1 /*
2 * Performance event support - powerpc architecture code
3 *
4 * Copyright 2008-2009 Paul Mackerras, IBM Corporation.
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version
9 * 2 of the License, or (at your option) any later version.
10 */
11 #include <linux/kernel.h>
12 #include <linux/sched.h>
13 #include <linux/perf_event.h>
14 #include <linux/percpu.h>
15 #include <linux/hardirq.h>
16 #include <asm/reg.h>
17 #include <asm/pmc.h>
18 #include <asm/machdep.h>
19 #include <asm/firmware.h>
20 #include <asm/ptrace.h>
21
22 struct cpu_hw_events {
23 int n_events;
24 int n_percpu;
25 int disabled;
26 int n_added;
27 int n_limited;
28 u8 pmcs_enabled;
29 struct perf_event *event[MAX_HWEVENTS];
30 u64 events[MAX_HWEVENTS];
31 unsigned int flags[MAX_HWEVENTS];
32 unsigned long mmcr[3];
33 struct perf_event *limited_counter[MAX_LIMITED_HWCOUNTERS];
34 u8 limited_hwidx[MAX_LIMITED_HWCOUNTERS];
35 u64 alternatives[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES];
36 unsigned long amasks[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES];
37 unsigned long avalues[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES];
38
39 unsigned int group_flag;
40 int n_txn_start;
41 };
42 DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events);
43
44 struct power_pmu *ppmu;
45
46 /*
47 * Normally, to ignore kernel events we set the FCS (freeze counters
48 * in supervisor mode) bit in MMCR0, but if the kernel runs with the
49 * hypervisor bit set in the MSR, or if we are running on a processor
50 * where the hypervisor bit is forced to 1 (as on Apple G5 processors),
51 * then we need to use the FCHV bit to ignore kernel events.
52 */
53 static unsigned int freeze_events_kernel = MMCR0_FCS;
54
55 /*
56 * 32-bit doesn't have MMCRA but does have an MMCR2,
57 * and a few other names are different.
58 */
59 #ifdef CONFIG_PPC32
60
61 #define MMCR0_FCHV 0
62 #define MMCR0_PMCjCE MMCR0_PMCnCE
63
64 #define SPRN_MMCRA SPRN_MMCR2
65 #define MMCRA_SAMPLE_ENABLE 0
66
perf_ip_adjust(struct pt_regs * regs)67 static inline unsigned long perf_ip_adjust(struct pt_regs *regs)
68 {
69 return 0;
70 }
perf_get_data_addr(struct pt_regs * regs,u64 * addrp)71 static inline void perf_get_data_addr(struct pt_regs *regs, u64 *addrp) { }
perf_get_misc_flags(struct pt_regs * regs)72 static inline u32 perf_get_misc_flags(struct pt_regs *regs)
73 {
74 return 0;
75 }
perf_read_regs(struct pt_regs * regs)76 static inline void perf_read_regs(struct pt_regs *regs) { }
perf_intr_is_nmi(struct pt_regs * regs)77 static inline int perf_intr_is_nmi(struct pt_regs *regs)
78 {
79 return 0;
80 }
81
82 #endif /* CONFIG_PPC32 */
83
84 /*
85 * Things that are specific to 64-bit implementations.
86 */
87 #ifdef CONFIG_PPC64
88
perf_ip_adjust(struct pt_regs * regs)89 static inline unsigned long perf_ip_adjust(struct pt_regs *regs)
90 {
91 unsigned long mmcra = regs->dsisr;
92
93 if ((mmcra & MMCRA_SAMPLE_ENABLE) && !(ppmu->flags & PPMU_ALT_SIPR)) {
94 unsigned long slot = (mmcra & MMCRA_SLOT) >> MMCRA_SLOT_SHIFT;
95 if (slot > 1)
96 return 4 * (slot - 1);
97 }
98 return 0;
99 }
100
101 /*
102 * The user wants a data address recorded.
103 * If we're not doing instruction sampling, give them the SDAR
104 * (sampled data address). If we are doing instruction sampling, then
105 * only give them the SDAR if it corresponds to the instruction
106 * pointed to by SIAR; this is indicated by the [POWER6_]MMCRA_SDSYNC
107 * bit in MMCRA.
108 */
perf_get_data_addr(struct pt_regs * regs,u64 * addrp)109 static inline void perf_get_data_addr(struct pt_regs *regs, u64 *addrp)
110 {
111 unsigned long mmcra = regs->dsisr;
112 unsigned long sdsync = (ppmu->flags & PPMU_ALT_SIPR) ?
113 POWER6_MMCRA_SDSYNC : MMCRA_SDSYNC;
114
115 if (!(mmcra & MMCRA_SAMPLE_ENABLE) || (mmcra & sdsync))
116 *addrp = mfspr(SPRN_SDAR);
117 }
118
perf_flags_from_msr(struct pt_regs * regs)119 static inline u32 perf_flags_from_msr(struct pt_regs *regs)
120 {
121 if (regs->msr & MSR_PR)
122 return PERF_RECORD_MISC_USER;
123 if ((regs->msr & MSR_HV) && freeze_events_kernel != MMCR0_FCHV)
124 return PERF_RECORD_MISC_HYPERVISOR;
125 return PERF_RECORD_MISC_KERNEL;
126 }
127
perf_get_misc_flags(struct pt_regs * regs)128 static inline u32 perf_get_misc_flags(struct pt_regs *regs)
129 {
130 unsigned long mmcra = regs->dsisr;
131 unsigned long sihv = MMCRA_SIHV;
132 unsigned long sipr = MMCRA_SIPR;
133
134 /* Not a PMU interrupt: Make up flags from regs->msr */
135 if (TRAP(regs) != 0xf00)
136 return perf_flags_from_msr(regs);
137
138 /*
139 * If we don't support continuous sampling and this
140 * is not a marked event, same deal
141 */
142 if ((ppmu->flags & PPMU_NO_CONT_SAMPLING) &&
143 !(mmcra & MMCRA_SAMPLE_ENABLE))
144 return perf_flags_from_msr(regs);
145
146 /*
147 * If we don't have flags in MMCRA, rather than using
148 * the MSR, we intuit the flags from the address in
149 * SIAR which should give slightly more reliable
150 * results
151 */
152 if (ppmu->flags & PPMU_NO_SIPR) {
153 unsigned long siar = mfspr(SPRN_SIAR);
154 if (siar >= PAGE_OFFSET)
155 return PERF_RECORD_MISC_KERNEL;
156 return PERF_RECORD_MISC_USER;
157 }
158
159 if (ppmu->flags & PPMU_ALT_SIPR) {
160 sihv = POWER6_MMCRA_SIHV;
161 sipr = POWER6_MMCRA_SIPR;
162 }
163
164 /* PR has priority over HV, so order below is important */
165 if (mmcra & sipr)
166 return PERF_RECORD_MISC_USER;
167 if ((mmcra & sihv) && (freeze_events_kernel != MMCR0_FCHV))
168 return PERF_RECORD_MISC_HYPERVISOR;
169 return PERF_RECORD_MISC_KERNEL;
170 }
171
172 /*
173 * Overload regs->dsisr to store MMCRA so we only need to read it once
174 * on each interrupt.
