1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * NVMe over Fabrics RDMA target.
4 * Copyright (c) 2015-2016 HGST, a Western Digital Company.
5 */
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 #include <linux/atomic.h>
8 #include <linux/blk-integrity.h>
9 #include <linux/ctype.h>
10 #include <linux/delay.h>
11 #include <linux/err.h>
12 #include <linux/init.h>
13 #include <linux/module.h>
14 #include <linux/nvme.h>
15 #include <linux/slab.h>
16 #include <linux/string.h>
17 #include <linux/wait.h>
18 #include <linux/inet.h>
19 #include <asm/unaligned.h>
20
21 #include <rdma/ib_verbs.h>
22 #include <rdma/rdma_cm.h>
23 #include <rdma/rw.h>
24 #include <rdma/ib_cm.h>
25
26 #include <linux/nvme-rdma.h>
27 #include "nvmet.h"
28
29 /*
30 * We allow at least 1 page, up to 4 SGEs, and up to 16KB of inline data
31 */
32 #define NVMET_RDMA_DEFAULT_INLINE_DATA_SIZE PAGE_SIZE
33 #define NVMET_RDMA_MAX_INLINE_SGE 4
34 #define NVMET_RDMA_MAX_INLINE_DATA_SIZE max_t(int, SZ_16K, PAGE_SIZE)
35
36 /* Assume mpsmin == device_page_size == 4KB */
37 #define NVMET_RDMA_MAX_MDTS 8
38 #define NVMET_RDMA_MAX_METADATA_MDTS 5
39
40 struct nvmet_rdma_srq;
41
42 struct nvmet_rdma_cmd {
43 struct ib_sge sge[NVMET_RDMA_MAX_INLINE_SGE + 1];
44 struct ib_cqe cqe;
45 struct ib_recv_wr wr;
46 struct scatterlist inline_sg[NVMET_RDMA_MAX_INLINE_SGE];
47 struct nvme_command *nvme_cmd;
48 struct nvmet_rdma_queue *queue;
49 struct nvmet_rdma_srq *nsrq;
50 };
51
52 enum {
53 NVMET_RDMA_REQ_INLINE_DATA = (1 << 0),
54 NVMET_RDMA_REQ_INVALIDATE_RKEY = (1 << 1),
55 };
56
57 struct nvmet_rdma_rsp {
58 struct ib_sge send_sge;
59 struct ib_cqe send_cqe;
60 struct ib_send_wr send_wr;
61
62 struct nvmet_rdma_cmd *cmd;
63 struct nvmet_rdma_queue *queue;
64
65 struct ib_cqe read_cqe;
66 struct ib_cqe write_cqe;
67 struct rdma_rw_ctx rw;
68
69 struct nvmet_req req;
70
71 bool allocated;
72 u8 n_rdma;
73 u32 flags;
74 u32 invalidate_rkey;
75
76 struct list_head wait_list;
77 struct list_head free_list;
78 };
79
80 enum nvmet_rdma_queue_state {
81 NVMET_RDMA_Q_CONNECTING,
82 NVMET_RDMA_Q_LIVE,
83 NVMET_RDMA_Q_DISCONNECTING,
84 };
85
86 struct nvmet_rdma_queue {
87 struct rdma_cm_id *cm_id;
88 struct ib_qp *qp;
89 struct nvmet_port *port;
90 struct ib_cq *cq;
91 atomic_t sq_wr_avail;
92 struct nvmet_rdma_device *dev;
93 struct nvmet_rdma_srq *nsrq;
94 spinlock_t state_lock;
95 enum nvmet_rdma_queue_state state;
96 struct nvmet_cq nvme_cq;
97 struct nvmet_sq nvme_sq;
98
99 struct nvmet_rdma_rsp *rsps;
100 struct list_head free_rsps;
101 spinlock_t rsps_lock;
102 struct nvmet_rdma_cmd *cmds;
103
104 struct work_struct release_work;
105 struct list_head rsp_wait_list;
106 struct list_head rsp_wr_wait_list;
107 spinlock_t rsp_wr_wait_lock;
108
109 int idx;
110 int host_qid;
111 int comp_vector;
112 int recv_queue_size;
113 int send_queue_size;
114
115 struct list_head queue_list;
116 };
117
118 struct nvmet_rdma_port {
119 struct nvmet_port *nport;
120 struct sockaddr_storage addr;
121 struct rdma_cm_id *cm_id;
122 struct delayed_work repair_work;
123 };
124
125 struct nvmet_rdma_srq {
126 struct ib_srq *srq;
127 struct nvmet_rdma_cmd *cmds;
128 struct nvmet_rdma_device *ndev;
129 };
130
131 struct nvmet_rdma_device {
132 struct ib_device *device;
133 struct ib_pd *pd;
134 struct nvmet_rdma_srq **srqs;
135 int srq_count;
136 size_t srq_size;
137 struct kref ref;
138 struct list_head entry;
139 int inline_data_size;
140 int inline_page_count;
141 };
142
143 static bool nvmet_rdma_use_srq;
144 module_param_named(use_srq, nvmet_rdma_use_srq, bool, 0444);
145 MODULE_PARM_DESC(use_srq, "Use shared receive queue.");
146
147 static int srq_size_set(const char *val, const struct kernel_param *kp);
148 static const struct kernel_param_ops srq_size_ops = {
149 .set = srq_size_set,
150 .get = param_get_int,
151 };
152
153 static int nvmet_rdma_srq_size = 1024;
154 module_param_cb(srq_size, &srq_size_ops, &nvmet_rdma_srq_size, 0644);
155 MODULE_PARM_DESC(srq_size, "set Shared Receive Queue (SRQ) size, should >= 256 (default: 1024)");
156
157 static DEFINE_IDA(nvmet_rdma_queue_ida);
158 static LIST_HEAD(nvmet_rdma_queue_list);
159 static DEFINE_MUTEX(nvmet_rdma_queue_mutex);
160
161 static LIST_HEAD(device_list);
162 static DEFINE_MUTEX(device_list_mutex);
163
164 static bool nvmet_rdma_execute_command(struct nvmet_rdma_rsp *rsp);
165 static void nvmet_rdma_send_done(struct ib_cq *cq, struct ib_wc *wc);
166 static void nvmet_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc);
167 static void nvmet_rdma_read_data_done(struct ib_cq *cq, struct ib_wc *wc);
168 static void nvmet_rdma_write_data_done(struct ib_cq *cq, struct ib_wc *wc);
169 static void nvmet_rdma_qp_event(struct ib_event *event, void *priv);
170 static void nvmet_rdma_queue_disconnect(struct nvmet_rdma_queue *queue);
171 static void nvmet_rdma_free_rsp(struct nvmet_rdma_device *ndev,
172 struct nvmet_rdma_rsp *r);
173 static int nvmet_rdma_alloc_rsp(struct nvmet_rdma_device *ndev,
174 struct nvmet_rdma_rsp *r);
175
176 static const struct nvmet_fabrics_ops nvmet_rdma_ops;
177
srq_size_set(const char * val,const struct kernel_param * kp)178 static int srq_size_set(const char *val, const struct kernel_param *kp)
179 {
180 int n = 0, ret;
181
182 ret = kstrtoint(val, 10, &n);
183 if (ret != 0 || n < 256)
184 return -EINVAL;
185
186 return param_set_int(val, kp);
187 }
188
num_pages(int len)189 static int num_pages(int len)
190 {
191 return 1 + (((len - 1) & PAGE_MASK) >> PAGE_SHIFT);
192 }
193
nvmet_rdma_need_data_in(struct nvmet_rdma_rsp * rsp)194 static inline bool nvmet_rdma_need_data_in(struct nvmet_rdma_rsp *rsp)
195 {
196 return nvme_is_write(rsp->req.cmd) &&
197 rsp->req.transfer_len &&
198 !(rsp->flags & NVMET_RDMA_REQ_INLINE_DATA);
199 }
200
nvmet_rdma_need_data_out(struct nvmet_rdma_rsp * rsp)201 static inline bool nvmet_rdma_need_data_out(struct nvmet_rdma_rsp *rsp)
202 {
203 return !nvme_is_write(rsp->req.cmd) &&
204 rsp->req.transfer_len &&
205 !rsp->req.cqe->status &&
206 !(rsp->flags & NVMET_RDMA_REQ_INLINE_DATA);
207 }
208
209 static inline struct nvmet_rdma_rsp *
nvmet_rdma_get_rsp(struct nvmet_rdma_queue * queue)210 nvmet_rdma_get_rsp(struct nvmet_rdma_queue *queue)
211 {
212 struct nvmet_rdma_rsp *rsp;
213 unsigned long flags;
214
215 spin_lock_irqsave(&queue->rsps_lock, flags);
216 rsp = list_first_entry_or_null(&queue->free_rsps,
217 struct nvmet_rdma_rsp, free_list);
218 if (likely(rsp))
219 list_del(&rsp->free_list);
220 spin_unlock_irqrestore(&queue->rsps_lock, flags);
221
222 if (unlikely(!rsp)) {
223 int ret;
224
225 rsp = kzalloc(sizeof(*rsp), GFP_KERNEL);
226 if (unlikely(!rsp))
227 return NULL;
228 ret = nvmet_rdma_alloc_rsp(queue->dev, rsp);
229 if (unlikely(ret)) {
230 kfree(rsp);
231 return NULL;
232 }
233
234 rsp->allocated = true;
235 }
236
237 return rsp;
238 }
239
240 static inline void
nvmet_rdma_put_rsp(struct nvmet_rdma_rsp * rsp)241 nvmet_rdma_put_rsp(struct nvmet_rdma_rsp *rsp)
242 {
243 unsigned long flags;
244
245 if (unlikely(rsp->allocated)) {
246 nvmet_rdma_free_rsp(rsp->queue->dev, rsp);
247 kfree(rsp);
248 return;
249 }
250
251 spin_lock_irqsave(&rsp->queue->rsps_lock, flags);
252 list_add_tail(&rsp->free_list, &rsp->queue->free_rsps);
253 spin_unlock_irqrestore(&rsp->queue->rsps_lock, flags);
254 }
255
nvmet_rdma_free_inline_pages(struct nvmet_rdma_device * ndev,struct nvmet_rdma_cmd * c)256 static void nvmet_rdma_free_inline_pages(struct nvmet_rdma_device *ndev,
257 struct nvmet_rdma_cmd *c)
258 {
259 struct scatterlist *sg;
260 struct ib_sge *sge;
261 int i;
262
263 if (!ndev->inline_data_size)
264 return;
265
266 sg = c->inline_sg;
267 sge = &c->sge[1];
268
269 for (i = 0; i < ndev->inline_page_count; i++, sg++, sge++) {
270 if (sge->length)
271 ib_dma_unmap_page(ndev->device, sge->addr,
272 sge->length, DMA_FROM_DEVICE);
273 if (sg_page(sg))
274 __free_page(sg_page(sg));
275 }
276 }
277
