1 /*
2 * Copyright (c) 2006 Oracle. All rights reserved.
3 *
4 * This software is available to you under a choice of one of two
5 * licenses. You may choose to be licensed under the terms of the GNU
6 * General Public License (GPL) Version 2, available from the file
7 * COPYING in the main directory of this source tree, or the
8 * OpenIB.org BSD license below:
9 *
10 * Redistribution and use in source and binary forms, with or
11 * without modification, are permitted provided that the following
12 * conditions are met:
13 *
14 * - Redistributions of source code must retain the above
15 * copyright notice, this list of conditions and the following
16 * disclaimer.
17 *
18 * - Redistributions in binary form must reproduce the above
19 * copyright notice, this list of conditions and the following
20 * disclaimer in the documentation and/or other materials
21 * provided with the distribution.
22 *
23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30 * SOFTWARE.
31 *
32 */
33 #include <linux/kernel.h>
34 #include <linux/gfp.h>
35 #include <net/sock.h>
36 #include <linux/in.h>
37 #include <linux/list.h>
38
39 #include "rds.h"
40
41 /* When transmitting messages in rds_send_xmit, we need to emerge from
42 * time to time and briefly release the CPU. Otherwise the softlock watchdog
43 * will kick our shin.
44 * Also, it seems fairer to not let one busy connection stall all the
45 * others.
46 *
47 * send_batch_count is the number of times we'll loop in send_xmit. Setting
48 * it to 0 will restore the old behavior (where we looped until we had
49 * drained the queue).
50 */
51 static int send_batch_count = 64;
52 module_param(send_batch_count, int, 0444);
53 MODULE_PARM_DESC(send_batch_count, " batch factor when working the send queue");
54
55 static void rds_send_remove_from_sock(struct list_head *messages, int status);
56
57 /*
58 * Reset the send state. Callers must ensure that this doesn't race with
59 * rds_send_xmit().
60 */
rds_send_reset(struct rds_connection * conn)61 void rds_send_reset(struct rds_connection *conn)
62 {
63 struct rds_message *rm, *tmp;
64 unsigned long flags;
65
66 if (conn->c_xmit_rm) {
67 rm = conn->c_xmit_rm;
68 conn->c_xmit_rm = NULL;
69 /* Tell the user the RDMA op is no longer mapped by the
70 * transport. This isn't entirely true (it's flushed out
71 * independently) but as the connection is down, there's
72 * no ongoing RDMA to/from that memory */
73 rds_message_unmapped(rm);
74 rds_message_put(rm);
75 }
76
77 conn->c_xmit_sg = 0;
78 conn->c_xmit_hdr_off = 0;
79 conn->c_xmit_data_off = 0;
80 conn->c_xmit_atomic_sent = 0;
81 conn->c_xmit_rdma_sent = 0;
82 conn->c_xmit_data_sent = 0;
83
84 conn->c_map_queued = 0;
85
86 conn->c_unacked_packets = rds_sysctl_max_unacked_packets;
87 conn->c_unacked_bytes = rds_sysctl_max_unacked_bytes;
88
89 /* Mark messages as retransmissions, and move them to the send q */
90 spin_lock_irqsave(&conn->c_lock, flags);
91 list_for_each_entry_safe(rm, tmp, &conn->c_retrans, m_conn_item) {
92 set_bit(RDS_MSG_ACK_REQUIRED, &rm->m_flags);
93 set_bit(RDS_MSG_RETRANSMITTED, &rm->m_flags);
94 }
95 list_splice_init(&conn->c_retrans, &conn->c_send_queue);
96 spin_unlock_irqrestore(&conn->c_lock, flags);
97 }
98
acquire_in_xmit(struct rds_connection * conn)99 static int acquire_in_xmit(struct rds_connection *conn)
100 {
101 return test_and_set_bit(RDS_IN_XMIT, &conn->c_flags) == 0;
102 }
103
release_in_xmit(struct rds_connection * conn)104 static void release_in_xmit(struct rds_connection *conn)
105 {
106 clear_bit(RDS_IN_XMIT, &conn->c_flags);
107 smp_mb__after_clear_bit();
108 /*
109 * We don't use wait_on_bit()/wake_up_bit() because our waking is in a
110 * hot path and finding waiters is very rare. We don't want to walk
111 * the system-wide hashed waitqueue buckets in the fast path only to
112 * almost never find waiters.