175 */
perf_read_regs(struct pt_regs * regs)176 static inline void perf_read_regs(struct pt_regs *regs)
177 {
178 regs->dsisr = mfspr(SPRN_MMCRA);
179 }
180
181 /*
182 * If interrupts were soft-disabled when a PMU interrupt occurs, treat
183 * it as an NMI.
184 */
perf_intr_is_nmi(struct pt_regs * regs)185 static inline int perf_intr_is_nmi(struct pt_regs *regs)
186 {
187 return !regs->softe;
188 }
189
190 #endif /* CONFIG_PPC64 */
191
192 static void perf_event_interrupt(struct pt_regs *regs);
193
perf_event_print_debug(void)194 void perf_event_print_debug(void)
195 {
196 }
197
198 /*
199 * Read one performance monitor counter (PMC).
200 */
read_pmc(int idx)201 static unsigned long read_pmc(int idx)
202 {
203 unsigned long val;
204
205 switch (idx) {
206 case 1:
207 val = mfspr(SPRN_PMC1);
208 break;
209 case 2:
210 val = mfspr(SPRN_PMC2);
211 break;
212 case 3:
213 val = mfspr(SPRN_PMC3);
214 break;
215 case 4:
216 val = mfspr(SPRN_PMC4);
217 break;
218 case 5:
219 val = mfspr(SPRN_PMC5);
220 break;
221 case 6:
222 val = mfspr(SPRN_PMC6);
223 break;
224 #ifdef CONFIG_PPC64
225 case 7:
226 val = mfspr(SPRN_PMC7);
227 break;
228 case 8:
229 val = mfspr(SPRN_PMC8);
230 break;
231 #endif /* CONFIG_PPC64 */
232 default:
233 printk(KERN_ERR "oops trying to read PMC%d\n", idx);
234 val = 0;
235 }
236 return val;
237 }
238
239 /*
240 * Write one PMC.
241 */
write_pmc(int idx,unsigned long val)242 static void write_pmc(int idx, unsigned long val)
243 {
244 switch (idx) {
245 case 1:
246 mtspr(SPRN_PMC1, val);
247 break;
248 case 2:
249 mtspr(SPRN_PMC2, val);
250 break;
251 case 3:
252 mtspr(SPRN_PMC3, val);
253 break;
254 case 4:
255 mtspr(SPRN_PMC4, val);
256 break;
257 case 5:
258 mtspr(SPRN_PMC5, val);
259 break;
260 case 6:
261 mtspr(SPRN_PMC6, val);
262 break;
263 #ifdef CONFIG_PPC64
264 case 7:
265 mtspr(SPRN_PMC7, val);
266 break;
267 case 8:
268 mtspr(SPRN_PMC8, val);
269 break;
270 #endif /* CONFIG_PPC64 */
271 default:
272 printk(KERN_ERR "oops trying to write PMC%d\n", idx);
273 }
274 }
275
276 /*
277 * Check if a set of events can all go on the PMU at once.
278 * If they can't, this will look at alternative codes for the events
279 * and see if any combination of alternative codes is feasible.
280 * The feasible set is returned in event_id[].
281 */
power_check_constraints(struct cpu_hw_events * cpuhw,u64 event_id[],unsigned int cflags[],int n_ev)282 static int power_check_constraints(struct cpu_hw_events *cpuhw,
283 u64 event_id[], unsigned int cflags[],
284 int n_ev)
285 {
286 unsigned long mask, value, nv;
287 unsigned long smasks[MAX_HWEVENTS], svalues[MAX_HWEVENTS];
288 int n_alt[MAX_HWEVENTS], choice[MAX_HWEVENTS];
289 int i, j;
290 unsigned long addf = ppmu->add_fields;
291 unsigned long tadd = ppmu->test_adder;
292
293 if (n_ev > ppmu->n_counter)
294 return -1;
295
296 /* First see if the events will go on as-is */
297 for (i = 0; i < n_ev; ++i) {
298 if ((cflags[i] & PPMU_LIMITED_PMC_REQD)
299 && !ppmu->limited_pmc_event(event_id[i])) {
300 ppmu->get_alternatives(event_id[i], cflags[i],
301 cpuhw->alternatives[i]);
302 event_id[i] = cpuhw->alternatives[i][0];
303 }
304 if (ppmu->get_constraint(event_id[i], &cpuhw->amasks[i][0],
305 &cpuhw->avalues[i][0]))
306 return -1;
307 }
308 value = mask = 0;
309 for (i = 0; i < n_ev; ++i) {
310 nv = (value | cpuhw->avalues[i][0]) +
311 (value & cpuhw->avalues[i][0] & addf);
312 if ((((nv + tadd) ^ value) & mask) != 0 ||
313 (((nv + tadd) ^ cpuhw->avalues[i][0]) &
314 cpuhw->amasks[i][0]) != 0)
315 break;
316 value = nv;
317 mask |= cpuhw->amasks[i][0];
318 }
319 if (i == n_ev)
320 return 0; /* all OK */
321
322 /* doesn't work, gather alternatives... */
323 if (!ppmu->get_alternatives)
324 return -1;
325 for (i = 0; i < n_ev; ++i) {
326 choice[i] = 0;
327 n_alt[i] = ppmu->get_alternatives(event_id[i], cflags[i],
328 cpuhw->alternatives[i]);
329 for (j = 1; j < n_alt[i]; ++j)
330 ppmu->get_constraint(cpuhw->alternatives[i][j],
331 &cpuhw->amasks[i][j],
332 &cpuhw->avalues[i][j]);
333 }
334
335 /* enumerate all possibilities and see if any will work */
336 i = 0;
337 j = -1;
338 value = mask = nv = 0;
339 while (i < n_ev) {
340 if (j >= 0) {
341 /* we're backtracking, restore context */
342 value = svalues[i];
343 mask = smasks[i];
344 j = choice[i];
345 }
346 /*
347 * See if any alternative k for event_id i,
348 * where k > j, will satisfy the constraints.
349 */
350 while (++j < n_alt[i]) {
351 nv = (value | cpuhw->avalues[i][j]) +
352 (value & cpuhw->avalues[i][j] & addf);
353 if ((((nv + tadd) ^ value) & mask) == 0 &&
354 (((nv + tadd) ^ cpuhw->avalues[i][j])
355 & cpuhw->amasks[i][j]) == 0)
356 break;
357 }
358 if (j >= n_alt[i]) {
359 /*
360 * No feasible alternative, backtrack
361 * to event_id i-1 and continue enumerating its
362 * alternatives from where we got up to.
