1 //! PCI transport for VirtIO.
2 use crate::arch::{PciArch, TraitPciArch};
3 use crate::driver::pci::pci::{
4     BusDeviceFunction, PciDeviceStructure, PciDeviceStructureGeneralDevice, PciError,
5     PciStandardDeviceBar, PCI_CAP_ID_VNDR,
6 };
7 
8 use crate::libs::volatile::{
9     volread, volwrite, ReadOnly, Volatile, VolatileReadable, VolatileWritable, WriteOnly,
10 };
11 use core::{
12     fmt::{self, Display, Formatter},
13     mem::{align_of, size_of},
14     ptr::{self, addr_of_mut, NonNull},
15 };
16 use virtio_drivers::{
17     transport::{DeviceStatus, DeviceType, Transport},
18     Error, Hal, PhysAddr,
19 };
20 
21 type VirtAddr = usize;
22 /// The PCI vendor ID for VirtIO devices.
23 /// PCI Virtio设备的vendor ID
24 const VIRTIO_VENDOR_ID: u16 = 0x1af4;
25 
26 /// The offset to add to a VirtIO device ID to get the corresponding PCI device ID.
27 /// PCI Virtio设备的DEVICE_ID 的offset
28 const PCI_DEVICE_ID_OFFSET: u16 = 0x1040;
29 /// PCI Virtio 设备的DEVICE_ID及其对应的设备类型
30 const TRANSITIONAL_NETWORK: u16 = 0x1000;
31 const TRANSITIONAL_BLOCK: u16 = 0x1001;
32 const TRANSITIONAL_MEMORY_BALLOONING: u16 = 0x1002;
33 const TRANSITIONAL_CONSOLE: u16 = 0x1003;
34 const TRANSITIONAL_SCSI_HOST: u16 = 0x1004;
35 const TRANSITIONAL_ENTROPY_SOURCE: u16 = 0x1005;
36 const TRANSITIONAL_9P_TRANSPORT: u16 = 0x1009;
37 
38 /// The offset of the bar field within `virtio_pci_cap`.
39 const CAP_BAR_OFFSET: u8 = 4;
40 /// The offset of the offset field with `virtio_pci_cap`.
41 const CAP_BAR_OFFSET_OFFSET: u8 = 8;
42 /// The offset of the `length` field within `virtio_pci_cap`.
43 const CAP_LENGTH_OFFSET: u8 = 12;
44 /// The offset of the`notify_off_multiplier` field within `virtio_pci_notify_cap`.
45 const CAP_NOTIFY_OFF_MULTIPLIER_OFFSET: u8 = 16;
46 
47 /// Common configuration.
48 const VIRTIO_PCI_CAP_COMMON_CFG: u8 = 1;
49 /// Notifications.
50 const VIRTIO_PCI_CAP_NOTIFY_CFG: u8 = 2;
51 /// ISR Status.
52 const VIRTIO_PCI_CAP_ISR_CFG: u8 = 3;
53 /// Device specific configuration.
54 const VIRTIO_PCI_CAP_DEVICE_CFG: u8 = 4;
55 
56 ///@brief device id 转换为设备类型
57 ///@param pci_device_id,device_id
58 ///@return DeviceType 对应的设备类型
device_type(pci_device_id: u16) -> DeviceType59 fn device_type(pci_device_id: u16) -> DeviceType {
60     match pci_device_id {
61         TRANSITIONAL_NETWORK => DeviceType::Network,
62         TRANSITIONAL_BLOCK => DeviceType::Block,
63         TRANSITIONAL_MEMORY_BALLOONING => DeviceType::MemoryBalloon,
64         TRANSITIONAL_CONSOLE => DeviceType::Console,
65         TRANSITIONAL_SCSI_HOST => DeviceType::ScsiHost,
66         TRANSITIONAL_ENTROPY_SOURCE => DeviceType::EntropySource,
67         TRANSITIONAL_9P_TRANSPORT => DeviceType::_9P,
68         id if id >= PCI_DEVICE_ID_OFFSET => DeviceType::from(id - PCI_DEVICE_ID_OFFSET),
69         _ => DeviceType::Invalid,
70     }
71 }
72 
73 /// PCI transport for VirtIO.
