1 // SPDX-License-Identifier: GPL-2.0
2 //
3 // regmap based irq_chip
4 //
5 // Copyright 2011 Wolfson Microelectronics plc
6 //
7 // Author: Mark Brown <broonie@opensource.wolfsonmicro.com>
8 
9 #include <linux/device.h>
10 #include <linux/export.h>
11 #include <linux/interrupt.h>
12 #include <linux/irq.h>
13 #include <linux/irqdomain.h>
14 #include <linux/pm_runtime.h>
15 #include <linux/regmap.h>
16 #include <linux/slab.h>
17 
18 #include "internal.h"
19 
20 struct regmap_irq_chip_data {
21 	struct mutex lock;
22 	struct irq_chip irq_chip;
23 
24 	struct regmap *map;
25 	const struct regmap_irq_chip *chip;
26 
27 	int irq_base;
28 	struct irq_domain *domain;
29 
30 	int irq;
31 	int wake_count;
32 
33 	unsigned int mask_base;
34 	unsigned int unmask_base;
35 
36 	void *status_reg_buf;
37 	unsigned int *main_status_buf;
38 	unsigned int *status_buf;
39 	unsigned int *mask_buf;
40 	unsigned int *mask_buf_def;
41 	unsigned int *wake_buf;
42 	unsigned int *type_buf;
43 	unsigned int *type_buf_def;
44 	unsigned int **virt_buf;
45 	unsigned int **config_buf;
46 
47 	unsigned int irq_reg_stride;
48 
49 	unsigned int (*get_irq_reg)(struct regmap_irq_chip_data *data,
50 				    unsigned int base, int index);
51 
52 	unsigned int clear_status:1;
53 };
54 
55 static inline const
irq_to_regmap_irq(struct regmap_irq_chip_data * data,int irq)56 struct regmap_irq *irq_to_regmap_irq(struct regmap_irq_chip_data *data,
57 				     int irq)
58 {
59 	return &data->chip->irqs[irq];
60 }
61 
regmap_irq_can_bulk_read_status(struct regmap_irq_chip_data * data)62 static bool regmap_irq_can_bulk_read_status(struct regmap_irq_chip_data *data)
63 {
64 	struct regmap *map = data->map;
65 
66 	/*
67 	 * While possible that a user-defined ->get_irq_reg() callback might
68 	 * be linear enough to support bulk reads, most of the time it won't.
69 	 * Therefore only allow them if the default callback is being used.
70 	 */
71 	return data->irq_reg_stride == 1 && map->reg_stride == 1 &&
72 	       data->get_irq_reg == regmap_irq_get_irq_reg_linear &&
73 	       !map->use_single_read;
74 }
75 
regmap_irq_lock(struct irq_data * data)76 static void regmap_irq_lock(struct irq_data *data)
77 {
78 	struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
79 
80 	mutex_lock(&d->lock);
81 }
82 
regmap_irq_sync_unlock(struct irq_data * data)83 static void regmap_irq_sync_unlock(struct irq_data *data)
84 {
85 	struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
86 	struct regmap *map = d->map;
87 	int i, j, ret;
88 	u32 reg;
89 	u32 val;
90 
91 	if (d->chip->runtime_pm) {
92 		ret = pm_runtime_get_sync(map->dev);
93 		if (ret < 0)
94 			dev_err(map->dev, "IRQ sync failed to resume: %d\n",
95 				ret);
96 	}
97 
98 	if (d->clear_status) {
99 		for (i = 0; i < d->chip->num_regs; i++) {
100 			reg = d->get_irq_reg(d, d->chip->status_base, i);
101 
102 			ret = regmap_read(map, reg, &val);
103 			if (ret)
104 				dev_err(d->map->dev,
105 					"Failed to clear the interrupt status bits\n");
106 		}
107 
108 		d->clear_status = false;
109 	}
110 
111 	/*
112 	 * If there's been a change in the mask write it back to the
113 	 * hardware.  We rely on the use of the regmap core cache to
114 	 * suppress pointless writes.
115 	 */
116 	for (i = 0; i < d->chip->num_regs; i++) {
117 		if (d->mask_base) {
118 			reg = d->get_irq_reg(d, d->mask_base, i);
119 			ret = regmap_update_bits(d->map, reg,
120 					d->mask_buf_def[i], d->mask_buf[i]);
121 			if (ret)
122 				dev_err(d->map->dev, "Failed to sync masks in %x\n",
123 					reg);
124 		}
125 
126 		if (d->unmask_base) {
127 			reg = d->get_irq_reg(d, d->unmask_base, i);
128 			ret = regmap_update_bits(d->map, reg,
129 					d->mask_buf_def[i], ~d->mask_buf[i]);
130 			if (ret)
131 				dev_err(d->map->dev, "Failed to sync masks in %x\n",
132 					reg);
133 		}
134 
135 		reg = d->get_irq_reg(d, d->chip->wake_base, i);
136 		if (d->wake_buf) {
137 			if (d->chip->wake_invert)
138 				ret = regmap_update_bits(d->map, reg,
139 							 d->mask_buf_def[i],
140 							 ~d->wake_buf[i]);
141 			else
142 				ret = regmap_update_bits(d->map, reg,
143 							 d->mask_buf_def[i],
144 							 d->wake_buf[i]);
145 			if (ret != 0)
146 				dev_err(d->map->dev,
147 					"Failed to sync wakes in %x: %d\n",
148 					reg, ret);
149 		}
150 
151 		if (!d->chip->init_ack_masked)
152 			continue;
153 		/*
154 		 * Ack all the masked interrupts unconditionally,
155 		 * OR if there is masked interrupt which hasn't been Acked,
156 		 * it'll be ignored in irq handler, then may introduce irq storm
157 		 */
158 		if (d->mask_buf[i] && (d->chip->ack_base || d->chip->use_ack)) {
159 			reg = d->get_irq_reg(d, d->chip->ack_base, i);
160 
161 			/* some chips ack by write 0 */
162 			if (d->chip->ack_invert)
163 				ret = regmap_write(map, reg, ~d->mask_buf[i]);
164 			else
165 				ret = regmap_write(map, reg, d->mask_buf[i]);
166 			if (d->chip->clear_ack) {
167 				if (d->chip->ack_invert && !ret)
168 					ret = regmap_write(map, reg, UINT_MAX);
169 				else if (!ret)
170 					ret = regmap_write(map, reg, 0);
171 			}
172 			if (ret != 0)
173 				dev_err(d->map->dev, "Failed to ack 0x%x: %d\n",
174 					reg, ret);
175 		}
176 	}
177 
178 	/* Don't update the type bits if we're using mask bits for irq type. */
179 	if (!d->chip->type_in_mask) {
180 		for (i = 0; i < d->chip->num_type_reg; i++) {
181 			if (!d->type_buf_def[i])
182 				continue;
183 			reg = d->get_irq_reg(d, d->chip->type_base, i);
184 			if (d->chip->type_invert)
185 				ret = regmap_update_bits(d->map, reg,
186 					d->type_buf_def[i], ~d->type_buf[i]);
187 			else
188 				ret = regmap_update_bits(d->map, reg,
189 					d->type_buf_def[i], d->type_buf[i]);
190 			if (ret != 0)
191 				dev_err(d->map->dev, "Failed to sync type in %x\n",
192 					reg);
193 		}
194 	}
195 
196 	if (d->chip->num_virt_regs) {
197 		for (i = 0; i < d->chip->num_virt_regs; i++) {
