1 /*
2  * Copyright (C) 2005 Marc Kleine-Budde, Pengutronix
3  * Copyright (C) 2006 Andrey Volkov, Varma Electronics
4  * Copyright (C) 2008-2009 Wolfgang Grandegger <wg@grandegger.com>
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the version 2 of the GNU General Public License
8  * as published by the Free Software Foundation
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program; if not, write to the Free Software
17  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
18  */
19 
20 #include <linux/module.h>
21 #include <linux/kernel.h>
22 #include <linux/slab.h>
23 #include <linux/netdevice.h>
24 #include <linux/if_arp.h>
25 #include <linux/can.h>
26 #include <linux/can/dev.h>
27 #include <linux/can/netlink.h>
28 #include <net/rtnetlink.h>
29 
30 #define MOD_DESC "CAN device driver interface"
31 
32 MODULE_DESCRIPTION(MOD_DESC);
33 MODULE_LICENSE("GPL v2");
34 MODULE_AUTHOR("Wolfgang Grandegger <wg@grandegger.com>");
35 
36 #ifdef CONFIG_CAN_CALC_BITTIMING
37 #define CAN_CALC_MAX_ERROR 50 /* in one-tenth of a percent */
38 
39 /*
40  * Bit-timing calculation derived from:
41  *
42  * Code based on LinCAN sources and H8S2638 project
43  * Copyright 2004-2006 Pavel Pisa - DCE FELK CVUT cz
44  * Copyright 2005      Stanislav Marek
45  * email: pisa@cmp.felk.cvut.cz
46  *
47  * Calculates proper bit-timing parameters for a specified bit-rate
48  * and sample-point, which can then be used to set the bit-timing
49  * registers of the CAN controller. You can find more information
50  * in the header file linux/can/netlink.h.
51  */
can_update_spt(const struct can_bittiming_const * btc,int sampl_pt,int tseg,int * tseg1,int * tseg2)52 static int can_update_spt(const struct can_bittiming_const *btc,
53 			  int sampl_pt, int tseg, int *tseg1, int *tseg2)
54 {
55 	*tseg2 = tseg + 1 - (sampl_pt * (tseg + 1)) / 1000;
56 	if (*tseg2 < btc->tseg2_min)
57 		*tseg2 = btc->tseg2_min;
58 	if (*tseg2 > btc->tseg2_max)
59 		*tseg2 = btc->tseg2_max;
60 	*tseg1 = tseg - *tseg2;
61 	if (*tseg1 > btc->tseg1_max) {
62 		*tseg1 = btc->tseg1_max;
63 		*tseg2 = tseg - *tseg1;
64 	}
65 	return 1000 * (tseg + 1 - *tseg2) / (tseg + 1);
66 }
67 
can_calc_bittiming(struct net_device * dev,struct can_bittiming * bt)68 static int can_calc_bittiming(struct net_device *dev, struct can_bittiming *bt)
69 {
70 	struct can_priv *priv = netdev_priv(dev);
71 	const struct can_bittiming_const *btc = priv->bittiming_const;
72 	long rate, best_rate = 0;
73 	long best_error = 1000000000, error = 0;
74 	int best_tseg = 0, best_brp = 0, brp = 0;
75 	int tsegall, tseg = 0, tseg1 = 0, tseg2 = 0;
76 	int spt_error = 1000, spt = 0, sampl_pt;
77 	u64 v64;
78 
79 	if (!priv->bittiming_const)
80 		return -ENOTSUPP;
81 
82 	/* Use CIA recommended sample points */
83 	if (bt->sample_point) {
84 		sampl_pt = bt->sample_point;
85 	} else {
86 		if (bt->bitrate > 800000)
87 			sampl_pt = 750;
88 		else if (bt->bitrate > 500000)
89 			sampl_pt = 800;
90 		else
91 			sampl_pt = 875;