74 ///
75 /// Ref: 4.1 Virtio Over PCI Bus
76 #[derive(Debug, Clone)]
77 pub struct PciTransport {
78     device_type: DeviceType,
79     /// The bus, device and function identifier for the VirtIO device.
80     bus_device_function: BusDeviceFunction,
81     /// The common configuration structure within some BAR.
82     common_cfg: NonNull<CommonCfg>,
83     /// The start of the queue notification region within some BAR.
84     notify_region: NonNull<[WriteOnly<u16>]>,
85     notify_off_multiplier: u32,
86     /// The ISR status register within some BAR.
87     isr_status: NonNull<Volatile<u8>>,
88     /// The VirtIO device-specific configuration within some BAR.
89     config_space: Option<NonNull<[u32]>>,
90 }
91 
92 impl PciTransport {
93     /// Construct a new PCI VirtIO device driver for the given device function on the given PCI
94     /// root controller.
95     ///
96     ///
new<H: Hal>( device: &mut PciDeviceStructureGeneralDevice, ) -> Result<Self, VirtioPciError>97     pub fn new<H: Hal>(
98         device: &mut PciDeviceStructureGeneralDevice,
99     ) -> Result<Self, VirtioPciError> {
100         let header = &device.common_header;
101         let bus_device_function = header.bus_device_function;
102         if header.vendor_id != VIRTIO_VENDOR_ID {
103             return Err(VirtioPciError::InvalidVendorId(header.vendor_id));
104         }
105         let device_type = device_type(header.device_id);
106         // Find the PCI capabilities we need.
107         let mut common_cfg: Option<VirtioCapabilityInfo> = None;
108         let mut notify_cfg: Option<VirtioCapabilityInfo> = None;
109         let mut notify_off_multiplier = 0;
110         let mut isr_cfg = None;
111         let mut device_cfg = None;
112         device.bar_ioremap().unwrap()?;
113         device.enable_master();
114         //device_capability为迭代器,遍历其相当于遍历所有的cap空间
115         for capability in device.capabilities().unwrap() {
116             if capability.id != PCI_CAP_ID_VNDR {
117                 continue;
118             }
119             let cap_len = capability.private_header as u8;
120             let cfg_type = (capability.private_header >> 8) as u8;
121             if cap_len < 16 {
122                 continue;
123             }
124             let struct_info = VirtioCapabilityInfo {
125                 bar: PciArch::read_config(&bus_device_function, capability.offset + CAP_BAR_OFFSET)
126                     as u8,
127                 offset: PciArch::read_config(
128                     &bus_device_function,
129                     capability.offset + CAP_BAR_OFFSET_OFFSET,
130                 ),
131                 length: PciArch::read_config(
132                     &bus_device_function,
133                     capability.offset + CAP_LENGTH_OFFSET,
134                 ),
135             };
136 
137             match cfg_type {
138                 VIRTIO_PCI_CAP_COMMON_CFG if common_cfg.is_none() => {
139                     common_cfg = Some(struct_info);
140                 }
141                 VIRTIO_PCI_CAP_NOTIFY_CFG if cap_len >= 20 && notify_cfg.is_none() => {
142                     notify_cfg = Some(struct_info);
143                     notify_off_multiplier = PciArch::read_config(
144                         &bus_device_function,
145                         capability.offset + CAP_NOTIFY_OFF_MULTIPLIER_OFFSET,
146                     );
147                 }
148                 VIRTIO_PCI_CAP_ISR_CFG if isr_cfg.is_none() => {
149                     isr_cfg = Some(struct_info);
150                 }
151                 VIRTIO_PCI_CAP_DEVICE_CFG if device_cfg.is_none() => {
152                     device_cfg = Some(struct_info);
153                 }
154                 _ => {}
155             }
156         }
157 
158         let common_cfg = get_bar_region::<_>(
159             &device.standard_device_bar,
160             &common_cfg.ok_or(VirtioPciError::MissingCommonConfig)?,
161         )?;
162 
163         let notify_cfg = notify_cfg.ok_or(VirtioPciError::MissingNotifyConfig)?;
164         if notify_off_multiplier % 2 != 0 {
165             return Err(VirtioPciError::InvalidNotifyOffMultiplier(
166                 notify_off_multiplier,
167             ));
168         }
169         //kdebug!("notify.offset={},notify.length={}",notify_cfg.offset,notify_cfg.length);
170         let notify_region = get_bar_region_slice::<_>(&device.standard_device_bar, &notify_cfg)?;
171         let isr_status = get_bar_region::<_>(
172             &device.standard_device_bar,
173             &isr_cfg.ok_or(VirtioPciError::MissingIsrConfig)?,
174         )?;
175         let config_space = if let Some(device_cfg) = device_cfg {
176             Some(get_bar_region_slice::<_>(
177                 &device.standard_device_bar,
178                 &device_cfg,
179             )?)