198 			for (j = 0; j < d->chip->num_regs; j++) {
199 				reg = d->get_irq_reg(d, d->chip->virt_reg_base[i],
200 						     j);
201 				ret = regmap_write(map, reg, d->virt_buf[i][j]);
202 				if (ret != 0)
203 					dev_err(d->map->dev,
204 						"Failed to write virt 0x%x: %d\n",
205 						reg, ret);
206 			}
207 		}
208 	}
209 
210 	for (i = 0; i < d->chip->num_config_bases; i++) {
211 		for (j = 0; j < d->chip->num_config_regs; j++) {
212 			reg = d->get_irq_reg(d, d->chip->config_base[i], j);
213 			ret = regmap_write(map, reg, d->config_buf[i][j]);
214 			if (ret)
215 				dev_err(d->map->dev,
216 					"Failed to write config %x: %d\n",
217 					reg, ret);
218 		}
219 	}
220 
221 	if (d->chip->runtime_pm)
222 		pm_runtime_put(map->dev);
223 
224 	/* If we've changed our wakeup count propagate it to the parent */
225 	if (d->wake_count < 0)
226 		for (i = d->wake_count; i < 0; i++)
227 			irq_set_irq_wake(d->irq, 0);
228 	else if (d->wake_count > 0)
229 		for (i = 0; i < d->wake_count; i++)
230 			irq_set_irq_wake(d->irq, 1);
231 
232 	d->wake_count = 0;
233 
234 	mutex_unlock(&d->lock);
235 }
236 
regmap_irq_enable(struct irq_data * data)237 static void regmap_irq_enable(struct irq_data *data)
238 {
239 	struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
240 	struct regmap *map = d->map;
241 	const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
242 	unsigned int reg = irq_data->reg_offset / map->reg_stride;
243 	unsigned int mask;
244 
245 	/*
246 	 * The type_in_mask flag means that the underlying hardware uses
247 	 * separate mask bits for each interrupt trigger type, but we want
248 	 * to have a single logical interrupt with a configurable type.
249 	 *
250 	 * If the interrupt we're enabling defines any supported types
251 	 * then instead of using the regular mask bits for this interrupt,
252 	 * use the value previously written to the type buffer at the
253 	 * corresponding offset in regmap_irq_set_type().
254 	 */
255 	if (d->chip->type_in_mask && irq_data->type.types_supported)
256 		mask = d->type_buf[reg] & irq_data->mask;
257 	else
258 		mask = irq_data->mask;
259 
260 	if (d->chip->clear_on_unmask)
261 		d->clear_status = true;
262 
263 	d->mask_buf[reg] &= ~mask;
264 }
265 
regmap_irq_disable(struct irq_data * data)266 static void regmap_irq_disable(struct irq_data *data)
267 {
268 	struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
269 	struct regmap *map = d->map;
270 	const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
271 
272 	d->mask_buf[irq_data->reg_offset / map->reg_stride] |= irq_data->mask;
273 }
274 
regmap_irq_set_type(struct irq_data * data,unsigned int type)275 static int regmap_irq_set_type(struct irq_data *data, unsigned int type)
276 {
277 	struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
278 	struct regmap *map = d->map;
279 	const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
280 	int reg, ret;
281 	const struct regmap_irq_type *t = &irq_data->type;
282 
283 	if ((t->types_supported & type) != type)
284 		return 0;
285 
286 	reg = t->type_reg_offset / map->reg_stride;
287 
288 	if (t->type_reg_mask)
289 		d->type_buf[reg] &= ~t->type_reg_mask;
290 	else
291 		d->type_buf[reg] &= ~(t->type_falling_val |
292 				      t->type_rising_val |
293 				      t->type_level_low_val |
294 				      t->type_level_high_val);
295 	switch (type) {
296 	case IRQ_TYPE_EDGE_FALLING:
297 		d->type_buf[reg] |= t->type_falling_val;
298 		break;
299 
300 	case IRQ_TYPE_EDGE_RISING:
301 		d->type_buf[reg] |= t->type_rising_val;
302 		break;
303 
304 	case IRQ_TYPE_EDGE_BOTH:
305 		d->type_buf[reg] |= (t->type_falling_val |
306 					t->type_rising_val);
307 		break;
308 
309 	case IRQ_TYPE_LEVEL_HIGH:
310 		d->type_buf[reg] |= t->type_level_high_val;
311 		break;
312 
313 	case IRQ_TYPE_LEVEL_LOW:
314 		d->type_buf[reg] |= t->type_level_low_val;
315 		break;
316 	default:
317 		return -EINVAL;
318 	}
319 
320 	if (d->chip->set_type_virt) {
321 		ret = d->chip->set_type_virt(d->virt_buf, type, data->hwirq,
322 					     reg);
323 		if (ret)
324 			return ret;
325 	}
326 
327 	if (d->chip->set_type_config) {
328 		ret = d->chip->set_type_config(d->config_buf, type,
329 					       irq_data, reg);
330 		if (ret)
331 			return ret;
332 	}
333 
334 	return 0;
335 }
336 
regmap_irq_set_wake(struct irq_data * data,unsigned int on)337 static int regmap_irq_set_wake(struct irq_data *data, unsigned int on)
338 {
339 	struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
340 	struct regmap *map = d->map;
341 	const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
342 
343 	if (on) {
344 		if (d->wake_buf)
345 			d->wake_buf[irq_data->reg_offset / map->reg_stride]
346 				&= ~irq_data->mask;
347 		d->wake_count++;
348 	} else {
349 		if (d->wake_buf)
350 			d->wake_buf[irq_data->reg_offset / map->reg_stride]
351 				|= irq_data->mask;
352 		d->wake_count--;
353 	}
354 
355 	return 0;
356 }
357 
358 static const struct irq_chip regmap_irq_chip = {
359 	.irq_bus_lock		= regmap_irq_lock,
360 	.irq_bus_sync_unlock	= regmap_irq_sync_unlock,
361 	.irq_disable		= regmap_irq_disable,
362 	.irq_enable		= regmap_irq_enable,
363 	.irq_set_type		= regmap_irq_set_type,
364 	.irq_set_wake		= regmap_irq_set_wake,
365 };
366 
read_sub_irq_data(struct regmap_irq_chip_data * data,unsigned int b)367 static inline int read_sub_irq_data(struct regmap_irq_chip_data *data,
368 					   unsigned int b)
369 {
370 	const struct regmap_irq_chip *chip = data->chip;
371 	struct regmap *map = data->map;
372 	struct regmap_irq_sub_irq_map *subreg;
373 	unsigned int reg;
374 	int i, ret = 0;
375 
376 	if (!chip->sub_reg_offsets) {
377 		reg = data->get_irq_reg(data, chip->status_base, b);
378 		ret = regmap_read(map, reg, &data->status_buf[b]);
379 	} else {
380 		/*
381 		 * Note we can't use ->get_irq_reg() here because the offsets
382 		 * in 'subreg' are *not* interchangeable with indices.