nvmet_rdma_alloc_inline_pages(struct nvmet_rdma_device * ndev,struct nvmet_rdma_cmd * c)278 static int nvmet_rdma_alloc_inline_pages(struct nvmet_rdma_device *ndev,
279 struct nvmet_rdma_cmd *c)
280 {
281 struct scatterlist *sg;
282 struct ib_sge *sge;
283 struct page *pg;
284 int len;
285 int i;
286
287 if (!ndev->inline_data_size)
288 return 0;
289
290 sg = c->inline_sg;
291 sg_init_table(sg, ndev->inline_page_count);
292 sge = &c->sge[1];
293 len = ndev->inline_data_size;
294
295 for (i = 0; i < ndev->inline_page_count; i++, sg++, sge++) {
296 pg = alloc_page(GFP_KERNEL);
297 if (!pg)
298 goto out_err;
299 sg_assign_page(sg, pg);
300 sge->addr = ib_dma_map_page(ndev->device,
301 pg, 0, PAGE_SIZE, DMA_FROM_DEVICE);
302 if (ib_dma_mapping_error(ndev->device, sge->addr))
303 goto out_err;
304 sge->length = min_t(int, len, PAGE_SIZE);
305 sge->lkey = ndev->pd->local_dma_lkey;
306 len -= sge->length;
307 }
308
309 return 0;
310 out_err:
311 for (; i >= 0; i--, sg--, sge--) {
312 if (sge->length)
313 ib_dma_unmap_page(ndev->device, sge->addr,
314 sge->length, DMA_FROM_DEVICE);
315 if (sg_page(sg))
316 __free_page(sg_page(sg));
317 }
318 return -ENOMEM;
319 }
320
nvmet_rdma_alloc_cmd(struct nvmet_rdma_device * ndev,struct nvmet_rdma_cmd * c,bool admin)321 static int nvmet_rdma_alloc_cmd(struct nvmet_rdma_device *ndev,
322 struct nvmet_rdma_cmd *c, bool admin)
323 {
324 /* NVMe command / RDMA RECV */
325 c->nvme_cmd = kmalloc(sizeof(*c->nvme_cmd), GFP_KERNEL);
326 if (!c->nvme_cmd)
327 goto out;
328
329 c->sge[0].addr = ib_dma_map_single(ndev->device, c->nvme_cmd,
330 sizeof(*c->nvme_cmd), DMA_FROM_DEVICE);
331 if (ib_dma_mapping_error(ndev->device, c->sge[0].addr))
332 goto out_free_cmd;
333
334 c->sge[0].length = sizeof(*c->nvme_cmd);
335 c->sge[0].lkey = ndev->pd->local_dma_lkey;
336
337 if (!admin && nvmet_rdma_alloc_inline_pages(ndev, c))
338 goto out_unmap_cmd;
339
340 c->cqe.done = nvmet_rdma_recv_done;
341
342 c->wr.wr_cqe = &c->cqe;
343 c->wr.sg_list = c->sge;
344 c->wr.num_sge = admin ? 1 : ndev->inline_page_count + 1;
345
346 return 0;
347
348 out_unmap_cmd:
349 ib_dma_unmap_single(ndev->device, c->sge[0].addr,
350 sizeof(*c->nvme_cmd), DMA_FROM_DEVICE);
351 out_free_cmd:
352 kfree(c->nvme_cmd);
353
354 out:
355 return -ENOMEM;
356 }
357
nvmet_rdma_free_cmd(struct nvmet_rdma_device * ndev,struct nvmet_rdma_cmd * c,bool admin)358 static void nvmet_rdma_free_cmd(struct nvmet_rdma_device *ndev,
359 struct nvmet_rdma_cmd *c, bool admin)
360 {
361 if (!admin)
362 nvmet_rdma_free_inline_pages(ndev, c);
363 ib_dma_unmap_single(ndev->device, c->sge[0].addr,
364 sizeof(*c->nvme_cmd), DMA_FROM_DEVICE);
365 kfree(c->nvme_cmd);
366 }
367
368 static struct nvmet_rdma_cmd *
nvmet_rdma_alloc_cmds(struct nvmet_rdma_device * ndev,int nr_cmds,bool admin)369 nvmet_rdma_alloc_cmds(struct nvmet_rdma_device *ndev,
370 int nr_cmds, bool admin)
371 {
372 struct nvmet_rdma_cmd *cmds;
373 int ret = -EINVAL, i;
374
375 cmds = kcalloc(nr_cmds, sizeof(struct nvmet_rdma_cmd), GFP_KERNEL);
376 if (!cmds)
377 goto out;
378
379 for (i = 0; i < nr_cmds; i++) {
380 ret = nvmet_rdma_alloc_cmd(ndev, cmds + i, admin);
381 if (ret)
382 goto out_free;
383 }
384
385 return cmds;
386
387 out_free:
388 while (--i >= 0)
389 nvmet_rdma_free_cmd(ndev, cmds + i, admin);
390 kfree(cmds);
391 out:
392 return ERR_PTR(ret);
393 }
394
nvmet_rdma_free_cmds(struct nvmet_rdma_device * ndev,struct nvmet_rdma_cmd * cmds,int nr_cmds,bool admin)395 static void nvmet_rdma_free_cmds(struct nvmet_rdma_device *ndev,
396 struct nvmet_rdma_cmd *cmds, int nr_cmds, bool admin)
397 {
398 int i;
399
400 for (i = 0; i < nr_cmds; i++)
401 nvmet_rdma_free_cmd(ndev, cmds + i, admin);
402 kfree(cmds);
403 }
404
nvmet_rdma_alloc_rsp(struct nvmet_rdma_device * ndev,struct nvmet_rdma_rsp * r)405 static int nvmet_rdma_alloc_rsp(struct nvmet_rdma_device *ndev,
406 struct nvmet_rdma_rsp *r)
407 {
408 /* NVMe CQE / RDMA SEND */
409 r->req.cqe = kmalloc(sizeof(*r->req.cqe), GFP_KERNEL);
410 if (!r->req.cqe)
411 goto out;
412
413 r->send_sge.addr = ib_dma_map_single(ndev->device, r->req.cqe,
414 sizeof(*r->req.cqe), DMA_TO_DEVICE);
415 if (ib_dma_mapping_error(ndev->device, r->send_sge.addr))
416 goto out_free_rsp;
417
418 if (!ib_uses_virt_dma(ndev->device))
419 r->req.p2p_client = &ndev->device->dev;
420 r->send_sge.length = sizeof(*r->req.cqe);
421 r->send_sge.lkey = ndev->pd->local_dma_lkey;
422
423 r->send_cqe.done = nvmet_rdma_send_done;
424
425 r->send_wr.wr_cqe = &r->send_cqe;
426 r->send_wr.sg_list = &r->send_sge;
427 r->send_wr.num_sge = 1;
428 r->send_wr.send_flags = IB_SEND_SIGNALED;
429
430 /* Data In / RDMA READ */
431 r->read_cqe.done = nvmet_rdma_read_data_done;
432 /* Data Out / RDMA WRITE */
433 r->write_cqe.done = nvmet_rdma_write_data_done;
434
435 return 0;
436
437 out_free_rsp:
438 kfree(r->req.cqe);
439 out:
440 return -ENOMEM;
441 }
442
nvmet_rdma_free_rsp(struct nvmet_rdma_device * ndev,struct nvmet_rdma_rsp * r)443 static void nvmet_rdma_free_rsp(struct nvmet_rdma_device *ndev,
444 struct nvmet_rdma_rsp *r)
445 {
446 ib_dma_unmap_single(ndev->device, r->send_sge.addr,
447 sizeof(*r->req.cqe), DMA_TO_DEVICE);
448 kfree(r->req.cqe);
449 }
450
451 static int
nvmet_rdma_alloc_rsps(struct nvmet_rdma_queue * queue)452 nvmet_rdma_alloc_rsps(struct nvmet_rdma_queue *queue)
453 {
454 struct nvmet_rdma_device *ndev = queue->dev;
455 int nr_rsps = queue->recv_queue_size * 2;
456 int ret = -EINVAL, i;
457
458 queue->rsps = kcalloc(nr_rsps, sizeof(struct nvmet_rdma_rsp),
459 GFP_KERNEL);
460 if (!queue->rsps)
461 goto out;
462
463 for (i = 0; i < nr_rsps; i++) {
464 struct nvmet_rdma_rsp *rsp = &queue->rsps[i];
465
466 ret = nvmet_rdma_alloc_rsp(ndev, rsp);
467 if (ret)
468 goto out_free;
469
470 list_add_tail(&rsp->free_list, &queue->free_rsps);
471 }
472
473 return 0;
474
475 out_free:
476 while (--i >= 0) {
477 struct nvmet_rdma_rsp *rsp = &queue->rsps[i];
478
479 list_del(&rsp->free_list);
480 nvmet_rdma_free_rsp(ndev, rsp);
481 }
482 kfree(queue->rsps);
483 out:
484 return ret;
485 }
486
nvmet_rdma_free_rsps(struct nvmet_rdma_queue * queue)487 static void nvmet_rdma_free_rsps(struct nvmet_rdma_queue *queue)
488 {
489 struct nvmet_rdma_device *ndev = queue->dev;
490 int i, nr_rsps = queue->recv_queue_size * 2;
491
492 for (i = 0; i < nr_rsps; i++) {
493 struct nvmet_rdma_rsp *rsp = &queue->rsps[i];
494
495 list_del(&rsp->free_list);
496 nvmet_rdma_free_rsp(ndev, rsp);
497 }
498 kfree(queue->rsps);
499 }
500
nvmet_rdma_post_recv(struct nvmet_rdma_device * ndev,struct nvmet_rdma_cmd * cmd)501 static int nvmet_rdma_post_recv(struct nvmet_rdma_device *ndev,
502 struct nvmet_rdma_cmd *cmd)
503 {
504 int ret;
505
506 ib_dma_sync_single_for_device(ndev->device,
507 cmd->sge[0].addr, cmd->sge[0].length,
508 DMA_FROM_DEVICE);
509
510 if (cmd->nsrq)
511 ret = ib_post_srq_recv(cmd->nsrq->srq, &cmd->wr, NULL);
512 else
513 ret = ib_post_recv(cmd->queue->qp, &cmd->wr, NULL);
514
515 if (unlikely(ret))
516 pr_err("post_recv cmd failed\n");
517
518 return ret;
519 }
520
nvmet_rdma_process_wr_wait_list(struct nvmet_rdma_queue * queue)521 static void nvmet_rdma_process_wr_wait_list(struct nvmet_rdma_queue *queue)
522 {
523 spin_lock(&queue->rsp_wr_wait_lock);
524 while (!list_empty(&queue->rsp_wr_wait_list)) {
525 struct nvmet_rdma_rsp *rsp;
526 bool ret;
527
528 rsp = list_entry(queue->rsp_wr_wait_list.next,
529 struct nvmet_rdma_rsp, wait_list);
530 list_del(&rsp->wait_list);
531
532 spin_unlock(&queue->rsp_wr_wait_lock);
533 ret = nvmet_rdma_execute_command(rsp);
534 spin_lock(&queue->rsp_wr_wait_lock);
535
536 if (!ret) {
537 list_add(&rsp->wait_list, &queue->rsp_wr_wait_list);
538 break;
539 }
540 }
541 spin_unlock(&queue->rsp_wr_wait_lock);
542 }
543
nvmet_rdma_check_pi_status(struct ib_mr * sig_mr)544 static u16 nvmet_rdma_check_pi_status(struct ib_mr *sig_mr)
545 {
546 struct ib_mr_status mr_status;
547 int ret;
548 u16 status = 0;
549
550 ret = ib_check_mr_status(sig_mr, IB_MR_CHECK_SIG_STATUS, &mr_status);
