1 // SPDX-License-Identifier: GPL-2.0
2 //
3 // Register map access API
4 //
5 // Copyright 2011 Wolfson Microelectronics plc
6 //
7 // Author: Mark Brown <broonie@opensource.wolfsonmicro.com>
8
9 #include <linux/device.h>
10 #include <linux/slab.h>
11 #include <linux/export.h>
12 #include <linux/mutex.h>
13 #include <linux/err.h>
14 #include <linux/property.h>
15 #include <linux/rbtree.h>
16 #include <linux/sched.h>
17 #include <linux/delay.h>
18 #include <linux/log2.h>
19 #include <linux/hwspinlock.h>
20 #include <asm/unaligned.h>
21
22 #define CREATE_TRACE_POINTS
23 #include "trace.h"
24
25 #include "internal.h"
26
27 /*
28 * Sometimes for failures during very early init the trace
29 * infrastructure isn't available early enough to be used. For this
30 * sort of problem defining LOG_DEVICE will add printks for basic
31 * register I/O on a specific device.
32 */
33 #undef LOG_DEVICE
34
35 #ifdef LOG_DEVICE
regmap_should_log(struct regmap * map)36 static inline bool regmap_should_log(struct regmap *map)
37 {
38 return (map->dev && strcmp(dev_name(map->dev), LOG_DEVICE) == 0);
39 }
40 #else
regmap_should_log(struct regmap * map)41 static inline bool regmap_should_log(struct regmap *map) { return false; }
42 #endif
43
44
45 static int _regmap_update_bits(struct regmap *map, unsigned int reg,
46 unsigned int mask, unsigned int val,
47 bool *change, bool force_write);
48
49 static int _regmap_bus_reg_read(void *context, unsigned int reg,
50 unsigned int *val);
51 static int _regmap_bus_read(void *context, unsigned int reg,
52 unsigned int *val);
53 static int _regmap_bus_formatted_write(void *context, unsigned int reg,
54 unsigned int val);
55 static int _regmap_bus_reg_write(void *context, unsigned int reg,
56 unsigned int val);
57 static int _regmap_bus_raw_write(void *context, unsigned int reg,
58 unsigned int val);
59
regmap_reg_in_ranges(unsigned int reg,const struct regmap_range * ranges,unsigned int nranges)60 bool regmap_reg_in_ranges(unsigned int reg,
61 const struct regmap_range *ranges,
62 unsigned int nranges)
63 {
64 const struct regmap_range *r;
65 int i;
66
67 for (i = 0, r = ranges; i < nranges; i++, r++)
68 if (regmap_reg_in_range(reg, r))
69 return true;
70 return false;
71 }
72 EXPORT_SYMBOL_GPL(regmap_reg_in_ranges);
73
regmap_check_range_table(struct regmap * map,unsigned int reg,const struct regmap_access_table * table)74 bool regmap_check_range_table(struct regmap *map, unsigned int reg,
75 const struct regmap_access_table *table)
76 {
77 /* Check "no ranges" first */
78 if (regmap_reg_in_ranges(reg, table->no_ranges, table->n_no_ranges))
79 return false;
80
81 /* In case zero "yes ranges" are supplied, any reg is OK */
82 if (!table->n_yes_ranges)
83 return true;
84
85 return regmap_reg_in_ranges(reg, table->yes_ranges,
86 table->n_yes_ranges);
87 }
88 EXPORT_SYMBOL_GPL(regmap_check_range_table);
89
regmap_writeable(struct regmap * map,unsigned int reg)90 bool regmap_writeable(struct regmap *map, unsigned int reg)
91 {
92 if (map->max_register && reg > map->max_register)
93 return false;
94
95 if (map->writeable_reg)
96 return map->writeable_reg(map->dev, reg);
97
98 if (map->wr_table)
99 return regmap_check_range_table(map, reg, map->wr_table);
100
101 return true;
102 }
103
regmap_cached(struct regmap * map,unsigned int reg)104 bool regmap_cached(struct regmap *map, unsigned int reg)
105 {
106 int ret;
107 unsigned int val;
108
109 if (map->cache_type == REGCACHE_NONE)
110 return false;
111
112 if (!map->cache_ops)
113 return false;
114
115 if (map->max_register && reg > map->max_register)
116 return false;
117
118 map->lock(map->lock_arg);
119 ret = regcache_read(map, reg, &val);
120 map->unlock(map->lock_arg);
121 if (ret)
122 return false;
123
124 return true;
125 }
126
regmap_readable(struct regmap * map,unsigned int reg)127 bool regmap_readable(struct regmap *map, unsigned int reg)
128 {
129 if (!map->reg_read)
130 return false;
131
132 if (map->max_register && reg > map->max_register)
133 return false;
134
135 if (map->format.format_write)
136 return false;
137
138 if (map->readable_reg)
139 return map->readable_reg(map->dev, reg);
140
141 if (map->rd_table)
142 return regmap_check_range_table(map, reg, map->rd_table);
143
144 return true;
145 }
146
regmap_volatile(struct regmap * map,unsigned int reg)147 bool regmap_volatile(struct regmap *map, unsigned int reg)
148 {
149 if (!map->format.format_write && !regmap_readable(map, reg))
150 return false;
151
152 if (map->volatile_reg)
153 return map->volatile_reg(map->dev, reg);
154
155 if (map->volatile_table)
156 return regmap_check_range_table(map, reg, map->volatile_table);
157
158 if (map->cache_ops)
159 return false;
160 else
161 return true;
162 }
163
regmap_precious(struct regmap * map,unsigned int reg)164 bool regmap_precious(struct regmap *map, unsigned int reg)
165 {
166 if (!regmap_readable(map, reg))
167 return false;
168
169 if (map->precious_reg)
170 return map->precious_reg(map->dev, reg);
171
172 if (map->precious_table)
173 return regmap_check_range_table(map, reg, map->precious_table);
174
175 return false;
176 }
177
regmap_writeable_noinc(struct regmap * map,unsigned int reg)178 bool regmap_writeable_noinc(struct regmap *map, unsigned int reg)
179 {
180 if (map->writeable_noinc_reg)
181 return map->writeable_noinc_reg(map->dev, reg);
182
183 if (map->wr_noinc_table)
184 return regmap_check_range_table(map, reg, map->wr_noinc_table);
185
186 return true;
187 }
188
regmap_readable_noinc(struct regmap * map,unsigned int reg)189 bool regmap_readable_noinc(struct regmap *map, unsigned int reg)
190 {
191 if (map->readable_noinc_reg)
192 return map->readable_noinc_reg(map->dev, reg);
193
194 if (map->rd_noinc_table)
195 return regmap_check_range_table(map, reg, map->rd_noinc_table);
196
197 return true;
198 }
199
regmap_volatile_range(struct regmap * map,unsigned int reg,size_t num)200 static bool regmap_volatile_range(struct regmap *map, unsigned int reg,
201 size_t num)
202 {
203 unsigned int i;
204
205 for (i = 0; i < num; i++)
206 if (!regmap_volatile(map, reg + regmap_get_offset(map, i)))
207 return false;
208
209 return true;
210 }
211
regmap_format_12_20_write(struct regmap * map,unsigned int reg,unsigned int val)212 static void regmap_format_12_20_write(struct regmap *map,
213 unsigned int reg, unsigned int val)
214 {
215 u8 *out = map->work_buf;
216
217 out[0] = reg >> 4;
218 out[1] = (reg << 4) | (val >> 16);
219 out[2] = val >> 8;
220 out[3] = val;
221 }
222
223
regmap_format_2_6_write(struct regmap * map,unsigned int reg,unsigned int val)224 static void regmap_format_2_6_write(struct regmap *map,
225 unsigned int reg, unsigned int val)
226 {
227 u8 *out = map->work_buf;
228
229 *out = (reg << 6) | val;
230 }
231
regmap_format_4_12_write(struct regmap * map,unsigned int reg,unsigned int val)232 static void regmap_format_4_12_write(struct regmap *map,
233 unsigned int reg, unsigned int val)
234 {
235 __be16 *out = map->work_buf;
236 *out = cpu_to_be16((reg << 12) | val);
237 }
238
regmap_format_7_9_write(struct regmap * map,unsigned int reg,unsigned int val)239 static void regmap_format_7_9_write(struct regmap *map,
240 unsigned int reg, unsigned int val)
241 {
242 __be16 *out = map->work_buf;
243 *out = cpu_to_be16((reg << 9) | val);
244 }
245
regmap_format_7_17_write(struct regmap * map,unsigned int reg,unsigned int val)246 static void regmap_format_7_17_write(struct regmap *map,
247 unsigned int reg, unsigned int val)
248 {
249 u8 *out = map->work_buf;
250
251 out[2] = val;
252 out[1] = val >> 8;
253 out[0] = (val >> 16) | (reg << 1);
254 }
255
regmap_format_10_14_write(struct regmap * map,unsigned int reg,unsigned int val)256 static void regmap_format_10_14_write(struct regmap *map,
257 unsigned int reg, unsigned int val)
258 {
259 u8 *out = map->work_buf;
260
261 out[2] = val;
262 out[1] = (val >> 8) | (reg << 6);
263 out[0] = reg >> 2;
264 }
265
regmap_format_8(void * buf,unsigned int val,unsigned int shift)266 static void regmap_format_8(void *buf, unsigned int val, unsigned int shift)
267 {
268 u8 *b = buf;
269
270 b[0] = val << shift;
271 }
272
regmap_format_16_be(void * buf,unsigned int val,unsigned int shift)273 static void regmap_format_16_be(void *buf, unsigned int val, unsigned int shift)
274 {
275 put_unaligned_be16(val << shift, buf);
276 }
277
regmap_format_16_le(void * buf,unsigned int val,unsigned int shift)278 static void regmap_format_16_le(void *buf, unsigned int val, unsigned int shift)
279 {
280 put_unaligned_le16(val << shift, buf);
281 }
282
regmap_format_16_native(void * buf,unsigned int val,unsigned int shift)283 static void regmap_format_16_native(void *buf, unsigned int val,
284 unsigned int shift)
285 {
286 u16 v = val << shift;
287
288 memcpy(buf, &v, sizeof(v));
289 }
290
regmap_format_24(void * buf,unsigned int val,unsigned int shift)291 static void regmap_format_24(void *buf, unsigned int val, unsigned int shift)
292 {
293 u8 *b = buf;
294
295 val <<= shift;
296
297 b[0] = val >> 16;
298 b[1] = val >> 8;
299 b[2] = val;
300 }
301
regmap_format_32_be(void * buf,unsigned int val,unsigned int shift)302 static void regmap_format_32_be(void *buf, unsigned int val, unsigned int shift)
303 {
304 put_unaligned_be32(val << shift, buf);
305 }
306
regmap_format_32_le(void * buf,unsigned int val,unsigned int shift)307 static void regmap_format_32_le(void *buf, unsigned int val, unsigned int shift)
308 {
309 put_unaligned_le32(val << shift, buf);
310 }
311
regmap_format_32_native(void * buf,unsigned int val,unsigned int shift)312 static void regmap_format_32_native(void *buf, unsigned int val,
313 unsigned int shift)
314 {
315 u32 v = val << shift;
316
317 memcpy(buf, &v, sizeof(v));
318 }
319
320 #ifdef CONFIG_64BIT
regmap_format_64_be(void * buf,unsigned int val,unsigned int shift)321 static void regmap_format_64_be(void *buf, unsigned int val, unsigned int shift)
322 {
323 put_unaligned_be64((u64) val << shift, buf);
324 }
325
regmap_format_64_le(void * buf,unsigned int val,unsigned int shift)326 static void regmap_format_64_le(void *buf, unsigned int val, unsigned int shift)
327 {
328 put_unaligned_le64((u64) val << shift, buf);
329 }
330
regmap_format_64_native(void * buf,unsigned int val,unsigned int shift)331 static void regmap_format_64_native(void *buf, unsigned int val,
332 unsigned int shift)
333 {
334 u64 v = (u64) val << shift;
335
336 memcpy(buf, &v, sizeof(v));
337 }
338 #endif
339
regmap_parse_inplace_noop(void * buf)340 static void regmap_parse_inplace_noop(void *buf)
341 {
342 }
343
regmap_parse_8(const void * buf)344 static unsigned int regmap_parse_8(const void *buf)
345 {
346 const u8 *b = buf;
347
348 return b[0];
349 }
350
regmap_parse_16_be(const void * buf)351 static unsigned int regmap_parse_16_be(const void *buf)
352 {
353 return get_unaligned_be16(buf);
354 }
355
regmap_parse_16_le(const void * buf)356 static unsigned int regmap_parse_16_le(const void *buf)
357 {
358 return get_unaligned_le16(buf);
359 }
360
regmap_parse_16_be_inplace(void * buf)361 static void regmap_parse_16_be_inplace(void *buf)
362 {
363 u16 v = get_unaligned_be16(buf);
364
365 memcpy(buf, &v, sizeof(v));
366 }
367
regmap_parse_16_le_inplace(void * buf)368 static void regmap_parse_16_le_inplace(void *buf)
369 {
370 u16 v = get_unaligned_le16(buf);
371
372 memcpy(buf, &v, sizeof(v));
373 }
374
regmap_parse_16_native(const void * buf)375 static unsigned int regmap_parse_16_native(const void *buf)
376 {
377 u16 v;
378
379 memcpy(&v, buf, sizeof(v));
380 return v;
381 }
382
regmap_parse_24(const void * buf)383 static unsigned int regmap_parse_24(const void *buf)
384 {
385 const u8 *b = buf;
386 unsigned int ret = b[2];
387 ret |= ((unsigned int)b[1]) << 8;
388 ret |= ((unsigned int)b[0]) << 16;
389
390 return ret;
391 }
392
regmap_parse_32_be(const void * buf)393 static unsigned int regmap_parse_32_be(const void *buf)
394 {
395 return get_unaligned_be32(buf);
396 }
397
regmap_parse_32_le(const void * buf)398 static unsigned int regmap_parse_32_le(const void *buf)
399 {
400 return get_unaligned_le32(buf);
401 }
402
regmap_parse_32_be_inplace(void * buf)403 static void regmap_parse_32_be_inplace(void *buf)