113 */
114 if (waitqueue_active(&conn->c_waitq))
115 wake_up_all(&conn->c_waitq);
116 }
117
118 /*
119 * We're making the conscious trade-off here to only send one message
120 * down the connection at a time.
121 * Pro:
122 * - tx queueing is a simple fifo list
123 * - reassembly is optional and easily done by transports per conn
124 * - no per flow rx lookup at all, straight to the socket
125 * - less per-frag memory and wire overhead
126 * Con:
127 * - queued acks can be delayed behind large messages
128 * Depends:
129 * - small message latency is higher behind queued large messages
130 * - large message latency isn't starved by intervening small sends
131 */
rds_send_xmit(struct rds_connection * conn)132 int rds_send_xmit(struct rds_connection *conn)
133 {
134 struct rds_message *rm;
135 unsigned long flags;
136 unsigned int tmp;
137 struct scatterlist *sg;
138 int ret = 0;
139 LIST_HEAD(to_be_dropped);
140
141 restart:
142
143 /*
144 * sendmsg calls here after having queued its message on the send
145 * queue. We only have one task feeding the connection at a time. If
146 * another thread is already feeding the queue then we back off. This
147 * avoids blocking the caller and trading per-connection data between
148 * caches per message.
149 */
150 if (!acquire_in_xmit(conn)) {
151 rds_stats_inc(s_send_lock_contention);
152 ret = -ENOMEM;
153 goto out;
154 }
155
156 /*
157 * rds_conn_shutdown() sets the conn state and then tests RDS_IN_XMIT,
158 * we do the opposite to avoid races.
159 */
160 if (!rds_conn_up(conn)) {
161 release_in_xmit(conn);
162 ret = 0;
163 goto out;
164 }
165
166 if (conn->c_trans->xmit_prepare)
167 conn->c_trans->xmit_prepare(conn);
168
169 /*
170 * spin trying to push headers and data down the connection until
171 * the connection doesn't make forward progress.
172 */
173 while (1) {
174
175 rm = conn->c_xmit_rm;
176
177 /*
178 * If between sending messages, we can send a pending congestion
179 * map update.
180 */
181 if (!rm && test_and_clear_bit(0, &conn->c_map_queued)) {
182 rm = rds_cong_update_alloc(conn);
183 if (IS_ERR(rm)) {
184 ret = PTR_ERR(rm);
185 break;
186 }
187 rm->data.op_active = 1;
188
189 conn->c_xmit_rm = rm;
190 }
191
192 /*
193 * If not already working on one, grab the next message.
194 *
195 * c_xmit_rm holds a ref while we're sending this message down
196 * the connction. We can use this ref while holding the
197 * send_sem.. rds_send_reset() is serialized with it.
198 */
199 if (!rm) {
200 unsigned int len;
201
202 spin_lock_irqsave(&conn->c_lock, flags);
203
204 if (!list_empty(&conn->c_send_queue)) {
205 rm = list_entry(conn->c_send_queue.next,
206 struct rds_message,
207 m_conn_item);
208 rds_message_addref(rm);
209
210 /*
211 * Move the message from the send queue to the retransmit
212 * list right away.
213 */
214 list_move_tail(&rm->m_conn_item, &conn->c_retrans);
215 }
216
217 spin_unlock_irqrestore(&conn->c_lock, flags);
218
219 if (!rm)
220 break;
221
222 /* Unfortunately, the way Infiniband deals with
223 * RDMA to a bad MR key is by moving the entire
224 * queue pair to error state. We cold possibly
225 * recover from that, but right now we drop the
226 * connection.
227 * Therefore, we never retransmit messages with RDMA ops.