363 */
364 if (--i < 0)
365 return -1;
366 } else {
367 /*
368 * Found a feasible alternative for event_id i,
369 * remember where we got up to with this event_id,
370 * go on to the next event_id, and start with
371 * the first alternative for it.
372 */
373 choice[i] = j;
374 svalues[i] = value;
375 smasks[i] = mask;
376 value = nv;
377 mask |= cpuhw->amasks[i][j];
378 ++i;
379 j = -1;
380 }
381 }
382
383 /* OK, we have a feasible combination, tell the caller the solution */
384 for (i = 0; i < n_ev; ++i)
385 event_id[i] = cpuhw->alternatives[i][choice[i]];
386 return 0;
387 }
388
389 /*
390 * Check if newly-added events have consistent settings for
391 * exclude_{user,kernel,hv} with each other and any previously
392 * added events.
393 */
check_excludes(struct perf_event ** ctrs,unsigned int cflags[],int n_prev,int n_new)394 static int check_excludes(struct perf_event **ctrs, unsigned int cflags[],
395 int n_prev, int n_new)
396 {
397 int eu = 0, ek = 0, eh = 0;
398 int i, n, first;
399 struct perf_event *event;
400
401 n = n_prev + n_new;
402 if (n <= 1)
403 return 0;
404
405 first = 1;
406 for (i = 0; i < n; ++i) {
407 if (cflags[i] & PPMU_LIMITED_PMC_OK) {
408 cflags[i] &= ~PPMU_LIMITED_PMC_REQD;
409 continue;
410 }
411 event = ctrs[i];
412 if (first) {
413 eu = event->attr.exclude_user;
414 ek = event->attr.exclude_kernel;
415 eh = event->attr.exclude_hv;
416 first = 0;
417 } else if (event->attr.exclude_user != eu ||
418 event->attr.exclude_kernel != ek ||
419 event->attr.exclude_hv != eh) {
420 return -EAGAIN;
421 }
422 }
423
424 if (eu || ek || eh)
425 for (i = 0; i < n; ++i)
426 if (cflags[i] & PPMU_LIMITED_PMC_OK)
427 cflags[i] |= PPMU_LIMITED_PMC_REQD;
428
429 return 0;
430 }
431
check_and_compute_delta(u64 prev,u64 val)432 static u64 check_and_compute_delta(u64 prev, u64 val)
433 {
434 u64 delta = (val - prev) & 0xfffffffful;
435
436 /*
437 * POWER7 can roll back counter values, if the new value is smaller
438 * than the previous value it will cause the delta and the counter to
439 * have bogus values unless we rolled a counter over. If a coutner is
440 * rolled back, it will be smaller, but within 256, which is the maximum
441 * number of events to rollback at once. If we dectect a rollback
442 * return 0. This can lead to a small lack of precision in the
443 * counters.
444 */
445 if (prev > val && (prev - val) < 256)
446 delta = 0;
447
448 return delta;
449 }
450
power_pmu_read(struct perf_event * event)451 static void power_pmu_read(struct perf_event *event)
452 {
453 s64 val, delta, prev;
454
455 if (event->hw.state & PERF_HES_STOPPED)
456 return;
457
458 if (!event->hw.idx)
459 return;
460 /*
461 * Performance monitor interrupts come even when interrupts
462 * are soft-disabled, as long as interrupts are hard-enabled.
463 * Therefore we treat them like NMIs.
464 */
465 do {
466 prev = local64_read(&event->hw.prev_count);
467 barrier();
468 val = read_pmc(event->hw.idx);
469 delta = check_and_compute_delta(prev, val);
470 if (!delta)
471 return;
472 } while (local64_cmpxchg(&event->hw.prev_count, prev, val) != prev);
473
474 local64_add(delta, &event->count);
475
476 /*
477 * A number of places program the PMC with (0x80000000 - period_left).
478 * We never want period_left to be less than 1 because we will program
479 * the PMC with a value >= 0x800000000 and an edge detected PMC will
480 * roll around to 0 before taking an exception. We have seen this
481 * on POWER8.
482 *
483 * To fix this, clamp the minimum value of period_left to 1.
484 */
485 do {
486 prev = local64_read(&event->hw.period_left);
487 val = prev - delta;
488 if (val < 1)
489 val = 1;
490 } while (local64_cmpxchg(&event->hw.period_left, prev, val) != prev);
491 }
492
493 /*
494 * On some machines, PMC5 and PMC6 can't be written, don't respect
495 * the freeze conditions, and don't generate interrupts. This tells
496 * us if `event' is using such a PMC.
497 */
is_limited_pmc(int pmcnum)498 static int is_limited_pmc(int pmcnum)
499 {
500 return (ppmu->flags & PPMU_LIMITED_PMC5_6)
501 && (pmcnum == 5 || pmcnum == 6);
502 }
503
freeze_limited_counters(struct cpu_hw_events * cpuhw,unsigned long pmc5,unsigned long pmc6)504 static void freeze_limited_counters(struct cpu_hw_events *cpuhw,
505 unsigned long pmc5, unsigned long pmc6)
506 {
507 struct perf_event *event;
508 u64 val, prev, delta;
509 int i;
510
511 for (i = 0; i < cpuhw->n_limited; ++i) {
512 event = cpuhw->limited_counter[i];
513 if (!event->hw.idx)
514 continue;
515 val = (event->hw.idx == 5) ? pmc5 : pmc6;
516 prev = local64_read(&event->hw.prev_count);
517 event->hw.idx = 0;
518 delta = check_and_compute_delta(prev, val);
519 if (delta)
520 local64_add(delta, &event->count);
521 }
522 }
523
thaw_limited_counters(struct cpu_hw_events * cpuhw,unsigned long pmc5,unsigned long pmc6)524 static void thaw_limited_counters(struct cpu_hw_events *cpuhw,
525 unsigned long pmc5, unsigned long pmc6)
526 {
527 struct perf_event *event;
528 u64 val, prev;
529 int i;
530
531 for (i = 0; i < cpuhw->n_limited; ++i) {
532 event = cpuhw->limited_counter[i];
533 event->hw.idx = cpuhw->limited_hwidx[i];
534 val = (event->hw.idx == 5) ? pmc5 : pmc6;
535 prev = local64_read(&event->hw.prev_count);
536 if (check_and_compute_delta(prev, val))
537 local64_set(&event->hw.prev_count, val);
538 perf_event_update_userpage(event);
539 }
540 }
541
542 /*
543 * Since limited events don't respect the freeze conditions, we
544 * have to read them immediately after freezing or unfreezing the
545 * other events. We try to keep the values from the limited
546 * events as consistent as possible by keeping the delay (in
547 * cycles and instructions) between freezing/unfreezing and reading
548 * the limited events as small and consistent as possible.
549 * Therefore, if any limited events are in use, we read them
550 * both, and always in the same order, to minimize variability,
551 * and do it inside the same asm that writes MMCR0.