551 if (ret) {
552 pr_err("ib_check_mr_status failed, ret %d\n", ret);
553 return NVME_SC_INVALID_PI;
554 }
555
556 if (mr_status.fail_status & IB_MR_CHECK_SIG_STATUS) {
557 switch (mr_status.sig_err.err_type) {
558 case IB_SIG_BAD_GUARD:
559 status = NVME_SC_GUARD_CHECK;
560 break;
561 case IB_SIG_BAD_REFTAG:
562 status = NVME_SC_REFTAG_CHECK;
563 break;
564 case IB_SIG_BAD_APPTAG:
565 status = NVME_SC_APPTAG_CHECK;
566 break;
567 }
568 pr_err("PI error found type %d expected 0x%x vs actual 0x%x\n",
569 mr_status.sig_err.err_type,
570 mr_status.sig_err.expected,
571 mr_status.sig_err.actual);
572 }
573
574 return status;
575 }
576
nvmet_rdma_set_sig_domain(struct blk_integrity * bi,struct nvme_command * cmd,struct ib_sig_domain * domain,u16 control,u8 pi_type)577 static void nvmet_rdma_set_sig_domain(struct blk_integrity *bi,
578 struct nvme_command *cmd, struct ib_sig_domain *domain,
579 u16 control, u8 pi_type)
580 {
581 domain->sig_type = IB_SIG_TYPE_T10_DIF;
582 domain->sig.dif.bg_type = IB_T10DIF_CRC;
583 domain->sig.dif.pi_interval = 1 << bi->interval_exp;
584 domain->sig.dif.ref_tag = le32_to_cpu(cmd->rw.reftag);
585 if (control & NVME_RW_PRINFO_PRCHK_REF)
586 domain->sig.dif.ref_remap = true;
587
588 domain->sig.dif.app_tag = le16_to_cpu(cmd->rw.apptag);
589 domain->sig.dif.apptag_check_mask = le16_to_cpu(cmd->rw.appmask);
590 domain->sig.dif.app_escape = true;
591 if (pi_type == NVME_NS_DPS_PI_TYPE3)
592 domain->sig.dif.ref_escape = true;
593 }
594
nvmet_rdma_set_sig_attrs(struct nvmet_req * req,struct ib_sig_attrs * sig_attrs)595 static void nvmet_rdma_set_sig_attrs(struct nvmet_req *req,
596 struct ib_sig_attrs *sig_attrs)
597 {
598 struct nvme_command *cmd = req->cmd;
599 u16 control = le16_to_cpu(cmd->rw.control);
600 u8 pi_type = req->ns->pi_type;
601 struct blk_integrity *bi;
602
603 bi = bdev_get_integrity(req->ns->bdev);
604
605 memset(sig_attrs, 0, sizeof(*sig_attrs));
606
607 if (control & NVME_RW_PRINFO_PRACT) {
608 /* for WRITE_INSERT/READ_STRIP no wire domain */
609 sig_attrs->wire.sig_type = IB_SIG_TYPE_NONE;
610 nvmet_rdma_set_sig_domain(bi, cmd, &sig_attrs->mem, control,
611 pi_type);
612 /* Clear the PRACT bit since HCA will generate/verify the PI */
613 control &= ~NVME_RW_PRINFO_PRACT;
614 cmd->rw.control = cpu_to_le16(control);
615 /* PI is added by the HW */
616 req->transfer_len += req->metadata_len;
617 } else {
618 /* for WRITE_PASS/READ_PASS both wire/memory domains exist */
619 nvmet_rdma_set_sig_domain(bi, cmd, &sig_attrs->wire, control,
620 pi_type);
621 nvmet_rdma_set_sig_domain(bi, cmd, &sig_attrs->mem, control,
622 pi_type);
623 }
624
625 if (control & NVME_RW_PRINFO_PRCHK_REF)
626 sig_attrs->check_mask |= IB_SIG_CHECK_REFTAG;
627 if (control & NVME_RW_PRINFO_PRCHK_GUARD)
628 sig_attrs->check_mask |= IB_SIG_CHECK_GUARD;
629 if (control & NVME_RW_PRINFO_PRCHK_APP)
630 sig_attrs->check_mask |= IB_SIG_CHECK_APPTAG;
631 }
632
nvmet_rdma_rw_ctx_init(struct nvmet_rdma_rsp * rsp,u64 addr,u32 key,struct ib_sig_attrs * sig_attrs)633 static int nvmet_rdma_rw_ctx_init(struct nvmet_rdma_rsp *rsp, u64 addr, u32 key,
634 struct ib_sig_attrs *sig_attrs)
635 {
636 struct rdma_cm_id *cm_id = rsp->queue->cm_id;
637 struct nvmet_req *req = &rsp->req;
638 int ret;
639
640 if (req->metadata_len)
641 ret = rdma_rw_ctx_signature_init(&rsp->rw, cm_id->qp,
642 cm_id->port_num, req->sg, req->sg_cnt,
643 req->metadata_sg, req->metadata_sg_cnt, sig_attrs,
644 addr, key, nvmet_data_dir(req));
645 else
646 ret = rdma_rw_ctx_init(&rsp->rw, cm_id->qp, cm_id->port_num,
647 req->sg, req->sg_cnt, 0, addr, key,
648 nvmet_data_dir(req));
649
650 return ret;
651 }
652
nvmet_rdma_rw_ctx_destroy(struct nvmet_rdma_rsp * rsp)653 static void nvmet_rdma_rw_ctx_destroy(struct nvmet_rdma_rsp *rsp)
654 {
655 struct rdma_cm_id *cm_id = rsp->queue->cm_id;
656 struct nvmet_req *req = &rsp->req;
657
658 if (req->metadata_len)
659 rdma_rw_ctx_destroy_signature(&rsp->rw, cm_id->qp,
660 cm_id->port_num, req->sg, req->sg_cnt,
661 req->metadata_sg, req->metadata_sg_cnt,
662 nvmet_data_dir(req));
663 else
664 rdma_rw_ctx_destroy(&rsp->rw, cm_id->qp, cm_id->port_num,
665 req->sg, req->sg_cnt, nvmet_data_dir(req));
666 }
667
nvmet_rdma_release_rsp(struct nvmet_rdma_rsp * rsp)668 static void nvmet_rdma_release_rsp(struct nvmet_rdma_rsp *rsp)
669 {
670 struct nvmet_rdma_queue *queue = rsp->queue;
671
672 atomic_add(1 + rsp->n_rdma, &queue->sq_wr_avail);
673
674 if (rsp->n_rdma)
675 nvmet_rdma_rw_ctx_destroy(rsp);
676
677 if (rsp->req.sg != rsp->cmd->inline_sg)
678 nvmet_req_free_sgls(&rsp->req);
679
680 if (unlikely(!list_empty_careful(&queue->rsp_wr_wait_list)))
681 nvmet_rdma_process_wr_wait_list(queue);
682
683 nvmet_rdma_put_rsp(rsp);
684 }
685
nvmet_rdma_error_comp(struct nvmet_rdma_queue * queue)686 static void nvmet_rdma_error_comp(struct nvmet_rdma_queue *queue)
687 {
688 if (queue->nvme_sq.ctrl) {
689 nvmet_ctrl_fatal_error(queue->nvme_sq.ctrl);
690 } else {
691 /*
692 * we didn't setup the controller yet in case
693 * of admin connect error, just disconnect and
694 * cleanup the queue
695 */
696 nvmet_rdma_queue_disconnect(queue);
697 }
698 }
699
nvmet_rdma_send_done(struct ib_cq * cq,struct ib_wc * wc)700 static void nvmet_rdma_send_done(struct ib_cq *cq, struct ib_wc *wc)
701 {
702 struct nvmet_rdma_rsp *rsp =
703 container_of(wc->wr_cqe, struct nvmet_rdma_rsp, send_cqe);
704 struct nvmet_rdma_queue *queue = wc->qp->qp_context;
705
706 nvmet_rdma_release_rsp(rsp);
707
708 if (unlikely(wc->status != IB_WC_SUCCESS &&
709 wc->status != IB_WC_WR_FLUSH_ERR)) {
710 pr_err("SEND for CQE 0x%p failed with status %s (%d).\n",
711 wc->wr_cqe, ib_wc_status_msg(wc->status), wc->status);
712 nvmet_rdma_error_comp(queue);
713 }
714 }
715
nvmet_rdma_queue_response(struct nvmet_req * req)716 static void nvmet_rdma_queue_response(struct nvmet_req *req)
717 {
718 struct nvmet_rdma_rsp *rsp =
719 container_of(req, struct nvmet_rdma_rsp, req);
720 struct rdma_cm_id *cm_id = rsp->queue->cm_id;
721 struct ib_send_wr *first_wr;
722
723 if (rsp->flags & NVMET_RDMA_REQ_INVALIDATE_RKEY) {
724 rsp->send_wr.opcode = IB_WR_SEND_WITH_INV;
725 rsp->send_wr.ex.invalidate_rkey = rsp->invalidate_rkey;
726 } else {
727 rsp->send_wr.opcode = IB_WR_SEND;
728 }
729
730 if (nvmet_rdma_need_data_out(rsp)) {
731 if (rsp->req.metadata_len)
732 first_wr = rdma_rw_ctx_wrs(&rsp->rw, cm_id->qp,
733 cm_id->port_num, &rsp->write_cqe, NULL);
734 else
735 first_wr = rdma_rw_ctx_wrs(&rsp->rw, cm_id->qp,
736 cm_id->port_num, NULL, &rsp->send_wr);
737 } else {
738 first_wr = &rsp->send_wr;
739 }
740
741 nvmet_rdma_post_recv(rsp->queue->dev, rsp->cmd);
742
743 ib_dma_sync_single_for_device(rsp->queue->dev->device,
744 rsp->send_sge.addr, rsp->send_sge.length,
745 DMA_TO_DEVICE);
746
747 if (unlikely(ib_post_send(cm_id->qp, first_wr, NULL))) {
748 pr_err("sending cmd response failed\n");
749 nvmet_rdma_release_rsp(rsp);
750 }
751 }
752
nvmet_rdma_read_data_done(struct ib_cq * cq,struct ib_wc * wc)753 static void nvmet_rdma_read_data_done(struct ib_cq *cq, struct ib_wc *wc)
754 {
755 struct nvmet_rdma_rsp *rsp =
756 container_of(wc->wr_cqe, struct nvmet_rdma_rsp, read_cqe);
757 struct nvmet_rdma_queue *queue = wc->qp->qp_context;
758 u16 status = 0;
759
760 WARN_ON(rsp->n_rdma <= 0);
761 atomic_add(rsp->n_rdma, &queue->sq_wr_avail);
762 rsp->n_rdma = 0;
763
764 if (unlikely(wc->status != IB_WC_SUCCESS)) {
765 nvmet_rdma_rw_ctx_destroy(rsp);
766 nvmet_req_uninit(&rsp->req);
767 nvmet_rdma_release_rsp(rsp);
768 if (wc->status != IB_WC_WR_FLUSH_ERR) {
769 pr_info("RDMA READ for CQE 0x%p failed with status %s (%d).\n",
770 wc->wr_cqe, ib_wc_status_msg(wc->status), wc->status);
771 nvmet_rdma_error_comp(queue);
772 }
773 return;
774 }
775
776 if (rsp->req.metadata_len)
777 status = nvmet_rdma_check_pi_status(rsp->rw.reg->mr);
778 nvmet_rdma_rw_ctx_destroy(rsp);
779
780 if (unlikely(status))