92 	}
93 
94 	/* tseg even = round down, odd = round up */
95 	for (tseg = (btc->tseg1_max + btc->tseg2_max) * 2 + 1;
96 	     tseg >= (btc->tseg1_min + btc->tseg2_min) * 2; tseg--) {
97 		tsegall = 1 + tseg / 2;
98 		/* Compute all possible tseg choices (tseg=tseg1+tseg2) */
99 		brp = priv->clock.freq / (tsegall * bt->bitrate) + tseg % 2;
100 		/* chose brp step which is possible in system */
101 		brp = (brp / btc->brp_inc) * btc->brp_inc;
102 		if ((brp < btc->brp_min) || (brp > btc->brp_max))
103 			continue;
104 		rate = priv->clock.freq / (brp * tsegall);
105 		error = bt->bitrate - rate;
106 		/* tseg brp biterror */
107 		if (error < 0)
108 			error = -error;
109 		if (error > best_error)
110 			continue;
111 		best_error = error;
112 		if (error == 0) {
113 			spt = can_update_spt(btc, sampl_pt, tseg / 2,
114 					     &tseg1, &tseg2);
115 			error = sampl_pt - spt;
116 			if (error < 0)
117 				error = -error;
118 			if (error > spt_error)
119 				continue;
120 			spt_error = error;
121 		}
122 		best_tseg = tseg / 2;
123 		best_brp = brp;
124 		best_rate = rate;
125 		if (error == 0)
126 			break;
127 	}
128 
129 	if (best_error) {
130 		/* Error in one-tenth of a percent */
131 		error = (best_error * 1000) / bt->bitrate;
132 		if (error > CAN_CALC_MAX_ERROR) {
133 			netdev_err(dev,
134 				   "bitrate error %ld.%ld%% too high\n",
135 				   error / 10, error % 10);
136 			return -EDOM;
137 		} else {
138 			netdev_warn(dev, "bitrate error %ld.%ld%%\n",
139 				    error / 10, error % 10);
140 		}
141 	}
142 
143 	/* real sample point */
144 	bt->sample_point = can_update_spt(btc, sampl_pt, best_tseg,
145 					  &tseg1, &tseg2);
146 
147 	v64 = (u64)best_brp * 1000000000UL;
148 	do_div(v64, priv->clock.freq);
149 	bt->tq = (u32)v64;
150 	bt->prop_seg = tseg1 / 2;
151 	bt->phase_seg1 = tseg1 - bt->prop_seg;
152 	bt->phase_seg2 = tseg2;
153 
154 	/* check for sjw user settings */
155 	if (!bt->sjw || !btc->sjw_max)
156 		bt->sjw = 1;
157 	else {
158 		/* bt->sjw is at least 1 -> sanitize upper bound to sjw_max */
159 		if (bt->sjw > btc->sjw_max)
160 			bt->sjw = btc->sjw_max;
161 		/* bt->sjw must not be higher than tseg2 */
162 		if (tseg2 < bt->sjw)
163 			bt->sjw = tseg2;
164 	}
165 
166 	bt->brp = best_brp;
167 	/* real bit-rate */
168 	bt->bitrate = priv->clock.freq / (bt->brp * (tseg1 + tseg2 + 1));
169 
170 	return 0;
171 }
172 #else /* !CONFIG_CAN_CALC_BITTIMING */
can_calc_bittiming(struct net_device * dev,struct can_bittiming * bt)173 static int can_calc_bittiming(struct net_device *dev, struct can_bittiming *bt)
174 {
175 	netdev_err(dev, "bit-timing calculation not available\n");
176 	return -EINVAL;
177 }
178 #endif /* CONFIG_CAN_CALC_BITTIMING */
179 
180 /*
181  * Checks the validity of the specified bit-timing parameters prop_seg,
182  * phase_seg1, phase_seg2 and sjw and tries to determine the bitrate
183  * prescaler value brp. You can find more information in the header
184  * file linux/can/netlink.h.
