1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * linux/fs/super.c
4 *
5 * Copyright (C) 1991, 1992 Linus Torvalds
6 *
7 * super.c contains code to handle: - mount structures
8 * - super-block tables
9 * - filesystem drivers list
10 * - mount system call
11 * - umount system call
12 * - ustat system call
13 *
14 * GK 2/5/95 - Changed to support mounting the root fs via NFS
15 *
16 * Added kerneld support: Jacques Gelinas and Bjorn Ekwall
17 * Added change_root: Werner Almesberger & Hans Lermen, Feb '96
18 * Added options to /proc/mounts:
19 * Torbjörn Lindh (torbjorn.lindh@gopta.se), April 14, 1996.
20 * Added devfs support: Richard Gooch <rgooch@atnf.csiro.au>, 13-JAN-1998
21 * Heavily rewritten for 'one fs - one tree' dcache architecture. AV, Mar 2000
22 */
23
24 #include <linux/export.h>
25 #include <linux/slab.h>
26 #include <linux/blkdev.h>
27 #include <linux/mount.h>
28 #include <linux/security.h>
29 #include <linux/writeback.h> /* for the emergency remount stuff */
30 #include <linux/idr.h>
31 #include <linux/mutex.h>
32 #include <linux/backing-dev.h>
33 #include <linux/rculist_bl.h>
34 #include <linux/fscrypt.h>
35 #include <linux/fsnotify.h>
36 #include <linux/lockdep.h>
37 #include <linux/user_namespace.h>
38 #include <linux/fs_context.h>
39 #include <uapi/linux/mount.h>
40 #include "internal.h"
41
42 static int thaw_super_locked(struct super_block *sb);
43
44 static LIST_HEAD(super_blocks);
45 static DEFINE_SPINLOCK(sb_lock);
46
47 static char *sb_writers_name[SB_FREEZE_LEVELS] = {
48 "sb_writers",
49 "sb_pagefaults",
50 "sb_internal",
51 };
52
53 /*
54 * One thing we have to be careful of with a per-sb shrinker is that we don't
55 * drop the last active reference to the superblock from within the shrinker.
56 * If that happens we could trigger unregistering the shrinker from within the
57 * shrinker path and that leads to deadlock on the shrinker_rwsem. Hence we
58 * take a passive reference to the superblock to avoid this from occurring.
59 */
super_cache_scan(struct shrinker * shrink,struct shrink_control * sc)60 static unsigned long super_cache_scan(struct shrinker *shrink,
61 struct shrink_control *sc)
62 {
63 struct super_block *sb;
64 long fs_objects = 0;
65 long total_objects;
66 long freed = 0;
67 long dentries;
68 long inodes;
69
70 sb = container_of(shrink, struct super_block, s_shrink);
71
72 /*
73 * Deadlock avoidance. We may hold various FS locks, and we don't want
74 * to recurse into the FS that called us in clear_inode() and friends..
75 */
76 if (!(sc->gfp_mask & __GFP_FS))
77 return SHRINK_STOP;
78
79 if (!trylock_super(sb))
80 return SHRINK_STOP;
81
82 if (sb->s_op->nr_cached_objects)
83 fs_objects = sb->s_op->nr_cached_objects(sb, sc);
84
85 inodes = list_lru_shrink_count(&sb->s_inode_lru, sc);
86 dentries = list_lru_shrink_count(&sb->s_dentry_lru, sc);
87 total_objects = dentries + inodes + fs_objects + 1;
88 if (!total_objects)
89 total_objects = 1;
90
91 /* proportion the scan between the caches */
92 dentries = mult_frac(sc->nr_to_scan, dentries, total_objects);
93 inodes = mult_frac(sc->nr_to_scan, inodes, total_objects);
94 fs_objects = mult_frac(sc->nr_to_scan, fs_objects, total_objects);
95
96 /*
97 * prune the dcache first as the icache is pinned by it, then
98 * prune the icache, followed by the filesystem specific caches
99 *
100 * Ensure that we always scan at least one object - memcg kmem
101 * accounting uses this to fully empty the caches.
102 */
103 sc->nr_to_scan = dentries + 1;
104 freed = prune_dcache_sb(sb, sc);
105 sc->nr_to_scan = inodes + 1;
106 freed += prune_icache_sb(sb, sc);
107
108 if (fs_objects) {
109 sc->nr_to_scan = fs_objects + 1;
110 freed += sb->s_op->free_cached_objects(sb, sc);
111 }
112
113 up_read(&sb->s_umount);
114 return freed;
115 }
116
super_cache_count(struct shrinker * shrink,struct shrink_control * sc)117 static unsigned long super_cache_count(struct shrinker *shrink,
118 struct shrink_control *sc)
119 {
120 struct super_block *sb;
121 long total_objects = 0;
122
123 sb = container_of(shrink, struct super_block, s_shrink);
124
125 /*
126 * We don't call trylock_super() here as it is a scalability bottleneck,
127 * so we're exposed to partial setup state. The shrinker rwsem does not
128 * protect filesystem operations backing list_lru_shrink_count() or
129 * s_op->nr_cached_objects(). Counts can change between
130 * super_cache_count and super_cache_scan, so we really don't need locks
131 * here.
132 *
133 * However, if we are currently mounting the superblock, the underlying
134 * filesystem might be in a state of partial construction and hence it
135 * is dangerous to access it. trylock_super() uses a SB_BORN check to
136 * avoid this situation, so do the same here. The memory barrier is
137 * matched with the one in mount_fs() as we don't hold locks here.
138 */
139 if (!(sb->s_flags & SB_BORN))
140 return 0;
141 smp_rmb();
142
143 if (sb->s_op && sb->s_op->nr_cached_objects)
144 total_objects = sb->s_op->nr_cached_objects(sb, sc);
145
146 total_objects += list_lru_shrink_count(&sb->s_dentry_lru, sc);
147 total_objects += list_lru_shrink_count(&sb->s_inode_lru, sc);
148
149 if (!total_objects)
150 return SHRINK_EMPTY;
151
152 total_objects = vfs_pressure_ratio(total_objects);
153 return total_objects;
154 }
155
destroy_super_work(struct work_struct * work)156 static void destroy_super_work(struct work_struct *work)
157 {
158 struct super_block *s = container_of(work, struct super_block,
159 destroy_work);
160 int i;
161
162 for (i = 0; i < SB_FREEZE_LEVELS; i++)
163 percpu_free_rwsem(&s->s_writers.rw_sem[i]);
164 kfree(s);
165 }
166
destroy_super_rcu(struct rcu_head * head)167 static void destroy_super_rcu(struct rcu_head *head)
168 {
169 struct super_block *s = container_of(head, struct super_block, rcu);
170 INIT_WORK(&s->destroy_work, destroy_super_work);
171 schedule_work(&s->destroy_work);
172 }
173
174 /* Free a superblock that has never been seen by anyone */
destroy_unused_super(struct super_block * s)175 static void destroy_unused_super(struct super_block *s)
176 {
177 if (!s)
178 return;
179 up_write(&s->s_umount);
180 list_lru_destroy(&s->s_dentry_lru);
181 list_lru_destroy(&s->s_inode_lru);
182 security_sb_free(s);
183 put_user_ns(s->s_user_ns);
184 kfree(s->s_subtype);
185 free_prealloced_shrinker(&s->s_shrink);
186 /* no delays needed */
187 destroy_super_work(&s->destroy_work);
188 }
189
190 /**
191 * alloc_super - create new superblock
192 * @type: filesystem type superblock should belong to
193 * @flags: the mount flags
194 * @user_ns: User namespace for the super_block
195 *
196 * Allocates and initializes a new &struct super_block. alloc_super()
197 * returns a pointer new superblock or %NULL if allocation had failed.
198 */
alloc_super(struct file_system_type * type,int flags,struct user_namespace * user_ns)199 static struct super_block *alloc_super(struct file_system_type *type, int flags,
200 struct user_namespace *user_ns)
201 {
202 struct super_block *s = kzalloc(sizeof(struct super_block), GFP_USER);
203 static const struct super_operations default_op;
204 int i;
205
206 if (!s)
207 return NULL;
208
209 INIT_LIST_HEAD(&s->s_mounts);
210 s->s_user_ns = get_user_ns(user_ns);
211 init_rwsem(&s->s_umount);
212 lockdep_set_class(&s->s_umount, &type->s_umount_key);
213 /*
214 * sget() can have s_umount recursion.
215 *
216 * When it cannot find a suitable sb, it allocates a new
217 * one (this one), and tries again to find a suitable old
218 * one.
219 *
220 * In case that succeeds, it will acquire the s_umount
221 * lock of the old one. Since these are clearly distrinct
222 * locks, and this object isn't exposed yet, there's no
223 * risk of deadlocks.