781 nvmet_req_complete(&rsp->req, status);
782 else
783 rsp->req.execute(&rsp->req);
784 }
785
nvmet_rdma_write_data_done(struct ib_cq * cq,struct ib_wc * wc)786 static void nvmet_rdma_write_data_done(struct ib_cq *cq, struct ib_wc *wc)
787 {
788 struct nvmet_rdma_rsp *rsp =
789 container_of(wc->wr_cqe, struct nvmet_rdma_rsp, write_cqe);
790 struct nvmet_rdma_queue *queue = wc->qp->qp_context;
791 struct rdma_cm_id *cm_id = rsp->queue->cm_id;
792 u16 status;
793
794 if (!IS_ENABLED(CONFIG_BLK_DEV_INTEGRITY))
795 return;
796
797 WARN_ON(rsp->n_rdma <= 0);
798 atomic_add(rsp->n_rdma, &queue->sq_wr_avail);
799 rsp->n_rdma = 0;
800
801 if (unlikely(wc->status != IB_WC_SUCCESS)) {
802 nvmet_rdma_rw_ctx_destroy(rsp);
803 nvmet_req_uninit(&rsp->req);
804 nvmet_rdma_release_rsp(rsp);
805 if (wc->status != IB_WC_WR_FLUSH_ERR) {
806 pr_info("RDMA WRITE for CQE failed with status %s (%d).\n",
807 ib_wc_status_msg(wc->status), wc->status);
808 nvmet_rdma_error_comp(queue);
809 }
810 return;
811 }
812
813 /*
814 * Upon RDMA completion check the signature status
815 * - if succeeded send good NVMe response
816 * - if failed send bad NVMe response with appropriate error
817 */
818 status = nvmet_rdma_check_pi_status(rsp->rw.reg->mr);
819 if (unlikely(status))
820 rsp->req.cqe->status = cpu_to_le16(status << 1);
821 nvmet_rdma_rw_ctx_destroy(rsp);
822
823 if (unlikely(ib_post_send(cm_id->qp, &rsp->send_wr, NULL))) {
824 pr_err("sending cmd response failed\n");
825 nvmet_rdma_release_rsp(rsp);
826 }
827 }
828
nvmet_rdma_use_inline_sg(struct nvmet_rdma_rsp * rsp,u32 len,u64 off)829 static void nvmet_rdma_use_inline_sg(struct nvmet_rdma_rsp *rsp, u32 len,
830 u64 off)
831 {
832 int sg_count = num_pages(len);
833 struct scatterlist *sg;
834 int i;
835
836 sg = rsp->cmd->inline_sg;
837 for (i = 0; i < sg_count; i++, sg++) {
838 if (i < sg_count - 1)
839 sg_unmark_end(sg);
840 else
841 sg_mark_end(sg);
842 sg->offset = off;
843 sg->length = min_t(int, len, PAGE_SIZE - off);
844 len -= sg->length;
845 if (!i)
846 off = 0;
847 }
848
849 rsp->req.sg = rsp->cmd->inline_sg;
850 rsp->req.sg_cnt = sg_count;
851 }
852
nvmet_rdma_map_sgl_inline(struct nvmet_rdma_rsp * rsp)853 static u16 nvmet_rdma_map_sgl_inline(struct nvmet_rdma_rsp *rsp)
854 {
855 struct nvme_sgl_desc *sgl = &rsp->req.cmd->common.dptr.sgl;
856 u64 off = le64_to_cpu(sgl->addr);
857 u32 len = le32_to_cpu(sgl->length);
858
859 if (!nvme_is_write(rsp->req.cmd)) {
860 rsp->req.error_loc =
861 offsetof(struct nvme_common_command, opcode);
862 return NVME_SC_INVALID_FIELD | NVME_SC_DNR;
863 }
864
865 if (off + len > rsp->queue->dev->inline_data_size) {
866 pr_err("invalid inline data offset!\n");
867 return NVME_SC_SGL_INVALID_OFFSET | NVME_SC_DNR;
868 }
869
870 /* no data command? */
871 if (!len)
872 return 0;
873
874 nvmet_rdma_use_inline_sg(rsp, len, off);
875 rsp->flags |= NVMET_RDMA_REQ_INLINE_DATA;
876 rsp->req.transfer_len += len;
877 return 0;
878 }
879
nvmet_rdma_map_sgl_keyed(struct nvmet_rdma_rsp * rsp,struct nvme_keyed_sgl_desc * sgl,bool invalidate)880 static u16 nvmet_rdma_map_sgl_keyed(struct nvmet_rdma_rsp *rsp,
881 struct nvme_keyed_sgl_desc *sgl, bool invalidate)
882 {
883 u64 addr = le64_to_cpu(sgl->addr);
884 u32 key = get_unaligned_le32(sgl->key);
885 struct ib_sig_attrs sig_attrs;
886 int ret;
887
888 rsp->req.transfer_len = get_unaligned_le24(sgl->length);
889
890 /* no data command? */
891 if (!rsp->req.transfer_len)
892 return 0;
893
894 if (rsp->req.metadata_len)
895 nvmet_rdma_set_sig_attrs(&rsp->req, &sig_attrs);
896
897 ret = nvmet_req_alloc_sgls(&rsp->req);
898 if (unlikely(ret < 0))
899 goto error_out;
900
901 ret = nvmet_rdma_rw_ctx_init(rsp, addr, key, &sig_attrs);
902 if (unlikely(ret < 0))
903 goto error_out;
904 rsp->n_rdma += ret;
905
906 if (invalidate) {
907 rsp->invalidate_rkey = key;
908 rsp->flags |= NVMET_RDMA_REQ_INVALIDATE_RKEY;
909 }
910
911 return 0;
912
913 error_out:
914 rsp->req.transfer_len = 0;
915 return NVME_SC_INTERNAL;
916 }
917
nvmet_rdma_map_sgl(struct nvmet_rdma_rsp * rsp)918 static u16 nvmet_rdma_map_sgl(struct nvmet_rdma_rsp *rsp)
919 {
920 struct nvme_keyed_sgl_desc *sgl = &rsp->req.cmd->common.dptr.ksgl;
921
922 switch (sgl->type >> 4) {
923 case NVME_SGL_FMT_DATA_DESC:
924 switch (sgl->type & 0xf) {
925 case NVME_SGL_FMT_OFFSET:
926 return nvmet_rdma_map_sgl_inline(rsp);
927 default:
928 pr_err("invalid SGL subtype: %#x\n", sgl->type);
929 rsp->req.error_loc =
930 offsetof(struct nvme_common_command, dptr);
931 return NVME_SC_INVALID_FIELD | NVME_SC_DNR;
932 }
933 case NVME_KEY_SGL_FMT_DATA_DESC:
934 switch (sgl->type & 0xf) {
935 case NVME_SGL_FMT_ADDRESS | NVME_SGL_FMT_INVALIDATE:
936 return nvmet_rdma_map_sgl_keyed(rsp, sgl, true);
937 case NVME_SGL_FMT_ADDRESS:
938 return nvmet_rdma_map_sgl_keyed(rsp, sgl, false);
939 default:
940 pr_err("invalid SGL subtype: %#x\n", sgl->type);
941 rsp->req.error_loc =
942 offsetof(struct nvme_common_command, dptr);
943 return NVME_SC_INVALID_FIELD | NVME_SC_DNR;
944 }
945 default:
946 pr_err("invalid SGL type: %#x\n", sgl->type);
947 rsp->req.error_loc = offsetof(struct nvme_common_command, dptr);
948 return NVME_SC_SGL_INVALID_TYPE | NVME_SC_DNR;
949 }
950 }
951
nvmet_rdma_execute_command(struct nvmet_rdma_rsp * rsp)952 static bool nvmet_rdma_execute_command(struct nvmet_rdma_rsp *rsp)
953 {
954 struct nvmet_rdma_queue *queue = rsp->queue;
955
956 if (unlikely(atomic_sub_return(1 + rsp->n_rdma,
957 &queue->sq_wr_avail) < 0)) {
958 pr_debug("IB send queue full (needed %d): queue %u cntlid %u\n",
959 1 + rsp->n_rdma, queue->idx,
960 queue->nvme_sq.ctrl->cntlid);
961 atomic_add(1 + rsp->n_rdma, &queue->sq_wr_avail);
962 return false;
963 }
964
965 if (nvmet_rdma_need_data_in(rsp)) {
966 if (rdma_rw_ctx_post(&rsp->rw, queue->qp,
967 queue->cm_id->port_num, &rsp->read_cqe, NULL))
968 nvmet_req_complete(&rsp->req, NVME_SC_DATA_XFER_ERROR);
969 } else {
970 rsp->req.execute(&rsp->req);
971 }
972
973 return true;
974 }
975
nvmet_rdma_handle_command(struct nvmet_rdma_queue * queue,struct nvmet_rdma_rsp * cmd)976 static void nvmet_rdma_handle_command(struct nvmet_rdma_queue *queue,
977 struct nvmet_rdma_rsp *cmd)
978 {
979 u16 status;
980
981 ib_dma_sync_single_for_cpu(queue->dev->device,
982 cmd->cmd->sge[0].addr, cmd->cmd->sge[0].length,
983 DMA_FROM_DEVICE);
984 ib_dma_sync_single_for_cpu(queue->dev->device,
985 cmd->send_sge.addr, cmd->send_sge.length,
986 DMA_TO_DEVICE);
987
988 if (!nvmet_req_init(&cmd->req, &queue->nvme_cq,
989 &queue->nvme_sq, &nvmet_rdma_ops))
990 return;
991
992 status = nvmet_rdma_map_sgl(cmd);
993 if (status)
994 goto out_err;
995
996 if (unlikely(!nvmet_rdma_execute_command(cmd))) {
997 spin_lock(&queue->rsp_wr_wait_lock);
998 list_add_tail(&cmd->wait_list, &queue->rsp_wr_wait_list);
999 spin_unlock(&queue->rsp_wr_wait_lock);
1000 }
1001
1002 return;
1003
1004 out_err:
1005 nvmet_req_complete(&cmd->req, status);
1006 }
1007
nvmet_rdma_recv_done(struct ib_cq * cq,struct ib_wc * wc)1008 static void nvmet_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc)
1009 {
1010 struct nvmet_rdma_cmd *cmd =
1011 container_of(wc->wr_cqe, struct nvmet_rdma_cmd, cqe);
1012 struct nvmet_rdma_queue *queue = wc->qp->qp_context;
1013 struct nvmet_rdma_rsp *rsp;
1014
1015 if (unlikely(wc->status != IB_WC_SUCCESS)) {
1016 if (wc->status != IB_WC_WR_FLUSH_ERR) {
1017 pr_err("RECV for CQE 0x%p failed with status %s (%d)\n",
1018 wc->wr_cqe, ib_wc_status_msg(wc->status),
1019 wc->status);
1020 nvmet_rdma_error_comp(queue);
1021 }
1022 return;
1023 }
1024
1025 if (unlikely(wc->byte_len < sizeof(struct nvme_command))) {
1026 pr_err("Ctrl Fatal Error: capsule size less than 64 bytes\n");
1027 nvmet_rdma_error_comp(queue);
1028 return;
1029 }
1030
1031 cmd->queue = queue;
1032 rsp = nvmet_rdma_get_rsp(queue);
1033 if (unlikely(!rsp)) {
1034 /*
1035 * we get here only under memory pressure,
1036 * silently drop and have the host retry
1037 * as we can't even fail it.
