1 #ifndef __LINUX_SEQLOCK_H
2 #define __LINUX_SEQLOCK_H
3 /*
4  * Reader/writer consistent mechanism without starving writers. This type of
5  * lock for data where the reader wants a consistent set of information
6  * and is willing to retry if the information changes.  Readers never
7  * block but they may have to retry if a writer is in
8  * progress. Writers do not wait for readers.
9  *
10  * This is not as cache friendly as brlock. Also, this will not work
11  * for data that contains pointers, because any writer could
12  * invalidate a pointer that a reader was following.
13  *
14  * Expected reader usage:
15  * 	do {
16  *	    seq = read_seqbegin(&foo);
17  * 	...
18  *      } while (read_seqretry(&foo, seq));
19  *
20  *
21  * On non-SMP the spin locks disappear but the writer still needs
22  * to increment the sequence variables because an interrupt routine could
23  * change the state of the data.
24  *
25  * Based on x86_64 vsyscall gettimeofday
26  * by Keith Owens and Andrea Arcangeli
27  */
28 
29 #include <linux/spinlock.h>
30 #include <linux/preempt.h>
31 #include <asm/processor.h>
32 
33 typedef struct {
34 	unsigned sequence;
35 	spinlock_t lock;
36 } seqlock_t;
37 
38 /*
39  * These macros triggered gcc-3.x compile-time problems.  We think these are
40  * OK now.  Be cautious.
41  */
42 #define __SEQLOCK_UNLOCKED(lockname) \
43 		 { 0, __SPIN_LOCK_UNLOCKED(lockname) }
44 
45 #define seqlock_init(x)					\
46 	do {						\
47 		(x)->sequence = 0;			\
48 		spin_lock_init(&(x)->lock);		\
49 	} while (0)
50 
51 #define DEFINE_SEQLOCK(x) \
52 		seqlock_t x = __SEQLOCK_UNLOCKED(x)
53 
54 /* Lock out other writers and update the count.
55  * Acts like a normal spin_lock/unlock.
56  * Don't need preempt_disable() because that is in the spin_lock already.
57  */
write_seqlock(seqlock_t * sl)58 static inline void write_seqlock(seqlock_t *sl)
59 {
60 	spin_lock(&sl->lock);
61 	++sl->sequence;
62 	smp_wmb();
63 }
64 
write_sequnlock(seqlock_t * sl)65 static inline void write_sequnlock(seqlock_t *sl)
66 {
67 	smp_wmb();
68 	sl->sequence++;
69 	spin_unlock(&sl->lock);
70 }
71 
write_tryseqlock(seqlock_t * sl)72 static inline int write_tryseqlock(seqlock_t *sl)
73 {
74 	int ret = spin_trylock(&sl->lock);
75 
76 	if (ret) {
77 		++sl->sequence;
78 		smp_wmb();
79 	}
80 	return ret;
81 }
82 
83 /* Start of read calculation -- fetch last complete writer token */
read_seqbegin(const seqlock_t * sl)84 static __always_inline unsigned read_seqbegin(const seqlock_t *sl)
85 {
86 	unsigned ret;
87 
88 repeat:
89 	ret = ACCESS_ONCE(sl->sequence);
90 	if (unlikely(ret & 1)) {
91 		cpu_relax();
92 		goto repeat;
93 	}
94 	smp_rmb();
95 
96 	return ret;
97 }
98 
99 /*
100  * Test if reader processed invalid data.
101  *
102  * If sequence value changed then writer changed data while in section.
103  */
read_seqretry(const seqlock_t * sl,unsigned start)104 static __always_inline int read_seqretry(const seqlock_t *sl, unsigned start)
105 {
106 	smp_rmb();
107 
108 	return unlikely(sl->sequence != start);
109 }
110 
111 
112 /*
113  * Version using sequence counter only.
114  * This can be used when code has its own mutex protecting the
115  * updating starting before the write_seqcountbeqin() and ending
116  * after the write_seqcount_end().
117  */
118 
119 typedef struct seqcount {
120 	unsigned sequence;
121 } seqcount_t;
122 
123 #define SEQCNT_ZERO { 0 }
124 #define seqcount_init(x)	do { *(x) = (seqcount_t) SEQCNT_ZERO; } while (0)
125 
126 /**
127  * __read_seqcount_begin - begin a seq-read critical section (without barrier)
128  * @s: pointer to seqcount_t
129  * Returns: count to be passed to read_seqcount_retry
130  *
131  * __read_seqcount_begin is like read_seqcount_begin, but has no smp_rmb()
132  * barrier. Callers should ensure that smp_rmb() or equivalent ordering is
133  * provided before actually loading any of the variables that are to be
134  * protected in this critical section.
135  *
136  * Use carefully, only in critical code, and comment how the barrier is
137  * provided.
138  */
__read_seqcount_begin(const seqcount_t * s)139 static inline unsigned __read_seqcount_begin(const seqcount_t *s)
140 {
141 	unsigned ret;
142 
143 repeat:
144 	ret = ACCESS_ONCE(s->sequence);
145 	if (unlikely(ret & 1)) {
146 		cpu_relax();
147 		goto repeat;
148 	}
149 	return ret;
150 }
151 
152 /**
153  * read_seqcount_begin - begin a seq-read critical section
154  * @s: pointer to seqcount_t
155  * Returns: count to be passed to read_seqcount_retry
156  *
157  * read_seqcount_begin opens a read critical section of the given seqcount.