383 		 */
384 		subreg = &chip->sub_reg_offsets[b];
385 		for (i = 0; i < subreg->num_regs; i++) {
386 			unsigned int offset = subreg->offset[i];
387 			unsigned int index = offset / map->reg_stride;
388 
389 			if (chip->not_fixed_stride)
390 				ret = regmap_read(map,
391 						chip->status_base + offset,
392 						&data->status_buf[b]);
393 			else
394 				ret = regmap_read(map,
395 						chip->status_base + offset,
396 						&data->status_buf[index]);
397 
398 			if (ret)
399 				break;
400 		}
401 	}
402 	return ret;
403 }
404 
regmap_irq_thread(int irq,void * d)405 static irqreturn_t regmap_irq_thread(int irq, void *d)
406 {
407 	struct regmap_irq_chip_data *data = d;
408 	const struct regmap_irq_chip *chip = data->chip;
409 	struct regmap *map = data->map;
410 	int ret, i;
411 	bool handled = false;
412 	u32 reg;
413 
414 	if (chip->handle_pre_irq)
415 		chip->handle_pre_irq(chip->irq_drv_data);
416 
417 	if (chip->runtime_pm) {
418 		ret = pm_runtime_get_sync(map->dev);
419 		if (ret < 0) {
420 			dev_err(map->dev, "IRQ thread failed to resume: %d\n",
421 				ret);
422 			goto exit;
423 		}
424 	}
425 
426 	/*
427 	 * Read only registers with active IRQs if the chip has 'main status
428 	 * register'. Else read in the statuses, using a single bulk read if
429 	 * possible in order to reduce the I/O overheads.
430 	 */
431 
432 	if (chip->num_main_regs) {
433 		unsigned int max_main_bits;
434 		unsigned long size;
435 
436 		size = chip->num_regs * sizeof(unsigned int);
437 
438 		max_main_bits = (chip->num_main_status_bits) ?
439 				 chip->num_main_status_bits : chip->num_regs;
440 		/* Clear the status buf as we don't read all status regs */
441 		memset(data->status_buf, 0, size);
442 
443 		/* We could support bulk read for main status registers
444 		 * but I don't expect to see devices with really many main
445 		 * status registers so let's only support single reads for the
446 		 * sake of simplicity. and add bulk reads only if needed
447 		 */
448 		for (i = 0; i < chip->num_main_regs; i++) {
449 			/*
450 			 * For not_fixed_stride, don't use ->get_irq_reg().
451 			 * It would produce an incorrect result.
452 			 */
453 			if (data->chip->not_fixed_stride)
454 				reg = chip->main_status +
455 					i * map->reg_stride * data->irq_reg_stride;
456 			else
457 				reg = data->get_irq_reg(data,
458 							chip->main_status, i);
459 
460 			ret = regmap_read(map, reg, &data->main_status_buf[i]);
461 			if (ret) {
462 				dev_err(map->dev,
463 					"Failed to read IRQ status %d\n",
464 					ret);
465 				goto exit;
466 			}
467 		}
468 
469 		/* Read sub registers with active IRQs */
470 		for (i = 0; i < chip->num_main_regs; i++) {
471 			unsigned int b;
472 			const unsigned long mreg = data->main_status_buf[i];
473 
474 			for_each_set_bit(b, &mreg, map->format.val_bytes * 8) {
475 				if (i * map->format.val_bytes * 8 + b >
476 				    max_main_bits)
477 					break;
478 				ret = read_sub_irq_data(data, b);
479 
480 				if (ret != 0) {
481 					dev_err(map->dev,
482 						"Failed to read IRQ status %d\n",
483 						ret);
484 					goto exit;
485 				}
486 			}
487 
488 		}
489 	} else if (regmap_irq_can_bulk_read_status(data)) {
490 
491 		u8 *buf8 = data->status_reg_buf;
492 		u16 *buf16 = data->status_reg_buf;
493 		u32 *buf32 = data->status_reg_buf;
494 
495 		BUG_ON(!data->status_reg_buf);
496 
497 		ret = regmap_bulk_read(map, chip->status_base,
498 				       data->status_reg_buf,
499 				       chip->num_regs);
500 		if (ret != 0) {
501 			dev_err(map->dev, "Failed to read IRQ status: %d\n",
502 				ret);
503 			goto exit;
504 		}
505 
506 		for (i = 0; i < data->chip->num_regs; i++) {
507 			switch (map->format.val_bytes) {
508 			case 1:
509 				data->status_buf[i] = buf8[i];
510 				break;
511 			case 2:
512 				data->status_buf[i] = buf16[i];
513 				break;
514 			case 4:
515 				data->status_buf[i] = buf32[i];
516 				break;
517 			default:
518 				BUG();
519 				goto exit;
520 			}
521 		}
522 
523 	} else {
524 		for (i = 0; i < data->chip->num_regs; i++) {
525 			unsigned int reg = data->get_irq_reg(data,
526 					data->chip->status_base, i);
527 			ret = regmap_read(map, reg, &data->status_buf[i]);
528 
529 			if (ret != 0) {
530 				dev_err(map->dev,
531 					"Failed to read IRQ status: %d\n",
532 					ret);
533 				goto exit;
534 			}
535 		}
536 	}
537 
538 	if (chip->status_invert)
539 		for (i = 0; i < data->chip->num_regs; i++)
540 			data->status_buf[i] = ~data->status_buf[i];
541 
542 	/*
543 	 * Ignore masked IRQs and ack if we need to; we ack early so
544 	 * there is no race between handling and acknowledging the
545 	 * interrupt.  We assume that typically few of the interrupts
546 	 * will fire simultaneously so don't worry about overhead from
547 	 * doing a write per register.