180         } else {
181             None
182         };
183         Ok(Self {
184             device_type,
185             bus_device_function,
186             common_cfg,
187             notify_region,
188             notify_off_multiplier,
189             isr_status,
190             config_space,
191         })
192     }
193 }
194 
195 impl Transport for PciTransport {
device_type(&self) -> DeviceType196     fn device_type(&self) -> DeviceType {
197         self.device_type
198     }
199 
read_device_features(&mut self) -> u64200     fn read_device_features(&mut self) -> u64 {
201         // Safe because the common config pointer is valid and we checked in get_bar_region that it
202         // was aligned.
203         unsafe {
204             volwrite!(self.common_cfg, device_feature_select, 0);
205             let mut device_features_bits = volread!(self.common_cfg, device_feature) as u64;
206             volwrite!(self.common_cfg, device_feature_select, 1);
207             device_features_bits |= (volread!(self.common_cfg, device_feature) as u64) << 32;
208             device_features_bits
209         }
210     }
211 
write_driver_features(&mut self, driver_features: u64)212     fn write_driver_features(&mut self, driver_features: u64) {
213         // Safe because the common config pointer is valid and we checked in get_bar_region that it
214         // was aligned.
215         unsafe {
216             volwrite!(self.common_cfg, driver_feature_select, 0);
217             volwrite!(self.common_cfg, driver_feature, driver_features as u32);
218             volwrite!(self.common_cfg, driver_feature_select, 1);
219             volwrite!(
220                 self.common_cfg,
221                 driver_feature,
222                 (driver_features >> 32) as u32
223             );
224         }
225     }
226 
max_queue_size(&self) -> u32227     fn max_queue_size(&self) -> u32 {
228         // Safe because the common config pointer is valid and we checked in get_bar_region that it
229         // was aligned.
230         unsafe { volread!(self.common_cfg, queue_size) }.into()
231     }
232 
notify(&mut self, queue: u16)233     fn notify(&mut self, queue: u16) {
234         // Safe because the common config and notify region pointers are valid and we checked in
235         // get_bar_region that they were aligned.
236         unsafe {
237             volwrite!(self.common_cfg, queue_select, queue);
238             // TODO: Consider caching this somewhere (per queue).
239             let queue_notify_off = volread!(self.common_cfg, queue_notify_off);
240 
241             let offset_bytes = usize::from(queue_notify_off) * self.notify_off_multiplier as usize;
242             let index = offset_bytes / size_of::<u16>();
243             addr_of_mut!((*self.notify_region.as_ptr())[index]).vwrite(queue);
244         }
245     }
246 
set_status(&mut self, status: DeviceStatus)247     fn set_status(&mut self, status: DeviceStatus) {
248         // Safe because the common config pointer is valid and we checked in get_bar_region that it
249         // was aligned.
250         unsafe {
251             volwrite!(self.common_cfg, device_status, status.bits() as u8);
252         }
253     }
254 
set_guest_page_size(&mut self, _guest_page_size: u32)255     fn set_guest_page_size(&mut self, _guest_page_size: u32) {
256         // No-op, the PCI transport doesn't care.