1038 */
1039 nvmet_rdma_post_recv(queue->dev, cmd);
1040 return;
1041 }
1042 rsp->queue = queue;
1043 rsp->cmd = cmd;
1044 rsp->flags = 0;
1045 rsp->req.cmd = cmd->nvme_cmd;
1046 rsp->req.port = queue->port;
1047 rsp->n_rdma = 0;
1048
1049 if (unlikely(queue->state != NVMET_RDMA_Q_LIVE)) {
1050 unsigned long flags;
1051
1052 spin_lock_irqsave(&queue->state_lock, flags);
1053 if (queue->state == NVMET_RDMA_Q_CONNECTING)
1054 list_add_tail(&rsp->wait_list, &queue->rsp_wait_list);
1055 else
1056 nvmet_rdma_put_rsp(rsp);
1057 spin_unlock_irqrestore(&queue->state_lock, flags);
1058 return;
1059 }
1060
1061 nvmet_rdma_handle_command(queue, rsp);
1062 }
1063
nvmet_rdma_destroy_srq(struct nvmet_rdma_srq * nsrq)1064 static void nvmet_rdma_destroy_srq(struct nvmet_rdma_srq *nsrq)
1065 {
1066 nvmet_rdma_free_cmds(nsrq->ndev, nsrq->cmds, nsrq->ndev->srq_size,
1067 false);
1068 ib_destroy_srq(nsrq->srq);
1069
1070 kfree(nsrq);
1071 }
1072
nvmet_rdma_destroy_srqs(struct nvmet_rdma_device * ndev)1073 static void nvmet_rdma_destroy_srqs(struct nvmet_rdma_device *ndev)
1074 {
1075 int i;
1076
1077 if (!ndev->srqs)
1078 return;
1079
1080 for (i = 0; i < ndev->srq_count; i++)
1081 nvmet_rdma_destroy_srq(ndev->srqs[i]);
1082
1083 kfree(ndev->srqs);
1084 }
1085
1086 static struct nvmet_rdma_srq *
nvmet_rdma_init_srq(struct nvmet_rdma_device * ndev)1087 nvmet_rdma_init_srq(struct nvmet_rdma_device *ndev)
1088 {
1089 struct ib_srq_init_attr srq_attr = { NULL, };
1090 size_t srq_size = ndev->srq_size;
1091 struct nvmet_rdma_srq *nsrq;
1092 struct ib_srq *srq;
1093 int ret, i;
1094
1095 nsrq = kzalloc(sizeof(*nsrq), GFP_KERNEL);
1096 if (!nsrq)
1097 return ERR_PTR(-ENOMEM);
1098
1099 srq_attr.attr.max_wr = srq_size;
1100 srq_attr.attr.max_sge = 1 + ndev->inline_page_count;
1101 srq_attr.attr.srq_limit = 0;
1102 srq_attr.srq_type = IB_SRQT_BASIC;
1103 srq = ib_create_srq(ndev->pd, &srq_attr);
1104 if (IS_ERR(srq)) {
1105 ret = PTR_ERR(srq);
1106 goto out_free;
1107 }
1108
1109 nsrq->cmds = nvmet_rdma_alloc_cmds(ndev, srq_size, false);
1110 if (IS_ERR(nsrq->cmds)) {
1111 ret = PTR_ERR(nsrq->cmds);
1112 goto out_destroy_srq;
1113 }
1114
1115 nsrq->srq = srq;
1116 nsrq->ndev = ndev;
1117
1118 for (i = 0; i < srq_size; i++) {
1119 nsrq->cmds[i].nsrq = nsrq;
1120 ret = nvmet_rdma_post_recv(ndev, &nsrq->cmds[i]);
1121 if (ret)
1122 goto out_free_cmds;
1123 }
1124
1125 return nsrq;
1126
1127 out_free_cmds:
1128 nvmet_rdma_free_cmds(ndev, nsrq->cmds, srq_size, false);
1129 out_destroy_srq:
1130 ib_destroy_srq(srq);
1131 out_free:
1132 kfree(nsrq);
1133 return ERR_PTR(ret);
1134 }
1135
nvmet_rdma_init_srqs(struct nvmet_rdma_device * ndev)1136 static int nvmet_rdma_init_srqs(struct nvmet_rdma_device *ndev)
1137 {
1138 int i, ret;
1139
1140 if (!ndev->device->attrs.max_srq_wr || !ndev->device->attrs.max_srq) {
1141 /*
1142 * If SRQs aren't supported we just go ahead and use normal
1143 * non-shared receive queues.
1144 */
1145 pr_info("SRQ requested but not supported.\n");
1146 return 0;
1147 }
1148
1149 ndev->srq_size = min(ndev->device->attrs.max_srq_wr,
1150 nvmet_rdma_srq_size);
1151 ndev->srq_count = min(ndev->device->num_comp_vectors,
1152 ndev->device->attrs.max_srq);
1153
1154 ndev->srqs = kcalloc(ndev->srq_count, sizeof(*ndev->srqs), GFP_KERNEL);
1155 if (!ndev->srqs)
1156 return -ENOMEM;
1157
1158 for (i = 0; i < ndev->srq_count; i++) {
1159 ndev->srqs[i] = nvmet_rdma_init_srq(ndev);
1160 if (IS_ERR(ndev->srqs[i])) {
1161 ret = PTR_ERR(ndev->srqs[i]);
1162 goto err_srq;
1163 }
1164 }
1165
1166 return 0;
1167
1168 err_srq:
1169 while (--i >= 0)
1170 nvmet_rdma_destroy_srq(ndev->srqs[i]);
1171 kfree(ndev->srqs);
1172 return ret;
1173 }
1174
nvmet_rdma_free_dev(struct kref * ref)1175 static void nvmet_rdma_free_dev(struct kref *ref)
1176 {
1177 struct nvmet_rdma_device *ndev =
1178 container_of(ref, struct nvmet_rdma_device, ref);
1179
1180 mutex_lock(&device_list_mutex);
1181 list_del(&ndev->entry);
1182 mutex_unlock(&device_list_mutex);
1183
1184 nvmet_rdma_destroy_srqs(ndev);
1185 ib_dealloc_pd(ndev->pd);
1186
1187 kfree(ndev);
1188 }
1189
1190 static struct nvmet_rdma_device *
nvmet_rdma_find_get_device(struct rdma_cm_id * cm_id)1191 nvmet_rdma_find_get_device(struct rdma_cm_id *cm_id)
1192 {
1193 struct nvmet_rdma_port *port = cm_id->context;
1194 struct nvmet_port *nport = port->nport;
1195 struct nvmet_rdma_device *ndev;
1196 int inline_page_count;
1197 int inline_sge_count;
1198 int ret;
1199
1200 mutex_lock(&device_list_mutex);
1201 list_for_each_entry(ndev, &device_list, entry) {
1202 if (ndev->device->node_guid == cm_id->device->node_guid &&
1203 kref_get_unless_zero(&ndev->ref))
1204 goto out_unlock;
1205 }
1206
1207 ndev = kzalloc(sizeof(*ndev), GFP_KERNEL);
1208 if (!ndev)
1209 goto out_err;
1210
1211 inline_page_count = num_pages(nport->inline_data_size);
1212 inline_sge_count = max(cm_id->device->attrs.max_sge_rd,
1213 cm_id->device->attrs.max_recv_sge) - 1;
1214 if (inline_page_count > inline_sge_count) {
1215 pr_warn("inline_data_size %d cannot be supported by device %s. Reducing to %lu.\n",
1216 nport->inline_data_size, cm_id->device->name,
1217 inline_sge_count * PAGE_SIZE);
1218 nport->inline_data_size = inline_sge_count * PAGE_SIZE;
1219 inline_page_count = inline_sge_count;
1220 }
1221 ndev->inline_data_size = nport->inline_data_size;
1222 ndev->inline_page_count = inline_page_count;
1223
1224 if (nport->pi_enable && !(cm_id->device->attrs.kernel_cap_flags &
1225 IBK_INTEGRITY_HANDOVER)) {
1226 pr_warn("T10-PI is not supported by device %s. Disabling it\n",
1227 cm_id->device->name);
1228 nport->pi_enable = false;
1229 }
1230
1231 ndev->device = cm_id->device;
1232 kref_init(&ndev->ref);
1233
1234 ndev->pd = ib_alloc_pd(ndev->device, 0);
1235 if (IS_ERR(ndev->pd))
1236 goto out_free_dev;
1237
1238 if (nvmet_rdma_use_srq) {
1239 ret = nvmet_rdma_init_srqs(ndev);
1240 if (ret)
1241 goto out_free_pd;
1242 }
1243
1244 list_add(&ndev->entry, &device_list);
1245 out_unlock:
1246 mutex_unlock(&device_list_mutex);
1247 pr_debug("added %s.\n", ndev->device->name);
1248 return ndev;
1249
1250 out_free_pd:
1251 ib_dealloc_pd(ndev->pd);
1252 out_free_dev:
1253 kfree(ndev);
1254 out_err:
1255 mutex_unlock(&device_list_mutex);
1256 return NULL;
1257 }
1258
nvmet_rdma_create_queue_ib(struct nvmet_rdma_queue * queue)1259 static int nvmet_rdma_create_queue_ib(struct nvmet_rdma_queue *queue)
1260 {
1261 struct ib_qp_init_attr qp_attr = { };
1262 struct nvmet_rdma_device *ndev = queue->dev;
1263 int nr_cqe, ret, i, factor;
1264
1265 /*
1266 * Reserve CQ slots for RECV + RDMA_READ/RDMA_WRITE + RDMA_SEND.
