1 /******************************************************************************
2 *
3 * (C)Copyright 1998,1999 SysKonnect,
4 * a business unit of Schneider & Koch & Co. Datensysteme GmbH.
5 *
6 * See the file "skfddi.c" for further information.
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
12 *
13 * The information in this file is provided "AS IS" without warranty.
14 *
15 ******************************************************************************/
16
17 /*
18 * FBI board dependent Driver for SMT and LLC
19 */
20
21 #include "h/types.h"
22 #include "h/fddi.h"
23 #include "h/smc.h"
24 #include "h/supern_2.h"
25 #include "h/skfbiinc.h"
26
27 #ifndef lint
28 static const char ID_sccs[] = "@(#)drvfbi.c 1.63 99/02/11 (C) SK " ;
29 #endif
30
31 /*
32 * PCM active state
33 */
34 #define PC8_ACTIVE 8
35
36 #define LED_Y_ON 0x11 /* Used for ring up/down indication */
37 #define LED_Y_OFF 0x10
38
39
40 #define MS2BCLK(x) ((x)*12500L)
41
42 /*
43 * valid configuration values are:
44 */
45 #ifdef ISA
46 const int opt_ints[] = {8, 3, 4, 5, 9, 10, 11, 12, 15} ;
47 const int opt_iops[] = {8,
48 0x100, 0x120, 0x180, 0x1a0, 0x220, 0x240, 0x320, 0x340};
49 const int opt_dmas[] = {4, 3, 5, 6, 7} ;
50 const int opt_eproms[] = {15, 0xc0, 0xc2, 0xc4, 0xc6, 0xc8, 0xca, 0xcc, 0xce,
51 0xd0, 0xd2, 0xd4, 0xd6, 0xd8, 0xda, 0xdc} ;
52 #endif
53 #ifdef EISA
54 const int opt_ints[] = {5, 9, 10, 11} ;
55 const int opt_dmas[] = {0, 5, 6, 7} ;
56 const int opt_eproms[] = {0xc0, 0xc2, 0xc4, 0xc6, 0xc8, 0xca, 0xcc, 0xce,
57 0xd0, 0xd2, 0xd4, 0xd6, 0xd8, 0xda, 0xdc} ;
58 #endif
59
60 #ifdef MCA
61 int opt_ints[] = {3, 11, 10, 9} ; /* FM1 */
62 int opt_eproms[] = {0, 0xc4, 0xc8, 0xcc, 0xd0, 0xd4, 0xd8, 0xdc} ;
63 #endif /* MCA */
64
65 /*
66 * xPOS_ID:xxxx
67 * | \ /
68 * | \/
69 * | --------------------- the patched POS_ID of the Adapter
70 * | xxxx = (Vendor ID low byte,
71 * | Vendor ID high byte,
72 * | Device ID low byte,
73 * | Device ID high byte)
74 * +------------------------------ the patched oem_id must be
75 * 'S' for SK or 'I' for IBM
76 * this is a short id for the driver.
77 */
78 #ifndef MULT_OEM
79 #ifndef OEM_CONCEPT
80 #ifndef MCA
81 const u_char oem_id[] = "xPOS_ID:xxxx" ;
82 #else
83 const u_char oem_id[] = "xPOSID1:xxxx" ; /* FM1 card id. */
84 #endif
85 #else /* OEM_CONCEPT */
86 #ifndef MCA
87 const u_char oem_id[] = OEM_ID ;
88 #else
89 const u_char oem_id[] = OEM_ID1 ; /* FM1 card id. */
90 #endif /* MCA */
91 #endif /* OEM_CONCEPT */
92 #define ID_BYTE0 8
93 #define OEMID(smc,i) oem_id[ID_BYTE0 + i]
94 #else /* MULT_OEM */
95 const struct s_oem_ids oem_ids[] = {
96 #include "oemids.h"
97 {0}
98 };
99 #define OEMID(smc,i) smc->hw.oem_id->oi_id[i]
100 #endif /* MULT_OEM */
101
102 /* Prototypes of external functions */
103 extern void hwt_restart() ;
104 #ifdef AIX
105 extern int AIX_vpdReadByte() ;
106 #endif
107
108
109 /* Prototypes of local functions. */
110 void smt_stop_watchdog() ;
111
112 #ifdef MCA
113 static int read_card_id() ;
114 static void DisableSlotAccess() ;
115 static void EnableSlotAccess() ;
116 #ifdef AIX
117 extern int attach_POS_addr() ;
118 extern int detach_POS_addr() ;
119 extern u_char read_POS() ;
120 extern void write_POS() ;
121 extern int AIX_vpdReadByte() ;
122 #else
123 #define read_POS(smc,a1,a2) ((u_char) inp(a1))
124 #define write_POS(smc,a1,a2,a3) outp((a1),(a3))
125 #endif
126 #endif /* MCA */
127
128
129 /*
130 * FDDI card reset
131 */
card_start(smc)132 static void card_start(smc)
133 struct s_smc *smc ;
134 {
135 int i ;
136 #ifdef PCI
137 u_char rev_id ;
138 u_short word;
139 #endif
140
141 smt_stop_watchdog(smc) ;
142
143 #ifdef ISA
144 outpw(CSR_A,0) ; /* reset for all chips */
145 for (i = 10 ; i ; i--) /* delay for PLC's */
146 (void)inpw(ISR_A) ;
147 OUT_82c54_TIMER(3,COUNT(2) | RW_OP(3) | TMODE(2)) ;
148 /* counter 2, mode 2 */
149 OUT_82c54_TIMER(2,97) ; /* LSB */
150 OUT_82c54_TIMER(2,0) ; /* MSB ( 15.6 us ) */
151 outpw(CSR_A,CS_CRESET) ;
152 #endif
153 #ifdef EISA
154 outpw(CSR_A,0) ; /* reset for all chips */
155 for (i = 10 ; i ; i--) /* delay for PLC's */
156 (void)inpw(ISR_A) ;
157 outpw(CSR_A,CS_CRESET) ;
158 smc->hw.led = (2<<6) ;
159 outpw(CSR_A,CS_CRESET | smc->hw.led) ;
160 #endif
161 #ifdef MCA
162 outp(ADDR(CARD_DIS),0) ; /* reset for all chips */
163 for (i = 10 ; i ; i--) /* delay for PLC's */
164 (void)inpw(ISR_A) ;
165 outp(ADDR(CARD_EN),0) ;
166 /* first I/O after reset must not be a access to FORMAC or PLC */
167
168 /*
169 * bus timeout (MCA)
170 */
171 OUT_82c54_TIMER(3,COUNT(2) | RW_OP(3) | TMODE(3)) ;
172 /* counter 2, mode 3 */
173 OUT_82c54_TIMER(2,(2*24)) ; /* 3.9 us * 2 square wave */
174 OUT_82c54_TIMER(2,0) ; /* MSB */
175
176 /* POS 102 indicated an activ Check Line or Buss Error monitoring */
177 if (inpw(CSA_A) & (POS_EN_CHKINT | POS_EN_BUS_ERR)) {
178 outp(ADDR(IRQ_CHCK_EN),0) ;
179 }
180
181 if (!((i = inpw(CSR_A)) & CS_SAS)) {
182 if (!(i & CS_BYSTAT)) {
183 outp(ADDR(BYPASS(STAT_INS)),0) ;/* insert station */
184 }
185 }
186 outpw(LEDR_A,LED_1) ; /* yellow */
187 #endif /* MCA */
188 #ifdef PCI
189 /*
190 * make sure no transfer activity is pending
191 */
192 outpw(FM_A(FM_MDREG1),FM_MINIT) ;
193 outp(ADDR(B0_CTRL), CTRL_HPI_SET) ;
194 hwt_wait_time(smc,hwt_quick_read(smc),MS2BCLK(10)) ;
195 /*
196 * now reset everything
197 */
198 outp(ADDR(B0_CTRL),CTRL_RST_SET) ; /* reset for all chips */
199 i = (int) inp(ADDR(B0_CTRL)) ; /* do dummy read */
200 SK_UNUSED(i) ; /* Make LINT happy. */
201 outp(ADDR(B0_CTRL), CTRL_RST_CLR) ;
202
203 /*
204 * Reset all bits in the PCI STATUS register
205 */
206 outp(ADDR(B0_TST_CTRL), TST_CFG_WRITE_ON) ; /* enable for writes */
207 word = inpw(PCI_C(PCI_STATUS)) ;
208 outpw(PCI_C(PCI_STATUS), word | PCI_ERRBITS) ;
209 outp(ADDR(B0_TST_CTRL), TST_CFG_WRITE_OFF) ; /* disable writes */
210
211 /*
212 * Release the reset of all the State machines
213 * Release Master_Reset
214 * Release HPI_SM_Reset
215 */
216 outp(ADDR(B0_CTRL), CTRL_MRST_CLR|CTRL_HPI_CLR) ;
217
218 /*
219 * determine the adapter type
220 * Note: Do it here, because some drivers may call card_start() once
221 * at very first before any other initialization functions is
222 * executed.