185  */
can_fixup_bittiming(struct net_device * dev,struct can_bittiming * bt)186 static int can_fixup_bittiming(struct net_device *dev, struct can_bittiming *bt)
187 {
188 	struct can_priv *priv = netdev_priv(dev);
189 	const struct can_bittiming_const *btc = priv->bittiming_const;
190 	int tseg1, alltseg;
191 	u64 brp64;
192 
193 	if (!priv->bittiming_const)
194 		return -ENOTSUPP;
195 
196 	tseg1 = bt->prop_seg + bt->phase_seg1;
197 	if (!bt->sjw)
198 		bt->sjw = 1;
199 	if (bt->sjw > btc->sjw_max ||
200 	    tseg1 < btc->tseg1_min || tseg1 > btc->tseg1_max ||
201 	    bt->phase_seg2 < btc->tseg2_min || bt->phase_seg2 > btc->tseg2_max)
202 		return -ERANGE;
203 
204 	brp64 = (u64)priv->clock.freq * (u64)bt->tq;
205 	if (btc->brp_inc > 1)
206 		do_div(brp64, btc->brp_inc);
207 	brp64 += 500000000UL - 1;
208 	do_div(brp64, 1000000000UL); /* the practicable BRP */
209 	if (btc->brp_inc > 1)
210 		brp64 *= btc->brp_inc;
211 	bt->brp = (u32)brp64;
212 
213 	if (bt->brp < btc->brp_min || bt->brp > btc->brp_max)
214 		return -EINVAL;
215 
216 	alltseg = bt->prop_seg + bt->phase_seg1 + bt->phase_seg2 + 1;
217 	bt->bitrate = priv->clock.freq / (bt->brp * alltseg);
218 	bt->sample_point = ((tseg1 + 1) * 1000) / alltseg;
219 
220 	return 0;
221 }
222 
can_get_bittiming(struct net_device * dev,struct can_bittiming * bt)223 static int can_get_bittiming(struct net_device *dev, struct can_bittiming *bt)
224 {
225 	struct can_priv *priv = netdev_priv(dev);
226 	int err;
227 
228 	/* Check if the CAN device has bit-timing parameters */
229 	if (priv->bittiming_const) {
230 
231 		/* Non-expert mode? Check if the bitrate has been pre-defined */
232 		if (!bt->tq)
233 			/* Determine bit-timing parameters */
234 			err = can_calc_bittiming(dev, bt);
235 		else
236 			/* Check bit-timing params and calculate proper brp */
237 			err = can_fixup_bittiming(dev, bt);
238 		if (err)
239 			return err;
240 	}
241 
242 	return 0;
243 }
244 
245 /*
246  * Local echo of CAN messages
247  *
248  * CAN network devices *should* support a local echo functionality
249  * (see Documentation/networking/can.txt). To test the handling of CAN
250  * interfaces that do not support the local echo both driver types are
251  * implemented. In the case that the driver does not support the echo
252  * the IFF_ECHO remains clear in dev->flags. This causes the PF_CAN core
253  * to perform the echo as a fallback solution.
254  */
can_flush_echo_skb(struct net_device * dev)255 static void can_flush_echo_skb(struct net_device *dev)
256 {
257 	struct can_priv *priv = netdev_priv(dev);
258 	struct net_device_stats *stats = &dev->stats;
259 	int i;
260 
261 	for (i = 0; i < priv->echo_skb_max; i++) {
262 		if (priv->echo_skb[i]) {
263 			kfree_skb(priv->echo_skb[i]);
264 			priv->echo_skb[i] = NULL;
265 			stats->tx_dropped++;
266 			stats->tx_aborted_errors++;
267 		}
268 	}
269 }
270 
271 /*
272  * Put the skb on the stack to be looped backed locally lateron
273  *
274  * The function is typically called in the start_xmit function
275  * of the device driver. The driver must protect access to
276  * priv->echo_skb, if necessary.