404 {
405 u32 v = get_unaligned_be32(buf);
406
407 memcpy(buf, &v, sizeof(v));
408 }
409
regmap_parse_32_le_inplace(void * buf)410 static void regmap_parse_32_le_inplace(void *buf)
411 {
412 u32 v = get_unaligned_le32(buf);
413
414 memcpy(buf, &v, sizeof(v));
415 }
416
regmap_parse_32_native(const void * buf)417 static unsigned int regmap_parse_32_native(const void *buf)
418 {
419 u32 v;
420
421 memcpy(&v, buf, sizeof(v));
422 return v;
423 }
424
425 #ifdef CONFIG_64BIT
regmap_parse_64_be(const void * buf)426 static unsigned int regmap_parse_64_be(const void *buf)
427 {
428 return get_unaligned_be64(buf);
429 }
430
regmap_parse_64_le(const void * buf)431 static unsigned int regmap_parse_64_le(const void *buf)
432 {
433 return get_unaligned_le64(buf);
434 }
435
regmap_parse_64_be_inplace(void * buf)436 static void regmap_parse_64_be_inplace(void *buf)
437 {
438 u64 v = get_unaligned_be64(buf);
439
440 memcpy(buf, &v, sizeof(v));
441 }
442
regmap_parse_64_le_inplace(void * buf)443 static void regmap_parse_64_le_inplace(void *buf)
444 {
445 u64 v = get_unaligned_le64(buf);
446
447 memcpy(buf, &v, sizeof(v));
448 }
449
regmap_parse_64_native(const void * buf)450 static unsigned int regmap_parse_64_native(const void *buf)
451 {
452 u64 v;
453
454 memcpy(&v, buf, sizeof(v));
455 return v;
456 }
457 #endif
458
regmap_lock_hwlock(void * __map)459 static void regmap_lock_hwlock(void *__map)
460 {
461 struct regmap *map = __map;
462
463 hwspin_lock_timeout(map->hwlock, UINT_MAX);
464 }
465
regmap_lock_hwlock_irq(void * __map)466 static void regmap_lock_hwlock_irq(void *__map)
467 {
468 struct regmap *map = __map;
469
470 hwspin_lock_timeout_irq(map->hwlock, UINT_MAX);
471 }
472
regmap_lock_hwlock_irqsave(void * __map)473 static void regmap_lock_hwlock_irqsave(void *__map)
474 {
475 struct regmap *map = __map;
476
477 hwspin_lock_timeout_irqsave(map->hwlock, UINT_MAX,
478 &map->spinlock_flags);
479 }
480
regmap_unlock_hwlock(void * __map)481 static void regmap_unlock_hwlock(void *__map)
482 {
483 struct regmap *map = __map;
484
485 hwspin_unlock(map->hwlock);
486 }
487
regmap_unlock_hwlock_irq(void * __map)488 static void regmap_unlock_hwlock_irq(void *__map)
489 {
490 struct regmap *map = __map;
491
492 hwspin_unlock_irq(map->hwlock);
493 }
494
regmap_unlock_hwlock_irqrestore(void * __map)495 static void regmap_unlock_hwlock_irqrestore(void *__map)
496 {
497 struct regmap *map = __map;
498
499 hwspin_unlock_irqrestore(map->hwlock, &map->spinlock_flags);
500 }
501
regmap_lock_unlock_none(void * __map)502 static void regmap_lock_unlock_none(void *__map)
503 {
504
505 }
506
regmap_lock_mutex(void * __map)507 static void regmap_lock_mutex(void *__map)
508 {
509 struct regmap *map = __map;
510 mutex_lock(&map->mutex);
511 }
512
regmap_unlock_mutex(void * __map)513 static void regmap_unlock_mutex(void *__map)
514 {
515 struct regmap *map = __map;
516 mutex_unlock(&map->mutex);
517 }
518
regmap_lock_spinlock(void * __map)519 static void regmap_lock_spinlock(void *__map)
520 __acquires(&map->spinlock)
521 {
522 struct regmap *map = __map;
523 unsigned long flags;
524
525 spin_lock_irqsave(&map->spinlock, flags);
526 map->spinlock_flags = flags;
527 }
528
regmap_unlock_spinlock(void * __map)529 static void regmap_unlock_spinlock(void *__map)
530 __releases(&map->spinlock)
531 {
532 struct regmap *map = __map;
533 spin_unlock_irqrestore(&map->spinlock, map->spinlock_flags);
534 }
535
regmap_lock_raw_spinlock(void * __map)536 static void regmap_lock_raw_spinlock(void *__map)
537 __acquires(&map->raw_spinlock)
538 {
539 struct regmap *map = __map;
540 unsigned long flags;
541
542 raw_spin_lock_irqsave(&map->raw_spinlock, flags);
543 map->raw_spinlock_flags = flags;
544 }
545
regmap_unlock_raw_spinlock(void * __map)546 static void regmap_unlock_raw_spinlock(void *__map)
547 __releases(&map->raw_spinlock)
548 {
549 struct regmap *map = __map;
550 raw_spin_unlock_irqrestore(&map->raw_spinlock, map->raw_spinlock_flags);
551 }
552
dev_get_regmap_release(struct device * dev,void * res)553 static void dev_get_regmap_release(struct device *dev, void *res)
554 {
555 /*
556 * We don't actually have anything to do here; the goal here
557 * is not to manage the regmap but to provide a simple way to
558 * get the regmap back given a struct device.
559 */
560 }
561
_regmap_range_add(struct regmap * map,struct regmap_range_node * data)562 static bool _regmap_range_add(struct regmap *map,
563 struct regmap_range_node *data)
564 {
565 struct rb_root *root = &map->range_tree;
566 struct rb_node **new = &(root->rb_node), *parent = NULL;
567
568 while (*new) {
569 struct regmap_range_node *this =
570 rb_entry(*new, struct regmap_range_node, node);
571
572 parent = *new;
573 if (data->range_max < this->range_min)
574 new = &((*new)->rb_left);
575 else if (data->range_min > this->range_max)
576 new = &((*new)->rb_right);
577 else
578 return false;
579 }
580
581 rb_link_node(&data->node, parent, new);
582 rb_insert_color(&data->node, root);
583
584 return true;
585 }
586
_regmap_range_lookup(struct regmap * map,unsigned int reg)587 static struct regmap_range_node *_regmap_range_lookup(struct regmap *map,
588 unsigned int reg)
589 {
590 struct rb_node *node = map->range_tree.rb_node;
591
592 while (node) {
593 struct regmap_range_node *this =
594 rb_entry(node, struct regmap_range_node, node);
595
596 if (reg < this->range_min)
597 node = node->rb_left;
598 else if (reg > this->range_max)
599 node = node->rb_right;
600 else
601 return this;
602 }
603
604 return NULL;
605 }
606
regmap_range_exit(struct regmap * map)607 static void regmap_range_exit(struct regmap *map)
608 {
609 struct rb_node *next;
610 struct regmap_range_node *range_node;
611
612 next = rb_first(&map->range_tree);
613 while (next) {
614 range_node = rb_entry(next, struct regmap_range_node, node);
615 next = rb_next(&range_node->node);
616 rb_erase(&range_node->node, &map->range_tree);
617 kfree(range_node);
618 }
619
620 kfree(map->selector_work_buf);
621 }
622
regmap_set_name(struct regmap * map,const struct regmap_config * config)623 static int regmap_set_name(struct regmap *map, const struct regmap_config *config)
624 {
625 if (config->name) {
626 const char *name = kstrdup_const(config->name, GFP_KERNEL);
627
628 if (!name)
629 return -ENOMEM;
630
631 kfree_const(map->name);
632 map->name = name;
633 }
634
635 return 0;
636 }
637
regmap_attach_dev(struct device * dev,struct regmap * map,const struct regmap_config * config)638 int regmap_attach_dev(struct device *dev, struct regmap *map,
639 const struct regmap_config *config)
640 {
641 struct regmap **m;
642 int ret;
643
644 map->dev = dev;
645
646 ret = regmap_set_name(map, config);
647 if (ret)
648 return ret;
649
650 regmap_debugfs_exit(map);
651 regmap_debugfs_init(map);
652
653 /* Add a devres resource for dev_get_regmap() */
654 m = devres_alloc(dev_get_regmap_release, sizeof(*m), GFP_KERNEL);
655 if (!m) {
656 regmap_debugfs_exit(map);
657 return -ENOMEM;
658 }
659 *m = map;
660 devres_add(dev, m);
661
662 return 0;
663 }
664 EXPORT_SYMBOL_GPL(regmap_attach_dev);
665
regmap_get_reg_endian(const struct regmap_bus * bus,const struct regmap_config * config)666 static enum regmap_endian regmap_get_reg_endian(const struct regmap_bus *bus,
667 const struct regmap_config *config)
668 {
669 enum regmap_endian endian;
670
671 /* Retrieve the endianness specification from the regmap config */
672 endian = config->reg_format_endian;
673
674 /* If the regmap config specified a non-default value, use that */
675 if (endian != REGMAP_ENDIAN_DEFAULT)
676 return endian;
677
678 /* Retrieve the endianness specification from the bus config */
679 if (bus && bus->reg_format_endian_default)
680 endian = bus->reg_format_endian_default;
681
682 /* If the bus specified a non-default value, use that */
683 if (endian != REGMAP_ENDIAN_DEFAULT)
684 return endian;
685
686 /* Use this if no other value was found */
687 return REGMAP_ENDIAN_BIG;
688 }
689
regmap_get_val_endian(struct device * dev,const struct regmap_bus * bus,const struct regmap_config * config)690 enum regmap_endian regmap_get_val_endian(struct device *dev,
691 const struct regmap_bus *bus,
692 const struct regmap_config *config)
693 {
694 struct fwnode_handle *fwnode = dev ? dev_fwnode(dev) : NULL;
695 enum regmap_endian endian;
696
697 /* Retrieve the endianness specification from the regmap config */
698 endian = config->val_format_endian;
699
700 /* If the regmap config specified a non-default value, use that */
701 if (endian != REGMAP_ENDIAN_DEFAULT)
702 return endian;
703
704 /* If the firmware node exist try to get endianness from it */
705 if (fwnode_property_read_bool(fwnode, "big-endian"))
706 endian = REGMAP_ENDIAN_BIG;
707 else if (fwnode_property_read_bool(fwnode, "little-endian"))
708 endian = REGMAP_ENDIAN_LITTLE;
709 else if (fwnode_property_read_bool(fwnode, "native-endian"))
710 endian = REGMAP_ENDIAN_NATIVE;
711
712 /* If the endianness was specified in fwnode, use that */
713 if (endian != REGMAP_ENDIAN_DEFAULT)
714 return endian;
715
716 /* Retrieve the endianness specification from the bus config */
717 if (bus && bus->val_format_endian_default)
718 endian = bus->val_format_endian_default;
719
720 /* If the bus specified a non-default value, use that */
721 if (endian != REGMAP_ENDIAN_DEFAULT)
722 return endian;
723
724 /* Use this if no other value was found */
725 return REGMAP_ENDIAN_BIG;
726 }
727 EXPORT_SYMBOL_GPL(regmap_get_val_endian);
728
__regmap_init(struct device * dev,const struct regmap_bus * bus,void * bus_context,const struct regmap_config * config,struct lock_class_key * lock_key,const char * lock_name)729 struct regmap *__regmap_init(struct device *dev,
730 const struct regmap_bus *bus,
731 void *bus_context,
732 const struct regmap_config *config,
733 struct lock_class_key *lock_key,
734 const char *lock_name)
735 {
736 struct regmap *map;
737 int ret = -EINVAL;
738 enum regmap_endian reg_endian, val_endian;
739 int i, j;
740
741 if (!config)
742 goto err;
743
744 map = kzalloc(sizeof(*map), GFP_KERNEL);
745 if (map == NULL) {
746 ret = -ENOMEM;
747 goto err;
748 }
749
750 ret = regmap_set_name(map, config);
751 if (ret)
752 goto err_map;
753
754 ret = -EINVAL; /* Later error paths rely on this */
755
756 if (config->disable_locking) {
757 map->lock = map->unlock = regmap_lock_unlock_none;
758 map->can_sleep = config->can_sleep;
759 regmap_debugfs_disable(map);
760 } else if (config->lock && config->unlock) {
761 map->lock = config->lock;
762 map->unlock = config->unlock;
763 map->lock_arg = config->lock_arg;
764 map->can_sleep = config->can_sleep;
765 } else if (config->use_hwlock) {
766 map->hwlock = hwspin_lock_request_specific(config->hwlock_id);
767 if (!map->hwlock) {
768 ret = -ENXIO;
769 goto err_name;
770 }
771
772 switch (config->hwlock_mode) {
773 case HWLOCK_IRQSTATE:
774 map->lock = regmap_lock_hwlock_irqsave;
775 map->unlock = regmap_unlock_hwlock_irqrestore;
776 break;
777 case HWLOCK_IRQ:
778 map->lock = regmap_lock_hwlock_irq;
779 map->unlock = regmap_unlock_hwlock_irq;
780 break;
781 default:
782 map->lock = regmap_lock_hwlock;
783 map->unlock = regmap_unlock_hwlock;
784 break;
785 }
786
787 map->lock_arg = map;
788 } else {
789 if ((bus && bus->fast_io) ||
790 config->fast_io) {
791 if (config->use_raw_spinlock) {
792 raw_spin_lock_init(&map->raw_spinlock);
793 map->lock = regmap_lock_raw_spinlock;
794 map->unlock = regmap_unlock_raw_spinlock;
795 lockdep_set_class_and_name(&map->raw_spinlock,
796 lock_key, lock_name);
797 } else {
798 spin_lock_init(&map->spinlock);
799 map->lock = regmap_lock_spinlock;
800 map->unlock = regmap_unlock_spinlock;
801 lockdep_set_class_and_name(&map->spinlock,
802 lock_key, lock_name);
803 }
804 } else {
805 mutex_init(&map->mutex);
806 map->lock = regmap_lock_mutex;
807 map->unlock = regmap_unlock_mutex;
808 map->can_sleep = true;
809 lockdep_set_class_and_name(&map->mutex,
810 lock_key, lock_name);
811 }
812 map->lock_arg = map;
813 }
814
815 /*
816 * When we write in fast-paths with regmap_bulk_write() don't allocate
817 * scratch buffers with sleeping allocations.