228 */
229 if (rm->rdma.op_active &&
230 test_bit(RDS_MSG_RETRANSMITTED, &rm->m_flags)) {
231 spin_lock_irqsave(&conn->c_lock, flags);
232 if (test_and_clear_bit(RDS_MSG_ON_CONN, &rm->m_flags))
233 list_move(&rm->m_conn_item, &to_be_dropped);
234 spin_unlock_irqrestore(&conn->c_lock, flags);
235 continue;
236 }
237
238 /* Require an ACK every once in a while */
239 len = ntohl(rm->m_inc.i_hdr.h_len);
240 if (conn->c_unacked_packets == 0 ||
241 conn->c_unacked_bytes < len) {
242 __set_bit(RDS_MSG_ACK_REQUIRED, &rm->m_flags);
243
244 conn->c_unacked_packets = rds_sysctl_max_unacked_packets;
245 conn->c_unacked_bytes = rds_sysctl_max_unacked_bytes;
246 rds_stats_inc(s_send_ack_required);
247 } else {
248 conn->c_unacked_bytes -= len;
249 conn->c_unacked_packets--;
250 }
251
252 conn->c_xmit_rm = rm;
253 }
254
255 /* The transport either sends the whole rdma or none of it */
256 if (rm->rdma.op_active && !conn->c_xmit_rdma_sent) {
257 rm->m_final_op = &rm->rdma;
258 ret = conn->c_trans->xmit_rdma(conn, &rm->rdma);
259 if (ret)
260 break;
261 conn->c_xmit_rdma_sent = 1;
262
263 /* The transport owns the mapped memory for now.
264 * You can't unmap it while it's on the send queue */
265 set_bit(RDS_MSG_MAPPED, &rm->m_flags);
266 }
267
268 if (rm->atomic.op_active && !conn->c_xmit_atomic_sent) {
269 rm->m_final_op = &rm->atomic;
270 ret = conn->c_trans->xmit_atomic(conn, &rm->atomic);
271 if (ret)
272 break;
273 conn->c_xmit_atomic_sent = 1;
274
275 /* The transport owns the mapped memory for now.
276 * You can't unmap it while it's on the send queue */
277 set_bit(RDS_MSG_MAPPED, &rm->m_flags);
278 }
279
280 /*
281 * A number of cases require an RDS header to be sent
282 * even if there is no data.
283 * We permit 0-byte sends; rds-ping depends on this.
284 * However, if there are exclusively attached silent ops,
285 * we skip the hdr/data send, to enable silent operation.
286 */
287 if (rm->data.op_nents == 0) {
288 int ops_present;
289 int all_ops_are_silent = 1;
290
291 ops_present = (rm->atomic.op_active || rm->rdma.op_active);
292 if (rm->atomic.op_active && !rm->atomic.op_silent)
293 all_ops_are_silent = 0;
294 if (rm->rdma.op_active && !rm->rdma.op_silent)
295 all_ops_are_silent = 0;
296
297 if (ops_present && all_ops_are_silent
298 && !rm->m_rdma_cookie)
299 rm->data.op_active = 0;
300 }
301
302 if (rm->data.op_active && !conn->c_xmit_data_sent) {
303 rm->m_final_op = &rm->data;
304 ret = conn->c_trans->xmit(conn, rm,
305 conn->c_xmit_hdr_off,
306 conn->c_xmit_sg,
307 conn->c_xmit_data_off);
308 if (ret <= 0)
309 break;
310
311 if (conn->c_xmit_hdr_off < sizeof(struct rds_header)) {
312 tmp = min_t(int, ret,
313 sizeof(struct rds_header) -
314 conn->c_xmit_hdr_off);
315 conn->c_xmit_hdr_off += tmp;
316 ret -= tmp;
317 }
318
319 sg = &rm->data.op_sg[conn->c_xmit_sg];
320 while (ret) {
321 tmp = min_t(int, ret, sg->length -
322 conn->c_xmit_data_off);
323 conn->c_xmit_data_off += tmp;
324 ret -= tmp;
325 if (conn->c_xmit_data_off == sg->length) {
326 conn->c_xmit_data_off = 0;
327 sg++;
328 conn->c_xmit_sg++;
329 BUG_ON(ret != 0 &&
330 conn->c_xmit_sg == rm->data.op_nents);
331 }
332 }
333
334 if (conn->c_xmit_hdr_off == sizeof(struct rds_header) &&
335 (conn->c_xmit_sg == rm->data.op_nents))
336 conn->c_xmit_data_sent = 1;
337 }
338
339 /*
340 * A rm will only take multiple times through this loop
341 * if there is a data op. Thus, if the data is sent (or there was
342 * none), then we're done with the rm.