277  */
can_put_echo_skb(struct sk_buff * skb,struct net_device * dev,unsigned int idx)278 void can_put_echo_skb(struct sk_buff *skb, struct net_device *dev,
279 		      unsigned int idx)
280 {
281 	struct can_priv *priv = netdev_priv(dev);
282 
283 	BUG_ON(idx >= priv->echo_skb_max);
284 
285 	/* check flag whether this packet has to be looped back */
286 	if (!(dev->flags & IFF_ECHO) || skb->pkt_type != PACKET_LOOPBACK) {
287 		kfree_skb(skb);
288 		return;
289 	}
290 
291 	if (!priv->echo_skb[idx]) {
292 		struct sock *srcsk = skb->sk;
293 
294 		if (atomic_read(&skb->users) != 1) {
295 			struct sk_buff *old_skb = skb;
296 
297 			skb = skb_clone(old_skb, GFP_ATOMIC);
298 			kfree_skb(old_skb);
299 			if (!skb)
300 				return;
301 		} else
302 			skb_orphan(skb);
303 
304 		skb->sk = srcsk;
305 
306 		/* make settings for echo to reduce code in irq context */
307 		skb->protocol = htons(ETH_P_CAN);
308 		skb->pkt_type = PACKET_BROADCAST;
309 		skb->ip_summed = CHECKSUM_UNNECESSARY;
310 		skb->dev = dev;
311 
312 		/* save this skb for tx interrupt echo handling */
313 		priv->echo_skb[idx] = skb;
314 	} else {
315 		/* locking problem with netif_stop_queue() ?? */
316 		netdev_err(dev, "%s: BUG! echo_skb is occupied!\n", __func__);
317 		kfree_skb(skb);
318 	}
319 }
320 EXPORT_SYMBOL_GPL(can_put_echo_skb);
321 
322 /*
323  * Get the skb from the stack and loop it back locally
324  *
325  * The function is typically called when the TX done interrupt
326  * is handled in the device driver. The driver must protect
327  * access to priv->echo_skb, if necessary.
328  */
can_get_echo_skb(struct net_device * dev,unsigned int idx)329 unsigned int can_get_echo_skb(struct net_device *dev, unsigned int idx)
330 {
331 	struct can_priv *priv = netdev_priv(dev);
332 
333 	BUG_ON(idx >= priv->echo_skb_max);
334 
335 	if (priv->echo_skb[idx]) {
336 		struct sk_buff *skb = priv->echo_skb[idx];
337 		struct can_frame *cf = (struct can_frame *)skb->data;
338 		u8 dlc = cf->can_dlc;
339 
340 		netif_rx(priv->echo_skb[idx]);
341 		priv->echo_skb[idx] = NULL;
342 
343 		return dlc;
344 	}
345 
346 	return 0;
347 }
348 EXPORT_SYMBOL_GPL(can_get_echo_skb);
349 
350 /*
351   * Remove the skb from the stack and free it.
352   *
353   * The function is typically called when TX failed.
354   */
can_free_echo_skb(struct net_device * dev,unsigned int idx)355 void can_free_echo_skb(struct net_device *dev, unsigned int idx)
356 {
357 	struct can_priv *priv = netdev_priv(dev);
358 
359 	BUG_ON(idx >= priv->echo_skb_max);
360 
361 	if (priv->echo_skb[idx]) {
362 		kfree_skb(priv->echo_skb[idx]);
363 		priv->echo_skb[idx] = NULL;
364 	}
365 }
366 EXPORT_SYMBOL_GPL(can_free_echo_skb);
367 
368 /*
369  * CAN device restart for bus-off recovery
370  */
can_restart(unsigned long data)371 void can_restart(unsigned long data)
372 {
373 	struct net_device *dev = (struct net_device *)data;
374 	struct can_priv *priv = netdev_priv(dev);
375 	struct net_device_stats *stats = &dev->stats;
376 	struct sk_buff *skb;
377 	struct can_frame *cf;
378 	int err;
379 
380 	BUG_ON(netif_carrier_ok(dev));
381 
382 	/*
383 	 * No synchronization needed because the device is bus-off and
384 	 * no messages can come in or go out.