818 */
819 if ((bus && bus->fast_io) || config->fast_io)
820 map->alloc_flags = GFP_ATOMIC;
821 else
822 map->alloc_flags = GFP_KERNEL;
823
824 map->reg_base = config->reg_base;
825
826 map->format.reg_bytes = DIV_ROUND_UP(config->reg_bits, 8);
827 map->format.pad_bytes = config->pad_bits / 8;
828 map->format.reg_downshift = config->reg_downshift;
829 map->format.val_bytes = DIV_ROUND_UP(config->val_bits, 8);
830 map->format.buf_size = DIV_ROUND_UP(config->reg_bits +
831 config->val_bits + config->pad_bits, 8);
832 map->reg_shift = config->pad_bits % 8;
833 if (config->reg_stride)
834 map->reg_stride = config->reg_stride;
835 else
836 map->reg_stride = 1;
837 if (is_power_of_2(map->reg_stride))
838 map->reg_stride_order = ilog2(map->reg_stride);
839 else
840 map->reg_stride_order = -1;
841 map->use_single_read = config->use_single_read || !(config->read || (bus && bus->read));
842 map->use_single_write = config->use_single_write || !(config->write || (bus && bus->write));
843 map->can_multi_write = config->can_multi_write && (config->write || (bus && bus->write));
844 if (bus) {
845 map->max_raw_read = bus->max_raw_read;
846 map->max_raw_write = bus->max_raw_write;
847 } else if (config->max_raw_read && config->max_raw_write) {
848 map->max_raw_read = config->max_raw_read;
849 map->max_raw_write = config->max_raw_write;
850 }
851 map->dev = dev;
852 map->bus = bus;
853 map->bus_context = bus_context;
854 map->max_register = config->max_register;
855 map->wr_table = config->wr_table;
856 map->rd_table = config->rd_table;
857 map->volatile_table = config->volatile_table;
858 map->precious_table = config->precious_table;
859 map->wr_noinc_table = config->wr_noinc_table;
860 map->rd_noinc_table = config->rd_noinc_table;
861 map->writeable_reg = config->writeable_reg;
862 map->readable_reg = config->readable_reg;
863 map->volatile_reg = config->volatile_reg;
864 map->precious_reg = config->precious_reg;
865 map->writeable_noinc_reg = config->writeable_noinc_reg;
866 map->readable_noinc_reg = config->readable_noinc_reg;
867 map->cache_type = config->cache_type;
868
869 spin_lock_init(&map->async_lock);
870 INIT_LIST_HEAD(&map->async_list);
871 INIT_LIST_HEAD(&map->async_free);
872 init_waitqueue_head(&map->async_waitq);
873
874 if (config->read_flag_mask ||
875 config->write_flag_mask ||
876 config->zero_flag_mask) {
877 map->read_flag_mask = config->read_flag_mask;
878 map->write_flag_mask = config->write_flag_mask;
879 } else if (bus) {
880 map->read_flag_mask = bus->read_flag_mask;
881 }
882
883 if (config && config->read && config->write) {
884 map->reg_read = _regmap_bus_read;
885
886 /* Bulk read/write */
887 map->read = config->read;
888 map->write = config->write;
889
890 reg_endian = REGMAP_ENDIAN_NATIVE;
891 val_endian = REGMAP_ENDIAN_NATIVE;
892 } else if (!bus) {
893 map->reg_read = config->reg_read;
894 map->reg_write = config->reg_write;
895 map->reg_update_bits = config->reg_update_bits;
896
897 map->defer_caching = false;
898 goto skip_format_initialization;
899 } else if (!bus->read || !bus->write) {
900 map->reg_read = _regmap_bus_reg_read;
901 map->reg_write = _regmap_bus_reg_write;
902 map->reg_update_bits = bus->reg_update_bits;
903
904 map->defer_caching = false;
905 goto skip_format_initialization;
906 } else {
907 map->reg_read = _regmap_bus_read;
908 map->reg_update_bits = bus->reg_update_bits;
909 /* Bulk read/write */
910 map->read = bus->read;
911 map->write = bus->write;
912
913 reg_endian = regmap_get_reg_endian(bus, config);
914 val_endian = regmap_get_val_endian(dev, bus, config);
915 }
916
917 switch (config->reg_bits + map->reg_shift) {
918 case 2:
919 switch (config->val_bits) {
920 case 6:
921 map->format.format_write = regmap_format_2_6_write;
922 break;
923 default:
924 goto err_hwlock;
925 }
926 break;
927
928 case 4:
929 switch (config->val_bits) {
930 case 12:
931 map->format.format_write = regmap_format_4_12_write;
932 break;
933 default:
934 goto err_hwlock;
935 }
936 break;
937
938 case 7:
939 switch (config->val_bits) {
940 case 9:
941 map->format.format_write = regmap_format_7_9_write;
942 break;
943 case 17:
944 map->format.format_write = regmap_format_7_17_write;
945 break;
946 default:
947 goto err_hwlock;
948 }
949 break;
950
951 case 10:
952 switch (config->val_bits) {
953 case 14:
954 map->format.format_write = regmap_format_10_14_write;
955 break;
956 default:
957 goto err_hwlock;
958 }
959 break;
960
961 case 12:
962 switch (config->val_bits) {
963 case 20:
964 map->format.format_write = regmap_format_12_20_write;
965 break;
966 default:
967 goto err_hwlock;
968 }
969 break;
970
971 case 8:
972 map->format.format_reg = regmap_format_8;
973 break;
974
975 case 16:
976 switch (reg_endian) {
977 case REGMAP_ENDIAN_BIG:
978 map->format.format_reg = regmap_format_16_be;
979 break;
980 case REGMAP_ENDIAN_LITTLE:
981 map->format.format_reg = regmap_format_16_le;
982 break;
983 case REGMAP_ENDIAN_NATIVE:
984 map->format.format_reg = regmap_format_16_native;
985 break;
986 default:
987 goto err_hwlock;
988 }
989 break;
990
991 case 24:
992 if (reg_endian != REGMAP_ENDIAN_BIG)
993 goto err_hwlock;
994 map->format.format_reg = regmap_format_24;
995 break;
996
997 case 32:
998 switch (reg_endian) {
999 case REGMAP_ENDIAN_BIG:
1000 map->format.format_reg = regmap_format_32_be;
1001 break;
1002 case REGMAP_ENDIAN_LITTLE:
1003 map->format.format_reg = regmap_format_32_le;
1004 break;
1005 case REGMAP_ENDIAN_NATIVE:
1006 map->format.format_reg = regmap_format_32_native;
1007 break;
1008 default:
1009 goto err_hwlock;
1010 }
1011 break;
1012
1013 #ifdef CONFIG_64BIT
1014 case 64:
1015 switch (reg_endian) {
1016 case REGMAP_ENDIAN_BIG:
1017 map->format.format_reg = regmap_format_64_be;
1018 break;
1019 case REGMAP_ENDIAN_LITTLE:
1020 map->format.format_reg = regmap_format_64_le;
1021 break;
1022 case REGMAP_ENDIAN_NATIVE:
1023 map->format.format_reg = regmap_format_64_native;
1024 break;
1025 default:
1026 goto err_hwlock;
1027 }
1028 break;
1029 #endif
1030
1031 default:
1032 goto err_hwlock;
1033 }
1034
1035 if (val_endian == REGMAP_ENDIAN_NATIVE)
1036 map->format.parse_inplace = regmap_parse_inplace_noop;
1037
1038 switch (config->val_bits) {
1039 case 8:
1040 map->format.format_val = regmap_format_8;
1041 map->format.parse_val = regmap_parse_8;
1042 map->format.parse_inplace = regmap_parse_inplace_noop;
1043 break;
1044 case 16:
1045 switch (val_endian) {
1046 case REGMAP_ENDIAN_BIG:
1047 map->format.format_val = regmap_format_16_be;
1048 map->format.parse_val = regmap_parse_16_be;
1049 map->format.parse_inplace = regmap_parse_16_be_inplace;
1050 break;
1051 case REGMAP_ENDIAN_LITTLE:
1052 map->format.format_val = regmap_format_16_le;
1053 map->format.parse_val = regmap_parse_16_le;
1054 map->format.parse_inplace = regmap_parse_16_le_inplace;
1055 break;
1056 case REGMAP_ENDIAN_NATIVE:
1057 map->format.format_val = regmap_format_16_native;
1058 map->format.parse_val = regmap_parse_16_native;
1059 break;
1060 default:
1061 goto err_hwlock;
1062 }
1063 break;
1064 case 24:
1065 if (val_endian != REGMAP_ENDIAN_BIG)
1066 goto err_hwlock;
1067 map->format.format_val = regmap_format_24;
1068 map->format.parse_val = regmap_parse_24;
1069 break;
1070 case 32:
1071 switch (val_endian) {
1072 case REGMAP_ENDIAN_BIG:
1073 map->format.format_val = regmap_format_32_be;
1074 map->format.parse_val = regmap_parse_32_be;
1075 map->format.parse_inplace = regmap_parse_32_be_inplace;
1076 break;
1077 case REGMAP_ENDIAN_LITTLE:
1078 map->format.format_val = regmap_format_32_le;
1079 map->format.parse_val = regmap_parse_32_le;
1080 map->format.parse_inplace = regmap_parse_32_le_inplace;
1081 break;
1082 case REGMAP_ENDIAN_NATIVE:
1083 map->format.format_val = regmap_format_32_native;
1084 map->format.parse_val = regmap_parse_32_native;
1085 break;
1086 default:
1087 goto err_hwlock;
1088 }
1089 break;
1090 #ifdef CONFIG_64BIT
1091 case 64:
1092 switch (val_endian) {
1093 case REGMAP_ENDIAN_BIG:
1094 map->format.format_val = regmap_format_64_be;
1095 map->format.parse_val = regmap_parse_64_be;
1096 map->format.parse_inplace = regmap_parse_64_be_inplace;
1097 break;
1098 case REGMAP_ENDIAN_LITTLE:
1099 map->format.format_val = regmap_format_64_le;
1100 map->format.parse_val = regmap_parse_64_le;
1101 map->format.parse_inplace = regmap_parse_64_le_inplace;
1102 break;
1103 case REGMAP_ENDIAN_NATIVE:
1104 map->format.format_val = regmap_format_64_native;
1105 map->format.parse_val = regmap_parse_64_native;
1106 break;
1107 default:
1108 goto err_hwlock;
1109 }
1110 break;
1111 #endif
1112 }
1113
1114 if (map->format.format_write) {
1115 if ((reg_endian != REGMAP_ENDIAN_BIG) ||
1116 (val_endian != REGMAP_ENDIAN_BIG))
1117 goto err_hwlock;
1118 map->use_single_write = true;
1119 }
1120
1121 if (!map->format.format_write &&
1122 !(map->format.format_reg && map->format.format_val))
1123 goto err_hwlock;
1124
1125 map->work_buf = kzalloc(map->format.buf_size, GFP_KERNEL);
1126 if (map->work_buf == NULL) {
1127 ret = -ENOMEM;
1128 goto err_hwlock;
1129 }
1130
1131 if (map->format.format_write) {
1132 map->defer_caching = false;
1133 map->reg_write = _regmap_bus_formatted_write;
1134 } else if (map->format.format_val) {
1135 map->defer_caching = true;
1136 map->reg_write = _regmap_bus_raw_write;
1137 }
1138
1139 skip_format_initialization:
1140
1141 map->range_tree = RB_ROOT;
1142 for (i = 0; i < config->num_ranges; i++) {
1143 const struct regmap_range_cfg *range_cfg = &config->ranges[i];
1144 struct regmap_range_node *new;
1145
1146 /* Sanity check */
1147 if (range_cfg->range_max < range_cfg->range_min) {
1148 dev_err(map->dev, "Invalid range %d: %d < %d\n", i,
1149 range_cfg->range_max, range_cfg->range_min);
1150 goto err_range;
1151 }
1152
1153 if (range_cfg->range_max > map->max_register) {
1154 dev_err(map->dev, "Invalid range %d: %d > %d\n", i,
1155 range_cfg->range_max, map->max_register);
1156 goto err_range;
1157 }
1158
1159 if (range_cfg->selector_reg > map->max_register) {
1160 dev_err(map->dev,
1161 "Invalid range %d: selector out of map\n", i);
1162 goto err_range;
1163 }
1164
1165 if (range_cfg->window_len == 0) {
1166 dev_err(map->dev, "Invalid range %d: window_len 0\n",
1167 i);
1168 goto err_range;
1169 }
1170
1171 /* Make sure, that this register range has no selector
1172 or data window within its boundary */
1173 for (j = 0; j < config->num_ranges; j++) {
1174 unsigned int sel_reg = config->ranges[j].selector_reg;
1175 unsigned int win_min = config->ranges[j].window_start;
1176 unsigned int win_max = win_min +
1177 config->ranges[j].window_len - 1;
1178
1179 /* Allow data window inside its own virtual range */
1180 if (j == i)
1181 continue;
1182
1183 if (range_cfg->range_min <= sel_reg &&
1184 sel_reg <= range_cfg->range_max) {
1185 dev_err(map->dev,
1186 "Range %d: selector for %d in window\n",
1187 i, j);
1188 goto err_range;
1189 }
1190
1191 if (!(win_max < range_cfg->range_min ||
1192 win_min > range_cfg->range_max)) {
1193 dev_err(map->dev,
1194 "Range %d: window for %d in window\n",
1195 i, j);
1196 goto err_range;
1197 }
1198 }
1199
1200 new = kzalloc(sizeof(*new), GFP_KERNEL);
1201 if (new == NULL) {
1202 ret = -ENOMEM;
1203 goto err_range;
1204 }
1205
1206 new->map = map;
1207 new->name = range_cfg->name;
1208 new->range_min = range_cfg->range_min;
1209 new->range_max = range_cfg->range_max;
1210 new->selector_reg = range_cfg->selector_reg;
1211 new->selector_mask = range_cfg->selector_mask;
1212 new->selector_shift = range_cfg->selector_shift;
1213 new->window_start = range_cfg->window_start;
1214 new->window_len = range_cfg->window_len;
1215
1216 if (!_regmap_range_add(map, new)) {
1217 dev_err(map->dev, "Failed to add range %d\n", i);
1218 kfree(new);
1219 goto err_range;
1220 }
1221
1222 if (map->selector_work_buf == NULL) {
1223 map->selector_work_buf =
1224 kzalloc(map->format.buf_size, GFP_KERNEL);
1225 if (map->selector_work_buf == NULL) {
1226 ret = -ENOMEM;
1227 goto err_range;
1228 }
1229 }
1230 }
1231
1232 ret = regcache_init(map, config);
1233 if (ret != 0)
1234 goto err_range;
1235
1236 if (dev) {
1237 ret = regmap_attach_dev(dev, map, config);
1238 if (ret != 0)
1239 goto err_regcache;
1240 } else {
1241 regmap_debugfs_init(map);
1242 }
1243
1244 return map;
1245
1246 err_regcache:
1247 regcache_exit(map);
1248 err_range:
1249 regmap_range_exit(map);
1250 kfree(map->work_buf);
1251 err_hwlock:
1252 if (map->hwlock)
1253 hwspin_lock_free(map->hwlock);
1254 err_name:
1255 kfree_const(map->name);
1256 err_map:
1257 kfree(map);
1258 err:
1259 return ERR_PTR(ret);
1260 }
1261 EXPORT_SYMBOL_GPL(__regmap_init);
1262
devm_regmap_release(struct device * dev,void * res)1263 static void devm_regmap_release(struct device *dev, void *res)
1264 {
1265 regmap_exit(*(struct regmap **)res);
1266 }
1267
__devm_regmap_init(struct device * dev,const struct regmap_bus * bus,void * bus_context,const struct regmap_config * config,struct lock_class_key * lock_key,const char * lock_name)1268 struct regmap *__devm_regmap_init(struct device *dev,
1269 const struct regmap_bus *bus,
1270 void *bus_context,
1271 const struct regmap_config *config,
1272 struct lock_class_key *lock_key,
1273 const char *lock_name)
1274 {
1275 struct regmap **ptr, *regmap;
1276
1277 ptr = devres_alloc(devm_regmap_release, sizeof(*ptr), GFP_KERNEL);
1278 if (!ptr)
1279 return ERR_PTR(-ENOMEM);
1280
1281 regmap = __regmap_init(dev, bus, bus_context, config,
1282 lock_key, lock_name);
1283 if (!IS_ERR(regmap)) {
1284 *ptr = regmap;
1285 devres_add(dev, ptr);
1286 } else {
1287 devres_free(ptr);
1288 }
1289
1290 return regmap;
1291 }
1292 EXPORT_SYMBOL_GPL(__devm_regmap_init);
1293
regmap_field_init(struct regmap_field * rm_field,struct regmap * regmap,struct reg_field reg_field)1294 static void regmap_field_init(struct regmap_field *rm_field,
1295 struct regmap *regmap, struct reg_field reg_field)
1296 {
1297 rm_field->regmap = regmap;
1298 rm_field->reg = reg_field.reg;
1299 rm_field->shift = reg_field.lsb;
1300 rm_field->mask = GENMASK(reg_field.msb, reg_field.lsb);
1301 rm_field->id_size = reg_field.id_size;
1302 rm_field->id_offset = reg_field.id_offset;
1303 }
1304
1305 /**
1306 * devm_regmap_field_alloc() - Allocate and initialise a register field.