223 */
224 rev_id = inp(PCI_C(PCI_REV_ID)) ;
225 if ((rev_id & 0xf0) == SK_ML_ID_1 || (rev_id & 0xf0) == SK_ML_ID_2) {
226 smc->hw.hw_is_64bit = TRUE ;
227 } else {
228 smc->hw.hw_is_64bit = FALSE ;
229 }
230
231 /*
232 * Watermark initialization
233 */
234 if (!smc->hw.hw_is_64bit) {
235 outpd(ADDR(B4_R1_F), RX_WATERMARK) ;
236 outpd(ADDR(B5_XA_F), TX_WATERMARK) ;
237 outpd(ADDR(B5_XS_F), TX_WATERMARK) ;
238 }
239
240 outp(ADDR(B0_CTRL),CTRL_RST_CLR) ; /* clear the reset chips */
241 outp(ADDR(B0_LED),LED_GA_OFF|LED_MY_ON|LED_GB_OFF) ; /* ye LED on */
242
243 /* init the timer value for the watch dog 2,5 minutes */
244 outpd(ADDR(B2_WDOG_INI),0x6FC23AC0) ;
245
246 /* initialize the ISR mask */
247 smc->hw.is_imask = ISR_MASK ;
248 smc->hw.hw_state = STOPPED ;
249 #endif
250 GET_PAGE(0) ; /* necessary for BOOT */
251 }
252
card_stop(smc)253 void card_stop(smc)
254 struct s_smc *smc ;
255 {
256 smt_stop_watchdog(smc) ;
257 smc->hw.mac_ring_is_up = 0 ; /* ring down */
258 #ifdef ISA
259 outpw(CSR_A,0) ; /* reset for all chips */
260 #endif
261 #ifdef EISA
262 outpw(CSR_A,0) ; /* reset for all chips */
263 #endif
264 #ifdef MCA
265 outp(ADDR(CARD_DIS),0) ; /* reset for all chips */
266 #endif
267 #ifdef PCI
268 /*
269 * make sure no transfer activity is pending
270 */
271 outpw(FM_A(FM_MDREG1),FM_MINIT) ;
272 outp(ADDR(B0_CTRL), CTRL_HPI_SET) ;
273 hwt_wait_time(smc,hwt_quick_read(smc),MS2BCLK(10)) ;
274 /*
275 * now reset everything
276 */
277 outp(ADDR(B0_CTRL),CTRL_RST_SET) ; /* reset for all chips */
278 outp(ADDR(B0_CTRL),CTRL_RST_CLR) ; /* reset for all chips */
279 outp(ADDR(B0_LED),LED_GA_OFF|LED_MY_OFF|LED_GB_OFF) ; /* all LEDs off */
280 smc->hw.hw_state = STOPPED ;
281 #endif
282 }
283 /*--------------------------- ISR handling ----------------------------------*/
284
285 #ifndef PCI
mac1_irq(smc,stu,stl)286 void mac1_irq(smc,stu, stl)
287 struct s_smc *smc ;
288 u_short stu;
289 u_short stl;
290 {
291 int restart_tx = 0 ;
292 again:
293 #ifndef ISA
294 /*
295 * FORMAC+ bug modified the queue pointer if many read/write accesses happens!?
296 */
297 if (stl & (FM_SPCEPDS | /* parit/coding err. syn.q.*/
298 FM_SPCEPDA0 | /* parit/coding err. a.q.0 */
299 FM_SPCEPDA1 | /* parit/coding err. a.q.1 */
300 FM_SPCEPDA2)) { /* parit/coding err. a.q.2 */
301 SMT_PANIC(smc,SMT_E0132, SMT_E0132_MSG) ;
302 }
303 if (stl & (FM_STBURS | /* tx buffer underrun syn.q.*/
304 FM_STBURA0 | /* tx buffer underrun a.q.0 */
305 FM_STBURA1 | /* tx buffer underrun a.q.1 */
306 FM_STBURA2)) { /* tx buffer underrun a.q.2 */
307 SMT_PANIC(smc,SMT_E0133, SMT_E0133_MSG) ;
308 }
309 #endif
310 if ( (stu & (FM_SXMTABT | /* transmit abort */
311 #ifdef SYNC
312 FM_STXABRS | /* syn. tx abort */
313 #endif /* SYNC */
314 FM_STXABRA0)) || /* asyn. tx abort */
315 (stl & (FM_SQLCKS | /* lock for syn. q. */
316 FM_SQLCKA0)) ) { /* lock for asyn. q. */
317 formac_tx_restart(smc) ; /* init tx */
318 restart_tx = 1 ;
319 stu = inpw(FM_A(FM_ST1U)) ;
320 stl = inpw(FM_A(FM_ST1L)) ;
321 stu &= ~ (FM_STECFRMA0 | FM_STEFRMA0 | FM_STEFRMS) ;
322 if (stu || stl)
323 goto again ;
324 }
325
326 #ifndef SYNC
327 if (stu & (FM_STECFRMA0 | /* end of chain asyn tx */
328 FM_STEFRMA0)) { /* end of frame asyn tx */
329 /* free tx_queue */
330 smc->hw.n_a_send = 0 ;
331 if (++smc->hw.fp.tx_free < smc->hw.fp.tx_max) {
332 start_next_send(smc);
333 }
334 restart_tx = 1 ;
335 }
336 #else /* SYNC */
337 if (stu & (FM_STEFRMA0 | /* end of asyn tx */
338 FM_STEFRMS)) { /* end of sync tx */
339 restart_tx = 1 ;
340 }
341 #endif /* SYNC */
342 if (restart_tx)
343 llc_restart_tx(smc) ;
344 }
345 #else /* PCI */
346
mac1_irq(smc,stu,stl)347 void mac1_irq(smc,stu, stl)
348 struct s_smc *smc ;
349 u_short stu;
350 u_short stl;
351 {
352 int restart_tx = 0 ;
353 again:
354
355 /*
356 * parity error: note encoding error is not possible in tag mode
357 */
358 if (stl & (FM_SPCEPDS | /* parity err. syn.q.*/
359 FM_SPCEPDA0 | /* parity err. a.q.0 */
360 FM_SPCEPDA1)) { /* parity err. a.q.1 */
361 SMT_PANIC(smc,SMT_E0134, SMT_E0134_MSG) ;
362 }
363 /*
364 * buffer underrun: can only occur if a tx threshold is specified
365 */
366 if (stl & (FM_STBURS | /* tx buffer underrun syn.q.*/
367 FM_STBURA0 | /* tx buffer underrun a.q.0 */
368 FM_STBURA1)) { /* tx buffer underrun a.q.2 */
369 SMT_PANIC(smc,SMT_E0133, SMT_E0133_MSG) ;
370 }
371
372 if ( (stu & (FM_SXMTABT | /* transmit abort */
373 FM_STXABRS | /* syn. tx abort */
374 FM_STXABRA0)) || /* asyn. tx abort */
375 (stl & (FM_SQLCKS | /* lock for syn. q. */
376 FM_SQLCKA0)) ) { /* lock for asyn. q. */