548 	 */
549 	for (i = 0; i < data->chip->num_regs; i++) {
550 		data->status_buf[i] &= ~data->mask_buf[i];
551 
552 		if (data->status_buf[i] && (chip->ack_base || chip->use_ack)) {
553 			reg = data->get_irq_reg(data, data->chip->ack_base, i);
554 
555 			if (chip->ack_invert)
556 				ret = regmap_write(map, reg,
557 						~data->status_buf[i]);
558 			else
559 				ret = regmap_write(map, reg,
560 						data->status_buf[i]);
561 			if (chip->clear_ack) {
562 				if (chip->ack_invert && !ret)
563 					ret = regmap_write(map, reg, UINT_MAX);
564 				else if (!ret)
565 					ret = regmap_write(map, reg, 0);
566 			}
567 			if (ret != 0)
568 				dev_err(map->dev, "Failed to ack 0x%x: %d\n",
569 					reg, ret);
570 		}
571 	}
572 
573 	for (i = 0; i < chip->num_irqs; i++) {
574 		if (data->status_buf[chip->irqs[i].reg_offset /
575 				     map->reg_stride] & chip->irqs[i].mask) {
576 			handle_nested_irq(irq_find_mapping(data->domain, i));
577 			handled = true;
578 		}
579 	}
580 
581 exit:
582 	if (chip->runtime_pm)
583 		pm_runtime_put(map->dev);
584 
585 	if (chip->handle_post_irq)
586 		chip->handle_post_irq(chip->irq_drv_data);
587 
588 	if (handled)
589 		return IRQ_HANDLED;
590 	else
591 		return IRQ_NONE;
592 }
593 
regmap_irq_map(struct irq_domain * h,unsigned int virq,irq_hw_number_t hw)594 static int regmap_irq_map(struct irq_domain *h, unsigned int virq,
595 			  irq_hw_number_t hw)
596 {
597 	struct regmap_irq_chip_data *data = h->host_data;
598 
599 	irq_set_chip_data(virq, data);
600 	irq_set_chip(virq, &data->irq_chip);
601 	irq_set_nested_thread(virq, 1);
602 	irq_set_parent(virq, data->irq);
603 	irq_set_noprobe(virq);
604 
605 	return 0;
606 }
607 
608 static const struct irq_domain_ops regmap_domain_ops = {
609 	.map	= regmap_irq_map,
610 	.xlate	= irq_domain_xlate_onetwocell,
611 };
612 
613 /**
614  * regmap_irq_get_irq_reg_linear() - Linear IRQ register mapping callback.
615  * @data: Data for the &struct regmap_irq_chip
616  * @base: Base register
617  * @index: Register index
618  *
619  * Returns the register address corresponding to the given @base and @index
620  * by the formula ``base + index * regmap_stride * irq_reg_stride``.
621  */
regmap_irq_get_irq_reg_linear(struct regmap_irq_chip_data * data,unsigned int base,int index)622 unsigned int regmap_irq_get_irq_reg_linear(struct regmap_irq_chip_data *data,
623 					   unsigned int base, int index)
624 {
625 	const struct regmap_irq_chip *chip = data->chip;
626 	struct regmap *map = data->map;
627 
628 	/*
629 	 * FIXME: This is for backward compatibility and should be removed
630 	 * when not_fixed_stride is dropped (it's only used by qcom-pm8008).
631 	 */
632 	if (chip->not_fixed_stride && chip->sub_reg_offsets) {
633 		struct regmap_irq_sub_irq_map *subreg;
634 
635 		subreg = &chip->sub_reg_offsets[0];
636 		return base + subreg->offset[0];
637 	}
638 
639 	return base + index * map->reg_stride * data->irq_reg_stride;
640 }
641 EXPORT_SYMBOL_GPL(regmap_irq_get_irq_reg_linear);
642 
643 /**
644  * regmap_irq_set_type_config_simple() - Simple IRQ type configuration callback.
645  * @buf: Buffer containing configuration register values, this is a 2D array of
646  *       `num_config_bases` rows, each of `num_config_regs` elements.
647  * @type: The requested IRQ type.
648  * @irq_data: The IRQ being configured.
649  * @idx: Index of the irq's config registers within each array `buf[i]`
650  *
651  * This is a &struct regmap_irq_chip->set_type_config callback suitable for
652  * chips with one config register. Register values are updated according to
653  * the &struct regmap_irq_type data associated with an IRQ.
654  */
regmap_irq_set_type_config_simple(unsigned int ** buf,unsigned int type,const struct regmap_irq * irq_data,int idx)655 int regmap_irq_set_type_config_simple(unsigned int **buf, unsigned int type,
656 				      const struct regmap_irq *irq_data, int idx)
657 {
658 	const struct regmap_irq_type *t = &irq_data->type;
659 
660 	if (t->type_reg_mask)
661 		buf[0][idx] &= ~t->type_reg_mask;
662 	else
663 		buf[0][idx] &= ~(t->type_falling_val |
664 				 t->type_rising_val |
665 				 t->type_level_low_val |
666 				 t->type_level_high_val);
667 
668 	switch (type) {
669 	case IRQ_TYPE_EDGE_FALLING:
670 		buf[0][idx] |= t->type_falling_val;
671 		break;
672 
673 	case IRQ_TYPE_EDGE_RISING:
674 		buf[0][idx] |= t->type_rising_val;
675 		break;
676 
677 	case IRQ_TYPE_EDGE_BOTH:
678 		buf[0][idx] |= (t->type_falling_val |
679 				t->type_rising_val);
680 		break;
681 
682 	case IRQ_TYPE_LEVEL_HIGH:
683 		buf[0][idx] |= t->type_level_high_val;
684 		break;
685 
686 	case IRQ_TYPE_LEVEL_LOW:
687 		buf[0][idx] |= t->type_level_low_val;
688 		break;
689 
690 	default:
691 		return -EINVAL;
692 	}
693 
694 	return 0;
695 }
696 EXPORT_SYMBOL_GPL(regmap_irq_set_type_config_simple);
697 
698 /**
699  * regmap_add_irq_chip_fwnode() - Use standard regmap IRQ controller handling
700  *
701  * @fwnode: The firmware node where the IRQ domain should be added to.