552 */
write_mmcr0(struct cpu_hw_events * cpuhw,unsigned long mmcr0)553 static void write_mmcr0(struct cpu_hw_events *cpuhw, unsigned long mmcr0)
554 {
555 unsigned long pmc5, pmc6;
556
557 if (!cpuhw->n_limited) {
558 mtspr(SPRN_MMCR0, mmcr0);
559 return;
560 }
561
562 /*
563 * Write MMCR0, then read PMC5 and PMC6 immediately.
564 * To ensure we don't get a performance monitor interrupt
565 * between writing MMCR0 and freezing/thawing the limited
566 * events, we first write MMCR0 with the event overflow
567 * interrupt enable bits turned off.
568 */
569 asm volatile("mtspr %3,%2; mfspr %0,%4; mfspr %1,%5"
570 : "=&r" (pmc5), "=&r" (pmc6)
571 : "r" (mmcr0 & ~(MMCR0_PMC1CE | MMCR0_PMCjCE)),
572 "i" (SPRN_MMCR0),
573 "i" (SPRN_PMC5), "i" (SPRN_PMC6));
574
575 if (mmcr0 & MMCR0_FC)
576 freeze_limited_counters(cpuhw, pmc5, pmc6);
577 else
578 thaw_limited_counters(cpuhw, pmc5, pmc6);
579
580 /*
581 * Write the full MMCR0 including the event overflow interrupt
582 * enable bits, if necessary.
583 */
584 if (mmcr0 & (MMCR0_PMC1CE | MMCR0_PMCjCE))
585 mtspr(SPRN_MMCR0, mmcr0);
586 }
587
588 /*
589 * Disable all events to prevent PMU interrupts and to allow
590 * events to be added or removed.
591 */
power_pmu_disable(struct pmu * pmu)592 static void power_pmu_disable(struct pmu *pmu)
593 {
594 struct cpu_hw_events *cpuhw;
595 unsigned long flags;
596
597 if (!ppmu)
598 return;
599 local_irq_save(flags);
600 cpuhw = &__get_cpu_var(cpu_hw_events);
601
602 if (!cpuhw->disabled) {
603 cpuhw->disabled = 1;
604 cpuhw->n_added = 0;
605
606 /*
607 * Check if we ever enabled the PMU on this cpu.
608 */
609 if (!cpuhw->pmcs_enabled) {
610 ppc_enable_pmcs();
611 cpuhw->pmcs_enabled = 1;
612 }
613
614 /*
615 * Disable instruction sampling if it was enabled
616 */
617 if (cpuhw->mmcr[2] & MMCRA_SAMPLE_ENABLE) {
618 mtspr(SPRN_MMCRA,
619 cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE);
620 mb();
621 }
622
623 /*
624 * Set the 'freeze counters' bit.
625 * The barrier is to make sure the mtspr has been
626 * executed and the PMU has frozen the events
627 * before we return.
628 */
629 write_mmcr0(cpuhw, mfspr(SPRN_MMCR0) | MMCR0_FC);
630 mb();
631 }
632 local_irq_restore(flags);
633 }
634
635 /*
636 * Re-enable all events if disable == 0.
637 * If we were previously disabled and events were added, then
638 * put the new config on the PMU.
639 */
power_pmu_enable(struct pmu * pmu)640 static void power_pmu_enable(struct pmu *pmu)
641 {
642 struct perf_event *event;
643 struct cpu_hw_events *cpuhw;
644 unsigned long flags;
645 long i;
646 unsigned long val;
647 s64 left;
648 unsigned int hwc_index[MAX_HWEVENTS];
649 int n_lim;
650 int idx;
651
652 if (!ppmu)
653 return;
654 local_irq_save(flags);
655 cpuhw = &__get_cpu_var(cpu_hw_events);
656 if (!cpuhw->disabled) {
657 local_irq_restore(flags);
658 return;
659 }
660 cpuhw->disabled = 0;
661
662 /*
663 * If we didn't change anything, or only removed events,
664 * no need to recalculate MMCR* settings and reset the PMCs.
665 * Just reenable the PMU with the current MMCR* settings
666 * (possibly updated for removal of events).
667 */
668 if (!cpuhw->n_added) {
669 mtspr(SPRN_MMCRA, cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE);
670 mtspr(SPRN_MMCR1, cpuhw->mmcr[1]);
671 if (cpuhw->n_events == 0)
672 ppc_set_pmu_inuse(0);
673 goto out_enable;
674 }
675
676 /*
677 * Compute MMCR* values for the new set of events
678 */
679 if (ppmu->compute_mmcr(cpuhw->events, cpuhw->n_events, hwc_index,
680 cpuhw->mmcr)) {
681 /* shouldn't ever get here */
682 printk(KERN_ERR "oops compute_mmcr failed\n");
683 goto out;
684 }
685
686 /*
687 * Add in MMCR0 freeze bits corresponding to the
688 * attr.exclude_* bits for the first event.
689 * We have already checked that all events have the
690 * same values for these bits as the first event.
691 */
692 event = cpuhw->event[0];
693 if (event->attr.exclude_user)
694 cpuhw->mmcr[0] |= MMCR0_FCP;
695 if (event->attr.exclude_kernel)
696 cpuhw->mmcr[0] |= freeze_events_kernel;
697 if (event->attr.exclude_hv)
698 cpuhw->mmcr[0] |= MMCR0_FCHV;
699
700 /*
701 * Write the new configuration to MMCR* with the freeze
702 * bit set and set the hardware events to their initial values.
703 * Then unfreeze the events.
704 */
705 ppc_set_pmu_inuse(1);
706 mtspr(SPRN_MMCRA, cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE);
707 mtspr(SPRN_MMCR1, cpuhw->mmcr[1]);
708 mtspr(SPRN_MMCR0, (cpuhw->mmcr[0] & ~(MMCR0_PMC1CE | MMCR0_PMCjCE))
709 | MMCR0_FC);
710
711 /*
712 * Read off any pre-existing events that need to move
713 * to another PMC.
714 */
715 for (i = 0; i < cpuhw->n_events; ++i) {
716 event = cpuhw->event[i];
717 if (event->hw.idx && event->hw.idx != hwc_index[i] + 1) {
718 power_pmu_read(event);
719 write_pmc(event->hw.idx, 0);
720 event->hw.idx = 0;
721 }
722 }
723
724 /*
725 * Initialize the PMCs for all the new and moved events.