377 formac_tx_restart(smc) ; /* init tx */
378 restart_tx = 1 ;
379 stu = inpw(FM_A(FM_ST1U)) ;
380 stl = inpw(FM_A(FM_ST1L)) ;
381 stu &= ~ (FM_STECFRMA0 | FM_STEFRMA0 | FM_STEFRMS) ;
382 if (stu || stl)
383 goto again ;
384 }
385
386 if (stu & (FM_STEFRMA0 | /* end of asyn tx */
387 FM_STEFRMS)) { /* end of sync tx */
388 restart_tx = 1 ;
389 }
390
391 if (restart_tx)
392 llc_restart_tx(smc) ;
393 }
394 #endif /* PCI */
395 /*
396 * interrupt source= plc1
397 * this function is called in nwfbisr.asm
398 */
plc1_irq(smc)399 void plc1_irq(smc)
400 struct s_smc *smc ;
401 {
402 u_short st = inpw(PLC(PB,PL_INTR_EVENT)) ;
403
404 #if (defined(ISA) || defined(EISA))
405 /* reset PLC Int. bits */
406 outpw(PLC1_I,inpw(PLC1_I)) ;
407 #endif
408 plc_irq(smc,PB,st) ;
409 }
410
411 /*
412 * interrupt source= plc2
413 * this function is called in nwfbisr.asm
414 */
plc2_irq(smc)415 void plc2_irq(smc)
416 struct s_smc *smc ;
417 {
418 u_short st = inpw(PLC(PA,PL_INTR_EVENT)) ;
419
420 #if (defined(ISA) || defined(EISA))
421 /* reset PLC Int. bits */
422 outpw(PLC2_I,inpw(PLC2_I)) ;
423 #endif
424 plc_irq(smc,PA,st) ;
425 }
426
427
428 /*
429 * interrupt source= timer
430 */
timer_irq(smc)431 void timer_irq(smc)
432 struct s_smc *smc ;
433 {
434 hwt_restart(smc);
435 smc->hw.t_stop = smc->hw.t_start;
436 smt_timer_done(smc) ;
437 }
438
439 /*
440 * return S-port (PA or PB)
441 */
pcm_get_s_port(smc)442 int pcm_get_s_port(smc)
443 struct s_smc *smc ;
444 {
445 SK_UNUSED(smc) ;
446 return(PS) ;
447 }
448
449 /*
450 * Station Label = "FDDI-XYZ" where
451 *
452 * X = connector type
453 * Y = PMD type
454 * Z = port type
455 */
456 #define STATION_LABEL_CONNECTOR_OFFSET 5
457 #define STATION_LABEL_PMD_OFFSET 6
458 #define STATION_LABEL_PORT_OFFSET 7
459
read_address(smc,mac_addr)460 void read_address(smc,mac_addr)
461 struct s_smc *smc ;
462 u_char *mac_addr ;
463 {
464 char ConnectorType ;
465 char PmdType ;
466 int i ;
467
468 extern const u_char canonical[256] ;
469
470 #if (defined(ISA) || defined(MCA))
471 for (i = 0; i < 4 ;i++) { /* read mac address from board */
472 smc->hw.fddi_phys_addr.a[i] =
473 canonical[(inpw(PR_A(i+SA_MAC))&0xff)] ;
474 }
475 for (i = 4; i < 6; i++) {
476 smc->hw.fddi_phys_addr.a[i] =
477 canonical[(inpw(PR_A(i+SA_MAC+PRA_OFF))&0xff)] ;
478 }
479 #endif
480 #ifdef EISA
481 /*
482 * Note: We get trouble on an Alpha machine if we make a inpw()
483 * instead of inp()
484 */
485 for (i = 0; i < 4 ;i++) { /* read mac address from board */
486 smc->hw.fddi_phys_addr.a[i] =
487 canonical[inp(PR_A(i+SA_MAC))] ;
488 }
489 for (i = 4; i < 6; i++) {
490 smc->hw.fddi_phys_addr.a[i] =
491 canonical[inp(PR_A(i+SA_MAC+PRA_OFF))] ;
492 }
493 #endif
494 #ifdef PCI
495 for (i = 0; i < 6; i++) { /* read mac address from board */
496 smc->hw.fddi_phys_addr.a[i] =
497 canonical[inp(ADDR(B2_MAC_0+i))] ;
498 }
499 #endif
500 #ifndef PCI
501 ConnectorType = inpw(PR_A(SA_PMD_TYPE)) & 0xff ;
502 PmdType = inpw(PR_A(SA_PMD_TYPE+1)) & 0xff ;
503 #else
504 ConnectorType = inp(ADDR(B2_CONN_TYP)) ;
505 PmdType = inp(ADDR(B2_PMD_TYP)) ;
506 #endif
507
508 smc->y[PA].pmd_type[PMD_SK_CONN] =
509 smc->y[PB].pmd_type[PMD_SK_CONN] = ConnectorType ;
510 smc->y[PA].pmd_type[PMD_SK_PMD ] =
511 smc->y[PB].pmd_type[PMD_SK_PMD ] = PmdType ;
512
513 if (mac_addr) {
514 for (i = 0; i < 6 ;i++) {
515 smc->hw.fddi_canon_addr.a[i] = mac_addr[i] ;
516 smc->hw.fddi_home_addr.a[i] = canonical[mac_addr[i]] ;
517 }
518 return ;
519 }
520 smc->hw.fddi_home_addr = smc->hw.fddi_phys_addr ;
521
522 for (i = 0; i < 6 ;i++) {
523 smc->hw.fddi_canon_addr.a[i] =
524 canonical[smc->hw.fddi_phys_addr.a[i]] ;
525 }
526 }
527
528 /*
529 * FDDI card soft reset
530 */
init_board(smc,mac_addr)531 void init_board(smc,mac_addr)
532 struct s_smc *smc ;
533 u_char *mac_addr ;
534 {
535 card_start(smc) ;
536 read_address(smc,mac_addr) ;
537
538 #ifndef PCI
539 if (inpw(CSR_A) & CS_SAS)
540 #else
541 if (!(inp(ADDR(B0_DAS)) & DAS_AVAIL))
542 #endif
543 smc->s.sas = SMT_SAS ; /* Single att. station */
544 else
545 smc->s.sas = SMT_DAS ; /* Dual att. station */
546
547 #ifndef PCI
548 if (inpw(CSR_A) & CS_BYSTAT)
549 #else
550 if (!(inp(ADDR(B0_DAS)) & DAS_BYP_ST))
551 #endif
552 smc->mib.fddiSMTBypassPresent = 0 ;
553 /* without opt. bypass */
554 else
555 smc->mib.fddiSMTBypassPresent = 1 ;
556 /* with opt. bypass */
557 }
558
559 /*
560 * insert or deinsert optical bypass (called by ECM)
561 */
sm_pm_bypass_req(smc,mode)562 void sm_pm_bypass_req(smc,mode)
563 struct s_smc *smc ;
564 int mode;
565 {
566 #if (defined(ISA) || defined(EISA))
567 int csra_v ;