702  * @map: The regmap for the device.
703  * @irq: The IRQ the device uses to signal interrupts.
704  * @irq_flags: The IRQF_ flags to use for the primary interrupt.
705  * @irq_base: Allocate at specific IRQ number if irq_base > 0.
706  * @chip: Configuration for the interrupt controller.
707  * @data: Runtime data structure for the controller, allocated on success.
708  *
709  * Returns 0 on success or an errno on failure.
710  *
711  * In order for this to be efficient the chip really should use a
712  * register cache.  The chip driver is responsible for restoring the
713  * register values used by the IRQ controller over suspend and resume.
714  */
regmap_add_irq_chip_fwnode(struct fwnode_handle * fwnode,struct regmap * map,int irq,int irq_flags,int irq_base,const struct regmap_irq_chip * chip,struct regmap_irq_chip_data ** data)715 int regmap_add_irq_chip_fwnode(struct fwnode_handle *fwnode,
716 			       struct regmap *map, int irq,
717 			       int irq_flags, int irq_base,
718 			       const struct regmap_irq_chip *chip,
719 			       struct regmap_irq_chip_data **data)
720 {
721 	struct regmap_irq_chip_data *d;
722 	int i;
723 	int ret = -ENOMEM;
724 	int num_type_reg;
725 	int num_regs;
726 	u32 reg;
727 
728 	if (chip->num_regs <= 0)
729 		return -EINVAL;
730 
731 	if (chip->clear_on_unmask && (chip->ack_base || chip->use_ack))
732 		return -EINVAL;
733 
734 	for (i = 0; i < chip->num_irqs; i++) {
735 		if (chip->irqs[i].reg_offset % map->reg_stride)
736 			return -EINVAL;
737 		if (chip->irqs[i].reg_offset / map->reg_stride >=
738 		    chip->num_regs)
739 			return -EINVAL;
740 	}
741 
742 	if (chip->not_fixed_stride) {
743 		dev_warn(map->dev, "not_fixed_stride is deprecated; use ->get_irq_reg() instead");
744 
745 		for (i = 0; i < chip->num_regs; i++)
746 			if (chip->sub_reg_offsets[i].num_regs != 1)
747 				return -EINVAL;
748 	}
749 
750 	if (chip->num_type_reg)
751 		dev_warn(map->dev, "type registers are deprecated; use config registers instead");
752 
753 	if (chip->num_virt_regs || chip->virt_reg_base || chip->set_type_virt)
754 		dev_warn(map->dev, "virtual registers are deprecated; use config registers instead");
755 
756 	if (irq_base) {
757 		irq_base = irq_alloc_descs(irq_base, 0, chip->num_irqs, 0);
758 		if (irq_base < 0) {
759 			dev_warn(map->dev, "Failed to allocate IRQs: %d\n",
760 				 irq_base);
761 			return irq_base;
762 		}
763 	}
764 
765 	d = kzalloc(sizeof(*d), GFP_KERNEL);
766 	if (!d)
767 		return -ENOMEM;
768 
769 	if (chip->num_main_regs) {
770 		d->main_status_buf = kcalloc(chip->num_main_regs,
771 					     sizeof(*d->main_status_buf),
772 					     GFP_KERNEL);
773 
774 		if (!d->main_status_buf)
775 			goto err_alloc;
776 	}
777 
778 	d->status_buf = kcalloc(chip->num_regs, sizeof(*d->status_buf),
779 				GFP_KERNEL);
780 	if (!d->status_buf)
781 		goto err_alloc;
782 
783 	d->mask_buf = kcalloc(chip->num_regs, sizeof(*d->mask_buf),
784 			      GFP_KERNEL);
785 	if (!d->mask_buf)
786 		goto err_alloc;
787 
788 	d->mask_buf_def = kcalloc(chip->num_regs, sizeof(*d->mask_buf_def),
789 				  GFP_KERNEL);
790 	if (!d->mask_buf_def)
791 		goto err_alloc;
792 
793 	if (chip->wake_base) {
794 		d->wake_buf = kcalloc(chip->num_regs, sizeof(*d->wake_buf),
795 				      GFP_KERNEL);
796 		if (!d->wake_buf)
797 			goto err_alloc;
798 	}
799 
800 	/*
801 	 * Use num_config_regs if defined, otherwise fall back to num_type_reg
802 	 * to maintain backward compatibility.
803 	 */
804 	num_type_reg = chip->num_config_regs ? chip->num_config_regs
805 			: chip->num_type_reg;
806 	num_regs = chip->type_in_mask ? chip->num_regs : num_type_reg;
807 	if (num_regs) {
808 		d->type_buf_def = kcalloc(num_regs,
809 					  sizeof(*d->type_buf_def), GFP_KERNEL);
810 		if (!d->type_buf_def)
811 			goto err_alloc;
812 
813 		d->type_buf = kcalloc(num_regs, sizeof(*d->type_buf),
814 				      GFP_KERNEL);
815 		if (!d->type_buf)
816 			goto err_alloc;
817 	}
818 
819 	if (chip->num_virt_regs) {
820 		/*
821 		 * Create virt_buf[chip->num_extra_config_regs][chip->num_regs]
822 		 */
823 		d->virt_buf = kcalloc(chip->num_virt_regs, sizeof(*d->virt_buf),
824 				      GFP_KERNEL);
825 		if (!d->virt_buf)
826 			goto err_alloc;
827 
828 		for (i = 0; i < chip->num_virt_regs; i++) {
829 			d->virt_buf[i] = kcalloc(chip->num_regs,
830 						 sizeof(**d->virt_buf),
831 						 GFP_KERNEL);
832 			if (!d->virt_buf[i])
833 				goto err_alloc;
834 		}
835 	}
836 
837 	if (chip->num_config_bases && chip->num_config_regs) {
838 		/*
839 		 * Create config_buf[num_config_bases][num_config_regs]
840 		 */
841 		d->config_buf = kcalloc(chip->num_config_bases,
842 					sizeof(*d->config_buf), GFP_KERNEL);
843 		if (!d->config_buf)
844 			goto err_alloc;
845 
846 		for (i = 0; i < chip->num_config_regs; i++) {
847 			d->config_buf[i] = kcalloc(chip->num_config_regs,
848 						   sizeof(**d->config_buf),
849 						   GFP_KERNEL);
850 			if (!d->config_buf[i])
851 				goto err_alloc;
852 		}
853 	}
854 
855 	d->irq_chip = regmap_irq_chip;
856 	d->irq_chip.name = chip->name;
857 	d->irq = irq;
858 	d->map = map;
859 	d->chip = chip;
860 	d->irq_base = irq_base;
861 
862 	if (chip->mask_base && chip->unmask_base &&
863 	    !chip->mask_unmask_non_inverted) {
864 		/*
865 		 * Chips that specify both mask_base and unmask_base used to
866 		 * get inverted mask behavior by default, with no way to ask
867 		 * for the normal, non-inverted behavior. This "inverted by
868 		 * default" behavior is deprecated, but we have to support it
869 		 * until existing drivers have been fixed.