257     }
requires_legacy_layout(&self) -> bool258     fn requires_legacy_layout(&self) -> bool {
259         false
260     }
queue_set( &mut self, queue: u16, size: u32, descriptors: PhysAddr, driver_area: PhysAddr, device_area: PhysAddr, )261     fn queue_set(
262         &mut self,
263         queue: u16,
264         size: u32,
265         descriptors: PhysAddr,
266         driver_area: PhysAddr,
267         device_area: PhysAddr,
268     ) {
269         // Safe because the common config pointer is valid and we checked in get_bar_region that it
270         // was aligned.
271         // kdebug!("queue_select={}",queue);
272         // kdebug!("queue_size={}",size as u16);
273         // kdebug!("queue_desc={:#x}",descriptors as u64);
274         // kdebug!("driver_area={:#x}",driver_area);
275         unsafe {
276             volwrite!(self.common_cfg, queue_select, queue);
277             volwrite!(self.common_cfg, queue_size, size as u16);
278             volwrite!(self.common_cfg, queue_desc, descriptors as u64);
279             volwrite!(self.common_cfg, queue_driver, driver_area as u64);
280             volwrite!(self.common_cfg, queue_device, device_area as u64);
281             volwrite!(self.common_cfg, queue_enable, 1);
282         }
283     }
284 
queue_unset(&mut self, queue: u16)285     fn queue_unset(&mut self, queue: u16) {
286         // Safe because the common config pointer is valid and we checked in get_bar_region that it
287         // was aligned.
288         unsafe {
289             volwrite!(self.common_cfg, queue_select, queue);
290             volwrite!(self.common_cfg, queue_size, 0);
291             volwrite!(self.common_cfg, queue_desc, 0);
292             volwrite!(self.common_cfg, queue_driver, 0);
293             volwrite!(self.common_cfg, queue_device, 0);
294         }
295     }
296 
queue_used(&mut self, queue: u16) -> bool297     fn queue_used(&mut self, queue: u16) -> bool {
298         // Safe because the common config pointer is valid and we checked in get_bar_region that it
299         // was aligned.
300         unsafe {
301             volwrite!(self.common_cfg, queue_select, queue);
302             volread!(self.common_cfg, queue_enable) == 1
303         }
304     }
305 
ack_interrupt(&mut self) -> bool306     fn ack_interrupt(&mut self) -> bool {
307         // Safe because the common config pointer is valid and we checked in get_bar_region that it
308         // was aligned.
309         // Reading the ISR status resets it to 0 and causes the device to de-assert the interrupt.
310         let isr_status = unsafe { self.isr_status.as_ptr().vread() };
311         // TODO: Distinguish between queue interrupt and device configuration interrupt.
312         isr_status & 0x3 != 0
313     }
314 
config_space<T>(&self) -> Result<NonNull<T>, Error>315     fn config_space<T>(&self) -> Result<NonNull<T>, Error> {
316         if let Some(config_space) = self.config_space {
317             if size_of::<T>() > config_space.len() * size_of::<u32>() {
318                 Err(Error::ConfigSpaceTooSmall)
319             } else if align_of::<T>() > 4 {
320                 // Panic as this should only happen if the driver is written incorrectly.
321                 panic!(
322                     "Driver expected config space alignment of {} bytes, but VirtIO only guarantees 4 byte alignment.",
323                     align_of::<T>()
324                 );
325             } else {
326                 // TODO: Use NonNull::as_non_null_ptr once it is stable.
327                 let config_space_ptr = NonNull::new(config_space.as_ptr() as *mut u32).unwrap();
328                 Ok(config_space_ptr.cast())
329             }
330         } else {
331             Err(Error::ConfigSpaceMissing)
332         }
333     }
334 }
335 
336 impl Drop for PciTransport {
drop(&mut self)337     fn drop(&mut self) {
338         // Reset the device when the transport is dropped.