568 #endif
569
570 DB_ECMN(1,"ECM : sm_pm_bypass_req(%s)\n",(mode == BP_INSERT) ?
571 "BP_INSERT" : "BP_DEINSERT",0) ;
572
573 if (smc->s.sas != SMT_DAS)
574 return ;
575
576 #if (defined(ISA) || defined(EISA))
577
578 csra_v = inpw(CSR_A) & ~CS_BYPASS ;
579 #ifdef EISA
580 csra_v |= smc->hw.led ;
581 #endif
582
583 switch(mode) {
584 case BP_INSERT :
585 outpw(CSR_A,csra_v | CS_BYPASS) ;
586 break ;
587 case BP_DEINSERT :
588 outpw(CSR_A,csra_v) ;
589 break ;
590 }
591 #endif /* ISA / EISA */
592 #ifdef MCA
593 switch(mode) {
594 case BP_INSERT :
595 outp(ADDR(BYPASS(STAT_INS)),0) ;/* insert station */
596 break ;
597 case BP_DEINSERT :
598 outp(ADDR(BYPASS(STAT_BYP)),0) ; /* bypass station */
599 break ;
600 }
601 #endif
602 #ifdef PCI
603 switch(mode) {
604 case BP_INSERT :
605 outp(ADDR(B0_DAS),DAS_BYP_INS) ; /* insert station */
606 break ;
607 case BP_DEINSERT :
608 outp(ADDR(B0_DAS),DAS_BYP_RMV) ; /* bypass station */
609 break ;
610 }
611 #endif
612 }
613
614 /*
615 * check if bypass connected
616 */
sm_pm_bypass_present(smc)617 int sm_pm_bypass_present(smc)
618 struct s_smc *smc ;
619 {
620 #ifndef PCI
621 return( (inpw(CSR_A) & CS_BYSTAT) ? FALSE : TRUE ) ;
622 #else
623 return( (inp(ADDR(B0_DAS)) & DAS_BYP_ST) ? TRUE: FALSE) ;
624 #endif
625 }
626
plc_clear_irq(smc,p)627 void plc_clear_irq(smc,p)
628 struct s_smc *smc ;
629 int p ;
630 {
631 SK_UNUSED(p) ;
632
633 #if (defined(ISA) || defined(EISA))
634 switch (p) {
635 case PA :
636 /* reset PLC Int. bits */
637 outpw(PLC2_I,inpw(PLC2_I)) ;
638 break ;
639 case PB :
640 /* reset PLC Int. bits */
641 outpw(PLC1_I,inpw(PLC1_I)) ;
642 break ;
643 }
644 #else
645 SK_UNUSED(smc) ;
646 #endif
647 }
648
649
650 /*
651 * led_indication called by rmt_indication() and
652 * pcm_state_change()
653 *
654 * Input:
655 * smc: SMT context
656 * led_event:
657 * 0 Only switch green LEDs according to their respective PCM state
658 * LED_Y_OFF just switch yellow LED off
659 * LED_Y_ON just switch yello LED on
660 */
led_indication(smc,led_event)661 void led_indication(smc,led_event)
662 struct s_smc *smc ;
663 int led_event;
664 {
665 /* use smc->hw.mac_ring_is_up == TRUE
666 * as indication for Ring Operational
667 */
668 u_short led_state ;
669 struct s_phy *phy ;
670 struct fddi_mib_p *mib_a ;
671 struct fddi_mib_p *mib_b ;
672
673 phy = &smc->y[PA] ;
674 mib_a = phy->mib ;
675 phy = &smc->y[PB] ;
676 mib_b = phy->mib ;
677
678 #ifdef EISA
679 /* Ring up = yellow led OFF*/
680 if (led_event == LED_Y_ON) {
681 smc->hw.led |= CS_LED_1 ;
682 }
683 else if (led_event == LED_Y_OFF) {
684 smc->hw.led &= ~CS_LED_1 ;
685 }
686 else {
687 /* Link at Port A or B = green led ON */
688 if (mib_a->fddiPORTPCMState == PC8_ACTIVE ||
689 mib_b->fddiPORTPCMState == PC8_ACTIVE) {
690 smc->hw.led |= CS_LED_0 ;
691 }
692 else {
693 smc->hw.led &= ~CS_LED_0 ;
694 }
695 }
696 #endif
697 #ifdef MCA
698 led_state = inpw(LEDR_A) ;
699
700 /* Ring up = yellow led OFF*/
701 if (led_event == LED_Y_ON) {
702 led_state |= LED_1 ;
703 }
704 else if (led_event == LED_Y_OFF) {
705 led_state &= ~LED_1 ;
706 }
707 else {
708 led_state &= ~(LED_2|LED_0) ;
709
710 /* Link at Port A = green led A ON */
711 if (mib_a->fddiPORTPCMState == PC8_ACTIVE) {
712 led_state |= LED_2 ;
713 }
714
715 /* Link at Port B/S = green led B ON */
716 if (mib_b->fddiPORTPCMState == PC8_ACTIVE) {
717 led_state |= LED_0 ;
718 }
719 }
720
721 outpw(LEDR_A, led_state) ;
722 #endif /* MCA */
723 #ifdef PCI
724 led_state = 0 ;
725
726 /* Ring up = yellow led OFF*/
727 if (led_event == LED_Y_ON) {
728 led_state |= LED_MY_ON ;
729 }
730 else if (led_event == LED_Y_OFF) {
731 led_state |= LED_MY_OFF ;
732 }
733 else { /* PCM state changed */
734 /* Link at Port A/S = green led A ON */
735 if (mib_a->fddiPORTPCMState == PC8_ACTIVE) {
736 led_state |= LED_GA_ON ;
737 }
738 else {
739 led_state |= LED_GA_OFF ;
740 }
741
742 /* Link at Port B = green led B ON */
743 if (mib_b->fddiPORTPCMState == PC8_ACTIVE) {
744 led_state |= LED_GB_ON ;
745 }
746 else {
747 led_state |= LED_GB_OFF ;
748 }
749 }
750
751 outp(ADDR(B0_LED), led_state) ;
752 #endif /* PCI */
753
754 }
755
756
pcm_state_change(smc,plc,p_state)757 void pcm_state_change(smc,plc,p_state)
758 struct s_smc *smc;
759 int plc;
760 int p_state;
761 {
762 /*
763 * the current implementation of pcm_state_change() in the driver
764 * parts must be renamed to drv_pcm_state_change() which will be called
765 * now after led_indication.