870 		 *
871 		 * Existing drivers should be updated by swapping mask_base
872 		 * and unmask_base and setting mask_unmask_non_inverted=true.
873 		 * New drivers should always set the flag.
874 		 */
875 		dev_warn(map->dev, "mask_base and unmask_base are inverted, please fix it");
876 
877 		/* Might as well warn about mask_invert while we're at it... */
878 		if (chip->mask_invert)
879 			dev_warn(map->dev, "mask_invert=true ignored");
880 
881 		d->mask_base = chip->unmask_base;
882 		d->unmask_base = chip->mask_base;
883 	} else if (chip->mask_invert) {
884 		/*
885 		 * Swap the roles of mask_base and unmask_base if the bits are
886 		 * inverted. This is deprecated, drivers should use unmask_base
887 		 * directly.
888 		 */
889 		dev_warn(map->dev, "mask_invert=true is deprecated; please switch to unmask_base");
890 
891 		d->mask_base = chip->unmask_base;
892 		d->unmask_base = chip->mask_base;
893 	} else {
894 		d->mask_base = chip->mask_base;
895 		d->unmask_base = chip->unmask_base;
896 	}
897 
898 	if (chip->irq_reg_stride)
899 		d->irq_reg_stride = chip->irq_reg_stride;
900 	else
901 		d->irq_reg_stride = 1;
902 
903 	if (chip->get_irq_reg)
904 		d->get_irq_reg = chip->get_irq_reg;
905 	else
906 		d->get_irq_reg = regmap_irq_get_irq_reg_linear;
907 
908 	if (regmap_irq_can_bulk_read_status(d)) {
909 		d->status_reg_buf = kmalloc_array(chip->num_regs,
910 						  map->format.val_bytes,
911 						  GFP_KERNEL);
912 		if (!d->status_reg_buf)
913 			goto err_alloc;
914 	}
915 
916 	mutex_init(&d->lock);
917 
918 	for (i = 0; i < chip->num_irqs; i++)
919 		d->mask_buf_def[chip->irqs[i].reg_offset / map->reg_stride]
920 			|= chip->irqs[i].mask;
921 
922 	/* Mask all the interrupts by default */
923 	for (i = 0; i < chip->num_regs; i++) {
924 		d->mask_buf[i] = d->mask_buf_def[i];
925 
926 		if (d->mask_base) {
927 			reg = d->get_irq_reg(d, d->mask_base, i);
928 			ret = regmap_update_bits(d->map, reg,
929 					d->mask_buf_def[i], d->mask_buf[i]);
930 			if (ret) {
931 				dev_err(map->dev, "Failed to set masks in 0x%x: %d\n",
932 					reg, ret);
933 				goto err_alloc;
934 			}
935 		}
936 
937 		if (d->unmask_base) {
938 			reg = d->get_irq_reg(d, d->unmask_base, i);
939 			ret = regmap_update_bits(d->map, reg,
940 					d->mask_buf_def[i], ~d->mask_buf[i]);
941 			if (ret) {
942 				dev_err(map->dev, "Failed to set masks in 0x%x: %d\n",
943 					reg, ret);
944 				goto err_alloc;
945 			}
946 		}
947 
948 		if (!chip->init_ack_masked)
949 			continue;
950 
951 		/* Ack masked but set interrupts */
952 		reg = d->get_irq_reg(d, d->chip->status_base, i);
953 		ret = regmap_read(map, reg, &d->status_buf[i]);
954 		if (ret != 0) {
955 			dev_err(map->dev, "Failed to read IRQ status: %d\n",
956 				ret);
957 			goto err_alloc;
958 		}
959 
960 		if (chip->status_invert)
961 			d->status_buf[i] = ~d->status_buf[i];
962 
963 		if (d->status_buf[i] && (chip->ack_base || chip->use_ack)) {
964 			reg = d->get_irq_reg(d, d->chip->ack_base, i);
965 			if (chip->ack_invert)
966 				ret = regmap_write(map, reg,
967 					~(d->status_buf[i] & d->mask_buf[i]));
968 			else
969 				ret = regmap_write(map, reg,
970 					d->status_buf[i] & d->mask_buf[i]);
971 			if (chip->clear_ack) {
972 				if (chip->ack_invert && !ret)
973 					ret = regmap_write(map, reg, UINT_MAX);
974 				else if (!ret)
975 					ret = regmap_write(map, reg, 0);
976 			}
977 			if (ret != 0) {
978 				dev_err(map->dev, "Failed to ack 0x%x: %d\n",
979 					reg, ret);
980 				goto err_alloc;
981 			}
982 		}
983 	}
984 
985 	/* Wake is disabled by default */
986 	if (d->wake_buf) {
987 		for (i = 0; i < chip->num_regs; i++) {
988 			d->wake_buf[i] = d->mask_buf_def[i];
989 			reg = d->get_irq_reg(d, d->chip->wake_base, i);
990 
991 			if (chip->wake_invert)
992 				ret = regmap_update_bits(d->map, reg,
993 							 d->mask_buf_def[i],
994 							 0);
995 			else
996 				ret = regmap_update_bits(d->map, reg,
997 							 d->mask_buf_def[i],
998 							 d->wake_buf[i]);
999 			if (ret != 0) {
1000 				dev_err(map->dev, "Failed to set masks in 0x%x: %d\n",
1001 					reg, ret);
1002 				goto err_alloc;
1003 			}
1004 		}
1005 	}
1006 
1007 	if (chip->num_type_reg && !chip->type_in_mask) {
1008 		for (i = 0; i < chip->num_type_reg; ++i) {
1009 			reg = d->get_irq_reg(d, d->chip->type_base, i);
1010 
1011 			ret = regmap_read(map, reg, &d->type_buf_def[i]);
1012 
1013 			if (d->chip->type_invert)
1014 				d->type_buf_def[i] = ~d->type_buf_def[i];
1015 
1016 			if (ret) {
1017 				dev_err(map->dev, "Failed to get type defaults at 0x%x: %d\n",
1018 					reg, ret);
1019 				goto err_alloc;
1020 			}
1021 		}
1022 	}
1023 
1024 	if (irq_base)
1025 		d->domain = irq_domain_create_legacy(fwnode, chip->num_irqs,
1026 						     irq_base, 0,
1027 						     &regmap_domain_ops, d);
1028 	else
1029 		d->domain = irq_domain_create_linear(fwnode, chip->num_irqs,