224 *
225 * Annotate this by putting this lock in a different
226 * subclass.
227 */
228 down_write_nested(&s->s_umount, SINGLE_DEPTH_NESTING);
229
230 if (security_sb_alloc(s))
231 goto fail;
232
233 for (i = 0; i < SB_FREEZE_LEVELS; i++) {
234 if (__percpu_init_rwsem(&s->s_writers.rw_sem[i],
235 sb_writers_name[i],
236 &type->s_writers_key[i]))
237 goto fail;
238 }
239 init_waitqueue_head(&s->s_writers.wait_unfrozen);
240 s->s_bdi = &noop_backing_dev_info;
241 s->s_flags = flags;
242 if (s->s_user_ns != &init_user_ns)
243 s->s_iflags |= SB_I_NODEV;
244 INIT_HLIST_NODE(&s->s_instances);
245 INIT_HLIST_BL_HEAD(&s->s_roots);
246 mutex_init(&s->s_sync_lock);
247 INIT_LIST_HEAD(&s->s_inodes);
248 spin_lock_init(&s->s_inode_list_lock);
249 INIT_LIST_HEAD(&s->s_inodes_wb);
250 spin_lock_init(&s->s_inode_wblist_lock);
251
252 s->s_count = 1;
253 atomic_set(&s->s_active, 1);
254 mutex_init(&s->s_vfs_rename_mutex);
255 lockdep_set_class(&s->s_vfs_rename_mutex, &type->s_vfs_rename_key);
256 init_rwsem(&s->s_dquot.dqio_sem);
257 s->s_maxbytes = MAX_NON_LFS;
258 s->s_op = &default_op;
259 s->s_time_gran = 1000000000;
260 s->s_time_min = TIME64_MIN;
261 s->s_time_max = TIME64_MAX;
262
263 s->s_shrink.seeks = DEFAULT_SEEKS;
264 s->s_shrink.scan_objects = super_cache_scan;
265 s->s_shrink.count_objects = super_cache_count;
266 s->s_shrink.batch = 1024;
267 s->s_shrink.flags = SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE;
268 if (prealloc_shrinker(&s->s_shrink, "sb-%s", type->name))
269 goto fail;
270 if (list_lru_init_memcg(&s->s_dentry_lru, &s->s_shrink))
271 goto fail;
272 if (list_lru_init_memcg(&s->s_inode_lru, &s->s_shrink))
273 goto fail;
274 return s;
275
276 fail:
277 destroy_unused_super(s);
278 return NULL;
279 }
280
281 /* Superblock refcounting */
282
283 /*
284 * Drop a superblock's refcount. The caller must hold sb_lock.
285 */
__put_super(struct super_block * s)286 static void __put_super(struct super_block *s)
287 {
288 if (!--s->s_count) {
289 list_del_init(&s->s_list);
290 WARN_ON(s->s_dentry_lru.node);
291 WARN_ON(s->s_inode_lru.node);
292 WARN_ON(!list_empty(&s->s_mounts));
293 security_sb_free(s);
294 fscrypt_destroy_keyring(s);
295 put_user_ns(s->s_user_ns);
296 kfree(s->s_subtype);
297 call_rcu(&s->rcu, destroy_super_rcu);
298 }
299 }
300
301 /**
302 * put_super - drop a temporary reference to superblock
303 * @sb: superblock in question
304 *
305 * Drops a temporary reference, frees superblock if there's no
306 * references left.
307 */
put_super(struct super_block * sb)308 void put_super(struct super_block *sb)
309 {
310 spin_lock(&sb_lock);
311 __put_super(sb);
312 spin_unlock(&sb_lock);
313 }
314
315
316 /**
317 * deactivate_locked_super - drop an active reference to superblock
318 * @s: superblock to deactivate
319 *
320 * Drops an active reference to superblock, converting it into a temporary
321 * one if there is no other active references left. In that case we
322 * tell fs driver to shut it down and drop the temporary reference we
323 * had just acquired.
324 *
325 * Caller holds exclusive lock on superblock; that lock is released.
326 */
deactivate_locked_super(struct super_block * s)327 void deactivate_locked_super(struct super_block *s)
328 {
329 struct file_system_type *fs = s->s_type;
330 if (atomic_dec_and_test(&s->s_active)) {
331 unregister_shrinker(&s->s_shrink);
332 fs->kill_sb(s);
333
334 /*
335 * Since list_lru_destroy() may sleep, we cannot call it from
336 * put_super(), where we hold the sb_lock. Therefore we destroy
337 * the lru lists right now.
338 */
339 list_lru_destroy(&s->s_dentry_lru);
340 list_lru_destroy(&s->s_inode_lru);
341
342 put_filesystem(fs);
343 put_super(s);
344 } else {
345 up_write(&s->s_umount);
346 }
347 }
348
349 EXPORT_SYMBOL(deactivate_locked_super);
350
351 /**
352 * deactivate_super - drop an active reference to superblock
353 * @s: superblock to deactivate
354 *
355 * Variant of deactivate_locked_super(), except that superblock is *not*
356 * locked by caller. If we are going to drop the final active reference,
357 * lock will be acquired prior to that.
358 */
deactivate_super(struct super_block * s)359 void deactivate_super(struct super_block *s)
360 {
361 if (!atomic_add_unless(&s->s_active, -1, 1)) {
362 down_write(&s->s_umount);
363 deactivate_locked_super(s);
364 }
365 }
366
367 EXPORT_SYMBOL(deactivate_super);
368
369 /**
370 * grab_super - acquire an active reference
371 * @s: reference we are trying to make active
372 *
373 * Tries to acquire an active reference. grab_super() is used when we
374 * had just found a superblock in super_blocks or fs_type->fs_supers
375 * and want to turn it into a full-blown active reference. grab_super()
376 * is called with sb_lock held and drops it. Returns 1 in case of
377 * success, 0 if we had failed (superblock contents was already dead or
378 * dying when grab_super() had been called). Note that this is only
379 * called for superblocks not in rundown mode (== ones still on ->fs_supers
380 * of their type), so increment of ->s_count is OK here.
381 */
grab_super(struct super_block * s)382 static int grab_super(struct super_block *s) __releases(sb_lock)
383 {
384 s->s_count++;
385 spin_unlock(&sb_lock);
386 down_write(&s->s_umount);
387 if ((s->s_flags & SB_BORN) && atomic_inc_not_zero(&s->s_active)) {
388 put_super(s);
389 return 1;
390 }
391 up_write(&s->s_umount);
392 put_super(s);
393 return 0;
394 }
395
396 /*
397 * trylock_super - try to grab ->s_umount shared
398 * @sb: reference we are trying to grab
399 *
400 * Try to prevent fs shutdown. This is used in places where we
401 * cannot take an active reference but we need to ensure that the
402 * filesystem is not shut down while we are working on it. It returns
403 * false if we cannot acquire s_umount or if we lose the race and
404 * filesystem already got into shutdown, and returns true with the s_umount
405 * lock held in read mode in case of success. On successful return,
406 * the caller must drop the s_umount lock when done.
407 *
408 * Note that unlike get_super() et.al. this one does *not* bump ->s_count.
409 * The reason why it's safe is that we are OK with doing trylock instead
410 * of down_read(). There's a couple of places that are OK with that, but
411 * it's very much not a general-purpose interface.
412 */
trylock_super(struct super_block * sb)413 bool trylock_super(struct super_block *sb)
414 {
415 if (down_read_trylock(&sb->s_umount)) {
416 if (!hlist_unhashed(&sb->s_instances) &&
417 sb->s_root && (sb->s_flags & SB_BORN))
418 return true;
419 up_read(&sb->s_umount);
420 }
421
422 return false;
423 }
424
425 /**
426 * retire_super - prevents superblock from being reused
427 * @sb: superblock to retire
428 *
429 * The function marks superblock to be ignored in superblock test, which
430 * prevents it from being reused for any new mounts. If the superblock has
431 * a private bdi, it also unregisters it, but doesn't reduce the refcount
432 * of the superblock to prevent potential races. The refcount is reduced
433 * by generic_shutdown_super(). The function can not be called
434 * concurrently with generic_shutdown_super(). It is safe to call the
435 * function multiple times, subsequent calls have no effect.
436 *
437 * The marker will affect the re-use only for block-device-based
438 * superblocks. Other superblocks will still get marked if this function
439 * is used, but that will not affect their reusability.