766 */
767 DRV_PCM_STATE_CHANGE(smc,plc,p_state) ;
768
769 led_indication(smc,0) ;
770 }
771
772
rmt_indication(smc,i)773 void rmt_indication(smc,i)
774 struct s_smc *smc ;
775 int i;
776 {
777 /* Call a driver special function if defined */
778 DRV_RMT_INDICATION(smc,i) ;
779
780 led_indication(smc, i ? LED_Y_OFF : LED_Y_ON) ;
781 }
782
783
784 /*
785 * llc_recover_tx called by init_tx (fplus.c)
786 */
llc_recover_tx(smc)787 void llc_recover_tx(smc)
788 struct s_smc *smc ;
789 {
790 #ifdef LOAD_GEN
791 extern int load_gen_flag ;
792
793 load_gen_flag = 0 ;
794 #endif
795 #ifndef SYNC
796 smc->hw.n_a_send= 0 ;
797 #else
798 SK_UNUSED(smc) ;
799 #endif
800 }
801
802 /*--------------------------- DMA init ----------------------------*/
803 #ifdef ISA
804
805 /*
806 * init DMA
807 */
init_dma(smc,dma)808 void init_dma(smc,dma)
809 struct s_smc *smc;
810 int dma;
811 {
812 SK_UNUSED(smc) ;
813
814 /*
815 * set cascade mode,
816 * clear mask bit (enable DMA cannal)
817 */
818 if (dma > 3) {
819 outp(0xd6,(dma & 0x03) | 0xc0) ;
820 outp(0xd4, dma & 0x03) ;
821 }
822 else {
823 outp(0x0b,(dma & 0x03) | 0xc0) ;
824 outp(0x0a,dma & 0x03) ;
825 }
826 }
827
828 /*
829 * disable DMA
830 */
dis_dma(smc,dma)831 void dis_dma(smc,dma)
832 struct s_smc *smc ;
833 int dma;
834 {
835 SK_UNUSED(smc) ;
836
837 /*
838 * set mask bit (disable DMA cannal)
839 */
840 if (dma > 3) {
841 outp(0xd4,(dma & 0x03) | 0x04) ;
842 }
843 else {
844 outp(0x0a,(dma & 0x03) | 0x04) ;
845 }
846 }
847
848 #endif /* ISA */
849
850 #ifdef EISA
851
852 /*arrays with io addresses of dma controller length and address registers*/
853 static const int cntr[8] = { 0x001,0x003,0x005,0x007,0,0x0c6,0x0ca,0x0ce } ;
854 static const int base[8] = { 0x000,0x002,0x004,0x006,0,0x0c4,0x0c8,0x0cc } ;
855 static const int page[8] = { 0x087,0x083,0x081,0x082,0,0x08b,0x089,0x08a } ;
856
init_dma(smc,dma)857 void init_dma(smc,dma)
858 struct s_smc *smc ;
859 int dma;
860 {
861 /*
862 * extended mode register
863 * 32 bit IO
864 * type c
865 * TC output
866 * disable stop
867 */
868
869 /* mode read (write) demand */
870 smc->hw.dma_rmode = (dma & 3) | 0x08 | 0x0 ;
871 smc->hw.dma_wmode = (dma & 3) | 0x04 | 0x0 ;
872
873 /* 32 bit IO's, burst DMA mode (type "C") */
874 smc->hw.dma_emode = (dma & 3) | 0x08 | 0x30 ;
875
876 outp((dma < 4) ? 0x40b : 0x4d6,smc->hw.dma_emode) ;
877
878 /* disable chaining */
879 outp((dma < 4) ? 0x40a : 0x4d4,(dma&3)) ;
880
881 /*load dma controller addresses for fast access during set dma*/
882 smc->hw.dma_base_word_count = cntr[smc->hw.dma];
883 smc->hw.dma_base_address = base[smc->hw.dma];
884 smc->hw.dma_base_address_page = page[smc->hw.dma];
885
886 }
887
dis_dma(smc,dma)888 void dis_dma(smc,dma)
889 struct s_smc *smc ;
890 int dma;
891 {
892 SK_UNUSED(smc) ;
893
894 outp((dma < 4) ? 0x0a : 0xd4,(dma&3)|4) ;/* mask bit */
895 }
896 #endif /* EISA */
897
898 #ifdef MCA
init_dma(smc,dma)899 void init_dma(smc,dma)
900 struct s_smc *smc;
901 int dma;
902 {
903 SK_UNUSED(smc) ;
904 SK_UNUSED(dma) ;
905 }
dis_dma(smc,dma)906 void dis_dma(smc,dma)
907 struct s_smc *smc;
908 int dma;
909 {
910 SK_UNUSED(smc) ;
911 SK_UNUSED(dma) ;
912 }
913 #endif
914
915 #ifdef PCI
init_dma(smc,dma)916 void init_dma(smc,dma)
917 struct s_smc *smc;
918 int dma;
919 {
920 SK_UNUSED(smc) ;
921 SK_UNUSED(dma) ;
922 }
dis_dma(smc,dma)923 void dis_dma(smc,dma)
924 struct s_smc *smc;
925 int dma;
926 {
927 SK_UNUSED(smc) ;
928 SK_UNUSED(dma) ;
929 }
930 #endif
931
932 #ifdef MULT_OEM
is_equal_num(comp1,comp2,num)933 static int is_equal_num(comp1,comp2,num)
934 char comp1[] ;
935 char comp2[] ;
936 int num ;
937 {
938 int i ;
939
940 for (i = 0 ; i < num ; i++) {
941 if (comp1[i] != comp2[i])
942 return (0) ;
943 }
944 return (1) ;
945 } /* is_equal_num */
946
947
948 /*
949 * set the OEM ID defaults, and test the contents of the OEM data base
950 * The default OEM is the first ACTIVE entry in the OEM data base
951 *
952 * returns: 0 success
953 * 1 error in data base
954 * 2 data base empty
955 * 3 no active entry
956 */
set_oi_id_def(smc)957 int set_oi_id_def(smc)
958 struct s_smc *smc ;
959 {
960 int sel_id ;
961 int i ;
962 int act_entries ;
963
964 i = 0 ;
965 sel_id = -1 ;
966 act_entries = FALSE ;
967 smc->hw.oem_id = 0 ;
968 smc->hw.oem_min_status = OI_STAT_ACTIVE ;
969
970 /* check OEM data base */
971 while (oem_ids[i].oi_status) {
972 switch (oem_ids[i].oi_status) {
973 case OI_STAT_ACTIVE:
974 act_entries = TRUE ; /* we have active IDs */
975 if (sel_id == -1)
976 sel_id = i ; /* save the first active ID */
977 case OI_STAT_VALID:
978 case OI_STAT_PRESENT:
979 i++ ;
980 break ; /* entry ok */
981 default:
982 return (1) ; /* invalid oi_status */
983 }
984 }
985
986 if (i == 0)
987 return (2) ;
988 if (!act_entries)
989 return (3) ;
990
991 /* ok, we have a valid OEM data base with an active entry */
992 smc->hw.oem_id = (struct s_oem_ids *) &oem_ids[sel_id] ;
993 return (0) ;
994 }
995 #endif /* MULT_OEM */
996
997
998 #ifdef MCA
999 /************************
1000 *
1001 * BEGIN_MANUAL_ENTRY()
1002 *
1003 * exist_board
1004 *
1005 * Check if an MCA board is present in the specified slot.
1006 *
1007 * int exist_board(
1008 * struct s_smc *smc,
1009 * int slot) ;
1010 * In
1011 * smc - A pointer to the SMT Context struct.
1012 *
1013 * slot - The number of the slot to inspect.
1014 * Out
1015 * 0 = No adapter present.
1016 * 1 = Found FM1 adapter.
