1 // SPDX-License-Identifier: GPL-2.0-or-later
2 //
3 // core.c -- Voltage/Current Regulator framework.
4 //
5 // Copyright 2007, 2008 Wolfson Microelectronics PLC.
6 // Copyright 2008 SlimLogic Ltd.
7 //
8 // Author: Liam Girdwood <lrg@slimlogic.co.uk>
9
10 #include <linux/kernel.h>
11 #include <linux/init.h>
12 #include <linux/debugfs.h>
13 #include <linux/device.h>
14 #include <linux/slab.h>
15 #include <linux/async.h>
16 #include <linux/err.h>
17 #include <linux/mutex.h>
18 #include <linux/suspend.h>
19 #include <linux/delay.h>
20 #include <linux/gpio/consumer.h>
21 #include <linux/of.h>
22 #include <linux/regmap.h>
23 #include <linux/regulator/of_regulator.h>
24 #include <linux/regulator/consumer.h>
25 #include <linux/regulator/coupler.h>
26 #include <linux/regulator/driver.h>
27 #include <linux/regulator/machine.h>
28 #include <linux/module.h>
29
30 #define CREATE_TRACE_POINTS
31 #include <trace/events/regulator.h>
32
33 #include "dummy.h"
34 #include "internal.h"
35
36 static DEFINE_WW_CLASS(regulator_ww_class);
37 static DEFINE_MUTEX(regulator_nesting_mutex);
38 static DEFINE_MUTEX(regulator_list_mutex);
39 static LIST_HEAD(regulator_map_list);
40 static LIST_HEAD(regulator_ena_gpio_list);
41 static LIST_HEAD(regulator_supply_alias_list);
42 static LIST_HEAD(regulator_coupler_list);
43 static bool has_full_constraints;
44
45 static struct dentry *debugfs_root;
46
47 /*
48 * struct regulator_map
49 *
50 * Used to provide symbolic supply names to devices.
51 */
52 struct regulator_map {
53 struct list_head list;
54 const char *dev_name; /* The dev_name() for the consumer */
55 const char *supply;
56 struct regulator_dev *regulator;
57 };
58
59 /*
60 * struct regulator_enable_gpio
61 *
62 * Management for shared enable GPIO pin
63 */
64 struct regulator_enable_gpio {
65 struct list_head list;
66 struct gpio_desc *gpiod;
67 u32 enable_count; /* a number of enabled shared GPIO */
68 u32 request_count; /* a number of requested shared GPIO */
69 };
70
71 /*
72 * struct regulator_supply_alias
73 *
74 * Used to map lookups for a supply onto an alternative device.
75 */
76 struct regulator_supply_alias {
77 struct list_head list;
78 struct device *src_dev;
79 const char *src_supply;
80 struct device *alias_dev;
81 const char *alias_supply;
82 };
83
84 static int _regulator_is_enabled(struct regulator_dev *rdev);
85 static int _regulator_disable(struct regulator *regulator);
86 static int _regulator_get_error_flags(struct regulator_dev *rdev, unsigned int *flags);
87 static int _regulator_get_current_limit(struct regulator_dev *rdev);
88 static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
89 static int _notifier_call_chain(struct regulator_dev *rdev,
90 unsigned long event, void *data);
91 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
92 int min_uV, int max_uV);
93 static int regulator_balance_voltage(struct regulator_dev *rdev,
94 suspend_state_t state);
95 static struct regulator *create_regulator(struct regulator_dev *rdev,
96 struct device *dev,
97 const char *supply_name);
98 static void destroy_regulator(struct regulator *regulator);
99 static void _regulator_put(struct regulator *regulator);
100
rdev_get_name(struct regulator_dev * rdev)101 const char *rdev_get_name(struct regulator_dev *rdev)
102 {
103 if (rdev->constraints && rdev->constraints->name)
104 return rdev->constraints->name;
105 else if (rdev->desc->name)
106 return rdev->desc->name;
107 else
108 return "";
109 }
110 EXPORT_SYMBOL_GPL(rdev_get_name);
111
have_full_constraints(void)112 static bool have_full_constraints(void)
113 {
114 return has_full_constraints || of_have_populated_dt();
115 }
116
regulator_ops_is_valid(struct regulator_dev * rdev,int ops)117 static bool regulator_ops_is_valid(struct regulator_dev *rdev, int ops)
118 {
119 if (!rdev->constraints) {
120 rdev_err(rdev, "no constraints\n");
121 return false;
122 }
123
124 if (rdev->constraints->valid_ops_mask & ops)
125 return true;
126
127 return false;
128 }
129
130 /**
131 * regulator_lock_nested - lock a single regulator
132 * @rdev: regulator source
133 * @ww_ctx: w/w mutex acquire context
134 *
135 * This function can be called many times by one task on
136 * a single regulator and its mutex will be locked only
137 * once. If a task, which is calling this function is other
138 * than the one, which initially locked the mutex, it will
139 * wait on mutex.
140 */
regulator_lock_nested(struct regulator_dev * rdev,struct ww_acquire_ctx * ww_ctx)141 static inline int regulator_lock_nested(struct regulator_dev *rdev,
142 struct ww_acquire_ctx *ww_ctx)
143 {
144 bool lock = false;
145 int ret = 0;
146
147 mutex_lock(®ulator_nesting_mutex);
148
149 if (!ww_mutex_trylock(&rdev->mutex, ww_ctx)) {
150 if (rdev->mutex_owner == current)
151 rdev->ref_cnt++;
152 else
153 lock = true;
154
155 if (lock) {
156 mutex_unlock(®ulator_nesting_mutex);
157 ret = ww_mutex_lock(&rdev->mutex, ww_ctx);
158 mutex_lock(®ulator_nesting_mutex);
159 }
160 } else {
161 lock = true;
162 }
163
164 if (lock && ret != -EDEADLK) {
165 rdev->ref_cnt++;
166 rdev->mutex_owner = current;
167 }
168
169 mutex_unlock(®ulator_nesting_mutex);
170
171 return ret;
172 }
173
174 /**
175 * regulator_lock - lock a single regulator
176 * @rdev: regulator source
177 *
178 * This function can be called many times by one task on
179 * a single regulator and its mutex will be locked only
180 * once. If a task, which is calling this function is other
181 * than the one, which initially locked the mutex, it will
182 * wait on mutex.
183 */
regulator_lock(struct regulator_dev * rdev)184 static void regulator_lock(struct regulator_dev *rdev)
185 {
186 regulator_lock_nested(rdev, NULL);
187 }
188
189 /**
190 * regulator_unlock - unlock a single regulator
191 * @rdev: regulator_source
192 *
193 * This function unlocks the mutex when the
194 * reference counter reaches 0.
195 */
regulator_unlock(struct regulator_dev * rdev)196 static void regulator_unlock(struct regulator_dev *rdev)
197 {
198 mutex_lock(®ulator_nesting_mutex);
199
200 if (--rdev->ref_cnt == 0) {
201 rdev->mutex_owner = NULL;
202 ww_mutex_unlock(&rdev->mutex);
203 }
204
205 WARN_ON_ONCE(rdev->ref_cnt < 0);
206
207 mutex_unlock(®ulator_nesting_mutex);
208 }
209
210 /**
211 * regulator_lock_two - lock two regulators
212 * @rdev1: first regulator
213 * @rdev2: second regulator
214 * @ww_ctx: w/w mutex acquire context
215 *
216 * Locks both rdevs using the regulator_ww_class.
217 */
regulator_lock_two(struct regulator_dev * rdev1,struct regulator_dev * rdev2,struct ww_acquire_ctx * ww_ctx)218 static void regulator_lock_two(struct regulator_dev *rdev1,
219 struct regulator_dev *rdev2,
220 struct ww_acquire_ctx *ww_ctx)
221 {
222 struct regulator_dev *held, *contended;
223 int ret;
224
225 ww_acquire_init(ww_ctx, ®ulator_ww_class);
226
227 /* Try to just grab both of them */
228 ret = regulator_lock_nested(rdev1, ww_ctx);
229 WARN_ON(ret);
230 ret = regulator_lock_nested(rdev2, ww_ctx);
231 if (ret != -EDEADLOCK) {
232 WARN_ON(ret);
233 goto exit;
234 }
235
236 held = rdev1;
237 contended = rdev2;
238 while (true) {
239 regulator_unlock(held);
240
241 ww_mutex_lock_slow(&contended->mutex, ww_ctx);
242 contended->ref_cnt++;
243 contended->mutex_owner = current;
244 swap(held, contended);
245 ret = regulator_lock_nested(contended, ww_ctx);
246
247 if (ret != -EDEADLOCK) {
248 WARN_ON(ret);
249 break;
250 }
251 }
252
253 exit:
254 ww_acquire_done(ww_ctx);
255 }
256
257 /**
258 * regulator_unlock_two - unlock two regulators
259 * @rdev1: first regulator
260 * @rdev2: second regulator
261 * @ww_ctx: w/w mutex acquire context
262 *
263 * The inverse of regulator_lock_two().
264 */
265
regulator_unlock_two(struct regulator_dev * rdev1,struct regulator_dev * rdev2,struct ww_acquire_ctx * ww_ctx)266 static void regulator_unlock_two(struct regulator_dev *rdev1,
267 struct regulator_dev *rdev2,
268 struct ww_acquire_ctx *ww_ctx)
269 {
270 regulator_unlock(rdev2);
271 regulator_unlock(rdev1);
272 ww_acquire_fini(ww_ctx);
273 }
274
regulator_supply_is_couple(struct regulator_dev * rdev)275 static bool regulator_supply_is_couple(struct regulator_dev *rdev)
276 {
277 struct regulator_dev *c_rdev;
278 int i;
279
280 for (i = 1; i < rdev->coupling_desc.n_coupled; i++) {
281 c_rdev = rdev->coupling_desc.coupled_rdevs[i];
282
283 if (rdev->supply->rdev == c_rdev)
284 return true;
285 }
286
287 return false;
288 }
289
regulator_unlock_recursive(struct regulator_dev * rdev,unsigned int n_coupled)290 static void regulator_unlock_recursive(struct regulator_dev *rdev,
291 unsigned int n_coupled)
292 {
293 struct regulator_dev *c_rdev, *supply_rdev;
294 int i, supply_n_coupled;
295
296 for (i = n_coupled; i > 0; i--) {
297 c_rdev = rdev->coupling_desc.coupled_rdevs[i - 1];
298
299 if (!c_rdev)
300 continue;
301
302 if (c_rdev->supply && !regulator_supply_is_couple(c_rdev)) {
303 supply_rdev = c_rdev->supply->rdev;
304 supply_n_coupled = supply_rdev->coupling_desc.n_coupled;
305
306 regulator_unlock_recursive(supply_rdev,
307 supply_n_coupled);
308 }
309
310 regulator_unlock(c_rdev);
311 }
312 }
313
regulator_lock_recursive(struct regulator_dev * rdev,struct regulator_dev ** new_contended_rdev,struct regulator_dev ** old_contended_rdev,struct ww_acquire_ctx * ww_ctx)314 static int regulator_lock_recursive(struct regulator_dev *rdev,
315 struct regulator_dev **new_contended_rdev,
316 struct regulator_dev **old_contended_rdev,
317 struct ww_acquire_ctx *ww_ctx)
318 {
319 struct regulator_dev *c_rdev;
320 int i, err;
321
322 for (i = 0; i < rdev->coupling_desc.n_coupled; i++) {
323 c_rdev = rdev->coupling_desc.coupled_rdevs[i];
324
325 if (!c_rdev)
326 continue;
327
328 if (c_rdev != *old_contended_rdev) {
329 err = regulator_lock_nested(c_rdev, ww_ctx);
330 if (err) {
331 if (err == -EDEADLK) {
332 *new_contended_rdev = c_rdev;
333 goto err_unlock;
334 }
335
336 /* shouldn't happen */
337 WARN_ON_ONCE(err != -EALREADY);
338 }
339 } else {
340 *old_contended_rdev = NULL;
341 }
342
343 if (c_rdev->supply && !regulator_supply_is_couple(c_rdev)) {
344 err = regulator_lock_recursive(c_rdev->supply->rdev,
345 new_contended_rdev,
346 old_contended_rdev,
347 ww_ctx);
348 if (err) {
349 regulator_unlock(c_rdev);
350 goto err_unlock;
351 }
352 }
353 }
354
355 return 0;
356
357 err_unlock:
358 regulator_unlock_recursive(rdev, i);
359
360 return err;
361 }
362
363 /**
364 * regulator_unlock_dependent - unlock regulator's suppliers and coupled
365 * regulators
366 * @rdev: regulator source
367 * @ww_ctx: w/w mutex acquire context
368 *
369 * Unlock all regulators related with rdev by coupling or supplying.
370 */
regulator_unlock_dependent(struct regulator_dev * rdev,struct ww_acquire_ctx * ww_ctx)371 static void regulator_unlock_dependent(struct regulator_dev *rdev,
372 struct ww_acquire_ctx *ww_ctx)
373 {
374 regulator_unlock_recursive(rdev, rdev->coupling_desc.n_coupled);
375 ww_acquire_fini(ww_ctx);
376 }
377
378 /**
379 * regulator_lock_dependent - lock regulator's suppliers and coupled regulators
380 * @rdev: regulator source
381 * @ww_ctx: w/w mutex acquire context
382 *
383 * This function as a wrapper on regulator_lock_recursive(), which locks
384 * all regulators related with rdev by coupling or supplying.
385 */
regulator_lock_dependent(struct regulator_dev * rdev,struct ww_acquire_ctx * ww_ctx)386 static void regulator_lock_dependent(struct regulator_dev *rdev,
387 struct ww_acquire_ctx *ww_ctx)
388 {
389 struct regulator_dev *new_contended_rdev = NULL;
390 struct regulator_dev *old_contended_rdev = NULL;
391 int err;
392
393 mutex_lock(®ulator_list_mutex);
394
395 ww_acquire_init(ww_ctx, ®ulator_ww_class);
396
397 do {
398 if (new_contended_rdev) {
399 ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx);
400 old_contended_rdev = new_contended_rdev;
401 old_contended_rdev->ref_cnt++;
402 old_contended_rdev->mutex_owner = current;
403 }
404
405 err = regulator_lock_recursive(rdev,
406 &new_contended_rdev,
407 &old_contended_rdev,
408 ww_ctx);
409
410 if (old_contended_rdev)
411 regulator_unlock(old_contended_rdev);
412
413 } while (err == -EDEADLK);
414
415 ww_acquire_done(ww_ctx);
416
417 mutex_unlock(®ulator_list_mutex);
418 }
419
420 /**
421 * of_get_child_regulator - get a child regulator device node
422 * based on supply name
423 * @parent: Parent device node
424 * @prop_name: Combination regulator supply name and "-supply"
425 *
426 * Traverse all child nodes.
427 * Extract the child regulator device node corresponding to the supply name.
428 * returns the device node corresponding to the regulator if found, else
429 * returns NULL.
430 */
of_get_child_regulator(struct device_node * parent,const char * prop_name)431 static struct device_node *of_get_child_regulator(struct device_node *parent,
432 const char *prop_name)
433 {
434 struct device_node *regnode = NULL;
435 struct device_node *child = NULL;
436
437 for_each_child_of_node(parent, child) {
438 regnode = of_parse_phandle(child, prop_name, 0);
439
440 if (!regnode) {
441 regnode = of_get_child_regulator(child, prop_name);
442 if (regnode)
443 goto err_node_put;
444 } else {
445 goto err_node_put;
446 }
447 }
448 return NULL;
449
450 err_node_put:
451 of_node_put(child);
452 return regnode;
453 }
454
455 /**
456 * of_get_regulator - get a regulator device node based on supply name
457 * @dev: Device pointer for the consumer (of regulator) device
458 * @supply: regulator supply name
459 *
460 * Extract the regulator device node corresponding to the supply name.
461 * returns the device node corresponding to the regulator if found, else
462 * returns NULL.
463 */
of_get_regulator(struct device * dev,const char * supply)464 static struct device_node *of_get_regulator(struct device *dev, const char *supply)
465 {
466 struct device_node *regnode = NULL;
467 char prop_name[64]; /* 64 is max size of property name */
468
469 dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
470
471 snprintf(prop_name, 64, "%s-supply", supply);
472 regnode = of_parse_phandle(dev->of_node, prop_name, 0);
473
474 if (!regnode) {
475 regnode = of_get_child_regulator(dev->of_node, prop_name);
476 if (regnode)
477 return regnode;
478
479 dev_dbg(dev, "Looking up %s property in node %pOF failed\n",
480 prop_name, dev->of_node);
481 return NULL;
482 }
483 return regnode;
484 }
485
486 /* Platform voltage constraint check */
regulator_check_voltage(struct regulator_dev * rdev,int * min_uV,int * max_uV)487 int regulator_check_voltage(struct regulator_dev *rdev,
488 int *min_uV, int *max_uV)
489 {
490 BUG_ON(*min_uV > *max_uV);
491
492 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
493 rdev_err(rdev, "voltage operation not allowed\n");
494 return -EPERM;
495 }
496
497 if (*max_uV > rdev->constraints->max_uV)
498 *max_uV = rdev->constraints->max_uV;
499 if (*min_uV < rdev->constraints->min_uV)
500 *min_uV = rdev->constraints->min_uV;
501
502 if (*min_uV > *max_uV) {
503 rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
504 *min_uV, *max_uV);
505 return -EINVAL;
506 }
507
508 return 0;
509 }
510
511 /* return 0 if the state is valid */
regulator_check_states(suspend_state_t state)512 static int regulator_check_states(suspend_state_t state)
513 {
514 return (state > PM_SUSPEND_MAX || state == PM_SUSPEND_TO_IDLE);
515 }
516
517 /* Make sure we select a voltage that suits the needs of all
518 * regulator consumers
519 */
regulator_check_consumers(struct regulator_dev * rdev,int * min_uV,int * max_uV,suspend_state_t state)520 int regulator_check_consumers(struct regulator_dev *rdev,
521 int *min_uV, int *max_uV,
522 suspend_state_t state)
523 {
524 struct regulator *regulator;
525 struct regulator_voltage *voltage;
526
527 list_for_each_entry(regulator, &rdev->consumer_list, list) {
528 voltage = ®ulator->voltage[state];
529 /*
530 * Assume consumers that didn't say anything are OK
531 * with anything in the constraint range.
532 */
533 if (!voltage->min_uV && !voltage->max_uV)
534 continue;
535
536 if (*max_uV > voltage->max_uV)
537 *max_uV = voltage->max_uV;
538 if (*min_uV < voltage->min_uV)
539 *min_uV = voltage->min_uV;
540 }
541
542 if (*min_uV > *max_uV) {
543 rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
544 *min_uV, *max_uV);
545 return -EINVAL;
546 }
547
548 return 0;
549 }
550
551 /* current constraint check */
regulator_check_current_limit(struct regulator_dev * rdev,int * min_uA,int * max_uA)552 static int regulator_check_current_limit(struct regulator_dev *rdev,
553 int *min_uA, int *max_uA)
554 {
555 BUG_ON(*min_uA > *max_uA);
556
557 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_CURRENT)) {
558 rdev_err(rdev, "current operation not allowed\n");
559 return -EPERM;
560 }
561
562 if (*max_uA > rdev->constraints->max_uA)
563 *max_uA = rdev->constraints->max_uA;
564 if (*min_uA < rdev->constraints->min_uA)
565 *min_uA = rdev->constraints->min_uA;
566
567 if (*min_uA > *max_uA) {
568 rdev_err(rdev, "unsupportable current range: %d-%duA\n",
569 *min_uA, *max_uA);
570 return -EINVAL;
571 }
572
573 return 0;
574 }
575
576 /* operating mode constraint check */
regulator_mode_constrain(struct regulator_dev * rdev,unsigned int * mode)577 static int regulator_mode_constrain(struct regulator_dev *rdev,
578 unsigned int *mode)
579 {
580 switch (*mode) {
581 case REGULATOR_MODE_FAST:
582 case REGULATOR_MODE_NORMAL:
583 case REGULATOR_MODE_IDLE:
584 case REGULATOR_MODE_STANDBY:
585 break;
586 default:
587 rdev_err(rdev, "invalid mode %x specified\n", *mode);
588 return -EINVAL;
589 }
590
591 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_MODE)) {
592 rdev_err(rdev, "mode operation not allowed\n");
593 return -EPERM;
594 }
595
596 /* The modes are bitmasks, the most power hungry modes having
597 * the lowest values. If the requested mode isn't supported
598 * try higher modes.
599 */
600 while (*mode) {
601 if (rdev->constraints->valid_modes_mask & *mode)
602 return 0;
603 *mode /= 2;
604 }
605
606 return -EINVAL;
607 }
608
609 static inline struct regulator_state *
regulator_get_suspend_state(struct regulator_dev * rdev,suspend_state_t state)610 regulator_get_suspend_state(struct regulator_dev *rdev, suspend_state_t state)
611 {
612 if (rdev->constraints == NULL)
613 return NULL;
614
615 switch (state) {
616 case PM_SUSPEND_STANDBY:
617 return &rdev->constraints->state_standby;
618 case PM_SUSPEND_MEM:
619 return &rdev->constraints->state_mem;
620 case PM_SUSPEND_MAX:
621 return &rdev->constraints->state_disk;
622 default:
623 return NULL;
624 }
625 }
626
627 static const struct regulator_state *
regulator_get_suspend_state_check(struct regulator_dev * rdev,suspend_state_t state)628 regulator_get_suspend_state_check(struct regulator_dev *rdev, suspend_state_t state)
629 {
630 const struct regulator_state *rstate;
631
632 rstate = regulator_get_suspend_state(rdev, state);
633 if (rstate == NULL)
634 return NULL;
635
636 /* If we have no suspend mode configuration don't set anything;
637 * only warn if the driver implements set_suspend_voltage or
638 * set_suspend_mode callback.