1267 */
1268 nr_cqe = queue->recv_queue_size + 2 * queue->send_queue_size;
1269
1270 queue->cq = ib_cq_pool_get(ndev->device, nr_cqe + 1,
1271 queue->comp_vector, IB_POLL_WORKQUEUE);
1272 if (IS_ERR(queue->cq)) {
1273 ret = PTR_ERR(queue->cq);
1274 pr_err("failed to create CQ cqe= %d ret= %d\n",
1275 nr_cqe + 1, ret);
1276 goto out;
1277 }
1278
1279 qp_attr.qp_context = queue;
1280 qp_attr.event_handler = nvmet_rdma_qp_event;
1281 qp_attr.send_cq = queue->cq;
1282 qp_attr.recv_cq = queue->cq;
1283 qp_attr.sq_sig_type = IB_SIGNAL_REQ_WR;
1284 qp_attr.qp_type = IB_QPT_RC;
1285 /* +1 for drain */
1286 qp_attr.cap.max_send_wr = queue->send_queue_size + 1;
1287 factor = rdma_rw_mr_factor(ndev->device, queue->cm_id->port_num,
1288 1 << NVMET_RDMA_MAX_MDTS);
1289 qp_attr.cap.max_rdma_ctxs = queue->send_queue_size * factor;
1290 qp_attr.cap.max_send_sge = max(ndev->device->attrs.max_sge_rd,
1291 ndev->device->attrs.max_send_sge);
1292
1293 if (queue->nsrq) {
1294 qp_attr.srq = queue->nsrq->srq;
1295 } else {
1296 /* +1 for drain */
1297 qp_attr.cap.max_recv_wr = 1 + queue->recv_queue_size;
1298 qp_attr.cap.max_recv_sge = 1 + ndev->inline_page_count;
1299 }
1300
1301 if (queue->port->pi_enable && queue->host_qid)
1302 qp_attr.create_flags |= IB_QP_CREATE_INTEGRITY_EN;
1303
1304 ret = rdma_create_qp(queue->cm_id, ndev->pd, &qp_attr);
1305 if (ret) {
1306 pr_err("failed to create_qp ret= %d\n", ret);
1307 goto err_destroy_cq;
1308 }
1309 queue->qp = queue->cm_id->qp;
1310
1311 atomic_set(&queue->sq_wr_avail, qp_attr.cap.max_send_wr);
1312
1313 pr_debug("%s: max_cqe= %d max_sge= %d sq_size = %d cm_id= %p\n",
1314 __func__, queue->cq->cqe, qp_attr.cap.max_send_sge,
1315 qp_attr.cap.max_send_wr, queue->cm_id);
1316
1317 if (!queue->nsrq) {
1318 for (i = 0; i < queue->recv_queue_size; i++) {
1319 queue->cmds[i].queue = queue;
1320 ret = nvmet_rdma_post_recv(ndev, &queue->cmds[i]);
1321 if (ret)
1322 goto err_destroy_qp;
1323 }
1324 }
1325
1326 out:
1327 return ret;
1328
1329 err_destroy_qp:
1330 rdma_destroy_qp(queue->cm_id);
1331 err_destroy_cq:
1332 ib_cq_pool_put(queue->cq, nr_cqe + 1);
1333 goto out;
1334 }
1335
nvmet_rdma_destroy_queue_ib(struct nvmet_rdma_queue * queue)1336 static void nvmet_rdma_destroy_queue_ib(struct nvmet_rdma_queue *queue)
1337 {
1338 ib_drain_qp(queue->qp);
1339 if (queue->cm_id)
1340 rdma_destroy_id(queue->cm_id);
1341 ib_destroy_qp(queue->qp);
1342 ib_cq_pool_put(queue->cq, queue->recv_queue_size + 2 *
1343 queue->send_queue_size + 1);
1344 }
1345
nvmet_rdma_free_queue(struct nvmet_rdma_queue * queue)1346 static void nvmet_rdma_free_queue(struct nvmet_rdma_queue *queue)
1347 {
1348 pr_debug("freeing queue %d\n", queue->idx);
1349
1350 nvmet_sq_destroy(&queue->nvme_sq);
1351
1352 nvmet_rdma_destroy_queue_ib(queue);
1353 if (!queue->nsrq) {
1354 nvmet_rdma_free_cmds(queue->dev, queue->cmds,
1355 queue->recv_queue_size,
1356 !queue->host_qid);
1357 }
1358 nvmet_rdma_free_rsps(queue);
1359 ida_free(&nvmet_rdma_queue_ida, queue->idx);
1360 kfree(queue);
1361 }
1362
nvmet_rdma_release_queue_work(struct work_struct * w)1363 static void nvmet_rdma_release_queue_work(struct work_struct *w)
1364 {
1365 struct nvmet_rdma_queue *queue =
1366 container_of(w, struct nvmet_rdma_queue, release_work);
1367 struct nvmet_rdma_device *dev = queue->dev;
1368
1369 nvmet_rdma_free_queue(queue);
1370
1371 kref_put(&dev->ref, nvmet_rdma_free_dev);
1372 }
1373
1374 static int
nvmet_rdma_parse_cm_connect_req(struct rdma_conn_param * conn,struct nvmet_rdma_queue * queue)1375 nvmet_rdma_parse_cm_connect_req(struct rdma_conn_param *conn,
1376 struct nvmet_rdma_queue *queue)
1377 {
1378 struct nvme_rdma_cm_req *req;
1379
1380 req = (struct nvme_rdma_cm_req *)conn->private_data;
1381 if (!req || conn->private_data_len == 0)
1382 return NVME_RDMA_CM_INVALID_LEN;
1383
1384 if (le16_to_cpu(req->recfmt) != NVME_RDMA_CM_FMT_1_0)
1385 return NVME_RDMA_CM_INVALID_RECFMT;
1386
1387 queue->host_qid = le16_to_cpu(req->qid);
1388
1389 /*
1390 * req->hsqsize corresponds to our recv queue size plus 1
1391 * req->hrqsize corresponds to our send queue size
1392 */
1393 queue->recv_queue_size = le16_to_cpu(req->hsqsize) + 1;
1394 queue->send_queue_size = le16_to_cpu(req->hrqsize);
1395
1396 if (!queue->host_qid && queue->recv_queue_size > NVME_AQ_DEPTH)
1397 return NVME_RDMA_CM_INVALID_HSQSIZE;
1398
1399 /* XXX: Should we enforce some kind of max for IO queues? */
1400
1401 return 0;
1402 }
1403
nvmet_rdma_cm_reject(struct rdma_cm_id * cm_id,enum nvme_rdma_cm_status status)1404 static int nvmet_rdma_cm_reject(struct rdma_cm_id *cm_id,
1405 enum nvme_rdma_cm_status status)
1406 {
1407 struct nvme_rdma_cm_rej rej;
1408
1409 pr_debug("rejecting connect request: status %d (%s)\n",
1410 status, nvme_rdma_cm_msg(status));
1411
1412 rej.recfmt = cpu_to_le16(NVME_RDMA_CM_FMT_1_0);
1413 rej.sts = cpu_to_le16(status);
1414
1415 return rdma_reject(cm_id, (void *)&rej, sizeof(rej),
1416 IB_CM_REJ_CONSUMER_DEFINED);
1417 }
1418
1419 static struct nvmet_rdma_queue *
nvmet_rdma_alloc_queue(struct nvmet_rdma_device * ndev,struct rdma_cm_id * cm_id,struct rdma_cm_event * event)1420 nvmet_rdma_alloc_queue(struct nvmet_rdma_device *ndev,
1421 struct rdma_cm_id *cm_id,
1422 struct rdma_cm_event *event)
1423 {
1424 struct nvmet_rdma_port *port = cm_id->context;
1425 struct nvmet_rdma_queue *queue;
1426 int ret;
1427
1428 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
1429 if (!queue) {
1430 ret = NVME_RDMA_CM_NO_RSC;
1431 goto out_reject;
1432 }
1433
1434 ret = nvmet_sq_init(&queue->nvme_sq);
1435 if (ret) {
1436 ret = NVME_RDMA_CM_NO_RSC;
1437 goto out_free_queue;
1438 }
1439
1440 ret = nvmet_rdma_parse_cm_connect_req(&event->param.conn, queue);
1441 if (ret)
1442 goto out_destroy_sq;
1443
1444 /*
1445 * Schedules the actual release because calling rdma_destroy_id from
1446 * inside a CM callback would trigger a deadlock. (great API design..)
1447 */
1448 INIT_WORK(&queue->release_work, nvmet_rdma_release_queue_work);
1449 queue->dev = ndev;
1450 queue->cm_id = cm_id;
1451 queue->port = port->nport;
1452
1453 spin_lock_init(&queue->state_lock);
1454 queue->state = NVMET_RDMA_Q_CONNECTING;
1455 INIT_LIST_HEAD(&queue->rsp_wait_list);
1456 INIT_LIST_HEAD(&queue->rsp_wr_wait_list);
1457 spin_lock_init(&queue->rsp_wr_wait_lock);
1458 INIT_LIST_HEAD(&queue->free_rsps);
1459 spin_lock_init(&queue->rsps_lock);
1460 INIT_LIST_HEAD(&queue->queue_list);
1461
1462 queue->idx = ida_alloc(&nvmet_rdma_queue_ida, GFP_KERNEL);
1463 if (queue->idx < 0) {
1464 ret = NVME_RDMA_CM_NO_RSC;
1465 goto out_destroy_sq;
1466 }
1467
1468 /*
1469 * Spread the io queues across completion vectors,
1470 * but still keep all admin queues on vector 0.
1471 */
1472 queue->comp_vector = !queue->host_qid ? 0 :
1473 queue->idx % ndev->device->num_comp_vectors;
1474
1475
1476 ret = nvmet_rdma_alloc_rsps(queue);
1477 if (ret) {
1478 ret = NVME_RDMA_CM_NO_RSC;
1479 goto out_ida_remove;
1480 }
1481
1482 if (ndev->srqs) {
1483 queue->nsrq = ndev->srqs[queue->comp_vector % ndev->srq_count];
1484 } else {
1485 queue->cmds = nvmet_rdma_alloc_cmds(ndev,
1486 queue->recv_queue_size,
1487 !queue->host_qid);
1488 if (IS_ERR(queue->cmds)) {
1489 ret = NVME_RDMA_CM_NO_RSC;
1490 goto out_free_responses;
1491 }
1492 }
1493
1494 ret = nvmet_rdma_create_queue_ib(queue);
1495 if (ret) {
1496 pr_err("%s: creating RDMA queue failed (%d).\n",
1497 __func__, ret);
1498 ret = NVME_RDMA_CM_NO_RSC;
1499 goto out_free_cmds;
1500 }
1501
1502 return queue;
1503
1504 out_free_cmds:
1505 if (!queue->nsrq) {
1506 nvmet_rdma_free_cmds(queue->dev, queue->cmds,
1507 queue->recv_queue_size,
1508 !queue->host_qid);
1509 }
1510 out_free_responses:
1511 nvmet_rdma_free_rsps(queue);
1512 out_ida_remove:
1513 ida_free(&nvmet_rdma_queue_ida, queue->idx);
1514 out_destroy_sq:
1515 nvmet_sq_destroy(&queue->nvme_sq);
1516 out_free_queue:
1517 kfree(queue);
1518 out_reject:
1519 nvmet_rdma_cm_reject(cm_id, ret);
1520 return NULL;
1521 }
1522
nvmet_rdma_qp_event(struct ib_event * event,void * priv)1523 static void nvmet_rdma_qp_event(struct ib_event *event, void *priv)
1524 {
1525 struct nvmet_rdma_queue *queue = priv;
1526
1527 switch (event->event) {
1528 case IB_EVENT_COMM_EST:
1529 rdma_notify(queue->cm_id, event->event);
1530 break;
1531 case IB_EVENT_QP_LAST_WQE_REACHED:
1532 pr_debug("received last WQE reached event for queue=0x%p\n",
1533 queue);
1534 break;
1535 default:
1536 pr_err("received IB QP event: %s (%d)\n",
1537 ib_event_msg(event->event), event->event);
1538 break;
1539 }
1540 }
1541
nvmet_rdma_cm_accept(struct rdma_cm_id * cm_id,struct nvmet_rdma_queue * queue,struct rdma_conn_param * p)1542 static int nvmet_rdma_cm_accept(struct rdma_cm_id *cm_id,
1543 struct nvmet_rdma_queue *queue,
1544 struct rdma_conn_param *p)
1545 {
1546 struct rdma_conn_param param = { };
1547 struct nvme_rdma_cm_rep priv = { };
1548 int ret = -ENOMEM;
1549
1550 param.rnr_retry_count = 7;
1551 param.flow_control = 1;
1552 param.initiator_depth = min_t(u8, p->initiator_depth,
1553 queue->dev->device->attrs.max_qp_init_rd_atom);
1554 param.private_data = &priv;
1555 param.private_data_len = sizeof(priv);
1556 priv.recfmt = cpu_to_le16(NVME_RDMA_CM_FMT_1_0);
1557 priv.crqsize = cpu_to_le16(queue->recv_queue_size);
1558
1559 ret = rdma_accept(cm_id, ¶m);
1560 if (ret)
1561 pr_err("rdma_accept failed (error code = %d)\n", ret);
1562
1563 return ret;
1564 }
1565
nvmet_rdma_queue_connect(struct rdma_cm_id * cm_id,struct rdma_cm_event * event)1566 static int nvmet_rdma_queue_connect(struct rdma_cm_id *cm_id,
1567 struct rdma_cm_event *event)
1568 {
1569 struct nvmet_rdma_device *ndev;
1570 struct nvmet_rdma_queue *queue;
1571 int ret = -EINVAL;
1572
1573 ndev = nvmet_rdma_find_get_device(cm_id);
1574 if (!ndev) {
1575 nvmet_rdma_cm_reject(cm_id, NVME_RDMA_CM_NO_RSC);
1576 return -ECONNREFUSED;
1577 }
1578
1579 queue = nvmet_rdma_alloc_queue(ndev, cm_id, event);
1580 if (!queue) {
1581 ret = -ENOMEM;
1582 goto put_device;
1583 }
1584
1585 if (queue->host_qid == 0) {
1586 /* Let inflight controller teardown complete */
1587 flush_workqueue(nvmet_wq);
1588 }
1589
1590 ret = nvmet_rdma_cm_accept(cm_id, queue, &event->param.conn);
1591 if (ret) {
1592 /*
1593 * Don't destroy the cm_id in free path, as we implicitly
1594 * destroy the cm_id here with non-zero ret code.