1017 *
1018 * Pseudo
1019 * Read MCA ID
1020 * for all valid OEM_IDs
1021 * compare with ID read
1022 * if equal, return 1
1023 * return(0
1024 *
1025 * Note
1026 * The smc pointer must be valid now.
1027 *
1028 * END_MANUAL_ENTRY()
1029 *
1030 ************************/
1031 #define LONG_CARD_ID(lo, hi) ((((hi) & 0xff) << 8) | ((lo) & 0xff))
exist_board(smc,slot)1032 int exist_board(smc,slot)
1033 struct s_smc *smc ;
1034 int slot ;
1035 {
1036 #ifdef MULT_OEM
1037 SK_LOC_DECL(u_char,id[2]) ;
1038 int idi ;
1039 #endif /* MULT_OEM */
1040
1041 /* No longer valid. */
1042 if (smc == NULL)
1043 return(0) ;
1044
1045 #ifndef MULT_OEM
1046 if (read_card_id(smc, slot)
1047 == LONG_CARD_ID(OEMID(smc,0), OEMID(smc,1)))
1048 return (1) ; /* Found FM adapter. */
1049
1050 #else /* MULT_OEM */
1051 idi = read_card_id(smc, slot) ;
1052 id[0] = idi & 0xff ;
1053 id[1] = idi >> 8 ;
1054
1055 smc->hw.oem_id = (struct s_oem_ids *) &oem_ids[0] ;
1056 for (; smc->hw.oem_id->oi_status != OI_STAT_LAST; smc->hw.oem_id++) {
1057 if (smc->hw.oem_id->oi_status < smc->hw.oem_min_status)
1058 continue ;
1059
1060 if (is_equal_num(&id[0],&OEMID(smc,0),2))
1061 return (1) ;
1062 }
1063 #endif /* MULT_OEM */
1064 return (0) ; /* No adapter found. */
1065 }
1066
1067 /************************
1068 *
1069 * read_card_id
1070 *
1071 * Read the MCA card id from the specified slot.
1072 * In
1073 * smc - A pointer to the SMT Context struct.
1074 * CAVEAT: This pointer may be NULL and *must not* be used within this
1075 * function. It's only purpose is for drivers that need some information
1076 * for the inp() and outp() macros.
1077 *
1078 * slot - The number of the slot for which the card id is returned.
1079 * Out
1080 * Returns the card id read from the specified slot. If an illegal slot
1081 * number is specified, the function returns zero.
1082 *
1083 ************************/
read_card_id(smc,slot)1084 static int read_card_id(smc,slot)
1085 struct s_smc *smc ; /* Do not use. */
1086 int slot ;
1087 {
1088 int card_id ;
1089
1090 SK_UNUSED(smc) ; /* Make LINT happy. */
1091 if ((slot < 1) || (slot > 15)) /* max 16 slots, 0 = motherboard */
1092 return (0) ; /* Illegal slot number specified. */
1093
1094 EnableSlotAccess(smc, slot) ;
1095
1096 card_id = ((read_POS(smc,POS_ID_HIGH,slot - 1) & 0xff) << 8) |
1097 (read_POS(smc,POS_ID_LOW,slot - 1) & 0xff) ;
1098
1099 DisableSlotAccess(smc) ;
1100
1101 return (card_id) ;
1102 }
1103
1104 /************************
1105 *
1106 * BEGIN_MANUAL_ENTRY()
1107 *
1108 * get_board_para
1109 *
1110 * Get adapter configuration information. Fill all board specific
1111 * parameters within the 'smc' structure.
1112 *
1113 * int get_board_para(
1114 * struct s_smc *smc,
1115 * int slot) ;
1116 * In
1117 * smc - A pointer to the SMT Context struct, to which this function will
1118 * write some adapter configuration data.
1119 *
1120 * slot - The number of the slot, in which the adapter is installed.
1121 * Out
1122 * 0 = No adapter present.
1123 * 1 = Ok.
1124 * 2 = Adapter present, but card enable bit not set.
1125 *
1126 * END_MANUAL_ENTRY()
1127 *
1128 ************************/
get_board_para(smc,slot)1129 int get_board_para(smc,slot)
1130 struct s_smc *smc ;
1131 int slot ;
1132 {
1133 int val ;
1134 int i ;
1135
1136 /* Check if adapter present & get type of adapter. */
1137 switch (exist_board(smc, slot)) {
1138 case 0: /* Adapter not present. */
1139 return (0) ;
1140 case 1: /* FM Rev. 1 */
1141 smc->hw.rev = FM1_REV ;
1142 smc->hw.VFullRead = 0x0a ;
1143 smc->hw.VFullWrite = 0x05 ;
1144 smc->hw.DmaWriteExtraBytes = 8 ; /* 2 extra words. */
1145 break ;
1146 }
1147 smc->hw.slot = slot ;
1148
1149 EnableSlotAccess(smc, slot) ;
1150
1151 if (!(read_POS(smc,POS_102, slot - 1) & POS_CARD_EN)) {
1152 DisableSlotAccess(smc) ;
1153 return (2) ; /* Card enable bit not set. */
1154 }
1155
1156 val = read_POS(smc,POS_104, slot - 1) ; /* I/O, IRQ */
1157
1158 #ifndef MEM_MAPPED_IO /* is defined by the operating system */
1159 i = val & POS_IOSEL ; /* I/O base addr. (0x0200 .. 0xfe00) */
1160 smc->hw.iop = (i + 1) * 0x0400 - 0x200 ;
1161 #endif
1162 i = ((val & POS_IRQSEL) >> 6) & 0x03 ; /* IRQ <0, 1> */
1163 smc->hw.irq = opt_ints[i] ;
1164
1165 /* FPROM base addr. */
1166 i = ((read_POS(smc,POS_103, slot - 1) & POS_MSEL) >> 4) & 0x07 ;
1167 smc->hw.eprom = opt_eproms[i] ;
1168
1169 DisableSlotAccess(smc) ;
1170
1171 /* before this, the smc->hw.iop must be set !!! */
1172 smc->hw.slot_32 = inpw(CSF_A) & SLOT_32 ;
1173
1174 return (1) ;
1175 }
1176
1177 /* Enable access to specified MCA slot. */
EnableSlotAccess(smc,slot)1178 static void EnableSlotAccess(smc,slot)
1179 struct s_smc *smc ;
1180 int slot ;
1181 {
1182 SK_UNUSED(slot) ;
1183
1184 #ifndef AIX
1185 SK_UNUSED(smc) ;
1186
1187 /* System mode. */
1188 outp(POS_SYS_SETUP, POS_SYSTEM) ;
1189
1190 /* Select slot. */
1191 outp(POS_CHANNEL_POS, POS_CHANNEL_BIT | (slot-1)) ;
1192 #else
1193 attach_POS_addr (smc) ;
1194 #endif
1195 }
1196
1197 /* Disable access to MCA slot formerly enabled via EnableSlotAccess(). */
DisableSlotAccess(smc)1198 static void DisableSlotAccess(smc)
1199 struct s_smc *smc ;
1200 {
1201 #ifndef AIX
1202 SK_UNUSED(smc) ;
1203
1204 outp(POS_CHANNEL_POS, 0) ;
1205 #else
1206 detach_POS_addr (smc) ;
1207 #endif
1208 }
1209 #endif /* MCA */
1210
1211 #ifdef EISA
1212 #ifndef MEM_MAPPED_IO
1213 #define SADDR(slot) (((slot)<<12)&0xf000)
1214 #else /* MEM_MAPPED_IO */
1215 #define SADDR(slot) (smc->hw.iop)
1216 #endif /* MEM_MAPPED_IO */
1217
1218 /************************
1219 *
1220 * BEGIN_MANUAL_ENTRY()
1221 *
1222 * exist_board
1223 *
1224 * Check if an EISA board is present in the specified slot.