639 */
640 if (rstate->enabled != ENABLE_IN_SUSPEND &&
641 rstate->enabled != DISABLE_IN_SUSPEND) {
642 if (rdev->desc->ops->set_suspend_voltage ||
643 rdev->desc->ops->set_suspend_mode)
644 rdev_warn(rdev, "No configuration\n");
645 return NULL;
646 }
647
648 return rstate;
649 }
650
microvolts_show(struct device * dev,struct device_attribute * attr,char * buf)651 static ssize_t microvolts_show(struct device *dev,
652 struct device_attribute *attr, char *buf)
653 {
654 struct regulator_dev *rdev = dev_get_drvdata(dev);
655 int uV;
656
657 regulator_lock(rdev);
658 uV = regulator_get_voltage_rdev(rdev);
659 regulator_unlock(rdev);
660
661 if (uV < 0)
662 return uV;
663 return sprintf(buf, "%d\n", uV);
664 }
665 static DEVICE_ATTR_RO(microvolts);
666
microamps_show(struct device * dev,struct device_attribute * attr,char * buf)667 static ssize_t microamps_show(struct device *dev,
668 struct device_attribute *attr, char *buf)
669 {
670 struct regulator_dev *rdev = dev_get_drvdata(dev);
671
672 return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
673 }
674 static DEVICE_ATTR_RO(microamps);
675
name_show(struct device * dev,struct device_attribute * attr,char * buf)676 static ssize_t name_show(struct device *dev, struct device_attribute *attr,
677 char *buf)
678 {
679 struct regulator_dev *rdev = dev_get_drvdata(dev);
680
681 return sprintf(buf, "%s\n", rdev_get_name(rdev));
682 }
683 static DEVICE_ATTR_RO(name);
684
regulator_opmode_to_str(int mode)685 static const char *regulator_opmode_to_str(int mode)
686 {
687 switch (mode) {
688 case REGULATOR_MODE_FAST:
689 return "fast";
690 case REGULATOR_MODE_NORMAL:
691 return "normal";
692 case REGULATOR_MODE_IDLE:
693 return "idle";
694 case REGULATOR_MODE_STANDBY:
695 return "standby";
696 }
697 return "unknown";
698 }
699
regulator_print_opmode(char * buf,int mode)700 static ssize_t regulator_print_opmode(char *buf, int mode)
701 {
702 return sprintf(buf, "%s\n", regulator_opmode_to_str(mode));
703 }
704
opmode_show(struct device * dev,struct device_attribute * attr,char * buf)705 static ssize_t opmode_show(struct device *dev,
706 struct device_attribute *attr, char *buf)
707 {
708 struct regulator_dev *rdev = dev_get_drvdata(dev);
709
710 return regulator_print_opmode(buf, _regulator_get_mode(rdev));
711 }
712 static DEVICE_ATTR_RO(opmode);
713
regulator_print_state(char * buf,int state)714 static ssize_t regulator_print_state(char *buf, int state)
715 {
716 if (state > 0)
717 return sprintf(buf, "enabled\n");
718 else if (state == 0)
719 return sprintf(buf, "disabled\n");
720 else
721 return sprintf(buf, "unknown\n");
722 }
723
state_show(struct device * dev,struct device_attribute * attr,char * buf)724 static ssize_t state_show(struct device *dev,
725 struct device_attribute *attr, char *buf)
726 {
727 struct regulator_dev *rdev = dev_get_drvdata(dev);
728 ssize_t ret;
729
730 regulator_lock(rdev);
731 ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
732 regulator_unlock(rdev);
733
734 return ret;
735 }
736 static DEVICE_ATTR_RO(state);
737
status_show(struct device * dev,struct device_attribute * attr,char * buf)738 static ssize_t status_show(struct device *dev,
739 struct device_attribute *attr, char *buf)
740 {
741 struct regulator_dev *rdev = dev_get_drvdata(dev);
742 int status;
743 char *label;
744
745 status = rdev->desc->ops->get_status(rdev);
746 if (status < 0)
747 return status;
748
749 switch (status) {
750 case REGULATOR_STATUS_OFF:
751 label = "off";
752 break;
753 case REGULATOR_STATUS_ON:
754 label = "on";
755 break;
756 case REGULATOR_STATUS_ERROR:
757 label = "error";
758 break;
759 case REGULATOR_STATUS_FAST:
760 label = "fast";
761 break;
762 case REGULATOR_STATUS_NORMAL:
763 label = "normal";
764 break;
765 case REGULATOR_STATUS_IDLE:
766 label = "idle";
767 break;
768 case REGULATOR_STATUS_STANDBY:
769 label = "standby";
770 break;
771 case REGULATOR_STATUS_BYPASS:
772 label = "bypass";
773 break;
774 case REGULATOR_STATUS_UNDEFINED:
775 label = "undefined";
776 break;
777 default:
778 return -ERANGE;
779 }
780
781 return sprintf(buf, "%s\n", label);
782 }
783 static DEVICE_ATTR_RO(status);
784
min_microamps_show(struct device * dev,struct device_attribute * attr,char * buf)785 static ssize_t min_microamps_show(struct device *dev,
786 struct device_attribute *attr, char *buf)
787 {
788 struct regulator_dev *rdev = dev_get_drvdata(dev);
789
790 if (!rdev->constraints)
791 return sprintf(buf, "constraint not defined\n");
792
793 return sprintf(buf, "%d\n", rdev->constraints->min_uA);
794 }
795 static DEVICE_ATTR_RO(min_microamps);
796
max_microamps_show(struct device * dev,struct device_attribute * attr,char * buf)797 static ssize_t max_microamps_show(struct device *dev,
798 struct device_attribute *attr, char *buf)
799 {
800 struct regulator_dev *rdev = dev_get_drvdata(dev);
801
802 if (!rdev->constraints)
803 return sprintf(buf, "constraint not defined\n");
804
805 return sprintf(buf, "%d\n", rdev->constraints->max_uA);
806 }
807 static DEVICE_ATTR_RO(max_microamps);
808
min_microvolts_show(struct device * dev,struct device_attribute * attr,char * buf)809 static ssize_t min_microvolts_show(struct device *dev,
810 struct device_attribute *attr, char *buf)
811 {
812 struct regulator_dev *rdev = dev_get_drvdata(dev);
813
814 if (!rdev->constraints)
815 return sprintf(buf, "constraint not defined\n");
816
817 return sprintf(buf, "%d\n", rdev->constraints->min_uV);
818 }
819 static DEVICE_ATTR_RO(min_microvolts);
820
max_microvolts_show(struct device * dev,struct device_attribute * attr,char * buf)821 static ssize_t max_microvolts_show(struct device *dev,
822 struct device_attribute *attr, char *buf)
823 {
824 struct regulator_dev *rdev = dev_get_drvdata(dev);
825
826 if (!rdev->constraints)
827 return sprintf(buf, "constraint not defined\n");
828
829 return sprintf(buf, "%d\n", rdev->constraints->max_uV);
830 }
831 static DEVICE_ATTR_RO(max_microvolts);
832
requested_microamps_show(struct device * dev,struct device_attribute * attr,char * buf)833 static ssize_t requested_microamps_show(struct device *dev,
834 struct device_attribute *attr, char *buf)
835 {
836 struct regulator_dev *rdev = dev_get_drvdata(dev);
837 struct regulator *regulator;
838 int uA = 0;
839
840 regulator_lock(rdev);
841 list_for_each_entry(regulator, &rdev->consumer_list, list) {
842 if (regulator->enable_count)
843 uA += regulator->uA_load;
844 }
845 regulator_unlock(rdev);
846 return sprintf(buf, "%d\n", uA);
847 }
848 static DEVICE_ATTR_RO(requested_microamps);
849
num_users_show(struct device * dev,struct device_attribute * attr,char * buf)850 static ssize_t num_users_show(struct device *dev, struct device_attribute *attr,
851 char *buf)
852 {
853 struct regulator_dev *rdev = dev_get_drvdata(dev);
854 return sprintf(buf, "%d\n", rdev->use_count);
855 }
856 static DEVICE_ATTR_RO(num_users);
857
type_show(struct device * dev,struct device_attribute * attr,char * buf)858 static ssize_t type_show(struct device *dev, struct device_attribute *attr,
859 char *buf)
860 {
861 struct regulator_dev *rdev = dev_get_drvdata(dev);
862
863 switch (rdev->desc->type) {
864 case REGULATOR_VOLTAGE:
865 return sprintf(buf, "voltage\n");
866 case REGULATOR_CURRENT:
867 return sprintf(buf, "current\n");
868 }
869 return sprintf(buf, "unknown\n");
870 }
871 static DEVICE_ATTR_RO(type);
872
suspend_mem_microvolts_show(struct device * dev,struct device_attribute * attr,char * buf)873 static ssize_t suspend_mem_microvolts_show(struct device *dev,
874 struct device_attribute *attr, char *buf)
875 {
876 struct regulator_dev *rdev = dev_get_drvdata(dev);
877
878 return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
879 }
880 static DEVICE_ATTR_RO(suspend_mem_microvolts);
881
suspend_disk_microvolts_show(struct device * dev,struct device_attribute * attr,char * buf)882 static ssize_t suspend_disk_microvolts_show(struct device *dev,
883 struct device_attribute *attr, char *buf)
884 {
885 struct regulator_dev *rdev = dev_get_drvdata(dev);
886
887 return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
888 }
889 static DEVICE_ATTR_RO(suspend_disk_microvolts);
890
suspend_standby_microvolts_show(struct device * dev,struct device_attribute * attr,char * buf)891 static ssize_t suspend_standby_microvolts_show(struct device *dev,
892 struct device_attribute *attr, char *buf)
893 {
894 struct regulator_dev *rdev = dev_get_drvdata(dev);
895
896 return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
897 }
898 static DEVICE_ATTR_RO(suspend_standby_microvolts);
899
suspend_mem_mode_show(struct device * dev,struct device_attribute * attr,char * buf)900 static ssize_t suspend_mem_mode_show(struct device *dev,
901 struct device_attribute *attr, char *buf)
902 {
903 struct regulator_dev *rdev = dev_get_drvdata(dev);
904
905 return regulator_print_opmode(buf,
906 rdev->constraints->state_mem.mode);
907 }
908 static DEVICE_ATTR_RO(suspend_mem_mode);
909
suspend_disk_mode_show(struct device * dev,struct device_attribute * attr,char * buf)910 static ssize_t suspend_disk_mode_show(struct device *dev,
911 struct device_attribute *attr, char *buf)
912 {
913 struct regulator_dev *rdev = dev_get_drvdata(dev);
914
915 return regulator_print_opmode(buf,
916 rdev->constraints->state_disk.mode);
917 }
918 static DEVICE_ATTR_RO(suspend_disk_mode);
919
suspend_standby_mode_show(struct device * dev,struct device_attribute * attr,char * buf)920 static ssize_t suspend_standby_mode_show(struct device *dev,
921 struct device_attribute *attr, char *buf)
922 {
923 struct regulator_dev *rdev = dev_get_drvdata(dev);
924
925 return regulator_print_opmode(buf,
926 rdev->constraints->state_standby.mode);
927 }
928 static DEVICE_ATTR_RO(suspend_standby_mode);
929
suspend_mem_state_show(struct device * dev,struct device_attribute * attr,char * buf)930 static ssize_t suspend_mem_state_show(struct device *dev,
931 struct device_attribute *attr, char *buf)
932 {
933 struct regulator_dev *rdev = dev_get_drvdata(dev);
934
935 return regulator_print_state(buf,
936 rdev->constraints->state_mem.enabled);
937 }
938 static DEVICE_ATTR_RO(suspend_mem_state);
939
suspend_disk_state_show(struct device * dev,struct device_attribute * attr,char * buf)940 static ssize_t suspend_disk_state_show(struct device *dev,
941 struct device_attribute *attr, char *buf)
942 {
943 struct regulator_dev *rdev = dev_get_drvdata(dev);
944
945 return regulator_print_state(buf,
946 rdev->constraints->state_disk.enabled);
947 }
948 static DEVICE_ATTR_RO(suspend_disk_state);
949
suspend_standby_state_show(struct device * dev,struct device_attribute * attr,char * buf)950 static ssize_t suspend_standby_state_show(struct device *dev,
951 struct device_attribute *attr, char *buf)
952 {
953 struct regulator_dev *rdev = dev_get_drvdata(dev);
954
955 return regulator_print_state(buf,
956 rdev->constraints->state_standby.enabled);
957 }
958 static DEVICE_ATTR_RO(suspend_standby_state);
959
bypass_show(struct device * dev,struct device_attribute * attr,char * buf)960 static ssize_t bypass_show(struct device *dev,
961 struct device_attribute *attr, char *buf)
962 {
963 struct regulator_dev *rdev = dev_get_drvdata(dev);
964 const char *report;
965 bool bypass;
966 int ret;
967
968 ret = rdev->desc->ops->get_bypass(rdev, &bypass);
969
970 if (ret != 0)
971 report = "unknown";
972 else if (bypass)
973 report = "enabled";
974 else
975 report = "disabled";
976
977 return sprintf(buf, "%s\n", report);
978 }
979 static DEVICE_ATTR_RO(bypass);
980
981 #define REGULATOR_ERROR_ATTR(name, bit) \
982 static ssize_t name##_show(struct device *dev, struct device_attribute *attr, \
983 char *buf) \
984 { \
985 int ret; \
986 unsigned int flags; \
987 struct regulator_dev *rdev = dev_get_drvdata(dev); \
988 ret = _regulator_get_error_flags(rdev, &flags); \
989 if (ret) \
990 return ret; \
991 return sysfs_emit(buf, "%d\n", !!(flags & (bit))); \
992 } \
993 static DEVICE_ATTR_RO(name)
994
995 REGULATOR_ERROR_ATTR(under_voltage, REGULATOR_ERROR_UNDER_VOLTAGE);
996 REGULATOR_ERROR_ATTR(over_current, REGULATOR_ERROR_OVER_CURRENT);
997 REGULATOR_ERROR_ATTR(regulation_out, REGULATOR_ERROR_REGULATION_OUT);
998 REGULATOR_ERROR_ATTR(fail, REGULATOR_ERROR_FAIL);
999 REGULATOR_ERROR_ATTR(over_temp, REGULATOR_ERROR_OVER_TEMP);
1000 REGULATOR_ERROR_ATTR(under_voltage_warn, REGULATOR_ERROR_UNDER_VOLTAGE_WARN);
1001 REGULATOR_ERROR_ATTR(over_current_warn, REGULATOR_ERROR_OVER_CURRENT_WARN);
1002 REGULATOR_ERROR_ATTR(over_voltage_warn, REGULATOR_ERROR_OVER_VOLTAGE_WARN);
1003 REGULATOR_ERROR_ATTR(over_temp_warn, REGULATOR_ERROR_OVER_TEMP_WARN);
1004
1005 /* Calculate the new optimum regulator operating mode based on the new total
1006 * consumer load. All locks held by caller
1007 */
drms_uA_update(struct regulator_dev * rdev)1008 static int drms_uA_update(struct regulator_dev *rdev)
1009 {
1010 struct regulator *sibling;
1011 int current_uA = 0, output_uV, input_uV, err;
1012 unsigned int mode;
1013
1014 /*
1015 * first check to see if we can set modes at all, otherwise just
1016 * tell the consumer everything is OK.
1017 */
1018 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS)) {
1019 rdev_dbg(rdev, "DRMS operation not allowed\n");
1020 return 0;
1021 }
1022
1023 if (!rdev->desc->ops->get_optimum_mode &&
1024 !rdev->desc->ops->set_load)
1025 return 0;
1026
1027 if (!rdev->desc->ops->set_mode &&
1028 !rdev->desc->ops->set_load)
1029 return -EINVAL;
1030
1031 /* calc total requested load */
1032 list_for_each_entry(sibling, &rdev->consumer_list, list) {
1033 if (sibling->enable_count)
1034 current_uA += sibling->uA_load;
1035 }
1036
1037 current_uA += rdev->constraints->system_load;
1038
1039 if (rdev->desc->ops->set_load) {
1040 /* set the optimum mode for our new total regulator load */
1041 err = rdev->desc->ops->set_load(rdev, current_uA);
1042 if (err < 0)
1043 rdev_err(rdev, "failed to set load %d: %pe\n",
1044 current_uA, ERR_PTR(err));
1045 } else {
1046 /*
1047 * Unfortunately in some cases the constraints->valid_ops has
1048 * REGULATOR_CHANGE_DRMS but there are no valid modes listed.
1049 * That's not really legit but we won't consider it a fatal
1050 * error here. We'll treat it as if REGULATOR_CHANGE_DRMS
1051 * wasn't set.
1052 */
1053 if (!rdev->constraints->valid_modes_mask) {
1054 rdev_dbg(rdev, "Can change modes; but no valid mode\n");
1055 return 0;
1056 }
1057
1058 /* get output voltage */
1059 output_uV = regulator_get_voltage_rdev(rdev);
1060
1061 /*
1062 * Don't return an error; if regulator driver cares about
1063 * output_uV then it's up to the driver to validate.
1064 */
1065 if (output_uV <= 0)
1066 rdev_dbg(rdev, "invalid output voltage found\n");
1067
1068 /* get input voltage */
1069 input_uV = 0;
1070 if (rdev->supply)
1071 input_uV = regulator_get_voltage_rdev(rdev->supply->rdev);
1072 if (input_uV <= 0)
1073 input_uV = rdev->constraints->input_uV;
1074
1075 /*
1076 * Don't return an error; if regulator driver cares about
1077 * input_uV then it's up to the driver to validate.
1078 */
1079 if (input_uV <= 0)
1080 rdev_dbg(rdev, "invalid input voltage found\n");
1081
1082 /* now get the optimum mode for our new total regulator load */
1083 mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
1084 output_uV, current_uA);
1085
1086 /* check the new mode is allowed */
1087 err = regulator_mode_constrain(rdev, &mode);
1088 if (err < 0) {
1089 rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV: %pe\n",
1090 current_uA, input_uV, output_uV, ERR_PTR(err));
1091 return err;
1092 }
1093
1094 err = rdev->desc->ops->set_mode(rdev, mode);
1095 if (err < 0)
1096 rdev_err(rdev, "failed to set optimum mode %x: %pe\n",
1097 mode, ERR_PTR(err));
1098 }
1099
1100 return err;
1101 }
1102
__suspend_set_state(struct regulator_dev * rdev,const struct regulator_state * rstate)1103 static int __suspend_set_state(struct regulator_dev *rdev,
1104 const struct regulator_state *rstate)
1105 {
1106 int ret = 0;
1107
1108 if (rstate->enabled == ENABLE_IN_SUSPEND &&
1109 rdev->desc->ops->set_suspend_enable)
1110 ret = rdev->desc->ops->set_suspend_enable(rdev);
1111 else if (rstate->enabled == DISABLE_IN_SUSPEND &&
1112 rdev->desc->ops->set_suspend_disable)
1113 ret = rdev->desc->ops->set_suspend_disable(rdev);
1114 else /* OK if set_suspend_enable or set_suspend_disable is NULL */
1115 ret = 0;
1116
1117 if (ret < 0) {
1118 rdev_err(rdev, "failed to enabled/disable: %pe\n", ERR_PTR(ret));
1119 return ret;
1120 }
1121
1122 if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
1123 ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
1124 if (ret < 0) {
1125 rdev_err(rdev, "failed to set voltage: %pe\n", ERR_PTR(ret));
1126 return ret;
1127 }
1128 }
1129
1130 if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
1131 ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
1132 if (ret < 0) {
1133 rdev_err(rdev, "failed to set mode: %pe\n", ERR_PTR(ret));
1134 return ret;
1135 }
1136 }
1137
1138 return ret;
1139 }
1140
suspend_set_initial_state(struct regulator_dev * rdev)1141 static int suspend_set_initial_state(struct regulator_dev *rdev)
1142 {
1143 const struct regulator_state *rstate;
1144
1145 rstate = regulator_get_suspend_state_check(rdev,
1146 rdev->constraints->initial_state);
1147 if (!rstate)
1148 return 0;
1149
1150 return __suspend_set_state(rdev, rstate);
1151 }
1152
1153 #if defined(DEBUG) || defined(CONFIG_DYNAMIC_DEBUG)
print_constraints_debug(struct regulator_dev * rdev)1154 static void print_constraints_debug(struct regulator_dev *rdev)
1155 {
1156 struct regulation_constraints *constraints = rdev->constraints;
1157 char buf[160] = "";
1158 size_t len = sizeof(buf) - 1;
1159 int count = 0;
1160 int ret;
1161
1162 if (constraints->min_uV && constraints->max_uV) {
1163 if (constraints->min_uV == constraints->max_uV)
1164 count += scnprintf(buf + count, len - count, "%d mV ",
1165 constraints->min_uV / 1000);
1166 else
1167 count += scnprintf(buf + count, len - count,
1168 "%d <--> %d mV ",
1169 constraints->min_uV / 1000,
1170 constraints->max_uV / 1000);
1171 }
1172
1173 if (!constraints->min_uV ||
1174 constraints->min_uV != constraints->max_uV) {
1175 ret = regulator_get_voltage_rdev(rdev);
1176 if (ret > 0)
1177 count += scnprintf(buf + count, len - count,
1178 "at %d mV ", ret / 1000);
1179 }
1180
1181 if (constraints->uV_offset)
1182 count += scnprintf(buf + count, len - count, "%dmV offset ",
1183 constraints->uV_offset / 1000);
1184
1185 if (constraints->min_uA && constraints->max_uA) {
1186 if (constraints->min_uA == constraints->max_uA)
1187 count += scnprintf(buf + count, len - count, "%d mA ",
1188 constraints->min_uA / 1000);
1189 else
1190 count += scnprintf(buf + count, len - count,
1191 "%d <--> %d mA ",
1192 constraints->min_uA / 1000,
1193 constraints->max_uA / 1000);
1194 }
1195
1196 if (!constraints->min_uA ||
1197 constraints->min_uA != constraints->max_uA) {
1198 ret = _regulator_get_current_limit(rdev);
1199 if (ret > 0)
1200 count += scnprintf(buf + count, len - count,
1201 "at %d mA ", ret / 1000);
1202 }
1203
1204 if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
1205 count += scnprintf(buf + count, len - count, "fast ");
1206 if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
1207 count += scnprintf(buf + count, len - count, "normal ");
1208 if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
1209 count += scnprintf(buf + count, len - count, "idle ");
1210 if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
1211 count += scnprintf(buf + count, len - count, "standby ");
1212
1213 if (!count)
1214 count = scnprintf(buf, len, "no parameters");
1215 else
1216 --count;
1217
1218 count += scnprintf(buf + count, len - count, ", %s",
1219 _regulator_is_enabled(rdev) ? "enabled" : "disabled");
1220
1221 rdev_dbg(rdev, "%s\n", buf);
1222 }
1223 #else /* !DEBUG && !CONFIG_DYNAMIC_DEBUG */
print_constraints_debug(struct regulator_dev * rdev)1224 static inline void print_constraints_debug(struct regulator_dev *rdev) {}
1225 #endif /* !DEBUG && !CONFIG_DYNAMIC_DEBUG */
1226
print_constraints(struct regulator_dev * rdev)1227 static void print_constraints(struct regulator_dev *rdev)
1228 {
1229 struct regulation_constraints *constraints = rdev->constraints;
1230
1231 print_constraints_debug(rdev);
1232
1233 if ((constraints->min_uV != constraints->max_uV) &&
1234 !regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE))
1235 rdev_warn(rdev,
1236 "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
1237 }
1238
machine_constraints_voltage(struct regulator_dev * rdev,struct regulation_constraints * constraints)1239 static int machine_constraints_voltage(struct regulator_dev *rdev,
1240 struct regulation_constraints *constraints)
1241 {
1242 const struct regulator_ops *ops = rdev->desc->ops;
1243 int ret;
1244
1245 /* do we need to apply the constraint voltage */
1246 if (rdev->constraints->apply_uV &&
1247 rdev->constraints->min_uV && rdev->constraints->max_uV) {
1248 int target_min, target_max;
1249 int current_uV = regulator_get_voltage_rdev(rdev);
1250
1251 if (current_uV == -ENOTRECOVERABLE) {
1252 /* This regulator can't be read and must be initialized */
1253 rdev_info(rdev, "Setting %d-%duV\n",
1254 rdev->constraints->min_uV,
1255 rdev->constraints->max_uV);
1256 _regulator_do_set_voltage(rdev,
1257 rdev->constraints->min_uV,
1258 rdev->constraints->max_uV);
1259 current_uV = regulator_get_voltage_rdev(rdev);
1260 }
1261
1262 if (current_uV < 0) {
1263 if (current_uV != -EPROBE_DEFER)
1264 rdev_err(rdev,
1265 "failed to get the current voltage: %pe\n",
1266 ERR_PTR(current_uV));
1267 return current_uV;
1268 }
1269
1270 /*
1271 * If we're below the minimum voltage move up to the
1272 * minimum voltage, if we're above the maximum voltage
1273 * then move down to the maximum.
1274 */
1275 target_min = current_uV;
1276 target_max = current_uV;
1277
1278 if (current_uV < rdev->constraints->min_uV) {
1279 target_min = rdev->constraints->min_uV;
1280 target_max = rdev->constraints->min_uV;
1281 }
1282
1283 if (current_uV > rdev->constraints->max_uV) {
1284 target_min = rdev->constraints->max_uV;
1285 target_max = rdev->constraints->max_uV;
1286 }
1287
1288 if (target_min != current_uV || target_max != current_uV) {
1289 rdev_info(rdev, "Bringing %duV into %d-%duV\n",
1290 current_uV, target_min, target_max);
1291 ret = _regulator_do_set_voltage(
1292 rdev, target_min, target_max);
1293 if (ret < 0) {
1294 rdev_err(rdev,
1295 "failed to apply %d-%duV constraint: %pe\n",
1296 target_min, target_max, ERR_PTR(ret));
1297 return ret;
1298 }
1299 }
1300 }
1301
1302 /* constrain machine-level voltage specs to fit
1303 * the actual range supported by this regulator.
1304 */
1305 if (ops->list_voltage && rdev->desc->n_voltages) {
1306 int count = rdev->desc->n_voltages;
1307 int i;
1308 int min_uV = INT_MAX;
1309 int max_uV = INT_MIN;
1310 int cmin = constraints->min_uV;
1311 int cmax = constraints->max_uV;
1312
1313 /* it's safe to autoconfigure fixed-voltage supplies
1314 * and the constraints are used by list_voltage.
1315 */
1316 if (count == 1 && !cmin) {
1317 cmin = 1;
1318 cmax = INT_MAX;
1319 constraints->min_uV = cmin;
1320 constraints->max_uV = cmax;
1321 }
1322
1323 /* voltage constraints are optional */
1324 if ((cmin == 0) && (cmax == 0))
1325 return 0;
1326
1327 /* else require explicit machine-level constraints */
1328 if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
1329 rdev_err(rdev, "invalid voltage constraints\n");
1330 return -EINVAL;
1331 }
1332
1333 /* no need to loop voltages if range is continuous */
1334 if (rdev->desc->continuous_voltage_range)
1335 return 0;
1336
1337 /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
1338 for (i = 0; i < count; i++) {
1339 int value;
1340
1341 value = ops->list_voltage(rdev, i);
1342 if (value <= 0)
1343 continue;
1344
1345 /* maybe adjust [min_uV..max_uV] */
1346 if (value >= cmin && value < min_uV)
1347 min_uV = value;
1348 if (value <= cmax && value > max_uV)
1349 max_uV = value;
1350 }
1351
1352 /* final: [min_uV..max_uV] valid iff constraints valid */
1353 if (max_uV < min_uV) {
1354 rdev_err(rdev,
1355 "unsupportable voltage constraints %u-%uuV\n",
1356 min_uV, max_uV);
1357 return -EINVAL;
1358 }
1359
1360 /* use regulator's subset of machine constraints */
1361 if (constraints->min_uV < min_uV) {
1362 rdev_dbg(rdev, "override min_uV, %d -> %d\n",
1363 constraints->min_uV, min_uV);
1364 constraints->min_uV = min_uV;
1365 }
1366 if (constraints->max_uV > max_uV) {
1367 rdev_dbg(rdev, "override max_uV, %d -> %d\n",
1368 constraints->max_uV, max_uV);
1369 constraints->max_uV = max_uV;
1370 }
1371 }
1372
1373 return 0;
1374 }
1375
machine_constraints_current(struct regulator_dev * rdev,struct regulation_constraints * constraints)1376 static int machine_constraints_current(struct regulator_dev *rdev,
1377 struct regulation_constraints *constraints)
1378 {
1379 const struct regulator_ops *ops = rdev->desc->ops;
1380 int ret;
1381
1382 if (!constraints->min_uA && !constraints->max_uA)
1383 return 0;
1384
1385 if (constraints->min_uA > constraints->max_uA) {
1386 rdev_err(rdev, "Invalid current constraints\n");
1387 return -EINVAL;
1388 }
1389
1390 if (!ops->set_current_limit || !ops->get_current_limit) {
1391 rdev_warn(rdev, "Operation of current configuration missing\n");
1392 return 0;
1393 }
1394
1395 /* Set regulator current in constraints range */
1396 ret = ops->set_current_limit(rdev, constraints->min_uA,
1397 constraints->max_uA);
1398 if (ret < 0) {
1399 rdev_err(rdev, "Failed to set current constraint, %d\n", ret);
1400 return ret;
1401 }
1402
1403 return 0;
1404 }
1405
1406 static int _regulator_do_enable(struct regulator_dev *rdev);
1407
notif_set_limit(struct regulator_dev * rdev,int (* set)(struct regulator_dev *,int,int,bool),int limit,int severity)1408 static int notif_set_limit(struct regulator_dev *rdev,
1409 int (*set)(struct regulator_dev *, int, int, bool),
1410 int limit, int severity)
1411 {
1412 bool enable;
1413
1414 if (limit == REGULATOR_NOTIF_LIMIT_DISABLE) {
1415 enable = false;
1416 limit = 0;
1417 } else {
1418 enable = true;
1419 }
1420
1421 if (limit == REGULATOR_NOTIF_LIMIT_ENABLE)
1422 limit = 0;
1423
1424 return set(rdev, limit, severity, enable);
1425 }
1426
handle_notify_limits(struct regulator_dev * rdev,int (* set)(struct regulator_dev *,int,int,bool),struct notification_limit * limits)1427 static int handle_notify_limits(struct regulator_dev *rdev,
1428 int (*set)(struct regulator_dev *, int, int, bool),
1429 struct notification_limit *limits)
1430 {
1431 int ret = 0;
1432
1433 if (!set)
1434 return -EOPNOTSUPP;
1435
1436 if (limits->prot)
1437 ret = notif_set_limit(rdev, set, limits->prot,
1438 REGULATOR_SEVERITY_PROT);
1439 if (ret)
1440 return ret;
1441
1442 if (limits->err)
1443 ret = notif_set_limit(rdev, set, limits->err,
1444 REGULATOR_SEVERITY_ERR);
1445 if (ret)
1446 return ret;
1447
1448 if (limits->warn)
1449 ret = notif_set_limit(rdev, set, limits->warn,
1450 REGULATOR_SEVERITY_WARN);
1451
1452 return ret;
1453 }
1454 /**
1455 * set_machine_constraints - sets regulator constraints
1456 * @rdev: regulator source
1457 *
1458 * Allows platform initialisation code to define and constrain
1459 * regulator circuits e.g. valid voltage/current ranges, etc. NOTE:
1460 * Constraints *must* be set by platform code in order for some
1461 * regulator operations to proceed i.e. set_voltage, set_current_limit,
1462 * set_mode.
1463 */
set_machine_constraints(struct regulator_dev * rdev)1464 static int set_machine_constraints(struct regulator_dev *rdev)
1465 {
1466 int ret = 0;
1467 const struct regulator_ops *ops = rdev->desc->ops;
1468
1469 ret = machine_constraints_voltage(rdev, rdev->constraints);
1470 if (ret != 0)
1471 return ret;
1472
1473 ret = machine_constraints_current(rdev, rdev->constraints);
1474 if (ret != 0)
1475 return ret;
1476
1477 if (rdev->constraints->ilim_uA && ops->set_input_current_limit) {
1478 ret = ops->set_input_current_limit(rdev,
1479 rdev->constraints->ilim_uA);
1480 if (ret < 0) {
1481 rdev_err(rdev, "failed to set input limit: %pe\n", ERR_PTR(ret));
1482 return ret;
1483 }
1484 }
1485
1486 /* do we need to setup our suspend state */
1487 if (rdev->constraints->initial_state) {
1488 ret = suspend_set_initial_state(rdev);
1489 if (ret < 0) {
1490 rdev_err(rdev, "failed to set suspend state: %pe\n", ERR_PTR(ret));
1491 return ret;
1492 }
1493 }
1494
1495 if (rdev->constraints->initial_mode) {
1496 if (!ops->set_mode) {
1497 rdev_err(rdev, "no set_mode operation\n");
1498 return -EINVAL;
1499 }
1500
1501 ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
1502 if (ret < 0) {
1503 rdev_err(rdev, "failed to set initial mode: %pe\n", ERR_PTR(ret));
1504 return ret;
1505 }
1506 } else if (rdev->constraints->system_load) {
1507 /*
1508 * We'll only apply the initial system load if an
1509 * initial mode wasn't specified.
1510 */
1511 drms_uA_update(rdev);
1512 }
1513
1514 if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable)
1515 && ops->set_ramp_delay) {
1516 ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
1517 if (ret < 0) {
1518 rdev_err(rdev, "failed to set ramp_delay: %pe\n", ERR_PTR(ret));
1519 return ret;
1520 }
1521 }
1522
1523 if (rdev->constraints->pull_down && ops->set_pull_down) {
1524 ret = ops->set_pull_down(rdev);
1525 if (ret < 0) {
1526 rdev_err(rdev, "failed to set pull down: %pe\n", ERR_PTR(ret));
1527 return ret;
1528 }
1529 }
1530
1531 if (rdev->constraints->soft_start && ops->set_soft_start) {
1532 ret = ops->set_soft_start(rdev);
1533 if (ret < 0) {
1534 rdev_err(rdev, "failed to set soft start: %pe\n", ERR_PTR(ret));
1535 return ret;
1536 }
1537 }
1538
1539 /*
1540 * Existing logic does not warn if over_current_protection is given as
1541 * a constraint but driver does not support that. I think we should
1542 * warn about this type of issues as it is possible someone changes
1543 * PMIC on board to another type - and the another PMIC's driver does
1544 * not support setting protection. Board composer may happily believe
1545 * the DT limits are respected - especially if the new PMIC HW also
1546 * supports protection but the driver does not. I won't change the logic
1547 * without hearing more experienced opinion on this though.
1548 *
1549 * If warning is seen as a good idea then we can merge handling the
1550 * over-curret protection and detection and get rid of this special
1551 * handling.
