1 /*
2 * Copyright 2002-2005, Instant802 Networks, Inc.
3 * Copyright 2005-2006, Devicescape Software, Inc.
4 * Copyright 2007 Johannes Berg <johannes@sipsolutions.net>
5 * Copyright 2008-2011 Luis R. Rodriguez <mcgrof@qca.qualcomm.com>
6 *
7 * Permission to use, copy, modify, and/or distribute this software for any
8 * purpose with or without fee is hereby granted, provided that the above
9 * copyright notice and this permission notice appear in all copies.
10 *
11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18 */
19
20
21 /**
22 * DOC: Wireless regulatory infrastructure
23 *
24 * The usual implementation is for a driver to read a device EEPROM to
25 * determine which regulatory domain it should be operating under, then
26 * looking up the allowable channels in a driver-local table and finally
27 * registering those channels in the wiphy structure.
28 *
29 * Another set of compliance enforcement is for drivers to use their
30 * own compliance limits which can be stored on the EEPROM. The host
31 * driver or firmware may ensure these are used.
32 *
33 * In addition to all this we provide an extra layer of regulatory
34 * conformance. For drivers which do not have any regulatory
35 * information CRDA provides the complete regulatory solution.
36 * For others it provides a community effort on further restrictions
37 * to enhance compliance.
38 *
39 * Note: When number of rules --> infinity we will not be able to
40 * index on alpha2 any more, instead we'll probably have to
41 * rely on some SHA1 checksum of the regdomain for example.
42 *
43 */
44
45 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
46
47 #include <linux/kernel.h>
48 #include <linux/export.h>
49 #include <linux/slab.h>
50 #include <linux/list.h>
51 #include <linux/random.h>
52 #include <linux/ctype.h>
53 #include <linux/nl80211.h>
54 #include <linux/platform_device.h>
55 #include <linux/moduleparam.h>
56 #include <net/cfg80211.h>
57 #include "core.h"
58 #include "reg.h"
59 #include "regdb.h"
60 #include "nl80211.h"
61
62 #ifdef CONFIG_CFG80211_REG_DEBUG
63 #define REG_DBG_PRINT(format, args...) \
64 printk(KERN_DEBUG pr_fmt(format), ##args)
65 #else
66 #define REG_DBG_PRINT(args...)
67 #endif
68
69 static struct regulatory_request core_request_world = {
70 .initiator = NL80211_REGDOM_SET_BY_CORE,
71 .alpha2[0] = '0',
72 .alpha2[1] = '0',
73 .intersect = false,
74 .processed = true,
75 .country_ie_env = ENVIRON_ANY,
76 };
77
78 /* Receipt of information from last regulatory request */
79 static struct regulatory_request *last_request = &core_request_world;
80
81 /* To trigger userspace events */
82 static struct platform_device *reg_pdev;
83
84 static struct device_type reg_device_type = {
85 .uevent = reg_device_uevent,
86 };
87
88 /*
89 * Central wireless core regulatory domains, we only need two,
90 * the current one and a world regulatory domain in case we have no
91 * information to give us an alpha2
92 */
93 const struct ieee80211_regdomain *cfg80211_regdomain;
94
95 /*
96 * Protects static reg.c components:
97 * - cfg80211_world_regdom
98 * - cfg80211_regdom
99 * - last_request
100 */
101 static DEFINE_MUTEX(reg_mutex);
102
assert_reg_lock(void)103 static inline void assert_reg_lock(void)
104 {
105 lockdep_assert_held(®_mutex);
106 }
107
108 /* Used to queue up regulatory hints */
109 static LIST_HEAD(reg_requests_list);
110 static spinlock_t reg_requests_lock;
111
112 /* Used to queue up beacon hints for review */
113 static LIST_HEAD(reg_pending_beacons);
114 static spinlock_t reg_pending_beacons_lock;
115
116 /* Used to keep track of processed beacon hints */
117 static LIST_HEAD(reg_beacon_list);
118
119 struct reg_beacon {
120 struct list_head list;
121 struct ieee80211_channel chan;
122 };
123
124 static void reg_todo(struct work_struct *work);
125 static DECLARE_WORK(reg_work, reg_todo);
126
127 static void reg_timeout_work(struct work_struct *work);
128 static DECLARE_DELAYED_WORK(reg_timeout, reg_timeout_work);
129
130 /* We keep a static world regulatory domain in case of the absence of CRDA */
131 static const struct ieee80211_regdomain world_regdom = {
132 .n_reg_rules = 5,
133 .alpha2 = "00",
134 .reg_rules = {
135 /* IEEE 802.11b/g, channels 1..11 */
136 REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
137 /* IEEE 802.11b/g, channels 12..13. */
138 REG_RULE(2467-10, 2472+10, 40, 6, 20,
139 NL80211_RRF_PASSIVE_SCAN |
140 NL80211_RRF_NO_IBSS),
141 /* IEEE 802.11 channel 14 - Only JP enables
142 * this and for 802.11b only */
143 REG_RULE(2484-10, 2484+10, 20, 6, 20,
144 NL80211_RRF_PASSIVE_SCAN |
145 NL80211_RRF_NO_IBSS |
146 NL80211_RRF_NO_OFDM),
147 /* IEEE 802.11a, channel 36..48 */
148 REG_RULE(5180-10, 5240+10, 40, 6, 20,
149 NL80211_RRF_PASSIVE_SCAN |
150 NL80211_RRF_NO_IBSS),
151
152 /* NB: 5260 MHz - 5700 MHz requies DFS */
153
154 /* IEEE 802.11a, channel 149..165 */
155 REG_RULE(5745-10, 5825+10, 40, 6, 20,
156 NL80211_RRF_PASSIVE_SCAN |
157 NL80211_RRF_NO_IBSS),
158 }
159 };
160
161 static const struct ieee80211_regdomain *cfg80211_world_regdom =
162 &world_regdom;
163
164 static char *ieee80211_regdom = "00";
165 static char user_alpha2[2];
166
167 module_param(ieee80211_regdom, charp, 0444);
168 MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");
169
reset_regdomains(bool full_reset)170 static void reset_regdomains(bool full_reset)
171 {
172 /* avoid freeing static information or freeing something twice */
173 if (cfg80211_regdomain == cfg80211_world_regdom)
174 cfg80211_regdomain = NULL;
175 if (cfg80211_world_regdom == &world_regdom)
176 cfg80211_world_regdom = NULL;
177 if (cfg80211_regdomain == &world_regdom)
178 cfg80211_regdomain = NULL;
179
180 kfree(cfg80211_regdomain);
181 kfree(cfg80211_world_regdom);
182
183 cfg80211_world_regdom = &world_regdom;
184 cfg80211_regdomain = NULL;
185
186 if (!full_reset)
187 return;
188
189 if (last_request != &core_request_world)
190 kfree(last_request);
191 last_request = &core_request_world;
192 }
193
194 /*
195 * Dynamic world regulatory domain requested by the wireless
196 * core upon initialization
197 */
update_world_regdomain(const struct ieee80211_regdomain * rd)198 static void update_world_regdomain(const struct ieee80211_regdomain *rd)
199 {
200 BUG_ON(!last_request);
201
202 reset_regdomains(false);
203
204 cfg80211_world_regdom = rd;
205 cfg80211_regdomain = rd;
206 }
207
is_world_regdom(const char * alpha2)208 bool is_world_regdom(const char *alpha2)
209 {
210 if (!alpha2)
211 return false;
212 if (alpha2[0] == '0' && alpha2[1] == '0')
213 return true;
214 return false;
215 }
216
is_alpha2_set(const char * alpha2)217 static bool is_alpha2_set(const char *alpha2)
218 {
219 if (!alpha2)
220 return false;
221 if (alpha2[0] != 0 && alpha2[1] != 0)
222 return true;
223 return false;
224 }
225
is_unknown_alpha2(const char * alpha2)226 static bool is_unknown_alpha2(const char *alpha2)
227 {
228 if (!alpha2)
229 return false;
230 /*
231 * Special case where regulatory domain was built by driver
232 * but a specific alpha2 cannot be determined
233 */
234 if (alpha2[0] == '9' && alpha2[1] == '9')
235 return true;
236 return false;
237 }
238
is_intersected_alpha2(const char * alpha2)239 static bool is_intersected_alpha2(const char *alpha2)
240 {
241 if (!alpha2)
242 return false;
243 /*
244 * Special case where regulatory domain is the
245 * result of an intersection between two regulatory domain
246 * structures
247 */
248 if (alpha2[0] == '9' && alpha2[1] == '8')
249 return true;
250 return false;
251 }
252
is_an_alpha2(const char * alpha2)253 static bool is_an_alpha2(const char *alpha2)
254 {
255 if (!alpha2)
256 return false;
257 if (isalpha(alpha2[0]) && isalpha(alpha2[1]))
258 return true;
259 return false;
260 }
261
alpha2_equal(const char * alpha2_x,const char * alpha2_y)262 static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
263 {
264 if (!alpha2_x || !alpha2_y)
265 return false;
266 if (alpha2_x[0] == alpha2_y[0] &&
267 alpha2_x[1] == alpha2_y[1])
268 return true;
269 return false;
270 }
271
regdom_changes(const char * alpha2)272 static bool regdom_changes(const char *alpha2)
273 {
274 assert_cfg80211_lock();
275
276 if (!cfg80211_regdomain)
277 return true;
278 if (alpha2_equal(cfg80211_regdomain->alpha2, alpha2))
279 return false;
280 return true;
281 }
282
283 /*
284 * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets
285 * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER
286 * has ever been issued.