726 */
727 cpuhw->n_limited = n_lim = 0;
728 for (i = 0; i < cpuhw->n_events; ++i) {
729 event = cpuhw->event[i];
730 if (event->hw.idx)
731 continue;
732 idx = hwc_index[i] + 1;
733 if (is_limited_pmc(idx)) {
734 cpuhw->limited_counter[n_lim] = event;
735 cpuhw->limited_hwidx[n_lim] = idx;
736 ++n_lim;
737 continue;
738 }
739 val = 0;
740 if (event->hw.sample_period) {
741 left = local64_read(&event->hw.period_left);
742 if (left < 0x80000000L)
743 val = 0x80000000L - left;
744 }
745 local64_set(&event->hw.prev_count, val);
746 event->hw.idx = idx;
747 if (event->hw.state & PERF_HES_STOPPED)
748 val = 0;
749 write_pmc(idx, val);
750 perf_event_update_userpage(event);
751 }
752 cpuhw->n_limited = n_lim;
753 cpuhw->mmcr[0] |= MMCR0_PMXE | MMCR0_FCECE;
754
755 out_enable:
756 mb();
757 write_mmcr0(cpuhw, cpuhw->mmcr[0]);
758
759 /*
760 * Enable instruction sampling if necessary
761 */
762 if (cpuhw->mmcr[2] & MMCRA_SAMPLE_ENABLE) {
763 mb();
764 mtspr(SPRN_MMCRA, cpuhw->mmcr[2]);
765 }
766
767 out:
768 local_irq_restore(flags);
769 }
770
collect_events(struct perf_event * group,int max_count,struct perf_event * ctrs[],u64 * events,unsigned int * flags)771 static int collect_events(struct perf_event *group, int max_count,
772 struct perf_event *ctrs[], u64 *events,
773 unsigned int *flags)
774 {
775 int n = 0;
776 struct perf_event *event;
777
778 if (!is_software_event(group)) {
779 if (n >= max_count)
780 return -1;
781 ctrs[n] = group;
782 flags[n] = group->hw.event_base;
783 events[n++] = group->hw.config;
784 }
785 list_for_each_entry(event, &group->sibling_list, group_entry) {
786 if (!is_software_event(event) &&
787 event->state != PERF_EVENT_STATE_OFF) {
788 if (n >= max_count)
789 return -1;
790 ctrs[n] = event;
791 flags[n] = event->hw.event_base;
792 events[n++] = event->hw.config;
793 }
794 }
795 return n;
796 }
797
798 /*
799 * Add a event to the PMU.
800 * If all events are not already frozen, then we disable and
801 * re-enable the PMU in order to get hw_perf_enable to do the
802 * actual work of reconfiguring the PMU.
803 */
power_pmu_add(struct perf_event * event,int ef_flags)804 static int power_pmu_add(struct perf_event *event, int ef_flags)
805 {
806 struct cpu_hw_events *cpuhw;
807 unsigned long flags;
808 int n0;
809 int ret = -EAGAIN;
810
811 local_irq_save(flags);
812 perf_pmu_disable(event->pmu);
813
814 /*
815 * Add the event to the list (if there is room)
816 * and check whether the total set is still feasible.
817 */
818 cpuhw = &__get_cpu_var(cpu_hw_events);
819 n0 = cpuhw->n_events;
820 if (n0 >= ppmu->n_counter)
821 goto out;
822 cpuhw->event[n0] = event;
823 cpuhw->events[n0] = event->hw.config;
824 cpuhw->flags[n0] = event->hw.event_base;
825
826 if (!(ef_flags & PERF_EF_START))
827 event->hw.state = PERF_HES_STOPPED | PERF_HES_UPTODATE;
828
829 /*
830 * If group events scheduling transaction was started,
831 * skip the schedulability test here, it will be performed
832 * at commit time(->commit_txn) as a whole
833 */
834 if (cpuhw->group_flag & PERF_EVENT_TXN)
835 goto nocheck;
836
837 if (check_excludes(cpuhw->event, cpuhw->flags, n0, 1))
838 goto out;
839 if (power_check_constraints(cpuhw, cpuhw->events, cpuhw->flags, n0 + 1))
840 goto out;
841 event->hw.config = cpuhw->events[n0];
842
843 nocheck:
844 ++cpuhw->n_events;
845 ++cpuhw->n_added;
846
847 ret = 0;
848 out:
849 perf_pmu_enable(event->pmu);
850 local_irq_restore(flags);
851 return ret;
852 }
853
854 /*
855 * Remove a event from the PMU.
856 */
power_pmu_del(struct perf_event * event,int ef_flags)857 static void power_pmu_del(struct perf_event *event, int ef_flags)
858 {
859 struct cpu_hw_events *cpuhw;
860 long i;
861 unsigned long flags;
862
863 local_irq_save(flags);
864 perf_pmu_disable(event->pmu);
865
866 power_pmu_read(event);
867
868 cpuhw = &__get_cpu_var(cpu_hw_events);
869 for (i = 0; i < cpuhw->n_events; ++i) {
870 if (event == cpuhw->event[i]) {
871 while (++i < cpuhw->n_events) {
872 cpuhw->event[i-1] = cpuhw->event[i];
873 cpuhw->events[i-1] = cpuhw->events[i];
874 cpuhw->flags[i-1] = cpuhw->flags[i];
875 }
876 --cpuhw->n_events;
877 ppmu->disable_pmc(event->hw.idx - 1, cpuhw->mmcr);
878 if (event->hw.idx) {
879 write_pmc(event->hw.idx, 0);
880 event->hw.idx = 0;
881 }
882 perf_event_update_userpage(event);
883 break;
884 }
885 }
886 for (i = 0; i < cpuhw->n_limited; ++i)
887 if (event == cpuhw->limited_counter[i])
888 break;
889 if (i < cpuhw->n_limited) {
890 while (++i < cpuhw->n_limited) {
891 cpuhw->limited_counter[i-1] = cpuhw->limited_counter[i];
892 cpuhw->limited_hwidx[i-1] = cpuhw->limited_hwidx[i];
893 }
894 --cpuhw->n_limited;
895 }
896 if (cpuhw->n_events == 0) {
897 /* disable exceptions if no events are running */
898 cpuhw->mmcr[0] &= ~(MMCR0_PMXE | MMCR0_FCECE);
899 }
900
901 perf_pmu_enable(event->pmu);
902 local_irq_restore(flags);
903 }
904
905 /*
906 * POWER-PMU does not support disabling individual counters, hence
907 * program their cycle counter to their max value and ignore the interrupts.