1552 */
1553 if (rdev->constraints->over_current_protection
1554 && ops->set_over_current_protection) {
1555 int lim = rdev->constraints->over_curr_limits.prot;
1556
1557 ret = ops->set_over_current_protection(rdev, lim,
1558 REGULATOR_SEVERITY_PROT,
1559 true);
1560 if (ret < 0) {
1561 rdev_err(rdev, "failed to set over current protection: %pe\n",
1562 ERR_PTR(ret));
1563 return ret;
1564 }
1565 }
1566
1567 if (rdev->constraints->over_current_detection)
1568 ret = handle_notify_limits(rdev,
1569 ops->set_over_current_protection,
1570 &rdev->constraints->over_curr_limits);
1571 if (ret) {
1572 if (ret != -EOPNOTSUPP) {
1573 rdev_err(rdev, "failed to set over current limits: %pe\n",
1574 ERR_PTR(ret));
1575 return ret;
1576 }
1577 rdev_warn(rdev,
1578 "IC does not support requested over-current limits\n");
1579 }
1580
1581 if (rdev->constraints->over_voltage_detection)
1582 ret = handle_notify_limits(rdev,
1583 ops->set_over_voltage_protection,
1584 &rdev->constraints->over_voltage_limits);
1585 if (ret) {
1586 if (ret != -EOPNOTSUPP) {
1587 rdev_err(rdev, "failed to set over voltage limits %pe\n",
1588 ERR_PTR(ret));
1589 return ret;
1590 }
1591 rdev_warn(rdev,
1592 "IC does not support requested over voltage limits\n");
1593 }
1594
1595 if (rdev->constraints->under_voltage_detection)
1596 ret = handle_notify_limits(rdev,
1597 ops->set_under_voltage_protection,
1598 &rdev->constraints->under_voltage_limits);
1599 if (ret) {
1600 if (ret != -EOPNOTSUPP) {
1601 rdev_err(rdev, "failed to set under voltage limits %pe\n",
1602 ERR_PTR(ret));
1603 return ret;
1604 }
1605 rdev_warn(rdev,
1606 "IC does not support requested under voltage limits\n");
1607 }
1608
1609 if (rdev->constraints->over_temp_detection)
1610 ret = handle_notify_limits(rdev,
1611 ops->set_thermal_protection,
1612 &rdev->constraints->temp_limits);
1613 if (ret) {
1614 if (ret != -EOPNOTSUPP) {
1615 rdev_err(rdev, "failed to set temperature limits %pe\n",
1616 ERR_PTR(ret));
1617 return ret;
1618 }
1619 rdev_warn(rdev,
1620 "IC does not support requested temperature limits\n");
1621 }
1622
1623 if (rdev->constraints->active_discharge && ops->set_active_discharge) {
1624 bool ad_state = (rdev->constraints->active_discharge ==
1625 REGULATOR_ACTIVE_DISCHARGE_ENABLE) ? true : false;
1626
1627 ret = ops->set_active_discharge(rdev, ad_state);
1628 if (ret < 0) {
1629 rdev_err(rdev, "failed to set active discharge: %pe\n", ERR_PTR(ret));
1630 return ret;
1631 }
1632 }
1633
1634 /*
1635 * If there is no mechanism for controlling the regulator then
1636 * flag it as always_on so we don't end up duplicating checks
1637 * for this so much. Note that we could control the state of
1638 * a supply to control the output on a regulator that has no
1639 * direct control.
1640 */
1641 if (!rdev->ena_pin && !ops->enable) {
1642 if (rdev->supply_name && !rdev->supply)
1643 return -EPROBE_DEFER;
1644
1645 if (rdev->supply)
1646 rdev->constraints->always_on =
1647 rdev->supply->rdev->constraints->always_on;
1648 else
1649 rdev->constraints->always_on = true;
1650 }
1651
1652 /* If the constraints say the regulator should be on at this point
1653 * and we have control then make sure it is enabled.
1654 */
1655 if (rdev->constraints->always_on || rdev->constraints->boot_on) {
1656 /* If we want to enable this regulator, make sure that we know
1657 * the supplying regulator.
1658 */
1659 if (rdev->supply_name && !rdev->supply)
1660 return -EPROBE_DEFER;
1661
1662 /* If supplying regulator has already been enabled,
1663 * it's not intended to have use_count increment
1664 * when rdev is only boot-on.
1665 */
1666 if (rdev->supply &&
1667 (rdev->constraints->always_on ||
1668 !regulator_is_enabled(rdev->supply))) {
1669 ret = regulator_enable(rdev->supply);
1670 if (ret < 0) {
1671 _regulator_put(rdev->supply);
1672 rdev->supply = NULL;
1673 return ret;
1674 }
1675 }
1676
1677 ret = _regulator_do_enable(rdev);
1678 if (ret < 0 && ret != -EINVAL) {
1679 rdev_err(rdev, "failed to enable: %pe\n", ERR_PTR(ret));
1680 return ret;
1681 }
1682
1683 if (rdev->constraints->always_on)
1684 rdev->use_count++;
1685 } else if (rdev->desc->off_on_delay) {
1686 rdev->last_off = ktime_get();
1687 }
1688
1689 print_constraints(rdev);
1690 return 0;
1691 }
1692
1693 /**
1694 * set_supply - set regulator supply regulator
1695 * @rdev: regulator (locked)
1696 * @supply_rdev: supply regulator (locked))
1697 *
1698 * Called by platform initialisation code to set the supply regulator for this
1699 * regulator. This ensures that a regulators supply will also be enabled by the
1700 * core if it's child is enabled.
1701 */
set_supply(struct regulator_dev * rdev,struct regulator_dev * supply_rdev)1702 static int set_supply(struct regulator_dev *rdev,
1703 struct regulator_dev *supply_rdev)
1704 {
1705 int err;
1706
1707 rdev_dbg(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
1708
1709 if (!try_module_get(supply_rdev->owner))
1710 return -ENODEV;
1711
1712 rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1713 if (rdev->supply == NULL) {
1714 module_put(supply_rdev->owner);
1715 err = -ENOMEM;
1716 return err;
1717 }
1718 supply_rdev->open_count++;
1719
1720 return 0;
1721 }
1722
1723 /**
1724 * set_consumer_device_supply - Bind a regulator to a symbolic supply
1725 * @rdev: regulator source
1726 * @consumer_dev_name: dev_name() string for device supply applies to
1727 * @supply: symbolic name for supply
1728 *
1729 * Allows platform initialisation code to map physical regulator
1730 * sources to symbolic names for supplies for use by devices. Devices
1731 * should use these symbolic names to request regulators, avoiding the
1732 * need to provide board-specific regulator names as platform data.
1733 */
set_consumer_device_supply(struct regulator_dev * rdev,const char * consumer_dev_name,const char * supply)1734 static int set_consumer_device_supply(struct regulator_dev *rdev,
1735 const char *consumer_dev_name,
1736 const char *supply)
1737 {
1738 struct regulator_map *node, *new_node;
1739 int has_dev;
1740
1741 if (supply == NULL)
1742 return -EINVAL;
1743
1744 if (consumer_dev_name != NULL)
1745 has_dev = 1;
1746 else
1747 has_dev = 0;
1748
1749 new_node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1750 if (new_node == NULL)
1751 return -ENOMEM;
1752
1753 new_node->regulator = rdev;
1754 new_node->supply = supply;
1755
1756 if (has_dev) {
1757 new_node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1758 if (new_node->dev_name == NULL) {
1759 kfree(new_node);
1760 return -ENOMEM;
1761 }
1762 }
1763
1764 mutex_lock(®ulator_list_mutex);
1765 list_for_each_entry(node, ®ulator_map_list, list) {
1766 if (node->dev_name && consumer_dev_name) {
1767 if (strcmp(node->dev_name, consumer_dev_name) != 0)
1768 continue;
1769 } else if (node->dev_name || consumer_dev_name) {
1770 continue;
1771 }
1772
1773 if (strcmp(node->supply, supply) != 0)
1774 continue;
1775
1776 pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1777 consumer_dev_name,
1778 dev_name(&node->regulator->dev),
1779 node->regulator->desc->name,
1780 supply,
1781 dev_name(&rdev->dev), rdev_get_name(rdev));
1782 goto fail;
1783 }
1784
1785 list_add(&new_node->list, ®ulator_map_list);
1786 mutex_unlock(®ulator_list_mutex);
1787
1788 return 0;
1789
1790 fail:
1791 mutex_unlock(®ulator_list_mutex);
1792 kfree(new_node->dev_name);
1793 kfree(new_node);
1794 return -EBUSY;
1795 }
1796
unset_regulator_supplies(struct regulator_dev * rdev)1797 static void unset_regulator_supplies(struct regulator_dev *rdev)
1798 {
1799 struct regulator_map *node, *n;
1800
1801 list_for_each_entry_safe(node, n, ®ulator_map_list, list) {
1802 if (rdev == node->regulator) {
1803 list_del(&node->list);
1804 kfree(node->dev_name);
1805 kfree(node);
1806 }
1807 }
1808 }
1809
1810 #ifdef CONFIG_DEBUG_FS
constraint_flags_read_file(struct file * file,char __user * user_buf,size_t count,loff_t * ppos)1811 static ssize_t constraint_flags_read_file(struct file *file,
1812 char __user *user_buf,
1813 size_t count, loff_t *ppos)
1814 {
1815 const struct regulator *regulator = file->private_data;
1816 const struct regulation_constraints *c = regulator->rdev->constraints;
1817 char *buf;
1818 ssize_t ret;
1819
1820 if (!c)
1821 return 0;
1822
1823 buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
1824 if (!buf)
1825 return -ENOMEM;
1826
1827 ret = snprintf(buf, PAGE_SIZE,
1828 "always_on: %u\n"
1829 "boot_on: %u\n"
1830 "apply_uV: %u\n"
1831 "ramp_disable: %u\n"
1832 "soft_start: %u\n"
1833 "pull_down: %u\n"
1834 "over_current_protection: %u\n",
1835 c->always_on,
1836 c->boot_on,
1837 c->apply_uV,
1838 c->ramp_disable,
1839 c->soft_start,
1840 c->pull_down,
1841 c->over_current_protection);
1842
1843 ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
1844 kfree(buf);
1845
1846 return ret;
1847 }
1848
1849 #endif
1850
1851 static const struct file_operations constraint_flags_fops = {
1852 #ifdef CONFIG_DEBUG_FS
1853 .open = simple_open,
1854 .read = constraint_flags_read_file,
1855 .llseek = default_llseek,
1856 #endif
1857 };
1858
1859 #define REG_STR_SIZE 64
1860
create_regulator(struct regulator_dev * rdev,struct device * dev,const char * supply_name)1861 static struct regulator *create_regulator(struct regulator_dev *rdev,
1862 struct device *dev,
1863 const char *supply_name)
1864 {
1865 struct regulator *regulator;
1866 int err = 0;
1867
1868 lockdep_assert_held_once(&rdev->mutex.base);
1869
1870 if (dev) {
1871 char buf[REG_STR_SIZE];
1872 int size;
1873
1874 size = snprintf(buf, REG_STR_SIZE, "%s-%s",
1875 dev->kobj.name, supply_name);
1876 if (size >= REG_STR_SIZE)
1877 return NULL;
1878
1879 supply_name = kstrdup(buf, GFP_KERNEL);
1880 if (supply_name == NULL)
1881 return NULL;
1882 } else {
1883 supply_name = kstrdup_const(supply_name, GFP_KERNEL);
1884 if (supply_name == NULL)
1885 return NULL;
1886 }
1887
1888 regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1889 if (regulator == NULL) {
1890 kfree_const(supply_name);
1891 return NULL;
1892 }
1893
1894 regulator->rdev = rdev;
1895 regulator->supply_name = supply_name;
1896
1897 list_add(®ulator->list, &rdev->consumer_list);
1898
1899 if (dev) {
1900 regulator->dev = dev;
1901
1902 /* Add a link to the device sysfs entry */
1903 err = sysfs_create_link_nowarn(&rdev->dev.kobj, &dev->kobj,
1904 supply_name);
1905 if (err) {
1906 rdev_dbg(rdev, "could not add device link %s: %pe\n",
1907 dev->kobj.name, ERR_PTR(err));
1908 /* non-fatal */
1909 }
1910 }
1911
1912 if (err != -EEXIST)
1913 regulator->debugfs = debugfs_create_dir(supply_name, rdev->debugfs);
1914 if (IS_ERR(regulator->debugfs))
1915 rdev_dbg(rdev, "Failed to create debugfs directory\n");
1916
1917 debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1918 ®ulator->uA_load);
1919 debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1920 ®ulator->voltage[PM_SUSPEND_ON].min_uV);
1921 debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1922 ®ulator->voltage[PM_SUSPEND_ON].max_uV);
1923 debugfs_create_file("constraint_flags", 0444, regulator->debugfs,
1924 regulator, &constraint_flags_fops);
1925
1926 /*
1927 * Check now if the regulator is an always on regulator - if
1928 * it is then we don't need to do nearly so much work for
1929 * enable/disable calls.
1930 */
1931 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS) &&
1932 _regulator_is_enabled(rdev))
1933 regulator->always_on = true;
1934
1935 return regulator;
1936 }
1937
_regulator_get_enable_time(struct regulator_dev * rdev)1938 static int _regulator_get_enable_time(struct regulator_dev *rdev)
1939 {
1940 if (rdev->constraints && rdev->constraints->enable_time)
1941 return rdev->constraints->enable_time;
1942 if (rdev->desc->ops->enable_time)
1943 return rdev->desc->ops->enable_time(rdev);
1944 return rdev->desc->enable_time;
1945 }
1946
regulator_find_supply_alias(struct device * dev,const char * supply)1947 static struct regulator_supply_alias *regulator_find_supply_alias(
1948 struct device *dev, const char *supply)
1949 {
1950 struct regulator_supply_alias *map;
1951
1952 list_for_each_entry(map, ®ulator_supply_alias_list, list)
1953 if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0)
1954 return map;
1955
1956 return NULL;
1957 }
1958
regulator_supply_alias(struct device ** dev,const char ** supply)1959 static void regulator_supply_alias(struct device **dev, const char **supply)
1960 {
1961 struct regulator_supply_alias *map;
1962
1963 map = regulator_find_supply_alias(*dev, *supply);
1964 if (map) {
1965 dev_dbg(*dev, "Mapping supply %s to %s,%s\n",
1966 *supply, map->alias_supply,
1967 dev_name(map->alias_dev));
1968 *dev = map->alias_dev;
1969 *supply = map->alias_supply;
1970 }
1971 }
1972
regulator_match(struct device * dev,const void * data)1973 static int regulator_match(struct device *dev, const void *data)
1974 {
1975 struct regulator_dev *r = dev_to_rdev(dev);
1976
1977 return strcmp(rdev_get_name(r), data) == 0;
1978 }
1979
regulator_lookup_by_name(const char * name)1980 static struct regulator_dev *regulator_lookup_by_name(const char *name)
1981 {
1982 struct device *dev;
1983
1984 dev = class_find_device(®ulator_class, NULL, name, regulator_match);
1985
1986 return dev ? dev_to_rdev(dev) : NULL;
1987 }
1988
1989 /**
1990 * regulator_dev_lookup - lookup a regulator device.
1991 * @dev: device for regulator "consumer".
1992 * @supply: Supply name or regulator ID.
1993 *
1994 * If successful, returns a struct regulator_dev that corresponds to the name
1995 * @supply and with the embedded struct device refcount incremented by one.
1996 * The refcount must be dropped by calling put_device().
1997 * On failure one of the following ERR-PTR-encoded values is returned:
1998 * -ENODEV if lookup fails permanently, -EPROBE_DEFER if lookup could succeed
1999 * in the future.
2000 */
regulator_dev_lookup(struct device * dev,const char * supply)2001 static struct regulator_dev *regulator_dev_lookup(struct device *dev,
2002 const char *supply)
2003 {
2004 struct regulator_dev *r = NULL;
2005 struct device_node *node;
2006 struct regulator_map *map;
2007 const char *devname = NULL;
2008
2009 regulator_supply_alias(&dev, &supply);
2010
2011 /* first do a dt based lookup */
2012 if (dev && dev->of_node) {
2013 node = of_get_regulator(dev, supply);
2014 if (node) {
2015 r = of_find_regulator_by_node(node);
2016 of_node_put(node);
2017 if (r)
2018 return r;
2019
2020 /*
2021 * We have a node, but there is no device.
2022 * assume it has not registered yet.
2023 */
2024 return ERR_PTR(-EPROBE_DEFER);
2025 }
2026 }
2027
2028 /* if not found, try doing it non-dt way */
2029 if (dev)
2030 devname = dev_name(dev);
2031
2032 mutex_lock(®ulator_list_mutex);
2033 list_for_each_entry(map, ®ulator_map_list, list) {
2034 /* If the mapping has a device set up it must match */
2035 if (map->dev_name &&
2036 (!devname || strcmp(map->dev_name, devname)))
2037 continue;
2038
2039 if (strcmp(map->supply, supply) == 0 &&
2040 get_device(&map->regulator->dev)) {
2041 r = map->regulator;
2042 break;
2043 }
2044 }
2045 mutex_unlock(®ulator_list_mutex);
2046
2047 if (r)
2048 return r;
2049
2050 r = regulator_lookup_by_name(supply);
2051 if (r)
2052 return r;
2053
2054 return ERR_PTR(-ENODEV);
2055 }
2056
regulator_resolve_supply(struct regulator_dev * rdev)2057 static int regulator_resolve_supply(struct regulator_dev *rdev)
2058 {
2059 struct regulator_dev *r;
2060 struct device *dev = rdev->dev.parent;
2061 struct ww_acquire_ctx ww_ctx;
2062 int ret = 0;
2063
2064 /* No supply to resolve? */
2065 if (!rdev->supply_name)
2066 return 0;
2067
2068 /* Supply already resolved? (fast-path without locking contention) */
2069 if (rdev->supply)
2070 return 0;
2071
2072 r = regulator_dev_lookup(dev, rdev->supply_name);
2073 if (IS_ERR(r)) {
2074 ret = PTR_ERR(r);
2075
2076 /* Did the lookup explicitly defer for us? */
2077 if (ret == -EPROBE_DEFER)
2078 goto out;
2079
2080 if (have_full_constraints()) {
2081 r = dummy_regulator_rdev;
2082 get_device(&r->dev);
2083 } else {
2084 dev_err(dev, "Failed to resolve %s-supply for %s\n",
2085 rdev->supply_name, rdev->desc->name);
2086 ret = -EPROBE_DEFER;
2087 goto out;
2088 }
2089 }
2090
2091 if (r == rdev) {
2092 dev_err(dev, "Supply for %s (%s) resolved to itself\n",
2093 rdev->desc->name, rdev->supply_name);
2094 if (!have_full_constraints()) {
2095 ret = -EINVAL;
2096 goto out;
2097 }
2098 r = dummy_regulator_rdev;
2099 get_device(&r->dev);
2100 }
2101
2102 /*
2103 * If the supply's parent device is not the same as the
2104 * regulator's parent device, then ensure the parent device
2105 * is bound before we resolve the supply, in case the parent
2106 * device get probe deferred and unregisters the supply.
2107 */
2108 if (r->dev.parent && r->dev.parent != rdev->dev.parent) {
2109 if (!device_is_bound(r->dev.parent)) {
2110 put_device(&r->dev);
2111 ret = -EPROBE_DEFER;
2112 goto out;
2113 }
2114 }
2115
2116 /* Recursively resolve the supply of the supply */
2117 ret = regulator_resolve_supply(r);
2118 if (ret < 0) {
2119 put_device(&r->dev);
2120 goto out;
2121 }
2122
2123 /*
2124 * Recheck rdev->supply with rdev->mutex lock held to avoid a race
2125 * between rdev->supply null check and setting rdev->supply in
2126 * set_supply() from concurrent tasks.
2127 */
2128 regulator_lock_two(rdev, r, &ww_ctx);
2129
2130 /* Supply just resolved by a concurrent task? */
2131 if (rdev->supply) {
2132 regulator_unlock_two(rdev, r, &ww_ctx);
2133 put_device(&r->dev);
2134 goto out;
2135 }
2136
2137 ret = set_supply(rdev, r);
2138 if (ret < 0) {
2139 regulator_unlock_two(rdev, r, &ww_ctx);
2140 put_device(&r->dev);
2141 goto out;
2142 }
2143
2144 regulator_unlock_two(rdev, r, &ww_ctx);
2145
2146 /*
2147 * In set_machine_constraints() we may have turned this regulator on
2148 * but we couldn't propagate to the supply if it hadn't been resolved
2149 * yet. Do it now.
2150 */
2151 if (rdev->use_count) {
2152 ret = regulator_enable(rdev->supply);
2153 if (ret < 0) {
2154 _regulator_put(rdev->supply);
2155 rdev->supply = NULL;
2156 goto out;
2157 }
2158 }
2159
2160 out:
2161 return ret;
2162 }
2163
2164 /* Internal regulator request function */
_regulator_get(struct device * dev,const char * id,enum regulator_get_type get_type)2165 struct regulator *_regulator_get(struct device *dev, const char *id,
2166 enum regulator_get_type get_type)
2167 {
2168 struct regulator_dev *rdev;
2169 struct regulator *regulator;
2170 struct device_link *link;
2171 int ret;
2172
2173 if (get_type >= MAX_GET_TYPE) {
2174 dev_err(dev, "invalid type %d in %s\n", get_type, __func__);
2175 return ERR_PTR(-EINVAL);
2176 }
2177
2178 if (id == NULL) {
2179 pr_err("get() with no identifier\n");
2180 return ERR_PTR(-EINVAL);
2181 }
2182
2183 rdev = regulator_dev_lookup(dev, id);
2184 if (IS_ERR(rdev)) {
2185 ret = PTR_ERR(rdev);
2186
2187 /*
2188 * If regulator_dev_lookup() fails with error other
2189 * than -ENODEV our job here is done, we simply return it.
2190 */
2191 if (ret != -ENODEV)
2192 return ERR_PTR(ret);
2193
2194 if (!have_full_constraints()) {
2195 dev_warn(dev,
2196 "incomplete constraints, dummy supplies not allowed\n");
2197 return ERR_PTR(-ENODEV);
2198 }
2199
2200 switch (get_type) {
2201 case NORMAL_GET:
2202 /*
2203 * Assume that a regulator is physically present and
2204 * enabled, even if it isn't hooked up, and just
2205 * provide a dummy.
2206 */
2207 dev_warn(dev, "supply %s not found, using dummy regulator\n", id);
2208 rdev = dummy_regulator_rdev;
2209 get_device(&rdev->dev);
2210 break;
2211
2212 case EXCLUSIVE_GET:
2213 dev_warn(dev,
2214 "dummy supplies not allowed for exclusive requests\n");
2215 fallthrough;
2216
2217 default:
2218 return ERR_PTR(-ENODEV);
2219 }
2220 }
2221
2222 if (rdev->exclusive) {
2223 regulator = ERR_PTR(-EPERM);
2224 put_device(&rdev->dev);
2225 return regulator;
2226 }
2227
2228 if (get_type == EXCLUSIVE_GET && rdev->open_count) {
2229 regulator = ERR_PTR(-EBUSY);
2230 put_device(&rdev->dev);
2231 return regulator;
2232 }
2233
2234 mutex_lock(®ulator_list_mutex);
2235 ret = (rdev->coupling_desc.n_resolved != rdev->coupling_desc.n_coupled);
2236 mutex_unlock(®ulator_list_mutex);
2237
2238 if (ret != 0) {
2239 regulator = ERR_PTR(-EPROBE_DEFER);
2240 put_device(&rdev->dev);
2241 return regulator;
2242 }
2243
2244 ret = regulator_resolve_supply(rdev);
2245 if (ret < 0) {
2246 regulator = ERR_PTR(ret);
2247 put_device(&rdev->dev);
2248 return regulator;
2249 }
2250
2251 if (!try_module_get(rdev->owner)) {
2252 regulator = ERR_PTR(-EPROBE_DEFER);
2253 put_device(&rdev->dev);
2254 return regulator;
2255 }
2256
2257 regulator_lock(rdev);
2258 regulator = create_regulator(rdev, dev, id);
2259 regulator_unlock(rdev);
2260 if (regulator == NULL) {
2261 regulator = ERR_PTR(-ENOMEM);
2262 module_put(rdev->owner);
2263 put_device(&rdev->dev);
2264 return regulator;
2265 }
2266
2267 rdev->open_count++;
2268 if (get_type == EXCLUSIVE_GET) {
2269 rdev->exclusive = 1;
2270
2271 ret = _regulator_is_enabled(rdev);
2272 if (ret > 0) {
2273 rdev->use_count = 1;
2274 regulator->enable_count = 1;
2275 } else {
2276 rdev->use_count = 0;
2277 regulator->enable_count = 0;
2278 }
2279 }
2280
2281 link = device_link_add(dev, &rdev->dev, DL_FLAG_STATELESS);
2282 if (!IS_ERR_OR_NULL(link))
2283 regulator->device_link = true;
2284
2285 return regulator;
2286 }
2287
2288 /**
2289 * regulator_get - lookup and obtain a reference to a regulator.
2290 * @dev: device for regulator "consumer"
2291 * @id: Supply name or regulator ID.
2292 *
2293 * Returns a struct regulator corresponding to the regulator producer,
2294 * or IS_ERR() condition containing errno.
2295 *
2296 * Use of supply names configured via set_consumer_device_supply() is
2297 * strongly encouraged. It is recommended that the supply name used
2298 * should match the name used for the supply and/or the relevant
2299 * device pins in the datasheet.
2300 */
regulator_get(struct device * dev,const char * id)2301 struct regulator *regulator_get(struct device *dev, const char *id)
2302 {
2303 return _regulator_get(dev, id, NORMAL_GET);
2304 }
2305 EXPORT_SYMBOL_GPL(regulator_get);
2306
2307 /**
2308 * regulator_get_exclusive - obtain exclusive access to a regulator.
2309 * @dev: device for regulator "consumer"
2310 * @id: Supply name or regulator ID.
2311 *
2312 * Returns a struct regulator corresponding to the regulator producer,
2313 * or IS_ERR() condition containing errno. Other consumers will be
2314 * unable to obtain this regulator while this reference is held and the
2315 * use count for the regulator will be initialised to reflect the current
2316 * state of the regulator.
2317 *
2318 * This is intended for use by consumers which cannot tolerate shared
2319 * use of the regulator such as those which need to force the
2320 * regulator off for correct operation of the hardware they are
2321 * controlling.
2322 *
2323 * Use of supply names configured via set_consumer_device_supply() is
2324 * strongly encouraged. It is recommended that the supply name used
2325 * should match the name used for the supply and/or the relevant
2326 * device pins in the datasheet.
2327 */
regulator_get_exclusive(struct device * dev,const char * id)2328 struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
2329 {
2330 return _regulator_get(dev, id, EXCLUSIVE_GET);
2331 }
2332 EXPORT_SYMBOL_GPL(regulator_get_exclusive);
2333
2334 /**
2335 * regulator_get_optional - obtain optional access to a regulator.
2336 * @dev: device for regulator "consumer"
2337 * @id: Supply name or regulator ID.
2338 *
2339 * Returns a struct regulator corresponding to the regulator producer,
2340 * or IS_ERR() condition containing errno.
2341 *
2342 * This is intended for use by consumers for devices which can have
2343 * some supplies unconnected in normal use, such as some MMC devices.
2344 * It can allow the regulator core to provide stub supplies for other
2345 * supplies requested using normal regulator_get() calls without
2346 * disrupting the operation of drivers that can handle absent
2347 * supplies.
2348 *
2349 * Use of supply names configured via set_consumer_device_supply() is
2350 * strongly encouraged. It is recommended that the supply name used
2351 * should match the name used for the supply and/or the relevant
2352 * device pins in the datasheet.