440 */
retire_super(struct super_block * sb)441 void retire_super(struct super_block *sb)
442 {
443 WARN_ON(!sb->s_bdev);
444 down_write(&sb->s_umount);
445 if (sb->s_iflags & SB_I_PERSB_BDI) {
446 bdi_unregister(sb->s_bdi);
447 sb->s_iflags &= ~SB_I_PERSB_BDI;
448 }
449 sb->s_iflags |= SB_I_RETIRED;
450 up_write(&sb->s_umount);
451 }
452 EXPORT_SYMBOL(retire_super);
453
454 /**
455 * generic_shutdown_super - common helper for ->kill_sb()
456 * @sb: superblock to kill
457 *
458 * generic_shutdown_super() does all fs-independent work on superblock
459 * shutdown. Typical ->kill_sb() should pick all fs-specific objects
460 * that need destruction out of superblock, call generic_shutdown_super()
461 * and release aforementioned objects. Note: dentries and inodes _are_
462 * taken care of and do not need specific handling.
463 *
464 * Upon calling this function, the filesystem may no longer alter or
465 * rearrange the set of dentries belonging to this super_block, nor may it
466 * change the attachments of dentries to inodes.
467 */
generic_shutdown_super(struct super_block * sb)468 void generic_shutdown_super(struct super_block *sb)
469 {
470 const struct super_operations *sop = sb->s_op;
471
472 if (sb->s_root) {
473 shrink_dcache_for_umount(sb);
474 sync_filesystem(sb);
475 sb->s_flags &= ~SB_ACTIVE;
476
477 cgroup_writeback_umount();
478
479 /* evict all inodes with zero refcount */
480 evict_inodes(sb);
481 /* only nonzero refcount inodes can have marks */
482 fsnotify_sb_delete(sb);
483 fscrypt_destroy_keyring(sb);
484 security_sb_delete(sb);
485
486 if (sb->s_dio_done_wq) {
487 destroy_workqueue(sb->s_dio_done_wq);
488 sb->s_dio_done_wq = NULL;
489 }
490
491 if (sop->put_super)
492 sop->put_super(sb);
493
494 if (!list_empty(&sb->s_inodes)) {
495 printk("VFS: Busy inodes after unmount of %s. "
496 "Self-destruct in 5 seconds. Have a nice day...\n",
497 sb->s_id);
498 }
499 }
500 spin_lock(&sb_lock);
501 /* should be initialized for __put_super_and_need_restart() */
502 hlist_del_init(&sb->s_instances);
503 spin_unlock(&sb_lock);
504 up_write(&sb->s_umount);
505 if (sb->s_bdi != &noop_backing_dev_info) {
506 if (sb->s_iflags & SB_I_PERSB_BDI)
507 bdi_unregister(sb->s_bdi);
508 bdi_put(sb->s_bdi);
509 sb->s_bdi = &noop_backing_dev_info;
510 }
511 }
512
513 EXPORT_SYMBOL(generic_shutdown_super);
514
mount_capable(struct fs_context * fc)515 bool mount_capable(struct fs_context *fc)
516 {
517 if (!(fc->fs_type->fs_flags & FS_USERNS_MOUNT))
518 return capable(CAP_SYS_ADMIN);
519 else
520 return ns_capable(fc->user_ns, CAP_SYS_ADMIN);
521 }
522
523 /**
524 * sget_fc - Find or create a superblock
525 * @fc: Filesystem context.
526 * @test: Comparison callback
527 * @set: Setup callback
528 *
529 * Find or create a superblock using the parameters stored in the filesystem
530 * context and the two callback functions.
531 *
532 * If an extant superblock is matched, then that will be returned with an
533 * elevated reference count that the caller must transfer or discard.
534 *
535 * If no match is made, a new superblock will be allocated and basic
536 * initialisation will be performed (s_type, s_fs_info and s_id will be set and
537 * the set() callback will be invoked), the superblock will be published and it
538 * will be returned in a partially constructed state with SB_BORN and SB_ACTIVE
539 * as yet unset.
540 */
sget_fc(struct fs_context * fc,int (* test)(struct super_block *,struct fs_context *),int (* set)(struct super_block *,struct fs_context *))541 struct super_block *sget_fc(struct fs_context *fc,
542 int (*test)(struct super_block *, struct fs_context *),
543 int (*set)(struct super_block *, struct fs_context *))
544 {
545 struct super_block *s = NULL;
546 struct super_block *old;
547 struct user_namespace *user_ns = fc->global ? &init_user_ns : fc->user_ns;
548 int err;
549
550 retry:
551 spin_lock(&sb_lock);
552 if (test) {
553 hlist_for_each_entry(old, &fc->fs_type->fs_supers, s_instances) {
554 if (test(old, fc))
555 goto share_extant_sb;
556 }
557 }
558 if (!s) {
559 spin_unlock(&sb_lock);
560 s = alloc_super(fc->fs_type, fc->sb_flags, user_ns);
561 if (!s)
562 return ERR_PTR(-ENOMEM);
563 goto retry;
564 }
565
566 s->s_fs_info = fc->s_fs_info;
567 err = set(s, fc);
568 if (err) {
569 s->s_fs_info = NULL;
570 spin_unlock(&sb_lock);
571 destroy_unused_super(s);
572 return ERR_PTR(err);
573 }
574 fc->s_fs_info = NULL;
575 s->s_type = fc->fs_type;
576 s->s_iflags |= fc->s_iflags;
577 strlcpy(s->s_id, s->s_type->name, sizeof(s->s_id));
578 list_add_tail(&s->s_list, &super_blocks);
579 hlist_add_head(&s->s_instances, &s->s_type->fs_supers);
580 spin_unlock(&sb_lock);
581 get_filesystem(s->s_type);
582 register_shrinker_prepared(&s->s_shrink);
583 return s;
584
585 share_extant_sb:
586 if (user_ns != old->s_user_ns) {
587 spin_unlock(&sb_lock);
588 destroy_unused_super(s);
589 return ERR_PTR(-EBUSY);
590 }
591 if (!grab_super(old))
592 goto retry;
593 destroy_unused_super(s);
594 return old;
595 }
596 EXPORT_SYMBOL(sget_fc);
597
598 /**
599 * sget - find or create a superblock
600 * @type: filesystem type superblock should belong to
601 * @test: comparison callback
602 * @set: setup callback
603 * @flags: mount flags
604 * @data: argument to each of them
605 */
sget(struct file_system_type * type,int (* test)(struct super_block *,void *),int (* set)(struct super_block *,void *),int flags,void * data)606 struct super_block *sget(struct file_system_type *type,
607 int (*test)(struct super_block *,void *),
608 int (*set)(struct super_block *,void *),
609 int flags,
610 void *data)
611 {
612 struct user_namespace *user_ns = current_user_ns();
613 struct super_block *s = NULL;
614 struct super_block *old;
615 int err;
616
617 /* We don't yet pass the user namespace of the parent
618 * mount through to here so always use &init_user_ns
619 * until that changes.
620 */
621 if (flags & SB_SUBMOUNT)
622 user_ns = &init_user_ns;
623
624 retry:
625 spin_lock(&sb_lock);
626 if (test) {
627 hlist_for_each_entry(old, &type->fs_supers, s_instances) {
628 if (!test(old, data))
629 continue;
630 if (user_ns != old->s_user_ns) {
631 spin_unlock(&sb_lock);
632 destroy_unused_super(s);
633 return ERR_PTR(-EBUSY);
634 }
635 if (!grab_super(old))
636 goto retry;
637 destroy_unused_super(s);
638 return old;
639 }
640 }
641 if (!s) {
642 spin_unlock(&sb_lock);
643 s = alloc_super(type, (flags & ~SB_SUBMOUNT), user_ns);
644 if (!s)
645 return ERR_PTR(-ENOMEM);
646 goto retry;
647 }
648
649 err = set(s, data);
650 if (err) {
651 spin_unlock(&sb_lock);
652 destroy_unused_super(s);
653 return ERR_PTR(err);
654 }
655 s->s_type = type;
656 strlcpy(s->s_id, type->name, sizeof(s->s_id));
657 list_add_tail(&s->s_list, &super_blocks);
658 hlist_add_head(&s->s_instances, &type->fs_supers);
659 spin_unlock(&sb_lock);
660 get_filesystem(type);
661 register_shrinker_prepared(&s->s_shrink);
662 return s;
663 }
664 EXPORT_SYMBOL(sget);
665
drop_super(struct super_block * sb)666 void drop_super(struct super_block *sb)
667 {
668 up_read(&sb->s_umount);
669 put_super(sb);
670 }
671
672 EXPORT_SYMBOL(drop_super);
673
drop_super_exclusive(struct super_block * sb)674 void drop_super_exclusive(struct super_block *sb)
675 {
676 up_write(&sb->s_umount);
677 put_super(sb);
678 }
679 EXPORT_SYMBOL(drop_super_exclusive);
680
__iterate_supers(void (* f)(struct super_block *))681 static void __iterate_supers(void (*f)(struct super_block *))
682 {
683 struct super_block *sb, *p = NULL;
684
685 spin_lock(&sb_lock);
686 list_for_each_entry(sb, &super_blocks, s_list) {
687 if (hlist_unhashed(&sb->s_instances))
688 continue;
689 sb->s_count++;
690 spin_unlock(&sb_lock);
691
692 f(sb);
693
694 spin_lock(&sb_lock);
695 if (p)
696 __put_super(p);
697 p = sb;
698 }
699 if (p)
700 __put_super(p);
701 spin_unlock(&sb_lock);
702 }
703 /**
704 * iterate_supers - call function for all active superblocks
705 * @f: function to call
706 * @arg: argument to pass to it
707 *
708 * Scans the superblock list and calls given function, passing it
709 * locked superblock and given argument.