908 */
909
power_pmu_start(struct perf_event * event,int ef_flags)910 static void power_pmu_start(struct perf_event *event, int ef_flags)
911 {
912 unsigned long flags;
913 s64 left;
914 unsigned long val;
915
916 if (!event->hw.idx || !event->hw.sample_period)
917 return;
918
919 if (!(event->hw.state & PERF_HES_STOPPED))
920 return;
921
922 if (ef_flags & PERF_EF_RELOAD)
923 WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
924
925 local_irq_save(flags);
926 perf_pmu_disable(event->pmu);
927
928 event->hw.state = 0;
929 left = local64_read(&event->hw.period_left);
930
931 val = 0;
932 if (left < 0x80000000L)
933 val = 0x80000000L - left;
934
935 write_pmc(event->hw.idx, val);
936
937 perf_event_update_userpage(event);
938 perf_pmu_enable(event->pmu);
939 local_irq_restore(flags);
940 }
941
power_pmu_stop(struct perf_event * event,int ef_flags)942 static void power_pmu_stop(struct perf_event *event, int ef_flags)
943 {
944 unsigned long flags;
945
946 if (!event->hw.idx || !event->hw.sample_period)
947 return;
948
949 if (event->hw.state & PERF_HES_STOPPED)
950 return;
951
952 local_irq_save(flags);
953 perf_pmu_disable(event->pmu);
954
955 power_pmu_read(event);
956 event->hw.state |= PERF_HES_STOPPED | PERF_HES_UPTODATE;
957 write_pmc(event->hw.idx, 0);
958
959 perf_event_update_userpage(event);
960 perf_pmu_enable(event->pmu);
961 local_irq_restore(flags);
962 }
963
964 /*
965 * Start group events scheduling transaction
966 * Set the flag to make pmu::enable() not perform the
967 * schedulability test, it will be performed at commit time
968 */
power_pmu_start_txn(struct pmu * pmu)969 void power_pmu_start_txn(struct pmu *pmu)
970 {
971 struct cpu_hw_events *cpuhw = &__get_cpu_var(cpu_hw_events);
972
973 perf_pmu_disable(pmu);
974 cpuhw->group_flag |= PERF_EVENT_TXN;
975 cpuhw->n_txn_start = cpuhw->n_events;
976 }
977
978 /*
979 * Stop group events scheduling transaction
980 * Clear the flag and pmu::enable() will perform the
981 * schedulability test.
982 */
power_pmu_cancel_txn(struct pmu * pmu)983 void power_pmu_cancel_txn(struct pmu *pmu)
984 {
985 struct cpu_hw_events *cpuhw = &__get_cpu_var(cpu_hw_events);
986
987 cpuhw->group_flag &= ~PERF_EVENT_TXN;
988 perf_pmu_enable(pmu);
989 }
990
991 /*
992 * Commit group events scheduling transaction
993 * Perform the group schedulability test as a whole
994 * Return 0 if success
995 */
power_pmu_commit_txn(struct pmu * pmu)996 int power_pmu_commit_txn(struct pmu *pmu)
997 {
998 struct cpu_hw_events *cpuhw;
999 long i, n;
1000
1001 if (!ppmu)
1002 return -EAGAIN;
1003 cpuhw = &__get_cpu_var(cpu_hw_events);
1004 n = cpuhw->n_events;
1005 if (check_excludes(cpuhw->event, cpuhw->flags, 0, n))
1006 return -EAGAIN;
1007 i = power_check_constraints(cpuhw, cpuhw->events, cpuhw->flags, n);
1008 if (i < 0)
1009 return -EAGAIN;
1010
1011 for (i = cpuhw->n_txn_start; i < n; ++i)
1012 cpuhw->event[i]->hw.config = cpuhw->events[i];
1013
1014 cpuhw->group_flag &= ~PERF_EVENT_TXN;
1015 perf_pmu_enable(pmu);
1016 return 0;
1017 }
1018
1019 /*
1020 * Return 1 if we might be able to put event on a limited PMC,
1021 * or 0 if not.
1022 * A event can only go on a limited PMC if it counts something
1023 * that a limited PMC can count, doesn't require interrupts, and
1024 * doesn't exclude any processor mode.
1025 */
can_go_on_limited_pmc(struct perf_event * event,u64 ev,unsigned int flags)1026 static int can_go_on_limited_pmc(struct perf_event *event, u64 ev,
1027 unsigned int flags)
1028 {
1029 int n;
1030 u64 alt[MAX_EVENT_ALTERNATIVES];
1031
1032 if (event->attr.exclude_user
1033 || event->attr.exclude_kernel
1034 || event->attr.exclude_hv
1035 || event->attr.sample_period)
1036 return 0;
1037
1038 if (ppmu->limited_pmc_event(ev))
1039 return 1;
1040
1041 /*
1042 * The requested event_id isn't on a limited PMC already;
1043 * see if any alternative code goes on a limited PMC.
1044 */
1045 if (!ppmu->get_alternatives)
1046 return 0;
1047
1048 flags |= PPMU_LIMITED_PMC_OK | PPMU_LIMITED_PMC_REQD;
1049 n = ppmu->get_alternatives(ev, flags, alt);
1050
1051 return n > 0;
1052 }
1053
1054 /*
1055 * Find an alternative event_id that goes on a normal PMC, if possible,
1056 * and return the event_id code, or 0 if there is no such alternative.
1057 * (Note: event_id code 0 is "don't count" on all machines.)
1058 */
normal_pmc_alternative(u64 ev,unsigned long flags)1059 static u64 normal_pmc_alternative(u64 ev, unsigned long flags)
1060 {
1061 u64 alt[MAX_EVENT_ALTERNATIVES];
1062 int n;
1063
1064 flags &= ~(PPMU_LIMITED_PMC_OK | PPMU_LIMITED_PMC_REQD);
1065 n = ppmu->get_alternatives(ev, flags, alt);
1066 if (!n)
1067 return 0;
1068 return alt[0];
1069 }
1070
1071 /* Number of perf_events counting hardware events */
1072 static atomic_t num_events;
1073 /* Used to avoid races in calling reserve/release_pmc_hardware */
1074 static DEFINE_MUTEX(pmc_reserve_mutex);
1075
1076 /*
1077 * Release the PMU if this is the last perf_event.
1078 */
hw_perf_event_destroy(struct perf_event * event)1079 static void hw_perf_event_destroy(struct perf_event *event)
1080 {
1081 if (!atomic_add_unless(&num_events, -1, 1)) {
1082 mutex_lock(&pmc_reserve_mutex);
1083 if (atomic_dec_return(&num_events) == 0)
1084 release_pmc_hardware();
1085 mutex_unlock(&pmc_reserve_mutex);
1086 }
1087 }
1088
1089 /*
1090 * Translate a generic cache event_id config to a raw event_id code.