1307 *
1308 * @dev: Device that will be interacted with
1309 * @regmap: regmap bank in which this register field is located.
1310 * @reg_field: Register field with in the bank.
1311 *
1312 * The return value will be an ERR_PTR() on error or a valid pointer
1313 * to a struct regmap_field. The regmap_field will be automatically freed
1314 * by the device management code.
1315 */
devm_regmap_field_alloc(struct device * dev,struct regmap * regmap,struct reg_field reg_field)1316 struct regmap_field *devm_regmap_field_alloc(struct device *dev,
1317 struct regmap *regmap, struct reg_field reg_field)
1318 {
1319 struct regmap_field *rm_field = devm_kzalloc(dev,
1320 sizeof(*rm_field), GFP_KERNEL);
1321 if (!rm_field)
1322 return ERR_PTR(-ENOMEM);
1323
1324 regmap_field_init(rm_field, regmap, reg_field);
1325
1326 return rm_field;
1327
1328 }
1329 EXPORT_SYMBOL_GPL(devm_regmap_field_alloc);
1330
1331
1332 /**
1333 * regmap_field_bulk_alloc() - Allocate and initialise a bulk register field.
1334 *
1335 * @regmap: regmap bank in which this register field is located.
1336 * @rm_field: regmap register fields within the bank.
1337 * @reg_field: Register fields within the bank.
1338 * @num_fields: Number of register fields.
1339 *
1340 * The return value will be an -ENOMEM on error or zero for success.
1341 * Newly allocated regmap_fields should be freed by calling
1342 * regmap_field_bulk_free()
1343 */
regmap_field_bulk_alloc(struct regmap * regmap,struct regmap_field ** rm_field,const struct reg_field * reg_field,int num_fields)1344 int regmap_field_bulk_alloc(struct regmap *regmap,
1345 struct regmap_field **rm_field,
1346 const struct reg_field *reg_field,
1347 int num_fields)
1348 {
1349 struct regmap_field *rf;
1350 int i;
1351
1352 rf = kcalloc(num_fields, sizeof(*rf), GFP_KERNEL);
1353 if (!rf)
1354 return -ENOMEM;
1355
1356 for (i = 0; i < num_fields; i++) {
1357 regmap_field_init(&rf[i], regmap, reg_field[i]);
1358 rm_field[i] = &rf[i];
1359 }
1360
1361 return 0;
1362 }
1363 EXPORT_SYMBOL_GPL(regmap_field_bulk_alloc);
1364
1365 /**
1366 * devm_regmap_field_bulk_alloc() - Allocate and initialise a bulk register
1367 * fields.
1368 *
1369 * @dev: Device that will be interacted with
1370 * @regmap: regmap bank in which this register field is located.
1371 * @rm_field: regmap register fields within the bank.
1372 * @reg_field: Register fields within the bank.
1373 * @num_fields: Number of register fields.
1374 *
1375 * The return value will be an -ENOMEM on error or zero for success.
1376 * Newly allocated regmap_fields will be automatically freed by the
1377 * device management code.
1378 */
devm_regmap_field_bulk_alloc(struct device * dev,struct regmap * regmap,struct regmap_field ** rm_field,const struct reg_field * reg_field,int num_fields)1379 int devm_regmap_field_bulk_alloc(struct device *dev,
1380 struct regmap *regmap,
1381 struct regmap_field **rm_field,
1382 const struct reg_field *reg_field,
1383 int num_fields)
1384 {
1385 struct regmap_field *rf;
1386 int i;
1387
1388 rf = devm_kcalloc(dev, num_fields, sizeof(*rf), GFP_KERNEL);
1389 if (!rf)
1390 return -ENOMEM;
1391
1392 for (i = 0; i < num_fields; i++) {
1393 regmap_field_init(&rf[i], regmap, reg_field[i]);
1394 rm_field[i] = &rf[i];
1395 }
1396
1397 return 0;
1398 }
1399 EXPORT_SYMBOL_GPL(devm_regmap_field_bulk_alloc);
1400
1401 /**
1402 * regmap_field_bulk_free() - Free register field allocated using
1403 * regmap_field_bulk_alloc.
1404 *
1405 * @field: regmap fields which should be freed.
1406 */
regmap_field_bulk_free(struct regmap_field * field)1407 void regmap_field_bulk_free(struct regmap_field *field)
1408 {
1409 kfree(field);
1410 }
1411 EXPORT_SYMBOL_GPL(regmap_field_bulk_free);
1412
1413 /**
1414 * devm_regmap_field_bulk_free() - Free a bulk register field allocated using
1415 * devm_regmap_field_bulk_alloc.
1416 *
1417 * @dev: Device that will be interacted with
1418 * @field: regmap field which should be freed.
1419 *
1420 * Free register field allocated using devm_regmap_field_bulk_alloc(). Usually
1421 * drivers need not call this function, as the memory allocated via devm
1422 * will be freed as per device-driver life-cycle.
1423 */
devm_regmap_field_bulk_free(struct device * dev,struct regmap_field * field)1424 void devm_regmap_field_bulk_free(struct device *dev,
1425 struct regmap_field *field)
1426 {
1427 devm_kfree(dev, field);
1428 }
1429 EXPORT_SYMBOL_GPL(devm_regmap_field_bulk_free);
1430
1431 /**
1432 * devm_regmap_field_free() - Free a register field allocated using
1433 * devm_regmap_field_alloc.
1434 *
1435 * @dev: Device that will be interacted with
1436 * @field: regmap field which should be freed.
1437 *
1438 * Free register field allocated using devm_regmap_field_alloc(). Usually
1439 * drivers need not call this function, as the memory allocated via devm
1440 * will be freed as per device-driver life-cyle.
1441 */
devm_regmap_field_free(struct device * dev,struct regmap_field * field)1442 void devm_regmap_field_free(struct device *dev,
1443 struct regmap_field *field)
1444 {
1445 devm_kfree(dev, field);
1446 }
1447 EXPORT_SYMBOL_GPL(devm_regmap_field_free);
1448
1449 /**
1450 * regmap_field_alloc() - Allocate and initialise a register field.
1451 *
1452 * @regmap: regmap bank in which this register field is located.
1453 * @reg_field: Register field with in the bank.
1454 *
1455 * The return value will be an ERR_PTR() on error or a valid pointer
1456 * to a struct regmap_field. The regmap_field should be freed by the
1457 * user once its finished working with it using regmap_field_free().
1458 */
regmap_field_alloc(struct regmap * regmap,struct reg_field reg_field)1459 struct regmap_field *regmap_field_alloc(struct regmap *regmap,
1460 struct reg_field reg_field)
1461 {
1462 struct regmap_field *rm_field = kzalloc(sizeof(*rm_field), GFP_KERNEL);
1463
1464 if (!rm_field)
1465 return ERR_PTR(-ENOMEM);
1466
1467 regmap_field_init(rm_field, regmap, reg_field);
1468
1469 return rm_field;
1470 }
1471 EXPORT_SYMBOL_GPL(regmap_field_alloc);
1472
1473 /**
1474 * regmap_field_free() - Free register field allocated using
1475 * regmap_field_alloc.
1476 *
1477 * @field: regmap field which should be freed.
1478 */
regmap_field_free(struct regmap_field * field)1479 void regmap_field_free(struct regmap_field *field)
1480 {
1481 kfree(field);
1482 }
1483 EXPORT_SYMBOL_GPL(regmap_field_free);
1484
1485 /**
1486 * regmap_reinit_cache() - Reinitialise the current register cache
1487 *
1488 * @map: Register map to operate on.
1489 * @config: New configuration. Only the cache data will be used.
1490 *
1491 * Discard any existing register cache for the map and initialize a
1492 * new cache. This can be used to restore the cache to defaults or to
1493 * update the cache configuration to reflect runtime discovery of the
1494 * hardware.
1495 *
1496 * No explicit locking is done here, the user needs to ensure that
1497 * this function will not race with other calls to regmap.
1498 */
regmap_reinit_cache(struct regmap * map,const struct regmap_config * config)1499 int regmap_reinit_cache(struct regmap *map, const struct regmap_config *config)
1500 {
1501 int ret;
1502
1503 regcache_exit(map);
1504 regmap_debugfs_exit(map);
1505
1506 map->max_register = config->max_register;
1507 map->writeable_reg = config->writeable_reg;
1508 map->readable_reg = config->readable_reg;
1509 map->volatile_reg = config->volatile_reg;
1510 map->precious_reg = config->precious_reg;
1511 map->writeable_noinc_reg = config->writeable_noinc_reg;
1512 map->readable_noinc_reg = config->readable_noinc_reg;
1513 map->cache_type = config->cache_type;
1514
1515 ret = regmap_set_name(map, config);
1516 if (ret)
1517 return ret;
1518
1519 regmap_debugfs_init(map);
1520
1521 map->cache_bypass = false;
1522 map->cache_only = false;
1523
1524 return regcache_init(map, config);
1525 }
1526 EXPORT_SYMBOL_GPL(regmap_reinit_cache);
1527
1528 /**
1529 * regmap_exit() - Free a previously allocated register map
1530 *
1531 * @map: Register map to operate on.
1532 */
regmap_exit(struct regmap * map)1533 void regmap_exit(struct regmap *map)
1534 {
1535 struct regmap_async *async;
1536
1537 regcache_exit(map);
1538 regmap_debugfs_exit(map);
1539 regmap_range_exit(map);
1540 if (map->bus && map->bus->free_context)
1541 map->bus->free_context(map->bus_context);
1542 kfree(map->work_buf);
1543 while (!list_empty(&map->async_free)) {
1544 async = list_first_entry_or_null(&map->async_free,
1545 struct regmap_async,
1546 list);
1547 list_del(&async->list);
1548 kfree(async->work_buf);
1549 kfree(async);
1550 }
1551 if (map->hwlock)
1552 hwspin_lock_free(map->hwlock);
1553 if (map->lock == regmap_lock_mutex)
1554 mutex_destroy(&map->mutex);
1555 kfree_const(map->name);
1556 kfree(map->patch);
1557 if (map->bus && map->bus->free_on_exit)
1558 kfree(map->bus);
1559 kfree(map);
1560 }
1561 EXPORT_SYMBOL_GPL(regmap_exit);
1562
dev_get_regmap_match(struct device * dev,void * res,void * data)1563 static int dev_get_regmap_match(struct device *dev, void *res, void *data)
1564 {
1565 struct regmap **r = res;
1566 if (!r || !*r) {
1567 WARN_ON(!r || !*r);
1568 return 0;
1569 }
1570
1571 /* If the user didn't specify a name match any */
1572 if (data)
1573 return !strcmp((*r)->name, data);
1574 else
1575 return 1;
1576 }
1577
1578 /**
1579 * dev_get_regmap() - Obtain the regmap (if any) for a device
1580 *
1581 * @dev: Device to retrieve the map for
1582 * @name: Optional name for the register map, usually NULL.
1583 *
1584 * Returns the regmap for the device if one is present, or NULL. If
1585 * name is specified then it must match the name specified when
1586 * registering the device, if it is NULL then the first regmap found
1587 * will be used. Devices with multiple register maps are very rare,
1588 * generic code should normally not need to specify a name.
1589 */
dev_get_regmap(struct device * dev,const char * name)1590 struct regmap *dev_get_regmap(struct device *dev, const char *name)
1591 {
1592 struct regmap **r = devres_find(dev, dev_get_regmap_release,
1593 dev_get_regmap_match, (void *)name);
1594
1595 if (!r)
1596 return NULL;
1597 return *r;
1598 }
1599 EXPORT_SYMBOL_GPL(dev_get_regmap);
1600
1601 /**
1602 * regmap_get_device() - Obtain the device from a regmap
1603 *
1604 * @map: Register map to operate on.
1605 *
1606 * Returns the underlying device that the regmap has been created for.
1607 */
regmap_get_device(struct regmap * map)1608 struct device *regmap_get_device(struct regmap *map)
1609 {
1610 return map->dev;
1611 }
1612 EXPORT_SYMBOL_GPL(regmap_get_device);
1613
_regmap_select_page(struct regmap * map,unsigned int * reg,struct regmap_range_node * range,unsigned int val_num)1614 static int _regmap_select_page(struct regmap *map, unsigned int *reg,
1615 struct regmap_range_node *range,
1616 unsigned int val_num)
1617 {
1618 void *orig_work_buf;
1619 unsigned int win_offset;
1620 unsigned int win_page;
1621 bool page_chg;
1622 int ret;
1623
1624 win_offset = (*reg - range->range_min) % range->window_len;
1625 win_page = (*reg - range->range_min) / range->window_len;
1626
1627 if (val_num > 1) {
1628 /* Bulk write shouldn't cross range boundary */
1629 if (*reg + val_num - 1 > range->range_max)
1630 return -EINVAL;
1631
1632 /* ... or single page boundary */
1633 if (val_num > range->window_len - win_offset)
1634 return -EINVAL;
1635 }
1636
1637 /* It is possible to have selector register inside data window.