1595 */
1596 queue->cm_id = NULL;
1597 goto free_queue;
1598 }
1599
1600 mutex_lock(&nvmet_rdma_queue_mutex);
1601 list_add_tail(&queue->queue_list, &nvmet_rdma_queue_list);
1602 mutex_unlock(&nvmet_rdma_queue_mutex);
1603
1604 return 0;
1605
1606 free_queue:
1607 nvmet_rdma_free_queue(queue);
1608 put_device:
1609 kref_put(&ndev->ref, nvmet_rdma_free_dev);
1610
1611 return ret;
1612 }
1613
nvmet_rdma_queue_established(struct nvmet_rdma_queue * queue)1614 static void nvmet_rdma_queue_established(struct nvmet_rdma_queue *queue)
1615 {
1616 unsigned long flags;
1617
1618 spin_lock_irqsave(&queue->state_lock, flags);
1619 if (queue->state != NVMET_RDMA_Q_CONNECTING) {
1620 pr_warn("trying to establish a connected queue\n");
1621 goto out_unlock;
1622 }
1623 queue->state = NVMET_RDMA_Q_LIVE;
1624
1625 while (!list_empty(&queue->rsp_wait_list)) {
1626 struct nvmet_rdma_rsp *cmd;
1627
1628 cmd = list_first_entry(&queue->rsp_wait_list,
1629 struct nvmet_rdma_rsp, wait_list);
1630 list_del(&cmd->wait_list);
1631
1632 spin_unlock_irqrestore(&queue->state_lock, flags);
1633 nvmet_rdma_handle_command(queue, cmd);
1634 spin_lock_irqsave(&queue->state_lock, flags);
1635 }
1636
1637 out_unlock:
1638 spin_unlock_irqrestore(&queue->state_lock, flags);
1639 }
1640
__nvmet_rdma_queue_disconnect(struct nvmet_rdma_queue * queue)1641 static void __nvmet_rdma_queue_disconnect(struct nvmet_rdma_queue *queue)
1642 {
1643 bool disconnect = false;
1644 unsigned long flags;
1645
1646 pr_debug("cm_id= %p queue->state= %d\n", queue->cm_id, queue->state);
1647
1648 spin_lock_irqsave(&queue->state_lock, flags);
1649 switch (queue->state) {
1650 case NVMET_RDMA_Q_CONNECTING:
1651 while (!list_empty(&queue->rsp_wait_list)) {
1652 struct nvmet_rdma_rsp *rsp;
1653
1654 rsp = list_first_entry(&queue->rsp_wait_list,
1655 struct nvmet_rdma_rsp,
1656 wait_list);
1657 list_del(&rsp->wait_list);
1658 nvmet_rdma_put_rsp(rsp);
1659 }
1660 fallthrough;
1661 case NVMET_RDMA_Q_LIVE:
1662 queue->state = NVMET_RDMA_Q_DISCONNECTING;
1663 disconnect = true;
1664 break;
1665 case NVMET_RDMA_Q_DISCONNECTING:
1666 break;
1667 }
1668 spin_unlock_irqrestore(&queue->state_lock, flags);
1669
1670 if (disconnect) {
1671 rdma_disconnect(queue->cm_id);
1672 queue_work(nvmet_wq, &queue->release_work);
1673 }
1674 }
1675
nvmet_rdma_queue_disconnect(struct nvmet_rdma_queue * queue)1676 static void nvmet_rdma_queue_disconnect(struct nvmet_rdma_queue *queue)
1677 {
1678 bool disconnect = false;
1679
1680 mutex_lock(&nvmet_rdma_queue_mutex);
1681 if (!list_empty(&queue->queue_list)) {
1682 list_del_init(&queue->queue_list);
1683 disconnect = true;
1684 }
1685 mutex_unlock(&nvmet_rdma_queue_mutex);
1686
1687 if (disconnect)
1688 __nvmet_rdma_queue_disconnect(queue);
1689 }
1690
nvmet_rdma_queue_connect_fail(struct rdma_cm_id * cm_id,struct nvmet_rdma_queue * queue)1691 static void nvmet_rdma_queue_connect_fail(struct rdma_cm_id *cm_id,
1692 struct nvmet_rdma_queue *queue)
1693 {
1694 WARN_ON_ONCE(queue->state != NVMET_RDMA_Q_CONNECTING);
1695
1696 mutex_lock(&nvmet_rdma_queue_mutex);
1697 if (!list_empty(&queue->queue_list))
1698 list_del_init(&queue->queue_list);
1699 mutex_unlock(&nvmet_rdma_queue_mutex);
1700
1701 pr_err("failed to connect queue %d\n", queue->idx);
1702 queue_work(nvmet_wq, &queue->release_work);
1703 }
1704
1705 /**
1706 * nvmet_rdma_device_removal() - Handle RDMA device removal
1707 * @cm_id: rdma_cm id, used for nvmet port
1708 * @queue: nvmet rdma queue (cm id qp_context)
1709 *
1710 * DEVICE_REMOVAL event notifies us that the RDMA device is about
1711 * to unplug. Note that this event can be generated on a normal
1712 * queue cm_id and/or a device bound listener cm_id (where in this
1713 * case queue will be null).
1714 *
1715 * We registered an ib_client to handle device removal for queues,
1716 * so we only need to handle the listening port cm_ids. In this case
1717 * we nullify the priv to prevent double cm_id destruction and destroying
1718 * the cm_id implicitely by returning a non-zero rc to the callout.
1719 */
nvmet_rdma_device_removal(struct rdma_cm_id * cm_id,struct nvmet_rdma_queue * queue)1720 static int nvmet_rdma_device_removal(struct rdma_cm_id *cm_id,
1721 struct nvmet_rdma_queue *queue)
1722 {
1723 struct nvmet_rdma_port *port;
1724
1725 if (queue) {
1726 /*
1727 * This is a queue cm_id. we have registered
1728 * an ib_client to handle queues removal
1729 * so don't interfear and just return.
1730 */
1731 return 0;
1732 }
1733
1734 port = cm_id->context;
1735
1736 /*
1737 * This is a listener cm_id. Make sure that
1738 * future remove_port won't invoke a double
1739 * cm_id destroy. use atomic xchg to make sure
1740 * we don't compete with remove_port.
1741 */
1742 if (xchg(&port->cm_id, NULL) != cm_id)
1743 return 0;
1744
1745 /*
1746 * We need to return 1 so that the core will destroy
1747 * it's own ID. What a great API design..
1748 */
1749 return 1;
1750 }
1751
nvmet_rdma_cm_handler(struct rdma_cm_id * cm_id,struct rdma_cm_event * event)1752 static int nvmet_rdma_cm_handler(struct rdma_cm_id *cm_id,
1753 struct rdma_cm_event *event)
1754 {
1755 struct nvmet_rdma_queue *queue = NULL;
1756 int ret = 0;
1757
1758 if (cm_id->qp)
1759 queue = cm_id->qp->qp_context;
1760
1761 pr_debug("%s (%d): status %d id %p\n",
1762 rdma_event_msg(event->event), event->event,
1763 event->status, cm_id);
1764
1765 switch (event->event) {
1766 case RDMA_CM_EVENT_CONNECT_REQUEST:
1767 ret = nvmet_rdma_queue_connect(cm_id, event);
1768 break;
1769 case RDMA_CM_EVENT_ESTABLISHED:
1770 nvmet_rdma_queue_established(queue);
1771 break;
1772 case RDMA_CM_EVENT_ADDR_CHANGE:
1773 if (!queue) {
1774 struct nvmet_rdma_port *port = cm_id->context;
1775
1776 queue_delayed_work(nvmet_wq, &port->repair_work, 0);
1777 break;
1778 }
1779 fallthrough;
1780 case RDMA_CM_EVENT_DISCONNECTED:
1781 case RDMA_CM_EVENT_TIMEWAIT_EXIT:
1782 nvmet_rdma_queue_disconnect(queue);
1783 break;
1784 case RDMA_CM_EVENT_DEVICE_REMOVAL:
1785 ret = nvmet_rdma_device_removal(cm_id, queue);
1786 break;
1787 case RDMA_CM_EVENT_REJECTED:
1788 pr_debug("Connection rejected: %s\n",
1789 rdma_reject_msg(cm_id, event->status));
1790 fallthrough;
1791 case RDMA_CM_EVENT_UNREACHABLE:
1792 case RDMA_CM_EVENT_CONNECT_ERROR:
1793 nvmet_rdma_queue_connect_fail(cm_id, queue);
1794 break;
1795 default:
1796 pr_err("received unrecognized RDMA CM event %d\n",
1797 event->event);
1798 break;
1799 }
1800
1801 return ret;
1802 }
1803
nvmet_rdma_delete_ctrl(struct nvmet_ctrl * ctrl)1804 static void nvmet_rdma_delete_ctrl(struct nvmet_ctrl *ctrl)
1805 {
1806 struct nvmet_rdma_queue *queue;
1807
1808 restart:
1809 mutex_lock(&nvmet_rdma_queue_mutex);
1810 list_for_each_entry(queue, &nvmet_rdma_queue_list, queue_list) {
1811 if (queue->nvme_sq.ctrl == ctrl) {
1812 list_del_init(&queue->queue_list);
1813 mutex_unlock(&nvmet_rdma_queue_mutex);
1814
1815 __nvmet_rdma_queue_disconnect(queue);
1816 goto restart;
1817 }
1818 }
1819 mutex_unlock(&nvmet_rdma_queue_mutex);
1820 }
1821
nvmet_rdma_destroy_port_queues(struct nvmet_rdma_port * port)1822 static void nvmet_rdma_destroy_port_queues(struct nvmet_rdma_port *port)
1823 {
1824 struct nvmet_rdma_queue *queue, *tmp;
1825 struct nvmet_port *nport = port->nport;
1826
1827 mutex_lock(&nvmet_rdma_queue_mutex);
1828 list_for_each_entry_safe(queue, tmp, &nvmet_rdma_queue_list,
1829 queue_list) {
1830 if (queue->port != nport)
1831 continue;
1832
1833 list_del_init(&queue->queue_list);
1834 __nvmet_rdma_queue_disconnect(queue);
1835 }
1836 mutex_unlock(&nvmet_rdma_queue_mutex);
1837 }
1838
nvmet_rdma_disable_port(struct nvmet_rdma_port * port)1839 static void nvmet_rdma_disable_port(struct nvmet_rdma_port *port)
1840 {
1841 struct rdma_cm_id *cm_id = xchg(&port->cm_id, NULL);
1842
1843 if (cm_id)
1844 rdma_destroy_id(cm_id);
1845
1846 /*
1847 * Destroy the remaining queues, which are not belong to any
1848 * controller yet. Do it here after the RDMA-CM was destroyed
1849 * guarantees that no new queue will be created.