1091 */
hw_perf_cache_event(u64 config,u64 * eventp)1092 static int hw_perf_cache_event(u64 config, u64 *eventp)
1093 {
1094 unsigned long type, op, result;
1095 int ev;
1096
1097 if (!ppmu->cache_events)
1098 return -EINVAL;
1099
1100 /* unpack config */
1101 type = config & 0xff;
1102 op = (config >> 8) & 0xff;
1103 result = (config >> 16) & 0xff;
1104
1105 if (type >= PERF_COUNT_HW_CACHE_MAX ||
1106 op >= PERF_COUNT_HW_CACHE_OP_MAX ||
1107 result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
1108 return -EINVAL;
1109
1110 ev = (*ppmu->cache_events)[type][op][result];
1111 if (ev == 0)
1112 return -EOPNOTSUPP;
1113 if (ev == -1)
1114 return -EINVAL;
1115 *eventp = ev;
1116 return 0;
1117 }
1118
power_pmu_event_init(struct perf_event * event)1119 static int power_pmu_event_init(struct perf_event *event)
1120 {
1121 u64 ev;
1122 unsigned long flags;
1123 struct perf_event *ctrs[MAX_HWEVENTS];
1124 u64 events[MAX_HWEVENTS];
1125 unsigned int cflags[MAX_HWEVENTS];
1126 int n;
1127 int err;
1128 struct cpu_hw_events *cpuhw;
1129
1130 if (!ppmu)
1131 return -ENOENT;
1132
1133 /* does not support taken branch sampling */
1134 if (has_branch_stack(event))
1135 return -EOPNOTSUPP;
1136
1137 switch (event->attr.type) {
1138 case PERF_TYPE_HARDWARE:
1139 ev = event->attr.config;
1140 if (ev >= ppmu->n_generic || ppmu->generic_events[ev] == 0)
1141 return -EOPNOTSUPP;
1142 ev = ppmu->generic_events[ev];
1143 break;
1144 case PERF_TYPE_HW_CACHE:
1145 err = hw_perf_cache_event(event->attr.config, &ev);
1146 if (err)
1147 return err;
1148 break;
1149 case PERF_TYPE_RAW:
1150 ev = event->attr.config;
1151 break;
1152 default:
1153 return -ENOENT;
1154 }
1155
1156 event->hw.config_base = ev;
1157 event->hw.idx = 0;
1158
1159 /*
1160 * If we are not running on a hypervisor, force the
1161 * exclude_hv bit to 0 so that we don't care what
1162 * the user set it to.
1163 */
1164 if (!firmware_has_feature(FW_FEATURE_LPAR))
1165 event->attr.exclude_hv = 0;
1166
1167 /*
1168 * If this is a per-task event, then we can use
1169 * PM_RUN_* events interchangeably with their non RUN_*
1170 * equivalents, e.g. PM_RUN_CYC instead of PM_CYC.
1171 * XXX we should check if the task is an idle task.
1172 */
1173 flags = 0;
1174 if (event->attach_state & PERF_ATTACH_TASK)
1175 flags |= PPMU_ONLY_COUNT_RUN;
1176
1177 /*
1178 * If this machine has limited events, check whether this
1179 * event_id could go on a limited event.
1180 */
1181 if (ppmu->flags & PPMU_LIMITED_PMC5_6) {
1182 if (can_go_on_limited_pmc(event, ev, flags)) {
1183 flags |= PPMU_LIMITED_PMC_OK;
1184 } else if (ppmu->limited_pmc_event(ev)) {
1185 /*
1186 * The requested event_id is on a limited PMC,
1187 * but we can't use a limited PMC; see if any
1188 * alternative goes on a normal PMC.
1189 */
1190 ev = normal_pmc_alternative(ev, flags);
1191 if (!ev)
1192 return -EINVAL;
1193 }
1194 }
1195
1196 /*
1197 * If this is in a group, check if it can go on with all the
1198 * other hardware events in the group. We assume the event
1199 * hasn't been linked into its leader's sibling list at this point.
1200 */
1201 n = 0;
1202 if (event->group_leader != event) {
1203 n = collect_events(event->group_leader, ppmu->n_counter - 1,
1204 ctrs, events, cflags);
1205 if (n < 0)
1206 return -EINVAL;
1207 }
1208 events[n] = ev;
1209 ctrs[n] = event;
1210 cflags[n] = flags;
1211 if (check_excludes(ctrs, cflags, n, 1))
1212 return -EINVAL;
1213
1214 cpuhw = &get_cpu_var(cpu_hw_events);
1215 err = power_check_constraints(cpuhw, events, cflags, n + 1);
1216 put_cpu_var(cpu_hw_events);
1217 if (err)
1218 return -EINVAL;
1219
1220 event->hw.config = events[n];
1221 event->hw.event_base = cflags[n];
1222 event->hw.last_period = event->hw.sample_period;
1223 local64_set(&event->hw.period_left, event->hw.last_period);
1224
1225 /*
1226 * See if we need to reserve the PMU.
1227 * If no events are currently in use, then we have to take a
1228 * mutex to ensure that we don't race with another task doing
1229 * reserve_pmc_hardware or release_pmc_hardware.
1230 */
1231 err = 0;
1232 if (!atomic_inc_not_zero(&num_events)) {
1233 mutex_lock(&pmc_reserve_mutex);
1234 if (atomic_read(&num_events) == 0 &&
1235 reserve_pmc_hardware(perf_event_interrupt))
1236 err = -EBUSY;
1237 else
1238 atomic_inc(&num_events);
1239 mutex_unlock(&pmc_reserve_mutex);
1240 }
1241 event->destroy = hw_perf_event_destroy;
1242
1243 return err;
1244 }
1245
power_pmu_event_idx(struct perf_event * event)1246 static int power_pmu_event_idx(struct perf_event *event)
1247 {
1248 return event->hw.idx;
1249 }
1250
1251 struct pmu power_pmu = {
1252 .pmu_enable = power_pmu_enable,
1253 .pmu_disable = power_pmu_disable,
1254 .event_init = power_pmu_event_init,
1255 .add = power_pmu_add,
1256 .del = power_pmu_del,
1257 .start = power_pmu_start,
1258 .stop = power_pmu_stop,
1259 .read = power_pmu_read,
1260 .start_txn = power_pmu_start_txn,
1261 .cancel_txn = power_pmu_cancel_txn,
1262 .commit_txn = power_pmu_commit_txn,
1263 .event_idx = power_pmu_event_idx,
1264 };
1265
1266 /*
1267 * A counter has overflowed; update its count and record
1268 * things if requested. Note that interrupts are hard-disabled
1269 * here so there is no possibility of being interrupted.
1270 */
record_and_restart(struct perf_event * event,unsigned long val,struct pt_regs * regs)1271 static void record_and_restart(struct perf_event *event, unsigned long val,
1272 struct pt_regs *regs)
1273 {
1274 u64 period = event->hw.sample_period;
1275 s64 prev, delta, left;
1276 int record = 0;
1277
1278 if (event->hw.state & PERF_HES_STOPPED) {
1279 write_pmc(event->hw.idx, 0);
1280 return;
1281 }
1282
1283 /* we don't have to worry about interrupts here */
1284 prev = local64_read(&event->hw.prev_count);
1285 delta = check_and_compute_delta(prev, val);
1286 local64_add(delta, &event->count);
1287
1288 /*
1289 * See if the total period for this event has expired,
1290 * and update for the next period.
1291 */
1292 val = 0;
1293 left = local64_read(&event->hw.period_left) - delta;
1294 if (period) {
1295 if (left <= 0) {
1296 left += period;
1297 if (left <= 0)
1298 left = period;
1299 record = 1;
1300 event->hw.last_period = event->hw.sample_period;
1301 }
1302 if (left < 0x80000000LL)
1303 val = 0x80000000LL - left;
1304 }
1305
1306 write_pmc(event->hw.idx, val);
1307 local64_set(&event->hw.prev_count, val);
1308 local64_set(&event->hw.period_left, left);
1309 perf_event_update_userpage(event);
1310
1311 /*
1312 * Finally record data if requested.
