991 }
5992
5993 return ret;
5994 }
5995
regulator_summary_unlock_one(struct device * dev,void * data)5996 static int regulator_summary_unlock_one(struct device *dev, void *data)
5997 {
5998 struct regulator_dev *rdev = dev_to_rdev(dev);
5999 struct summary_lock_data *lock_data = data;
6000
6001 if (lock_data) {
6002 if (rdev == *lock_data->new_contended_rdev)
6003 return -EDEADLK;
6004 }
6005
6006 regulator_unlock(rdev);
6007
6008 return 0;
6009 }
6010
regulator_summary_lock_all(struct ww_acquire_ctx * ww_ctx,struct regulator_dev ** new_contended_rdev,struct regulator_dev ** old_contended_rdev)6011 static int regulator_summary_lock_all(struct ww_acquire_ctx *ww_ctx,
6012 struct regulator_dev **new_contended_rdev,
6013 struct regulator_dev **old_contended_rdev)
6014 {
6015 struct summary_lock_data lock_data;
6016 int ret;
6017
6018 lock_data.ww_ctx = ww_ctx;
6019 lock_data.new_contended_rdev = new_contended_rdev;
6020 lock_data.old_contended_rdev = old_contended_rdev;
6021
6022 ret = class_for_each_device(®ulator_class, NULL, &lock_data,
6023 regulator_summary_lock_one);
6024 if (ret)
6025 class_for_each_device(®ulator_class, NULL, &lock_data,
6026 regulator_summary_unlock_one);
6027
6028 return ret;
6029 }
6030
regulator_summary_lock(struct ww_acquire_ctx * ww_ctx)6031 static void regulator_summary_lock(struct ww_acquire_ctx *ww_ctx)
6032 {
6033 struct regulator_dev *new_contended_rdev = NULL;
6034 struct regulator_dev *old_contended_rdev = NULL;
6035 int err;
6036
6037 mutex_lock(®ulator_list_mutex);
6038
6039 ww_acquire_init(ww_ctx, ®ulator_ww_class);
6040
6041 do {
6042 if (new_contended_rdev) {
6043 ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx);
6044 old_contended_rdev = new_contended_rdev;
6045 old_contended_rdev->ref_cnt++;
6046 }
6047
6048 err = regulator_summary_lock_all(ww_ctx,
6049 &new_contended_rdev,
6050 &old_contended_rdev);
6051
6052 if (old_contended_rdev)
6053 regulator_unlock(old_contended_rdev);
6054
6055 } while (err == -EDEADLK);
6056
6057 ww_acquire_done(ww_ctx);
6058 }
6059
regulator_summary_unlock(struct ww_acquire_ctx * ww_ctx)6060 static void regulator_summary_unlock(struct ww_acquire_ctx *ww_ctx)
6061 {
6062 class_for_each_device(®ulator_class, NULL, NULL,
6063 regulator_summary_unlock_one);
6064 ww_acquire_fini(ww_ctx);
6065
6066 mutex_unlock(®ulator_list_mutex);
6067 }
6068
regulator_summary_show_roots(struct device * dev,void * data)6069 static int regulator_summary_show_roots(struct device *dev, void *data)
6070 {
6071 struct regulator_dev *rdev = dev_to_rdev(dev);
6072 struct seq_file *s = data;
6073
6074 if (!rdev->supply)
6075 regulator_summary_show_subtree(s, rdev, 0);
6076
6077 return 0;
6078 }
6079
regulator_summary_show(struct seq_file * s,void * data)6080 static int regulator_summary_show(struct seq_file *s, void *data)
6081 {
6082 struct ww_acquire_ctx ww_ctx;
6083
6084 seq_puts(s, " regulator use open bypass opmode voltage current min max\n");
6085 seq_puts(s, "---------------------------------------------------------------------------------------\n");
6086
6087 regulator_summary_lock(&ww_ctx);
6088
6089 class_for_each_device(®ulator_class, NULL, s,
6090 regulator_summary_show_roots);
6091
6092 regulator_summary_unlock(&ww_ctx);
6093
6094 return 0;
6095 }
6096 DEFINE_SHOW_ATTRIBUTE(regulator_summary);
6097 #endif /* CONFIG_DEBUG_FS */
6098
regulator_init(void)6099 static int __init regulator_init(void)
6100 {
6101 int ret;
6102
6103 ret = class_register(®ulator_class);
6104
6105 debugfs_root = debugfs_create_dir("regulator", NULL);
6106 if (!debugfs_root)
6107 pr_warn("regulator: Failed to create debugfs directory\n");
6108
6109 #ifdef CONFIG_DEBUG_FS
6110 debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
6111 &supply_map_fops);
6112