287 */
is_user_regdom_saved(void)288 static bool is_user_regdom_saved(void)
289 {
290 if (user_alpha2[0] == '9' && user_alpha2[1] == '7')
291 return false;
292
293 /* This would indicate a mistake on the design */
294 if (WARN((!is_world_regdom(user_alpha2) &&
295 !is_an_alpha2(user_alpha2)),
296 "Unexpected user alpha2: %c%c\n",
297 user_alpha2[0],
298 user_alpha2[1]))
299 return false;
300
301 return true;
302 }
303
reg_copy_regd(const struct ieee80211_regdomain ** dst_regd,const struct ieee80211_regdomain * src_regd)304 static int reg_copy_regd(const struct ieee80211_regdomain **dst_regd,
305 const struct ieee80211_regdomain *src_regd)
306 {
307 struct ieee80211_regdomain *regd;
308 int size_of_regd = 0;
309 unsigned int i;
310
311 size_of_regd = sizeof(struct ieee80211_regdomain) +
312 ((src_regd->n_reg_rules + 1) * sizeof(struct ieee80211_reg_rule));
313
314 regd = kzalloc(size_of_regd, GFP_KERNEL);
315 if (!regd)
316 return -ENOMEM;
317
318 memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));
319
320 for (i = 0; i < src_regd->n_reg_rules; i++)
321 memcpy(®d->reg_rules[i], &src_regd->reg_rules[i],
322 sizeof(struct ieee80211_reg_rule));
323
324 *dst_regd = regd;
325 return 0;
326 }
327
328 #ifdef CONFIG_CFG80211_INTERNAL_REGDB
329 struct reg_regdb_search_request {
330 char alpha2[2];
331 struct list_head list;
332 };
333
334 static LIST_HEAD(reg_regdb_search_list);
335 static DEFINE_MUTEX(reg_regdb_search_mutex);
336
reg_regdb_search(struct work_struct * work)337 static void reg_regdb_search(struct work_struct *work)
338 {
339 struct reg_regdb_search_request *request;
340 const struct ieee80211_regdomain *curdom, *regdom;
341 int i, r;
342 bool set_reg = false;
343
344 mutex_lock(&cfg80211_mutex);
345
346 mutex_lock(®_regdb_search_mutex);
347 while (!list_empty(®_regdb_search_list)) {
348 request = list_first_entry(®_regdb_search_list,
349 struct reg_regdb_search_request,
350 list);
351 list_del(&request->list);
352
353 for (i=0; i<reg_regdb_size; i++) {
354 curdom = reg_regdb[i];
355
356 if (!memcmp(request->alpha2, curdom->alpha2, 2)) {
357 r = reg_copy_regd(®dom, curdom);
358 if (r)
359 break;
360 set_reg = true;
361 break;
362 }
363 }
364
365 kfree(request);
366 }
367 mutex_unlock(®_regdb_search_mutex);
368
369 if (set_reg)
370 set_regdom(regdom);
371
372 mutex_unlock(&cfg80211_mutex);
373 }
374
375 static DECLARE_WORK(reg_regdb_work, reg_regdb_search);
376
reg_regdb_query(const char * alpha2)377 static void reg_regdb_query(const char *alpha2)
378 {
379 struct reg_regdb_search_request *request;
380
381 if (!alpha2)
382 return;
383
384 request = kzalloc(sizeof(struct reg_regdb_search_request), GFP_KERNEL);
385 if (!request)
386 return;
387
388 memcpy(request->alpha2, alpha2, 2);
389
390 mutex_lock(®_regdb_search_mutex);
391 list_add_tail(&request->list, ®_regdb_search_list);
392 mutex_unlock(®_regdb_search_mutex);
393
394 schedule_work(®_regdb_work);
395 }
396
397 /* Feel free to add any other sanity checks here */
reg_regdb_size_check(void)398 static void reg_regdb_size_check(void)
399 {
400 /* We should ideally BUILD_BUG_ON() but then random builds would fail */
401 WARN_ONCE(!reg_regdb_size, "db.txt is empty, you should update it...");
402 }
403 #else
reg_regdb_size_check(void)404 static inline void reg_regdb_size_check(void) {}
reg_regdb_query(const char * alpha2)405 static inline void reg_regdb_query(const char *alpha2) {}
406 #endif /* CONFIG_CFG80211_INTERNAL_REGDB */
407
408 /*
409 * This lets us keep regulatory code which is updated on a regulatory
410 * basis in userspace. Country information is filled in by
411 * reg_device_uevent
412 */
call_crda(const char * alpha2)413 static int call_crda(const char *alpha2)
414 {
415 if (!is_world_regdom((char *) alpha2))
416 pr_info("Calling CRDA for country: %c%c\n",
417 alpha2[0], alpha2[1]);
418 else
419 pr_info("Calling CRDA to update world regulatory domain\n");
420
421 /* query internal regulatory database (if it exists) */
422 reg_regdb_query(alpha2);
423
424 return kobject_uevent(®_pdev->dev.kobj, KOBJ_CHANGE);
425 }
426
427 /* Used by nl80211 before kmalloc'ing our regulatory domain */
reg_is_valid_request(const char * alpha2)428 bool reg_is_valid_request(const char *alpha2)
429 {
430 assert_cfg80211_lock();
431
432 if (!last_request)
433 return false;
434
435 return alpha2_equal(last_request->alpha2, alpha2);
436 }
437
438 /* Sanity check on a regulatory rule */
is_valid_reg_rule(const struct ieee80211_reg_rule * rule)439 static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
440 {
441 const struct ieee80211_freq_range *freq_range = &rule->freq_range;
442 u32 freq_diff;
443
444 if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
445 return false;
446
447 if (freq_range->start_freq_khz > freq_range->end_freq_khz)
448 return false;
449
450 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
451
452 if (freq_range->end_freq_khz <= freq_range->start_freq_khz ||
453 freq_range->max_bandwidth_khz > freq_diff)
454 return false;
455
456 return true;
457 }
458
is_valid_rd(const struct ieee80211_regdomain * rd)459 static bool is_valid_rd(const struct ieee80211_regdomain *rd)
460 {
461 const struct ieee80211_reg_rule *reg_rule = NULL;
462 unsigned int i;
463
464 if (!rd->n_reg_rules)
465 return false;
466
467 if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
468 return false;
469
470 for (i = 0; i < rd->n_reg_rules; i++) {
471 reg_rule = &rd->reg_rules[i];
472 if (!is_valid_reg_rule(reg_rule))
473 return false;
474 }
475
476 return true;
477 }
478
reg_does_bw_fit(const struct ieee80211_freq_range * freq_range,u32 center_freq_khz,u32 bw_khz)479 static bool reg_does_bw_fit(const struct ieee80211_freq_range *freq_range,
480 u32 center_freq_khz,
481 u32 bw_khz)
482 {
483 u32 start_freq_khz, end_freq_khz;
484
485 start_freq_khz = center_freq_khz - (bw_khz/2);
486 end_freq_khz = center_freq_khz + (bw_khz/2);
487
488 if (start_freq_khz >= freq_range->start_freq_khz &&
489 end_freq_khz <= freq_range->end_freq_khz)
490 return true;
491
492 return false;
493 }
494
495 /**
496 * freq_in_rule_band - tells us if a frequency is in a frequency band
497 * @freq_range: frequency rule we want to query
498 * @freq_khz: frequency we are inquiring about
499 *
500 * This lets us know if a specific frequency rule is or is not relevant to
501 * a specific frequency's band. Bands are device specific and artificial
502 * definitions (the "2.4 GHz band" and the "5 GHz band"), however it is
503 * safe for now to assume that a frequency rule should not be part of a
504 * frequency's band if the start freq or end freq are off by more than 2 GHz.
505 * This resolution can be lowered and should be considered as we add
506 * regulatory rule support for other "bands".
507 **/
freq_in_rule_band(const struct ieee80211_freq_range * freq_range,u32 freq_khz)508 static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
509 u32 freq_khz)
510 {
511 #define ONE_GHZ_IN_KHZ 1000000
512 if (abs(freq_khz - freq_range->start_freq_khz) <= (2 * ONE_GHZ_IN_KHZ))
513 return true;
514 if (abs(freq_khz - freq_range->end_freq_khz) <= (2 * ONE_GHZ_IN_KHZ))
515 return true;
516 return false;
517 #undef ONE_GHZ_IN_KHZ
518 }
519
520 /*
521 * Helper for regdom_intersect(), this does the real
522 * mathematical intersection fun
523 */
reg_rules_intersect(const struct ieee80211_reg_rule * rule1,const struct ieee80211_reg_rule * rule2,struct ieee80211_reg_rule * intersected_rule)524 static int reg_rules_intersect(
525 const struct ieee80211_reg_rule *rule1,
526 const struct ieee80211_reg_rule *rule2,
527 struct ieee80211_reg_rule *intersected_rule)
528 {
529 const struct ieee80211_freq_range *freq_range1, *freq_range2;
530 struct ieee80211_freq_range *freq_range;
531 const struct ieee80211_power_rule *power_rule1, *power_rule2;
532 struct ieee80211_power_rule *power_rule;
533 u32 freq_diff;
534
535 freq_range1 = &rule1->freq_range;
536 freq_range2 = &rule2->freq_range;
537 freq_range = &intersected_rule->freq_range;
538
539 power_rule1 = &rule1->power_rule;
540 power_rule2 = &rule2->power_rule;
541 power_rule = &intersected_rule->power_rule;
542
543 freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
544 freq_range2->start_freq_khz);
545 freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
546 freq_range2->end_freq_khz);
547 freq_range->max_bandwidth_khz = min(freq_range1->max_bandwidth_khz,
548 freq_range2->max_bandwidth_khz);
549
550 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
551 if (freq_range->max_bandwidth_khz > freq_diff)
552 freq_range->max_bandwidth_khz = freq_diff;
553
554 power_rule->max_eirp = min(power_rule1->max_eirp,
555 power_rule2->max_eirp);
556 power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
557 power_rule2->max_antenna_gain);
558
559 intersected_rule->flags = (rule1->flags | rule2->flags);
560
561 if (!is_valid_reg_rule(intersected_rule))
562 return -EINVAL;
563
564 return 0;
565 }
566
567 /**
568 * regdom_intersect - do the intersection between two regulatory domains
569 * @rd1: first regulatory domain
570 * @rd2: second regulatory domain
571 *
572 * Use this function to get the intersection between two regulatory domains.
573 * Once completed we will mark the alpha2 for the rd as intersected, "98",
574 * as no one single alpha2 can represent this regulatory domain.
575 *
576 * Returns a pointer to the regulatory domain structure which will hold the
577 * resulting intersection of rules between rd1 and rd2. We will
578 * kzalloc() this structure for you.
579 */
regdom_intersect(const struct ieee80211_regdomain * rd1,const struct ieee80211_regdomain * rd2)580 static struct ieee80211_regdomain *regdom_intersect(
581 const struct ieee80211_regdomain *rd1,
582 const struct ieee80211_regdomain *rd2)
583 {
584 int r, size_of_regd;
585 unsigned int x, y;
586 unsigned int num_rules = 0, rule_idx = 0;
587 const struct ieee80211_reg_rule *rule1, *rule2;
588 struct ieee80211_reg_rule *intersected_rule;
589 struct ieee80211_regdomain *rd;
590 /* This is just a dummy holder to help us count */
591 struct ieee80211_reg_rule irule;
592
593 /* Uses the stack temporarily for counter arithmetic */
594 intersected_rule = &irule;
595
596 memset(intersected_rule, 0, sizeof(struct ieee80211_reg_rule));
597
598 if (!rd1 || !rd2)
599 return NULL;
600
601 /*
602 * First we get a count of the rules we'll need, then we actually
603 * build them. This is to so we can malloc() and free() a
604 * regdomain once. The reason we use reg_rules_intersect() here
605 * is it will return -EINVAL if the rule computed makes no sense.
606 * All rules that do check out OK are valid.