2353 */
regulator_get_optional(struct device * dev,const char * id)2354 struct regulator *regulator_get_optional(struct device *dev, const char *id)
2355 {
2356 return _regulator_get(dev, id, OPTIONAL_GET);
2357 }
2358 EXPORT_SYMBOL_GPL(regulator_get_optional);
2359
destroy_regulator(struct regulator * regulator)2360 static void destroy_regulator(struct regulator *regulator)
2361 {
2362 struct regulator_dev *rdev = regulator->rdev;
2363
2364 debugfs_remove_recursive(regulator->debugfs);
2365
2366 if (regulator->dev) {
2367 if (regulator->device_link)
2368 device_link_remove(regulator->dev, &rdev->dev);
2369
2370 /* remove any sysfs entries */
2371 sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
2372 }
2373
2374 regulator_lock(rdev);
2375 list_del(®ulator->list);
2376
2377 rdev->open_count--;
2378 rdev->exclusive = 0;
2379 regulator_unlock(rdev);
2380
2381 kfree_const(regulator->supply_name);
2382 kfree(regulator);
2383 }
2384
2385 /* regulator_list_mutex lock held by regulator_put() */
_regulator_put(struct regulator * regulator)2386 static void _regulator_put(struct regulator *regulator)
2387 {
2388 struct regulator_dev *rdev;
2389
2390 if (IS_ERR_OR_NULL(regulator))
2391 return;
2392
2393 lockdep_assert_held_once(®ulator_list_mutex);
2394
2395 /* Docs say you must disable before calling regulator_put() */
2396 WARN_ON(regulator->enable_count);
2397
2398 rdev = regulator->rdev;
2399
2400 destroy_regulator(regulator);
2401
2402 module_put(rdev->owner);
2403 put_device(&rdev->dev);
2404 }
2405
2406 /**
2407 * regulator_put - "free" the regulator source
2408 * @regulator: regulator source
2409 *
2410 * Note: drivers must ensure that all regulator_enable calls made on this
2411 * regulator source are balanced by regulator_disable calls prior to calling
2412 * this function.
2413 */
regulator_put(struct regulator * regulator)2414 void regulator_put(struct regulator *regulator)
2415 {
2416 mutex_lock(®ulator_list_mutex);
2417 _regulator_put(regulator);
2418 mutex_unlock(®ulator_list_mutex);
2419 }
2420 EXPORT_SYMBOL_GPL(regulator_put);
2421
2422 /**
2423 * regulator_register_supply_alias - Provide device alias for supply lookup
2424 *
2425 * @dev: device that will be given as the regulator "consumer"
2426 * @id: Supply name or regulator ID
2427 * @alias_dev: device that should be used to lookup the supply
2428 * @alias_id: Supply name or regulator ID that should be used to lookup the
2429 * supply
2430 *
2431 * All lookups for id on dev will instead be conducted for alias_id on
2432 * alias_dev.
2433 */
regulator_register_supply_alias(struct device * dev,const char * id,struct device * alias_dev,const char * alias_id)2434 int regulator_register_supply_alias(struct device *dev, const char *id,
2435 struct device *alias_dev,
2436 const char *alias_id)
2437 {
2438 struct regulator_supply_alias *map;
2439
2440 map = regulator_find_supply_alias(dev, id);
2441 if (map)
2442 return -EEXIST;
2443
2444 map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL);
2445 if (!map)
2446 return -ENOMEM;
2447
2448 map->src_dev = dev;
2449 map->src_supply = id;
2450 map->alias_dev = alias_dev;
2451 map->alias_supply = alias_id;
2452
2453 list_add(&map->list, ®ulator_supply_alias_list);
2454
2455 pr_info("Adding alias for supply %s,%s -> %s,%s\n",
2456 id, dev_name(dev), alias_id, dev_name(alias_dev));
2457
2458 return 0;
2459 }
2460 EXPORT_SYMBOL_GPL(regulator_register_supply_alias);
2461
2462 /**
2463 * regulator_unregister_supply_alias - Remove device alias
2464 *
2465 * @dev: device that will be given as the regulator "consumer"
2466 * @id: Supply name or regulator ID
2467 *
2468 * Remove a lookup alias if one exists for id on dev.
2469 */
regulator_unregister_supply_alias(struct device * dev,const char * id)2470 void regulator_unregister_supply_alias(struct device *dev, const char *id)
2471 {
2472 struct regulator_supply_alias *map;
2473
2474 map = regulator_find_supply_alias(dev, id);
2475 if (map) {
2476 list_del(&map->list);
2477 kfree(map);
2478 }
2479 }
2480 EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias);
2481
2482 /**
2483 * regulator_bulk_register_supply_alias - register multiple aliases
2484 *
2485 * @dev: device that will be given as the regulator "consumer"
2486 * @id: List of supply names or regulator IDs
2487 * @alias_dev: device that should be used to lookup the supply
2488 * @alias_id: List of supply names or regulator IDs that should be used to
2489 * lookup the supply
2490 * @num_id: Number of aliases to register
2491 *
2492 * @return 0 on success, an errno on failure.
2493 *
2494 * This helper function allows drivers to register several supply
2495 * aliases in one operation. If any of the aliases cannot be
2496 * registered any aliases that were registered will be removed
2497 * before returning to the caller.
2498 */
regulator_bulk_register_supply_alias(struct device * dev,const char * const * id,struct device * alias_dev,const char * const * alias_id,int num_id)2499 int regulator_bulk_register_supply_alias(struct device *dev,
2500 const char *const *id,
2501 struct device *alias_dev,
2502 const char *const *alias_id,
2503 int num_id)
2504 {
2505 int i;
2506 int ret;
2507
2508 for (i = 0; i < num_id; ++i) {
2509 ret = regulator_register_supply_alias(dev, id[i], alias_dev,
2510 alias_id[i]);
2511 if (ret < 0)
2512 goto err;
2513 }
2514
2515 return 0;
2516
2517 err:
2518 dev_err(dev,
2519 "Failed to create supply alias %s,%s -> %s,%s\n",
2520 id[i], dev_name(dev), alias_id[i], dev_name(alias_dev));
2521
2522 while (--i >= 0)
2523 regulator_unregister_supply_alias(dev, id[i]);
2524
2525 return ret;
2526 }
2527 EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias);
2528
2529 /**
2530 * regulator_bulk_unregister_supply_alias - unregister multiple aliases
2531 *
2532 * @dev: device that will be given as the regulator "consumer"
2533 * @id: List of supply names or regulator IDs
2534 * @num_id: Number of aliases to unregister
2535 *
2536 * This helper function allows drivers to unregister several supply
2537 * aliases in one operation.
2538 */
regulator_bulk_unregister_supply_alias(struct device * dev,const char * const * id,int num_id)2539 void regulator_bulk_unregister_supply_alias(struct device *dev,
2540 const char *const *id,
2541 int num_id)
2542 {
2543 int i;
2544
2545 for (i = 0; i < num_id; ++i)
2546 regulator_unregister_supply_alias(dev, id[i]);
2547 }
2548 EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias);
2549
2550
2551 /* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
regulator_ena_gpio_request(struct regulator_dev * rdev,const struct regulator_config * config)2552 static int regulator_ena_gpio_request(struct regulator_dev *rdev,
2553 const struct regulator_config *config)
2554 {
2555 struct regulator_enable_gpio *pin, *new_pin;
2556 struct gpio_desc *gpiod;
2557
2558 gpiod = config->ena_gpiod;
2559 new_pin = kzalloc(sizeof(*new_pin), GFP_KERNEL);
2560
2561 mutex_lock(®ulator_list_mutex);
2562
2563 list_for_each_entry(pin, ®ulator_ena_gpio_list, list) {
2564 if (pin->gpiod == gpiod) {
2565 rdev_dbg(rdev, "GPIO is already used\n");
2566 goto update_ena_gpio_to_rdev;
2567 }
2568 }
2569
2570 if (new_pin == NULL) {
2571 mutex_unlock(®ulator_list_mutex);
2572 return -ENOMEM;
2573 }
2574
2575 pin = new_pin;
2576 new_pin = NULL;
2577
2578 pin->gpiod = gpiod;
2579 list_add(&pin->list, ®ulator_ena_gpio_list);
2580
2581 update_ena_gpio_to_rdev:
2582 pin->request_count++;
2583 rdev->ena_pin = pin;
2584
2585 mutex_unlock(®ulator_list_mutex);
2586 kfree(new_pin);
2587
2588 return 0;
2589 }
2590
regulator_ena_gpio_free(struct regulator_dev * rdev)2591 static void regulator_ena_gpio_free(struct regulator_dev *rdev)
2592 {
2593 struct regulator_enable_gpio *pin, *n;
2594
2595 if (!rdev->ena_pin)
2596 return;
2597
2598 /* Free the GPIO only in case of no use */
2599 list_for_each_entry_safe(pin, n, ®ulator_ena_gpio_list, list) {
2600 if (pin != rdev->ena_pin)
2601 continue;
2602
2603 if (--pin->request_count)
2604 break;
2605
2606 gpiod_put(pin->gpiod);
2607 list_del(&pin->list);
2608 kfree(pin);
2609 break;
2610 }
2611
2612 rdev->ena_pin = NULL;
2613 }
2614
2615 /**
2616 * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
2617 * @rdev: regulator_dev structure
2618 * @enable: enable GPIO at initial use?
2619 *
2620 * GPIO is enabled in case of initial use. (enable_count is 0)
2621 * GPIO is disabled when it is not shared any more. (enable_count <= 1)
2622 */
regulator_ena_gpio_ctrl(struct regulator_dev * rdev,bool enable)2623 static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
2624 {
2625 struct regulator_enable_gpio *pin = rdev->ena_pin;
2626
2627 if (!pin)
2628 return -EINVAL;
2629
2630 if (enable) {
2631 /* Enable GPIO at initial use */
2632 if (pin->enable_count == 0)
2633 gpiod_set_value_cansleep(pin->gpiod, 1);
2634
2635 pin->enable_count++;
2636 } else {
2637 if (pin->enable_count > 1) {
2638 pin->enable_count--;
2639 return 0;
2640 }
2641
2642 /* Disable GPIO if not used */
2643 if (pin->enable_count <= 1) {
2644 gpiod_set_value_cansleep(pin->gpiod, 0);
2645 pin->enable_count = 0;
2646 }
2647 }
2648
2649 return 0;
2650 }
2651
2652 /**
2653 * _regulator_delay_helper - a delay helper function
2654 * @delay: time to delay in microseconds
2655 *
2656 * Delay for the requested amount of time as per the guidelines in:
2657 *
2658 * Documentation/timers/timers-howto.rst
2659 *
2660 * The assumption here is that these regulator operations will never used in
2661 * atomic context and therefore sleeping functions can be used.
2662 */
_regulator_delay_helper(unsigned int delay)2663 static void _regulator_delay_helper(unsigned int delay)
2664 {
2665 unsigned int ms = delay / 1000;
2666 unsigned int us = delay % 1000;
2667
2668 if (ms > 0) {
2669 /*
2670 * For small enough values, handle super-millisecond
2671 * delays in the usleep_range() call below.
2672 */
2673 if (ms < 20)
2674 us += ms * 1000;
2675 else
2676 msleep(ms);
2677 }
2678
2679 /*
2680 * Give the scheduler some room to coalesce with any other
2681 * wakeup sources. For delays shorter than 10 us, don't even
2682 * bother setting up high-resolution timers and just busy-
2683 * loop.
2684 */
2685 if (us >= 10)
2686 usleep_range(us, us + 100);
2687 else
2688 udelay(us);
2689 }
2690
2691 /**
2692 * _regulator_check_status_enabled
2693 *
2694 * A helper function to check if the regulator status can be interpreted
2695 * as 'regulator is enabled'.
2696 * @rdev: the regulator device to check
2697 *
2698 * Return:
2699 * * 1 - if status shows regulator is in enabled state
2700 * * 0 - if not enabled state
2701 * * Error Value - as received from ops->get_status()
2702 */
_regulator_check_status_enabled(struct regulator_dev * rdev)2703 static inline int _regulator_check_status_enabled(struct regulator_dev *rdev)
2704 {
2705 int ret = rdev->desc->ops->get_status(rdev);
2706
2707 if (ret < 0) {
2708 rdev_info(rdev, "get_status returned error: %d\n", ret);
2709 return ret;
2710 }
2711
2712 switch (ret) {
2713 case REGULATOR_STATUS_OFF:
2714 case REGULATOR_STATUS_ERROR:
2715 case REGULATOR_STATUS_UNDEFINED:
2716 return 0;
2717 default:
2718 return 1;
2719 }
2720 }
2721
_regulator_do_enable(struct regulator_dev * rdev)2722 static int _regulator_do_enable(struct regulator_dev *rdev)
2723 {
2724 int ret, delay;
2725
2726 /* Query before enabling in case configuration dependent. */
2727 ret = _regulator_get_enable_time(rdev);
2728 if (ret >= 0) {
2729 delay = ret;
2730 } else {
2731 rdev_warn(rdev, "enable_time() failed: %pe\n", ERR_PTR(ret));
2732 delay = 0;
2733 }
2734
2735 trace_regulator_enable(rdev_get_name(rdev));
2736
2737 if (rdev->desc->off_on_delay) {
2738 /* if needed, keep a distance of off_on_delay from last time
2739 * this regulator was disabled.
2740 */
2741 ktime_t end = ktime_add_us(rdev->last_off, rdev->desc->off_on_delay);
2742 s64 remaining = ktime_us_delta(end, ktime_get_boottime());
2743
2744 if (remaining > 0)
2745 _regulator_delay_helper(remaining);
2746 }
2747
2748 if (rdev->ena_pin) {
2749 if (!rdev->ena_gpio_state) {
2750 ret = regulator_ena_gpio_ctrl(rdev, true);
2751 if (ret < 0)
2752 return ret;
2753 rdev->ena_gpio_state = 1;
2754 }
2755 } else if (rdev->desc->ops->enable) {
2756 ret = rdev->desc->ops->enable(rdev);
2757 if (ret < 0)
2758 return ret;
2759 } else {
2760 return -EINVAL;
2761 }
2762
2763 /* Allow the regulator to ramp; it would be useful to extend
2764 * this for bulk operations so that the regulators can ramp
2765 * together.
2766 */
2767 trace_regulator_enable_delay(rdev_get_name(rdev));
2768
2769 /* If poll_enabled_time is set, poll upto the delay calculated
2770 * above, delaying poll_enabled_time uS to check if the regulator
2771 * actually got enabled.
2772 * If the regulator isn't enabled after our delay helper has expired,
2773 * return -ETIMEDOUT.
2774 */
2775 if (rdev->desc->poll_enabled_time) {
2776 int time_remaining = delay;
2777
2778 while (time_remaining > 0) {
2779 _regulator_delay_helper(rdev->desc->poll_enabled_time);
2780
2781 if (rdev->desc->ops->get_status) {
2782 ret = _regulator_check_status_enabled(rdev);
2783 if (ret < 0)
2784 return ret;
2785 else if (ret)
2786 break;
2787 } else if (rdev->desc->ops->is_enabled(rdev))
2788 break;
2789
2790 time_remaining -= rdev->desc->poll_enabled_time;
2791 }
2792
2793 if (time_remaining <= 0) {
2794 rdev_err(rdev, "Enabled check timed out\n");
2795 return -ETIMEDOUT;
2796 }
2797 } else {
2798 _regulator_delay_helper(delay);
2799 }
2800
2801 trace_regulator_enable_complete(rdev_get_name(rdev));
2802
2803 return 0;
2804 }
2805
2806 /**
2807 * _regulator_handle_consumer_enable - handle that a consumer enabled
2808 * @regulator: regulator source
2809 *
2810 * Some things on a regulator consumer (like the contribution towards total
2811 * load on the regulator) only have an effect when the consumer wants the
2812 * regulator enabled. Explained in example with two consumers of the same
2813 * regulator:
2814 * consumer A: set_load(100); => total load = 0
2815 * consumer A: regulator_enable(); => total load = 100
2816 * consumer B: set_load(1000); => total load = 100
2817 * consumer B: regulator_enable(); => total load = 1100
2818 * consumer A: regulator_disable(); => total_load = 1000
2819 *
2820 * This function (together with _regulator_handle_consumer_disable) is
2821 * responsible for keeping track of the refcount for a given regulator consumer
2822 * and applying / unapplying these things.
2823 *
2824 * Returns 0 upon no error; -error upon error.
2825 */
_regulator_handle_consumer_enable(struct regulator * regulator)2826 static int _regulator_handle_consumer_enable(struct regulator *regulator)
2827 {
2828 int ret;
2829 struct regulator_dev *rdev = regulator->rdev;
2830
2831 lockdep_assert_held_once(&rdev->mutex.base);
2832
2833 regulator->enable_count++;
2834 if (regulator->uA_load && regulator->enable_count == 1) {
2835 ret = drms_uA_update(rdev);
2836 if (ret)
2837 regulator->enable_count--;
2838 return ret;
2839 }
2840
2841 return 0;
2842 }
2843
2844 /**
2845 * _regulator_handle_consumer_disable - handle that a consumer disabled
2846 * @regulator: regulator source
2847 *
2848 * The opposite of _regulator_handle_consumer_enable().
2849 *
2850 * Returns 0 upon no error; -error upon error.
2851 */
_regulator_handle_consumer_disable(struct regulator * regulator)2852 static int _regulator_handle_consumer_disable(struct regulator *regulator)
2853 {
2854 struct regulator_dev *rdev = regulator->rdev;
2855
2856 lockdep_assert_held_once(&rdev->mutex.base);
2857
2858 if (!regulator->enable_count) {
2859 rdev_err(rdev, "Underflow of regulator enable count\n");
2860 return -EINVAL;
2861 }
2862
2863 regulator->enable_count--;
2864 if (regulator->uA_load && regulator->enable_count == 0)
2865 return drms_uA_update(rdev);
2866
2867 return 0;
2868 }
2869
2870 /* locks held by regulator_enable() */
_regulator_enable(struct regulator * regulator)2871 static int _regulator_enable(struct regulator *regulator)
2872 {
2873 struct regulator_dev *rdev = regulator->rdev;
2874 int ret;
2875
2876 lockdep_assert_held_once(&rdev->mutex.base);
2877
2878 if (rdev->use_count == 0 && rdev->supply) {
2879 ret = _regulator_enable(rdev->supply);
2880 if (ret < 0)
2881 return ret;
2882 }
2883
2884 /* balance only if there are regulators coupled */
2885 if (rdev->coupling_desc.n_coupled > 1) {
2886 ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2887 if (ret < 0)
2888 goto err_disable_supply;
2889 }
2890
2891 ret = _regulator_handle_consumer_enable(regulator);
2892 if (ret < 0)
2893 goto err_disable_supply;
2894
2895 if (rdev->use_count == 0) {
2896 /*
2897 * The regulator may already be enabled if it's not switchable
2898 * or was left on
2899 */
2900 ret = _regulator_is_enabled(rdev);
2901 if (ret == -EINVAL || ret == 0) {
2902 if (!regulator_ops_is_valid(rdev,
2903 REGULATOR_CHANGE_STATUS)) {
2904 ret = -EPERM;
2905 goto err_consumer_disable;
2906 }
2907
2908 ret = _regulator_do_enable(rdev);
2909 if (ret < 0)
2910 goto err_consumer_disable;
2911
2912 _notifier_call_chain(rdev, REGULATOR_EVENT_ENABLE,
2913 NULL);
2914 } else if (ret < 0) {
2915 rdev_err(rdev, "is_enabled() failed: %pe\n", ERR_PTR(ret));
2916 goto err_consumer_disable;
2917 }
2918 /* Fallthrough on positive return values - already enabled */
2919 }
2920
2921 if (regulator->enable_count == 1)
2922 rdev->use_count++;
2923
2924 return 0;
2925
2926 err_consumer_disable:
2927 _regulator_handle_consumer_disable(regulator);
2928
2929 err_disable_supply:
2930 if (rdev->use_count == 0 && rdev->supply)
2931 _regulator_disable(rdev->supply);
2932
2933 return ret;
2934 }
2935
2936 /**
2937 * regulator_enable - enable regulator output
2938 * @regulator: regulator source
2939 *
2940 * Request that the regulator be enabled with the regulator output at
2941 * the predefined voltage or current value. Calls to regulator_enable()
2942 * must be balanced with calls to regulator_disable().
2943 *
2944 * NOTE: the output value can be set by other drivers, boot loader or may be
2945 * hardwired in the regulator.
2946 */
regulator_enable(struct regulator * regulator)2947 int regulator_enable(struct regulator *regulator)
2948 {
2949 struct regulator_dev *rdev = regulator->rdev;
2950 struct ww_acquire_ctx ww_ctx;
2951 int ret;
2952
2953 regulator_lock_dependent(rdev, &ww_ctx);
2954 ret = _regulator_enable(regulator);
2955 regulator_unlock_dependent(rdev, &ww_ctx);
2956
2957 return ret;
2958 }
2959 EXPORT_SYMBOL_GPL(regulator_enable);
2960
_regulator_do_disable(struct regulator_dev * rdev)2961 static int _regulator_do_disable(struct regulator_dev *rdev)
2962 {
2963 int ret;
2964
2965 trace_regulator_disable(rdev_get_name(rdev));
2966
2967 if (rdev->ena_pin) {
2968 if (rdev->ena_gpio_state) {
2969 ret = regulator_ena_gpio_ctrl(rdev, false);
2970 if (ret < 0)
2971 return ret;
2972 rdev->ena_gpio_state = 0;
2973 }
2974
2975 } else if (rdev->desc->ops->disable) {
2976 ret = rdev->desc->ops->disable(rdev);
2977 if (ret != 0)
2978 return ret;
2979 }
2980
2981 if (rdev->desc->off_on_delay)
2982 rdev->last_off = ktime_get_boottime();
2983
2984 trace_regulator_disable_complete(rdev_get_name(rdev));
2985
2986 return 0;
2987 }
2988
2989 /* locks held by regulator_disable() */
_regulator_disable(struct regulator * regulator)2990 static int _regulator_disable(struct regulator *regulator)
2991 {
2992 struct regulator_dev *rdev = regulator->rdev;
2993 int ret = 0;
2994
2995 lockdep_assert_held_once(&rdev->mutex.base);
2996
2997 if (WARN(regulator->enable_count == 0,
2998 "unbalanced disables for %s\n", rdev_get_name(rdev)))
2999 return -EIO;
3000
3001 if (regulator->enable_count == 1) {
3002 /* disabling last enable_count from this regulator */
3003 /* are we the last user and permitted to disable ? */
3004 if (rdev->use_count == 1 &&
3005 (rdev->constraints && !rdev->constraints->always_on)) {
3006
3007 /* we are last user */
3008 if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS)) {
3009 ret = _notifier_call_chain(rdev,
3010 REGULATOR_EVENT_PRE_DISABLE,
3011 NULL);
3012 if (ret & NOTIFY_STOP_MASK)
3013 return -EINVAL;
3014
3015 ret = _regulator_do_disable(rdev);
3016 if (ret < 0) {
3017 rdev_err(rdev, "failed to disable: %pe\n", ERR_PTR(ret));
3018 _notifier_call_chain(rdev,
3019 REGULATOR_EVENT_ABORT_DISABLE,
3020 NULL);
3021 return ret;
3022 }
3023 _notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
3024 NULL);
3025 }
3026
3027 rdev->use_count = 0;
3028 } else if (rdev->use_count > 1) {
3029 rdev->use_count--;
3030 }
3031 }
3032
3033 if (ret == 0)
3034 ret = _regulator_handle_consumer_disable(regulator);
3035
3036 if (ret == 0 && rdev->coupling_desc.n_coupled > 1)
3037 ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
3038
3039 if (ret == 0 && rdev->use_count == 0 && rdev->supply)
3040 ret = _regulator_disable(rdev->supply);
3041
3042 return ret;
3043 }
3044
3045 /**
3046 * regulator_disable - disable regulator output
3047 * @regulator: regulator source
3048 *
3049 * Disable the regulator output voltage or current. Calls to
3050 * regulator_enable() must be balanced with calls to
3051 * regulator_disable().
3052 *
3053 * NOTE: this will only disable the regulator output if no other consumer
3054 * devices have it enabled, the regulator device supports disabling and
3055 * machine constraints permit this operation.
3056 */
regulator_disable(struct regulator * regulator)3057 int regulator_disable(struct regulator *regulator)
3058 {
3059 struct regulator_dev *rdev = regulator->rdev;
3060 struct ww_acquire_ctx ww_ctx;
3061 int ret;
3062
3063 regulator_lock_dependent(rdev, &ww_ctx);
3064 ret = _regulator_disable(regulator);
3065 regulator_unlock_dependent(rdev, &ww_ctx);
3066
3067 return ret;
3068 }
3069 EXPORT_SYMBOL_GPL(regulator_disable);
3070
3071 /* locks held by regulator_force_disable() */
_regulator_force_disable(struct regulator_dev * rdev)3072 static int _regulator_force_disable(struct regulator_dev *rdev)
3073 {
3074 int ret = 0;
3075
3076 lockdep_assert_held_once(&rdev->mutex.base);
3077
3078 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
3079 REGULATOR_EVENT_PRE_DISABLE, NULL);
3080 if (ret & NOTIFY_STOP_MASK)
3081 return -EINVAL;
3082
3083 ret = _regulator_do_disable(rdev);
3084 if (ret < 0) {
3085 rdev_err(rdev, "failed to force disable: %pe\n", ERR_PTR(ret));
3086 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
3087 REGULATOR_EVENT_ABORT_DISABLE, NULL);
3088 return ret;
3089 }
3090
3091 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
3092 REGULATOR_EVENT_DISABLE, NULL);
3093
3094 return 0;
3095 }
3096
3097 /**
3098 * regulator_force_disable - force disable regulator output
3099 * @regulator: regulator source
3100 *
3101 * Forcibly disable the regulator output voltage or current.
3102 * NOTE: this *will* disable the regulator output even if other consumer
3103 * devices have it enabled. This should be used for situations when device
3104 * damage will likely occur if the regulator is not disabled (e.g. over temp).
3105 */
regulator_force_disable(struct regulator * regulator)3106 int regulator_force_disable(struct regulator *regulator)
3107 {
3108 struct regulator_dev *rdev = regulator->rdev;
3109 struct ww_acquire_ctx ww_ctx;
3110 int ret;
3111
3112 regulator_lock_dependent(rdev, &ww_ctx);
3113
3114 ret = _regulator_force_disable(regulator->rdev);
3115
3116 if (rdev->coupling_desc.n_coupled > 1)
3117 regulator_balance_voltage(rdev, PM_SUSPEND_ON);
3118
3119 if (regulator->uA_load) {
3120 regulator->uA_load = 0;
3121 ret = drms_uA_update(rdev);
3122 }
3123
3124 if (rdev->use_count != 0 && rdev->supply)
3125 _regulator_disable(rdev->supply);
3126
3127 regulator_unlock_dependent(rdev, &ww_ctx);
3128
3129 return ret;
3130 }
3131 EXPORT_SYMBOL_GPL(regulator_force_disable);
3132
regulator_disable_work(struct work_struct * work)3133 static void regulator_disable_work(struct work_struct *work)
3134 {
3135 struct regulator_dev *rdev = container_of(work, struct regulator_dev,
3136 disable_work.work);
3137 struct ww_acquire_ctx ww_ctx;
3138 int count, i, ret;
3139 struct regulator *regulator;
3140 int total_count = 0;
3141
3142 regulator_lock_dependent(rdev, &ww_ctx);
3143
3144 /*
3145 * Workqueue functions queue the new work instance while the previous
3146 * work instance is being processed. Cancel the queued work instance
3147 * as the work instance under processing does the job of the queued
3148 * work instance.
3149 */
3150 cancel_delayed_work(&rdev->disable_work);
3151
3152 list_for_each_entry(regulator, &rdev->consumer_list, list) {
3153 count = regulator->deferred_disables;
3154
3155 if (!count)
3156 continue;
3157
3158 total_count += count;
3159 regulator->deferred_disables = 0;
3160
3161 for (i = 0; i < count; i++) {
3162 ret = _regulator_disable(regulator);
3163 if (ret != 0)
3164 rdev_err(rdev, "Deferred disable failed: %pe\n",
3165 ERR_PTR(ret));
3166 }
3167 }
3168 WARN_ON(!total_count);
3169
3170 if (rdev->coupling_desc.n_coupled > 1)
3171 regulator_balance_voltage(rdev, PM_SUSPEND_ON);
3172
3173 regulator_unlock_dependent(rdev, &ww_ctx);
3174 }
3175
3176 /**
3177 * regulator_disable_deferred - disable regulator output with delay
3178 * @regulator: regulator source
3179 * @ms: milliseconds until the regulator is disabled
3180 *
3181 * Execute regulator_disable() on the regulator after a delay. This
3182 * is intended for use with devices that require some time to quiesce.
3183 *
3184 * NOTE: this will only disable the regulator output if no other consumer
3185 * devices have it enabled, the regulator device supports disabling and
3186 * machine constraints permit this operation.