1030 						     &regmap_domain_ops, d);
1031 	if (!d->domain) {
1032 		dev_err(map->dev, "Failed to create IRQ domain\n");
1033 		ret = -ENOMEM;
1034 		goto err_alloc;
1035 	}
1036 
1037 	ret = request_threaded_irq(irq, NULL, regmap_irq_thread,
1038 				   irq_flags | IRQF_ONESHOT,
1039 				   chip->name, d);
1040 	if (ret != 0) {
1041 		dev_err(map->dev, "Failed to request IRQ %d for %s: %d\n",
1042 			irq, chip->name, ret);
1043 		goto err_domain;
1044 	}
1045 
1046 	*data = d;
1047 
1048 	return 0;
1049 
1050 err_domain:
1051 	/* Should really dispose of the domain but... */
1052 err_alloc:
1053 	kfree(d->type_buf);
1054 	kfree(d->type_buf_def);
1055 	kfree(d->wake_buf);
1056 	kfree(d->mask_buf_def);
1057 	kfree(d->mask_buf);
1058 	kfree(d->status_buf);
1059 	kfree(d->status_reg_buf);
1060 	if (d->virt_buf) {
1061 		for (i = 0; i < chip->num_virt_regs; i++)
1062 			kfree(d->virt_buf[i]);
1063 		kfree(d->virt_buf);
1064 	}
1065 	if (d->config_buf) {
1066 		for (i = 0; i < chip->num_config_bases; i++)
1067 			kfree(d->config_buf[i]);
1068 		kfree(d->config_buf);
1069 	}
1070 	kfree(d);
1071 	return ret;
1072 }
1073 EXPORT_SYMBOL_GPL(regmap_add_irq_chip_fwnode);
1074 
1075 /**
1076  * regmap_add_irq_chip() - Use standard regmap IRQ controller handling
1077  *
1078  * @map: The regmap for the device.
1079  * @irq: The IRQ the device uses to signal interrupts.
1080  * @irq_flags: The IRQF_ flags to use for the primary interrupt.
1081  * @irq_base: Allocate at specific IRQ number if irq_base > 0.
1082  * @chip: Configuration for the interrupt controller.
1083  * @data: Runtime data structure for the controller, allocated on success.
1084  *
1085  * Returns 0 on success or an errno on failure.
1086  *
1087  * This is the same as regmap_add_irq_chip_fwnode, except that the firmware
1088  * node of the regmap is used.
1089  */
regmap_add_irq_chip(struct regmap * map,int irq,int irq_flags,int irq_base,const struct regmap_irq_chip * chip,struct regmap_irq_chip_data ** data)1090 int regmap_add_irq_chip(struct regmap *map, int irq, int irq_flags,
1091 			int irq_base, const struct regmap_irq_chip *chip,
1092 			struct regmap_irq_chip_data **data)
1093 {
1094 	return regmap_add_irq_chip_fwnode(dev_fwnode(map->dev), map, irq,
1095 					  irq_flags, irq_base, chip, data);
1096 }
1097 EXPORT_SYMBOL_GPL(regmap_add_irq_chip);
1098 
1099 /**
1100  * regmap_del_irq_chip() - Stop interrupt handling for a regmap IRQ chip
1101  *
1102  * @irq: Primary IRQ for the device
1103  * @d: &regmap_irq_chip_data allocated by regmap_add_irq_chip()
1104  *
1105  * This function also disposes of all mapped IRQs on the chip.
1106  */
regmap_del_irq_chip(int irq,struct regmap_irq_chip_data * d)1107 void regmap_del_irq_chip(int irq, struct regmap_irq_chip_data *d)
1108 {
1109 	unsigned int virq;
1110 	int i, hwirq;
1111 
1112 	if (!d)
1113 		return;
1114 
1115 	free_irq(irq, d);
1116 
1117 	/* Dispose all virtual irq from irq domain before removing it */
1118 	for (hwirq = 0; hwirq < d->chip->num_irqs; hwirq++) {
1119 		/* Ignore hwirq if holes in the IRQ list */
1120 		if (!d->chip->irqs[hwirq].mask)
1121 			continue;
1122 
1123 		/*
1124 		 * Find the virtual irq of hwirq on chip and if it is
1125 		 * there then dispose it
1126 		 */
1127 		virq = irq_find_mapping(d->domain, hwirq);
1128 		if (virq)
1129 			irq_dispose_mapping(virq);
1130 	}
1131 
1132 	irq_domain_remove(d->domain);
1133 	kfree(d->type_buf);
1134 	kfree(d->type_buf_def);
1135 	kfree(d->wake_buf);
1136 	kfree(d->mask_buf_def);
1137 	kfree(d->mask_buf);
1138 	kfree(d->status_reg_buf);
1139 	kfree(d->status_buf);
1140 	if (d->config_buf) {
1141 		for (i = 0; i < d->chip->num_config_bases; i++)
1142 			kfree(d->config_buf[i]);
1143 		kfree(d->config_buf);
1144 	}
1145 	kfree(d);
1146 }
1147 EXPORT_SYMBOL_GPL(regmap_del_irq_chip);
1148 
devm_regmap_irq_chip_release(struct device * dev,void * res)1149 static void devm_regmap_irq_chip_release(struct device *dev, void *res)
1150 {
1151 	struct regmap_irq_chip_data *d = *(struct regmap_irq_chip_data **)res;
1152 
1153 	regmap_del_irq_chip(d->irq, d);
1154 }
1155 
devm_regmap_irq_chip_match(struct device * dev,void * res,void * data)1156 static int devm_regmap_irq_chip_match(struct device *dev, void *res, void *data)
1157 
1158 {
1159 	struct regmap_irq_chip_data **r = res;
1160 
1161 	if (!r || !*r) {
1162 		WARN_ON(!r || !*r);
1163 		return 0;
1164 	}
1165 	return *r == data;
1166 }
1167 
1168 /**
1169  * devm_regmap_add_irq_chip_fwnode() - Resource managed regmap_add_irq_chip_fwnode()
1170  *
1171  * @dev: The device pointer on which irq_chip belongs to.
1172  * @fwnode: The firmware node where the IRQ domain should be added to.
1173  * @map: The regmap for the device.
1174  * @irq: The IRQ the device uses to signal interrupts
1175  * @irq_flags: The IRQF_ flags to use for the primary interrupt.