607 */
608
609 for (x = 0; x < rd1->n_reg_rules; x++) {
610 rule1 = &rd1->reg_rules[x];
611 for (y = 0; y < rd2->n_reg_rules; y++) {
612 rule2 = &rd2->reg_rules[y];
613 if (!reg_rules_intersect(rule1, rule2,
614 intersected_rule))
615 num_rules++;
616 memset(intersected_rule, 0,
617 sizeof(struct ieee80211_reg_rule));
618 }
619 }
620
621 if (!num_rules)
622 return NULL;
623
624 size_of_regd = sizeof(struct ieee80211_regdomain) +
625 ((num_rules + 1) * sizeof(struct ieee80211_reg_rule));
626
627 rd = kzalloc(size_of_regd, GFP_KERNEL);
628 if (!rd)
629 return NULL;
630
631 for (x = 0; x < rd1->n_reg_rules; x++) {
632 rule1 = &rd1->reg_rules[x];
633 for (y = 0; y < rd2->n_reg_rules; y++) {
634 rule2 = &rd2->reg_rules[y];
635 /*
636 * This time around instead of using the stack lets
637 * write to the target rule directly saving ourselves
638 * a memcpy()
639 */
640 intersected_rule = &rd->reg_rules[rule_idx];
641 r = reg_rules_intersect(rule1, rule2,
642 intersected_rule);
643 /*
644 * No need to memset here the intersected rule here as
645 * we're not using the stack anymore
646 */
647 if (r)
648 continue;
649 rule_idx++;
650 }
651 }
652
653 if (rule_idx != num_rules) {
654 kfree(rd);
655 return NULL;
656 }
657
658 rd->n_reg_rules = num_rules;
659 rd->alpha2[0] = '9';
660 rd->alpha2[1] = '8';
661
662 return rd;
663 }
664
665 /*
666 * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
667 * want to just have the channel structure use these
668 */
map_regdom_flags(u32 rd_flags)669 static u32 map_regdom_flags(u32 rd_flags)
670 {
671 u32 channel_flags = 0;
672 if (rd_flags & NL80211_RRF_PASSIVE_SCAN)
673 channel_flags |= IEEE80211_CHAN_PASSIVE_SCAN;
674 if (rd_flags & NL80211_RRF_NO_IBSS)
675 channel_flags |= IEEE80211_CHAN_NO_IBSS;
676 if (rd_flags & NL80211_RRF_DFS)
677 channel_flags |= IEEE80211_CHAN_RADAR;
678 return channel_flags;
679 }
680
freq_reg_info_regd(struct wiphy * wiphy,u32 center_freq,u32 desired_bw_khz,const struct ieee80211_reg_rule ** reg_rule,const struct ieee80211_regdomain * custom_regd)681 static int freq_reg_info_regd(struct wiphy *wiphy,
682 u32 center_freq,
683 u32 desired_bw_khz,
684 const struct ieee80211_reg_rule **reg_rule,
685 const struct ieee80211_regdomain *custom_regd)
686 {
687 int i;
688 bool band_rule_found = false;
689 const struct ieee80211_regdomain *regd;
690 bool bw_fits = false;
691
692 if (!desired_bw_khz)
693 desired_bw_khz = MHZ_TO_KHZ(20);
694
695 regd = custom_regd ? custom_regd : cfg80211_regdomain;
696
697 /*
698 * Follow the driver's regulatory domain, if present, unless a country
699 * IE has been processed or a user wants to help complaince further
700 */
701 if (!custom_regd &&
702 last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
703 last_request->initiator != NL80211_REGDOM_SET_BY_USER &&
704 wiphy->regd)
705 regd = wiphy->regd;
706
707 if (!regd)
708 return -EINVAL;
709
710 for (i = 0; i < regd->n_reg_rules; i++) {
711 const struct ieee80211_reg_rule *rr;
712 const struct ieee80211_freq_range *fr = NULL;
713
714 rr = ®d->reg_rules[i];
715 fr = &rr->freq_range;
716
717 /*
718 * We only need to know if one frequency rule was
719 * was in center_freq's band, that's enough, so lets
720 * not overwrite it once found
721 */
722 if (!band_rule_found)
723 band_rule_found = freq_in_rule_band(fr, center_freq);
724
725 bw_fits = reg_does_bw_fit(fr,
726 center_freq,
727 desired_bw_khz);
728
729 if (band_rule_found && bw_fits) {
730 *reg_rule = rr;
731 return 0;
732 }
733 }
734
735 if (!band_rule_found)
736 return -ERANGE;
737
738 return -EINVAL;
739 }
740
freq_reg_info(struct wiphy * wiphy,u32 center_freq,u32 desired_bw_khz,const struct ieee80211_reg_rule ** reg_rule)741 int freq_reg_info(struct wiphy *wiphy,
742 u32 center_freq,
743 u32 desired_bw_khz,
744 const struct ieee80211_reg_rule **reg_rule)
745 {
746 assert_cfg80211_lock();
747 return freq_reg_info_regd(wiphy,
748 center_freq,
749 desired_bw_khz,
750 reg_rule,
751 NULL);
752 }
753 EXPORT_SYMBOL(freq_reg_info);
754
755 #ifdef CONFIG_CFG80211_REG_DEBUG
reg_initiator_name(enum nl80211_reg_initiator initiator)756 static const char *reg_initiator_name(enum nl80211_reg_initiator initiator)
757 {
758 switch (initiator) {
759 case NL80211_REGDOM_SET_BY_CORE:
760 return "Set by core";
761 case NL80211_REGDOM_SET_BY_USER:
762 return "Set by user";
763 case NL80211_REGDOM_SET_BY_DRIVER:
764 return "Set by driver";
765 case NL80211_REGDOM_SET_BY_COUNTRY_IE:
766 return "Set by country IE";
767 default:
768 WARN_ON(1);
769 return "Set by bug";
770 }
771 }
772
chan_reg_rule_print_dbg(struct ieee80211_channel * chan,u32 desired_bw_khz,const struct ieee80211_reg_rule * reg_rule)773 static void chan_reg_rule_print_dbg(struct ieee80211_channel *chan,
774 u32 desired_bw_khz,
775 const struct ieee80211_reg_rule *reg_rule)
776 {
777 const struct ieee80211_power_rule *power_rule;
778 const struct ieee80211_freq_range *freq_range;
779 char max_antenna_gain[32];
780
781 power_rule = ®_rule->power_rule;
782 freq_range = ®_rule->freq_range;
783
784 if (!power_rule->max_antenna_gain)
785 snprintf(max_antenna_gain, 32, "N/A");
786 else
787 snprintf(max_antenna_gain, 32, "%d", power_rule->max_antenna_gain);
788
789 REG_DBG_PRINT("Updating information on frequency %d MHz "
790 "for a %d MHz width channel with regulatory rule:\n",
791 chan->center_freq,
792 KHZ_TO_MHZ(desired_bw_khz));
793
794 REG_DBG_PRINT("%d KHz - %d KHz @ %d KHz), (%s mBi, %d mBm)\n",
795 freq_range->start_freq_khz,
796 freq_range->end_freq_khz,
797 freq_range->max_bandwidth_khz,
798 max_antenna_gain,
799 power_rule->max_eirp);
800 }
801 #else
chan_reg_rule_print_dbg(struct ieee80211_channel * chan,u32 desired_bw_khz,const struct ieee80211_reg_rule * reg_rule)802 static void chan_reg_rule_print_dbg(struct ieee80211_channel *chan,
803 u32 desired_bw_khz,
804 const struct ieee80211_reg_rule *reg_rule)
805 {
806 return;
807 }
808 #endif
809
810 /*
811 * Note that right now we assume the desired channel bandwidth
812 * is always 20 MHz for each individual channel (HT40 uses 20 MHz
813 * per channel, the primary and the extension channel). To support
814 * smaller custom bandwidths such as 5 MHz or 10 MHz we'll need a
815 * new ieee80211_channel.target_bw and re run the regulatory check
816 * on the wiphy with the target_bw specified. Then we can simply use
817 * that below for the desired_bw_khz below.
818 */
handle_channel(struct wiphy * wiphy,enum nl80211_reg_initiator initiator,enum ieee80211_band band,unsigned int chan_idx)819 static void handle_channel(struct wiphy *wiphy,
820 enum nl80211_reg_initiator initiator,
821 enum ieee80211_band band,
822 unsigned int chan_idx)
823 {
824 int r;
825 u32 flags, bw_flags = 0;
826 u32 desired_bw_khz = MHZ_TO_KHZ(20);
827 const struct ieee80211_reg_rule *reg_rule = NULL;
828 const struct ieee80211_power_rule *power_rule = NULL;
829 const struct ieee80211_freq_range *freq_range = NULL;
830 struct ieee80211_supported_band *sband;
831 struct ieee80211_channel *chan;
832 struct wiphy *request_wiphy = NULL;
833
834 assert_cfg80211_lock();
835
836 request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
837
838 sband = wiphy->bands[band];
839 BUG_ON(chan_idx >= sband->n_channels);
840 chan = &sband->channels[chan_idx];
841
842 flags = chan->orig_flags;
843
844 r = freq_reg_info(wiphy,
845 MHZ_TO_KHZ(chan->center_freq),
846 desired_bw_khz,
847 ®_rule);
848
849 if (r) {
850 /*
851 * We will disable all channels that do not match our
852 * received regulatory rule unless the hint is coming
853 * from a Country IE and the Country IE had no information
854 * about a band. The IEEE 802.11 spec allows for an AP
855 * to send only a subset of the regulatory rules allowed,
856 * so an AP in the US that only supports 2.4 GHz may only send
857 * a country IE with information for the 2.4 GHz band
858 * while 5 GHz is still supported.
859 */
860 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
861 r == -ERANGE)
862 return;
863
864 REG_DBG_PRINT("Disabling freq %d MHz\n", chan->center_freq);
865 chan->flags |= IEEE80211_CHAN_DISABLED;
866 return;
867 }
868
869 chan_reg_rule_print_dbg(chan, desired_bw_khz, reg_rule);
870
871 power_rule = ®_rule->power_rule;
872 freq_range = ®_rule->freq_range;
873
874 if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(40))
875 bw_flags = IEEE80211_CHAN_NO_HT40;
876
877 if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
878 request_wiphy && request_wiphy == wiphy &&
879 request_wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY) {
880 /*
881 * This guarantees the driver's requested regulatory domain
882 * will always be used as a base for further regulatory
883 * settings
884 */
885 chan->flags = chan->orig_flags =
886 map_regdom_flags(reg_rule->flags) | bw_flags;
887 chan->max_antenna_gain = chan->orig_mag =
888 (int) MBI_TO_DBI(power_rule->max_antenna_gain);
889 chan->max_power = chan->orig_mpwr =
890 (int) MBM_TO_DBM(power_rule->max_eirp);
891 return;
892 }
893
894 chan->beacon_found = false;
895 chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags);
896 chan->max_antenna_gain = min(chan->orig_mag,
897 (int) MBI_TO_DBI(power_rule->max_antenna_gain));
898 chan->max_reg_power = (int) MBM_TO_DBM(power_rule->max_eirp);
899 if (chan->orig_mpwr) {
900 /*
901 * Devices that have their own custom regulatory domain
902 * but also use WIPHY_FLAG_STRICT_REGULATORY will follow the
903 * passed country IE power settings.