1225 *
1226 * int exist_board(
1227 * struct s_smc *smc,
1228 * int slot) ;
1229 * In
1230 * smc - A pointer to the SMT Context struct.
1231 *
1232 * slot - The number of the slot to inspect.
1233 * Out
1234 * 0 = No adapter present.
1235 * 1 = Found adapter.
1236 *
1237 * Pseudo
1238 * Read EISA ID
1239 * for all valid OEM_IDs
1240 * compare with ID read
1241 * if equal, return 1
1242 * return(0
1243 *
1244 * Note
1245 * The smc pointer must be valid now.
1246 *
1247 ************************/
exist_board(smc,slot)1248 int exist_board(smc,slot)
1249 struct s_smc *smc ;
1250 int slot ;
1251 {
1252 int i ;
1253 #ifdef MULT_OEM
1254 SK_LOC_DECL(u_char,id[4]) ;
1255 #endif /* MULT_OEM */
1256
1257 /* No longer valid. */
1258 if (smc == NULL)
1259 return(0);
1260
1261 SK_UNUSED(slot) ;
1262
1263 #ifndef MULT_OEM
1264 for (i = 0 ; i < 4 ; i++) {
1265 if (inp(SADDR(slot)+PRA(i)) != OEMID(smc,i))
1266 return(0) ;
1267 }
1268 return(1) ;
1269 #else /* MULT_OEM */
1270 for (i = 0 ; i < 4 ; i++)
1271 id[i] = inp(SADDR(slot)+PRA(i)) ;
1272
1273 smc->hw.oem_id = (struct s_oem_ids *) &oem_ids[0] ;
1274
1275 for (; smc->hw.oem_id->oi_status != OI_STAT_LAST; smc->hw.oem_id++) {
1276 if (smc->hw.oem_id->oi_status < smc->hw.oem_min_status)
1277 continue ;
1278
1279 if (is_equal_num(&id[0],&OEMID(smc,0),4))
1280 return (1) ;
1281 }
1282 return (0) ; /* No adapter found. */
1283 #endif /* MULT_OEM */
1284 }
1285
1286
get_board_para(smc,slot)1287 int get_board_para(smc,slot)
1288 struct s_smc *smc ;
1289 int slot ;
1290 {
1291 int i ;
1292
1293 if (!exist_board(smc,slot))
1294 return(0) ;
1295
1296 smc->hw.slot = slot ;
1297 #ifndef MEM_MAPPED_IO /* if defined by the operating system */
1298 smc->hw.iop = SADDR(slot) ;
1299 #endif
1300
1301 if (!(inp(C0_A(0))&CFG_CARD_EN)) {
1302 return(2) ; /* CFG_CARD_EN bit not set! */
1303 }
1304
1305 smc->hw.irq = opt_ints[(inp(C1_A(0)) & CFG_IRQ_SEL)] ;
1306 smc->hw.dma = opt_dmas[((inp(C1_A(0)) & CFG_DRQ_SEL)>>3)] ;
1307
1308 if ((i = inp(C2_A(0)) & CFG_EPROM_SEL) != 0x0f)
1309 smc->hw.eprom = opt_eproms[i] ;
1310 else
1311 smc->hw.eprom = 0 ;
1312
1313 smc->hw.DmaWriteExtraBytes = 8 ;
1314
1315 return(1) ;
1316 }
1317 #endif /* EISA */
1318
1319 #ifdef ISA
1320 #ifndef MULT_OEM
1321 const u_char sklogo[6] = SKLOGO_STR ;
1322 #define SIZE_SKLOGO(smc) sizeof(sklogo)
1323 #define SKLOGO(smc,i) sklogo[i]
1324 #else /* MULT_OEM */
1325 #define SIZE_SKLOGO(smc) smc->hw.oem_id->oi_logo_len
1326 #define SKLOGO(smc,i) smc->hw.oem_id->oi_logo[i]
1327 #endif /* MULT_OEM */
1328
1329
exist_board(smc,port)1330 int exist_board(smc,port)
1331 struct s_smc *smc ;
1332 HW_PTR port ;
1333 {
1334 int i ;
1335 #ifdef MULT_OEM
1336 int bytes_read ;
1337 u_char board_logo[15] ;
1338 SK_LOC_DECL(u_char,id[4]) ;
1339 #endif /* MULT_OEM */
1340
1341 /* No longer valid. */
1342 if (smc == NULL)
1343 return(0);
1344
1345 SK_UNUSED(smc) ;
1346 #ifndef MULT_OEM
1347 for (i = SADDRL ; i < (signed) (SADDRL+SIZE_SKLOGO(smc)) ; i++) {
1348 if ((u_char)inpw((PRA(i)+port)) != SKLOGO(smc,i-SADDRL)) {
1349 return(0) ;
1350 }
1351 }
1352
1353 /* check MAC address (S&K or other) */
1354 for (i = 0 ; i < 3 ; i++) {
1355 if ((u_char)inpw((PRA(i)+port)) != OEMID(smc,i))
1356 return(0) ;
1357 }
1358 return(1) ;
1359 #else /* MULT_OEM */
1360 smc->hw.oem_id = (struct s_oem_ids *) &oem_ids[0] ;
1361 board_logo[0] = (u_char)inpw((PRA(SADDRL)+port)) ;
1362 bytes_read = 1 ;
1363
1364 for (; smc->hw.oem_id->oi_status != OI_STAT_LAST; smc->hw.oem_id++) {
1365 if (smc->hw.oem_id->oi_status < smc->hw.oem_min_status)
1366 continue ;
1367
1368 /* Test all read bytes with current OEM_entry */
1369 /* for (i=0; (i<bytes_read) && (i < SIZE_SKLOGO(smc)); i++) { */
1370 for (i = 0; i < bytes_read; i++) {
1371 if (board_logo[i] != SKLOGO(smc,i))
1372 break ;
1373 }
1374
1375 /* If mismatch, switch to next OEM entry */
1376 if ((board_logo[i] != SKLOGO(smc,i)) && (i < bytes_read))
1377 continue ;
1378
1379 --i ;
1380 while (bytes_read < SIZE_SKLOGO(smc)) {
1381 // inpw next byte SK_Logo
1382 i++ ;
1383 board_logo[i] = (u_char)inpw((PRA(SADDRL+i)+port)) ;
1384 bytes_read++ ;
1385 if (board_logo[i] != SKLOGO(smc,i))
1386 break ;
1387 }
1388
1389 for (i = 0 ; i < 3 ; i++)
1390 id[i] = (u_char)inpw((PRA(i)+port)) ;
1391
1392 if ((board_logo[i] == SKLOGO(smc,i))
1393 && (bytes_read == SIZE_SKLOGO(smc))) {
1394
1395 if (is_equal_num(&id[0],&OEMID(smc,0),3))
1396 return(1);
1397 }
1398 } /* for */
1399 return(0) ;
1400 #endif /* MULT_OEM */
1401 }
1402
get_board_para(smc,slot)1403 int get_board_para(smc,slot)
1404 struct s_smc *smc ;
1405 int slot ;
1406 {
1407 SK_UNUSED(smc) ;
1408 SK_UNUSED(slot) ;
1409 return(0) ; /* for ISA not supported */
1410 }
1411 #endif /* ISA */
1412
1413 #ifdef PCI
1414 #ifdef USE_BIOS_FUN
exist_board(smc,slot)1415 int exist_board(smc,slot)
1416 struct s_smc *smc ;