710 */
iterate_supers(void (* f)(struct super_block *,void *),void * arg)711 void iterate_supers(void (*f)(struct super_block *, void *), void *arg)
712 {
713 struct super_block *sb, *p = NULL;
714
715 spin_lock(&sb_lock);
716 list_for_each_entry(sb, &super_blocks, s_list) {
717 if (hlist_unhashed(&sb->s_instances))
718 continue;
719 sb->s_count++;
720 spin_unlock(&sb_lock);
721
722 down_read(&sb->s_umount);
723 if (sb->s_root && (sb->s_flags & SB_BORN))
724 f(sb, arg);
725 up_read(&sb->s_umount);
726
727 spin_lock(&sb_lock);
728 if (p)
729 __put_super(p);
730 p = sb;
731 }
732 if (p)
733 __put_super(p);
734 spin_unlock(&sb_lock);
735 }
736
737 /**
738 * iterate_supers_type - call function for superblocks of given type
739 * @type: fs type
740 * @f: function to call
741 * @arg: argument to pass to it
742 *
743 * Scans the superblock list and calls given function, passing it
744 * locked superblock and given argument.
745 */
iterate_supers_type(struct file_system_type * type,void (* f)(struct super_block *,void *),void * arg)746 void iterate_supers_type(struct file_system_type *type,
747 void (*f)(struct super_block *, void *), void *arg)
748 {
749 struct super_block *sb, *p = NULL;
750
751 spin_lock(&sb_lock);
752 hlist_for_each_entry(sb, &type->fs_supers, s_instances) {
753 sb->s_count++;
754 spin_unlock(&sb_lock);
755
756 down_read(&sb->s_umount);
757 if (sb->s_root && (sb->s_flags & SB_BORN))
758 f(sb, arg);
759 up_read(&sb->s_umount);
760
761 spin_lock(&sb_lock);
762 if (p)
763 __put_super(p);
764 p = sb;
765 }
766 if (p)
767 __put_super(p);
768 spin_unlock(&sb_lock);
769 }
770
771 EXPORT_SYMBOL(iterate_supers_type);
772
773 /**
774 * get_super - get the superblock of a device
775 * @bdev: device to get the superblock for
776 *
777 * Scans the superblock list and finds the superblock of the file system
778 * mounted on the device given. %NULL is returned if no match is found.
779 */
get_super(struct block_device * bdev)780 struct super_block *get_super(struct block_device *bdev)
781 {
782 struct super_block *sb;
783
784 if (!bdev)
785 return NULL;
786
787 spin_lock(&sb_lock);
788 rescan:
789 list_for_each_entry(sb, &super_blocks, s_list) {
790 if (hlist_unhashed(&sb->s_instances))
791 continue;
792 if (sb->s_bdev == bdev) {
793 sb->s_count++;
794 spin_unlock(&sb_lock);
795 down_read(&sb->s_umount);
796 /* still alive? */
797 if (sb->s_root && (sb->s_flags & SB_BORN))
798 return sb;
799 up_read(&sb->s_umount);
800 /* nope, got unmounted */
801 spin_lock(&sb_lock);
802 __put_super(sb);
803 goto rescan;
804 }
805 }
806 spin_unlock(&sb_lock);
807 return NULL;
808 }
809
810 /**
811 * get_active_super - get an active reference to the superblock of a device
812 * @bdev: device to get the superblock for
813 *
814 * Scans the superblock list and finds the superblock of the file system
815 * mounted on the device given. Returns the superblock with an active
816 * reference or %NULL if none was found.
817 */
get_active_super(struct block_device * bdev)818 struct super_block *get_active_super(struct block_device *bdev)
819 {
820 struct super_block *sb;
821
822 if (!bdev)
823 return NULL;
824
825 restart:
826 spin_lock(&sb_lock);
827 list_for_each_entry(sb, &super_blocks, s_list) {
828 if (hlist_unhashed(&sb->s_instances))
829 continue;
830 if (sb->s_bdev == bdev) {
831 if (!grab_super(sb))
832 goto restart;
833 up_write(&sb->s_umount);
834 return sb;
835 }
836 }
837 spin_unlock(&sb_lock);
838 return NULL;
839 }
840
user_get_super(dev_t dev,bool excl)841 struct super_block *user_get_super(dev_t dev, bool excl)
842 {
843 struct super_block *sb;
844
845 spin_lock(&sb_lock);
846 rescan:
847 list_for_each_entry(sb, &super_blocks, s_list) {
848 if (hlist_unhashed(&sb->s_instances))
849 continue;
850 if (sb->s_dev == dev) {
851 sb->s_count++;
852 spin_unlock(&sb_lock);
853 if (excl)
854 down_write(&sb->s_umount);
855 else
856 down_read(&sb->s_umount);
857 /* still alive? */
858 if (sb->s_root && (sb->s_flags & SB_BORN))
859 return sb;
860 if (excl)
861 up_write(&sb->s_umount);
862 else
863 up_read(&sb->s_umount);
864 /* nope, got unmounted */
865 spin_lock(&sb_lock);
866 __put_super(sb);
867 goto rescan;
868 }
869 }
870 spin_unlock(&sb_lock);
871 return NULL;
872 }
873
874 /**
875 * reconfigure_super - asks filesystem to change superblock parameters
876 * @fc: The superblock and configuration
877 *
878 * Alters the configuration parameters of a live superblock.
879 */
reconfigure_super(struct fs_context * fc)880 int reconfigure_super(struct fs_context *fc)
881 {
882 struct super_block *sb = fc->root->d_sb;
883 int retval;
884 bool remount_ro = false;
885 bool force = fc->sb_flags & SB_FORCE;
886
887 if (fc->sb_flags_mask & ~MS_RMT_MASK)
888 return -EINVAL;
889 if (sb->s_writers.frozen != SB_UNFROZEN)
890 return -EBUSY;
891
892 retval = security_sb_remount(sb, fc->security);
893 if (retval)
894 return retval;
895
896 if (fc->sb_flags_mask & SB_RDONLY) {
897 #ifdef CONFIG_BLOCK
898 if (!(fc->sb_flags & SB_RDONLY) && sb->s_bdev &&
899 bdev_read_only(sb->s_bdev))
900 return -EACCES;
901 #endif
902
903 remount_ro = (fc->sb_flags & SB_RDONLY) && !sb_rdonly(sb);
904 }
905
906 if (remount_ro) {
907 if (!hlist_empty(&sb->s_pins)) {
908 up_write(&sb->s_umount);
909 group_pin_kill(&sb->s_pins);
910 down_write(&sb->s_umount);
911 if (!sb->s_root)
912 return 0;
913 if (sb->s_writers.frozen != SB_UNFROZEN)
914 return -EBUSY;
915 remount_ro = !sb_rdonly(sb);
916 }
917 }
918 shrink_dcache_sb(sb);
919
920 /* If we are reconfiguring to RDONLY and current sb is read/write,
921 * make sure there are no files open for writing.
922 */
923 if (remount_ro) {
924 if (force) {
925 sb->s_readonly_remount = 1;
926 smp_wmb();
927 } else {
928 retval = sb_prepare_remount_readonly(sb);
929 if (retval)
930 return retval;
931 }
932 }
933
934 if (fc->ops->reconfigure) {
935 retval = fc->ops->reconfigure(fc);
936 if (retval) {
937 if (!force)
938 goto cancel_readonly;
939 /* If forced remount, go ahead despite any errors */
940 WARN(1, "forced remount of a %s fs returned %i\n",
941 sb->s_type->name, retval);
942 }
943 }
944
945 WRITE_ONCE(sb->s_flags, ((sb->s_flags & ~fc->sb_flags_mask) |
946 (fc->sb_flags & fc->sb_flags_mask)));
947 /* Needs to be ordered wrt mnt_is_readonly() */
948 smp_wmb();
949 sb->s_readonly_remount = 0;
950
951 /*
952 * Some filesystems modify their metadata via some other path than the
953 * bdev buffer cache (eg. use a private mapping, or directories in
954 * pagecache, etc). Also file data modifications go via their own
955 * mappings. So If we try to mount readonly then copy the filesystem
956 * from bdev, we could get stale data, so invalidate it to give a best
957 * effort at coherency.