3187 */
regulator_disable_deferred(struct regulator * regulator,int ms)3188 int regulator_disable_deferred(struct regulator *regulator, int ms)
3189 {
3190 struct regulator_dev *rdev = regulator->rdev;
3191
3192 if (!ms)
3193 return regulator_disable(regulator);
3194
3195 regulator_lock(rdev);
3196 regulator->deferred_disables++;
3197 mod_delayed_work(system_power_efficient_wq, &rdev->disable_work,
3198 msecs_to_jiffies(ms));
3199 regulator_unlock(rdev);
3200
3201 return 0;
3202 }
3203 EXPORT_SYMBOL_GPL(regulator_disable_deferred);
3204
_regulator_is_enabled(struct regulator_dev * rdev)3205 static int _regulator_is_enabled(struct regulator_dev *rdev)
3206 {
3207 /* A GPIO control always takes precedence */
3208 if (rdev->ena_pin)
3209 return rdev->ena_gpio_state;
3210
3211 /* If we don't know then assume that the regulator is always on */
3212 if (!rdev->desc->ops->is_enabled)
3213 return 1;
3214
3215 return rdev->desc->ops->is_enabled(rdev);
3216 }
3217
_regulator_list_voltage(struct regulator_dev * rdev,unsigned selector,int lock)3218 static int _regulator_list_voltage(struct regulator_dev *rdev,
3219 unsigned selector, int lock)
3220 {
3221 const struct regulator_ops *ops = rdev->desc->ops;
3222 int ret;
3223
3224 if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector)
3225 return rdev->desc->fixed_uV;
3226
3227 if (ops->list_voltage) {
3228 if (selector >= rdev->desc->n_voltages)
3229 return -EINVAL;
3230 if (selector < rdev->desc->linear_min_sel)
3231 return 0;
3232 if (lock)
3233 regulator_lock(rdev);
3234 ret = ops->list_voltage(rdev, selector);
3235 if (lock)
3236 regulator_unlock(rdev);
3237 } else if (rdev->is_switch && rdev->supply) {
3238 ret = _regulator_list_voltage(rdev->supply->rdev,
3239 selector, lock);
3240 } else {
3241 return -EINVAL;
3242 }
3243
3244 if (ret > 0) {
3245 if (ret < rdev->constraints->min_uV)
3246 ret = 0;
3247 else if (ret > rdev->constraints->max_uV)
3248 ret = 0;
3249 }
3250
3251 return ret;
3252 }
3253
3254 /**
3255 * regulator_is_enabled - is the regulator output enabled
3256 * @regulator: regulator source
3257 *
3258 * Returns positive if the regulator driver backing the source/client
3259 * has requested that the device be enabled, zero if it hasn't, else a
3260 * negative errno code.
3261 *
3262 * Note that the device backing this regulator handle can have multiple
3263 * users, so it might be enabled even if regulator_enable() was never
3264 * called for this particular source.
3265 */
regulator_is_enabled(struct regulator * regulator)3266 int regulator_is_enabled(struct regulator *regulator)
3267 {
3268 int ret;
3269
3270 if (regulator->always_on)
3271 return 1;
3272
3273 regulator_lock(regulator->rdev);
3274 ret = _regulator_is_enabled(regulator->rdev);
3275 regulator_unlock(regulator->rdev);
3276
3277 return ret;
3278 }
3279 EXPORT_SYMBOL_GPL(regulator_is_enabled);
3280
3281 /**
3282 * regulator_count_voltages - count regulator_list_voltage() selectors
3283 * @regulator: regulator source
3284 *
3285 * Returns number of selectors, or negative errno. Selectors are
3286 * numbered starting at zero, and typically correspond to bitfields
3287 * in hardware registers.
3288 */
regulator_count_voltages(struct regulator * regulator)3289 int regulator_count_voltages(struct regulator *regulator)
3290 {
3291 struct regulator_dev *rdev = regulator->rdev;
3292
3293 if (rdev->desc->n_voltages)
3294 return rdev->desc->n_voltages;
3295
3296 if (!rdev->is_switch || !rdev->supply)
3297 return -EINVAL;
3298
3299 return regulator_count_voltages(rdev->supply);
3300 }
3301 EXPORT_SYMBOL_GPL(regulator_count_voltages);
3302
3303 /**
3304 * regulator_list_voltage - enumerate supported voltages
3305 * @regulator: regulator source
3306 * @selector: identify voltage to list
3307 * Context: can sleep
3308 *
3309 * Returns a voltage that can be passed to @regulator_set_voltage(),
3310 * zero if this selector code can't be used on this system, or a
3311 * negative errno.
3312 */
regulator_list_voltage(struct regulator * regulator,unsigned selector)3313 int regulator_list_voltage(struct regulator *regulator, unsigned selector)
3314 {
3315 return _regulator_list_voltage(regulator->rdev, selector, 1);
3316 }
3317 EXPORT_SYMBOL_GPL(regulator_list_voltage);
3318
3319 /**
3320 * regulator_get_regmap - get the regulator's register map
3321 * @regulator: regulator source
3322 *
3323 * Returns the register map for the given regulator, or an ERR_PTR value
3324 * if the regulator doesn't use regmap.
3325 */
regulator_get_regmap(struct regulator * regulator)3326 struct regmap *regulator_get_regmap(struct regulator *regulator)
3327 {
3328 struct regmap *map = regulator->rdev->regmap;
3329
3330 return map ? map : ERR_PTR(-EOPNOTSUPP);
3331 }
3332
3333 /**
3334 * regulator_get_hardware_vsel_register - get the HW voltage selector register
3335 * @regulator: regulator source
3336 * @vsel_reg: voltage selector register, output parameter
3337 * @vsel_mask: mask for voltage selector bitfield, output parameter
3338 *
3339 * Returns the hardware register offset and bitmask used for setting the
3340 * regulator voltage. This might be useful when configuring voltage-scaling
3341 * hardware or firmware that can make I2C requests behind the kernel's back,
3342 * for example.
3343 *
3344 * On success, the output parameters @vsel_reg and @vsel_mask are filled in
3345 * and 0 is returned, otherwise a negative errno is returned.
3346 */
regulator_get_hardware_vsel_register(struct regulator * regulator,unsigned * vsel_reg,unsigned * vsel_mask)3347 int regulator_get_hardware_vsel_register(struct regulator *regulator,
3348 unsigned *vsel_reg,
3349 unsigned *vsel_mask)
3350 {
3351 struct regulator_dev *rdev = regulator->rdev;
3352 const struct regulator_ops *ops = rdev->desc->ops;
3353
3354 if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
3355 return -EOPNOTSUPP;
3356
3357 *vsel_reg = rdev->desc->vsel_reg;
3358 *vsel_mask = rdev->desc->vsel_mask;
3359
3360 return 0;
3361 }
3362 EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register);
3363
3364 /**
3365 * regulator_list_hardware_vsel - get the HW-specific register value for a selector
3366 * @regulator: regulator source
3367 * @selector: identify voltage to list
3368 *
3369 * Converts the selector to a hardware-specific voltage selector that can be
3370 * directly written to the regulator registers. The address of the voltage
3371 * register can be determined by calling @regulator_get_hardware_vsel_register.
3372 *
3373 * On error a negative errno is returned.
3374 */
regulator_list_hardware_vsel(struct regulator * regulator,unsigned selector)3375 int regulator_list_hardware_vsel(struct regulator *regulator,
3376 unsigned selector)
3377 {
3378 struct regulator_dev *rdev = regulator->rdev;
3379 const struct regulator_ops *ops = rdev->desc->ops;
3380
3381 if (selector >= rdev->desc->n_voltages)
3382 return -EINVAL;
3383 if (selector < rdev->desc->linear_min_sel)
3384 return 0;
3385 if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
3386 return -EOPNOTSUPP;
3387
3388 return selector;
3389 }
3390 EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel);
3391
3392 /**
3393 * regulator_get_linear_step - return the voltage step size between VSEL values
3394 * @regulator: regulator source
3395 *
3396 * Returns the voltage step size between VSEL values for linear
3397 * regulators, or return 0 if the regulator isn't a linear regulator.
3398 */
regulator_get_linear_step(struct regulator * regulator)3399 unsigned int regulator_get_linear_step(struct regulator *regulator)
3400 {
3401 struct regulator_dev *rdev = regulator->rdev;
3402
3403 return rdev->desc->uV_step;
3404 }
3405 EXPORT_SYMBOL_GPL(regulator_get_linear_step);
3406
3407 /**
3408 * regulator_is_supported_voltage - check if a voltage range can be supported
3409 *
3410 * @regulator: Regulator to check.
3411 * @min_uV: Minimum required voltage in uV.
3412 * @max_uV: Maximum required voltage in uV.
3413 *
3414 * Returns a boolean.
3415 */
regulator_is_supported_voltage(struct regulator * regulator,int min_uV,int max_uV)3416 int regulator_is_supported_voltage(struct regulator *regulator,
3417 int min_uV, int max_uV)
3418 {
3419 struct regulator_dev *rdev = regulator->rdev;
3420 int i, voltages, ret;
3421
3422 /* If we can't change voltage check the current voltage */
3423 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
3424 ret = regulator_get_voltage(regulator);
3425 if (ret >= 0)
3426 return min_uV <= ret && ret <= max_uV;
3427 else
3428 return ret;
3429 }
3430
3431 /* Any voltage within constrains range is fine? */
3432 if (rdev->desc->continuous_voltage_range)
3433 return min_uV >= rdev->constraints->min_uV &&
3434 max_uV <= rdev->constraints->max_uV;
3435
3436 ret = regulator_count_voltages(regulator);
3437 if (ret < 0)
3438 return 0;
3439 voltages = ret;
3440
3441 for (i = 0; i < voltages; i++) {
3442 ret = regulator_list_voltage(regulator, i);
3443
3444 if (ret >= min_uV && ret <= max_uV)
3445 return 1;
3446 }
3447
3448 return 0;
3449 }
3450 EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
3451
regulator_map_voltage(struct regulator_dev * rdev,int min_uV,int max_uV)3452 static int regulator_map_voltage(struct regulator_dev *rdev, int min_uV,
3453 int max_uV)
3454 {
3455 const struct regulator_desc *desc = rdev->desc;
3456
3457 if (desc->ops->map_voltage)
3458 return desc->ops->map_voltage(rdev, min_uV, max_uV);
3459
3460 if (desc->ops->list_voltage == regulator_list_voltage_linear)
3461 return regulator_map_voltage_linear(rdev, min_uV, max_uV);
3462
3463 if (desc->ops->list_voltage == regulator_list_voltage_linear_range)
3464 return regulator_map_voltage_linear_range(rdev, min_uV, max_uV);
3465
3466 if (desc->ops->list_voltage ==
3467 regulator_list_voltage_pickable_linear_range)
3468 return regulator_map_voltage_pickable_linear_range(rdev,
3469 min_uV, max_uV);
3470
3471 return regulator_map_voltage_iterate(rdev, min_uV, max_uV);
3472 }
3473
_regulator_call_set_voltage(struct regulator_dev * rdev,int min_uV,int max_uV,unsigned * selector)3474 static int _regulator_call_set_voltage(struct regulator_dev *rdev,
3475 int min_uV, int max_uV,
3476 unsigned *selector)
3477 {
3478 struct pre_voltage_change_data data;
3479 int ret;
3480
3481 data.old_uV = regulator_get_voltage_rdev(rdev);
3482 data.min_uV = min_uV;
3483 data.max_uV = max_uV;
3484 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
3485 &data);
3486 if (ret & NOTIFY_STOP_MASK)
3487 return -EINVAL;
3488
3489 ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, selector);
3490 if (ret >= 0)
3491 return ret;
3492
3493 _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
3494 (void *)data.old_uV);
3495
3496 return ret;
3497 }
3498
_regulator_call_set_voltage_sel(struct regulator_dev * rdev,int uV,unsigned selector)3499 static int _regulator_call_set_voltage_sel(struct regulator_dev *rdev,
3500 int uV, unsigned selector)
3501 {
3502 struct pre_voltage_change_data data;
3503 int ret;
3504
3505 data.old_uV = regulator_get_voltage_rdev(rdev);
3506 data.min_uV = uV;
3507 data.max_uV = uV;
3508 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
3509 &data);
3510 if (ret & NOTIFY_STOP_MASK)
3511 return -EINVAL;
3512
3513 ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
3514 if (ret >= 0)
3515 return ret;
3516
3517 _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
3518 (void *)data.old_uV);
3519
3520 return ret;
3521 }
3522
_regulator_set_voltage_sel_step(struct regulator_dev * rdev,int uV,int new_selector)3523 static int _regulator_set_voltage_sel_step(struct regulator_dev *rdev,
3524 int uV, int new_selector)
3525 {
3526 const struct regulator_ops *ops = rdev->desc->ops;
3527 int diff, old_sel, curr_sel, ret;
3528
3529 /* Stepping is only needed if the regulator is enabled. */
3530 if (!_regulator_is_enabled(rdev))
3531 goto final_set;
3532
3533 if (!ops->get_voltage_sel)
3534 return -EINVAL;
3535
3536 old_sel = ops->get_voltage_sel(rdev);
3537 if (old_sel < 0)
3538 return old_sel;
3539
3540 diff = new_selector - old_sel;
3541 if (diff == 0)
3542 return 0; /* No change needed. */
3543
3544 if (diff > 0) {
3545 /* Stepping up. */
3546 for (curr_sel = old_sel + rdev->desc->vsel_step;
3547 curr_sel < new_selector;
3548 curr_sel += rdev->desc->vsel_step) {
3549 /*
3550 * Call the callback directly instead of using
3551 * _regulator_call_set_voltage_sel() as we don't
3552 * want to notify anyone yet. Same in the branch
3553 * below.
3554 */
3555 ret = ops->set_voltage_sel(rdev, curr_sel);
3556 if (ret)
3557 goto try_revert;
3558 }
3559 } else {
3560 /* Stepping down. */
3561 for (curr_sel = old_sel - rdev->desc->vsel_step;
3562 curr_sel > new_selector;
3563 curr_sel -= rdev->desc->vsel_step) {
3564 ret = ops->set_voltage_sel(rdev, curr_sel);
3565 if (ret)
3566 goto try_revert;
3567 }
3568 }
3569
3570 final_set:
3571 /* The final selector will trigger the notifiers. */
3572 return _regulator_call_set_voltage_sel(rdev, uV, new_selector);
3573
3574 try_revert:
3575 /*
3576 * At least try to return to the previous voltage if setting a new
3577 * one failed.
3578 */
3579 (void)ops->set_voltage_sel(rdev, old_sel);
3580 return ret;
3581 }
3582
_regulator_set_voltage_time(struct regulator_dev * rdev,int old_uV,int new_uV)3583 static int _regulator_set_voltage_time(struct regulator_dev *rdev,
3584 int old_uV, int new_uV)
3585 {
3586 unsigned int ramp_delay = 0;
3587
3588 if (rdev->constraints->ramp_delay)
3589 ramp_delay = rdev->constraints->ramp_delay;
3590 else if (rdev->desc->ramp_delay)
3591 ramp_delay = rdev->desc->ramp_delay;
3592 else if (rdev->constraints->settling_time)
3593 return rdev->constraints->settling_time;
3594 else if (rdev->constraints->settling_time_up &&
3595 (new_uV > old_uV))
3596 return rdev->constraints->settling_time_up;
3597 else if (rdev->constraints->settling_time_down &&
3598 (new_uV < old_uV))
3599 return rdev->constraints->settling_time_down;
3600
3601 if (ramp_delay == 0)
3602 return 0;
3603
3604 return DIV_ROUND_UP(abs(new_uV - old_uV), ramp_delay);
3605 }
3606
_regulator_do_set_voltage(struct regulator_dev * rdev,int min_uV,int max_uV)3607 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
3608 int min_uV, int max_uV)
3609 {
3610 int ret;
3611 int delay = 0;
3612 int best_val = 0;
3613 unsigned int selector;
3614 int old_selector = -1;
3615 const struct regulator_ops *ops = rdev->desc->ops;
3616 int old_uV = regulator_get_voltage_rdev(rdev);
3617
3618 trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
3619
3620 min_uV += rdev->constraints->uV_offset;
3621 max_uV += rdev->constraints->uV_offset;
3622
3623 /*
3624 * If we can't obtain the old selector there is not enough
3625 * info to call set_voltage_time_sel().
3626 */
3627 if (_regulator_is_enabled(rdev) &&
3628 ops->set_voltage_time_sel && ops->get_voltage_sel) {
3629 old_selector = ops->get_voltage_sel(rdev);
3630 if (old_selector < 0)
3631 return old_selector;
3632 }
3633
3634 if (ops->set_voltage) {
3635 ret = _regulator_call_set_voltage(rdev, min_uV, max_uV,
3636 &selector);
3637
3638 if (ret >= 0) {
3639 if (ops->list_voltage)
3640 best_val = ops->list_voltage(rdev,
3641 selector);
3642 else
3643 best_val = regulator_get_voltage_rdev(rdev);
3644 }
3645
3646 } else if (ops->set_voltage_sel) {
3647 ret = regulator_map_voltage(rdev, min_uV, max_uV);
3648 if (ret >= 0) {
3649 best_val = ops->list_voltage(rdev, ret);
3650 if (min_uV <= best_val && max_uV >= best_val) {
3651 selector = ret;
3652 if (old_selector == selector)
3653 ret = 0;
3654 else if (rdev->desc->vsel_step)
3655 ret = _regulator_set_voltage_sel_step(
3656 rdev, best_val, selector);
3657 else
3658 ret = _regulator_call_set_voltage_sel(
3659 rdev, best_val, selector);
3660 } else {
3661 ret = -EINVAL;
3662 }
3663 }
3664 } else {
3665 ret = -EINVAL;
3666 }
3667
3668 if (ret)
3669 goto out;
3670
3671 if (ops->set_voltage_time_sel) {
3672 /*
3673 * Call set_voltage_time_sel if successfully obtained
3674 * old_selector
3675 */
3676 if (old_selector >= 0 && old_selector != selector)
3677 delay = ops->set_voltage_time_sel(rdev, old_selector,
3678 selector);
3679 } else {
3680 if (old_uV != best_val) {
3681 if (ops->set_voltage_time)
3682 delay = ops->set_voltage_time(rdev, old_uV,
3683 best_val);
3684 else
3685 delay = _regulator_set_voltage_time(rdev,
3686 old_uV,
3687 best_val);
3688 }
3689 }
3690
3691 if (delay < 0) {
3692 rdev_warn(rdev, "failed to get delay: %pe\n", ERR_PTR(delay));
3693 delay = 0;
3694 }
3695
3696 /* Insert any necessary delays */
3697 _regulator_delay_helper(delay);
3698
3699 if (best_val >= 0) {
3700 unsigned long data = best_val;
3701
3702 _notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
3703 (void *)data);
3704 }
3705
3706 out:
3707 trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
3708
3709 return ret;
3710 }
3711
_regulator_do_set_suspend_voltage(struct regulator_dev * rdev,int min_uV,int max_uV,suspend_state_t state)3712 static int _regulator_do_set_suspend_voltage(struct regulator_dev *rdev,
3713 int min_uV, int max_uV, suspend_state_t state)
3714 {
3715 struct regulator_state *rstate;
3716 int uV, sel;
3717
3718 rstate = regulator_get_suspend_state(rdev, state);
3719 if (rstate == NULL)
3720 return -EINVAL;
3721
3722 if (min_uV < rstate->min_uV)
3723 min_uV = rstate->min_uV;
3724 if (max_uV > rstate->max_uV)
3725 max_uV = rstate->max_uV;
3726
3727 sel = regulator_map_voltage(rdev, min_uV, max_uV);
3728 if (sel < 0)
3729 return sel;
3730
3731 uV = rdev->desc->ops->list_voltage(rdev, sel);
3732 if (uV >= min_uV && uV <= max_uV)
3733 rstate->uV = uV;
3734
3735 return 0;
3736 }
3737
regulator_set_voltage_unlocked(struct regulator * regulator,int min_uV,int max_uV,suspend_state_t state)3738 static int regulator_set_voltage_unlocked(struct regulator *regulator,
3739 int min_uV, int max_uV,
3740 suspend_state_t state)
3741 {
3742 struct regulator_dev *rdev = regulator->rdev;
3743 struct regulator_voltage *voltage = ®ulator->voltage[state];
3744 int ret = 0;
3745 int old_min_uV, old_max_uV;
3746 int current_uV;
3747
3748 /* If we're setting the same range as last time the change
3749 * should be a noop (some cpufreq implementations use the same
3750 * voltage for multiple frequencies, for example).
3751 */
3752 if (voltage->min_uV == min_uV && voltage->max_uV == max_uV)
3753 goto out;
3754
3755 /* If we're trying to set a range that overlaps the current voltage,
3756 * return successfully even though the regulator does not support
3757 * changing the voltage.
3758 */
3759 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
3760 current_uV = regulator_get_voltage_rdev(rdev);
3761 if (min_uV <= current_uV && current_uV <= max_uV) {
3762 voltage->min_uV = min_uV;
3763 voltage->max_uV = max_uV;
3764 goto out;
3765 }
3766 }
3767
3768 /* sanity check */
3769 if (!rdev->desc->ops->set_voltage &&
3770 !rdev->desc->ops->set_voltage_sel) {
3771 ret = -EINVAL;
3772 goto out;
3773 }
3774
3775 /* constraints check */
3776 ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
3777 if (ret < 0)
3778 goto out;
3779
3780 /* restore original values in case of error */
3781 old_min_uV = voltage->min_uV;
3782 old_max_uV = voltage->max_uV;
3783 voltage->min_uV = min_uV;
3784 voltage->max_uV = max_uV;
3785
3786 /* for not coupled regulators this will just set the voltage */
3787 ret = regulator_balance_voltage(rdev, state);
3788 if (ret < 0) {
3789 voltage->min_uV = old_min_uV;
3790 voltage->max_uV = old_max_uV;
3791 }
3792
3793 out:
3794 return ret;
3795 }
3796
regulator_set_voltage_rdev(struct regulator_dev * rdev,int min_uV,int max_uV,suspend_state_t state)3797 int regulator_set_voltage_rdev(struct regulator_dev *rdev, int min_uV,
3798 int max_uV, suspend_state_t state)
3799 {
3800 int best_supply_uV = 0;
3801 int supply_change_uV = 0;
3802 int ret;
3803
3804 if (rdev->supply &&
3805 regulator_ops_is_valid(rdev->supply->rdev,
3806 REGULATOR_CHANGE_VOLTAGE) &&
3807 (rdev->desc->min_dropout_uV || !(rdev->desc->ops->get_voltage ||
3808 rdev->desc->ops->get_voltage_sel))) {
3809 int current_supply_uV;
3810 int selector;
3811
3812 selector = regulator_map_voltage(rdev, min_uV, max_uV);
3813 if (selector < 0) {
3814 ret = selector;
3815 goto out;
3816 }
3817
3818 best_supply_uV = _regulator_list_voltage(rdev, selector, 0);
3819 if (best_supply_uV < 0) {
3820 ret = best_supply_uV;
3821 goto out;
3822 }
3823
3824 best_supply_uV += rdev->desc->min_dropout_uV;
3825
3826 current_supply_uV = regulator_get_voltage_rdev(rdev->supply->rdev);
3827 if (current_supply_uV < 0) {
3828 ret = current_supply_uV;
3829 goto out;
3830 }
3831
3832 supply_change_uV = best_supply_uV - current_supply_uV;
3833 }
3834
3835 if (supply_change_uV > 0) {
3836 ret = regulator_set_voltage_unlocked(rdev->supply,
3837 best_supply_uV, INT_MAX, state);
3838 if (ret) {
3839 dev_err(&rdev->dev, "Failed to increase supply voltage: %pe\n",
3840 ERR_PTR(ret));
3841 goto out;
3842 }
3843 }
3844
3845 if (state == PM_SUSPEND_ON)
3846 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
3847 else
3848 ret = _regulator_do_set_suspend_voltage(rdev, min_uV,
3849 max_uV, state);
3850 if (ret < 0)
3851 goto out;
3852
3853 if (supply_change_uV < 0) {
3854 ret = regulator_set_voltage_unlocked(rdev->supply,
3855 best_supply_uV, INT_MAX, state);
3856 if (ret)
3857 dev_warn(&rdev->dev, "Failed to decrease supply voltage: %pe\n",
3858 ERR_PTR(ret));
3859 /* No need to fail here */
3860 ret = 0;
3861 }
3862
3863 out:
3864 return ret;
3865 }
3866 EXPORT_SYMBOL_GPL(regulator_set_voltage_rdev);
3867
regulator_limit_voltage_step(struct regulator_dev * rdev,int * current_uV,int * min_uV)3868 static int regulator_limit_voltage_step(struct regulator_dev *rdev,
3869 int *current_uV, int *min_uV)
3870 {
3871 struct regulation_constraints *constraints = rdev->constraints;
3872
3873 /* Limit voltage change only if necessary */
3874 if (!constraints->max_uV_step || !_regulator_is_enabled(rdev))
3875 return 1;
3876
3877 if (*current_uV < 0) {
3878 *current_uV = regulator_get_voltage_rdev(rdev);
3879
3880 if (*current_uV < 0)
3881 return *current_uV;
3882 }
3883
3884 if (abs(*current_uV - *min_uV) <= constraints->max_uV_step)
3885 return 1;
3886
3887 /* Clamp target voltage within the given step */
3888 if (*current_uV < *min_uV)
3889 *min_uV = min(*current_uV + constraints->max_uV_step,
3890 *min_uV);
3891 else
3892 *min_uV = max(*current_uV - constraints->max_uV_step,
3893 *min_uV);
3894
3895 return 0;
3896 }
3897
regulator_get_optimal_voltage(struct regulator_dev * rdev,int * current_uV,int * min_uV,int * max_uV,suspend_state_t state,int n_coupled)3898 static int regulator_get_optimal_voltage(struct regulator_dev *rdev,
3899 int *current_uV,
3900 int *min_uV, int *max_uV,
3901 suspend_state_t state,
3902 int n_coupled)
3903 {
3904 struct coupling_desc *c_desc = &rdev->coupling_desc;
3905 struct regulator_dev **c_rdevs = c_desc->coupled_rdevs;
3906 struct regulation_constraints *constraints = rdev->constraints;
3907 int desired_min_uV = 0, desired_max_uV = INT_MAX;
3908 int max_current_uV = 0, min_current_uV = INT_MAX;
3909 int highest_min_uV = 0, target_uV, possible_uV;
3910 int i, ret, max_spread;
3911 bool done;
3912
3913 *current_uV = -1;
3914
3915 /*
3916 * If there are no coupled regulators, simply set the voltage
3917 * demanded by consumers.
3918 */
3919 if (n_coupled == 1) {
3920 /*
3921 * If consumers don't provide any demands, set voltage
3922 * to min_uV
3923 */
3924 desired_min_uV = constraints->min_uV;
3925 desired_max_uV = constraints->max_uV;
3926
3927 ret = regulator_check_consumers(rdev,
3928 &desired_min_uV,
3929 &desired_max_uV, state);
3930 if (ret < 0)
3931 return ret;
3932
3933 possible_uV = desired_min_uV;
3934 done = true;
3935
3936 goto finish;
3937 }
3938
3939 /* Find highest min desired voltage */
3940 for (i = 0; i < n_coupled; i++) {
3941 int tmp_min = 0;
3942 int tmp_max = INT_MAX;
3943
3944 lockdep_assert_held_once(&c_rdevs[i]->mutex.base);
3945
3946 ret = regulator_check_consumers(c_rdevs[i],
3947 &tmp_min,
3948 &tmp_max, state);
3949 if (ret < 0)
3950 return ret;
3951
3952 ret = regulator_check_voltage(c_rdevs[i], &tmp_min, &tmp_max);
3953 if (ret < 0)
3954 return ret;
3955
3956 highest_min_uV = max(highest_min_uV, tmp_min);
3957
3958 if (i == 0) {
3959 desired_min_uV = tmp_min;
3960 desired_max_uV = tmp_max;
3961 }
3962 }
3963
3964 max_spread = constraints->max_spread[0];
3965
3966 /*
3967 * Let target_uV be equal to the desired one if possible.
3968 * If not, set it to minimum voltage, allowed by other coupled
3969 * regulators.
3970 */
3971 target_uV = max(desired_min_uV, highest_min_uV - max_spread);
3972
3973 /*
3974 * Find min and max voltages, which currently aren't violating
3975 * max_spread.