1176  * @irq_base: Allocate at specific IRQ number if irq_base > 0.
1177  * @chip: Configuration for the interrupt controller.
1178  * @data: Runtime data structure for the controller, allocated on success
1179  *
1180  * Returns 0 on success or an errno on failure.
1181  *
1182  * The &regmap_irq_chip_data will be automatically released when the device is
1183  * unbound.
1184  */
devm_regmap_add_irq_chip_fwnode(struct device * dev,struct fwnode_handle * fwnode,struct regmap * map,int irq,int irq_flags,int irq_base,const struct regmap_irq_chip * chip,struct regmap_irq_chip_data ** data)1185 int devm_regmap_add_irq_chip_fwnode(struct device *dev,
1186 				    struct fwnode_handle *fwnode,
1187 				    struct regmap *map, int irq,
1188 				    int irq_flags, int irq_base,
1189 				    const struct regmap_irq_chip *chip,
1190 				    struct regmap_irq_chip_data **data)
1191 {
1192 	struct regmap_irq_chip_data **ptr, *d;
1193 	int ret;
1194 
1195 	ptr = devres_alloc(devm_regmap_irq_chip_release, sizeof(*ptr),
1196 			   GFP_KERNEL);
1197 	if (!ptr)
1198 		return -ENOMEM;
1199 
1200 	ret = regmap_add_irq_chip_fwnode(fwnode, map, irq, irq_flags, irq_base,
1201 					 chip, &d);
1202 	if (ret < 0) {
1203 		devres_free(ptr);
1204 		return ret;
1205 	}
1206 
1207 	*ptr = d;
1208 	devres_add(dev, ptr);
1209 	*data = d;
1210 	return 0;
1211 }
1212 EXPORT_SYMBOL_GPL(devm_regmap_add_irq_chip_fwnode);
1213 
1214 /**
1215  * devm_regmap_add_irq_chip() - Resource managed regmap_add_irq_chip()
1216  *
1217  * @dev: The device pointer on which irq_chip belongs to.
1218  * @map: The regmap for the device.
1219  * @irq: The IRQ the device uses to signal interrupts
1220  * @irq_flags: The IRQF_ flags to use for the primary interrupt.
1221  * @irq_base: Allocate at specific IRQ number if irq_base > 0.
1222  * @chip: Configuration for the interrupt controller.
1223  * @data: Runtime data structure for the controller, allocated on success
1224  *
1225  * Returns 0 on success or an errno on failure.
1226  *
1227  * The &regmap_irq_chip_data will be automatically released when the device is
1228  * unbound.
1229  */
devm_regmap_add_irq_chip(struct device * dev,struct regmap * map,int irq,int irq_flags,int irq_base,const struct regmap_irq_chip * chip,struct regmap_irq_chip_data ** data)1230 int devm_regmap_add_irq_chip(struct device *dev, struct regmap *map, int irq,
1231 			     int irq_flags, int irq_base,
1232 			     const struct regmap_irq_chip *chip,
1233 			     struct regmap_irq_chip_data **data)
1234 {
1235 	return devm_regmap_add_irq_chip_fwnode(dev, dev_fwnode(map->dev), map,
1236 					       irq, irq_flags, irq_base, chip,
1237 					       data);
1238 }
1239 EXPORT_SYMBOL_GPL(devm_regmap_add_irq_chip);
1240 
1241 /**
1242  * devm_regmap_del_irq_chip() - Resource managed regmap_del_irq_chip()
1243  *
1244  * @dev: Device for which the resource was allocated.
1245  * @irq: Primary IRQ for the device.
1246  * @data: &regmap_irq_chip_data allocated by regmap_add_irq_chip().
1247  *
1248  * A resource managed version of regmap_del_irq_chip().
1249  */
devm_regmap_del_irq_chip(struct device * dev,int irq,struct regmap_irq_chip_data * data)1250 void devm_regmap_del_irq_chip(struct device *dev, int irq,
1251 			      struct regmap_irq_chip_data *data)
1252 {
1253 	int rc;
1254 
1255 	WARN_ON(irq != data->irq);
1256 	rc = devres_release(dev, devm_regmap_irq_chip_release,
1257 			    devm_regmap_irq_chip_match, data);
1258 
1259 	if (rc != 0)
1260 		WARN_ON(rc);
1261 }
1262 EXPORT_SYMBOL_GPL(devm_regmap_del_irq_chip);
1263 
1264 /**
1265  * regmap_irq_chip_get_base() - Retrieve interrupt base for a regmap IRQ chip
1266  *
1267  * @data: regmap irq controller to operate on.
1268  *
1269  * Useful for drivers to request their own IRQs.
1270  */
regmap_irq_chip_get_base(struct regmap_irq_chip_data * data)1271 int regmap_irq_chip_get_base(struct regmap_irq_chip_data *data)
1272 {
1273 	WARN_ON(!data->irq_base);
1274 	return data->irq_base;
1275 }
1276 EXPORT_SYMBOL_GPL(regmap_irq_chip_get_base);
1277 
1278 /**
1279  * regmap_irq_get_virq() - Map an interrupt on a chip to a virtual IRQ
1280  *
1281  * @data: regmap irq controller to operate on.
1282  * @irq: index of the interrupt requested in the chip IRQs.
1283  *
1284  * Useful for drivers to request their own IRQs.
1285  */
regmap_irq_get_virq(struct regmap_irq_chip_data * data,int irq)1286 int regmap_irq_get_virq(struct regmap_irq_chip_data *data, int irq)
1287 {
1288 	/* Handle holes in the IRQ list */
1289 	if (!data->chip->irqs[irq].mask)
1290 		return -EINVAL;
1291 
1292 	return irq_create_mapping(data->domain, irq);
1293 }
1294 EXPORT_SYMBOL_GPL(regmap_irq_get_virq);
1295 
1296 /**
1297  * regmap_irq_get_domain() - Retrieve the irq_domain for the chip
1298  *
1299  * @data: regmap_irq controller to operate on.
1300  *
1301  * Useful for drivers to request their own IRQs and for integration
1302  * with subsystems.  For ease of integration NULL is accepted as a
1303  * domain, allowing devices to just call this even if no domain is
1304  * allocated.
1305  */
regmap_irq_get_domain(struct regmap_irq_chip_data * data)1306 struct irq_domain *regmap_irq_get_domain(struct regmap_irq_chip_data *data)
1307 {
1308 	if (data)
1309 		return data->domain;
1310 	else
1311 		return NULL;
1312 }
1313 EXPORT_SYMBOL_GPL(regmap_irq_get_domain);
1314