385 	 */
386 	can_flush_echo_skb(dev);
387 
388 	/* send restart message upstream */
389 	skb = alloc_can_err_skb(dev, &cf);
390 	if (skb == NULL) {
391 		err = -ENOMEM;
392 		goto restart;
393 	}
394 	cf->can_id |= CAN_ERR_RESTARTED;
395 
396 	netif_rx(skb);
397 
398 	stats->rx_packets++;
399 	stats->rx_bytes += cf->can_dlc;
400 
401 restart:
402 	netdev_dbg(dev, "restarted\n");
403 	priv->can_stats.restarts++;
404 
405 	/* Now restart the device */
406 	err = priv->do_set_mode(dev, CAN_MODE_START);
407 
408 	netif_carrier_on(dev);
409 	if (err)
410 		netdev_err(dev, "Error %d during restart", err);
411 }
412 
can_restart_now(struct net_device * dev)413 int can_restart_now(struct net_device *dev)
414 {
415 	struct can_priv *priv = netdev_priv(dev);
416 
417 	/*
418 	 * A manual restart is only permitted if automatic restart is
419 	 * disabled and the device is in the bus-off state
420 	 */
421 	if (priv->restart_ms)
422 		return -EINVAL;
423 	if (priv->state != CAN_STATE_BUS_OFF)
424 		return -EBUSY;
425 
426 	/* Runs as soon as possible in the timer context */
427 	mod_timer(&priv->restart_timer, jiffies);
428 
429 	return 0;
430 }
431 
432 /*
433  * CAN bus-off
434  *
435  * This functions should be called when the device goes bus-off to
436  * tell the netif layer that no more packets can be sent or received.
437  * If enabled, a timer is started to trigger bus-off recovery.
438  */
can_bus_off(struct net_device * dev)439 void can_bus_off(struct net_device *dev)
440 {
441 	struct can_priv *priv = netdev_priv(dev);
442 
443 	netdev_dbg(dev, "bus-off\n");
444 
445 	netif_carrier_off(dev);
446 	priv->can_stats.bus_off++;
447 
448 	if (priv->restart_ms)
449 		mod_timer(&priv->restart_timer,
450 			  jiffies + (priv->restart_ms * HZ) / 1000);
451 }
452 EXPORT_SYMBOL_GPL(can_bus_off);
453 
can_setup(struct net_device * dev)454 static void can_setup(struct net_device *dev)
455 {
456 	dev->type = ARPHRD_CAN;
457 	dev->mtu = sizeof(struct can_frame);
458 	dev->hard_header_len = 0;
459 	dev->addr_len = 0;
460 	dev->tx_queue_len = 10;
461 
462 	/* New-style flags. */
463 	dev->flags = IFF_NOARP;
464 	dev->features = NETIF_F_HW_CSUM;
465 }
466 
alloc_can_skb(struct net_device * dev,struct can_frame ** cf)467 struct sk_buff *alloc_can_skb(struct net_device *dev, struct can_frame **cf)
468 {
469 	struct sk_buff *skb;
470 
471 	skb = netdev_alloc_skb(dev, sizeof(struct can_frame));
472 	if (unlikely(!skb))
473 		return NULL;
474 
475 	skb->protocol = htons(ETH_P_CAN);
476 	skb->pkt_type = PACKET_BROADCAST;
477 	skb->ip_summed = CHECKSUM_UNNECESSARY;
478 	*cf = (struct can_frame *)skb_put(skb, sizeof(struct can_frame));
479 	memset(*cf, 0, sizeof(struct can_frame));
480 
481 	return skb;
482 }
483 EXPORT_SYMBOL_GPL(alloc_can_skb);
484 
alloc_can_err_skb(struct net_device * dev,struct can_frame ** cf)485 struct sk_buff *alloc_can_err_skb(struct net_device *dev, struct can_frame **cf)
486 {
487 	struct sk_buff *skb;
488 
489 	skb = alloc_can_skb(dev, cf);
490 	if (unlikely(!skb))