1638 In that case, selector register is located on every page and
1639 it needs no page switching, when accessed alone. */
1640 if (val_num > 1 ||
1641 range->window_start + win_offset != range->selector_reg) {
1642 /* Use separate work_buf during page switching */
1643 orig_work_buf = map->work_buf;
1644 map->work_buf = map->selector_work_buf;
1645
1646 ret = _regmap_update_bits(map, range->selector_reg,
1647 range->selector_mask,
1648 win_page << range->selector_shift,
1649 &page_chg, false);
1650
1651 map->work_buf = orig_work_buf;
1652
1653 if (ret != 0)
1654 return ret;
1655 }
1656
1657 *reg = range->window_start + win_offset;
1658
1659 return 0;
1660 }
1661
regmap_set_work_buf_flag_mask(struct regmap * map,int max_bytes,unsigned long mask)1662 static void regmap_set_work_buf_flag_mask(struct regmap *map, int max_bytes,
1663 unsigned long mask)
1664 {
1665 u8 *buf;
1666 int i;
1667
1668 if (!mask || !map->work_buf)
1669 return;
1670
1671 buf = map->work_buf;
1672
1673 for (i = 0; i < max_bytes; i++)
1674 buf[i] |= (mask >> (8 * i)) & 0xff;
1675 }
1676
_regmap_raw_write_impl(struct regmap * map,unsigned int reg,const void * val,size_t val_len,bool noinc)1677 static int _regmap_raw_write_impl(struct regmap *map, unsigned int reg,
1678 const void *val, size_t val_len, bool noinc)
1679 {
1680 struct regmap_range_node *range;
1681 unsigned long flags;
1682 void *work_val = map->work_buf + map->format.reg_bytes +
1683 map->format.pad_bytes;
1684 void *buf;
1685 int ret = -ENOTSUPP;
1686 size_t len;
1687 int i;
1688
1689 /* Check for unwritable or noinc registers in range
1690 * before we start
1691 */
1692 if (!regmap_writeable_noinc(map, reg)) {
1693 for (i = 0; i < val_len / map->format.val_bytes; i++) {
1694 unsigned int element =
1695 reg + regmap_get_offset(map, i);
1696 if (!regmap_writeable(map, element) ||
1697 regmap_writeable_noinc(map, element))
1698 return -EINVAL;
1699 }
1700 }
1701
1702 if (!map->cache_bypass && map->format.parse_val) {
1703 unsigned int ival;
1704 int val_bytes = map->format.val_bytes;
1705 for (i = 0; i < val_len / val_bytes; i++) {
1706 ival = map->format.parse_val(val + (i * val_bytes));
1707 ret = regcache_write(map,
1708 reg + regmap_get_offset(map, i),
1709 ival);
1710 if (ret) {
1711 dev_err(map->dev,
1712 "Error in caching of register: %x ret: %d\n",
1713 reg + regmap_get_offset(map, i), ret);
1714 return ret;
1715 }
1716 }
1717 if (map->cache_only) {
1718 map->cache_dirty = true;
1719 return 0;
1720 }
1721 }
1722
1723 range = _regmap_range_lookup(map, reg);
1724 if (range) {
1725 int val_num = val_len / map->format.val_bytes;
1726 int win_offset = (reg - range->range_min) % range->window_len;
1727 int win_residue = range->window_len - win_offset;
1728
1729 /* If the write goes beyond the end of the window split it */
1730 while (val_num > win_residue) {
1731 dev_dbg(map->dev, "Writing window %d/%zu\n",
1732 win_residue, val_len / map->format.val_bytes);
1733 ret = _regmap_raw_write_impl(map, reg, val,
1734 win_residue *
1735 map->format.val_bytes, noinc);
1736 if (ret != 0)
1737 return ret;
1738
1739 reg += win_residue;
1740 val_num -= win_residue;
1741 val += win_residue * map->format.val_bytes;
1742 val_len -= win_residue * map->format.val_bytes;
1743
1744 win_offset = (reg - range->range_min) %
1745 range->window_len;
1746 win_residue = range->window_len - win_offset;
1747 }
1748
1749 ret = _regmap_select_page(map, ®, range, noinc ? 1 : val_num);
1750 if (ret != 0)
1751 return ret;
1752 }
1753
1754 reg += map->reg_base;
1755 reg >>= map->format.reg_downshift;
1756 map->format.format_reg(map->work_buf, reg, map->reg_shift);
1757 regmap_set_work_buf_flag_mask(map, map->format.reg_bytes,
1758 map->write_flag_mask);
1759
1760 /*
1761 * Essentially all I/O mechanisms will be faster with a single
1762 * buffer to write. Since register syncs often generate raw
1763 * writes of single registers optimise that case.
1764 */
1765 if (val != work_val && val_len == map->format.val_bytes) {
1766 memcpy(work_val, val, map->format.val_bytes);
1767 val = work_val;
1768 }
1769
1770 if (map->async && map->bus && map->bus->async_write) {
1771 struct regmap_async *async;
1772
1773 trace_regmap_async_write_start(map, reg, val_len);
1774
1775 spin_lock_irqsave(&map->async_lock, flags);
1776 async = list_first_entry_or_null(&map->async_free,
1777 struct regmap_async,
1778 list);
1779 if (async)
1780 list_del(&async->list);
1781 spin_unlock_irqrestore(&map->async_lock, flags);
1782
1783 if (!async) {
1784 async = map->bus->async_alloc();
1785 if (!async)
1786 return -ENOMEM;
1787
1788 async->work_buf = kzalloc(map->format.buf_size,
1789 GFP_KERNEL | GFP_DMA);
1790 if (!async->work_buf) {
1791 kfree(async);
1792 return -ENOMEM;
1793 }
1794 }
1795
1796 async->map = map;
1797
1798 /* If the caller supplied the value we can use it safely. */
1799 memcpy(async->work_buf, map->work_buf, map->format.pad_bytes +
1800 map->format.reg_bytes + map->format.val_bytes);
1801
1802 spin_lock_irqsave(&map->async_lock, flags);
1803 list_add_tail(&async->list, &map->async_list);
1804 spin_unlock_irqrestore(&map->async_lock, flags);
1805
1806 if (val != work_val)
1807 ret = map->bus->async_write(map->bus_context,
1808 async->work_buf,
1809 map->format.reg_bytes +
1810 map->format.pad_bytes,
1811 val, val_len, async);
1812 else
1813 ret = map->bus->async_write(map->bus_context,
1814 async->work_buf,
1815 map->format.reg_bytes +
1816 map->format.pad_bytes +
1817 val_len, NULL, 0, async);
1818
1819 if (ret != 0) {
1820 dev_err(map->dev, "Failed to schedule write: %d\n",
1821 ret);
1822
1823 spin_lock_irqsave(&map->async_lock, flags);
1824 list_move(&async->list, &map->async_free);
1825 spin_unlock_irqrestore(&map->async_lock, flags);
1826 }
1827
1828 return ret;
1829 }
1830
1831 trace_regmap_hw_write_start(map, reg, val_len / map->format.val_bytes);
1832
1833 /* If we're doing a single register write we can probably just
1834 * send the work_buf directly, otherwise try to do a gather
1835 * write.
1836 */
1837 if (val == work_val)
1838 ret = map->write(map->bus_context, map->work_buf,
1839 map->format.reg_bytes +
1840 map->format.pad_bytes +
1841 val_len);
1842 else if (map->bus && map->bus->gather_write)
1843 ret = map->bus->gather_write(map->bus_context, map->work_buf,
1844 map->format.reg_bytes +
1845 map->format.pad_bytes,
1846 val, val_len);
1847 else
1848 ret = -ENOTSUPP;
1849
1850 /* If that didn't work fall back on linearising by hand. */
1851 if (ret == -ENOTSUPP) {
1852 len = map->format.reg_bytes + map->format.pad_bytes + val_len;
1853 buf = kzalloc(len, GFP_KERNEL);
1854 if (!buf)
1855 return -ENOMEM;
1856
1857 memcpy(buf, map->work_buf, map->format.reg_bytes);
1858 memcpy(buf + map->format.reg_bytes + map->format.pad_bytes,
1859 val, val_len);
1860 ret = map->write(map->bus_context, buf, len);
1861
1862 kfree(buf);
1863 } else if (ret != 0 && !map->cache_bypass && map->format.parse_val) {
1864 /* regcache_drop_region() takes lock that we already have,
1865 * thus call map->cache_ops->drop() directly
1866 */
1867 if (map->cache_ops && map->cache_ops->drop)
1868 map->cache_ops->drop(map, reg, reg + 1);
1869 }
1870
1871 trace_regmap_hw_write_done(map, reg, val_len / map->format.val_bytes);
1872
1873 return ret;
1874 }
1875
1876 /**
1877 * regmap_can_raw_write - Test if regmap_raw_write() is supported
1878 *
1879 * @map: Map to check.
1880 */
regmap_can_raw_write(struct regmap * map)1881 bool regmap_can_raw_write(struct regmap *map)
1882 {
1883 return map->write && map->format.format_val && map->format.format_reg;
1884 }
1885 EXPORT_SYMBOL_GPL(regmap_can_raw_write);
1886
1887 /**
1888 * regmap_get_raw_read_max - Get the maximum size we can read
1889 *
1890 * @map: Map to check.
1891 */
regmap_get_raw_read_max(struct regmap * map)1892 size_t regmap_get_raw_read_max(struct regmap *map)
1893 {
1894 return map->max_raw_read;
1895 }
1896 EXPORT_SYMBOL_GPL(regmap_get_raw_read_max);
1897
1898 /**
1899 * regmap_get_raw_write_max - Get the maximum size we can read
1900 *
1901 * @map: Map to check.
1902 */
regmap_get_raw_write_max(struct regmap * map)1903 size_t regmap_get_raw_write_max(struct regmap *map)
1904 {
1905 return map->max_raw_write;
1906 }
1907 EXPORT_SYMBOL_GPL(regmap_get_raw_write_max);
1908
_regmap_bus_formatted_write(void * context,unsigned int reg,unsigned int val)1909 static int _regmap_bus_formatted_write(void *context, unsigned int reg,
1910 unsigned int val)
1911 {
1912 int ret;
1913 struct regmap_range_node *range;
1914 struct regmap *map = context;
1915
1916 WARN_ON(!map->format.format_write);
1917
1918 range = _regmap_range_lookup(map, reg);
1919 if (range) {
1920 ret = _regmap_select_page(map, ®, range, 1);
1921 if (ret != 0)
1922 return ret;
1923 }
1924
1925 reg += map->reg_base;
1926 reg >>= map->format.reg_downshift;
1927 map->format.format_write(map, reg, val);
1928
1929 trace_regmap_hw_write_start(map, reg, 1);
1930
1931 ret = map->write(map->bus_context, map->work_buf, map->format.buf_size);
1932
1933 trace_regmap_hw_write_done(map, reg, 1);
1934
1935 return ret;
1936 }
1937
_regmap_bus_reg_write(void * context,unsigned int reg,unsigned int val)1938 static int _regmap_bus_reg_write(void *context, unsigned int reg,
1939 unsigned int val)
1940 {
1941 struct regmap *map = context;
1942
1943 return map->bus->reg_write(map->bus_context, reg, val);
1944 }
1945
_regmap_bus_raw_write(void * context,unsigned int reg,unsigned int val)1946 static int _regmap_bus_raw_write(void *context, unsigned int reg,
1947 unsigned int val)
1948 {
1949 struct regmap *map = context;
1950
1951 WARN_ON(!map->format.format_val);
1952
1953 map->format.format_val(map->work_buf + map->format.reg_bytes
1954 + map->format.pad_bytes, val, 0);
1955 return _regmap_raw_write_impl(map, reg,
1956 map->work_buf +
1957 map->format.reg_bytes +
1958 map->format.pad_bytes,
1959 map->format.val_bytes,
1960 false);
1961 }
1962
_regmap_map_get_context(struct regmap * map)1963 static inline void *_regmap_map_get_context(struct regmap *map)
1964 {
1965 return (map->bus || (!map->bus && map->read)) ? map : map->bus_context;
1966 }
1967
_regmap_write(struct regmap * map,unsigned int reg,unsigned int val)1968 int _regmap_write(struct regmap *map, unsigned int reg,
1969 unsigned int val)
1970 {
1971 int ret;
1972 void *context = _regmap_map_get_context(map);
1973
1974 if (!regmap_writeable(map, reg))
1975 return -EIO;
1976
1977 if (!map->cache_bypass && !map->defer_caching) {
1978 ret = regcache_write(map, reg, val);
1979 if (ret != 0)
1980 return ret;
1981 if (map->cache_only) {
1982 map->cache_dirty = true;
1983 return 0;
1984 }
1985 }
1986
1987 ret = map->reg_write(context, reg, val);
1988 if (ret == 0) {
1989 if (regmap_should_log(map))
1990 dev_info(map->dev, "%x <= %x\n", reg, val);
1991
1992 trace_regmap_reg_write(map, reg, val);
1993 }
1994
1995 return ret;
1996 }
1997
1998 /**
1999 * regmap_write() - Write a value to a single register
2000 *
2001 * @map: Register map to write to
2002 * @reg: Register to write to
2003 * @val: Value to be written
2004 *
2005 * A value of zero will be returned on success, a negative errno will
2006 * be returned in error cases.
2007 */
regmap_write(struct regmap * map,unsigned int reg,unsigned int val)2008 int regmap_write(struct regmap *map, unsigned int reg, unsigned int val)
2009 {
2010 int ret;
2011
2012 if (!IS_ALIGNED(reg, map->reg_stride))
2013 return -EINVAL;
2014
2015 map->lock(map->lock_arg);
2016
2017 ret = _regmap_write(map, reg, val);
2018
2019 map->unlock(map->lock_arg);
2020
2021 return ret;
2022 }
2023 EXPORT_SYMBOL_GPL(regmap_write);
2024
2025 /**
2026 * regmap_write_async() - Write a value to a single register asynchronously
2027 *
2028 * @map: Register map to write to
2029 * @reg: Register to write to
2030 * @val: Value to be written
2031 *
2032 * A value of zero will be returned on success, a negative errno will
2033 * be returned in error cases.
2034 */
regmap_write_async(struct regmap * map,unsigned int reg,unsigned int val)2035 int regmap_write_async(struct regmap *map, unsigned int reg, unsigned int val)
2036 {
2037 int ret;
2038
2039 if (!IS_ALIGNED(reg, map->reg_stride))
2040 return -EINVAL;
2041
2042 map->lock(map->lock_arg);
2043
2044 map->async = true;
2045
2046 ret = _regmap_write(map, reg, val);
2047
2048 map->async = false;
2049
2050 map->unlock(map->lock_arg);
2051
2052 return ret;
2053 }
2054 EXPORT_SYMBOL_GPL(regmap_write_async);
2055
_regmap_raw_write(struct regmap * map,unsigned int reg,const void * val,size_t val_len,bool noinc)2056 int _regmap_raw_write(struct regmap *map, unsigned int reg,
2057 const void *val, size_t val_len, bool noinc)
2058 {
2059 size_t val_bytes = map->format.val_bytes;
2060 size_t val_count = val_len / val_bytes;
2061 size_t chunk_count, chunk_bytes;
2062 size_t chunk_regs = val_count;
2063 int ret, i;
2064
2065 if (!val_count)
2066 return -EINVAL;
2067
2068 if (map->use_single_write)
2069 chunk_regs = 1;
2070 else if (map->max_raw_write && val_len > map->max_raw_write)
2071 chunk_regs = map->max_raw_write / val_bytes;
2072
2073 chunk_count = val_count / chunk_regs;
2074 chunk_bytes = chunk_regs * val_bytes;
2075
2076 /* Write as many bytes as possible with chunk_size */
2077 for (i = 0; i < chunk_count; i++) {
2078 ret = _regmap_raw_write_impl(map, reg, val, chunk_bytes, noinc);
2079 if (ret)
2080 return ret;
2081
2082 reg += regmap_get_offset(map, chunk_regs);
2083 val += chunk_bytes;
2084 val_len -= chunk_bytes;
2085 }
2086
2087 /* Write remaining bytes */
2088 if (val_len)
2089 ret = _regmap_raw_write_impl(map, reg, val, val_len, noinc);
2090
2091 return ret;
2092 }
2093
2094 /**
2095 * regmap_raw_write() - Write raw values to one or more registers
2096 *
2097 * @map: Register map to write to
2098 * @reg: Initial register to write to
2099 * @val: Block of data to be written, laid out for direct transmission to the
2100 * device
2101 * @val_len: Length of data pointed to by val.