3976 */
3977 for (i = 1; i < n_coupled; i++) {
3978 int tmp_act;
3979
3980 if (!_regulator_is_enabled(c_rdevs[i]))
3981 continue;
3982
3983 tmp_act = regulator_get_voltage_rdev(c_rdevs[i]);
3984 if (tmp_act < 0)
3985 return tmp_act;
3986
3987 min_current_uV = min(tmp_act, min_current_uV);
3988 max_current_uV = max(tmp_act, max_current_uV);
3989 }
3990
3991 /* There aren't any other regulators enabled */
3992 if (max_current_uV == 0) {
3993 possible_uV = target_uV;
3994 } else {
3995 /*
3996 * Correct target voltage, so as it currently isn't
3997 * violating max_spread
3998 */
3999 possible_uV = max(target_uV, max_current_uV - max_spread);
4000 possible_uV = min(possible_uV, min_current_uV + max_spread);
4001 }
4002
4003 if (possible_uV > desired_max_uV)
4004 return -EINVAL;
4005
4006 done = (possible_uV == target_uV);
4007 desired_min_uV = possible_uV;
4008
4009 finish:
4010 /* Apply max_uV_step constraint if necessary */
4011 if (state == PM_SUSPEND_ON) {
4012 ret = regulator_limit_voltage_step(rdev, current_uV,
4013 &desired_min_uV);
4014 if (ret < 0)
4015 return ret;
4016
4017 if (ret == 0)
4018 done = false;
4019 }
4020
4021 /* Set current_uV if wasn't done earlier in the code and if necessary */
4022 if (n_coupled > 1 && *current_uV == -1) {
4023
4024 if (_regulator_is_enabled(rdev)) {
4025 ret = regulator_get_voltage_rdev(rdev);
4026 if (ret < 0)
4027 return ret;
4028
4029 *current_uV = ret;
4030 } else {
4031 *current_uV = desired_min_uV;
4032 }
4033 }
4034
4035 *min_uV = desired_min_uV;
4036 *max_uV = desired_max_uV;
4037
4038 return done;
4039 }
4040
regulator_do_balance_voltage(struct regulator_dev * rdev,suspend_state_t state,bool skip_coupled)4041 int regulator_do_balance_voltage(struct regulator_dev *rdev,
4042 suspend_state_t state, bool skip_coupled)
4043 {
4044 struct regulator_dev **c_rdevs;
4045 struct regulator_dev *best_rdev;
4046 struct coupling_desc *c_desc = &rdev->coupling_desc;
4047 int i, ret, n_coupled, best_min_uV, best_max_uV, best_c_rdev;
4048 unsigned int delta, best_delta;
4049 unsigned long c_rdev_done = 0;
4050 bool best_c_rdev_done;
4051
4052 c_rdevs = c_desc->coupled_rdevs;
4053 n_coupled = skip_coupled ? 1 : c_desc->n_coupled;
4054
4055 /*
4056 * Find the best possible voltage change on each loop. Leave the loop
4057 * if there isn't any possible change.
4058 */
4059 do {
4060 best_c_rdev_done = false;
4061 best_delta = 0;
4062 best_min_uV = 0;
4063 best_max_uV = 0;
4064 best_c_rdev = 0;
4065 best_rdev = NULL;
4066
4067 /*
4068 * Find highest difference between optimal voltage
4069 * and current voltage.
4070 */
4071 for (i = 0; i < n_coupled; i++) {
4072 /*
4073 * optimal_uV is the best voltage that can be set for
4074 * i-th regulator at the moment without violating
4075 * max_spread constraint in order to balance
4076 * the coupled voltages.
4077 */
4078 int optimal_uV = 0, optimal_max_uV = 0, current_uV = 0;
4079
4080 if (test_bit(i, &c_rdev_done))
4081 continue;
4082
4083 ret = regulator_get_optimal_voltage(c_rdevs[i],
4084 ¤t_uV,
4085 &optimal_uV,
4086 &optimal_max_uV,
4087 state, n_coupled);
4088 if (ret < 0)
4089 goto out;
4090
4091 delta = abs(optimal_uV - current_uV);
4092
4093 if (delta && best_delta <= delta) {
4094 best_c_rdev_done = ret;
4095 best_delta = delta;
4096 best_rdev = c_rdevs[i];
4097 best_min_uV = optimal_uV;
4098 best_max_uV = optimal_max_uV;
4099 best_c_rdev = i;
4100 }
4101 }
4102
4103 /* Nothing to change, return successfully */
4104 if (!best_rdev) {
4105 ret = 0;
4106 goto out;
4107 }
4108
4109 ret = regulator_set_voltage_rdev(best_rdev, best_min_uV,
4110 best_max_uV, state);
4111
4112 if (ret < 0)
4113 goto out;
4114
4115 if (best_c_rdev_done)
4116 set_bit(best_c_rdev, &c_rdev_done);
4117
4118 } while (n_coupled > 1);
4119
4120 out:
4121 return ret;
4122 }
4123
regulator_balance_voltage(struct regulator_dev * rdev,suspend_state_t state)4124 static int regulator_balance_voltage(struct regulator_dev *rdev,
4125 suspend_state_t state)
4126 {
4127 struct coupling_desc *c_desc = &rdev->coupling_desc;
4128 struct regulator_coupler *coupler = c_desc->coupler;
4129 bool skip_coupled = false;
4130
4131 /*
4132 * If system is in a state other than PM_SUSPEND_ON, don't check
4133 * other coupled regulators.
4134 */
4135 if (state != PM_SUSPEND_ON)
4136 skip_coupled = true;
4137
4138 if (c_desc->n_resolved < c_desc->n_coupled) {
4139 rdev_err(rdev, "Not all coupled regulators registered\n");
4140 return -EPERM;
4141 }
4142
4143 /* Invoke custom balancer for customized couplers */
4144 if (coupler && coupler->balance_voltage)
4145 return coupler->balance_voltage(coupler, rdev, state);
4146
4147 return regulator_do_balance_voltage(rdev, state, skip_coupled);
4148 }
4149
4150 /**
4151 * regulator_set_voltage - set regulator output voltage
4152 * @regulator: regulator source
4153 * @min_uV: Minimum required voltage in uV
4154 * @max_uV: Maximum acceptable voltage in uV
4155 *
4156 * Sets a voltage regulator to the desired output voltage. This can be set
4157 * during any regulator state. IOW, regulator can be disabled or enabled.
4158 *
4159 * If the regulator is enabled then the voltage will change to the new value
4160 * immediately otherwise if the regulator is disabled the regulator will
4161 * output at the new voltage when enabled.
4162 *
4163 * NOTE: If the regulator is shared between several devices then the lowest
4164 * request voltage that meets the system constraints will be used.
4165 * Regulator system constraints must be set for this regulator before
4166 * calling this function otherwise this call will fail.
4167 */
regulator_set_voltage(struct regulator * regulator,int min_uV,int max_uV)4168 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
4169 {
4170 struct ww_acquire_ctx ww_ctx;
4171 int ret;
4172
4173 regulator_lock_dependent(regulator->rdev, &ww_ctx);
4174
4175 ret = regulator_set_voltage_unlocked(regulator, min_uV, max_uV,
4176 PM_SUSPEND_ON);
4177
4178 regulator_unlock_dependent(regulator->rdev, &ww_ctx);
4179
4180 return ret;
4181 }
4182 EXPORT_SYMBOL_GPL(regulator_set_voltage);
4183
regulator_suspend_toggle(struct regulator_dev * rdev,suspend_state_t state,bool en)4184 static inline int regulator_suspend_toggle(struct regulator_dev *rdev,
4185 suspend_state_t state, bool en)
4186 {
4187 struct regulator_state *rstate;
4188
4189 rstate = regulator_get_suspend_state(rdev, state);
4190 if (rstate == NULL)
4191 return -EINVAL;
4192
4193 if (!rstate->changeable)
4194 return -EPERM;
4195
4196 rstate->enabled = (en) ? ENABLE_IN_SUSPEND : DISABLE_IN_SUSPEND;
4197
4198 return 0;
4199 }
4200
regulator_suspend_enable(struct regulator_dev * rdev,suspend_state_t state)4201 int regulator_suspend_enable(struct regulator_dev *rdev,
4202 suspend_state_t state)
4203 {
4204 return regulator_suspend_toggle(rdev, state, true);
4205 }
4206 EXPORT_SYMBOL_GPL(regulator_suspend_enable);
4207
regulator_suspend_disable(struct regulator_dev * rdev,suspend_state_t state)4208 int regulator_suspend_disable(struct regulator_dev *rdev,
4209 suspend_state_t state)
4210 {
4211 struct regulator *regulator;
4212 struct regulator_voltage *voltage;
4213
4214 /*
4215 * if any consumer wants this regulator device keeping on in
4216 * suspend states, don't set it as disabled.
4217 */
4218 list_for_each_entry(regulator, &rdev->consumer_list, list) {
4219 voltage = ®ulator->voltage[state];
4220 if (voltage->min_uV || voltage->max_uV)
4221 return 0;
4222 }
4223
4224 return regulator_suspend_toggle(rdev, state, false);
4225 }
4226 EXPORT_SYMBOL_GPL(regulator_suspend_disable);
4227
_regulator_set_suspend_voltage(struct regulator * regulator,int min_uV,int max_uV,suspend_state_t state)4228 static int _regulator_set_suspend_voltage(struct regulator *regulator,
4229 int min_uV, int max_uV,
4230 suspend_state_t state)
4231 {
4232 struct regulator_dev *rdev = regulator->rdev;
4233 struct regulator_state *rstate;
4234
4235 rstate = regulator_get_suspend_state(rdev, state);
4236 if (rstate == NULL)
4237 return -EINVAL;
4238
4239 if (rstate->min_uV == rstate->max_uV) {
4240 rdev_err(rdev, "The suspend voltage can't be changed!\n");
4241 return -EPERM;
4242 }
4243
4244 return regulator_set_voltage_unlocked(regulator, min_uV, max_uV, state);
4245 }
4246
regulator_set_suspend_voltage(struct regulator * regulator,int min_uV,int max_uV,suspend_state_t state)4247 int regulator_set_suspend_voltage(struct regulator *regulator, int min_uV,
4248 int max_uV, suspend_state_t state)
4249 {
4250 struct ww_acquire_ctx ww_ctx;
4251 int ret;
4252
4253 /* PM_SUSPEND_ON is handled by regulator_set_voltage() */
4254 if (regulator_check_states(state) || state == PM_SUSPEND_ON)
4255 return -EINVAL;
4256
4257 regulator_lock_dependent(regulator->rdev, &ww_ctx);
4258
4259 ret = _regulator_set_suspend_voltage(regulator, min_uV,
4260 max_uV, state);
4261
4262 regulator_unlock_dependent(regulator->rdev, &ww_ctx);
4263
4264 return ret;
4265 }
4266 EXPORT_SYMBOL_GPL(regulator_set_suspend_voltage);
4267
4268 /**
4269 * regulator_set_voltage_time - get raise/fall time
4270 * @regulator: regulator source
4271 * @old_uV: starting voltage in microvolts
4272 * @new_uV: target voltage in microvolts
4273 *
4274 * Provided with the starting and ending voltage, this function attempts to
4275 * calculate the time in microseconds required to rise or fall to this new
4276 * voltage.
4277 */
regulator_set_voltage_time(struct regulator * regulator,int old_uV,int new_uV)4278 int regulator_set_voltage_time(struct regulator *regulator,
4279 int old_uV, int new_uV)
4280 {
4281 struct regulator_dev *rdev = regulator->rdev;
4282 const struct regulator_ops *ops = rdev->desc->ops;
4283 int old_sel = -1;
4284 int new_sel = -1;
4285 int voltage;
4286 int i;
4287
4288 if (ops->set_voltage_time)
4289 return ops->set_voltage_time(rdev, old_uV, new_uV);
4290 else if (!ops->set_voltage_time_sel)
4291 return _regulator_set_voltage_time(rdev, old_uV, new_uV);
4292
4293 /* Currently requires operations to do this */
4294 if (!ops->list_voltage || !rdev->desc->n_voltages)
4295 return -EINVAL;
4296
4297 for (i = 0; i < rdev->desc->n_voltages; i++) {
4298 /* We only look for exact voltage matches here */
4299 if (i < rdev->desc->linear_min_sel)
4300 continue;
4301
4302 if (old_sel >= 0 && new_sel >= 0)
4303 break;
4304
4305 voltage = regulator_list_voltage(regulator, i);
4306 if (voltage < 0)
4307 return -EINVAL;
4308 if (voltage == 0)
4309 continue;
4310 if (voltage == old_uV)
4311 old_sel = i;
4312 if (voltage == new_uV)
4313 new_sel = i;
4314 }
4315
4316 if (old_sel < 0 || new_sel < 0)
4317 return -EINVAL;
4318
4319 return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
4320 }
4321 EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
4322
4323 /**
4324 * regulator_set_voltage_time_sel - get raise/fall time
4325 * @rdev: regulator source device
4326 * @old_selector: selector for starting voltage
4327 * @new_selector: selector for target voltage
4328 *
4329 * Provided with the starting and target voltage selectors, this function
4330 * returns time in microseconds required to rise or fall to this new voltage
4331 *
4332 * Drivers providing ramp_delay in regulation_constraints can use this as their
4333 * set_voltage_time_sel() operation.
4334 */
regulator_set_voltage_time_sel(struct regulator_dev * rdev,unsigned int old_selector,unsigned int new_selector)4335 int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
4336 unsigned int old_selector,
4337 unsigned int new_selector)
4338 {
4339 int old_volt, new_volt;
4340
4341 /* sanity check */
4342 if (!rdev->desc->ops->list_voltage)
4343 return -EINVAL;
4344
4345 old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
4346 new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);
4347
4348 if (rdev->desc->ops->set_voltage_time)
4349 return rdev->desc->ops->set_voltage_time(rdev, old_volt,
4350 new_volt);
4351 else
4352 return _regulator_set_voltage_time(rdev, old_volt, new_volt);
4353 }
4354 EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
4355
regulator_sync_voltage_rdev(struct regulator_dev * rdev)4356 int regulator_sync_voltage_rdev(struct regulator_dev *rdev)
4357 {
4358 int ret;
4359
4360 regulator_lock(rdev);
4361
4362 if (!rdev->desc->ops->set_voltage &&
4363 !rdev->desc->ops->set_voltage_sel) {
4364 ret = -EINVAL;
4365 goto out;
4366 }
4367
4368 /* balance only, if regulator is coupled */
4369 if (rdev->coupling_desc.n_coupled > 1)
4370 ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
4371 else
4372 ret = -EOPNOTSUPP;
4373
4374 out:
4375 regulator_unlock(rdev);
4376 return ret;
4377 }
4378
4379 /**
4380 * regulator_sync_voltage - re-apply last regulator output voltage
4381 * @regulator: regulator source
4382 *
4383 * Re-apply the last configured voltage. This is intended to be used
4384 * where some external control source the consumer is cooperating with
4385 * has caused the configured voltage to change.
4386 */
regulator_sync_voltage(struct regulator * regulator)4387 int regulator_sync_voltage(struct regulator *regulator)
4388 {
4389 struct regulator_dev *rdev = regulator->rdev;
4390 struct regulator_voltage *voltage = ®ulator->voltage[PM_SUSPEND_ON];
4391 int ret, min_uV, max_uV;
4392
4393 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE))
4394 return 0;
4395
4396 regulator_lock(rdev);
4397
4398 if (!rdev->desc->ops->set_voltage &&
4399 !rdev->desc->ops->set_voltage_sel) {
4400 ret = -EINVAL;
4401 goto out;
4402 }
4403
4404 /* This is only going to work if we've had a voltage configured. */
4405 if (!voltage->min_uV && !voltage->max_uV) {
4406 ret = -EINVAL;
4407 goto out;
4408 }
4409
4410 min_uV = voltage->min_uV;
4411 max_uV = voltage->max_uV;
4412
4413 /* This should be a paranoia check... */
4414 ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
4415 if (ret < 0)
4416 goto out;
4417
4418 ret = regulator_check_consumers(rdev, &min_uV, &max_uV, 0);
4419 if (ret < 0)
4420 goto out;
4421
4422 /* balance only, if regulator is coupled */
4423 if (rdev->coupling_desc.n_coupled > 1)
4424 ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
4425 else
4426 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
4427
4428 out:
4429 regulator_unlock(rdev);
4430 return ret;
4431 }
4432 EXPORT_SYMBOL_GPL(regulator_sync_voltage);
4433
regulator_get_voltage_rdev(struct regulator_dev * rdev)4434 int regulator_get_voltage_rdev(struct regulator_dev *rdev)
4435 {
4436 int sel, ret;
4437 bool bypassed;
4438
4439 if (rdev->desc->ops->get_bypass) {
4440 ret = rdev->desc->ops->get_bypass(rdev, &bypassed);
4441 if (ret < 0)
4442 return ret;
4443 if (bypassed) {
4444 /* if bypassed the regulator must have a supply */
4445 if (!rdev->supply) {
4446 rdev_err(rdev,
4447 "bypassed regulator has no supply!\n");
4448 return -EPROBE_DEFER;
4449 }
4450
4451 return regulator_get_voltage_rdev(rdev->supply->rdev);
4452 }
4453 }
4454
4455 if (rdev->desc->ops->get_voltage_sel) {
4456 sel = rdev->desc->ops->get_voltage_sel(rdev);
4457 if (sel < 0)
4458 return sel;
4459 ret = rdev->desc->ops->list_voltage(rdev, sel);
4460 } else if (rdev->desc->ops->get_voltage) {
4461 ret = rdev->desc->ops->get_voltage(rdev);
4462 } else if (rdev->desc->ops->list_voltage) {
4463 ret = rdev->desc->ops->list_voltage(rdev, 0);
4464 } else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) {
4465 ret = rdev->desc->fixed_uV;
4466 } else if (rdev->supply) {
4467 ret = regulator_get_voltage_rdev(rdev->supply->rdev);
4468 } else if (rdev->supply_name) {
4469 return -EPROBE_DEFER;
4470 } else {
4471 return -EINVAL;
4472 }
4473
4474 if (ret < 0)
4475 return ret;
4476 return ret - rdev->constraints->uV_offset;
4477 }
4478 EXPORT_SYMBOL_GPL(regulator_get_voltage_rdev);
4479
4480 /**
4481 * regulator_get_voltage - get regulator output voltage
4482 * @regulator: regulator source
4483 *
4484 * This returns the current regulator voltage in uV.
4485 *
4486 * NOTE: If the regulator is disabled it will return the voltage value. This
4487 * function should not be used to determine regulator state.
4488 */
regulator_get_voltage(struct regulator * regulator)4489 int regulator_get_voltage(struct regulator *regulator)
4490 {
4491 struct ww_acquire_ctx ww_ctx;
4492 int ret;
4493
4494 regulator_lock_dependent(regulator->rdev, &ww_ctx);
4495 ret = regulator_get_voltage_rdev(regulator->rdev);
4496 regulator_unlock_dependent(regulator->rdev, &ww_ctx);
4497
4498 return ret;
4499 }
4500 EXPORT_SYMBOL_GPL(regulator_get_voltage);
4501
4502 /**
4503 * regulator_set_current_limit - set regulator output current limit
4504 * @regulator: regulator source
4505 * @min_uA: Minimum supported current in uA
4506 * @max_uA: Maximum supported current in uA
4507 *
4508 * Sets current sink to the desired output current. This can be set during
4509 * any regulator state. IOW, regulator can be disabled or enabled.
4510 *
4511 * If the regulator is enabled then the current will change to the new value
4512 * immediately otherwise if the regulator is disabled the regulator will
4513 * output at the new current when enabled.
4514 *
4515 * NOTE: Regulator system constraints must be set for this regulator before
4516 * calling this function otherwise this call will fail.
4517 */
regulator_set_current_limit(struct regulator * regulator,int min_uA,int max_uA)4518 int regulator_set_current_limit(struct regulator *regulator,
4519 int min_uA, int max_uA)
4520 {
4521 struct regulator_dev *rdev = regulator->rdev;
4522 int ret;
4523
4524 regulator_lock(rdev);
4525
4526 /* sanity check */
4527 if (!rdev->desc->ops->set_current_limit) {
4528 ret = -EINVAL;
4529 goto out;
4530 }
4531
4532 /* constraints check */
4533 ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
4534 if (ret < 0)
4535 goto out;
4536
4537 ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
4538 out:
4539 regulator_unlock(rdev);
4540 return ret;
4541 }
4542 EXPORT_SYMBOL_GPL(regulator_set_current_limit);
4543
_regulator_get_current_limit_unlocked(struct regulator_dev * rdev)4544 static int _regulator_get_current_limit_unlocked(struct regulator_dev *rdev)
4545 {
4546 /* sanity check */
4547 if (!rdev->desc->ops->get_current_limit)
4548 return -EINVAL;
4549
4550 return rdev->desc->ops->get_current_limit(rdev);
4551 }
4552
_regulator_get_current_limit(struct regulator_dev * rdev)4553 static int _regulator_get_current_limit(struct regulator_dev *rdev)
4554 {
4555 int ret;
4556
4557 regulator_lock(rdev);
4558 ret = _regulator_get_current_limit_unlocked(rdev);
4559 regulator_unlock(rdev);
4560
4561 return ret;
4562 }
4563
4564 /**
4565 * regulator_get_current_limit - get regulator output current
4566 * @regulator: regulator source
4567 *
4568 * This returns the current supplied by the specified current sink in uA.
4569 *
4570 * NOTE: If the regulator is disabled it will return the current value. This
4571 * function should not be used to determine regulator state.
4572 */
regulator_get_current_limit(struct regulator * regulator)4573 int regulator_get_current_limit(struct regulator *regulator)
4574 {
4575 return _regulator_get_current_limit(regulator->rdev);
4576 }
4577 EXPORT_SYMBOL_GPL(regulator_get_current_limit);
4578
4579 /**
4580 * regulator_set_mode - set regulator operating mode
4581 * @regulator: regulator source
4582 * @mode: operating mode - one of the REGULATOR_MODE constants
4583 *
4584 * Set regulator operating mode to increase regulator efficiency or improve
4585 * regulation performance.
4586 *
4587 * NOTE: Regulator system constraints must be set for this regulator before
4588 * calling this function otherwise this call will fail.
4589 */
regulator_set_mode(struct regulator * regulator,unsigned int mode)4590 int regulator_set_mode(struct regulator *regulator, unsigned int mode)
4591 {
4592 struct regulator_dev *rdev = regulator->rdev;
4593 int ret;
4594 int regulator_curr_mode;
4595
4596 regulator_lock(rdev);
4597
4598 /* sanity check */
4599 if (!rdev->desc->ops->set_mode) {
4600 ret = -EINVAL;
4601 goto out;
4602 }
4603
4604 /* return if the same mode is requested */
4605 if (rdev->desc->ops->get_mode) {
4606 regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
4607 if (regulator_curr_mode == mode) {
4608 ret = 0;
4609 goto out;
4610 }
4611 }
4612
4613 /* constraints check */
4614 ret = regulator_mode_constrain(rdev, &mode);
4615 if (ret < 0)
4616 goto out;
4617
4618 ret = rdev->desc->ops->set_mode(rdev, mode);
4619 out:
4620 regulator_unlock(rdev);
4621 return ret;
4622 }
4623 EXPORT_SYMBOL_GPL(regulator_set_mode);
4624
_regulator_get_mode_unlocked(struct regulator_dev * rdev)4625 static unsigned int _regulator_get_mode_unlocked(struct regulator_dev *rdev)
4626 {
4627 /* sanity check */
4628 if (!rdev->desc->ops->get_mode)
4629 return -EINVAL;
4630
4631 return rdev->desc->ops->get_mode(rdev);
4632 }
4633
_regulator_get_mode(struct regulator_dev * rdev)4634 static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
4635 {
4636 int ret;
4637
4638 regulator_lock(rdev);
4639 ret = _regulator_get_mode_unlocked(rdev);
4640 regulator_unlock(rdev);
4641
4642 return ret;
4643 }
4644
4645 /**
4646 * regulator_get_mode - get regulator operating mode
4647 * @regulator: regulator source
4648 *
4649 * Get the current regulator operating mode.
4650 */
regulator_get_mode(struct regulator * regulator)4651 unsigned int regulator_get_mode(struct regulator *regulator)
4652 {
4653 return _regulator_get_mode(regulator->rdev);
4654 }
4655 EXPORT_SYMBOL_GPL(regulator_get_mode);
4656
rdev_get_cached_err_flags(struct regulator_dev * rdev)4657 static int rdev_get_cached_err_flags(struct regulator_dev *rdev)
4658 {
4659 int ret = 0;
4660
4661 if (rdev->use_cached_err) {
4662 spin_lock(&rdev->err_lock);
4663 ret = rdev->cached_err;
4664 spin_unlock(&rdev->err_lock);
4665 }
4666 return ret;
4667 }
4668
_regulator_get_error_flags(struct regulator_dev * rdev,unsigned int * flags)4669 static int _regulator_get_error_flags(struct regulator_dev *rdev,
4670 unsigned int *flags)
4671 {
4672 int cached_flags, ret = 0;
4673
4674 regulator_lock(rdev);
4675
4676 cached_flags = rdev_get_cached_err_flags(rdev);
4677
4678 if (rdev->desc->ops->get_error_flags)
4679 ret = rdev->desc->ops->get_error_flags(rdev, flags);
4680 else if (!rdev->use_cached_err)
4681 ret = -EINVAL;
4682
4683 *flags |= cached_flags;
4684
4685 regulator_unlock(rdev);
4686
4687 return ret;
4688 }
4689
4690 /**
4691 * regulator_get_error_flags - get regulator error information
4692 * @regulator: regulator source
4693 * @flags: pointer to store error flags
4694 *
4695 * Get the current regulator error information.
4696 */
regulator_get_error_flags(struct regulator * regulator,unsigned int * flags)4697 int regulator_get_error_flags(struct regulator *regulator,
4698 unsigned int *flags)
4699 {
4700 return _regulator_get_error_flags(regulator->rdev, flags);
4701 }
4702 EXPORT_SYMBOL_GPL(regulator_get_error_flags);
4703
4704 /**
4705 * regulator_set_load - set regulator load
4706 * @regulator: regulator source
4707 * @uA_load: load current
4708 *
4709 * Notifies the regulator core of a new device load. This is then used by
4710 * DRMS (if enabled by constraints) to set the most efficient regulator
4711 * operating mode for the new regulator loading.
4712 *
4713 * Consumer devices notify their supply regulator of the maximum power
4714 * they will require (can be taken from device datasheet in the power
4715 * consumption tables) when they change operational status and hence power
4716 * state. Examples of operational state changes that can affect power
4717 * consumption are :-
4718 *
4719 * o Device is opened / closed.
4720 * o Device I/O is about to begin or has just finished.
4721 * o Device is idling in between work.
4722 *
4723 * This information is also exported via sysfs to userspace.
4724 *
4725 * DRMS will sum the total requested load on the regulator and change
4726 * to the most efficient operating mode if platform constraints allow.
4727 *
4728 * NOTE: when a regulator consumer requests to have a regulator
4729 * disabled then any load that consumer requested no longer counts
4730 * toward the total requested load. If the regulator is re-enabled
4731 * then the previously requested load will start counting again.
4732 *
4733 * If a regulator is an always-on regulator then an individual consumer's
4734 * load will still be removed if that consumer is fully disabled.
4735 *
4736 * On error a negative errno is returned.
4737 */
regulator_set_load(struct regulator * regulator,int uA_load)4738 int regulator_set_load(struct regulator *regulator, int uA_load)
4739 {
4740 struct regulator_dev *rdev = regulator->rdev;
4741 int old_uA_load;
4742 int ret = 0;
4743
4744 regulator_lock(rdev);
4745 old_uA_load = regulator->uA_load;
4746 regulator->uA_load = uA_load;
4747 if (regulator->enable_count && old_uA_load != uA_load) {
4748 ret = drms_uA_update(rdev);
4749 if (ret < 0)
4750 regulator->uA_load = old_uA_load;
4751 }
4752 regulator_unlock(rdev);
4753
4754 return ret;
4755 }
4756 EXPORT_SYMBOL_GPL(regulator_set_load);
4757
4758 /**
4759 * regulator_allow_bypass - allow the regulator to go into bypass mode
4760 *
4761 * @regulator: Regulator to configure
4762 * @enable: enable or disable bypass mode
4763 *
4764 * Allow the regulator to go into bypass mode if all other consumers
4765 * for the regulator also enable bypass mode and the machine
4766 * constraints allow this. Bypass mode means that the regulator is
4767 * simply passing the input directly to the output with no regulation.