491 		return NULL;
492 
493 	(*cf)->can_id = CAN_ERR_FLAG;
494 	(*cf)->can_dlc = CAN_ERR_DLC;
495 
496 	return skb;
497 }
498 EXPORT_SYMBOL_GPL(alloc_can_err_skb);
499 
500 /*
501  * Allocate and setup space for the CAN network device
502  */
alloc_candev(int sizeof_priv,unsigned int echo_skb_max)503 struct net_device *alloc_candev(int sizeof_priv, unsigned int echo_skb_max)
504 {
505 	struct net_device *dev;
506 	struct can_priv *priv;
507 	int size;
508 
509 	if (echo_skb_max)
510 		size = ALIGN(sizeof_priv, sizeof(struct sk_buff *)) +
511 			echo_skb_max * sizeof(struct sk_buff *);
512 	else
513 		size = sizeof_priv;
514 
515 	dev = alloc_netdev(size, "can%d", can_setup);
516 	if (!dev)
517 		return NULL;
518 
519 	priv = netdev_priv(dev);
520 
521 	if (echo_skb_max) {
522 		priv->echo_skb_max = echo_skb_max;
523 		priv->echo_skb = (void *)priv +
524 			ALIGN(sizeof_priv, sizeof(struct sk_buff *));
525 	}
526 
527 	priv->state = CAN_STATE_STOPPED;
528 
529 	init_timer(&priv->restart_timer);
530 
531 	return dev;
532 }
533 EXPORT_SYMBOL_GPL(alloc_candev);
534 
535 /*
536  * Free space of the CAN network device
537  */
free_candev(struct net_device * dev)538 void free_candev(struct net_device *dev)
539 {
540 	free_netdev(dev);
541 }
542 EXPORT_SYMBOL_GPL(free_candev);
543 
544 /*
545  * Common open function when the device gets opened.
546  *
547  * This function should be called in the open function of the device
548  * driver.
549  */
open_candev(struct net_device * dev)550 int open_candev(struct net_device *dev)
551 {
552 	struct can_priv *priv = netdev_priv(dev);
553 
554 	if (!priv->bittiming.tq && !priv->bittiming.bitrate) {
555 		netdev_err(dev, "bit-timing not yet defined\n");
556 		return -EINVAL;
557 	}
558 
559 	/* Switch carrier on if device was stopped while in bus-off state */
560 	if (!netif_carrier_ok(dev))
561 		netif_carrier_on(dev);
562 
563 	setup_timer(&priv->restart_timer, can_restart, (unsigned long)dev);
564 
565 	return 0;
566 }
567 EXPORT_SYMBOL_GPL(open_candev);
568 
569 /*
570  * Common close function for cleanup before the device gets closed.
571  *
572  * This function should be called in the close function of the device
573  * driver.
574  */
close_candev(struct net_device * dev)575 void close_candev(struct net_device *dev)
576 {
577 	struct can_priv *priv = netdev_priv(dev);
578 
579 	del_timer_sync(&priv->restart_timer);
580 	can_flush_echo_skb(dev);
581 }
582 EXPORT_SYMBOL_GPL(close_candev);
583 
584 /*
585  * CAN netlink interface
586  */
587 static const struct nla_policy can_policy[IFLA_CAN_MAX + 1] = {
588 	[IFLA_CAN_STATE]	= { .type = NLA_U32 },
589 	[IFLA_CAN_CTRLMODE]	= { .len = sizeof(struct can_ctrlmode) },
590 	[IFLA_CAN_RESTART_MS]	= { .type = NLA_U32 },
591 	[IFLA_CAN_RESTART]	= { .type = NLA_U32 },
592 	[IFLA_CAN_BITTIMING]	= { .len = sizeof(struct can_bittiming) },
593 	[IFLA_CAN_BITTIMING_CONST]
594 				= { .len = sizeof(struct can_bittiming_const) },
595 	[IFLA_CAN_CLOCK]	= { .len = sizeof(struct can_clock) },