904 */
905 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
906 wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY &&
907 wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY)
908 chan->max_power = chan->max_reg_power;
909 else
910 chan->max_power = min(chan->orig_mpwr,
911 chan->max_reg_power);
912 } else
913 chan->max_power = chan->max_reg_power;
914 }
915
handle_band(struct wiphy * wiphy,enum ieee80211_band band,enum nl80211_reg_initiator initiator)916 static void handle_band(struct wiphy *wiphy,
917 enum ieee80211_band band,
918 enum nl80211_reg_initiator initiator)
919 {
920 unsigned int i;
921 struct ieee80211_supported_band *sband;
922
923 BUG_ON(!wiphy->bands[band]);
924 sband = wiphy->bands[band];
925
926 for (i = 0; i < sband->n_channels; i++)
927 handle_channel(wiphy, initiator, band, i);
928 }
929
ignore_reg_update(struct wiphy * wiphy,enum nl80211_reg_initiator initiator)930 static bool ignore_reg_update(struct wiphy *wiphy,
931 enum nl80211_reg_initiator initiator)
932 {
933 if (!last_request) {
934 REG_DBG_PRINT("Ignoring regulatory request %s since "
935 "last_request is not set\n",
936 reg_initiator_name(initiator));
937 return true;
938 }
939
940 if (initiator == NL80211_REGDOM_SET_BY_CORE &&
941 wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY) {
942 REG_DBG_PRINT("Ignoring regulatory request %s "
943 "since the driver uses its own custom "
944 "regulatory domain\n",
945 reg_initiator_name(initiator));
946 return true;
947 }
948
949 /*
950 * wiphy->regd will be set once the device has its own
951 * desired regulatory domain set
952 */
953 if (wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY && !wiphy->regd &&
954 initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
955 !is_world_regdom(last_request->alpha2)) {
956 REG_DBG_PRINT("Ignoring regulatory request %s "
957 "since the driver requires its own regulatory "
958 "domain to be set first\n",
959 reg_initiator_name(initiator));
960 return true;
961 }
962
963 return false;
964 }
965
handle_reg_beacon(struct wiphy * wiphy,unsigned int chan_idx,struct reg_beacon * reg_beacon)966 static void handle_reg_beacon(struct wiphy *wiphy,
967 unsigned int chan_idx,
968 struct reg_beacon *reg_beacon)
969 {
970 struct ieee80211_supported_band *sband;
971 struct ieee80211_channel *chan;
972 bool channel_changed = false;
973 struct ieee80211_channel chan_before;
974
975 assert_cfg80211_lock();
976
977 sband = wiphy->bands[reg_beacon->chan.band];
978 chan = &sband->channels[chan_idx];
979
980 if (likely(chan->center_freq != reg_beacon->chan.center_freq))
981 return;
982
983 if (chan->beacon_found)
984 return;
985
986 chan->beacon_found = true;
987
988 if (wiphy->flags & WIPHY_FLAG_DISABLE_BEACON_HINTS)
989 return;
990
991 chan_before.center_freq = chan->center_freq;
992 chan_before.flags = chan->flags;
993
994 if (chan->flags & IEEE80211_CHAN_PASSIVE_SCAN) {
995 chan->flags &= ~IEEE80211_CHAN_PASSIVE_SCAN;
996 channel_changed = true;
997 }
998
999 if (chan->flags & IEEE80211_CHAN_NO_IBSS) {
1000 chan->flags &= ~IEEE80211_CHAN_NO_IBSS;
1001 channel_changed = true;
1002 }
1003
1004 if (channel_changed)
1005 nl80211_send_beacon_hint_event(wiphy, &chan_before, chan);
1006 }
1007
1008 /*
1009 * Called when a scan on a wiphy finds a beacon on
1010 * new channel
1011 */
wiphy_update_new_beacon(struct wiphy * wiphy,struct reg_beacon * reg_beacon)1012 static void wiphy_update_new_beacon(struct wiphy *wiphy,
1013 struct reg_beacon *reg_beacon)
1014 {
1015 unsigned int i;
1016 struct ieee80211_supported_band *sband;
1017
1018 assert_cfg80211_lock();
1019
1020 if (!wiphy->bands[reg_beacon->chan.band])
1021 return;
1022
1023 sband = wiphy->bands[reg_beacon->chan.band];
1024
1025 for (i = 0; i < sband->n_channels; i++)
1026 handle_reg_beacon(wiphy, i, reg_beacon);
1027 }
1028
1029 /*
1030 * Called upon reg changes or a new wiphy is added
1031 */
wiphy_update_beacon_reg(struct wiphy * wiphy)1032 static void wiphy_update_beacon_reg(struct wiphy *wiphy)
1033 {
1034 unsigned int i;
1035 struct ieee80211_supported_band *sband;
1036 struct reg_beacon *reg_beacon;
1037
1038 assert_cfg80211_lock();
1039
1040 if (list_empty(®_beacon_list))
1041 return;
1042
1043 list_for_each_entry(reg_beacon, ®_beacon_list, list) {
1044 if (!wiphy->bands[reg_beacon->chan.band])
1045 continue;
1046 sband = wiphy->bands[reg_beacon->chan.band];
1047 for (i = 0; i < sband->n_channels; i++)
1048 handle_reg_beacon(wiphy, i, reg_beacon);
1049 }
1050 }
1051
reg_is_world_roaming(struct wiphy * wiphy)1052 static bool reg_is_world_roaming(struct wiphy *wiphy)
1053 {
1054 if (is_world_regdom(cfg80211_regdomain->alpha2) ||
1055 (wiphy->regd && is_world_regdom(wiphy->regd->alpha2)))
1056 return true;
1057 if (last_request &&
1058 last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1059 wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY)
1060 return true;
1061 return false;
1062 }
1063
1064 /* Reap the advantages of previously found beacons */
reg_process_beacons(struct wiphy * wiphy)1065 static void reg_process_beacons(struct wiphy *wiphy)
1066 {
1067 /*
1068 * Means we are just firing up cfg80211, so no beacons would
1069 * have been processed yet.
1070 */
1071 if (!last_request)
1072 return;
1073 if (!reg_is_world_roaming(wiphy))
1074 return;
1075 wiphy_update_beacon_reg(wiphy);
1076 }
1077
is_ht40_not_allowed(struct ieee80211_channel * chan)1078 static bool is_ht40_not_allowed(struct ieee80211_channel *chan)
1079 {
1080 if (!chan)
1081 return true;
1082 if (chan->flags & IEEE80211_CHAN_DISABLED)
1083 return true;
1084 /* This would happen when regulatory rules disallow HT40 completely */
1085 if (IEEE80211_CHAN_NO_HT40 == (chan->flags & (IEEE80211_CHAN_NO_HT40)))
1086 return true;
1087 return false;
1088 }
1089
reg_process_ht_flags_channel(struct wiphy * wiphy,enum ieee80211_band band,unsigned int chan_idx)1090 static void reg_process_ht_flags_channel(struct wiphy *wiphy,
1091 enum ieee80211_band band,
1092 unsigned int chan_idx)
1093 {
1094 struct ieee80211_supported_band *sband;
1095 struct ieee80211_channel *channel;
1096 struct ieee80211_channel *channel_before = NULL, *channel_after = NULL;
1097 unsigned int i;
1098
1099 assert_cfg80211_lock();
1100
1101 sband = wiphy->bands[band];
1102 BUG_ON(chan_idx >= sband->n_channels);
1103 channel = &sband->channels[chan_idx];
1104
1105 if (is_ht40_not_allowed(channel)) {
1106 channel->flags |= IEEE80211_CHAN_NO_HT40;
1107 return;
1108 }
1109
1110 /*
1111 * We need to ensure the extension channels exist to
1112 * be able to use HT40- or HT40+, this finds them (or not)
1113 */
1114 for (i = 0; i < sband->n_channels; i++) {
1115 struct ieee80211_channel *c = &sband->channels[i];
1116 if (c->center_freq == (channel->center_freq - 20))
1117 channel_before = c;
1118 if (c->center_freq == (channel->center_freq + 20))
1119 channel_after = c;
1120 }
1121
1122 /*
1123 * Please note that this assumes target bandwidth is 20 MHz,
1124 * if that ever changes we also need to change the below logic
1125 * to include that as well.
1126 */
1127 if (is_ht40_not_allowed(channel_before))
1128 channel->flags |= IEEE80211_CHAN_NO_HT40MINUS;
1129 else
1130 channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
1131
1132 if (is_ht40_not_allowed(channel_after))
1133 channel->flags |= IEEE80211_CHAN_NO_HT40PLUS;
1134 else
1135 channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
1136 }
1137
reg_process_ht_flags_band(struct wiphy * wiphy,enum ieee80211_band band)1138 static void reg_process_ht_flags_band(struct wiphy *wiphy,
1139 enum ieee80211_band band)
1140 {
1141 unsigned int i;
1142 struct ieee80211_supported_band *sband;
1143
1144 BUG_ON(!wiphy->bands[band]);
1145 sband = wiphy->bands[band];
1146
1147 for (i = 0; i < sband->n_channels; i++)
1148 reg_process_ht_flags_channel(wiphy, band, i);
1149 }
1150
reg_process_ht_flags(struct wiphy * wiphy)1151 static void reg_process_ht_flags(struct wiphy *wiphy)
1152 {
1153 enum ieee80211_band band;
1154
1155 if (!wiphy)
1156 return;
1157
1158 for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1159 if (wiphy->bands[band])
1160 reg_process_ht_flags_band(wiphy, band);
1161 }
1162
1163 }
1164
wiphy_update_regulatory(struct wiphy * wiphy,enum nl80211_reg_initiator initiator)1165 static void wiphy_update_regulatory(struct wiphy *wiphy,
1166 enum nl80211_reg_initiator initiator)
1167 {
1168 enum ieee80211_band band;
1169
1170 assert_reg_lock();
1171
1172 if (ignore_reg_update(wiphy, initiator))
1173 return;
1174
1175 last_request->dfs_region = cfg80211_regdomain->dfs_region;
1176
1177 for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1178 if (wiphy->bands[band])
1179 handle_band(wiphy, band, initiator);
1180 }
1181
1182 reg_process_beacons(wiphy);
1183 reg_process_ht_flags(wiphy);
1184 if (wiphy->reg_notifier)
1185 wiphy->reg_notifier(wiphy, last_request);
1186 }
1187
regulatory_update(struct wiphy * wiphy,enum nl80211_reg_initiator setby)1188 void regulatory_update(struct wiphy *wiphy,
1189 enum nl80211_reg_initiator setby)
1190 {
1191 mutex_lock(®_mutex);
1192 wiphy_update_regulatory(wiphy, setby);
1193 mutex_unlock(®_mutex);
1194 }
1195
update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)1196 static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)
1197 {
1198 struct cfg80211_registered_device *rdev;
1199 struct wiphy *wiphy;
1200
1201 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
1202 wiphy = &rdev->wiphy;
1203 wiphy_update_regulatory(wiphy, initiator);
1204 /*
1205 * Regulatory updates set by CORE are ignored for custom
1206 * regulatory cards. Let us notify the changes to the driver,
1207 * as some drivers used this to restore its orig_* reg domain.