158  * Validity of the critical section is tested by checking read_seqcount_retry
159  * function.
160  */
read_seqcount_begin(const seqcount_t * s)161 static inline unsigned read_seqcount_begin(const seqcount_t *s)
162 {
163 	unsigned ret = __read_seqcount_begin(s);
164 	smp_rmb();
165 	return ret;
166 }
167 
168 /**
169  * raw_seqcount_begin - begin a seq-read critical section
170  * @s: pointer to seqcount_t
171  * Returns: count to be passed to read_seqcount_retry
172  *
173  * raw_seqcount_begin opens a read critical section of the given seqcount.
174  * Validity of the critical section is tested by checking read_seqcount_retry
175  * function.
176  *
177  * Unlike read_seqcount_begin(), this function will not wait for the count
178  * to stabilize. If a writer is active when we begin, we will fail the
179  * read_seqcount_retry() instead of stabilizing at the beginning of the
180  * critical section.
181  */
raw_seqcount_begin(const seqcount_t * s)182 static inline unsigned raw_seqcount_begin(const seqcount_t *s)
183 {
184 	unsigned ret = ACCESS_ONCE(s->sequence);
185 	smp_rmb();
186 	return ret & ~1;
187 }
188 
189 /**
190  * __read_seqcount_retry - end a seq-read critical section (without barrier)
191  * @s: pointer to seqcount_t
192  * @start: count, from read_seqcount_begin
193  * Returns: 1 if retry is required, else 0
194  *
195  * __read_seqcount_retry is like read_seqcount_retry, but has no smp_rmb()
196  * barrier. Callers should ensure that smp_rmb() or equivalent ordering is
197  * provided before actually loading any of the variables that are to be
198  * protected in this critical section.
199  *
200  * Use carefully, only in critical code, and comment how the barrier is
201  * provided.
202  */
__read_seqcount_retry(const seqcount_t * s,unsigned start)203 static inline int __read_seqcount_retry(const seqcount_t *s, unsigned start)
204 {
205 	return unlikely(s->sequence != start);
206 }
207 
208 /**
209  * read_seqcount_retry - end a seq-read critical section
210  * @s: pointer to seqcount_t
211  * @start: count, from read_seqcount_begin
212  * Returns: 1 if retry is required, else 0
213  *
214  * read_seqcount_retry closes a read critical section of the given seqcount.
215  * If the critical section was invalid, it must be ignored (and typically
216  * retried).
217  */
read_seqcount_retry(const seqcount_t * s,unsigned start)218 static inline int read_seqcount_retry(const seqcount_t *s, unsigned start)
219 {
220 	smp_rmb();
221 
222 	return __read_seqcount_retry(s, start);
223 }
224 
225 
226 /*
227  * Sequence counter only version assumes that callers are using their
228  * own mutexing.
229  */
write_seqcount_begin(seqcount_t * s)230 static inline void write_seqcount_begin(seqcount_t *s)
231 {
232 	s->sequence++;
233 	smp_wmb();
234 }
235 
write_seqcount_end(seqcount_t * s)236 static inline void write_seqcount_end(seqcount_t *s)
237 {
238 	smp_wmb();
239 	s->sequence++;
240 }
241 
242 /**
243  * write_seqcount_barrier - invalidate in-progress read-side seq operations
244  * @s: pointer to seqcount_t
245  *
246  * After write_seqcount_barrier, no read-side seq operations will complete
247  * successfully and see data older than this.
248  */
write_seqcount_barrier(seqcount_t * s)249 static inline void write_seqcount_barrier(seqcount_t *s)
250 {
251 	smp_wmb();
252 	s->sequence+=2;
253 }
254 
255 /*
256  * Possible sw/hw IRQ protected versions of the interfaces.
257  */
258 #define write_seqlock_irqsave(lock, flags)				\
259 	do { local_irq_save(flags); write_seqlock(lock); } while (0)
260 #define write_seqlock_irq(lock)						\
261 	do { local_irq_disable();   write_seqlock(lock); } while (0)
262 #define write_seqlock_bh(lock)						\
263         do { local_bh_disable();    write_seqlock(lock); } while (0)
264 
265 #define write_sequnlock_irqrestore(lock, flags)				\
266 	do { write_sequnlock(lock); local_irq_restore(flags); } while(0)
267 #define write_sequnlock_irq(lock)					\
268 	do { write_sequnlock(lock); local_irq_enable(); } while(0)
269 #define write_sequnlock_bh(lock)					\
270 	do { write_sequnlock(lock); local_bh_enable(); } while(0)
271 
272 #define read_seqbegin_irqsave(lock, flags)				\
273 	({ local_irq_save(flags);   read_seqbegin(lock); })
274 
275 #define read_seqretry_irqrestore(lock, iv, flags)			\
276 	({								\
277 		int ret = read_seqretry(lock, iv);			\
278 		local_irq_restore(flags);				\
279 		ret;							\
280 	})
281 
282 #endif /* __LINUX_SEQLOCK_H */
283