343 */
344 if (!rm->data.op_active || conn->c_xmit_data_sent) {
345 conn->c_xmit_rm = NULL;
346 conn->c_xmit_sg = 0;
347 conn->c_xmit_hdr_off = 0;
348 conn->c_xmit_data_off = 0;
349 conn->c_xmit_rdma_sent = 0;
350 conn->c_xmit_atomic_sent = 0;
351 conn->c_xmit_data_sent = 0;
352
353 rds_message_put(rm);
354 }
355 }
356
357 if (conn->c_trans->xmit_complete)
358 conn->c_trans->xmit_complete(conn);
359
360 release_in_xmit(conn);
361
362 /* Nuke any messages we decided not to retransmit. */
363 if (!list_empty(&to_be_dropped)) {
364 /* irqs on here, so we can put(), unlike above */
365 list_for_each_entry(rm, &to_be_dropped, m_conn_item)
366 rds_message_put(rm);
367 rds_send_remove_from_sock(&to_be_dropped, RDS_RDMA_DROPPED);
368 }
369
370 /*
371 * Other senders can queue a message after we last test the send queue
372 * but before we clear RDS_IN_XMIT. In that case they'd back off and
373 * not try and send their newly queued message. We need to check the
374 * send queue after having cleared RDS_IN_XMIT so that their message
375 * doesn't get stuck on the send queue.
376 *
377 * If the transport cannot continue (i.e ret != 0), then it must
378 * call us when more room is available, such as from the tx
379 * completion handler.
380 */
381 if (ret == 0) {
382 smp_mb();
383 if (!list_empty(&conn->c_send_queue)) {
384 rds_stats_inc(s_send_lock_queue_raced);
385 goto restart;
386 }
387 }
388 out:
389 return ret;
390 }
391
rds_send_sndbuf_remove(struct rds_sock * rs,struct rds_message * rm)392 static void rds_send_sndbuf_remove(struct rds_sock *rs, struct rds_message *rm)
393 {
394 u32 len = be32_to_cpu(rm->m_inc.i_hdr.h_len);
395
396 assert_spin_locked(&rs->rs_lock);
397
398 BUG_ON(rs->rs_snd_bytes < len);
399 rs->rs_snd_bytes -= len;
400
401 if (rs->rs_snd_bytes == 0)
402 rds_stats_inc(s_send_queue_empty);
403 }
404
rds_send_is_acked(struct rds_message * rm,u64 ack,is_acked_func is_acked)405 static inline int rds_send_is_acked(struct rds_message *rm, u64 ack,
406 is_acked_func is_acked)
407 {
408 if (is_acked)
409 return is_acked(rm, ack);
410 return be64_to_cpu(rm->m_inc.i_hdr.h_sequence) <= ack;
411 }
412
413 /*
414 * This is pretty similar to what happens below in the ACK
415 * handling code - except that we call here as soon as we get
416 * the IB send completion on the RDMA op and the accompanying
417 * message.
418 */
rds_rdma_send_complete(struct rds_message * rm,int status)419 void rds_rdma_send_complete(struct rds_message *rm, int status)
420 {
421 struct rds_sock *rs = NULL;
422 struct rm_rdma_op *ro;
423 struct rds_notifier *notifier;
424 unsigned long flags;
425
426 spin_lock_irqsave(&rm->m_rs_lock, flags);
427
428 ro = &rm->rdma;
429 if (test_bit(RDS_MSG_ON_SOCK, &rm->m_flags) &&
430 ro->op_active && ro->op_notify && ro->op_notifier) {
431 notifier = ro->op_notifier;
432 rs = rm->m_rs;
433 sock_hold(rds_rs_to_sk(rs));
434
435 notifier->n_status = status;
436 spin_lock(&rs->rs_lock);
437 list_add_tail(¬ifier->n_list, &rs->rs_notify_queue);
438 spin_unlock(&rs->rs_lock);
439
440 ro->op_notifier = NULL;
441 }
442
443 spin_unlock_irqrestore(&rm->m_rs_lock, flags);
444
445 if (rs) {
446 rds_wake_sk_sleep(rs);
447 sock_put(rds_rs_to_sk(rs));
448 }
449 }
450 EXPORT_SYMBOL_GPL(rds_rdma_send_complete);
451
452 /*
453 * Just like above, except looks at atomic op