958 */
959 if (remount_ro && sb->s_bdev)
960 invalidate_bdev(sb->s_bdev);
961 return 0;
962
963 cancel_readonly:
964 sb->s_readonly_remount = 0;
965 return retval;
966 }
967
do_emergency_remount_callback(struct super_block * sb)968 static void do_emergency_remount_callback(struct super_block *sb)
969 {
970 down_write(&sb->s_umount);
971 if (sb->s_root && sb->s_bdev && (sb->s_flags & SB_BORN) &&
972 !sb_rdonly(sb)) {
973 struct fs_context *fc;
974
975 fc = fs_context_for_reconfigure(sb->s_root,
976 SB_RDONLY | SB_FORCE, SB_RDONLY);
977 if (!IS_ERR(fc)) {
978 if (parse_monolithic_mount_data(fc, NULL) == 0)
979 (void)reconfigure_super(fc);
980 put_fs_context(fc);
981 }
982 }
983 up_write(&sb->s_umount);
984 }
985
do_emergency_remount(struct work_struct * work)986 static void do_emergency_remount(struct work_struct *work)
987 {
988 __iterate_supers(do_emergency_remount_callback);
989 kfree(work);
990 printk("Emergency Remount complete\n");
991 }
992
emergency_remount(void)993 void emergency_remount(void)
994 {
995 struct work_struct *work;
996
997 work = kmalloc(sizeof(*work), GFP_ATOMIC);
998 if (work) {
999 INIT_WORK(work, do_emergency_remount);
1000 schedule_work(work);
1001 }
1002 }
1003
do_thaw_all_callback(struct super_block * sb)1004 static void do_thaw_all_callback(struct super_block *sb)
1005 {
1006 down_write(&sb->s_umount);
1007 if (sb->s_root && sb->s_flags & SB_BORN) {
1008 emergency_thaw_bdev(sb);
1009 thaw_super_locked(sb);
1010 } else {
1011 up_write(&sb->s_umount);
1012 }
1013 }
1014
do_thaw_all(struct work_struct * work)1015 static void do_thaw_all(struct work_struct *work)
1016 {
1017 __iterate_supers(do_thaw_all_callback);
1018 kfree(work);
1019 printk(KERN_WARNING "Emergency Thaw complete\n");
1020 }
1021
1022 /**
1023 * emergency_thaw_all -- forcibly thaw every frozen filesystem
1024 *
1025 * Used for emergency unfreeze of all filesystems via SysRq
1026 */
emergency_thaw_all(void)1027 void emergency_thaw_all(void)
1028 {
1029 struct work_struct *work;
1030
1031 work = kmalloc(sizeof(*work), GFP_ATOMIC);
1032 if (work) {
1033 INIT_WORK(work, do_thaw_all);
1034 schedule_work(work);
1035 }
1036 }
1037
1038 static DEFINE_IDA(unnamed_dev_ida);
1039
1040 /**
1041 * get_anon_bdev - Allocate a block device for filesystems which don't have one.
1042 * @p: Pointer to a dev_t.
1043 *
1044 * Filesystems which don't use real block devices can call this function
1045 * to allocate a virtual block device.
1046 *
1047 * Context: Any context. Frequently called while holding sb_lock.
1048 * Return: 0 on success, -EMFILE if there are no anonymous bdevs left
1049 * or -ENOMEM if memory allocation failed.
1050 */
get_anon_bdev(dev_t * p)1051 int get_anon_bdev(dev_t *p)
1052 {
1053 int dev;
1054
1055 /*
1056 * Many userspace utilities consider an FSID of 0 invalid.
1057 * Always return at least 1 from get_anon_bdev.
1058 */
1059 dev = ida_alloc_range(&unnamed_dev_ida, 1, (1 << MINORBITS) - 1,
1060 GFP_ATOMIC);
1061 if (dev == -ENOSPC)
1062 dev = -EMFILE;
1063 if (dev < 0)
1064 return dev;
1065
1066 *p = MKDEV(0, dev);
1067 return 0;
1068 }
1069 EXPORT_SYMBOL(get_anon_bdev);
1070
free_anon_bdev(dev_t dev)1071 void free_anon_bdev(dev_t dev)
1072 {
1073 ida_free(&unnamed_dev_ida, MINOR(dev));
1074 }
1075 EXPORT_SYMBOL(free_anon_bdev);
1076
set_anon_super(struct super_block * s,void * data)1077 int set_anon_super(struct super_block *s, void *data)
1078 {
1079 return get_anon_bdev(&s->s_dev);
1080 }
1081 EXPORT_SYMBOL(set_anon_super);
1082
kill_anon_super(struct super_block * sb)1083 void kill_anon_super(struct super_block *sb)
1084 {
1085 dev_t dev = sb->s_dev;
1086 generic_shutdown_super(sb);
1087 free_anon_bdev(dev);
1088 }
1089 EXPORT_SYMBOL(kill_anon_super);
1090
kill_litter_super(struct super_block * sb)1091 void kill_litter_super(struct super_block *sb)
1092 {
1093 if (sb->s_root)
1094 d_genocide(sb->s_root);
1095 kill_anon_super(sb);
1096 }
1097 EXPORT_SYMBOL(kill_litter_super);
1098
set_anon_super_fc(struct super_block * sb,struct fs_context * fc)1099 int set_anon_super_fc(struct super_block *sb, struct fs_context *fc)
1100 {
1101 return set_anon_super(sb, NULL);
1102 }
1103 EXPORT_SYMBOL(set_anon_super_fc);
1104
test_keyed_super(struct super_block * sb,struct fs_context * fc)1105 static int test_keyed_super(struct super_block *sb, struct fs_context *fc)
1106 {
1107 return sb->s_fs_info == fc->s_fs_info;
1108 }
1109
test_single_super(struct super_block * s,struct fs_context * fc)1110 static int test_single_super(struct super_block *s, struct fs_context *fc)
1111 {
1112 return 1;
1113 }
1114
1115 /**
1116 * vfs_get_super - Get a superblock with a search key set in s_fs_info.
1117 * @fc: The filesystem context holding the parameters
1118 * @keying: How to distinguish superblocks
1119 * @fill_super: Helper to initialise a new superblock
1120 *
1121 * Search for a superblock and create a new one if not found. The search
1122 * criterion is controlled by @keying. If the search fails, a new superblock
1123 * is created and @fill_super() is called to initialise it.
1124 *
1125 * @keying can take one of a number of values:
1126 *
1127 * (1) vfs_get_single_super - Only one superblock of this type may exist on the
1128 * system. This is typically used for special system filesystems.
1129 *
1130 * (2) vfs_get_keyed_super - Multiple superblocks may exist, but they must have
1131 * distinct keys (where the key is in s_fs_info). Searching for the same
1132 * key again will turn up the superblock for that key.
1133 *
1134 * (3) vfs_get_independent_super - Multiple superblocks may exist and are
1135 * unkeyed. Each call will get a new superblock.
1136 *
1137 * A permissions check is made by sget_fc() unless we're getting a superblock
1138 * for a kernel-internal mount or a submount.