1208 */
1209 if (initiator == NL80211_REGDOM_SET_BY_CORE &&
1210 wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY &&
1211 wiphy->reg_notifier)
1212 wiphy->reg_notifier(wiphy, last_request);
1213 }
1214 }
1215
handle_channel_custom(struct wiphy * wiphy,enum ieee80211_band band,unsigned int chan_idx,const struct ieee80211_regdomain * regd)1216 static void handle_channel_custom(struct wiphy *wiphy,
1217 enum ieee80211_band band,
1218 unsigned int chan_idx,
1219 const struct ieee80211_regdomain *regd)
1220 {
1221 int r;
1222 u32 desired_bw_khz = MHZ_TO_KHZ(20);
1223 u32 bw_flags = 0;
1224 const struct ieee80211_reg_rule *reg_rule = NULL;
1225 const struct ieee80211_power_rule *power_rule = NULL;
1226 const struct ieee80211_freq_range *freq_range = NULL;
1227 struct ieee80211_supported_band *sband;
1228 struct ieee80211_channel *chan;
1229
1230 assert_reg_lock();
1231
1232 sband = wiphy->bands[band];
1233 BUG_ON(chan_idx >= sband->n_channels);
1234 chan = &sband->channels[chan_idx];
1235
1236 r = freq_reg_info_regd(wiphy,
1237 MHZ_TO_KHZ(chan->center_freq),
1238 desired_bw_khz,
1239 ®_rule,
1240 regd);
1241
1242 if (r) {
1243 REG_DBG_PRINT("Disabling freq %d MHz as custom "
1244 "regd has no rule that fits a %d MHz "
1245 "wide channel\n",
1246 chan->center_freq,
1247 KHZ_TO_MHZ(desired_bw_khz));
1248 chan->flags = IEEE80211_CHAN_DISABLED;
1249 return;
1250 }
1251
1252 chan_reg_rule_print_dbg(chan, desired_bw_khz, reg_rule);
1253
1254 power_rule = ®_rule->power_rule;
1255 freq_range = ®_rule->freq_range;
1256
1257 if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(40))
1258 bw_flags = IEEE80211_CHAN_NO_HT40;
1259
1260 chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags;
1261 chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
1262 chan->max_power = (int) MBM_TO_DBM(power_rule->max_eirp);
1263 }
1264
handle_band_custom(struct wiphy * wiphy,enum ieee80211_band band,const struct ieee80211_regdomain * regd)1265 static void handle_band_custom(struct wiphy *wiphy, enum ieee80211_band band,
1266 const struct ieee80211_regdomain *regd)
1267 {
1268 unsigned int i;
1269 struct ieee80211_supported_band *sband;
1270
1271 BUG_ON(!wiphy->bands[band]);
1272 sband = wiphy->bands[band];
1273
1274 for (i = 0; i < sband->n_channels; i++)
1275 handle_channel_custom(wiphy, band, i, regd);
1276 }
1277
1278 /* Used by drivers prior to wiphy registration */
wiphy_apply_custom_regulatory(struct wiphy * wiphy,const struct ieee80211_regdomain * regd)1279 void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
1280 const struct ieee80211_regdomain *regd)
1281 {
1282 enum ieee80211_band band;
1283 unsigned int bands_set = 0;
1284
1285 mutex_lock(®_mutex);
1286 for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1287 if (!wiphy->bands[band])
1288 continue;
1289 handle_band_custom(wiphy, band, regd);
1290 bands_set++;
1291 }
1292 mutex_unlock(®_mutex);
1293
1294 /*
1295 * no point in calling this if it won't have any effect
1296 * on your device's supportd bands.
1297 */
1298 WARN_ON(!bands_set);
1299 }
1300 EXPORT_SYMBOL(wiphy_apply_custom_regulatory);
1301
1302 /*
1303 * Return value which can be used by ignore_request() to indicate
1304 * it has been determined we should intersect two regulatory domains
1305 */
1306 #define REG_INTERSECT 1
1307
1308 /* This has the logic which determines when a new request
1309 * should be ignored. */
ignore_request(struct wiphy * wiphy,struct regulatory_request * pending_request)1310 static int ignore_request(struct wiphy *wiphy,
1311 struct regulatory_request *pending_request)
1312 {
1313 struct wiphy *last_wiphy = NULL;
1314
1315 assert_cfg80211_lock();
1316
1317 /* All initial requests are respected */
1318 if (!last_request)
1319 return 0;
1320
1321 switch (pending_request->initiator) {
1322 case NL80211_REGDOM_SET_BY_CORE:
1323 return 0;
1324 case NL80211_REGDOM_SET_BY_COUNTRY_IE:
1325
1326 last_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
1327
1328 if (unlikely(!is_an_alpha2(pending_request->alpha2)))
1329 return -EINVAL;
1330 if (last_request->initiator ==
1331 NL80211_REGDOM_SET_BY_COUNTRY_IE) {
1332 if (last_wiphy != wiphy) {
1333 /*
1334 * Two cards with two APs claiming different
1335 * Country IE alpha2s. We could
1336 * intersect them, but that seems unlikely
1337 * to be correct. Reject second one for now.
1338 */
1339 if (regdom_changes(pending_request->alpha2))
1340 return -EOPNOTSUPP;
1341 return -EALREADY;
1342 }
1343 /*
1344 * Two consecutive Country IE hints on the same wiphy.
1345 * This should be picked up early by the driver/stack
1346 */
1347 if (WARN_ON(regdom_changes(pending_request->alpha2)))
1348 return 0;
1349 return -EALREADY;
1350 }
1351 return 0;
1352 case NL80211_REGDOM_SET_BY_DRIVER:
1353 if (last_request->initiator == NL80211_REGDOM_SET_BY_CORE) {
1354 if (regdom_changes(pending_request->alpha2))
1355 return 0;
1356 return -EALREADY;
1357 }
1358
1359 /*
1360 * This would happen if you unplug and plug your card
1361 * back in or if you add a new device for which the previously
1362 * loaded card also agrees on the regulatory domain.
1363 */
1364 if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1365 !regdom_changes(pending_request->alpha2))
1366 return -EALREADY;
1367
1368 return REG_INTERSECT;
1369 case NL80211_REGDOM_SET_BY_USER:
1370 if (last_request->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)
1371 return REG_INTERSECT;
1372 /*
1373 * If the user knows better the user should set the regdom
1374 * to their country before the IE is picked up
1375 */
1376 if (last_request->initiator == NL80211_REGDOM_SET_BY_USER &&
1377 last_request->intersect)
1378 return -EOPNOTSUPP;
1379 /*
1380 * Process user requests only after previous user/driver/core
1381 * requests have been processed
1382 */
1383 if (last_request->initiator == NL80211_REGDOM_SET_BY_CORE ||
1384 last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
1385 last_request->initiator == NL80211_REGDOM_SET_BY_USER) {
1386 if (regdom_changes(last_request->alpha2))
1387 return -EAGAIN;
1388 }
1389
1390 if (!regdom_changes(pending_request->alpha2))
1391 return -EALREADY;
1392
1393 return 0;
1394 }
1395
1396 return -EINVAL;
1397 }
1398
reg_set_request_processed(void)1399 static void reg_set_request_processed(void)
1400 {
1401 bool need_more_processing = false;
1402
1403 last_request->processed = true;
1404
1405 spin_lock(®_requests_lock);
1406 if (!list_empty(®_requests_list))
1407 need_more_processing = true;
1408 spin_unlock(®_requests_lock);
1409
1410 if (last_request->initiator == NL80211_REGDOM_SET_BY_USER)
1411 cancel_delayed_work(®_timeout);
1412
1413 if (need_more_processing)
1414 schedule_work(®_work);
1415 }
1416
1417 /**
1418 * __regulatory_hint - hint to the wireless core a regulatory domain
1419 * @wiphy: if the hint comes from country information from an AP, this
1420 * is required to be set to the wiphy that received the information
1421 * @pending_request: the regulatory request currently being processed
1422 *
1423 * The Wireless subsystem can use this function to hint to the wireless core
1424 * what it believes should be the current regulatory domain.
1425 *
1426 * Returns zero if all went fine, %-EALREADY if a regulatory domain had
1427 * already been set or other standard error codes.
1428 *
1429 * Caller must hold &cfg80211_mutex and ®_mutex
1430 */
__regulatory_hint(struct wiphy * wiphy,struct regulatory_request * pending_request)1431 static int __regulatory_hint(struct wiphy *wiphy,
1432 struct regulatory_request *pending_request)
1433 {
1434 bool intersect = false;
1435 int r = 0;
1436
1437 assert_cfg80211_lock();
1438
1439 r = ignore_request(wiphy, pending_request);
1440
1441 if (r == REG_INTERSECT) {
1442 if (pending_request->initiator ==
1443 NL80211_REGDOM_SET_BY_DRIVER) {
1444 r = reg_copy_regd(&wiphy->regd, cfg80211_regdomain);
1445 if (r) {
1446 kfree(pending_request);
1447 return r;
1448 }
1449 }
1450 intersect = true;
1451 } else if (r) {
1452 /*
1453 * If the regulatory domain being requested by the
1454 * driver has already been set just copy it to the
1455 * wiphy
1456 */
1457 if (r == -EALREADY &&
1458 pending_request->initiator ==
1459 NL80211_REGDOM_SET_BY_DRIVER) {
1460 r = reg_copy_regd(&wiphy->regd, cfg80211_regdomain);
1461 if (r) {
1462 kfree(pending_request);
1463 return r;
1464 }
1465 r = -EALREADY;
1466 goto new_request;
1467 }
1468 kfree(pending_request);
1469 return r;
1470 }
1471
1472 new_request:
1473 if (last_request != &core_request_world)
1474 kfree(last_request);
1475
1476 last_request = pending_request;
1477 last_request->intersect = intersect;
1478
1479 pending_request = NULL;
1480
1481 if (last_request->initiator == NL80211_REGDOM_SET_BY_USER) {
1482 user_alpha2[0] = last_request->alpha2[0];
1483 user_alpha2[1] = last_request->alpha2[1];
1484 }
1485
1486 /* When r == REG_INTERSECT we do need to call CRDA */
1487 if (r < 0) {
1488 /*
1489 * Since CRDA will not be called in this case as we already
1490 * have applied the requested regulatory domain before we just
1491 * inform userspace we have processed the request
1492 */
1493 if (r == -EALREADY) {
1494 nl80211_send_reg_change_event(last_request);
1495 reg_set_request_processed();
1496 }
1497 return r;
1498 }
1499
1500 return call_crda(last_request->alpha2);
1501 }
1502
1503 /* This processes *all* regulatory hints */
reg_process_hint(struct regulatory_request * reg_request,enum nl80211_reg_initiator reg_initiator)1504 static void reg_process_hint(struct regulatory_request *reg_request,
1505 enum nl80211_reg_initiator reg_initiator)
1506 {
1507 int r = 0;
1508 struct wiphy *wiphy = NULL;
1509
1510 BUG_ON(!reg_request->alpha2);
1511
1512 if (wiphy_idx_valid(reg_request->wiphy_idx))
1513 wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx);
1514
1515 if (reg_initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1516 !wiphy) {
1517 kfree(reg_request);
1518 return;
1519 }
1520
1521 r = __regulatory_hint(wiphy, reg_request);
1522 /* This is required so that the orig_* parameters are saved */
1523 if (r == -EALREADY && wiphy &&
1524 wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY) {
1525 wiphy_update_regulatory(wiphy, reg_initiator);
1526 return;
1527 }
1528
1529 /*
1530 * We only time out user hints, given that they should be the only
1531 * source of bogus requests.