1850 */
1851 nvmet_rdma_destroy_port_queues(port);
1852 }
1853
nvmet_rdma_enable_port(struct nvmet_rdma_port * port)1854 static int nvmet_rdma_enable_port(struct nvmet_rdma_port *port)
1855 {
1856 struct sockaddr *addr = (struct sockaddr *)&port->addr;
1857 struct rdma_cm_id *cm_id;
1858 int ret;
1859
1860 cm_id = rdma_create_id(&init_net, nvmet_rdma_cm_handler, port,
1861 RDMA_PS_TCP, IB_QPT_RC);
1862 if (IS_ERR(cm_id)) {
1863 pr_err("CM ID creation failed\n");
1864 return PTR_ERR(cm_id);
1865 }
1866
1867 /*
1868 * Allow both IPv4 and IPv6 sockets to bind a single port
1869 * at the same time.
1870 */
1871 ret = rdma_set_afonly(cm_id, 1);
1872 if (ret) {
1873 pr_err("rdma_set_afonly failed (%d)\n", ret);
1874 goto out_destroy_id;
1875 }
1876
1877 ret = rdma_bind_addr(cm_id, addr);
1878 if (ret) {
1879 pr_err("binding CM ID to %pISpcs failed (%d)\n", addr, ret);
1880 goto out_destroy_id;
1881 }
1882
1883 ret = rdma_listen(cm_id, 128);
1884 if (ret) {
1885 pr_err("listening to %pISpcs failed (%d)\n", addr, ret);
1886 goto out_destroy_id;
1887 }
1888
1889 port->cm_id = cm_id;
1890 return 0;
1891
1892 out_destroy_id:
1893 rdma_destroy_id(cm_id);
1894 return ret;
1895 }
1896
nvmet_rdma_repair_port_work(struct work_struct * w)1897 static void nvmet_rdma_repair_port_work(struct work_struct *w)
1898 {
1899 struct nvmet_rdma_port *port = container_of(to_delayed_work(w),
1900 struct nvmet_rdma_port, repair_work);
1901 int ret;
1902
1903 nvmet_rdma_disable_port(port);
1904 ret = nvmet_rdma_enable_port(port);
1905 if (ret)
1906 queue_delayed_work(nvmet_wq, &port->repair_work, 5 * HZ);
1907 }
1908
nvmet_rdma_add_port(struct nvmet_port * nport)1909 static int nvmet_rdma_add_port(struct nvmet_port *nport)
1910 {
1911 struct nvmet_rdma_port *port;
1912 __kernel_sa_family_t af;
1913 int ret;
1914
1915 port = kzalloc(sizeof(*port), GFP_KERNEL);
1916 if (!port)
1917 return -ENOMEM;
1918
1919 nport->priv = port;
1920 port->nport = nport;
1921 INIT_DELAYED_WORK(&port->repair_work, nvmet_rdma_repair_port_work);
1922
1923 switch (nport->disc_addr.adrfam) {
1924 case NVMF_ADDR_FAMILY_IP4:
1925 af = AF_INET;
1926 break;
1927 case NVMF_ADDR_FAMILY_IP6:
1928 af = AF_INET6;
1929 break;
1930 default:
1931 pr_err("address family %d not supported\n",
1932 nport->disc_addr.adrfam);
1933 ret = -EINVAL;
1934 goto out_free_port;
1935 }
1936
1937 if (nport->inline_data_size < 0) {
1938 nport->inline_data_size = NVMET_RDMA_DEFAULT_INLINE_DATA_SIZE;
1939 } else if (nport->inline_data_size > NVMET_RDMA_MAX_INLINE_DATA_SIZE) {
1940 pr_warn("inline_data_size %u is too large, reducing to %u\n",
1941 nport->inline_data_size,
1942 NVMET_RDMA_MAX_INLINE_DATA_SIZE);
1943 nport->inline_data_size = NVMET_RDMA_MAX_INLINE_DATA_SIZE;
1944 }
1945
1946 ret = inet_pton_with_scope(&init_net, af, nport->disc_addr.traddr,
1947 nport->disc_addr.trsvcid, &port->addr);
1948 if (ret) {
1949 pr_err("malformed ip/port passed: %s:%s\n",
1950 nport->disc_addr.traddr, nport->disc_addr.trsvcid);
1951 goto out_free_port;
1952 }
1953
1954 ret = nvmet_rdma_enable_port(port);
1955 if (ret)
1956 goto out_free_port;
1957
1958 pr_info("enabling port %d (%pISpcs)\n",
1959 le16_to_cpu(nport->disc_addr.portid),
1960 (struct sockaddr *)&port->addr);
1961
1962 return 0;
1963
1964 out_free_port:
1965 kfree(port);
1966 return ret;
1967 }
1968
nvmet_rdma_remove_port(struct nvmet_port * nport)1969 static void nvmet_rdma_remove_port(struct nvmet_port *nport)
1970 {
1971 struct nvmet_rdma_port *port = nport->priv;
1972
1973 cancel_delayed_work_sync(&port->repair_work);
1974 nvmet_rdma_disable_port(port);
1975 kfree(port);
1976 }
1977
nvmet_rdma_disc_port_addr(struct nvmet_req * req,struct nvmet_port * nport,char * traddr)1978 static void nvmet_rdma_disc_port_addr(struct nvmet_req *req,
1979 struct nvmet_port *nport, char *traddr)
1980 {
1981 struct nvmet_rdma_port *port = nport->priv;
1982 struct rdma_cm_id *cm_id = port->cm_id;
1983
1984 if (inet_addr_is_any((struct sockaddr *)&cm_id->route.addr.src_addr)) {
1985 struct nvmet_rdma_rsp *rsp =
1986 container_of(req, struct nvmet_rdma_rsp, req);
1987 struct rdma_cm_id *req_cm_id = rsp->queue->cm_id;
1988 struct sockaddr *addr = (void *)&req_cm_id->route.addr.src_addr;
1989
1990 sprintf(traddr, "%pISc", addr);
1991 } else {
1992 memcpy(traddr, nport->disc_addr.traddr, NVMF_TRADDR_SIZE);
1993 }
1994 }
1995
nvmet_rdma_get_mdts(const struct nvmet_ctrl * ctrl)1996 static u8 nvmet_rdma_get_mdts(const struct nvmet_ctrl *ctrl)
1997 {
1998 if (ctrl->pi_support)
1999 return NVMET_RDMA_MAX_METADATA_MDTS;
2000 return NVMET_RDMA_MAX_MDTS;
2001 }
2002
nvmet_rdma_get_max_queue_size(const struct nvmet_ctrl * ctrl)2003 static u16 nvmet_rdma_get_max_queue_size(const struct nvmet_ctrl *ctrl)
2004 {
2005 return NVME_RDMA_MAX_QUEUE_SIZE;
2006 }
2007
2008 static const struct nvmet_fabrics_ops nvmet_rdma_ops = {
2009 .owner = THIS_MODULE,
2010 .type = NVMF_TRTYPE_RDMA,
2011 .msdbd = 1,
2012 .flags = NVMF_KEYED_SGLS | NVMF_METADATA_SUPPORTED,
2013 .add_port = nvmet_rdma_add_port,
2014 .remove_port = nvmet_rdma_remove_port,
2015 .queue_response = nvmet_rdma_queue_response,
2016 .delete_ctrl = nvmet_rdma_delete_ctrl,
2017 .disc_traddr = nvmet_rdma_disc_port_addr,
2018 .get_mdts = nvmet_rdma_get_mdts,
2019 .get_max_queue_size = nvmet_rdma_get_max_queue_size,
2020 };
2021
nvmet_rdma_remove_one(struct ib_device * ib_device,void * client_data)2022 static void nvmet_rdma_remove_one(struct ib_device *ib_device, void *client_data)
2023 {
2024 struct nvmet_rdma_queue *queue, *tmp;
2025 struct nvmet_rdma_device *ndev;
2026 bool found = false;
2027
2028 mutex_lock(&device_list_mutex);
2029 list_for_each_entry(ndev, &device_list, entry) {
2030 if (ndev->device == ib_device) {
2031 found = true;
2032 break;
2033 }
2034 }
2035 mutex_unlock(&device_list_mutex);
2036
2037 if (!found)
2038 return;
2039
2040 /*
2041 * IB Device that is used by nvmet controllers is being removed,
2042 * delete all queues using this device.
2043 */
2044 mutex_lock(&nvmet_rdma_queue_mutex);
2045 list_for_each_entry_safe(queue, tmp, &nvmet_rdma_queue_list,
2046 queue_list) {
2047 if (queue->dev->device != ib_device)
2048 continue;
2049
2050 pr_info("Removing queue %d\n", queue->idx);
2051 list_del_init(&queue->queue_list);
2052 __nvmet_rdma_queue_disconnect(queue);
2053 }
2054 mutex_unlock(&nvmet_rdma_queue_mutex);
2055
2056 flush_workqueue(nvmet_wq);
2057 }
2058
2059 static struct ib_client nvmet_rdma_ib_client = {
2060 .name = "nvmet_rdma",
2061 .remove = nvmet_rdma_remove_one
2062 };
2063
nvmet_rdma_init(void)2064 static int __init nvmet_rdma_init(void)
2065 {
2066 int ret;
2067
2068 ret = ib_register_client(&nvmet_rdma_ib_client);
2069 if (ret)
2070 return ret;
2071
2072 ret = nvmet_register_transport(&nvmet_rdma_ops);
2073 if (ret)
2074 goto err_ib_client;
2075
2076 return 0;
2077
2078 err_ib_client:
2079 ib_unregister_client(&nvmet_rdma_ib_client);
2080 return ret;
2081 }
2082
nvmet_rdma_exit(void)2083 static void __exit nvmet_rdma_exit(void)
2084 {
2085 nvmet_unregister_transport(&nvmet_rdma_ops);
2086 ib_unregister_client(&nvmet_rdma_ib_client);
2087 WARN_ON_ONCE(!list_empty(&nvmet_rdma_queue_list));
2088 ida_destroy(&nvmet_rdma_queue_ida);
2089 }
2090
2091 module_init(nvmet_rdma_init);
2092 module_exit(nvmet_rdma_exit);
2093
2094 MODULE_LICENSE("GPL v2");
2095 MODULE_ALIAS("nvmet-transport-1"); /* 1 == NVMF_TRTYPE_RDMA */
2096