1139 */
vfs_get_super(struct fs_context * fc,enum vfs_get_super_keying keying,int (* fill_super)(struct super_block * sb,struct fs_context * fc))1140 int vfs_get_super(struct fs_context *fc,
1141 enum vfs_get_super_keying keying,
1142 int (*fill_super)(struct super_block *sb,
1143 struct fs_context *fc))
1144 {
1145 int (*test)(struct super_block *, struct fs_context *);
1146 struct super_block *sb;
1147 int err;
1148
1149 switch (keying) {
1150 case vfs_get_single_super:
1151 case vfs_get_single_reconf_super:
1152 test = test_single_super;
1153 break;
1154 case vfs_get_keyed_super:
1155 test = test_keyed_super;
1156 break;
1157 case vfs_get_independent_super:
1158 test = NULL;
1159 break;
1160 default:
1161 BUG();
1162 }
1163
1164 sb = sget_fc(fc, test, set_anon_super_fc);
1165 if (IS_ERR(sb))
1166 return PTR_ERR(sb);
1167
1168 if (!sb->s_root) {
1169 err = fill_super(sb, fc);
1170 if (err)
1171 goto error;
1172
1173 sb->s_flags |= SB_ACTIVE;
1174 fc->root = dget(sb->s_root);
1175 } else {
1176 fc->root = dget(sb->s_root);
1177 if (keying == vfs_get_single_reconf_super) {
1178 err = reconfigure_super(fc);
1179 if (err < 0) {
1180 dput(fc->root);
1181 fc->root = NULL;
1182 goto error;
1183 }
1184 }
1185 }
1186
1187 return 0;
1188
1189 error:
1190 deactivate_locked_super(sb);
1191 return err;
1192 }
1193 EXPORT_SYMBOL(vfs_get_super);
1194
get_tree_nodev(struct fs_context * fc,int (* fill_super)(struct super_block * sb,struct fs_context * fc))1195 int get_tree_nodev(struct fs_context *fc,
1196 int (*fill_super)(struct super_block *sb,
1197 struct fs_context *fc))
1198 {
1199 return vfs_get_super(fc, vfs_get_independent_super, fill_super);
1200 }
1201 EXPORT_SYMBOL(get_tree_nodev);
1202
get_tree_single(struct fs_context * fc,int (* fill_super)(struct super_block * sb,struct fs_context * fc))1203 int get_tree_single(struct fs_context *fc,
1204 int (*fill_super)(struct super_block *sb,
1205 struct fs_context *fc))
1206 {
1207 return vfs_get_super(fc, vfs_get_single_super, fill_super);
1208 }
1209 EXPORT_SYMBOL(get_tree_single);
1210
get_tree_single_reconf(struct fs_context * fc,int (* fill_super)(struct super_block * sb,struct fs_context * fc))1211 int get_tree_single_reconf(struct fs_context *fc,
1212 int (*fill_super)(struct super_block *sb,
1213 struct fs_context *fc))
1214 {
1215 return vfs_get_super(fc, vfs_get_single_reconf_super, fill_super);
1216 }
1217 EXPORT_SYMBOL(get_tree_single_reconf);
1218
get_tree_keyed(struct fs_context * fc,int (* fill_super)(struct super_block * sb,struct fs_context * fc),void * key)1219 int get_tree_keyed(struct fs_context *fc,
1220 int (*fill_super)(struct super_block *sb,
1221 struct fs_context *fc),
1222 void *key)
1223 {
1224 fc->s_fs_info = key;
1225 return vfs_get_super(fc, vfs_get_keyed_super, fill_super);
1226 }
1227 EXPORT_SYMBOL(get_tree_keyed);
1228
1229 #ifdef CONFIG_BLOCK
1230
set_bdev_super(struct super_block * s,void * data)1231 static int set_bdev_super(struct super_block *s, void *data)
1232 {
1233 s->s_bdev = data;
1234 s->s_dev = s->s_bdev->bd_dev;
1235 s->s_bdi = bdi_get(s->s_bdev->bd_disk->bdi);
1236
1237 if (bdev_stable_writes(s->s_bdev))
1238 s->s_iflags |= SB_I_STABLE_WRITES;
1239 return 0;
1240 }
1241
set_bdev_super_fc(struct super_block * s,struct fs_context * fc)1242 static int set_bdev_super_fc(struct super_block *s, struct fs_context *fc)
1243 {
1244 return set_bdev_super(s, fc->sget_key);
1245 }
1246
test_bdev_super_fc(struct super_block * s,struct fs_context * fc)1247 static int test_bdev_super_fc(struct super_block *s, struct fs_context *fc)
1248 {
1249 return !(s->s_iflags & SB_I_RETIRED) && s->s_bdev == fc->sget_key;
1250 }
1251
1252 /**
1253 * get_tree_bdev - Get a superblock based on a single block device
1254 * @fc: The filesystem context holding the parameters
1255 * @fill_super: Helper to initialise a new superblock
1256 */
get_tree_bdev(struct fs_context * fc,int (* fill_super)(struct super_block *,struct fs_context *))1257 int get_tree_bdev(struct fs_context *fc,
1258 int (*fill_super)(struct super_block *,
1259 struct fs_context *))
1260 {
1261 struct block_device *bdev;
1262 struct super_block *s;
1263 fmode_t mode = FMODE_READ | FMODE_EXCL;
1264 int error = 0;
1265
1266 if (!(fc->sb_flags & SB_RDONLY))
1267 mode |= FMODE_WRITE;
1268
1269 if (!fc->source)
1270 return invalf(fc, "No source specified");
1271
1272 bdev = blkdev_get_by_path(fc->source, mode, fc->fs_type);
1273 if (IS_ERR(bdev)) {
1274 errorf(fc, "%s: Can't open blockdev", fc->source);
1275 return PTR_ERR(bdev);
1276 }
1277
1278 /* Once the superblock is inserted into the list by sget_fc(), s_umount
1279 * will protect the lockfs code from trying to start a snapshot while
1280 * we are mounting
1281 */
1282 mutex_lock(&bdev->bd_fsfreeze_mutex);
1283 if (bdev->bd_fsfreeze_count > 0) {
1284 mutex_unlock(&bdev->bd_fsfreeze_mutex);
1285 warnf(fc, "%pg: Can't mount, blockdev is frozen", bdev);
1286 blkdev_put(bdev, mode);
1287 return -EBUSY;
1288 }
1289
1290 fc->sb_flags |= SB_NOSEC;
1291 fc->sget_key = bdev;
1292 s = sget_fc(fc, test_bdev_super_fc, set_bdev_super_fc);
1293 mutex_unlock(&bdev->bd_fsfreeze_mutex);
1294 if (IS_ERR(s)) {
1295 blkdev_put(bdev, mode);
1296 return PTR_ERR(s);
1297 }
1298
1299 if (s->s_root) {
1300 /* Don't summarily change the RO/RW state. */
1301 if ((fc->sb_flags ^ s->s_flags) & SB_RDONLY) {
1302 warnf(fc, "%pg: Can't mount, would change RO state", bdev);
1303 deactivate_locked_super(s);
1304 blkdev_put(bdev, mode);
1305 return -EBUSY;
1306 }
1307
1308 /*
1309 * s_umount nests inside open_mutex during
1310 * __invalidate_device(). blkdev_put() acquires
1311 * open_mutex and can't be called under s_umount. Drop
1312 * s_umount temporarily. This is safe as we're
1313 * holding an active reference.
1314 */
1315 up_write(&s->s_umount);
1316 blkdev_put(bdev, mode);
1317 down_write(&s->s_umount);
1318 } else {
1319 s->s_mode = mode;
1320 snprintf(s->s_id, sizeof(s->s_id), "%pg", bdev);
1321 shrinker_debugfs_rename(&s->s_shrink, "sb-%s:%s",
1322 fc->fs_type->name, s->s_id);
1323 sb_set_blocksize(s, block_size(bdev));
1324 error = fill_super(s, fc);
1325 if (error) {
1326 deactivate_locked_super(s);
1327 return error;
1328 }
1329
1330 s->s_flags |= SB_ACTIVE;
1331 bdev->bd_super = s;
1332 }
1333
1334 BUG_ON(fc->root);
1335 fc->root = dget(s->s_root);
1336 return 0;
1337 }
1338 EXPORT_SYMBOL(get_tree_bdev);
1339
test_bdev_super(struct super_block * s,void * data)1340 static int test_bdev_super(struct super_block *s, void *data)
1341 {
1342 return !(s->s_iflags & SB_I_RETIRED) && (void *)s->s_bdev == data;
1343 }
1344
mount_bdev(struct file_system_type * fs_type,int flags,const char * dev_name,void * data,int (* fill_super)(struct super_block *,void *,int))1345 struct dentry *mount_bdev(struct file_system_type *fs_type,
1346 int flags, const char *dev_name, void *data,
1347 int (*fill_super)(struct super_block *, void *, int))
1348 {
1349 struct block_device *bdev;
1350 struct super_block *s;
1351 fmode_t mode = FMODE_READ | FMODE_EXCL;
1352 int error = 0;
1353
1354 if (!(flags & SB_RDONLY))
1355 mode |= FMODE_WRITE;
1356
1357 bdev = blkdev_get_by_path(dev_name, mode, fs_type);
1358 if (IS_ERR(bdev))
1359 return ERR_CAST(bdev);
1360
1361 /*
1362 * once the super is inserted into the list by sget, s_umount
1363 * will protect the lockfs code from trying to start a snapshot
1364 * while we are mounting
1365 */
1366 mutex_lock(&bdev->bd_fsfreeze_mutex);
1367 if (bdev->bd_fsfreeze_count > 0) {
1368 mutex_unlock(&bdev->bd_fsfreeze_mutex);
1369 error = -EBUSY;
1370 goto error_bdev;
1371 }
1372 s = sget(fs_type, test_bdev_super, set_bdev_super, flags | SB_NOSEC,
1373 bdev);
1374 mutex_unlock(&bdev->bd_fsfreeze_mutex);
1375 if (IS_ERR(s))
1376 goto error_s;
1377
1378 if (s->s_root) {
1379 if ((flags ^ s->s_flags) & SB_RDONLY) {
1380 deactivate_locked_super(s);
1381 error = -EBUSY;
1382 goto error_bdev;
1383 }
1384
1385 /*
1386 * s_umount nests inside open_mutex during
1387 * __invalidate_device(). blkdev_put() acquires
1388 * open_mutex and can't be called under s_umount. Drop
1389 * s_umount temporarily. This is safe as we're
1390 * holding an active reference.