454 */
rds_atomic_send_complete(struct rds_message * rm,int status)455 void rds_atomic_send_complete(struct rds_message *rm, int status)
456 {
457 struct rds_sock *rs = NULL;
458 struct rm_atomic_op *ao;
459 struct rds_notifier *notifier;
460 unsigned long flags;
461
462 spin_lock_irqsave(&rm->m_rs_lock, flags);
463
464 ao = &rm->atomic;
465 if (test_bit(RDS_MSG_ON_SOCK, &rm->m_flags)
466 && ao->op_active && ao->op_notify && ao->op_notifier) {
467 notifier = ao->op_notifier;
468 rs = rm->m_rs;
469 sock_hold(rds_rs_to_sk(rs));
470
471 notifier->n_status = status;
472 spin_lock(&rs->rs_lock);
473 list_add_tail(¬ifier->n_list, &rs->rs_notify_queue);
474 spin_unlock(&rs->rs_lock);
475
476 ao->op_notifier = NULL;
477 }
478
479 spin_unlock_irqrestore(&rm->m_rs_lock, flags);
480
481 if (rs) {
482 rds_wake_sk_sleep(rs);
483 sock_put(rds_rs_to_sk(rs));
484 }
485 }
486 EXPORT_SYMBOL_GPL(rds_atomic_send_complete);
487
488 /*
489 * This is the same as rds_rdma_send_complete except we
490 * don't do any locking - we have all the ingredients (message,
491 * socket, socket lock) and can just move the notifier.
492 */
493 static inline void
__rds_send_complete(struct rds_sock * rs,struct rds_message * rm,int status)494 __rds_send_complete(struct rds_sock *rs, struct rds_message *rm, int status)
495 {
496 struct rm_rdma_op *ro;
497 struct rm_atomic_op *ao;
498
499 ro = &rm->rdma;
500 if (ro->op_active && ro->op_notify && ro->op_notifier) {
501 ro->op_notifier->n_status = status;
502 list_add_tail(&ro->op_notifier->n_list, &rs->rs_notify_queue);
503 ro->op_notifier = NULL;
504 }
505
506 ao = &rm->atomic;
507 if (ao->op_active && ao->op_notify && ao->op_notifier) {
508 ao->op_notifier->n_status = status;
509 list_add_tail(&ao->op_notifier->n_list, &rs->rs_notify_queue);
510 ao->op_notifier = NULL;
511 }
512
513 /* No need to wake the app - caller does this */
514 }
515
516 /*
517 * This is called from the IB send completion when we detect
518 * a RDMA operation that failed with remote access error.
519 * So speed is not an issue here.
520 */
rds_send_get_message(struct rds_connection * conn,struct rm_rdma_op * op)521 struct rds_message *rds_send_get_message(struct rds_connection *conn,
522 struct rm_rdma_op *op)
523 {
524 struct rds_message *rm, *tmp, *found = NULL;
525 unsigned long flags;
526
527 spin_lock_irqsave(&conn->c_lock, flags);
528
529 list_for_each_entry_safe(rm, tmp, &conn->c_retrans, m_conn_item) {
530 if (&rm->rdma == op) {
531 atomic_inc(&rm->m_refcount);
532 found = rm;
533 goto out;
534 }
535 }
536
537 list_for_each_entry_safe(rm, tmp, &conn->c_send_queue, m_conn_item) {
538 if (&rm->rdma == op) {
539 atomic_inc(&rm->m_refcount);
540 found = rm;
541 break;
542 }
543 }
544
545 out:
546 spin_unlock_irqrestore(&conn->c_lock, flags);
547
548 return found;
549 }
550 EXPORT_SYMBOL_GPL(rds_send_get_message);
551
552 /*
553 * This removes messages from the socket's list if they're on it. The list
554 * argument must be private to the caller, we must be able to modify it
555 * without locks. The messages must have a reference held for their
556 * position on the list. This function will drop that reference after
557 * removing the messages from the 'messages' list regardless of if it found
558 * the messages on the socket list or not.