6113 debugfs_create_file("regulator_summary", 0444, debugfs_root,
6114 NULL, ®ulator_summary_fops);
6115 #endif
6116 regulator_dummy_init();
6117
6118 regulator_coupler_register(&generic_regulator_coupler);
6119
6120 return ret;
6121 }
6122
6123 /* init early to allow our consumers to complete system booting */
6124 core_initcall(regulator_init);
6125
regulator_late_cleanup(struct device * dev,void * data)6126 static int regulator_late_cleanup(struct device *dev, void *data)
6127 {
6128 struct regulator_dev *rdev = dev_to_rdev(dev);
6129 struct regulation_constraints *c = rdev->constraints;
6130 int ret;
6131
6132 if (c && c->always_on)
6133 return 0;
6134
6135 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS))
6136 return 0;
6137
6138 regulator_lock(rdev);
6139
6140 if (rdev->use_count)
6141 goto unlock;
6142
6143 /* If reading the status failed, assume that it's off. */
6144 if (_regulator_is_enabled(rdev) <= 0)
6145 goto unlock;
6146
6147 if (have_full_constraints()) {
6148 /* We log since this may kill the system if it goes
6149 * wrong.
6150 */
6151 rdev_info(rdev, "disabling\n");
6152 ret = _regulator_do_disable(rdev);
6153 if (ret != 0)
6154 rdev_err(rdev, "couldn't disable: %pe\n", ERR_PTR(ret));
6155 } else {
6156 /* The intention is that in future we will
6157 * assume that full constraints are provided
6158 * so warn even if we aren't going to do
6159 * anything here.
6160 */
6161 rdev_warn(rdev, "incomplete constraints, leaving on\n");
6162 }
6163
6164 unlock:
6165 regulator_unlock(rdev);
6166
6167 return 0;
6168 }
6169
regulator_init_complete_work_function(struct work_struct * work)6170 static void regulator_init_complete_work_function(struct work_struct *work)
6171 {
6172 /*
6173 * Regulators may had failed to resolve their input supplies
6174 * when were registered, either because the input supply was
6175 * not registered yet or because its parent device was not
6176 * bound yet. So attempt to resolve the input supplies for
6177 * pending regulators before trying to disable unused ones.
6178 */
6179 class_for_each_device(®ulator_class, NULL, NULL,
6180 regulator_register_resolve_supply);
6181
6182 /* If we have a full configuration then disable any regulators
6183 * we have permission to change the status for and which are
6184 * not in use or always_on. This is effectively the default
6185 * for DT and ACPI as they have full constraints.
6186 */
6187 class_for_each_device(®ulator_class, NULL, NULL,
6188 regulator_late_cleanup);
6189 }
6190
6191 static DECLARE_DELAYED_WORK(regulator_init_complete_work,
6192 regulator_init_complete_work_function);
6193
regulator_init_complete(void)6194 static int __init regulator_init_complete(void)
6195 {
6196 /*
6197 * Since DT doesn't provide an idiomatic mechanism for
6198 * enabling full constraints and since it's much more natural
6199 * with DT to provide them just assume that a DT enabled
6200 * system has full constraints.
6201 */
6202 if (of_have_populated_dt())
6203 has_full_constraints = true;
6204
6205 /*
6206 * We punt completion for an arbitrary amount of time since
6207 * systems like distros will load many drivers from userspace
6208 * so consumers might not always be ready yet, this is
6209 * particularly an issue with laptops where this might bounce
6210 * the display off then on. Ideally we'd get a notification
6211 * from userspace when this happens but we don't so just wait
6212 * a bit and hope we waited long enough. It'd be better if
6213 * we'd only do this on systems that need it, and a kernel
6214 * command line option might be useful.
6215 */
6216 schedule_delayed_work(®ulator_init_complete_work,
6217 msecs_to_jiffies(30000));
6218
6219 return 0;
6220 }
6221 late_initcall_sync(regulator_init_complete);
6222