1532 */
1533 if (r != -EALREADY &&
1534 reg_initiator == NL80211_REGDOM_SET_BY_USER)
1535 schedule_delayed_work(®_timeout, msecs_to_jiffies(3142));
1536 }
1537
1538 /*
1539 * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_*
1540 * Regulatory hints come on a first come first serve basis and we
1541 * must process each one atomically.
1542 */
reg_process_pending_hints(void)1543 static void reg_process_pending_hints(void)
1544 {
1545 struct regulatory_request *reg_request;
1546
1547 mutex_lock(&cfg80211_mutex);
1548 mutex_lock(®_mutex);
1549
1550 /* When last_request->processed becomes true this will be rescheduled */
1551 if (last_request && !last_request->processed) {
1552 REG_DBG_PRINT("Pending regulatory request, waiting "
1553 "for it to be processed...\n");
1554 goto out;
1555 }
1556
1557 spin_lock(®_requests_lock);
1558
1559 if (list_empty(®_requests_list)) {
1560 spin_unlock(®_requests_lock);
1561 goto out;
1562 }
1563
1564 reg_request = list_first_entry(®_requests_list,
1565 struct regulatory_request,
1566 list);
1567 list_del_init(®_request->list);
1568
1569 spin_unlock(®_requests_lock);
1570
1571 reg_process_hint(reg_request, reg_request->initiator);
1572
1573 out:
1574 mutex_unlock(®_mutex);
1575 mutex_unlock(&cfg80211_mutex);
1576 }
1577
1578 /* Processes beacon hints -- this has nothing to do with country IEs */
reg_process_pending_beacon_hints(void)1579 static void reg_process_pending_beacon_hints(void)
1580 {
1581 struct cfg80211_registered_device *rdev;
1582 struct reg_beacon *pending_beacon, *tmp;
1583
1584 /*
1585 * No need to hold the reg_mutex here as we just touch wiphys
1586 * and do not read or access regulatory variables.
1587 */
1588 mutex_lock(&cfg80211_mutex);
1589
1590 /* This goes through the _pending_ beacon list */
1591 spin_lock_bh(®_pending_beacons_lock);
1592
1593 if (list_empty(®_pending_beacons)) {
1594 spin_unlock_bh(®_pending_beacons_lock);
1595 goto out;
1596 }
1597
1598 list_for_each_entry_safe(pending_beacon, tmp,
1599 ®_pending_beacons, list) {
1600
1601 list_del_init(&pending_beacon->list);
1602
1603 /* Applies the beacon hint to current wiphys */
1604 list_for_each_entry(rdev, &cfg80211_rdev_list, list)
1605 wiphy_update_new_beacon(&rdev->wiphy, pending_beacon);
1606
1607 /* Remembers the beacon hint for new wiphys or reg changes */
1608 list_add_tail(&pending_beacon->list, ®_beacon_list);
1609 }
1610
1611 spin_unlock_bh(®_pending_beacons_lock);
1612 out:
1613 mutex_unlock(&cfg80211_mutex);
1614 }
1615
reg_todo(struct work_struct * work)1616 static void reg_todo(struct work_struct *work)
1617 {
1618 reg_process_pending_hints();
1619 reg_process_pending_beacon_hints();
1620 }
1621
queue_regulatory_request(struct regulatory_request * request)1622 static void queue_regulatory_request(struct regulatory_request *request)
1623 {
1624 if (isalpha(request->alpha2[0]))
1625 request->alpha2[0] = toupper(request->alpha2[0]);
1626 if (isalpha(request->alpha2[1]))
1627 request->alpha2[1] = toupper(request->alpha2[1]);
1628
1629 spin_lock(®_requests_lock);
1630 list_add_tail(&request->list, ®_requests_list);
1631 spin_unlock(®_requests_lock);
1632
1633 schedule_work(®_work);
1634 }
1635
1636 /*
1637 * Core regulatory hint -- happens during cfg80211_init()
1638 * and when we restore regulatory settings.
1639 */
regulatory_hint_core(const char * alpha2)1640 static int regulatory_hint_core(const char *alpha2)
1641 {
1642 struct regulatory_request *request;
1643
1644 request = kzalloc(sizeof(struct regulatory_request),
1645 GFP_KERNEL);
1646 if (!request)
1647 return -ENOMEM;
1648
1649 request->alpha2[0] = alpha2[0];
1650 request->alpha2[1] = alpha2[1];
1651 request->initiator = NL80211_REGDOM_SET_BY_CORE;
1652
1653 queue_regulatory_request(request);
1654
1655 return 0;
1656 }
1657
1658 /* User hints */
regulatory_hint_user(const char * alpha2)1659 int regulatory_hint_user(const char *alpha2)
1660 {
1661 struct regulatory_request *request;
1662
1663 BUG_ON(!alpha2);
1664
1665 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1666 if (!request)
1667 return -ENOMEM;
1668
1669 request->wiphy_idx = WIPHY_IDX_STALE;
1670 request->alpha2[0] = alpha2[0];
1671 request->alpha2[1] = alpha2[1];
1672 request->initiator = NL80211_REGDOM_SET_BY_USER;
1673
1674 queue_regulatory_request(request);
1675
1676 return 0;
1677 }
1678
1679 /* Driver hints */
regulatory_hint(struct wiphy * wiphy,const char * alpha2)1680 int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
1681 {
1682 struct regulatory_request *request;
1683
1684 BUG_ON(!alpha2);
1685 BUG_ON(!wiphy);
1686
1687 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1688 if (!request)
1689 return -ENOMEM;
1690
1691 request->wiphy_idx = get_wiphy_idx(wiphy);
1692
1693 /* Must have registered wiphy first */
1694 BUG_ON(!wiphy_idx_valid(request->wiphy_idx));
1695
1696 request->alpha2[0] = alpha2[0];
1697 request->alpha2[1] = alpha2[1];
1698 request->initiator = NL80211_REGDOM_SET_BY_DRIVER;
1699
1700 queue_regulatory_request(request);
1701
1702 return 0;
1703 }
1704 EXPORT_SYMBOL(regulatory_hint);
1705
1706 /*
1707 * We hold wdev_lock() here so we cannot hold cfg80211_mutex() and
1708 * therefore cannot iterate over the rdev list here.
1709 */
regulatory_hint_11d(struct wiphy * wiphy,enum ieee80211_band band,u8 * country_ie,u8 country_ie_len)1710 void regulatory_hint_11d(struct wiphy *wiphy,
1711 enum ieee80211_band band,
1712 u8 *country_ie,
1713 u8 country_ie_len)
1714 {
1715 char alpha2[2];
1716 enum environment_cap env = ENVIRON_ANY;
1717 struct regulatory_request *request;
1718
1719 mutex_lock(®_mutex);
1720
1721 if (unlikely(!last_request))
1722 goto out;
1723
1724 /* IE len must be evenly divisible by 2 */
1725 if (country_ie_len & 0x01)
1726 goto out;
1727
1728 if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
1729 goto out;
1730
1731 alpha2[0] = country_ie[0];
1732 alpha2[1] = country_ie[1];
1733
1734 if (country_ie[2] == 'I')
1735 env = ENVIRON_INDOOR;
1736 else if (country_ie[2] == 'O')
1737 env = ENVIRON_OUTDOOR;
1738
1739 /*
1740 * We will run this only upon a successful connection on cfg80211.
1741 * We leave conflict resolution to the workqueue, where can hold
1742 * cfg80211_mutex.
1743 */
1744 if (likely(last_request->initiator ==
1745 NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1746 wiphy_idx_valid(last_request->wiphy_idx)))
1747 goto out;
1748
1749 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1750 if (!request)
1751 goto out;
1752
1753 request->wiphy_idx = get_wiphy_idx(wiphy);
1754 request->alpha2[0] = alpha2[0];
1755 request->alpha2[1] = alpha2[1];
1756 request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE;
1757 request->country_ie_env = env;
1758
1759 mutex_unlock(®_mutex);
1760
1761 queue_regulatory_request(request);
1762
1763 return;
1764
1765 out:
1766 mutex_unlock(®_mutex);
1767 }
1768
restore_alpha2(char * alpha2,bool reset_user)1769 static void restore_alpha2(char *alpha2, bool reset_user)
1770 {
1771 /* indicates there is no alpha2 to consider for restoration */
1772 alpha2[0] = '9';
1773 alpha2[1] = '7';
1774
1775 /* The user setting has precedence over the module parameter */
1776 if (is_user_regdom_saved()) {
1777 /* Unless we're asked to ignore it and reset it */
1778 if (reset_user) {
1779 REG_DBG_PRINT("Restoring regulatory settings "
1780 "including user preference\n");
1781 user_alpha2[0] = '9';
1782 user_alpha2[1] = '7';
1783
1784 /*
1785 * If we're ignoring user settings, we still need to
1786 * check the module parameter to ensure we put things
1787 * back as they were for a full restore.
1788 */
1789 if (!is_world_regdom(ieee80211_regdom)) {
1790 REG_DBG_PRINT("Keeping preference on "
1791 "module parameter ieee80211_regdom: %c%c\n",
1792 ieee80211_regdom[0],
1793 ieee80211_regdom[1]);
1794 alpha2[0] = ieee80211_regdom[0];
1795 alpha2[1] = ieee80211_regdom[1];
1796 }
1797 } else {
1798 REG_DBG_PRINT("Restoring regulatory settings "
1799 "while preserving user preference for: %c%c\n",
1800 user_alpha2[0],
1801 user_alpha2[1]);
1802 alpha2[0] = user_alpha2[0];
1803 alpha2[1] = user_alpha2[1];
1804 }
1805 } else if (!is_world_regdom(ieee80211_regdom)) {
1806 REG_DBG_PRINT("Keeping preference on "
1807 "module parameter ieee80211_regdom: %c%c\n",
1808 ieee80211_regdom[0],
1809 ieee80211_regdom[1]);
1810 alpha2[0] = ieee80211_regdom[0];
1811 alpha2[1] = ieee80211_regdom[1];
1812 } else
1813 REG_DBG_PRINT("Restoring regulatory settings\n");
1814 }
1815
restore_custom_reg_settings(struct wiphy * wiphy)1816 static void restore_custom_reg_settings(struct wiphy *wiphy)
1817 {
1818 struct ieee80211_supported_band *sband;
1819 enum ieee80211_band band;
1820 struct ieee80211_channel *chan;
1821 int i;
1822
1823 for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1824 sband = wiphy->bands[band];
1825 if (!sband)
1826 continue;
1827 for (i = 0; i < sband->n_channels; i++) {
1828 chan = &sband->channels[i];
1829 chan->flags = chan->orig_flags;
1830 chan->max_antenna_gain = chan->orig_mag;
1831 chan->max_power = chan->orig_mpwr;
1832 }
1833 }
1834 }
1835
1836 /*
1837 * Restoring regulatory settings involves ingoring any
1838 * possibly stale country IE information and user regulatory
1839 * settings if so desired, this includes any beacon hints
1840 * learned as we could have traveled outside to another country
1841 * after disconnection. To restore regulatory settings we do
1842 * exactly what we did at bootup:
1843 *
1844 * - send a core regulatory hint
1845 * - send a user regulatory hint if applicable
1846 *
1847 * Device drivers that send a regulatory hint for a specific country
1848 * keep their own regulatory domain on wiphy->regd so that does does
1849 * not need to be remembered.