559 */
rds_send_remove_from_sock(struct list_head * messages,int status)560 static void rds_send_remove_from_sock(struct list_head *messages, int status)
561 {
562 unsigned long flags;
563 struct rds_sock *rs = NULL;
564 struct rds_message *rm;
565
566 while (!list_empty(messages)) {
567 int was_on_sock = 0;
568
569 rm = list_entry(messages->next, struct rds_message,
570 m_conn_item);
571 list_del_init(&rm->m_conn_item);
572
573 /*
574 * If we see this flag cleared then we're *sure* that someone
575 * else beat us to removing it from the sock. If we race
576 * with their flag update we'll get the lock and then really
577 * see that the flag has been cleared.
578 *
579 * The message spinlock makes sure nobody clears rm->m_rs
580 * while we're messing with it. It does not prevent the
581 * message from being removed from the socket, though.
582 */
583 spin_lock_irqsave(&rm->m_rs_lock, flags);
584 if (!test_bit(RDS_MSG_ON_SOCK, &rm->m_flags))
585 goto unlock_and_drop;
586
587 if (rs != rm->m_rs) {
588 if (rs) {
589 rds_wake_sk_sleep(rs);
590 sock_put(rds_rs_to_sk(rs));
591 }
592 rs = rm->m_rs;
593 sock_hold(rds_rs_to_sk(rs));
594 }
595 spin_lock(&rs->rs_lock);
596
597 if (test_and_clear_bit(RDS_MSG_ON_SOCK, &rm->m_flags)) {
598 struct rm_rdma_op *ro = &rm->rdma;
599 struct rds_notifier *notifier;
600
601 list_del_init(&rm->m_sock_item);
602 rds_send_sndbuf_remove(rs, rm);
603
604 if (ro->op_active && ro->op_notifier &&
605 (ro->op_notify || (ro->op_recverr && status))) {
606 notifier = ro->op_notifier;
607 list_add_tail(¬ifier->n_list,
608 &rs->rs_notify_queue);
609 if (!notifier->n_status)
610 notifier->n_status = status;
611 rm->rdma.op_notifier = NULL;
612 }
613 was_on_sock = 1;
614 rm->m_rs = NULL;
615 }
616 spin_unlock(&rs->rs_lock);
617
618 unlock_and_drop:
619 spin_unlock_irqrestore(&rm->m_rs_lock, flags);
620 rds_message_put(rm);
621 if (was_on_sock)
622 rds_message_put(rm);
623 }
624
625 if (rs) {
626 rds_wake_sk_sleep(rs);
627 sock_put(rds_rs_to_sk(rs));
628 }
629 }
630
631 /*
632 * Transports call here when they've determined that the receiver queued
633 * messages up to, and including, the given sequence number. Messages are
634 * moved to the retrans queue when rds_send_xmit picks them off the send
635 * queue. This means that in the TCP case, the message may not have been
636 * assigned the m_ack_seq yet - but that's fine as long as tcp_is_acked
637 * checks the RDS_MSG_HAS_ACK_SEQ bit.
638 *
639 * XXX It's not clear to me how this is safely serialized with socket
640 * destruction. Maybe it should bail if it sees SOCK_DEAD.
641 */
rds_send_drop_acked(struct rds_connection * conn,u64 ack,is_acked_func is_acked)642 void rds_send_drop_acked(struct rds_connection *conn, u64 ack,
643 is_acked_func is_acked)
644 {
645 struct rds_message *rm, *tmp;
646 unsigned long flags;
647 LIST_HEAD(list);
648
649 spin_lock_irqsave(&conn->c_lock, flags);
650
651 list_for_each_entry_safe(rm, tmp, &conn->c_retrans, m_conn_item) {
652 if (!rds_send_is_acked(rm, ack, is_acked))
653 break;
654
655 list_move(&rm->m_conn_item, &list);
656 clear_bit(RDS_MSG_ON_CONN, &rm->m_flags);
657 }
658
659 /* order flag updates with spin locks */
660 if (!list_empty(&list))
661 smp_mb__after_clear_bit();
662
663 spin_unlock_irqrestore(&conn->c_lock, flags);
664
665 /* now remove the messages from the sock list as needed */
666 rds_send_remove_from_sock(&list, RDS_RDMA_SUCCESS);
667 }
668 EXPORT_SYMBOL_GPL(rds_send_drop_acked);
669