2102 *
2103 * This function is intended to be used for things like firmware
2104 * download where a large block of data needs to be transferred to the
2105 * device. No formatting will be done on the data provided.
2106 *
2107 * A value of zero will be returned on success, a negative errno will
2108 * be returned in error cases.
2109 */
regmap_raw_write(struct regmap * map,unsigned int reg,const void * val,size_t val_len)2110 int regmap_raw_write(struct regmap *map, unsigned int reg,
2111 const void *val, size_t val_len)
2112 {
2113 int ret;
2114
2115 if (!regmap_can_raw_write(map))
2116 return -EINVAL;
2117 if (val_len % map->format.val_bytes)
2118 return -EINVAL;
2119
2120 map->lock(map->lock_arg);
2121
2122 ret = _regmap_raw_write(map, reg, val, val_len, false);
2123
2124 map->unlock(map->lock_arg);
2125
2126 return ret;
2127 }
2128 EXPORT_SYMBOL_GPL(regmap_raw_write);
2129
2130 /**
2131 * regmap_noinc_write(): Write data from a register without incrementing the
2132 * register number
2133 *
2134 * @map: Register map to write to
2135 * @reg: Register to write to
2136 * @val: Pointer to data buffer
2137 * @val_len: Length of output buffer in bytes.
2138 *
2139 * The regmap API usually assumes that bulk bus write operations will write a
2140 * range of registers. Some devices have certain registers for which a write
2141 * operation can write to an internal FIFO.
2142 *
2143 * The target register must be volatile but registers after it can be
2144 * completely unrelated cacheable registers.
2145 *
2146 * This will attempt multiple writes as required to write val_len bytes.
2147 *
2148 * A value of zero will be returned on success, a negative errno will be
2149 * returned in error cases.
2150 */
regmap_noinc_write(struct regmap * map,unsigned int reg,const void * val,size_t val_len)2151 int regmap_noinc_write(struct regmap *map, unsigned int reg,
2152 const void *val, size_t val_len)
2153 {
2154 size_t write_len;
2155 int ret;
2156
2157 if (!map->write)
2158 return -ENOTSUPP;
2159
2160 if (val_len % map->format.val_bytes)
2161 return -EINVAL;
2162 if (!IS_ALIGNED(reg, map->reg_stride))
2163 return -EINVAL;
2164 if (val_len == 0)
2165 return -EINVAL;
2166
2167 map->lock(map->lock_arg);
2168
2169 if (!regmap_volatile(map, reg) || !regmap_writeable_noinc(map, reg)) {
2170 ret = -EINVAL;
2171 goto out_unlock;
2172 }
2173
2174 while (val_len) {
2175 if (map->max_raw_write && map->max_raw_write < val_len)
2176 write_len = map->max_raw_write;
2177 else
2178 write_len = val_len;
2179 ret = _regmap_raw_write(map, reg, val, write_len, true);
2180 if (ret)
2181 goto out_unlock;
2182 val = ((u8 *)val) + write_len;
2183 val_len -= write_len;
2184 }
2185
2186 out_unlock:
2187 map->unlock(map->lock_arg);
2188 return ret;
2189 }
2190 EXPORT_SYMBOL_GPL(regmap_noinc_write);
2191
2192 /**
2193 * regmap_field_update_bits_base() - Perform a read/modify/write cycle a
2194 * register field.
2195 *
2196 * @field: Register field to write to
2197 * @mask: Bitmask to change
2198 * @val: Value to be written
2199 * @change: Boolean indicating if a write was done
2200 * @async: Boolean indicating asynchronously
2201 * @force: Boolean indicating use force update
2202 *
2203 * Perform a read/modify/write cycle on the register field with change,
2204 * async, force option.
2205 *
2206 * A value of zero will be returned on success, a negative errno will
2207 * be returned in error cases.
2208 */
regmap_field_update_bits_base(struct regmap_field * field,unsigned int mask,unsigned int val,bool * change,bool async,bool force)2209 int regmap_field_update_bits_base(struct regmap_field *field,
2210 unsigned int mask, unsigned int val,
2211 bool *change, bool async, bool force)
2212 {
2213 mask = (mask << field->shift) & field->mask;
2214
2215 return regmap_update_bits_base(field->regmap, field->reg,
2216 mask, val << field->shift,
2217 change, async, force);
2218 }
2219 EXPORT_SYMBOL_GPL(regmap_field_update_bits_base);
2220
2221 /**
2222 * regmap_fields_update_bits_base() - Perform a read/modify/write cycle a
2223 * register field with port ID
2224 *
2225 * @field: Register field to write to
2226 * @id: port ID
2227 * @mask: Bitmask to change
2228 * @val: Value to be written
2229 * @change: Boolean indicating if a write was done
2230 * @async: Boolean indicating asynchronously
2231 * @force: Boolean indicating use force update
2232 *
2233 * A value of zero will be returned on success, a negative errno will
2234 * be returned in error cases.
2235 */
regmap_fields_update_bits_base(struct regmap_field * field,unsigned int id,unsigned int mask,unsigned int val,bool * change,bool async,bool force)2236 int regmap_fields_update_bits_base(struct regmap_field *field, unsigned int id,
2237 unsigned int mask, unsigned int val,
2238 bool *change, bool async, bool force)
2239 {
2240 if (id >= field->id_size)
2241 return -EINVAL;
2242
2243 mask = (mask << field->shift) & field->mask;
2244
2245 return regmap_update_bits_base(field->regmap,
2246 field->reg + (field->id_offset * id),
2247 mask, val << field->shift,
2248 change, async, force);
2249 }
2250 EXPORT_SYMBOL_GPL(regmap_fields_update_bits_base);
2251
2252 /**
2253 * regmap_bulk_write() - Write multiple registers to the device
2254 *
2255 * @map: Register map to write to
2256 * @reg: First register to be write from
2257 * @val: Block of data to be written, in native register size for device
2258 * @val_count: Number of registers to write
2259 *
2260 * This function is intended to be used for writing a large block of
2261 * data to the device either in single transfer or multiple transfer.
2262 *
2263 * A value of zero will be returned on success, a negative errno will
2264 * be returned in error cases.
2265 */
regmap_bulk_write(struct regmap * map,unsigned int reg,const void * val,size_t val_count)2266 int regmap_bulk_write(struct regmap *map, unsigned int reg, const void *val,
2267 size_t val_count)
2268 {
2269 int ret = 0, i;
2270 size_t val_bytes = map->format.val_bytes;
2271
2272 if (!IS_ALIGNED(reg, map->reg_stride))
2273 return -EINVAL;
2274
2275 /*
2276 * Some devices don't support bulk write, for them we have a series of
2277 * single write operations.
2278 */
2279 if (!map->write || !map->format.parse_inplace) {
2280 map->lock(map->lock_arg);
2281 for (i = 0; i < val_count; i++) {
2282 unsigned int ival;
2283
2284 switch (val_bytes) {
2285 case 1:
2286 ival = *(u8 *)(val + (i * val_bytes));
2287 break;
2288 case 2:
2289 ival = *(u16 *)(val + (i * val_bytes));
2290 break;
2291 case 4:
2292 ival = *(u32 *)(val + (i * val_bytes));
2293 break;
2294 #ifdef CONFIG_64BIT
2295 case 8:
2296 ival = *(u64 *)(val + (i * val_bytes));
2297 break;
2298 #endif
2299 default:
2300 ret = -EINVAL;
2301 goto out;
2302 }
2303
2304 ret = _regmap_write(map,
2305 reg + regmap_get_offset(map, i),
2306 ival);
2307 if (ret != 0)
2308 goto out;
2309 }
2310 out:
2311 map->unlock(map->lock_arg);
2312 } else {
2313 void *wval;
2314
2315 wval = kmemdup(val, val_count * val_bytes, map->alloc_flags);
2316 if (!wval)
2317 return -ENOMEM;
2318
2319 for (i = 0; i < val_count * val_bytes; i += val_bytes)
2320 map->format.parse_inplace(wval + i);
2321
2322 ret = regmap_raw_write(map, reg, wval, val_bytes * val_count);
2323
2324 kfree(wval);
2325 }
2326 return ret;
2327 }
2328 EXPORT_SYMBOL_GPL(regmap_bulk_write);
2329
2330 /*
2331 * _regmap_raw_multi_reg_write()
2332 *
2333 * the (register,newvalue) pairs in regs have not been formatted, but
2334 * they are all in the same page and have been changed to being page
2335 * relative. The page register has been written if that was necessary.
2336 */
_regmap_raw_multi_reg_write(struct regmap * map,const struct reg_sequence * regs,size_t num_regs)2337 static int _regmap_raw_multi_reg_write(struct regmap *map,
2338 const struct reg_sequence *regs,
2339 size_t num_regs)
2340 {
2341 int ret;
2342 void *buf;
2343 int i;
2344 u8 *u8;
2345 size_t val_bytes = map->format.val_bytes;
2346 size_t reg_bytes = map->format.reg_bytes;
2347 size_t pad_bytes = map->format.pad_bytes;
2348 size_t pair_size = reg_bytes + pad_bytes + val_bytes;
2349 size_t len = pair_size * num_regs;
2350
2351 if (!len)
2352 return -EINVAL;
2353
2354 buf = kzalloc(len, GFP_KERNEL);
2355 if (!buf)
2356 return -ENOMEM;
2357
2358 /* We have to linearise by hand. */
2359
2360 u8 = buf;
2361
2362 for (i = 0; i < num_regs; i++) {
2363 unsigned int reg = regs[i].reg;
2364 unsigned int val = regs[i].def;
2365 trace_regmap_hw_write_start(map, reg, 1);
2366 reg += map->reg_base;
2367 reg >>= map->format.reg_downshift;
2368 map->format.format_reg(u8, reg, map->reg_shift);
2369 u8 += reg_bytes + pad_bytes;
2370 map->format.format_val(u8, val, 0);
2371 u8 += val_bytes;
2372 }
2373 u8 = buf;
2374 *u8 |= map->write_flag_mask;
2375
2376 ret = map->write(map->bus_context, buf, len);
2377
2378 kfree(buf);
2379
2380 for (i = 0; i < num_regs; i++) {
2381 int reg = regs[i].reg;
2382 trace_regmap_hw_write_done(map, reg, 1);
2383 }
2384 return ret;
2385 }
2386
_regmap_register_page(struct regmap * map,unsigned int reg,struct regmap_range_node * range)2387 static unsigned int _regmap_register_page(struct regmap *map,
2388 unsigned int reg,
2389 struct regmap_range_node *range)
2390 {
2391 unsigned int win_page = (reg - range->range_min) / range->window_len;
2392
2393 return win_page;
2394 }
2395
_regmap_range_multi_paged_reg_write(struct regmap * map,struct reg_sequence * regs,size_t num_regs)2396 static int _regmap_range_multi_paged_reg_write(struct regmap *map,
2397 struct reg_sequence *regs,
2398 size_t num_regs)
2399 {
2400 int ret;
2401 int i, n;
2402 struct reg_sequence *base;
2403 unsigned int this_page = 0;
2404 unsigned int page_change = 0;
2405 /*
2406 * the set of registers are not neccessarily in order, but
2407 * since the order of write must be preserved this algorithm
2408 * chops the set each time the page changes. This also applies
2409 * if there is a delay required at any point in the sequence.
2410 */
2411 base = regs;
2412 for (i = 0, n = 0; i < num_regs; i++, n++) {
2413 unsigned int reg = regs[i].reg;
2414 struct regmap_range_node *range;
2415
2416 range = _regmap_range_lookup(map, reg);
2417 if (range) {
2418 unsigned int win_page = _regmap_register_page(map, reg,
2419 range);
2420
2421 if (i == 0)
2422 this_page = win_page;
2423 if (win_page != this_page) {
2424 this_page = win_page;
2425 page_change = 1;
2426 }
2427 }
2428
2429 /* If we have both a page change and a delay make sure to
2430 * write the regs and apply the delay before we change the
2431 * page.