1417 int slot ;
1418 {
1419 u_short dev_id ;
1420 u_short ven_id ;
1421 int found ;
1422 int i ;
1423
1424 found = FALSE ; /* make sure we returned with adatper not found*/
1425 /* if an empty oemids.h was included */
1426
1427 #ifdef MULT_OEM
1428 smc->hw.oem_id = (struct s_oem_ids *) &oem_ids[0] ;
1429 for (; smc->hw.oem_id->oi_status != OI_STAT_LAST; smc->hw.oem_id++) {
1430 if (smc->hw.oem_id->oi_status < smc->hw.oem_min_status)
1431 continue ;
1432 #endif
1433 ven_id = OEMID(smc,0) + (OEMID(smc,1) << 8) ;
1434 dev_id = OEMID(smc,2) + (OEMID(smc,3) << 8) ;
1435 for (i = 0; i < slot; i++) {
1436 if (pci_find_device(i,&smc->hw.pci_handle,
1437 dev_id,ven_id) != 0) {
1438
1439 found = FALSE ;
1440 } else {
1441 found = TRUE ;
1442 }
1443 }
1444 if (found) {
1445 return(1) ; /* adapter was found */
1446 }
1447 #ifdef MULT_OEM
1448 }
1449 #endif
1450 return(0) ; /* adapter was not found */
1451 }
1452 #endif /* PCI */
1453 #endif /* USE_BIOS_FUNC */
1454
driver_get_bia(smc,bia_addr)1455 void driver_get_bia(smc, bia_addr)
1456 struct s_smc *smc ;
1457 struct fddi_addr *bia_addr ;
1458 {
1459 int i ;
1460
1461 extern const u_char canonical[256] ;
1462
1463 for (i = 0 ; i < 6 ; i++) {
1464 bia_addr->a[i] = canonical[smc->hw.fddi_phys_addr.a[i]] ;
1465 }
1466 }
1467
smt_start_watchdog(smc)1468 void smt_start_watchdog(smc)
1469 struct s_smc *smc ;
1470 {
1471 SK_UNUSED(smc) ; /* Make LINT happy. */
1472
1473 #ifndef DEBUG
1474
1475 #ifdef PCI
1476 if (smc->hw.wdog_used) {
1477 outpw(ADDR(B2_WDOG_CRTL),TIM_START) ; /* Start timer. */
1478 }
1479 #endif
1480
1481 #endif /* DEBUG */
1482 }
1483
smt_stop_watchdog(smc)1484 void smt_stop_watchdog(smc)
1485 struct s_smc *smc ;
1486 {
1487 SK_UNUSED(smc) ; /* Make LINT happy. */
1488 #ifndef DEBUG
1489
1490 #ifdef PCI
1491 if (smc->hw.wdog_used) {
1492 outpw(ADDR(B2_WDOG_CRTL),TIM_STOP) ; /* Stop timer. */
1493 }
1494 #endif
1495
1496 #endif /* DEBUG */
1497 }
1498
1499 #ifdef PCI
get_rom_byte(smc,addr)1500 static char get_rom_byte(smc,addr)
1501 struct s_smc *smc ;
1502 u_short addr ;
1503 {
1504 GET_PAGE(addr) ;
1505 return (READ_PROM(ADDR(B2_FDP))) ;
1506 }
1507
1508 /*
1509 * ROM image defines
1510 */
1511 #define ROM_SIG_1 0
1512 #define ROM_SIG_2 1
1513 #define PCI_DATA_1 0x18
1514 #define PCI_DATA_2 0x19
1515
1516 /*
1517 * PCI data structure defines
1518 */
1519 #define VPD_DATA_1 0x08
1520 #define VPD_DATA_2 0x09
1521 #define IMAGE_LEN_1 0x10
1522 #define IMAGE_LEN_2 0x11
1523 #define CODE_TYPE 0x14
1524 #define INDICATOR 0x15
1525
1526 /*
1527 * BEGIN_MANUAL_ENTRY(mac_drv_vpd_read)
1528 * mac_drv_vpd_read(smc,buf,size,image)
1529 *
1530 * function DOWNCALL (FDDIWARE)
1531 * reads the VPD data of the FPROM and writes it into the
1532 * buffer
1533 *
1534 * para buf points to the buffer for the VPD data
1535 * size size of the VPD data buffer
1536 * image boot image; code type of the boot image
1537 * image = 0 Intel x86, PC-AT compatible
1538 * 1 OPENBOOT standard for PCI
1539 * 2-FF reserved
1540 *
1541 * returns len number of VPD data bytes read form the FPROM
1542 * <0 number of read bytes
1543 * >0 error: data invalid
1544 *
1545 * END_MANUAL_ENTRY
1546 */
mac_drv_vpd_read(smc,buf,size,image)1547 int mac_drv_vpd_read(smc,buf,size,image)
1548 struct s_smc *smc ;
1549 char *buf ;
1550 int size ;
1551 char image ;
1552 {
1553 u_short ibase ;
1554 u_short pci_base ;
1555 u_short vpd ;
1556 int len ;
1557
1558 len = 0 ;
1559 ibase = 0 ;
1560 /*
1561 * as long images defined
1562 */
1563 while (get_rom_byte(smc,ibase+ROM_SIG_1) == 0x55 &&
1564 (u_char) get_rom_byte(smc,ibase+ROM_SIG_2) == 0xaa) {
1565 /*
1566 * get the pointer to the PCI data structure
1567 */
1568 pci_base = ibase + get_rom_byte(smc,ibase+PCI_DATA_1) +
1569 (get_rom_byte(smc,ibase+PCI_DATA_2) << 8) ;
1570
1571 if (image == get_rom_byte(smc,pci_base+CODE_TYPE)) {
1572 /*
1573 * we have the right image, read the VPD data
1574 */
1575 vpd = ibase + get_rom_byte(smc,pci_base+VPD_DATA_1) +
1576 (get_rom_byte(smc,pci_base+VPD_DATA_2) << 8) ;
1577 if (vpd == ibase) {
1578 break ; /* no VPD data */
1579 }
1580 for (len = 0; len < size; len++,buf++,vpd++) {
1581 *buf = get_rom_byte(smc,vpd) ;
1582 }
1583 break ;
1584 }
1585 else {
1586 /*
1587 * try the next image
1588 */
1589 if (get_rom_byte(smc,pci_base+INDICATOR) & 0x80) {
1590 break ; /* this was the last image */
1591 }
1592 ibase = ibase + get_rom_byte(smc,ibase+IMAGE_LEN_1) +
1593 (get_rom_byte(smc,ibase+IMAGE_LEN_2) << 8) ;
1594 }
1595 }
1596
1597 return(len) ;
1598 }
1599
mac_drv_pci_fix(smc,fix_value)1600 void mac_drv_pci_fix(smc,fix_value)
1601 struct s_smc *smc ;
1602 u_long fix_value ;
1603 {
1604 smc->hw.pci_fix_value = fix_value ;
1605 }
1606
mac_do_pci_fix(smc)1607 void mac_do_pci_fix(smc)
1608 struct s_smc *smc ;
1609 {
1610 SK_UNUSED(smc) ;
1611 }
1612 #endif /* PCI */
1613