1391 */
1392 up_write(&s->s_umount);
1393 blkdev_put(bdev, mode);
1394 down_write(&s->s_umount);
1395 } else {
1396 s->s_mode = mode;
1397 snprintf(s->s_id, sizeof(s->s_id), "%pg", bdev);
1398 shrinker_debugfs_rename(&s->s_shrink, "sb-%s:%s",
1399 fs_type->name, s->s_id);
1400 sb_set_blocksize(s, block_size(bdev));
1401 error = fill_super(s, data, flags & SB_SILENT ? 1 : 0);
1402 if (error) {
1403 deactivate_locked_super(s);
1404 goto error;
1405 }
1406
1407 s->s_flags |= SB_ACTIVE;
1408 bdev->bd_super = s;
1409 }
1410
1411 return dget(s->s_root);
1412
1413 error_s:
1414 error = PTR_ERR(s);
1415 error_bdev:
1416 blkdev_put(bdev, mode);
1417 error:
1418 return ERR_PTR(error);
1419 }
1420 EXPORT_SYMBOL(mount_bdev);
1421
kill_block_super(struct super_block * sb)1422 void kill_block_super(struct super_block *sb)
1423 {
1424 struct block_device *bdev = sb->s_bdev;
1425 fmode_t mode = sb->s_mode;
1426
1427 bdev->bd_super = NULL;
1428 generic_shutdown_super(sb);
1429 sync_blockdev(bdev);
1430 WARN_ON_ONCE(!(mode & FMODE_EXCL));
1431 blkdev_put(bdev, mode | FMODE_EXCL);
1432 }
1433
1434 EXPORT_SYMBOL(kill_block_super);
1435 #endif
1436
mount_nodev(struct file_system_type * fs_type,int flags,void * data,int (* fill_super)(struct super_block *,void *,int))1437 struct dentry *mount_nodev(struct file_system_type *fs_type,
1438 int flags, void *data,
1439 int (*fill_super)(struct super_block *, void *, int))
1440 {
1441 int error;
1442 struct super_block *s = sget(fs_type, NULL, set_anon_super, flags, NULL);
1443
1444 if (IS_ERR(s))
1445 return ERR_CAST(s);
1446
1447 error = fill_super(s, data, flags & SB_SILENT ? 1 : 0);
1448 if (error) {
1449 deactivate_locked_super(s);
1450 return ERR_PTR(error);
1451 }
1452 s->s_flags |= SB_ACTIVE;
1453 return dget(s->s_root);
1454 }
1455 EXPORT_SYMBOL(mount_nodev);
1456
reconfigure_single(struct super_block * s,int flags,void * data)1457 int reconfigure_single(struct super_block *s,
1458 int flags, void *data)
1459 {
1460 struct fs_context *fc;
1461 int ret;
1462
1463 /* The caller really need to be passing fc down into mount_single(),
1464 * then a chunk of this can be removed. [Bollocks -- AV]
1465 * Better yet, reconfiguration shouldn't happen, but rather the second
1466 * mount should be rejected if the parameters are not compatible.
1467 */
1468 fc = fs_context_for_reconfigure(s->s_root, flags, MS_RMT_MASK);
1469 if (IS_ERR(fc))
1470 return PTR_ERR(fc);
1471
1472 ret = parse_monolithic_mount_data(fc, data);
1473 if (ret < 0)
1474 goto out;
1475
1476 ret = reconfigure_super(fc);
1477 out:
1478 put_fs_context(fc);
1479 return ret;
1480 }
1481
compare_single(struct super_block * s,void * p)1482 static int compare_single(struct super_block *s, void *p)
1483 {
1484 return 1;
1485 }
1486
mount_single(struct file_system_type * fs_type,int flags,void * data,int (* fill_super)(struct super_block *,void *,int))1487 struct dentry *mount_single(struct file_system_type *fs_type,
1488 int flags, void *data,
1489 int (*fill_super)(struct super_block *, void *, int))
1490 {
1491 struct super_block *s;
1492 int error;
1493
1494 s = sget(fs_type, compare_single, set_anon_super, flags, NULL);
1495 if (IS_ERR(s))
1496 return ERR_CAST(s);
1497 if (!s->s_root) {
1498 error = fill_super(s, data, flags & SB_SILENT ? 1 : 0);
1499 if (!error)
1500 s->s_flags |= SB_ACTIVE;
1501 } else {
1502 error = reconfigure_single(s, flags, data);
1503 }
1504 if (unlikely(error)) {
1505 deactivate_locked_super(s);
1506 return ERR_PTR(error);
1507 }
1508 return dget(s->s_root);
1509 }
1510 EXPORT_SYMBOL(mount_single);
1511
1512 /**
1513 * vfs_get_tree - Get the mountable root
1514 * @fc: The superblock configuration context.
1515 *
1516 * The filesystem is invoked to get or create a superblock which can then later
1517 * be used for mounting. The filesystem places a pointer to the root to be
1518 * used for mounting in @fc->root.
1519 */
vfs_get_tree(struct fs_context * fc)1520 int vfs_get_tree(struct fs_context *fc)
1521 {
1522 struct super_block *sb;
1523 int error;
1524
1525 if (fc->root)
1526 return -EBUSY;
1527
1528 /* Get the mountable root in fc->root, with a ref on the root and a ref
1529 * on the superblock.
1530 */
1531 error = fc->ops->get_tree(fc);
1532 if (error < 0)
1533 return error;
1534
1535 if (!fc->root) {
1536 pr_err("Filesystem %s get_tree() didn't set fc->root\n",
1537 fc->fs_type->name);
1538 /* We don't know what the locking state of the superblock is -
1539 * if there is a superblock.
1540 */
1541 BUG();
1542 }
1543
1544 sb = fc->root->d_sb;
1545 WARN_ON(!sb->s_bdi);
1546
1547 /*
1548 * Write barrier is for super_cache_count(). We place it before setting
1549 * SB_BORN as the data dependency between the two functions is the
1550 * superblock structure contents that we just set up, not the SB_BORN
1551 * flag.
1552 */
1553 smp_wmb();
1554 sb->s_flags |= SB_BORN;
1555
1556 error = security_sb_set_mnt_opts(sb, fc->security, 0, NULL);
1557 if (unlikely(error)) {
1558 fc_drop_locked(fc);
1559 return error;
1560 }
1561
1562 /*
1563 * filesystems should never set s_maxbytes larger than MAX_LFS_FILESIZE
1564 * but s_maxbytes was an unsigned long long for many releases. Throw
1565 * this warning for a little while to try and catch filesystems that
1566 * violate this rule.
1567 */
1568 WARN((sb->s_maxbytes < 0), "%s set sb->s_maxbytes to "
1569 "negative value (%lld)\n", fc->fs_type->name, sb->s_maxbytes);
1570
1571 return 0;
1572 }
1573 EXPORT_SYMBOL(vfs_get_tree);
1574
1575 /*
1576 * Setup private BDI for given superblock. It gets automatically cleaned up
1577 * in generic_shutdown_super().
1578 */
super_setup_bdi_name(struct super_block * sb,char * fmt,...)1579 int super_setup_bdi_name(struct super_block *sb, char *fmt, ...)
1580 {
1581 struct backing_dev_info *bdi;
1582 int err;
1583 va_list args;
1584
1585 bdi = bdi_alloc(NUMA_NO_NODE);
1586 if (!bdi)
1587 return -ENOMEM;
1588
1589 va_start(args, fmt);
1590 err = bdi_register_va(bdi, fmt, args);
1591 va_end(args);
1592 if (err) {
1593 bdi_put(bdi);
1594 return err;
1595 }
1596 WARN_ON(sb->s_bdi != &noop_backing_dev_info);
1597 sb->s_bdi = bdi;
1598 sb->s_iflags |= SB_I_PERSB_BDI;
1599
1600 return 0;
1601 }
1602 EXPORT_SYMBOL(super_setup_bdi_name);
1603
1604 /*
1605 * Setup private BDI for given superblock. I gets automatically cleaned up
1606 * in generic_shutdown_super().