2432 */
2433
2434 if (page_change || regs[i].delay_us) {
2435
2436 /* For situations where the first write requires
2437 * a delay we need to make sure we don't call
2438 * raw_multi_reg_write with n=0
2439 * This can't occur with page breaks as we
2440 * never write on the first iteration
2441 */
2442 if (regs[i].delay_us && i == 0)
2443 n = 1;
2444
2445 ret = _regmap_raw_multi_reg_write(map, base, n);
2446 if (ret != 0)
2447 return ret;
2448
2449 if (regs[i].delay_us) {
2450 if (map->can_sleep)
2451 fsleep(regs[i].delay_us);
2452 else
2453 udelay(regs[i].delay_us);
2454 }
2455
2456 base += n;
2457 n = 0;
2458
2459 if (page_change) {
2460 ret = _regmap_select_page(map,
2461 &base[n].reg,
2462 range, 1);
2463 if (ret != 0)
2464 return ret;
2465
2466 page_change = 0;
2467 }
2468
2469 }
2470
2471 }
2472 if (n > 0)
2473 return _regmap_raw_multi_reg_write(map, base, n);
2474 return 0;
2475 }
2476
_regmap_multi_reg_write(struct regmap * map,const struct reg_sequence * regs,size_t num_regs)2477 static int _regmap_multi_reg_write(struct regmap *map,
2478 const struct reg_sequence *regs,
2479 size_t num_regs)
2480 {
2481 int i;
2482 int ret;
2483
2484 if (!map->can_multi_write) {
2485 for (i = 0; i < num_regs; i++) {
2486 ret = _regmap_write(map, regs[i].reg, regs[i].def);
2487 if (ret != 0)
2488 return ret;
2489
2490 if (regs[i].delay_us) {
2491 if (map->can_sleep)
2492 fsleep(regs[i].delay_us);
2493 else
2494 udelay(regs[i].delay_us);
2495 }
2496 }
2497 return 0;
2498 }
2499
2500 if (!map->format.parse_inplace)
2501 return -EINVAL;
2502
2503 if (map->writeable_reg)
2504 for (i = 0; i < num_regs; i++) {
2505 int reg = regs[i].reg;
2506 if (!map->writeable_reg(map->dev, reg))
2507 return -EINVAL;
2508 if (!IS_ALIGNED(reg, map->reg_stride))
2509 return -EINVAL;
2510 }
2511
2512 if (!map->cache_bypass) {
2513 for (i = 0; i < num_regs; i++) {
2514 unsigned int val = regs[i].def;
2515 unsigned int reg = regs[i].reg;
2516 ret = regcache_write(map, reg, val);
2517 if (ret) {
2518 dev_err(map->dev,
2519 "Error in caching of register: %x ret: %d\n",
2520 reg, ret);
2521 return ret;
2522 }
2523 }
2524 if (map->cache_only) {
2525 map->cache_dirty = true;
2526 return 0;
2527 }
2528 }
2529
2530 WARN_ON(!map->bus);
2531
2532 for (i = 0; i < num_regs; i++) {
2533 unsigned int reg = regs[i].reg;
2534 struct regmap_range_node *range;
2535
2536 /* Coalesce all the writes between a page break or a delay
2537 * in a sequence
2538 */
2539 range = _regmap_range_lookup(map, reg);
2540 if (range || regs[i].delay_us) {
2541 size_t len = sizeof(struct reg_sequence)*num_regs;
2542 struct reg_sequence *base = kmemdup(regs, len,
2543 GFP_KERNEL);
2544 if (!base)
2545 return -ENOMEM;
2546 ret = _regmap_range_multi_paged_reg_write(map, base,
2547 num_regs);
2548 kfree(base);
2549
2550 return ret;
2551 }
2552 }
2553 return _regmap_raw_multi_reg_write(map, regs, num_regs);
2554 }
2555
2556 /**
2557 * regmap_multi_reg_write() - Write multiple registers to the device
2558 *
2559 * @map: Register map to write to
2560 * @regs: Array of structures containing register,value to be written
2561 * @num_regs: Number of registers to write
2562 *
2563 * Write multiple registers to the device where the set of register, value
2564 * pairs are supplied in any order, possibly not all in a single range.
2565 *
2566 * The 'normal' block write mode will send ultimately send data on the
2567 * target bus as R,V1,V2,V3,..,Vn where successively higher registers are
2568 * addressed. However, this alternative block multi write mode will send
2569 * the data as R1,V1,R2,V2,..,Rn,Vn on the target bus. The target device
2570 * must of course support the mode.
2571 *
2572 * A value of zero will be returned on success, a negative errno will be
2573 * returned in error cases.
2574 */
regmap_multi_reg_write(struct regmap * map,const struct reg_sequence * regs,int num_regs)2575 int regmap_multi_reg_write(struct regmap *map, const struct reg_sequence *regs,
2576 int num_regs)
2577 {
2578 int ret;
2579
2580 map->lock(map->lock_arg);
2581
2582 ret = _regmap_multi_reg_write(map, regs, num_regs);
2583
2584 map->unlock(map->lock_arg);
2585
2586 return ret;
2587 }
2588 EXPORT_SYMBOL_GPL(regmap_multi_reg_write);
2589
2590 /**
2591 * regmap_multi_reg_write_bypassed() - Write multiple registers to the
2592 * device but not the cache
2593 *
2594 * @map: Register map to write to
2595 * @regs: Array of structures containing register,value to be written
2596 * @num_regs: Number of registers to write
2597 *
2598 * Write multiple registers to the device but not the cache where the set
2599 * of register are supplied in any order.
2600 *
2601 * This function is intended to be used for writing a large block of data
2602 * atomically to the device in single transfer for those I2C client devices
2603 * that implement this alternative block write mode.
2604 *
2605 * A value of zero will be returned on success, a negative errno will
2606 * be returned in error cases.
2607 */
regmap_multi_reg_write_bypassed(struct regmap * map,const struct reg_sequence * regs,int num_regs)2608 int regmap_multi_reg_write_bypassed(struct regmap *map,
2609 const struct reg_sequence *regs,
2610 int num_regs)
2611 {
2612 int ret;
2613 bool bypass;
2614
2615 map->lock(map->lock_arg);
2616
2617 bypass = map->cache_bypass;
2618 map->cache_bypass = true;
2619
2620 ret = _regmap_multi_reg_write(map, regs, num_regs);
2621
2622 map->cache_bypass = bypass;
2623
2624 map->unlock(map->lock_arg);
2625
2626 return ret;
2627 }
2628 EXPORT_SYMBOL_GPL(regmap_multi_reg_write_bypassed);
2629
2630 /**
2631 * regmap_raw_write_async() - Write raw values to one or more registers
2632 * asynchronously
2633 *
2634 * @map: Register map to write to
2635 * @reg: Initial register to write to
2636 * @val: Block of data to be written, laid out for direct transmission to the
2637 * device. Must be valid until regmap_async_complete() is called.
2638 * @val_len: Length of data pointed to by val.
2639 *
2640 * This function is intended to be used for things like firmware
2641 * download where a large block of data needs to be transferred to the
2642 * device. No formatting will be done on the data provided.
2643 *
2644 * If supported by the underlying bus the write will be scheduled
2645 * asynchronously, helping maximise I/O speed on higher speed buses
2646 * like SPI. regmap_async_complete() can be called to ensure that all
2647 * asynchrnous writes have been completed.
2648 *
2649 * A value of zero will be returned on success, a negative errno will
2650 * be returned in error cases.
2651 */
regmap_raw_write_async(struct regmap * map,unsigned int reg,const void * val,size_t val_len)2652 int regmap_raw_write_async(struct regmap *map, unsigned int reg,
2653 const void *val, size_t val_len)
2654 {
2655 int ret;
2656
2657 if (val_len % map->format.val_bytes)
2658 return -EINVAL;
2659 if (!IS_ALIGNED(reg, map->reg_stride))
2660 return -EINVAL;
2661
2662 map->lock(map->lock_arg);
2663
2664 map->async = true;
2665
2666 ret = _regmap_raw_write(map, reg, val, val_len, false);
2667
2668 map->async = false;
2669
2670 map->unlock(map->lock_arg);
2671
2672 return ret;
2673 }
2674 EXPORT_SYMBOL_GPL(regmap_raw_write_async);
2675
_regmap_raw_read(struct regmap * map,unsigned int reg,void * val,unsigned int val_len,bool noinc)2676 static int _regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
2677 unsigned int val_len, bool noinc)
2678 {
2679 struct regmap_range_node *range;
2680 int ret;
2681
2682 if (!map->read)
2683 return -EINVAL;
2684
2685 range = _regmap_range_lookup(map, reg);
2686 if (range) {
2687 ret = _regmap_select_page(map, ®, range,
2688 noinc ? 1 : val_len / map->format.val_bytes);
2689 if (ret != 0)
2690 return ret;
2691 }
2692
2693 reg += map->reg_base;
2694 reg >>= map->format.reg_downshift;
2695 map->format.format_reg(map->work_buf, reg, map->reg_shift);
2696 regmap_set_work_buf_flag_mask(map, map->format.reg_bytes,
2697 map->read_flag_mask);
2698 trace_regmap_hw_read_start(map, reg, val_len / map->format.val_bytes);
2699
2700 ret = map->read(map->bus_context, map->work_buf,
2701 map->format.reg_bytes + map->format.pad_bytes,
2702 val, val_len);
2703
2704 trace_regmap_hw_read_done(map, reg, val_len / map->format.val_bytes);
2705
2706 return ret;
2707 }
2708
_regmap_bus_reg_read(void * context,unsigned int reg,unsigned int * val)2709 static int _regmap_bus_reg_read(void *context, unsigned int reg,
2710 unsigned int *val)
2711 {
2712 struct regmap *map = context;
2713
2714 return map->bus->reg_read(map->bus_context, reg, val);
2715 }
2716
_regmap_bus_read(void * context,unsigned int reg,unsigned int * val)2717 static int _regmap_bus_read(void *context, unsigned int reg,
2718 unsigned int *val)
2719 {
2720 int ret;
2721 struct regmap *map = context;
2722 void *work_val = map->work_buf + map->format.reg_bytes +
2723 map->format.pad_bytes;
2724
2725 if (!map->format.parse_val)
2726 return -EINVAL;
2727
2728 ret = _regmap_raw_read(map, reg, work_val, map->format.val_bytes, false);
2729 if (ret == 0)
2730 *val = map->format.parse_val(work_val);
2731
2732 return ret;
2733 }
2734
_regmap_read(struct regmap * map,unsigned int reg,unsigned int * val)2735 static int _regmap_read(struct regmap *map, unsigned int reg,
2736 unsigned int *val)
2737 {
2738 int ret;
2739 void *context = _regmap_map_get_context(map);
2740
2741 if (!map->cache_bypass) {
2742 ret = regcache_read(map, reg, val);
2743 if (ret == 0)
2744 return 0;
2745 }
2746
2747 if (map->cache_only)
2748 return -EBUSY;
2749
2750 if (!regmap_readable(map, reg))
2751 return -EIO;
2752
2753 ret = map->reg_read(context, reg, val);
2754 if (ret == 0) {
2755 if (regmap_should_log(map))
2756 dev_info(map->dev, "%x => %x\n", reg, *val);
2757
2758 trace_regmap_reg_read(map, reg, *val);
2759
2760 if (!map->cache_bypass)
2761 regcache_write(map, reg, *val);
2762 }
2763
2764 return ret;
2765 }
2766
2767 /**
2768 * regmap_read() - Read a value from a single register
2769 *
2770 * @map: Register map to read from
2771 * @reg: Register to be read from
2772 * @val: Pointer to store read value
2773 *
2774 * A value of zero will be returned on success, a negative errno will
2775 * be returned in error cases.
2776 */
regmap_read(struct regmap * map,unsigned int reg,unsigned int * val)2777 int regmap_read(struct regmap *map, unsigned int reg, unsigned int *val)
2778 {
2779 int ret;
2780
2781 if (!IS_ALIGNED(reg, map->reg_stride))
2782 return -EINVAL;
2783
2784 map->lock(map->lock_arg);
2785
2786 ret = _regmap_read(map, reg, val);
2787
2788 map->unlock(map->lock_arg);
2789
2790 return ret;
2791 }
2792 EXPORT_SYMBOL_GPL(regmap_read);
2793
2794 /**
2795 * regmap_raw_read() - Read raw data from the device
2796 *
2797 * @map: Register map to read from
2798 * @reg: First register to be read from
2799 * @val: Pointer to store read value
2800 * @val_len: Size of data to read
2801 *
2802 * A value of zero will be returned on success, a negative errno will
2803 * be returned in error cases.
2804 */
regmap_raw_read(struct regmap * map,unsigned int reg,void * val,size_t val_len)2805 int regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
2806 size_t val_len)
2807 {
2808 size_t val_bytes = map->format.val_bytes;
2809 size_t val_count = val_len / val_bytes;
2810 unsigned int v;
2811 int ret, i;
2812
2813 if (val_len % map->format.val_bytes)
2814 return -EINVAL;
2815 if (!IS_ALIGNED(reg, map->reg_stride))
2816 return -EINVAL;
2817 if (val_count == 0)
2818 return -EINVAL;
2819
2820 map->lock(map->lock_arg);
2821
2822 if (regmap_volatile_range(map, reg, val_count) || map->cache_bypass ||
2823 map->cache_type == REGCACHE_NONE) {
2824 size_t chunk_count, chunk_bytes;
2825 size_t chunk_regs = val_count;
2826
2827 if (!map->read) {
2828 ret = -ENOTSUPP;
2829 goto out;
2830 }
2831
2832 if (map->use_single_read)
2833 chunk_regs = 1;
2834 else if (map->max_raw_read && val_len > map->max_raw_read)
2835 chunk_regs = map->max_raw_read / val_bytes;
2836
2837 chunk_count = val_count / chunk_regs;
2838 chunk_bytes = chunk_regs * val_bytes;
2839
2840 /* Read bytes that fit into whole chunks */
2841 for (i = 0; i < chunk_count; i++) {
2842 ret = _regmap_raw_read(map, reg, val, chunk_bytes, false);
2843 if (ret != 0)
2844 goto out;
2845
2846 reg += regmap_get_offset(map, chunk_regs);
2847 val += chunk_bytes;
2848 val_len -= chunk_bytes;
2849 }
2850
2851 /* Read remaining bytes */
2852 if (val_len) {
2853 ret = _regmap_raw_read(map, reg, val, val_len, false);
2854 if (ret != 0)
2855 goto out;
2856 }
2857 } else {
2858 /* Otherwise go word by word for the cache; should be low
2859 * cost as we expect to hit the cache.
2860 */
2861 for (i = 0; i < val_count; i++) {
2862 ret = _regmap_read(map, reg + regmap_get_offset(map, i),
2863 &v);
2864 if (ret != 0)
2865 goto out;
2866
2867 map->format.format_val(val + (i * val_bytes), v, 0);
2868 }
2869 }
2870
2871 out:
2872 map->unlock(map->lock_arg);
2873
2874 return ret;
2875 }
2876 EXPORT_SYMBOL_GPL(regmap_raw_read);
2877
2878 /**
2879 * regmap_noinc_read(): Read data from a register without incrementing the
2880 * register number
2881 *
2882 * @map: Register map to read from
2883 * @reg: Register to read from
2884 * @val: Pointer to data buffer
2885 * @val_len: Length of output buffer in bytes.
2886 *
2887 * The regmap API usually assumes that bulk read operations will read a
2888 * range of registers. Some devices have certain registers for which a read
2889 * operation read will read from an internal FIFO.
2890 *
2891 * The target register must be volatile but registers after it can be
2892 * completely unrelated cacheable registers.
2893 *
2894 * This will attempt multiple reads as required to read val_len bytes.
2895 *
2896 * A value of zero will be returned on success, a negative errno will be
2897 * returned in error cases.