1313 */
1314 if (record) {
1315 struct perf_sample_data data;
1316
1317 perf_sample_data_init(&data, ~0ULL);
1318 data.period = event->hw.last_period;
1319
1320 if (event->attr.sample_type & PERF_SAMPLE_ADDR)
1321 perf_get_data_addr(regs, &data.addr);
1322
1323 if (perf_event_overflow(event, &data, regs))
1324 power_pmu_stop(event, 0);
1325 }
1326 }
1327
1328 /*
1329 * Called from generic code to get the misc flags (i.e. processor mode)
1330 * for an event_id.
1331 */
perf_misc_flags(struct pt_regs * regs)1332 unsigned long perf_misc_flags(struct pt_regs *regs)
1333 {
1334 u32 flags = perf_get_misc_flags(regs);
1335
1336 if (flags)
1337 return flags;
1338 return user_mode(regs) ? PERF_RECORD_MISC_USER :
1339 PERF_RECORD_MISC_KERNEL;
1340 }
1341
1342 /*
1343 * Called from generic code to get the instruction pointer
1344 * for an event_id.
1345 */
perf_instruction_pointer(struct pt_regs * regs)1346 unsigned long perf_instruction_pointer(struct pt_regs *regs)
1347 {
1348 unsigned long mmcra = regs->dsisr;
1349
1350 /* Not a PMU interrupt */
1351 if (TRAP(regs) != 0xf00)
1352 return regs->nip;
1353
1354 /* Processor doesn't support sampling non marked events */
1355 if ((ppmu->flags & PPMU_NO_CONT_SAMPLING) &&
1356 !(mmcra & MMCRA_SAMPLE_ENABLE))
1357 return regs->nip;
1358
1359 return mfspr(SPRN_SIAR) + perf_ip_adjust(regs);
1360 }
1361
pmc_overflow(unsigned long val)1362 static bool pmc_overflow(unsigned long val)
1363 {
1364 if ((int)val < 0)
1365 return true;
1366
1367 /*
1368 * Events on POWER7 can roll back if a speculative event doesn't
1369 * eventually complete. Unfortunately in some rare cases they will
1370 * raise a performance monitor exception. We need to catch this to
1371 * ensure we reset the PMC. In all cases the PMC will be 256 or less
1372 * cycles from overflow.
1373 *
1374 * We only do this if the first pass fails to find any overflowing
1375 * PMCs because a user might set a period of less than 256 and we
1376 * don't want to mistakenly reset them.
1377 */
1378 if (__is_processor(PV_POWER7) && ((0x80000000 - val) <= 256))
1379 return true;
1380
1381 return false;
1382 }
1383
1384 /*
1385 * Performance monitor interrupt stuff
1386 */
perf_event_interrupt(struct pt_regs * regs)1387 static void perf_event_interrupt(struct pt_regs *regs)
1388 {
1389 int i;
1390 struct cpu_hw_events *cpuhw = &__get_cpu_var(cpu_hw_events);
1391 struct perf_event *event;
1392 unsigned long val;
1393 int found = 0;
1394 int nmi;
1395
1396 if (cpuhw->n_limited)
1397 freeze_limited_counters(cpuhw, mfspr(SPRN_PMC5),
1398 mfspr(SPRN_PMC6));
1399
1400 perf_read_regs(regs);
1401
1402 nmi = perf_intr_is_nmi(regs);
1403 if (nmi)
1404 nmi_enter();
1405 else
1406 irq_enter();
1407
1408 for (i = 0; i < cpuhw->n_events; ++i) {
1409 event = cpuhw->event[i];
1410 if (!event->hw.idx || is_limited_pmc(event->hw.idx))
1411 continue;
1412 val = read_pmc(event->hw.idx);
1413 if ((int)val < 0) {
1414 /* event has overflowed */
1415 found = 1;
1416 record_and_restart(event, val, regs);
1417 }
1418 }
1419
1420 /*
1421 * In case we didn't find and reset the event that caused
1422 * the interrupt, scan all events and reset any that are
1423 * negative, to avoid getting continual interrupts.
1424 * Any that we processed in the previous loop will not be negative.
1425 */
1426 if (!found) {
1427 for (i = 0; i < ppmu->n_counter; ++i) {
1428 if (is_limited_pmc(i + 1))
1429 continue;
1430 val = read_pmc(i + 1);
1431 if (pmc_overflow(val))
1432 write_pmc(i + 1, 0);
1433 }
1434 }
1435
1436 /*
1437 * Reset MMCR0 to its normal value. This will set PMXE and
1438 * clear FC (freeze counters) and PMAO (perf mon alert occurred)
1439 * and thus allow interrupts to occur again.
1440 * XXX might want to use MSR.PM to keep the events frozen until
1441 * we get back out of this interrupt.
1442 */
1443 write_mmcr0(cpuhw, cpuhw->mmcr[0]);
1444
1445 if (nmi)
1446 nmi_exit();
1447 else
1448 irq_exit();
1449 }
1450
power_pmu_setup(int cpu)1451 static void power_pmu_setup(int cpu)
1452 {
1453 struct cpu_hw_events *cpuhw = &per_cpu(cpu_hw_events, cpu);
1454
1455 if (!ppmu)
1456 return;
1457 memset(cpuhw, 0, sizeof(*cpuhw));
1458 cpuhw->mmcr[0] = MMCR0_FC;
1459 }
1460
1461 static int __cpuinit
power_pmu_notifier(struct notifier_block * self,unsigned long action,void * hcpu)1462 power_pmu_notifier(struct notifier_block *self, unsigned long action, void *hcpu)
1463 {
1464 unsigned int cpu = (long)hcpu;
1465
1466 switch (action & ~CPU_TASKS_FROZEN) {
1467 case CPU_UP_PREPARE:
1468 power_pmu_setup(cpu);
1469 break;
1470
1471 default:
1472 break;
1473 }
1474
1475 return NOTIFY_OK;
1476 }
1477
register_power_pmu(struct power_pmu * pmu)1478 int __cpuinit register_power_pmu(struct power_pmu *pmu)
1479 {
1480 if (ppmu)
1481 return -EBUSY; /* something's already registered */
1482
1483 ppmu = pmu;
1484 pr_info("%s performance monitor hardware support registered\n",
1485 pmu->name);
1486
1487 #ifdef MSR_HV
1488 /*
1489 * Use FCHV to ignore kernel events if MSR.HV is set.
1490 */
1491 if (mfmsr() & MSR_HV)
1492 freeze_events_kernel = MMCR0_FCHV;
1493 #endif /* CONFIG_PPC64 */
1494
1495 perf_pmu_register(&power_pmu, "cpu", PERF_TYPE_RAW);
1496 perf_cpu_notifier(power_pmu_notifier);
1497
1498 return 0;
1499 }
1500