1850 */
restore_regulatory_settings(bool reset_user)1851 static void restore_regulatory_settings(bool reset_user)
1852 {
1853 char alpha2[2];
1854 char world_alpha2[2];
1855 struct reg_beacon *reg_beacon, *btmp;
1856 struct regulatory_request *reg_request, *tmp;
1857 LIST_HEAD(tmp_reg_req_list);
1858 struct cfg80211_registered_device *rdev;
1859
1860 mutex_lock(&cfg80211_mutex);
1861 mutex_lock(®_mutex);
1862
1863 reset_regdomains(true);
1864 restore_alpha2(alpha2, reset_user);
1865
1866 /*
1867 * If there's any pending requests we simply
1868 * stash them to a temporary pending queue and
1869 * add then after we've restored regulatory
1870 * settings.
1871 */
1872 spin_lock(®_requests_lock);
1873 if (!list_empty(®_requests_list)) {
1874 list_for_each_entry_safe(reg_request, tmp,
1875 ®_requests_list, list) {
1876 if (reg_request->initiator !=
1877 NL80211_REGDOM_SET_BY_USER)
1878 continue;
1879 list_del(®_request->list);
1880 list_add_tail(®_request->list, &tmp_reg_req_list);
1881 }
1882 }
1883 spin_unlock(®_requests_lock);
1884
1885 /* Clear beacon hints */
1886 spin_lock_bh(®_pending_beacons_lock);
1887 if (!list_empty(®_pending_beacons)) {
1888 list_for_each_entry_safe(reg_beacon, btmp,
1889 ®_pending_beacons, list) {
1890 list_del(®_beacon->list);
1891 kfree(reg_beacon);
1892 }
1893 }
1894 spin_unlock_bh(®_pending_beacons_lock);
1895
1896 if (!list_empty(®_beacon_list)) {
1897 list_for_each_entry_safe(reg_beacon, btmp,
1898 ®_beacon_list, list) {
1899 list_del(®_beacon->list);
1900 kfree(reg_beacon);
1901 }
1902 }
1903
1904 /* First restore to the basic regulatory settings */
1905 cfg80211_regdomain = cfg80211_world_regdom;
1906 world_alpha2[0] = cfg80211_regdomain->alpha2[0];
1907 world_alpha2[1] = cfg80211_regdomain->alpha2[1];
1908
1909 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
1910 if (rdev->wiphy.flags & WIPHY_FLAG_CUSTOM_REGULATORY)
1911 restore_custom_reg_settings(&rdev->wiphy);
1912 }
1913
1914 mutex_unlock(®_mutex);
1915 mutex_unlock(&cfg80211_mutex);
1916
1917 regulatory_hint_core(world_alpha2);
1918
1919 /*
1920 * This restores the ieee80211_regdom module parameter
1921 * preference or the last user requested regulatory
1922 * settings, user regulatory settings takes precedence.
1923 */
1924 if (is_an_alpha2(alpha2))
1925 regulatory_hint_user(user_alpha2);
1926
1927 if (list_empty(&tmp_reg_req_list))
1928 return;
1929
1930 mutex_lock(&cfg80211_mutex);
1931 mutex_lock(®_mutex);
1932
1933 spin_lock(®_requests_lock);
1934 list_for_each_entry_safe(reg_request, tmp, &tmp_reg_req_list, list) {
1935 REG_DBG_PRINT("Adding request for country %c%c back "
1936 "into the queue\n",
1937 reg_request->alpha2[0],
1938 reg_request->alpha2[1]);
1939 list_del(®_request->list);
1940 list_add_tail(®_request->list, ®_requests_list);
1941 }
1942 spin_unlock(®_requests_lock);
1943
1944 mutex_unlock(®_mutex);
1945 mutex_unlock(&cfg80211_mutex);
1946
1947 REG_DBG_PRINT("Kicking the queue\n");
1948
1949 schedule_work(®_work);
1950 }
1951
regulatory_hint_disconnect(void)1952 void regulatory_hint_disconnect(void)
1953 {
1954 REG_DBG_PRINT("All devices are disconnected, going to "
1955 "restore regulatory settings\n");
1956 restore_regulatory_settings(false);
1957 }
1958
freq_is_chan_12_13_14(u16 freq)1959 static bool freq_is_chan_12_13_14(u16 freq)
1960 {
1961 if (freq == ieee80211_channel_to_frequency(12, IEEE80211_BAND_2GHZ) ||
1962 freq == ieee80211_channel_to_frequency(13, IEEE80211_BAND_2GHZ) ||
1963 freq == ieee80211_channel_to_frequency(14, IEEE80211_BAND_2GHZ))
1964 return true;
1965 return false;
1966 }
1967
regulatory_hint_found_beacon(struct wiphy * wiphy,struct ieee80211_channel * beacon_chan,gfp_t gfp)1968 int regulatory_hint_found_beacon(struct wiphy *wiphy,
1969 struct ieee80211_channel *beacon_chan,
1970 gfp_t gfp)
1971 {
1972 struct reg_beacon *reg_beacon;
1973
1974 if (likely((beacon_chan->beacon_found ||
1975 (beacon_chan->flags & IEEE80211_CHAN_RADAR) ||
1976 (beacon_chan->band == IEEE80211_BAND_2GHZ &&
1977 !freq_is_chan_12_13_14(beacon_chan->center_freq)))))
1978 return 0;
1979
1980 reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp);
1981 if (!reg_beacon)
1982 return -ENOMEM;
1983
1984 REG_DBG_PRINT("Found new beacon on "
1985 "frequency: %d MHz (Ch %d) on %s\n",
1986 beacon_chan->center_freq,
1987 ieee80211_frequency_to_channel(beacon_chan->center_freq),
1988 wiphy_name(wiphy));
1989
1990 memcpy(®_beacon->chan, beacon_chan,
1991 sizeof(struct ieee80211_channel));
1992
1993
1994 /*
1995 * Since we can be called from BH or and non-BH context
1996 * we must use spin_lock_bh()
1997 */
1998 spin_lock_bh(®_pending_beacons_lock);
1999 list_add_tail(®_beacon->list, ®_pending_beacons);
2000 spin_unlock_bh(®_pending_beacons_lock);
2001
2002 schedule_work(®_work);
2003
2004 return 0;
2005 }
2006
print_rd_rules(const struct ieee80211_regdomain * rd)2007 static void print_rd_rules(const struct ieee80211_regdomain *rd)
2008 {
2009 unsigned int i;
2010 const struct ieee80211_reg_rule *reg_rule = NULL;
2011 const struct ieee80211_freq_range *freq_range = NULL;
2012 const struct ieee80211_power_rule *power_rule = NULL;
2013
2014 pr_info(" (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp)\n");
2015
2016 for (i = 0; i < rd->n_reg_rules; i++) {
2017 reg_rule = &rd->reg_rules[i];
2018 freq_range = ®_rule->freq_range;
2019 power_rule = ®_rule->power_rule;
2020
2021 /*
2022 * There may not be documentation for max antenna gain
2023 * in certain regions
2024 */
2025 if (power_rule->max_antenna_gain)
2026 pr_info(" (%d KHz - %d KHz @ %d KHz), (%d mBi, %d mBm)\n",
2027 freq_range->start_freq_khz,
2028 freq_range->end_freq_khz,
2029 freq_range->max_bandwidth_khz,
2030 power_rule->max_antenna_gain,
2031 power_rule->max_eirp);
2032 else
2033 pr_info(" (%d KHz - %d KHz @ %d KHz), (N/A, %d mBm)\n",
2034 freq_range->start_freq_khz,
2035 freq_range->end_freq_khz,
2036 freq_range->max_bandwidth_khz,
2037 power_rule->max_eirp);
2038 }
2039 }
2040
reg_supported_dfs_region(u8 dfs_region)2041 bool reg_supported_dfs_region(u8 dfs_region)
2042 {
2043 switch (dfs_region) {
2044 case NL80211_DFS_UNSET:
2045 case NL80211_DFS_FCC:
2046 case NL80211_DFS_ETSI:
2047 case NL80211_DFS_JP:
2048 return true;
2049 default:
2050 REG_DBG_PRINT("Ignoring uknown DFS master region: %d\n",
2051 dfs_region);
2052 return false;
2053 }
2054 }
2055
print_dfs_region(u8 dfs_region)2056 static void print_dfs_region(u8 dfs_region)
2057 {
2058 if (!dfs_region)
2059 return;
2060
2061 switch (dfs_region) {
2062 case NL80211_DFS_FCC:
2063 pr_info(" DFS Master region FCC");
2064 break;
2065 case NL80211_DFS_ETSI:
2066 pr_info(" DFS Master region ETSI");
2067 break;
2068 case NL80211_DFS_JP:
2069 pr_info(" DFS Master region JP");
2070 break;
2071 default:
2072 pr_info(" DFS Master region Uknown");
2073 break;
2074 }
2075 }
2076
print_regdomain(const struct ieee80211_regdomain * rd)2077 static void print_regdomain(const struct ieee80211_regdomain *rd)
2078 {
2079
2080 if (is_intersected_alpha2(rd->alpha2)) {
2081
2082 if (last_request->initiator ==
2083 NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2084 struct cfg80211_registered_device *rdev;
2085 rdev = cfg80211_rdev_by_wiphy_idx(
2086 last_request->wiphy_idx);
2087 if (rdev) {
2088 pr_info("Current regulatory domain updated by AP to: %c%c\n",
2089 rdev->country_ie_alpha2[0],
2090 rdev->country_ie_alpha2[1]);
2091 } else
2092 pr_info("Current regulatory domain intersected:\n");
2093 } else
2094 pr_info("Current regulatory domain intersected:\n");
2095 } else if (is_world_regdom(rd->alpha2))
2096 pr_info("World regulatory domain updated:\n");
2097 else {
2098 if (is_unknown_alpha2(rd->alpha2))
2099 pr_info("Regulatory domain changed to driver built-in settings (unknown country)\n");
2100 else
2101 pr_info("Regulatory domain changed to country: %c%c\n",
2102 rd->alpha2[0], rd->alpha2[1]);
2103 }
2104 print_dfs_region(rd->dfs_region);
2105 print_rd_rules(rd);
2106 }
2107
print_regdomain_info(const struct ieee80211_regdomain * rd)2108 static void print_regdomain_info(const struct ieee80211_regdomain *rd)
2109 {
2110 pr_info("Regulatory domain: %c%c\n", rd->alpha2[0], rd->alpha2[1]);
2111 print_rd_rules(rd);
2112 }
2113
2114 /* Takes ownership of rd only if it doesn't fail */
__set_regdom(const struct ieee80211_regdomain * rd)2115 static int __set_regdom(const struct ieee80211_regdomain *rd)
2116 {
2117 const struct ieee80211_regdomain *intersected_rd = NULL;
2118 struct cfg80211_registered_device *rdev = NULL;
2119 struct wiphy *request_wiphy;
2120 /* Some basic sanity checks first */
2121
2122 if (is_world_regdom(rd->alpha2)) {
2123 if (WARN_ON(!reg_is_valid_request(rd->alpha2)))
2124 return -EINVAL;
2125 update_world_regdomain(rd);
2126 return 0;
2127 }
2128
2129 if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
2130 !is_unknown_alpha2(rd->alpha2))
2131 return -EINVAL;
2132
2133 if (!last_request)
2134 return -EINVAL;
2135
2136 /*
2137 * Lets only bother proceeding on the same alpha2 if the current
2138 * rd is non static (it means CRDA was present and was used last)
2139 * and the pending request came in from a country IE
2140 */
2141 if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2142 /*
2143 * If someone else asked us to change the rd lets only bother
2144 * checking if the alpha2 changes if CRDA was already called
2145 */
2146 if (!regdom_changes(rd->alpha2))
2147 return -EINVAL;
2148 }
2149
2150 /*
2151 * Now lets set the regulatory domain, update all driver channels
2152 * and finally inform them of what we have done, in case they want
2153 * to review or adjust their own settings based on their own
2154 * internal EEPROM data
2155 */
2156
2157 if (WARN_ON(!reg_is_valid_request(rd->alpha2)))
2158 return -EINVAL;
2159
2160 if (!is_valid_rd(rd)) {
2161 pr_err("Invalid regulatory domain detected:\n");
2162 print_regdomain_info(rd);
2163 return -EINVAL;
2164 }
2165
2166 request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
2167 if (!request_wiphy &&
2168 (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
2169 last_request->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)) {
2170 schedule_delayed_work(®_timeout, 0);
2171 return -ENODEV;
2172 }
2173
2174 if (!last_request->intersect) {
2175 int r;
2176
2177 if (last_request->initiator != NL80211_REGDOM_SET_BY_DRIVER) {
2178 reset_regdomains(false);
2179 cfg80211_regdomain = rd;
2180 return 0;
2181 }
2182
2183 /*
2184 * For a driver hint, lets copy the regulatory domain the
2185 * driver wanted to the wiphy to deal with conflicts
2186 */
2187
2188 /*
2189 * Userspace could have sent two replies with only
2190 * one kernel request.