339         self.set_status(DeviceStatus::empty())
340     }
341 }
342 
343 #[repr(C)]
344 struct CommonCfg {
345     device_feature_select: Volatile<u32>,
346     device_feature: ReadOnly<u32>,
347     driver_feature_select: Volatile<u32>,
348     driver_feature: Volatile<u32>,
349     msix_config: Volatile<u16>,
350     num_queues: ReadOnly<u16>,
351     device_status: Volatile<u8>,
352     config_generation: ReadOnly<u8>,
353     queue_select: Volatile<u16>,
354     queue_size: Volatile<u16>,
355     queue_msix_vector: Volatile<u16>,
356     queue_enable: Volatile<u16>,
357     queue_notify_off: Volatile<u16>,
358     queue_desc: Volatile<u64>,
359     queue_driver: Volatile<u64>,
360     queue_device: Volatile<u64>,
361 }
362 
363 /// Information about a VirtIO structure within some BAR, as provided by a `virtio_pci_cap`.
364 /// cfg空间在哪个bar的多少偏移处,长度多少
365 #[derive(Clone, Debug, Eq, PartialEq)]
366 struct VirtioCapabilityInfo {
367     /// The bar in which the structure can be found.
368     bar: u8,
369     /// The offset within the bar.
370     offset: u32,
371     /// The length in bytes of the structure within the bar.
372     length: u32,
373 }
374 
375 /// An error encountered initialising a VirtIO PCI transport.
376 /// VirtIO PCI transport 初始化时的错误
377 #[derive(Clone, Debug, Eq, PartialEq)]
378 pub enum VirtioPciError {
379     /// PCI device vender ID was not the VirtIO vendor ID.
380     InvalidVendorId(u16),
381     /// No valid `VIRTIO_PCI_CAP_COMMON_CFG` capability was found.
382     MissingCommonConfig,
383     /// No valid `VIRTIO_PCI_CAP_NOTIFY_CFG` capability was found.
384     MissingNotifyConfig,
385     /// `VIRTIO_PCI_CAP_NOTIFY_CFG` capability has a `notify_off_multiplier` that is not a multiple
386     /// of 2.
387     InvalidNotifyOffMultiplier(u32),
388     /// No valid `VIRTIO_PCI_CAP_ISR_CFG` capability was found.
389     MissingIsrConfig,
390     /// An IO BAR was provided rather than a memory BAR.
391     UnexpectedBarType,
392     /// A BAR which we need was not allocated an address.
393     BarNotAllocated(u8),
394     /// The offset for some capability was greater than the length of the BAR.
395     BarOffsetOutOfRange,
396     /// The virtual address was not aligned as expected.
397     Misaligned {
398         /// The virtual address in question.
399         vaddr: VirtAddr,
400         /// The expected alignment in bytes.
401         alignment: usize,
402     },
403     ///获取虚拟地址失败
404     BarGetVaddrFailed,
405     /// A generic PCI error,
406     Pci(PciError),
407 }
408 
409 impl Display for VirtioPciError {
fmt(&self, f: &mut Formatter) -> fmt::Result410     fn fmt(&self, f: &mut Formatter) -> fmt::Result {
411         match self {
412             Self::InvalidVendorId(vendor_id) => write!(
413                 f,
414                 "PCI device vender ID {:#06x} was not the VirtIO vendor ID {:#06x}.",
415                 vendor_id, VIRTIO_VENDOR_ID
416             ),
417             Self::MissingCommonConfig => write!(
418                 f,
419                 "No valid `VIRTIO_PCI_CAP_COMMON_CFG` capability was found."
420             ),
421             Self::MissingNotifyConfig => write!(
422                 f,
423                 "No valid `VIRTIO_PCI_CAP_NOTIFY_CFG` capability was found."
424             ),
425             Self::InvalidNotifyOffMultiplier(notify_off_multiplier) => {
426                 write!(
427                     f,
428                     "`VIRTIO_PCI_CAP_NOTIFY_CFG` capability has a `notify_off_multiplier` that is not a multiple of 2: {}",
429                     notify_off_multiplier
430                 )
431             }
432             Self::MissingIsrConfig => {
433                 write!(f, "No valid `VIRTIO_PCI_CAP_ISR_CFG` capability was found.")