4768 */
regulator_allow_bypass(struct regulator * regulator,bool enable)4769 int regulator_allow_bypass(struct regulator *regulator, bool enable)
4770 {
4771 struct regulator_dev *rdev = regulator->rdev;
4772 const char *name = rdev_get_name(rdev);
4773 int ret = 0;
4774
4775 if (!rdev->desc->ops->set_bypass)
4776 return 0;
4777
4778 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_BYPASS))
4779 return 0;
4780
4781 regulator_lock(rdev);
4782
4783 if (enable && !regulator->bypass) {
4784 rdev->bypass_count++;
4785
4786 if (rdev->bypass_count == rdev->open_count) {
4787 trace_regulator_bypass_enable(name);
4788
4789 ret = rdev->desc->ops->set_bypass(rdev, enable);
4790 if (ret != 0)
4791 rdev->bypass_count--;
4792 else
4793 trace_regulator_bypass_enable_complete(name);
4794 }
4795
4796 } else if (!enable && regulator->bypass) {
4797 rdev->bypass_count--;
4798
4799 if (rdev->bypass_count != rdev->open_count) {
4800 trace_regulator_bypass_disable(name);
4801
4802 ret = rdev->desc->ops->set_bypass(rdev, enable);
4803 if (ret != 0)
4804 rdev->bypass_count++;
4805 else
4806 trace_regulator_bypass_disable_complete(name);
4807 }
4808 }
4809
4810 if (ret == 0)
4811 regulator->bypass = enable;
4812
4813 regulator_unlock(rdev);
4814
4815 return ret;
4816 }
4817 EXPORT_SYMBOL_GPL(regulator_allow_bypass);
4818
4819 /**
4820 * regulator_register_notifier - register regulator event notifier
4821 * @regulator: regulator source
4822 * @nb: notifier block
4823 *
4824 * Register notifier block to receive regulator events.
4825 */
regulator_register_notifier(struct regulator * regulator,struct notifier_block * nb)4826 int regulator_register_notifier(struct regulator *regulator,
4827 struct notifier_block *nb)
4828 {
4829 return blocking_notifier_chain_register(®ulator->rdev->notifier,
4830 nb);
4831 }
4832 EXPORT_SYMBOL_GPL(regulator_register_notifier);
4833
4834 /**
4835 * regulator_unregister_notifier - unregister regulator event notifier
4836 * @regulator: regulator source
4837 * @nb: notifier block
4838 *
4839 * Unregister regulator event notifier block.
4840 */
regulator_unregister_notifier(struct regulator * regulator,struct notifier_block * nb)4841 int regulator_unregister_notifier(struct regulator *regulator,
4842 struct notifier_block *nb)
4843 {
4844 return blocking_notifier_chain_unregister(®ulator->rdev->notifier,
4845 nb);
4846 }
4847 EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
4848
4849 /* notify regulator consumers and downstream regulator consumers.
4850 * Note mutex must be held by caller.
4851 */
_notifier_call_chain(struct regulator_dev * rdev,unsigned long event,void * data)4852 static int _notifier_call_chain(struct regulator_dev *rdev,
4853 unsigned long event, void *data)
4854 {
4855 /* call rdev chain first */
4856 return blocking_notifier_call_chain(&rdev->notifier, event, data);
4857 }
4858
_regulator_bulk_get(struct device * dev,int num_consumers,struct regulator_bulk_data * consumers,enum regulator_get_type get_type)4859 int _regulator_bulk_get(struct device *dev, int num_consumers,
4860 struct regulator_bulk_data *consumers, enum regulator_get_type get_type)
4861 {
4862 int i;
4863 int ret;
4864
4865 for (i = 0; i < num_consumers; i++)
4866 consumers[i].consumer = NULL;
4867
4868 for (i = 0; i < num_consumers; i++) {
4869 consumers[i].consumer = _regulator_get(dev,
4870 consumers[i].supply, get_type);
4871 if (IS_ERR(consumers[i].consumer)) {
4872 ret = dev_err_probe(dev, PTR_ERR(consumers[i].consumer),
4873 "Failed to get supply '%s'",
4874 consumers[i].supply);
4875 consumers[i].consumer = NULL;
4876 goto err;
4877 }
4878
4879 if (consumers[i].init_load_uA > 0) {
4880 ret = regulator_set_load(consumers[i].consumer,
4881 consumers[i].init_load_uA);
4882 if (ret) {
4883 i++;
4884 goto err;
4885 }
4886 }
4887 }
4888
4889 return 0;
4890
4891 err:
4892 while (--i >= 0)
4893 regulator_put(consumers[i].consumer);
4894
4895 return ret;
4896 }
4897
4898 /**
4899 * regulator_bulk_get - get multiple regulator consumers
4900 *
4901 * @dev: Device to supply
4902 * @num_consumers: Number of consumers to register
4903 * @consumers: Configuration of consumers; clients are stored here.
4904 *
4905 * @return 0 on success, an errno on failure.
4906 *
4907 * This helper function allows drivers to get several regulator
4908 * consumers in one operation. If any of the regulators cannot be
4909 * acquired then any regulators that were allocated will be freed
4910 * before returning to the caller.
4911 */
regulator_bulk_get(struct device * dev,int num_consumers,struct regulator_bulk_data * consumers)4912 int regulator_bulk_get(struct device *dev, int num_consumers,
4913 struct regulator_bulk_data *consumers)
4914 {
4915 return _regulator_bulk_get(dev, num_consumers, consumers, NORMAL_GET);
4916 }
4917 EXPORT_SYMBOL_GPL(regulator_bulk_get);
4918
regulator_bulk_enable_async(void * data,async_cookie_t cookie)4919 static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
4920 {
4921 struct regulator_bulk_data *bulk = data;
4922
4923 bulk->ret = regulator_enable(bulk->consumer);
4924 }
4925
4926 /**
4927 * regulator_bulk_enable - enable multiple regulator consumers
4928 *
4929 * @num_consumers: Number of consumers
4930 * @consumers: Consumer data; clients are stored here.
4931 * @return 0 on success, an errno on failure
4932 *
4933 * This convenience API allows consumers to enable multiple regulator
4934 * clients in a single API call. If any consumers cannot be enabled
4935 * then any others that were enabled will be disabled again prior to
4936 * return.
4937 */
regulator_bulk_enable(int num_consumers,struct regulator_bulk_data * consumers)4938 int regulator_bulk_enable(int num_consumers,
4939 struct regulator_bulk_data *consumers)
4940 {
4941 ASYNC_DOMAIN_EXCLUSIVE(async_domain);
4942 int i;
4943 int ret = 0;
4944
4945 for (i = 0; i < num_consumers; i++) {
4946 async_schedule_domain(regulator_bulk_enable_async,
4947 &consumers[i], &async_domain);
4948 }
4949
4950 async_synchronize_full_domain(&async_domain);
4951
4952 /* If any consumer failed we need to unwind any that succeeded */
4953 for (i = 0; i < num_consumers; i++) {
4954 if (consumers[i].ret != 0) {
4955 ret = consumers[i].ret;
4956 goto err;
4957 }
4958 }
4959
4960 return 0;
4961
4962 err:
4963 for (i = 0; i < num_consumers; i++) {
4964 if (consumers[i].ret < 0)
4965 pr_err("Failed to enable %s: %pe\n", consumers[i].supply,
4966 ERR_PTR(consumers[i].ret));
4967 else
4968 regulator_disable(consumers[i].consumer);
4969 }
4970
4971 return ret;
4972 }
4973 EXPORT_SYMBOL_GPL(regulator_bulk_enable);
4974
4975 /**
4976 * regulator_bulk_disable - disable multiple regulator consumers
4977 *
4978 * @num_consumers: Number of consumers
4979 * @consumers: Consumer data; clients are stored here.
4980 * @return 0 on success, an errno on failure
4981 *
4982 * This convenience API allows consumers to disable multiple regulator
4983 * clients in a single API call. If any consumers cannot be disabled
4984 * then any others that were disabled will be enabled again prior to
4985 * return.
4986 */
regulator_bulk_disable(int num_consumers,struct regulator_bulk_data * consumers)4987 int regulator_bulk_disable(int num_consumers,
4988 struct regulator_bulk_data *consumers)
4989 {
4990 int i;
4991 int ret, r;
4992
4993 for (i = num_consumers - 1; i >= 0; --i) {
4994 ret = regulator_disable(consumers[i].consumer);
4995 if (ret != 0)
4996 goto err;
4997 }
4998
4999 return 0;
5000
5001 err:
5002 pr_err("Failed to disable %s: %pe\n", consumers[i].supply, ERR_PTR(ret));
5003 for (++i; i < num_consumers; ++i) {
5004 r = regulator_enable(consumers[i].consumer);
5005 if (r != 0)
5006 pr_err("Failed to re-enable %s: %pe\n",
5007 consumers[i].supply, ERR_PTR(r));
5008 }
5009
5010 return ret;
5011 }
5012 EXPORT_SYMBOL_GPL(regulator_bulk_disable);
5013
5014 /**
5015 * regulator_bulk_force_disable - force disable multiple regulator consumers
5016 *
5017 * @num_consumers: Number of consumers
5018 * @consumers: Consumer data; clients are stored here.
5019 * @return 0 on success, an errno on failure
5020 *
5021 * This convenience API allows consumers to forcibly disable multiple regulator
5022 * clients in a single API call.
5023 * NOTE: This should be used for situations when device damage will
5024 * likely occur if the regulators are not disabled (e.g. over temp).
5025 * Although regulator_force_disable function call for some consumers can
5026 * return error numbers, the function is called for all consumers.
5027 */
regulator_bulk_force_disable(int num_consumers,struct regulator_bulk_data * consumers)5028 int regulator_bulk_force_disable(int num_consumers,
5029 struct regulator_bulk_data *consumers)
5030 {
5031 int i;
5032 int ret = 0;
5033
5034 for (i = 0; i < num_consumers; i++) {
5035 consumers[i].ret =
5036 regulator_force_disable(consumers[i].consumer);
5037
5038 /* Store first error for reporting */
5039 if (consumers[i].ret && !ret)
5040 ret = consumers[i].ret;
5041 }
5042
5043 return ret;
5044 }
5045 EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
5046
5047 /**
5048 * regulator_bulk_free - free multiple regulator consumers
5049 *
5050 * @num_consumers: Number of consumers
5051 * @consumers: Consumer data; clients are stored here.
5052 *
5053 * This convenience API allows consumers to free multiple regulator
5054 * clients in a single API call.
5055 */
regulator_bulk_free(int num_consumers,struct regulator_bulk_data * consumers)5056 void regulator_bulk_free(int num_consumers,
5057 struct regulator_bulk_data *consumers)
5058 {
5059 int i;
5060
5061 for (i = 0; i < num_consumers; i++) {
5062 regulator_put(consumers[i].consumer);
5063 consumers[i].consumer = NULL;
5064 }
5065 }
5066 EXPORT_SYMBOL_GPL(regulator_bulk_free);
5067
5068 /**
5069 * regulator_notifier_call_chain - call regulator event notifier
5070 * @rdev: regulator source
5071 * @event: notifier block
5072 * @data: callback-specific data.
5073 *
5074 * Called by regulator drivers to notify clients a regulator event has
5075 * occurred.
5076 */
regulator_notifier_call_chain(struct regulator_dev * rdev,unsigned long event,void * data)5077 int regulator_notifier_call_chain(struct regulator_dev *rdev,
5078 unsigned long event, void *data)
5079 {
5080 _notifier_call_chain(rdev, event, data);
5081 return NOTIFY_DONE;
5082
5083 }
5084 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
5085
5086 /**
5087 * regulator_mode_to_status - convert a regulator mode into a status
5088 *
5089 * @mode: Mode to convert
5090 *
5091 * Convert a regulator mode into a status.
5092 */
regulator_mode_to_status(unsigned int mode)5093 int regulator_mode_to_status(unsigned int mode)
5094 {
5095 switch (mode) {
5096 case REGULATOR_MODE_FAST:
5097 return REGULATOR_STATUS_FAST;
5098 case REGULATOR_MODE_NORMAL:
5099 return REGULATOR_STATUS_NORMAL;
5100 case REGULATOR_MODE_IDLE:
5101 return REGULATOR_STATUS_IDLE;
5102 case REGULATOR_MODE_STANDBY:
5103 return REGULATOR_STATUS_STANDBY;
5104 default:
5105 return REGULATOR_STATUS_UNDEFINED;
5106 }
5107 }
5108 EXPORT_SYMBOL_GPL(regulator_mode_to_status);
5109
5110 static struct attribute *regulator_dev_attrs[] = {
5111 &dev_attr_name.attr,
5112 &dev_attr_num_users.attr,
5113 &dev_attr_type.attr,
5114 &dev_attr_microvolts.attr,
5115 &dev_attr_microamps.attr,
5116 &dev_attr_opmode.attr,
5117 &dev_attr_state.attr,
5118 &dev_attr_status.attr,
5119 &dev_attr_bypass.attr,
5120 &dev_attr_requested_microamps.attr,
5121 &dev_attr_min_microvolts.attr,
5122 &dev_attr_max_microvolts.attr,
5123 &dev_attr_min_microamps.attr,
5124 &dev_attr_max_microamps.attr,
5125 &dev_attr_under_voltage.attr,
5126 &dev_attr_over_current.attr,
5127 &dev_attr_regulation_out.attr,
5128 &dev_attr_fail.attr,
5129 &dev_attr_over_temp.attr,
5130 &dev_attr_under_voltage_warn.attr,
5131 &dev_attr_over_current_warn.attr,
5132 &dev_attr_over_voltage_warn.attr,
5133 &dev_attr_over_temp_warn.attr,
5134 &dev_attr_suspend_standby_state.attr,
5135 &dev_attr_suspend_mem_state.attr,
5136 &dev_attr_suspend_disk_state.attr,
5137 &dev_attr_suspend_standby_microvolts.attr,
5138 &dev_attr_suspend_mem_microvolts.attr,
5139 &dev_attr_suspend_disk_microvolts.attr,
5140 &dev_attr_suspend_standby_mode.attr,
5141 &dev_attr_suspend_mem_mode.attr,
5142 &dev_attr_suspend_disk_mode.attr,
5143 NULL
5144 };
5145
5146 /*
5147 * To avoid cluttering sysfs (and memory) with useless state, only
5148 * create attributes that can be meaningfully displayed.
5149 */
regulator_attr_is_visible(struct kobject * kobj,struct attribute * attr,int idx)5150 static umode_t regulator_attr_is_visible(struct kobject *kobj,
5151 struct attribute *attr, int idx)
5152 {
5153 struct device *dev = kobj_to_dev(kobj);
5154 struct regulator_dev *rdev = dev_to_rdev(dev);
5155 const struct regulator_ops *ops = rdev->desc->ops;
5156 umode_t mode = attr->mode;
5157
5158 /* these three are always present */
5159 if (attr == &dev_attr_name.attr ||
5160 attr == &dev_attr_num_users.attr ||
5161 attr == &dev_attr_type.attr)
5162 return mode;
5163
5164 /* some attributes need specific methods to be displayed */
5165 if (attr == &dev_attr_microvolts.attr) {
5166 if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
5167 (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
5168 (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) ||
5169 (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1))
5170 return mode;
5171 return 0;
5172 }
5173
5174 if (attr == &dev_attr_microamps.attr)
5175 return ops->get_current_limit ? mode : 0;
5176
5177 if (attr == &dev_attr_opmode.attr)
5178 return ops->get_mode ? mode : 0;
5179
5180 if (attr == &dev_attr_state.attr)
5181 return (rdev->ena_pin || ops->is_enabled) ? mode : 0;
5182
5183 if (attr == &dev_attr_status.attr)
5184 return ops->get_status ? mode : 0;
5185
5186 if (attr == &dev_attr_bypass.attr)
5187 return ops->get_bypass ? mode : 0;
5188
5189 if (attr == &dev_attr_under_voltage.attr ||
5190 attr == &dev_attr_over_current.attr ||
5191 attr == &dev_attr_regulation_out.attr ||
5192 attr == &dev_attr_fail.attr ||
5193 attr == &dev_attr_over_temp.attr ||
5194 attr == &dev_attr_under_voltage_warn.attr ||
5195 attr == &dev_attr_over_current_warn.attr ||
5196 attr == &dev_attr_over_voltage_warn.attr ||
5197 attr == &dev_attr_over_temp_warn.attr)
5198 return ops->get_error_flags ? mode : 0;
5199
5200 /* constraints need specific supporting methods */
5201 if (attr == &dev_attr_min_microvolts.attr ||
5202 attr == &dev_attr_max_microvolts.attr)
5203 return (ops->set_voltage || ops->set_voltage_sel) ? mode : 0;
5204
5205 if (attr == &dev_attr_min_microamps.attr ||
5206 attr == &dev_attr_max_microamps.attr)
5207 return ops->set_current_limit ? mode : 0;
5208
5209 if (attr == &dev_attr_suspend_standby_state.attr ||
5210 attr == &dev_attr_suspend_mem_state.attr ||
5211 attr == &dev_attr_suspend_disk_state.attr)
5212 return mode;
5213
5214 if (attr == &dev_attr_suspend_standby_microvolts.attr ||
5215 attr == &dev_attr_suspend_mem_microvolts.attr ||
5216 attr == &dev_attr_suspend_disk_microvolts.attr)
5217 return ops->set_suspend_voltage ? mode : 0;
5218
5219 if (attr == &dev_attr_suspend_standby_mode.attr ||
5220 attr == &dev_attr_suspend_mem_mode.attr ||
5221 attr == &dev_attr_suspend_disk_mode.attr)
5222 return ops->set_suspend_mode ? mode : 0;
5223
5224 return mode;
5225 }
5226
5227 static const struct attribute_group regulator_dev_group = {
5228 .attrs = regulator_dev_attrs,
5229 .is_visible = regulator_attr_is_visible,
5230 };
5231
5232 static const struct attribute_group *regulator_dev_groups[] = {
5233 ®ulator_dev_group,
5234 NULL
5235 };
5236
regulator_dev_release(struct device * dev)5237 static void regulator_dev_release(struct device *dev)
5238 {
5239 struct regulator_dev *rdev = dev_get_drvdata(dev);
5240
5241 debugfs_remove_recursive(rdev->debugfs);
5242 kfree(rdev->constraints);
5243 of_node_put(rdev->dev.of_node);
5244 kfree(rdev);
5245 }
5246
rdev_init_debugfs(struct regulator_dev * rdev)5247 static void rdev_init_debugfs(struct regulator_dev *rdev)
5248 {
5249 struct device *parent = rdev->dev.parent;
5250 const char *rname = rdev_get_name(rdev);
5251 char name[NAME_MAX];
5252
5253 /* Avoid duplicate debugfs directory names */
5254 if (parent && rname == rdev->desc->name) {
5255 snprintf(name, sizeof(name), "%s-%s", dev_name(parent),
5256 rname);
5257 rname = name;
5258 }
5259
5260 rdev->debugfs = debugfs_create_dir(rname, debugfs_root);
5261 if (IS_ERR(rdev->debugfs))
5262 rdev_dbg(rdev, "Failed to create debugfs directory\n");
5263
5264 debugfs_create_u32("use_count", 0444, rdev->debugfs,
5265 &rdev->use_count);
5266 debugfs_create_u32("open_count", 0444, rdev->debugfs,
5267 &rdev->open_count);
5268 debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
5269 &rdev->bypass_count);
5270 }
5271
regulator_register_resolve_supply(struct device * dev,void * data)5272 static int regulator_register_resolve_supply(struct device *dev, void *data)
5273 {
5274 struct regulator_dev *rdev = dev_to_rdev(dev);
5275
5276 if (regulator_resolve_supply(rdev))
5277 rdev_dbg(rdev, "unable to resolve supply\n");
5278
5279 return 0;
5280 }
5281
regulator_coupler_register(struct regulator_coupler * coupler)5282 int regulator_coupler_register(struct regulator_coupler *coupler)
5283 {
5284 mutex_lock(®ulator_list_mutex);
5285 list_add_tail(&coupler->list, ®ulator_coupler_list);
5286 mutex_unlock(®ulator_list_mutex);
5287
5288 return 0;
5289 }
5290
5291 static struct regulator_coupler *
regulator_find_coupler(struct regulator_dev * rdev)5292 regulator_find_coupler(struct regulator_dev *rdev)
5293 {
5294 struct regulator_coupler *coupler;
5295 int err;
5296
5297 /*
5298 * Note that regulators are appended to the list and the generic
5299 * coupler is registered first, hence it will be attached at last
5300 * if nobody cared.
5301 */
5302 list_for_each_entry_reverse(coupler, ®ulator_coupler_list, list) {
5303 err = coupler->attach_regulator(coupler, rdev);
5304 if (!err) {
5305 if (!coupler->balance_voltage &&
5306 rdev->coupling_desc.n_coupled > 2)
5307 goto err_unsupported;
5308
5309 return coupler;
5310 }
5311
5312 if (err < 0)
5313 return ERR_PTR(err);
5314
5315 if (err == 1)
5316 continue;
5317
5318 break;
5319 }
5320
5321 return ERR_PTR(-EINVAL);
5322
5323 err_unsupported:
5324 if (coupler->detach_regulator)
5325 coupler->detach_regulator(coupler, rdev);
5326
5327 rdev_err(rdev,
5328 "Voltage balancing for multiple regulator couples is unimplemented\n");
5329
5330 return ERR_PTR(-EPERM);
5331 }
5332
regulator_resolve_coupling(struct regulator_dev * rdev)5333 static void regulator_resolve_coupling(struct regulator_dev *rdev)
5334 {
5335 struct regulator_coupler *coupler = rdev->coupling_desc.coupler;
5336 struct coupling_desc *c_desc = &rdev->coupling_desc;
5337 int n_coupled = c_desc->n_coupled;
5338 struct regulator_dev *c_rdev;
5339 int i;
5340
5341 for (i = 1; i < n_coupled; i++) {
5342 /* already resolved */
5343 if (c_desc->coupled_rdevs[i])
5344 continue;
5345
5346 c_rdev = of_parse_coupled_regulator(rdev, i - 1);
5347
5348 if (!c_rdev)
5349 continue;
5350
5351 if (c_rdev->coupling_desc.coupler != coupler) {
5352 rdev_err(rdev, "coupler mismatch with %s\n",
5353 rdev_get_name(c_rdev));
5354 return;
5355 }
5356
5357 c_desc->coupled_rdevs[i] = c_rdev;
5358 c_desc->n_resolved++;
5359
5360 regulator_resolve_coupling(c_rdev);
5361 }
5362 }
5363
regulator_remove_coupling(struct regulator_dev * rdev)5364 static void regulator_remove_coupling(struct regulator_dev *rdev)
5365 {
5366 struct regulator_coupler *coupler = rdev->coupling_desc.coupler;
5367 struct coupling_desc *__c_desc, *c_desc = &rdev->coupling_desc;
5368 struct regulator_dev *__c_rdev, *c_rdev;
5369 unsigned int __n_coupled, n_coupled;
5370 int i, k;
5371 int err;
5372
5373 n_coupled = c_desc->n_coupled;
5374
5375 for (i = 1; i < n_coupled; i++) {
5376 c_rdev = c_desc->coupled_rdevs[i];
5377
5378 if (!c_rdev)
5379 continue;
5380
5381 regulator_lock(c_rdev);
5382
5383 __c_desc = &c_rdev->coupling_desc;
5384 __n_coupled = __c_desc->n_coupled;
5385
5386 for (k = 1; k < __n_coupled; k++) {
5387 __c_rdev = __c_desc->coupled_rdevs[k];
5388
5389 if (__c_rdev == rdev) {
5390 __c_desc->coupled_rdevs[k] = NULL;
5391 __c_desc->n_resolved--;
5392 break;
5393 }
5394 }
5395
5396 regulator_unlock(c_rdev);
5397
5398 c_desc->coupled_rdevs[i] = NULL;
5399 c_desc->n_resolved--;
5400 }
5401
5402 if (coupler && coupler->detach_regulator) {
5403 err = coupler->detach_regulator(coupler, rdev);
5404 if (err)
5405 rdev_err(rdev, "failed to detach from coupler: %pe\n",
5406 ERR_PTR(err));
5407 }
5408
5409 kfree(rdev->coupling_desc.coupled_rdevs);
5410 rdev->coupling_desc.coupled_rdevs = NULL;
5411 }
5412
regulator_init_coupling(struct regulator_dev * rdev)5413 static int regulator_init_coupling(struct regulator_dev *rdev)
5414 {
5415 struct regulator_dev **coupled;
5416 int err, n_phandles;
5417
5418 if (!IS_ENABLED(CONFIG_OF))
5419 n_phandles = 0;
5420 else
5421 n_phandles = of_get_n_coupled(rdev);
5422
5423 coupled = kcalloc(n_phandles + 1, sizeof(*coupled), GFP_KERNEL);
5424 if (!coupled)
5425 return -ENOMEM;
5426
5427 rdev->coupling_desc.coupled_rdevs = coupled;
5428
5429 /*
5430 * Every regulator should always have coupling descriptor filled with
5431 * at least pointer to itself.
5432 */
5433 rdev->coupling_desc.coupled_rdevs[0] = rdev;
5434 rdev->coupling_desc.n_coupled = n_phandles + 1;
5435 rdev->coupling_desc.n_resolved++;
5436
5437 /* regulator isn't coupled */
5438 if (n_phandles == 0)
5439 return 0;
5440
5441 if (!of_check_coupling_data(rdev))
5442 return -EPERM;
5443
5444 mutex_lock(®ulator_list_mutex);
5445 rdev->coupling_desc.coupler = regulator_find_coupler(rdev);
5446 mutex_unlock(®ulator_list_mutex);
5447
5448 if (IS_ERR(rdev->coupling_desc.coupler)) {
5449 err = PTR_ERR(rdev->coupling_desc.coupler);
5450 rdev_err(rdev, "failed to get coupler: %pe\n", ERR_PTR(err));
5451 return err;
5452 }
5453
5454 return 0;
5455 }
5456
generic_coupler_attach(struct regulator_coupler * coupler,struct regulator_dev * rdev)5457 static int generic_coupler_attach(struct regulator_coupler *coupler,
5458 struct regulator_dev *rdev)
5459 {
5460 if (rdev->coupling_desc.n_coupled > 2) {
5461 rdev_err(rdev,
5462 "Voltage balancing for multiple regulator couples is unimplemented\n");
5463 return -EPERM;
5464 }
5465
5466 if (!rdev->constraints->always_on) {
5467 rdev_err(rdev,
5468 "Coupling of a non always-on regulator is unimplemented\n");
5469 return -ENOTSUPP;
5470 }
5471
5472 return 0;
5473 }
5474
5475 static struct regulator_coupler generic_regulator_coupler = {
5476 .attach_regulator = generic_coupler_attach,
5477 };
5478
5479 /**
5480 * regulator_register - register regulator
5481 * @dev: the device that drive the regulator
5482 * @regulator_desc: regulator to register
5483 * @cfg: runtime configuration for regulator
5484 *
5485 * Called by regulator drivers to register a regulator.
5486 * Returns a valid pointer to struct regulator_dev on success
5487 * or an ERR_PTR() on error.
5488 */
5489 struct regulator_dev *
regulator_register(struct device * dev,const struct regulator_desc * regulator_desc,const struct regulator_config * cfg)5490 regulator_register(struct device *dev,
5491 const struct regulator_desc *regulator_desc,
5492 const struct regulator_config *cfg)
5493 {
5494 const struct regulator_init_data *init_data;
5495 struct regulator_config *config = NULL;
5496 static atomic_t regulator_no = ATOMIC_INIT(-1);
5497 struct regulator_dev *rdev;
5498 bool dangling_cfg_gpiod = false;
5499 bool dangling_of_gpiod = false;
5500 int ret, i;
5501 bool resolved_early = false;
5502
5503 if (cfg == NULL)
5504 return ERR_PTR(-EINVAL);
5505 if (cfg->ena_gpiod)
5506 dangling_cfg_gpiod = true;
5507 if (regulator_desc == NULL) {
5508 ret = -EINVAL;
5509 goto rinse;
5510 }
5511
5512 WARN_ON(!dev || !cfg->dev);
5513
5514 if (regulator_desc->name == NULL || regulator_desc->ops == NULL) {
5515 ret = -EINVAL;
5516 goto rinse;
5517 }
5518
5519 if (regulator_desc->type != REGULATOR_VOLTAGE &&
5520 regulator_desc->type != REGULATOR_CURRENT) {
5521 ret = -EINVAL;
5522 goto rinse;
5523 }
5524
5525 /* Only one of each should be implemented */
5526 WARN_ON(regulator_desc->ops->get_voltage &&
5527 regulator_desc->ops->get_voltage_sel);
5528 WARN_ON(regulator_desc->ops->set_voltage &&
5529 regulator_desc->ops->set_voltage_sel);
5530
5531 /* If we're using selectors we must implement list_voltage. */
5532 if (regulator_desc->ops->get_voltage_sel &&
5533 !regulator_desc->ops->list_voltage) {
5534 ret = -EINVAL;
5535 goto rinse;
5536 }
5537 if (regulator_desc->ops->set_voltage_sel &&
5538 !regulator_desc->ops->list_voltage) {
5539 ret = -EINVAL;
5540 goto rinse;
5541 }
5542
5543 rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
5544 if (rdev == NULL) {
5545 ret = -ENOMEM;
5546 goto rinse;
5547 }
5548 device_initialize(&rdev->dev);
5549 dev_set_drvdata(&rdev->dev, rdev);
5550 rdev->dev.class = ®ulator_class;
5551 spin_lock_init(&rdev->err_lock);
5552
5553 /*
5554 * Duplicate the config so the driver could override it after
5555 * parsing init data.