1607 */
super_setup_bdi(struct super_block * sb)1608 int super_setup_bdi(struct super_block *sb)
1609 {
1610 static atomic_long_t bdi_seq = ATOMIC_LONG_INIT(0);
1611
1612 return super_setup_bdi_name(sb, "%.28s-%ld", sb->s_type->name,
1613 atomic_long_inc_return(&bdi_seq));
1614 }
1615 EXPORT_SYMBOL(super_setup_bdi);
1616
1617 /**
1618 * sb_wait_write - wait until all writers to given file system finish
1619 * @sb: the super for which we wait
1620 * @level: type of writers we wait for (normal vs page fault)
1621 *
1622 * This function waits until there are no writers of given type to given file
1623 * system.
1624 */
sb_wait_write(struct super_block * sb,int level)1625 static void sb_wait_write(struct super_block *sb, int level)
1626 {
1627 percpu_down_write(sb->s_writers.rw_sem + level-1);
1628 }
1629
1630 /*
1631 * We are going to return to userspace and forget about these locks, the
1632 * ownership goes to the caller of thaw_super() which does unlock().
1633 */
lockdep_sb_freeze_release(struct super_block * sb)1634 static void lockdep_sb_freeze_release(struct super_block *sb)
1635 {
1636 int level;
1637
1638 for (level = SB_FREEZE_LEVELS - 1; level >= 0; level--)
1639 percpu_rwsem_release(sb->s_writers.rw_sem + level, 0, _THIS_IP_);
1640 }
1641
1642 /*
1643 * Tell lockdep we are holding these locks before we call ->unfreeze_fs(sb).
1644 */
lockdep_sb_freeze_acquire(struct super_block * sb)1645 static void lockdep_sb_freeze_acquire(struct super_block *sb)
1646 {
1647 int level;
1648
1649 for (level = 0; level < SB_FREEZE_LEVELS; ++level)
1650 percpu_rwsem_acquire(sb->s_writers.rw_sem + level, 0, _THIS_IP_);
1651 }
1652
sb_freeze_unlock(struct super_block * sb,int level)1653 static void sb_freeze_unlock(struct super_block *sb, int level)
1654 {
1655 for (level--; level >= 0; level--)
1656 percpu_up_write(sb->s_writers.rw_sem + level);
1657 }
1658
1659 /**
1660 * freeze_super - lock the filesystem and force it into a consistent state
1661 * @sb: the super to lock
1662 *
1663 * Syncs the super to make sure the filesystem is consistent and calls the fs's
1664 * freeze_fs. Subsequent calls to this without first thawing the fs will return
1665 * -EBUSY.
1666 *
1667 * During this function, sb->s_writers.frozen goes through these values:
1668 *
1669 * SB_UNFROZEN: File system is normal, all writes progress as usual.
1670 *
1671 * SB_FREEZE_WRITE: The file system is in the process of being frozen. New
1672 * writes should be blocked, though page faults are still allowed. We wait for
1673 * all writes to complete and then proceed to the next stage.
1674 *
1675 * SB_FREEZE_PAGEFAULT: Freezing continues. Now also page faults are blocked
1676 * but internal fs threads can still modify the filesystem (although they
1677 * should not dirty new pages or inodes), writeback can run etc. After waiting
1678 * for all running page faults we sync the filesystem which will clean all
1679 * dirty pages and inodes (no new dirty pages or inodes can be created when
1680 * sync is running).
1681 *
1682 * SB_FREEZE_FS: The file system is frozen. Now all internal sources of fs
1683 * modification are blocked (e.g. XFS preallocation truncation on inode
1684 * reclaim). This is usually implemented by blocking new transactions for
1685 * filesystems that have them and need this additional guard. After all
1686 * internal writers are finished we call ->freeze_fs() to finish filesystem
1687 * freezing. Then we transition to SB_FREEZE_COMPLETE state. This state is
1688 * mostly auxiliary for filesystems to verify they do not modify frozen fs.
1689 *
1690 * sb->s_writers.frozen is protected by sb->s_umount.
1691 */
freeze_super(struct super_block * sb)1692 int freeze_super(struct super_block *sb)
1693 {
1694 int ret;
1695
1696 atomic_inc(&sb->s_active);
1697 down_write(&sb->s_umount);
1698 if (sb->s_writers.frozen != SB_UNFROZEN) {
1699 deactivate_locked_super(sb);
1700 return -EBUSY;
1701 }
1702
1703 if (!(sb->s_flags & SB_BORN)) {
1704 up_write(&sb->s_umount);
1705 return 0; /* sic - it's "nothing to do" */
1706 }
1707
1708 if (sb_rdonly(sb)) {
1709 /* Nothing to do really... */
1710 sb->s_writers.frozen = SB_FREEZE_COMPLETE;
1711 up_write(&sb->s_umount);
1712 return 0;
1713 }
1714
1715 sb->s_writers.frozen = SB_FREEZE_WRITE;
1716 /* Release s_umount to preserve sb_start_write -> s_umount ordering */
1717 up_write(&sb->s_umount);
1718 sb_wait_write(sb, SB_FREEZE_WRITE);
1719 down_write(&sb->s_umount);
1720
1721 /* Now we go and block page faults... */
1722 sb->s_writers.frozen = SB_FREEZE_PAGEFAULT;
1723 sb_wait_write(sb, SB_FREEZE_PAGEFAULT);
1724
1725 /* All writers are done so after syncing there won't be dirty data */
1726 ret = sync_filesystem(sb);
1727 if (ret) {
1728 sb->s_writers.frozen = SB_UNFROZEN;
1729 sb_freeze_unlock(sb, SB_FREEZE_PAGEFAULT);
1730 wake_up(&sb->s_writers.wait_unfrozen);
1731 deactivate_locked_super(sb);
1732 return ret;
1733 }
1734
1735 /* Now wait for internal filesystem counter */
1736 sb->s_writers.frozen = SB_FREEZE_FS;
1737 sb_wait_write(sb, SB_FREEZE_FS);
1738
1739 if (sb->s_op->freeze_fs) {
1740 ret = sb->s_op->freeze_fs(sb);
1741 if (ret) {
1742 printk(KERN_ERR
1743 "VFS:Filesystem freeze failed\n");
1744 sb->s_writers.frozen = SB_UNFROZEN;
1745 sb_freeze_unlock(sb, SB_FREEZE_FS);
1746 wake_up(&sb->s_writers.wait_unfrozen);
1747 deactivate_locked_super(sb);
1748 return ret;
1749 }
1750 }
1751 /*
1752 * For debugging purposes so that fs can warn if it sees write activity
1753 * when frozen is set to SB_FREEZE_COMPLETE, and for thaw_super().
1754 */
1755 sb->s_writers.frozen = SB_FREEZE_COMPLETE;
1756 lockdep_sb_freeze_release(sb);
1757 up_write(&sb->s_umount);
1758 return 0;
1759 }
1760 EXPORT_SYMBOL(freeze_super);
1761
thaw_super_locked(struct super_block * sb)1762 static int thaw_super_locked(struct super_block *sb)
1763 {
1764 int error;
1765
1766 if (sb->s_writers.frozen != SB_FREEZE_COMPLETE) {
1767 up_write(&sb->s_umount);
1768 return -EINVAL;
1769 }
1770
1771 if (sb_rdonly(sb)) {
1772 sb->s_writers.frozen = SB_UNFROZEN;
1773 goto out;
1774 }
1775
1776 lockdep_sb_freeze_acquire(sb);
1777
1778 if (sb->s_op->unfreeze_fs) {
1779 error = sb->s_op->unfreeze_fs(sb);
1780 if (error) {
1781 printk(KERN_ERR
1782 "VFS:Filesystem thaw failed\n");
1783 lockdep_sb_freeze_release(sb);
1784 up_write(&sb->s_umount);
1785 return error;
1786 }
1787 }
1788
1789 sb->s_writers.frozen = SB_UNFROZEN;
1790 sb_freeze_unlock(sb, SB_FREEZE_FS);
1791 out:
1792 wake_up(&sb->s_writers.wait_unfrozen);
1793 deactivate_locked_super(sb);
1794 return 0;
1795 }
1796
1797 /**
1798 * thaw_super -- unlock filesystem
1799 * @sb: the super to thaw
1800 *
1801 * Unlocks the filesystem and marks it writeable again after freeze_super().
1802 */
thaw_super(struct super_block * sb)1803 int thaw_super(struct super_block *sb)
1804 {
1805 down_write(&sb->s_umount);
1806 return thaw_super_locked(sb);
1807 }
1808 EXPORT_SYMBOL(thaw_super);
1809