2191 */
2192 if (request_wiphy->regd)
2193 return -EALREADY;
2194
2195 r = reg_copy_regd(&request_wiphy->regd, rd);
2196 if (r)
2197 return r;
2198
2199 reset_regdomains(false);
2200 cfg80211_regdomain = rd;
2201 return 0;
2202 }
2203
2204 /* Intersection requires a bit more work */
2205
2206 if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2207
2208 intersected_rd = regdom_intersect(rd, cfg80211_regdomain);
2209 if (!intersected_rd)
2210 return -EINVAL;
2211
2212 /*
2213 * We can trash what CRDA provided now.
2214 * However if a driver requested this specific regulatory
2215 * domain we keep it for its private use
2216 */
2217 if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER)
2218 request_wiphy->regd = rd;
2219 else
2220 kfree(rd);
2221
2222 rd = NULL;
2223
2224 reset_regdomains(false);
2225 cfg80211_regdomain = intersected_rd;
2226
2227 return 0;
2228 }
2229
2230 if (!intersected_rd)
2231 return -EINVAL;
2232
2233 rdev = wiphy_to_dev(request_wiphy);
2234
2235 rdev->country_ie_alpha2[0] = rd->alpha2[0];
2236 rdev->country_ie_alpha2[1] = rd->alpha2[1];
2237 rdev->env = last_request->country_ie_env;
2238
2239 BUG_ON(intersected_rd == rd);
2240
2241 kfree(rd);
2242 rd = NULL;
2243
2244 reset_regdomains(false);
2245 cfg80211_regdomain = intersected_rd;
2246
2247 return 0;
2248 }
2249
2250
2251 /*
2252 * Use this call to set the current regulatory domain. Conflicts with
2253 * multiple drivers can be ironed out later. Caller must've already
2254 * kmalloc'd the rd structure. Caller must hold cfg80211_mutex
2255 */
set_regdom(const struct ieee80211_regdomain * rd)2256 int set_regdom(const struct ieee80211_regdomain *rd)
2257 {
2258 int r;
2259
2260 assert_cfg80211_lock();
2261
2262 mutex_lock(®_mutex);
2263
2264 /* Note that this doesn't update the wiphys, this is done below */
2265 r = __set_regdom(rd);
2266 if (r) {
2267 kfree(rd);
2268 mutex_unlock(®_mutex);
2269 return r;
2270 }
2271
2272 /* This would make this whole thing pointless */
2273 if (!last_request->intersect)
2274 BUG_ON(rd != cfg80211_regdomain);
2275
2276 /* update all wiphys now with the new established regulatory domain */
2277 update_all_wiphy_regulatory(last_request->initiator);
2278
2279 print_regdomain(cfg80211_regdomain);
2280
2281 nl80211_send_reg_change_event(last_request);
2282
2283 reg_set_request_processed();
2284
2285 mutex_unlock(®_mutex);
2286
2287 return r;
2288 }
2289
2290 #ifdef CONFIG_HOTPLUG
reg_device_uevent(struct device * dev,struct kobj_uevent_env * env)2291 int reg_device_uevent(struct device *dev, struct kobj_uevent_env *env)
2292 {
2293 if (last_request && !last_request->processed) {
2294 if (add_uevent_var(env, "COUNTRY=%c%c",
2295 last_request->alpha2[0],
2296 last_request->alpha2[1]))
2297 return -ENOMEM;
2298 }
2299
2300 return 0;
2301 }
2302 #else
reg_device_uevent(struct device * dev,struct kobj_uevent_env * env)2303 int reg_device_uevent(struct device *dev, struct kobj_uevent_env *env)
2304 {
2305 return -ENODEV;
2306 }
2307 #endif /* CONFIG_HOTPLUG */
2308
2309 /* Caller must hold cfg80211_mutex */
reg_device_remove(struct wiphy * wiphy)2310 void reg_device_remove(struct wiphy *wiphy)
2311 {
2312 struct wiphy *request_wiphy = NULL;
2313
2314 assert_cfg80211_lock();
2315
2316 mutex_lock(®_mutex);
2317
2318 kfree(wiphy->regd);
2319
2320 if (last_request)
2321 request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
2322
2323 if (!request_wiphy || request_wiphy != wiphy)
2324 goto out;
2325
2326 last_request->wiphy_idx = WIPHY_IDX_STALE;
2327 last_request->country_ie_env = ENVIRON_ANY;
2328 out:
2329 mutex_unlock(®_mutex);
2330 }
2331
reg_timeout_work(struct work_struct * work)2332 static void reg_timeout_work(struct work_struct *work)
2333 {
2334 REG_DBG_PRINT("Timeout while waiting for CRDA to reply, "
2335 "restoring regulatory settings\n");
2336 restore_regulatory_settings(true);
2337 }
2338
regulatory_init(void)2339 int __init regulatory_init(void)
2340 {
2341 int err = 0;
2342
2343 reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
2344 if (IS_ERR(reg_pdev))
2345 return PTR_ERR(reg_pdev);
2346
2347 reg_pdev->dev.type = ®_device_type;
2348
2349 spin_lock_init(®_requests_lock);
2350 spin_lock_init(®_pending_beacons_lock);
2351
2352 reg_regdb_size_check();
2353
2354 cfg80211_regdomain = cfg80211_world_regdom;
2355
2356 user_alpha2[0] = '9';
2357 user_alpha2[1] = '7';
2358
2359 /* We always try to get an update for the static regdomain */
2360 err = regulatory_hint_core(cfg80211_regdomain->alpha2);
2361 if (err) {
2362 if (err == -ENOMEM)
2363 return err;
2364 /*
2365 * N.B. kobject_uevent_env() can fail mainly for when we're out
2366 * memory which is handled and propagated appropriately above
2367 * but it can also fail during a netlink_broadcast() or during
2368 * early boot for call_usermodehelper(). For now treat these
2369 * errors as non-fatal.
2370 */
2371 pr_err("kobject_uevent_env() was unable to call CRDA during init\n");
2372 #ifdef CONFIG_CFG80211_REG_DEBUG
2373 /* We want to find out exactly why when debugging */
2374 WARN_ON(err);
2375 #endif
2376 }
2377
2378 /*
2379 * Finally, if the user set the module parameter treat it
2380 * as a user hint.
2381 */
2382 if (!is_world_regdom(ieee80211_regdom))
2383 regulatory_hint_user(ieee80211_regdom);
2384
2385 return 0;
2386 }
2387
regulatory_exit(void)2388 void /* __init_or_exit */ regulatory_exit(void)
2389 {
2390 struct regulatory_request *reg_request, *tmp;
2391 struct reg_beacon *reg_beacon, *btmp;
2392
2393 cancel_work_sync(®_work);
2394 cancel_delayed_work_sync(®_timeout);
2395
2396 mutex_lock(&cfg80211_mutex);
2397 mutex_lock(®_mutex);
2398
2399 reset_regdomains(true);
2400
2401 dev_set_uevent_suppress(®_pdev->dev, true);
2402
2403 platform_device_unregister(reg_pdev);
2404
2405 spin_lock_bh(®_pending_beacons_lock);
2406 if (!list_empty(®_pending_beacons)) {
2407 list_for_each_entry_safe(reg_beacon, btmp,
2408 ®_pending_beacons, list) {
2409 list_del(®_beacon->list);
2410 kfree(reg_beacon);
2411 }
2412 }
2413 spin_unlock_bh(®_pending_beacons_lock);
2414
2415 if (!list_empty(®_beacon_list)) {
2416 list_for_each_entry_safe(reg_beacon, btmp,
2417 ®_beacon_list, list) {
2418 list_del(®_beacon->list);
2419 kfree(reg_beacon);
2420 }
2421 }
2422
2423 spin_lock(®_requests_lock);
2424 if (!list_empty(®_requests_list)) {
2425 list_for_each_entry_safe(reg_request, tmp,
2426 ®_requests_list, list) {
2427 list_del(®_request->list);
2428 kfree(reg_request);
2429 }
2430 }
2431 spin_unlock(®_requests_lock);
2432
2433 mutex_unlock(®_mutex);
2434 mutex_unlock(&cfg80211_mutex);
2435 }
2436