596 	[IFLA_CAN_BERR_COUNTER]	= { .len = sizeof(struct can_berr_counter) },
597 };
598 
can_changelink(struct net_device * dev,struct nlattr * tb[],struct nlattr * data[])599 static int can_changelink(struct net_device *dev,
600 			  struct nlattr *tb[], struct nlattr *data[])
601 {
602 	struct can_priv *priv = netdev_priv(dev);
603 	int err;
604 
605 	/* We need synchronization with dev->stop() */
606 	ASSERT_RTNL();
607 
608 	if (data[IFLA_CAN_CTRLMODE]) {
609 		struct can_ctrlmode *cm;
610 
611 		/* Do not allow changing controller mode while running */
612 		if (dev->flags & IFF_UP)
613 			return -EBUSY;
614 		cm = nla_data(data[IFLA_CAN_CTRLMODE]);
615 		if (cm->flags & ~priv->ctrlmode_supported)
616 			return -EOPNOTSUPP;
617 		priv->ctrlmode &= ~cm->mask;
618 		priv->ctrlmode |= cm->flags;
619 	}
620 
621 	if (data[IFLA_CAN_BITTIMING]) {
622 		struct can_bittiming bt;
623 
624 		/* Do not allow changing bittiming while running */
625 		if (dev->flags & IFF_UP)
626 			return -EBUSY;
627 		memcpy(&bt, nla_data(data[IFLA_CAN_BITTIMING]), sizeof(bt));
628 		if ((!bt.bitrate && !bt.tq) || (bt.bitrate && bt.tq))
629 			return -EINVAL;
630 		err = can_get_bittiming(dev, &bt);
631 		if (err)
632 			return err;
633 		memcpy(&priv->bittiming, &bt, sizeof(bt));
634 
635 		if (priv->do_set_bittiming) {
636 			/* Finally, set the bit-timing registers */
637 			err = priv->do_set_bittiming(dev);
638 			if (err)
639 				return err;
640 		}
641 	}
642 
643 	if (data[IFLA_CAN_RESTART_MS]) {
644 		/* Do not allow changing restart delay while running */
645 		if (dev->flags & IFF_UP)
646 			return -EBUSY;
647 		priv->restart_ms = nla_get_u32(data[IFLA_CAN_RESTART_MS]);
648 	}
649 
650 	if (data[IFLA_CAN_RESTART]) {
651 		/* Do not allow a restart while not running */
652 		if (!(dev->flags & IFF_UP))
653 			return -EINVAL;
654 		err = can_restart_now(dev);
655 		if (err)
656 			return err;
657 	}
658 
659 	return 0;
660 }
661 
can_get_size(const struct net_device * dev)662 static size_t can_get_size(const struct net_device *dev)
663 {
664 	struct can_priv *priv = netdev_priv(dev);
665 	size_t size;
666 
667 	size = nla_total_size(sizeof(u32));   /* IFLA_CAN_STATE */
668 	size += nla_total_size(sizeof(struct can_ctrlmode));  /* IFLA_CAN_CTRLMODE */
669 	size += nla_total_size(sizeof(u32));  /* IFLA_CAN_RESTART_MS */
670 	size += nla_total_size(sizeof(struct can_bittiming)); /* IFLA_CAN_BITTIMING */
671 	size += nla_total_size(sizeof(struct can_clock));     /* IFLA_CAN_CLOCK */
672 	if (priv->do_get_berr_counter)        /* IFLA_CAN_BERR_COUNTER */
673 		size += nla_total_size(sizeof(struct can_berr_counter));
674 	if (priv->bittiming_const)	      /* IFLA_CAN_BITTIMING_CONST */
675 		size += nla_total_size(sizeof(struct can_bittiming_const));
676 
677 	return size;
678 }
679 
can_fill_info(struct sk_buff * skb,const struct net_device * dev)680 static int can_fill_info(struct sk_buff *skb, const struct net_device *dev)
681 {
682 	struct can_priv *priv = netdev_priv(dev);