5556 */
5557 config = kmemdup(cfg, sizeof(*cfg), GFP_KERNEL);
5558 if (config == NULL) {
5559 ret = -ENOMEM;
5560 goto clean;
5561 }
5562
5563 init_data = regulator_of_get_init_data(dev, regulator_desc, config,
5564 &rdev->dev.of_node);
5565
5566 /*
5567 * Sometimes not all resources are probed already so we need to take
5568 * that into account. This happens most the time if the ena_gpiod comes
5569 * from a gpio extender or something else.
5570 */
5571 if (PTR_ERR(init_data) == -EPROBE_DEFER) {
5572 ret = -EPROBE_DEFER;
5573 goto clean;
5574 }
5575
5576 /*
5577 * We need to keep track of any GPIO descriptor coming from the
5578 * device tree until we have handled it over to the core. If the
5579 * config that was passed in to this function DOES NOT contain
5580 * a descriptor, and the config after this call DOES contain
5581 * a descriptor, we definitely got one from parsing the device
5582 * tree.
5583 */
5584 if (!cfg->ena_gpiod && config->ena_gpiod)
5585 dangling_of_gpiod = true;
5586 if (!init_data) {
5587 init_data = config->init_data;
5588 rdev->dev.of_node = of_node_get(config->of_node);
5589 }
5590
5591 ww_mutex_init(&rdev->mutex, ®ulator_ww_class);
5592 rdev->reg_data = config->driver_data;
5593 rdev->owner = regulator_desc->owner;
5594 rdev->desc = regulator_desc;
5595 if (config->regmap)
5596 rdev->regmap = config->regmap;
5597 else if (dev_get_regmap(dev, NULL))
5598 rdev->regmap = dev_get_regmap(dev, NULL);
5599 else if (dev->parent)
5600 rdev->regmap = dev_get_regmap(dev->parent, NULL);
5601 INIT_LIST_HEAD(&rdev->consumer_list);
5602 INIT_LIST_HEAD(&rdev->list);
5603 BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
5604 INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
5605
5606 if (init_data && init_data->supply_regulator)
5607 rdev->supply_name = init_data->supply_regulator;
5608 else if (regulator_desc->supply_name)
5609 rdev->supply_name = regulator_desc->supply_name;
5610
5611 /* register with sysfs */
5612 rdev->dev.parent = config->dev;
5613 dev_set_name(&rdev->dev, "regulator.%lu",
5614 (unsigned long) atomic_inc_return(®ulator_no));
5615
5616 /* set regulator constraints */
5617 if (init_data)
5618 rdev->constraints = kmemdup(&init_data->constraints,
5619 sizeof(*rdev->constraints),
5620 GFP_KERNEL);
5621 else
5622 rdev->constraints = kzalloc(sizeof(*rdev->constraints),
5623 GFP_KERNEL);
5624 if (!rdev->constraints) {
5625 ret = -ENOMEM;
5626 goto wash;
5627 }
5628
5629 if ((rdev->supply_name && !rdev->supply) &&
5630 (rdev->constraints->always_on ||
5631 rdev->constraints->boot_on)) {
5632 ret = regulator_resolve_supply(rdev);
5633 if (ret)
5634 rdev_dbg(rdev, "unable to resolve supply early: %pe\n",
5635 ERR_PTR(ret));
5636
5637 resolved_early = true;
5638 }
5639
5640 /* perform any regulator specific init */
5641 if (init_data && init_data->regulator_init) {
5642 ret = init_data->regulator_init(rdev->reg_data);
5643 if (ret < 0)
5644 goto wash;
5645 }
5646
5647 if (config->ena_gpiod) {
5648 ret = regulator_ena_gpio_request(rdev, config);
5649 if (ret != 0) {
5650 rdev_err(rdev, "Failed to request enable GPIO: %pe\n",
5651 ERR_PTR(ret));
5652 goto wash;
5653 }
5654 /* The regulator core took over the GPIO descriptor */
5655 dangling_cfg_gpiod = false;
5656 dangling_of_gpiod = false;
5657 }
5658
5659 ret = set_machine_constraints(rdev);
5660 if (ret == -EPROBE_DEFER && !resolved_early) {
5661 /* Regulator might be in bypass mode and so needs its supply
5662 * to set the constraints
5663 */
5664 /* FIXME: this currently triggers a chicken-and-egg problem
5665 * when creating -SUPPLY symlink in sysfs to a regulator
5666 * that is just being created
5667 */
5668 rdev_dbg(rdev, "will resolve supply early: %s\n",
5669 rdev->supply_name);
5670 ret = regulator_resolve_supply(rdev);
5671 if (!ret)
5672 ret = set_machine_constraints(rdev);
5673 else
5674 rdev_dbg(rdev, "unable to resolve supply early: %pe\n",
5675 ERR_PTR(ret));
5676 }
5677 if (ret < 0)
5678 goto wash;
5679
5680 ret = regulator_init_coupling(rdev);
5681 if (ret < 0)
5682 goto wash;
5683
5684 /* add consumers devices */
5685 if (init_data) {
5686 for (i = 0; i < init_data->num_consumer_supplies; i++) {
5687 ret = set_consumer_device_supply(rdev,
5688 init_data->consumer_supplies[i].dev_name,
5689 init_data->consumer_supplies[i].supply);
5690 if (ret < 0) {
5691 dev_err(dev, "Failed to set supply %s\n",
5692 init_data->consumer_supplies[i].supply);
5693 goto unset_supplies;
5694 }
5695 }
5696 }
5697
5698 if (!rdev->desc->ops->get_voltage &&
5699 !rdev->desc->ops->list_voltage &&
5700 !rdev->desc->fixed_uV)
5701 rdev->is_switch = true;
5702
5703 ret = device_add(&rdev->dev);
5704 if (ret != 0)
5705 goto unset_supplies;
5706
5707 rdev_init_debugfs(rdev);
5708
5709 /* try to resolve regulators coupling since a new one was registered */
5710 mutex_lock(®ulator_list_mutex);
5711 regulator_resolve_coupling(rdev);
5712 mutex_unlock(®ulator_list_mutex);
5713
5714 /* try to resolve regulators supply since a new one was registered */
5715 class_for_each_device(®ulator_class, NULL, NULL,
5716 regulator_register_resolve_supply);
5717 kfree(config);
5718 return rdev;
5719
5720 unset_supplies:
5721 mutex_lock(®ulator_list_mutex);
5722 unset_regulator_supplies(rdev);
5723 regulator_remove_coupling(rdev);
5724 mutex_unlock(®ulator_list_mutex);
5725 wash:
5726 regulator_put(rdev->supply);
5727 kfree(rdev->coupling_desc.coupled_rdevs);
5728 mutex_lock(®ulator_list_mutex);
5729 regulator_ena_gpio_free(rdev);
5730 mutex_unlock(®ulator_list_mutex);
5731 clean:
5732 if (dangling_of_gpiod)
5733 gpiod_put(config->ena_gpiod);
5734 kfree(config);
5735 put_device(&rdev->dev);
5736 rinse:
5737 if (dangling_cfg_gpiod)
5738 gpiod_put(cfg->ena_gpiod);
5739 return ERR_PTR(ret);
5740 }
5741 EXPORT_SYMBOL_GPL(regulator_register);
5742
5743 /**
5744 * regulator_unregister - unregister regulator
5745 * @rdev: regulator to unregister
5746 *
5747 * Called by regulator drivers to unregister a regulator.
5748 */
regulator_unregister(struct regulator_dev * rdev)5749 void regulator_unregister(struct regulator_dev *rdev)
5750 {
5751 if (rdev == NULL)
5752 return;
5753
5754 if (rdev->supply) {
5755 while (rdev->use_count--)
5756 regulator_disable(rdev->supply);
5757 regulator_put(rdev->supply);
5758 }
5759
5760 flush_work(&rdev->disable_work.work);
5761
5762 mutex_lock(®ulator_list_mutex);
5763
5764 WARN_ON(rdev->open_count);
5765 regulator_remove_coupling(rdev);
5766 unset_regulator_supplies(rdev);
5767 list_del(&rdev->list);
5768 regulator_ena_gpio_free(rdev);
5769 device_unregister(&rdev->dev);
5770
5771 mutex_unlock(®ulator_list_mutex);
5772 }
5773 EXPORT_SYMBOL_GPL(regulator_unregister);
5774
5775 #ifdef CONFIG_SUSPEND
5776 /**
5777 * regulator_suspend - prepare regulators for system wide suspend
5778 * @dev: ``&struct device`` pointer that is passed to _regulator_suspend()
5779 *
5780 * Configure each regulator with it's suspend operating parameters for state.
5781 */
regulator_suspend(struct device * dev)5782 static int regulator_suspend(struct device *dev)
5783 {
5784 struct regulator_dev *rdev = dev_to_rdev(dev);
5785 suspend_state_t state = pm_suspend_target_state;
5786 int ret;
5787 const struct regulator_state *rstate;
5788
5789 rstate = regulator_get_suspend_state_check(rdev, state);
5790 if (!rstate)
5791 return 0;
5792
5793 regulator_lock(rdev);
5794 ret = __suspend_set_state(rdev, rstate);
5795 regulator_unlock(rdev);
5796
5797 return ret;
5798 }
5799
regulator_resume(struct device * dev)5800 static int regulator_resume(struct device *dev)
5801 {
5802 suspend_state_t state = pm_suspend_target_state;
5803 struct regulator_dev *rdev = dev_to_rdev(dev);
5804 struct regulator_state *rstate;
5805 int ret = 0;
5806
5807 rstate = regulator_get_suspend_state(rdev, state);
5808 if (rstate == NULL)
5809 return 0;
5810
5811 /* Avoid grabbing the lock if we don't need to */
5812 if (!rdev->desc->ops->resume)
5813 return 0;
5814
5815 regulator_lock(rdev);
5816
5817 if (rstate->enabled == ENABLE_IN_SUSPEND ||
5818 rstate->enabled == DISABLE_IN_SUSPEND)
5819 ret = rdev->desc->ops->resume(rdev);
5820
5821 regulator_unlock(rdev);
5822
5823 return ret;
5824 }
5825 #else /* !CONFIG_SUSPEND */
5826
5827 #define regulator_suspend NULL
5828 #define regulator_resume NULL
5829
5830 #endif /* !CONFIG_SUSPEND */
5831
5832 #ifdef CONFIG_PM
5833 static const struct dev_pm_ops __maybe_unused regulator_pm_ops = {
5834 .suspend = regulator_suspend,
5835 .resume = regulator_resume,
5836 };
5837 #endif
5838
5839 struct class regulator_class = {
5840 .name = "regulator",
5841 .dev_release = regulator_dev_release,
5842 .dev_groups = regulator_dev_groups,
5843 #ifdef CONFIG_PM
5844 .pm = ®ulator_pm_ops,
5845 #endif
5846 };
5847 /**
5848 * regulator_has_full_constraints - the system has fully specified constraints
5849 *
5850 * Calling this function will cause the regulator API to disable all
5851 * regulators which have a zero use count and don't have an always_on
5852 * constraint in a late_initcall.
5853 *
5854 * The intention is that this will become the default behaviour in a
5855 * future kernel release so users are encouraged to use this facility
5856 * now.
5857 */
regulator_has_full_constraints(void)5858 void regulator_has_full_constraints(void)
5859 {
5860 has_full_constraints = 1;
5861 }
5862 EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
5863
5864 /**
5865 * rdev_get_drvdata - get rdev regulator driver data
5866 * @rdev: regulator
5867 *
5868 * Get rdev regulator driver private data. This call can be used in the
5869 * regulator driver context.
5870 */
rdev_get_drvdata(struct regulator_dev * rdev)5871 void *rdev_get_drvdata(struct regulator_dev *rdev)
5872 {
5873 return rdev->reg_data;
5874 }
5875 EXPORT_SYMBOL_GPL(rdev_get_drvdata);
5876
5877 /**
5878 * regulator_get_drvdata - get regulator driver data
5879 * @regulator: regulator
5880 *
5881 * Get regulator driver private data. This call can be used in the consumer
5882 * driver context when non API regulator specific functions need to be called.
5883 */
regulator_get_drvdata(struct regulator * regulator)5884 void *regulator_get_drvdata(struct regulator *regulator)
5885 {
5886 return regulator->rdev->reg_data;
5887 }
5888 EXPORT_SYMBOL_GPL(regulator_get_drvdata);
5889
5890 /**
5891 * regulator_set_drvdata - set regulator driver data
5892 * @regulator: regulator
5893 * @data: data
5894 */
regulator_set_drvdata(struct regulator * regulator,void * data)5895 void regulator_set_drvdata(struct regulator *regulator, void *data)
5896 {
5897 regulator->rdev->reg_data = data;
5898 }
5899 EXPORT_SYMBOL_GPL(regulator_set_drvdata);
5900
5901 /**
5902 * rdev_get_id - get regulator ID
5903 * @rdev: regulator
5904 */
rdev_get_id(struct regulator_dev * rdev)5905 int rdev_get_id(struct regulator_dev *rdev)
5906 {
5907 return rdev->desc->id;
5908 }
5909 EXPORT_SYMBOL_GPL(rdev_get_id);
5910
rdev_get_dev(struct regulator_dev * rdev)5911 struct device *rdev_get_dev(struct regulator_dev *rdev)
5912 {
5913 return &rdev->dev;
5914 }
5915 EXPORT_SYMBOL_GPL(rdev_get_dev);
5916
rdev_get_regmap(struct regulator_dev * rdev)5917 struct regmap *rdev_get_regmap(struct regulator_dev *rdev)
5918 {
5919 return rdev->regmap;
5920 }
5921 EXPORT_SYMBOL_GPL(rdev_get_regmap);
5922
regulator_get_init_drvdata(struct regulator_init_data * reg_init_data)5923 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
5924 {
5925 return reg_init_data->driver_data;
5926 }
5927 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
5928
5929 #ifdef CONFIG_DEBUG_FS
supply_map_show(struct seq_file * sf,void * data)5930 static int supply_map_show(struct seq_file *sf, void *data)
5931 {
5932 struct regulator_map *map;
5933
5934 list_for_each_entry(map, ®ulator_map_list, list) {
5935 seq_printf(sf, "%s -> %s.%s\n",
5936 rdev_get_name(map->regulator), map->dev_name,
5937 map->supply);
5938 }
5939
5940 return 0;
5941 }
5942 DEFINE_SHOW_ATTRIBUTE(supply_map);
5943
5944 struct summary_data {
5945 struct seq_file *s;
5946 struct regulator_dev *parent;
5947 int level;
5948 };
5949
5950 static void regulator_summary_show_subtree(struct seq_file *s,
5951 struct regulator_dev *rdev,
5952 int level);
5953
regulator_summary_show_children(struct device * dev,void * data)5954 static int regulator_summary_show_children(struct device *dev, void *data)
5955 {
5956 struct regulator_dev *rdev = dev_to_rdev(dev);
5957 struct summary_data *summary_data = data;
5958
5959 if (rdev->supply && rdev->supply->rdev == summary_data->parent)
5960 regulator_summary_show_subtree(summary_data->s, rdev,
5961 summary_data->level + 1);
5962
5963 return 0;
5964 }
5965
regulator_summary_show_subtree(struct seq_file * s,struct regulator_dev * rdev,int level)5966 static void regulator_summary_show_subtree(struct seq_file *s,
5967 struct regulator_dev *rdev,
5968 int level)
5969 {
5970 struct regulation_constraints *c;
5971 struct regulator *consumer;
5972 struct summary_data summary_data;
5973 unsigned int opmode;
5974
5975 if (!rdev)
5976 return;
5977
5978 opmode = _regulator_get_mode_unlocked(rdev);
5979 seq_printf(s, "%*s%-*s %3d %4d %6d %7s ",
5980 level * 3 + 1, "",
5981 30 - level * 3, rdev_get_name(rdev),
5982 rdev->use_count, rdev->open_count, rdev->bypass_count,
5983 regulator_opmode_to_str(opmode));
5984
5985 seq_printf(s, "%5dmV ", regulator_get_voltage_rdev(rdev) / 1000);
5986 seq_printf(s, "%5dmA ",
5987 _regulator_get_current_limit_unlocked(rdev) / 1000);
5988
5989 c = rdev->constraints;
5990 if (c) {
5991 switch (rdev->desc->type) {
5992 case REGULATOR_VOLTAGE:
5993 seq_printf(s, "%5dmV %5dmV ",
5994 c->min_uV / 1000, c->max_uV / 1000);
5995 break;
5996 case REGULATOR_CURRENT:
5997 seq_printf(s, "%5dmA %5dmA ",
5998 c->min_uA / 1000, c->max_uA / 1000);
5999 break;
6000 }
6001 }
6002
6003 seq_puts(s, "\n");
6004
6005 list_for_each_entry(consumer, &rdev->consumer_list, list) {
6006 if (consumer->dev && consumer->dev->class == ®ulator_class)
6007 continue;
6008
6009 seq_printf(s, "%*s%-*s ",
6010 (level + 1) * 3 + 1, "",
6011 30 - (level + 1) * 3,
6012 consumer->supply_name ? consumer->supply_name :
6013 consumer->dev ? dev_name(consumer->dev) : "deviceless");
6014
6015 switch (rdev->desc->type) {
6016 case REGULATOR_VOLTAGE:
6017 seq_printf(s, "%3d %33dmA%c%5dmV %5dmV",
6018 consumer->enable_count,
6019 consumer->uA_load / 1000,
6020 consumer->uA_load && !consumer->enable_count ?
6021 '*' : ' ',
6022 consumer->voltage[PM_SUSPEND_ON].min_uV / 1000,
6023 consumer->voltage[PM_SUSPEND_ON].max_uV / 1000);
6024 break;
6025 case REGULATOR_CURRENT:
6026 break;
6027 }
6028
6029 seq_puts(s, "\n");
6030 }
6031
6032 summary_data.s = s;
6033 summary_data.level = level;
6034 summary_data.parent = rdev;
6035
6036 class_for_each_device(®ulator_class, NULL, &summary_data,
6037 regulator_summary_show_children);
6038 }
6039
6040 struct summary_lock_data {
6041 struct ww_acquire_ctx *ww_ctx;
6042 struct regulator_dev **new_contended_rdev;
6043 struct regulator_dev **old_contended_rdev;
6044 };
6045
regulator_summary_lock_one(struct device * dev,void * data)6046 static int regulator_summary_lock_one(struct device *dev, void *data)
6047 {
6048 struct regulator_dev *rdev = dev_to_rdev(dev);
6049 struct summary_lock_data *lock_data = data;
6050 int ret = 0;
6051
6052 if (rdev != *lock_data->old_contended_rdev) {
6053 ret = regulator_lock_nested(rdev, lock_data->ww_ctx);
6054
6055 if (ret == -EDEADLK)
6056 *lock_data->new_contended_rdev = rdev;
6057 else
6058 WARN_ON_ONCE(ret);
6059 } else {
6060 *lock_data->old_contended_rdev = NULL;
6061 }
6062
6063 return ret;
6064 }
6065
regulator_summary_unlock_one(struct device * dev,void * data)6066 static int regulator_summary_unlock_one(struct device *dev, void *data)
6067 {
6068 struct regulator_dev *rdev = dev_to_rdev(dev);
6069 struct summary_lock_data *lock_data = data;
6070
6071 if (lock_data) {
6072 if (rdev == *lock_data->new_contended_rdev)
6073 return -EDEADLK;
6074 }
6075
6076 regulator_unlock(rdev);
6077
6078 return 0;
6079 }
6080
regulator_summary_lock_all(struct ww_acquire_ctx * ww_ctx,struct regulator_dev ** new_contended_rdev,struct regulator_dev ** old_contended_rdev)6081 static int regulator_summary_lock_all(struct ww_acquire_ctx *ww_ctx,
6082 struct regulator_dev **new_contended_rdev,
6083 struct regulator_dev **old_contended_rdev)
6084 {
6085 struct summary_lock_data lock_data;
6086 int ret;
6087
6088 lock_data.ww_ctx = ww_ctx;
6089 lock_data.new_contended_rdev = new_contended_rdev;
6090 lock_data.old_contended_rdev = old_contended_rdev;
6091
6092 ret = class_for_each_device(®ulator_class, NULL, &lock_data,
6093 regulator_summary_lock_one);
6094 if (ret)
6095 class_for_each_device(®ulator_class, NULL, &lock_data,
6096 regulator_summary_unlock_one);
6097
6098 return ret;
6099 }
6100
regulator_summary_lock(struct ww_acquire_ctx * ww_ctx)6101 static void regulator_summary_lock(struct ww_acquire_ctx *ww_ctx)
6102 {
6103 struct regulator_dev *new_contended_rdev = NULL;
6104 struct regulator_dev *old_contended_rdev = NULL;
6105 int err;
6106
6107 mutex_lock(®ulator_list_mutex);
6108
6109 ww_acquire_init(ww_ctx, ®ulator_ww_class);
6110
6111 do {
6112 if (new_contended_rdev) {
6113 ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx);
6114 old_contended_rdev = new_contended_rdev;
6115 old_contended_rdev->ref_cnt++;
6116 old_contended_rdev->mutex_owner = current;
6117 }
6118
6119 err = regulator_summary_lock_all(ww_ctx,
6120 &new_contended_rdev,
6121 &old_contended_rdev);
6122
6123 if (old_contended_rdev)
6124 regulator_unlock(old_contended_rdev);
6125
6126 } while (err == -EDEADLK);
6127
6128 ww_acquire_done(ww_ctx);
6129 }
6130
regulator_summary_unlock(struct ww_acquire_ctx * ww_ctx)6131 static void regulator_summary_unlock(struct ww_acquire_ctx *ww_ctx)
6132 {
6133 class_for_each_device(®ulator_class, NULL, NULL,
6134 regulator_summary_unlock_one);
6135 ww_acquire_fini(ww_ctx);
6136
6137 mutex_unlock(®ulator_list_mutex);
6138 }
6139
regulator_summary_show_roots(struct device * dev,void * data)6140 static int regulator_summary_show_roots(struct device *dev, void *data)
6141 {
6142 struct regulator_dev *rdev = dev_to_rdev(dev);
6143 struct seq_file *s = data;
6144
6145 if (!rdev->supply)
6146 regulator_summary_show_subtree(s, rdev, 0);
6147
6148 return 0;
6149 }
6150
regulator_summary_show(struct seq_file * s,void * data)6151 static int regulator_summary_show(struct seq_file *s, void *data)
6152 {
6153 struct ww_acquire_ctx ww_ctx;
6154
6155 seq_puts(s, " regulator use open bypass opmode voltage current min max\n");
6156 seq_puts(s, "---------------------------------------------------------------------------------------\n");
6157
6158 regulator_summary_lock(&ww_ctx);
6159
6160 class_for_each_device(®ulator_class, NULL, s,
6161 regulator_summary_show_roots);
6162
6163 regulator_summary_unlock(&ww_ctx);
6164
6165 return 0;
6166 }
6167 DEFINE_SHOW_ATTRIBUTE(regulator_summary);
6168 #endif /* CONFIG_DEBUG_FS */
6169
regulator_init(void)6170 static int __init regulator_init(void)
6171 {
6172 int ret;
6173
6174 ret = class_register(®ulator_class);
6175
6176 debugfs_root = debugfs_create_dir("regulator", NULL);
6177 if (IS_ERR(debugfs_root))
6178 pr_debug("regulator: Failed to create debugfs directory\n");
6179
6180 #ifdef CONFIG_DEBUG_FS
6181 debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
6182 &supply_map_fops);
6183
6184 debugfs_create_file("regulator_summary", 0444, debugfs_root,
6185 NULL, ®ulator_summary_fops);
6186 #endif
6187 regulator_dummy_init();
6188
6189 regulator_coupler_register(&generic_regulator_coupler);
6190
6191 return ret;
6192 }
6193
6194 /* init early to allow our consumers to complete system booting */
6195 core_initcall(regulator_init);
6196
regulator_late_cleanup(struct device * dev,void * data)6197 static int regulator_late_cleanup(struct device *dev, void *data)
6198 {
6199 struct regulator_dev *rdev = dev_to_rdev(dev);
6200 struct regulation_constraints *c = rdev->constraints;
6201 int ret;
6202
6203 if (c && c->always_on)
6204 return 0;
6205
6206 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS))
6207 return 0;
6208
6209 regulator_lock(rdev);
6210
6211 if (rdev->use_count)
6212 goto unlock;
6213
6214 /* If reading the status failed, assume that it's off. */
6215 if (_regulator_is_enabled(rdev) <= 0)
6216 goto unlock;
6217
6218 if (have_full_constraints()) {
6219 /* We log since this may kill the system if it goes
6220 * wrong.
6221 */
6222 rdev_info(rdev, "disabling\n");
6223 ret = _regulator_do_disable(rdev);
6224 if (ret != 0)
6225 rdev_err(rdev, "couldn't disable: %pe\n", ERR_PTR(ret));
6226 } else {
6227 /* The intention is that in future we will
6228 * assume that full constraints are provided
6229 * so warn even if we aren't going to do
6230 * anything here.
6231 */
6232 rdev_warn(rdev, "incomplete constraints, leaving on\n");
6233 }
6234
6235 unlock:
6236 regulator_unlock(rdev);
6237
6238 return 0;
6239 }
6240
regulator_init_complete_work_function(struct work_struct * work)6241 static void regulator_init_complete_work_function(struct work_struct *work)
6242 {
6243 /*
6244 * Regulators may had failed to resolve their input supplies
6245 * when were registered, either because the input supply was
6246 * not registered yet or because its parent device was not
6247 * bound yet. So attempt to resolve the input supplies for
6248 * pending regulators before trying to disable unused ones.
6249 */
6250 class_for_each_device(®ulator_class, NULL, NULL,
6251 regulator_register_resolve_supply);
6252
6253 /* If we have a full configuration then disable any regulators
6254 * we have permission to change the status for and which are
6255 * not in use or always_on. This is effectively the default
6256 * for DT and ACPI as they have full constraints.
6257 */
6258 class_for_each_device(®ulator_class, NULL, NULL,
6259 regulator_late_cleanup);
6260 }
6261
6262 static DECLARE_DELAYED_WORK(regulator_init_complete_work,
6263 regulator_init_complete_work_function);
6264
regulator_init_complete(void)6265 static int __init regulator_init_complete(void)
6266 {
6267 /*
6268 * Since DT doesn't provide an idiomatic mechanism for
6269 * enabling full constraints and since it's much more natural
6270 * with DT to provide them just assume that a DT enabled
6271 * system has full constraints.
6272 */
6273 if (of_have_populated_dt())
6274 has_full_constraints = true;
6275
6276 /*
6277 * We punt completion for an arbitrary amount of time since
6278 * systems like distros will load many drivers from userspace
6279 * so consumers might not always be ready yet, this is
6280 * particularly an issue with laptops where this might bounce
6281 * the display off then on. Ideally we'd get a notification
6282 * from userspace when this happens but we don't so just wait
6283 * a bit and hope we waited long enough. It'd be better if
6284 * we'd only do this on systems that need it, and a kernel
6285 * command line option might be useful.
6286 */
6287 schedule_delayed_work(®ulator_init_complete_work,
6288 msecs_to_jiffies(30000));
6289
6290 return 0;
6291 }
6292 late_initcall_sync(regulator_init_complete);
6293