2898 */
regmap_noinc_read(struct regmap * map,unsigned int reg,void * val,size_t val_len)2899 int regmap_noinc_read(struct regmap *map, unsigned int reg,
2900 void *val, size_t val_len)
2901 {
2902 size_t read_len;
2903 int ret;
2904
2905 if (!map->read)
2906 return -ENOTSUPP;
2907
2908 if (val_len % map->format.val_bytes)
2909 return -EINVAL;
2910 if (!IS_ALIGNED(reg, map->reg_stride))
2911 return -EINVAL;
2912 if (val_len == 0)
2913 return -EINVAL;
2914
2915 map->lock(map->lock_arg);
2916
2917 if (!regmap_volatile(map, reg) || !regmap_readable_noinc(map, reg)) {
2918 ret = -EINVAL;
2919 goto out_unlock;
2920 }
2921
2922 while (val_len) {
2923 if (map->max_raw_read && map->max_raw_read < val_len)
2924 read_len = map->max_raw_read;
2925 else
2926 read_len = val_len;
2927 ret = _regmap_raw_read(map, reg, val, read_len, true);
2928 if (ret)
2929 goto out_unlock;
2930 val = ((u8 *)val) + read_len;
2931 val_len -= read_len;
2932 }
2933
2934 out_unlock:
2935 map->unlock(map->lock_arg);
2936 return ret;
2937 }
2938 EXPORT_SYMBOL_GPL(regmap_noinc_read);
2939
2940 /**
2941 * regmap_field_read(): Read a value to a single register field
2942 *
2943 * @field: Register field to read from
2944 * @val: Pointer to store read value
2945 *
2946 * A value of zero will be returned on success, a negative errno will
2947 * be returned in error cases.
2948 */
regmap_field_read(struct regmap_field * field,unsigned int * val)2949 int regmap_field_read(struct regmap_field *field, unsigned int *val)
2950 {
2951 int ret;
2952 unsigned int reg_val;
2953 ret = regmap_read(field->regmap, field->reg, ®_val);
2954 if (ret != 0)
2955 return ret;
2956
2957 reg_val &= field->mask;
2958 reg_val >>= field->shift;
2959 *val = reg_val;
2960
2961 return ret;
2962 }
2963 EXPORT_SYMBOL_GPL(regmap_field_read);
2964
2965 /**
2966 * regmap_fields_read() - Read a value to a single register field with port ID
2967 *
2968 * @field: Register field to read from
2969 * @id: port ID
2970 * @val: Pointer to store read value
2971 *
2972 * A value of zero will be returned on success, a negative errno will
2973 * be returned in error cases.
2974 */
regmap_fields_read(struct regmap_field * field,unsigned int id,unsigned int * val)2975 int regmap_fields_read(struct regmap_field *field, unsigned int id,
2976 unsigned int *val)
2977 {
2978 int ret;
2979 unsigned int reg_val;
2980
2981 if (id >= field->id_size)
2982 return -EINVAL;
2983
2984 ret = regmap_read(field->regmap,
2985 field->reg + (field->id_offset * id),
2986 ®_val);
2987 if (ret != 0)
2988 return ret;
2989
2990 reg_val &= field->mask;
2991 reg_val >>= field->shift;
2992 *val = reg_val;
2993
2994 return ret;
2995 }
2996 EXPORT_SYMBOL_GPL(regmap_fields_read);
2997
2998 /**
2999 * regmap_bulk_read() - Read multiple registers from the device
3000 *
3001 * @map: Register map to read from
3002 * @reg: First register to be read from
3003 * @val: Pointer to store read value, in native register size for device
3004 * @val_count: Number of registers to read
3005 *
3006 * A value of zero will be returned on success, a negative errno will
3007 * be returned in error cases.
3008 */
regmap_bulk_read(struct regmap * map,unsigned int reg,void * val,size_t val_count)3009 int regmap_bulk_read(struct regmap *map, unsigned int reg, void *val,
3010 size_t val_count)
3011 {
3012 int ret, i;
3013 size_t val_bytes = map->format.val_bytes;
3014 bool vol = regmap_volatile_range(map, reg, val_count);
3015
3016 if (!IS_ALIGNED(reg, map->reg_stride))
3017 return -EINVAL;
3018 if (val_count == 0)
3019 return -EINVAL;
3020
3021 if (map->read && map->format.parse_inplace && (vol || map->cache_type == REGCACHE_NONE)) {
3022 ret = regmap_raw_read(map, reg, val, val_bytes * val_count);
3023 if (ret != 0)
3024 return ret;
3025
3026 for (i = 0; i < val_count * val_bytes; i += val_bytes)
3027 map->format.parse_inplace(val + i);
3028 } else {
3029 #ifdef CONFIG_64BIT
3030 u64 *u64 = val;
3031 #endif
3032 u32 *u32 = val;
3033 u16 *u16 = val;
3034 u8 *u8 = val;
3035
3036 map->lock(map->lock_arg);
3037
3038 for (i = 0; i < val_count; i++) {
3039 unsigned int ival;
3040
3041 ret = _regmap_read(map, reg + regmap_get_offset(map, i),
3042 &ival);
3043 if (ret != 0)
3044 goto out;
3045
3046 switch (map->format.val_bytes) {
3047 #ifdef CONFIG_64BIT
3048 case 8:
3049 u64[i] = ival;
3050 break;
3051 #endif
3052 case 4:
3053 u32[i] = ival;
3054 break;
3055 case 2:
3056 u16[i] = ival;
3057 break;
3058 case 1:
3059 u8[i] = ival;
3060 break;
3061 default:
3062 ret = -EINVAL;
3063 goto out;
3064 }
3065 }
3066
3067 out:
3068 map->unlock(map->lock_arg);
3069 }
3070
3071 return ret;
3072 }
3073 EXPORT_SYMBOL_GPL(regmap_bulk_read);
3074
_regmap_update_bits(struct regmap * map,unsigned int reg,unsigned int mask,unsigned int val,bool * change,bool force_write)3075 static int _regmap_update_bits(struct regmap *map, unsigned int reg,
3076 unsigned int mask, unsigned int val,
3077 bool *change, bool force_write)
3078 {
3079 int ret;
3080 unsigned int tmp, orig;
3081
3082 if (change)
3083 *change = false;
3084
3085 if (regmap_volatile(map, reg) && map->reg_update_bits) {
3086 ret = map->reg_update_bits(map->bus_context, reg, mask, val);
3087 if (ret == 0 && change)
3088 *change = true;
3089 } else {
3090 ret = _regmap_read(map, reg, &orig);
3091 if (ret != 0)
3092 return ret;
3093
3094 tmp = orig & ~mask;
3095 tmp |= val & mask;
3096
3097 if (force_write || (tmp != orig)) {
3098 ret = _regmap_write(map, reg, tmp);
3099 if (ret == 0 && change)
3100 *change = true;
3101 }
3102 }
3103
3104 return ret;
3105 }
3106
3107 /**
3108 * regmap_update_bits_base() - Perform a read/modify/write cycle on a register
3109 *
3110 * @map: Register map to update
3111 * @reg: Register to update
3112 * @mask: Bitmask to change
3113 * @val: New value for bitmask
3114 * @change: Boolean indicating if a write was done
3115 * @async: Boolean indicating asynchronously
3116 * @force: Boolean indicating use force update
3117 *
3118 * Perform a read/modify/write cycle on a register map with change, async, force
3119 * options.
3120 *
3121 * If async is true:
3122 *
3123 * With most buses the read must be done synchronously so this is most useful
3124 * for devices with a cache which do not need to interact with the hardware to
3125 * determine the current register value.
3126 *
3127 * Returns zero for success, a negative number on error.
3128 */
regmap_update_bits_base(struct regmap * map,unsigned int reg,unsigned int mask,unsigned int val,bool * change,bool async,bool force)3129 int regmap_update_bits_base(struct regmap *map, unsigned int reg,
3130 unsigned int mask, unsigned int val,
3131 bool *change, bool async, bool force)
3132 {
3133 int ret;
3134
3135 map->lock(map->lock_arg);
3136
3137 map->async = async;
3138
3139 ret = _regmap_update_bits(map, reg, mask, val, change, force);
3140
3141 map->async = false;
3142
3143 map->unlock(map->lock_arg);
3144
3145 return ret;
3146 }
3147 EXPORT_SYMBOL_GPL(regmap_update_bits_base);
3148
3149 /**
3150 * regmap_test_bits() - Check if all specified bits are set in a register.
3151 *
3152 * @map: Register map to operate on
3153 * @reg: Register to read from
3154 * @bits: Bits to test
3155 *
3156 * Returns 0 if at least one of the tested bits is not set, 1 if all tested
3157 * bits are set and a negative error number if the underlying regmap_read()
3158 * fails.
3159 */
regmap_test_bits(struct regmap * map,unsigned int reg,unsigned int bits)3160 int regmap_test_bits(struct regmap *map, unsigned int reg, unsigned int bits)
3161 {
3162 unsigned int val, ret;
3163
3164 ret = regmap_read(map, reg, &val);
3165 if (ret)
3166 return ret;
3167
3168 return (val & bits) == bits;
3169 }
3170 EXPORT_SYMBOL_GPL(regmap_test_bits);
3171
regmap_async_complete_cb(struct regmap_async * async,int ret)3172 void regmap_async_complete_cb(struct regmap_async *async, int ret)
3173 {
3174 struct regmap *map = async->map;
3175 bool wake;
3176
3177 trace_regmap_async_io_complete(map);
3178
3179 spin_lock(&map->async_lock);
3180 list_move(&async->list, &map->async_free);
3181 wake = list_empty(&map->async_list);
3182
3183 if (ret != 0)
3184 map->async_ret = ret;
3185
3186 spin_unlock(&map->async_lock);
3187
3188 if (wake)
3189 wake_up(&map->async_waitq);
3190 }
3191 EXPORT_SYMBOL_GPL(regmap_async_complete_cb);
3192
regmap_async_is_done(struct regmap * map)3193 static int regmap_async_is_done(struct regmap *map)
3194 {
3195 unsigned long flags;
3196 int ret;
3197
3198 spin_lock_irqsave(&map->async_lock, flags);
3199 ret = list_empty(&map->async_list);
3200 spin_unlock_irqrestore(&map->async_lock, flags);
3201
3202 return ret;
3203 }
3204
3205 /**
3206 * regmap_async_complete - Ensure all asynchronous I/O has completed.
3207 *
3208 * @map: Map to operate on.
3209 *
3210 * Blocks until any pending asynchronous I/O has completed. Returns
3211 * an error code for any failed I/O operations.
3212 */
regmap_async_complete(struct regmap * map)3213 int regmap_async_complete(struct regmap *map)
3214 {
3215 unsigned long flags;
3216 int ret;
3217
3218 /* Nothing to do with no async support */
3219 if (!map->bus || !map->bus->async_write)
3220 return 0;
3221
3222 trace_regmap_async_complete_start(map);
3223
3224 wait_event(map->async_waitq, regmap_async_is_done(map));
3225
3226 spin_lock_irqsave(&map->async_lock, flags);
3227 ret = map->async_ret;
3228 map->async_ret = 0;
3229 spin_unlock_irqrestore(&map->async_lock, flags);
3230
3231 trace_regmap_async_complete_done(map);
3232
3233 return ret;
3234 }
3235 EXPORT_SYMBOL_GPL(regmap_async_complete);
3236
3237 /**
3238 * regmap_register_patch - Register and apply register updates to be applied
3239 * on device initialistion
3240 *
3241 * @map: Register map to apply updates to.
3242 * @regs: Values to update.
3243 * @num_regs: Number of entries in regs.
3244 *
3245 * Register a set of register updates to be applied to the device
3246 * whenever the device registers are synchronised with the cache and
3247 * apply them immediately. Typically this is used to apply
3248 * corrections to be applied to the device defaults on startup, such
3249 * as the updates some vendors provide to undocumented registers.
3250 *
3251 * The caller must ensure that this function cannot be called
3252 * concurrently with either itself or regcache_sync().
3253 */
regmap_register_patch(struct regmap * map,const struct reg_sequence * regs,int num_regs)3254 int regmap_register_patch(struct regmap *map, const struct reg_sequence *regs,
3255 int num_regs)
3256 {
3257 struct reg_sequence *p;
3258 int ret;
3259 bool bypass;
3260
3261 if (WARN_ONCE(num_regs <= 0, "invalid registers number (%d)\n",
3262 num_regs))
3263 return 0;
3264
3265 p = krealloc(map->patch,
3266 sizeof(struct reg_sequence) * (map->patch_regs + num_regs),
3267 GFP_KERNEL);
3268 if (p) {
3269 memcpy(p + map->patch_regs, regs, num_regs * sizeof(*regs));
3270 map->patch = p;
3271 map->patch_regs += num_regs;
3272 } else {
3273 return -ENOMEM;
3274 }
3275
3276 map->lock(map->lock_arg);
3277
3278 bypass = map->cache_bypass;
3279
3280 map->cache_bypass = true;
3281 map->async = true;
3282
3283 ret = _regmap_multi_reg_write(map, regs, num_regs);
3284
3285 map->async = false;
3286 map->cache_bypass = bypass;
3287
3288 map->unlock(map->lock_arg);
3289
3290 regmap_async_complete(map);
3291
3292 return ret;
3293 }
3294 EXPORT_SYMBOL_GPL(regmap_register_patch);
3295
3296 /**
3297 * regmap_get_val_bytes() - Report the size of a register value
3298 *
3299 * @map: Register map to operate on.
3300 *
3301 * Report the size of a register value, mainly intended to for use by
3302 * generic infrastructure built on top of regmap.
3303 */
regmap_get_val_bytes(struct regmap * map)3304 int regmap_get_val_bytes(struct regmap *map)
3305 {
3306 if (map->format.format_write)
3307 return -EINVAL;
3308
3309 return map->format.val_bytes;
3310 }
3311 EXPORT_SYMBOL_GPL(regmap_get_val_bytes);
3312
3313 /**
3314 * regmap_get_max_register() - Report the max register value
3315 *
3316 * @map: Register map to operate on.
3317 *
3318 * Report the max register value, mainly intended to for use by
3319 * generic infrastructure built on top of regmap.
3320 */
regmap_get_max_register(struct regmap * map)3321 int regmap_get_max_register(struct regmap *map)
3322 {
3323 return map->max_register ? map->max_register : -EINVAL;
3324 }
3325 EXPORT_SYMBOL_GPL(regmap_get_max_register);
3326
3327 /**
3328 * regmap_get_reg_stride() - Report the register address stride
3329 *
3330 * @map: Register map to operate on.
3331 *
3332 * Report the register address stride, mainly intended to for use by
3333 * generic infrastructure built on top of regmap.
3334 */
regmap_get_reg_stride(struct regmap * map)3335 int regmap_get_reg_stride(struct regmap *map)
3336 {
3337 return map->reg_stride;
3338 }
3339 EXPORT_SYMBOL_GPL(regmap_get_reg_stride);
3340
regmap_parse_val(struct regmap * map,const void * buf,unsigned int * val)3341 int regmap_parse_val(struct regmap *map, const void *buf,
3342 unsigned int *val)
3343 {
3344 if (!map->format.parse_val)
3345 return -EINVAL;
3346
3347 *val = map->format.parse_val(buf);
3348
3349 return 0;
3350 }
3351 EXPORT_SYMBOL_GPL(regmap_parse_val);
3352
regmap_initcall(void)3353 static int __init regmap_initcall(void)
3354 {
3355 regmap_debugfs_initcall();
3356
3357 return 0;
3358 }
3359 postcore_initcall(regmap_initcall);
3360