683 	struct can_ctrlmode cm = {.flags = priv->ctrlmode};
684 	struct can_berr_counter bec;
685 	enum can_state state = priv->state;
686 
687 	if (priv->do_get_state)
688 		priv->do_get_state(dev, &state);
689 	NLA_PUT_U32(skb, IFLA_CAN_STATE, state);
690 	NLA_PUT(skb, IFLA_CAN_CTRLMODE, sizeof(cm), &cm);
691 	NLA_PUT_U32(skb, IFLA_CAN_RESTART_MS, priv->restart_ms);
692 	NLA_PUT(skb, IFLA_CAN_BITTIMING,
693 		sizeof(priv->bittiming), &priv->bittiming);
694 	NLA_PUT(skb, IFLA_CAN_CLOCK, sizeof(cm), &priv->clock);
695 	if (priv->do_get_berr_counter && !priv->do_get_berr_counter(dev, &bec))
696 		NLA_PUT(skb, IFLA_CAN_BERR_COUNTER, sizeof(bec), &bec);
697 	if (priv->bittiming_const)
698 		NLA_PUT(skb, IFLA_CAN_BITTIMING_CONST,
699 			sizeof(*priv->bittiming_const), priv->bittiming_const);
700 
701 	return 0;
702 
703 nla_put_failure:
704 	return -EMSGSIZE;
705 }
706 
can_get_xstats_size(const struct net_device * dev)707 static size_t can_get_xstats_size(const struct net_device *dev)
708 {
709 	return sizeof(struct can_device_stats);
710 }
711 
can_fill_xstats(struct sk_buff * skb,const struct net_device * dev)712 static int can_fill_xstats(struct sk_buff *skb, const struct net_device *dev)
713 {
714 	struct can_priv *priv = netdev_priv(dev);
715 
716 	NLA_PUT(skb, IFLA_INFO_XSTATS,
717 		sizeof(priv->can_stats), &priv->can_stats);
718 
719 	return 0;
720 
721 nla_put_failure:
722 	return -EMSGSIZE;
723 }
724 
can_newlink(struct net * src_net,struct net_device * dev,struct nlattr * tb[],struct nlattr * data[])725 static int can_newlink(struct net *src_net, struct net_device *dev,
726 		       struct nlattr *tb[], struct nlattr *data[])
727 {
728 	return -EOPNOTSUPP;
729 }
730 
731 static struct rtnl_link_ops can_link_ops __read_mostly = {
732 	.kind		= "can",
733 	.maxtype	= IFLA_CAN_MAX,
734 	.policy		= can_policy,
735 	.setup		= can_setup,
736 	.newlink	= can_newlink,
737 	.changelink	= can_changelink,
738 	.get_size	= can_get_size,
739 	.fill_info	= can_fill_info,
740 	.get_xstats_size = can_get_xstats_size,
741 	.fill_xstats	= can_fill_xstats,
742 };
743 
744 /*
745  * Register the CAN network device
746  */
register_candev(struct net_device * dev)747 int register_candev(struct net_device *dev)
748 {
749 	dev->rtnl_link_ops = &can_link_ops;
750 	return register_netdev(dev);
751 }
752 EXPORT_SYMBOL_GPL(register_candev);
753 
754 /*
755  * Unregister the CAN network device
756  */
unregister_candev(struct net_device * dev)757 void unregister_candev(struct net_device *dev)
758 {
759 	unregister_netdev(dev);
760 }
761 EXPORT_SYMBOL_GPL(unregister_candev);
762 
can_dev_init(void)763 static __init int can_dev_init(void)
764 {
765 	int err;
766 
767 	err = rtnl_link_register(&can_link_ops);
768 	if (!err)
769 		printk(KERN_INFO MOD_DESC "\n");
770 
771 	return err;
772 }
773 module_init(can_dev_init);
774 
can_dev_exit(void)775 static __exit void can_dev_exit(void)
776 {
777 	rtnl_link_unregister(&can_link_ops);
778 }
779 module_exit(can_dev_exit);
780 
781 MODULE_ALIAS_RTNL_LINK("can");
782