434             }
435             Self::UnexpectedBarType => write!(f, "Unexpected BAR (expected memory BAR)."),
436             Self::BarNotAllocated(bar_index) => write!(f, "Bar {} not allocated.", bar_index),
437             Self::BarOffsetOutOfRange => write!(f, "Capability offset greater than BAR length."),
438             Self::Misaligned { vaddr, alignment } => write!(
439                 f,
440                 "Virtual address {:#018x} was not aligned to a {} byte boundary as expected.",
441                 vaddr, alignment
442             ),
443             Self::BarGetVaddrFailed => write!(f, "Get bar virtaddress failed"),
444             Self::Pci(pci_error) => pci_error.fmt(f),
445         }
446     }
447 }
448 
449 /// PCI error到VirtioPciError的转换,层层上报
450 impl From<PciError> for VirtioPciError {
from(error: PciError) -> Self451     fn from(error: PciError) -> Self {
452         Self::Pci(error)
453     }
454 }
455 
456 /// @brief 获取虚拟地址并将其转化为对应类型的指针
457 /// @param device_bar 存储bar信息的结构体 struct_info 存储cfg空间的位置信息
458 /// @return Result<NonNull<T>, VirtioPciError> 成功则返回对应类型的指针,失败则返回Error
get_bar_region<T>( device_bar: &PciStandardDeviceBar, struct_info: &VirtioCapabilityInfo, ) -> Result<NonNull<T>, VirtioPciError>459 fn get_bar_region<T>(
460     device_bar: &PciStandardDeviceBar,
461     struct_info: &VirtioCapabilityInfo,
462 ) -> Result<NonNull<T>, VirtioPciError> {
463     let bar_info = device_bar.get_bar(struct_info.bar)?;
464     let (bar_address, bar_size) = bar_info
465         .memory_address_size()
466         .ok_or(VirtioPciError::UnexpectedBarType)?;
467     if bar_address == 0 {
468         return Err(VirtioPciError::BarNotAllocated(struct_info.bar));
469     }
470     if struct_info.offset + struct_info.length > bar_size
471         || size_of::<T>() > struct_info.length as usize
472     {
473         return Err(VirtioPciError::BarOffsetOutOfRange);
474     }
475     //kdebug!("Chossed bar ={},used={}",struct_info.bar,struct_info.offset + struct_info.length);
476     let vaddr = (bar_info
477         .virtual_address()
478         .ok_or(VirtioPciError::BarGetVaddrFailed)?) as usize
479         + struct_info.offset as usize;
480     if vaddr % align_of::<T>() != 0 {
481         return Err(VirtioPciError::Misaligned {
482             vaddr,
483             alignment: align_of::<T>(),
484         });
485     }
486     let vaddr = NonNull::new(vaddr as *mut u8).unwrap();
487     Ok(vaddr.cast())
488 }
489 
490 /// @brief 获取虚拟地址并将其转化为对应类型的切片的指针
491 /// @param device_bar 存储bar信息的结构体 struct_info 存储cfg空间的位置信息切片的指针
492 /// @return Result<NonNull<[T]>, VirtioPciError> 成功则返回对应类型的指针切片,失败则返回Error
get_bar_region_slice<T>( device_bar: &PciStandardDeviceBar, struct_info: &VirtioCapabilityInfo, ) -> Result<NonNull<[T]>, VirtioPciError>493 fn get_bar_region_slice<T>(
494     device_bar: &PciStandardDeviceBar,
495     struct_info: &VirtioCapabilityInfo,
496 ) -> Result<NonNull<[T]>, VirtioPciError> {
497     let ptr = get_bar_region::<T>(device_bar, struct_info)?;
498     // let raw_slice =
499     //     ptr::slice_from_raw_parts_mut(ptr.as_ptr(), struct_info.length as usize / size_of::<T>());
500     Ok(nonnull_slice_from_raw_parts(
501         ptr,
502         struct_info.length as usize / size_of::<T>(),
503     ))
504 }
505 
nonnull_slice_from_raw_parts<T>(data: NonNull<T>, len: usize) -> NonNull<[T]>506 fn nonnull_slice_from_raw_parts<T>(data: NonNull<T>, len: usize) -> NonNull<[T]> {
507     NonNull::new(ptr::slice_from_raw_parts_mut(data.as_ptr(), len)).unwrap()
508 }
509