rds_send_drop_to(struct rds_sock * rs,struct sockaddr_in * dest)670 void rds_send_drop_to(struct rds_sock *rs, struct sockaddr_in *dest)
671 {
672 struct rds_message *rm, *tmp;
673 struct rds_connection *conn;
674 unsigned long flags;
675 LIST_HEAD(list);
676
677 /* get all the messages we're dropping under the rs lock */
678 spin_lock_irqsave(&rs->rs_lock, flags);
679
680 list_for_each_entry_safe(rm, tmp, &rs->rs_send_queue, m_sock_item) {
681 if (dest && (dest->sin_addr.s_addr != rm->m_daddr ||
682 dest->sin_port != rm->m_inc.i_hdr.h_dport))
683 continue;
684
685 list_move(&rm->m_sock_item, &list);
686 rds_send_sndbuf_remove(rs, rm);
687 clear_bit(RDS_MSG_ON_SOCK, &rm->m_flags);
688 }
689
690 /* order flag updates with the rs lock */
691 smp_mb__after_clear_bit();
692
693 spin_unlock_irqrestore(&rs->rs_lock, flags);
694
695 if (list_empty(&list))
696 return;
697
698 /* Remove the messages from the conn */
699 list_for_each_entry(rm, &list, m_sock_item) {
700
701 conn = rm->m_inc.i_conn;
702
703 spin_lock_irqsave(&conn->c_lock, flags);
704 /*
705 * Maybe someone else beat us to removing rm from the conn.
706 * If we race with their flag update we'll get the lock and
707 * then really see that the flag has been cleared.
708 */
709 if (!test_and_clear_bit(RDS_MSG_ON_CONN, &rm->m_flags)) {
710 spin_unlock_irqrestore(&conn->c_lock, flags);
711 continue;
712 }
713 list_del_init(&rm->m_conn_item);
714 spin_unlock_irqrestore(&conn->c_lock, flags);
715
716 /*
717 * Couldn't grab m_rs_lock in top loop (lock ordering),
718 * but we can now.
719 */
720 spin_lock_irqsave(&rm->m_rs_lock, flags);
721
722 spin_lock(&rs->rs_lock);
723 __rds_send_complete(rs, rm, RDS_RDMA_CANCELED);
724 spin_unlock(&rs->rs_lock);
725
726 rm->m_rs = NULL;
727 spin_unlock_irqrestore(&rm->m_rs_lock, flags);
728
729 rds_message_put(rm);
730 }
731
732 rds_wake_sk_sleep(rs);
733
734 while (!list_empty(&list)) {
735 rm = list_entry(list.next, struct rds_message, m_sock_item);
736 list_del_init(&rm->m_sock_item);
737
738 rds_message_wait(rm);
739 rds_message_put(rm);
740 }
741 }
742
743 /*
744 * we only want this to fire once so we use the callers 'queued'. It's
745 * possible that another thread can race with us and remove the
746 * message from the flow with RDS_CANCEL_SENT_TO.
747 */
rds_send_queue_rm(struct rds_sock * rs,struct rds_connection * conn,struct rds_message * rm,__be16 sport,__be16 dport,int * queued)748 static int rds_send_queue_rm(struct rds_sock *rs, struct rds_connection *conn,
749 struct rds_message *rm, __be16 sport,
750 __be16 dport, int *queued)
751 {
752 unsigned long flags;
753 u32 len;
754
755 if (*queued)
756 goto out;
757
758 len = be32_to_cpu(rm->m_inc.i_hdr.h_len);
759
760 /* this is the only place which holds both the socket's rs_lock
761 * and the connection's c_lock */
762 spin_lock_irqsave(&rs->rs_lock, flags);
763
764 /*
765 * If there is a little space in sndbuf, we don't queue anything,
766 * and userspace gets -EAGAIN. But poll() indicates there's send
767 * room. This can lead to bad behavior (spinning) if snd_bytes isn't
768 * freed up by incoming acks. So we check the *old* value of
769 * rs_snd_bytes here to allow the last msg to exceed the buffer,
770 * and poll() now knows no more data can be sent.
771 */
772 if (rs->rs_snd_bytes < rds_sk_sndbuf(rs)) {
773 rs->rs_snd_bytes += len;
774
775 /* let recv side know we are close to send space exhaustion.
776 * This is probably not the optimal way to do it, as this
777 * means we set the flag on *all* messages as soon as our
778 * throughput hits a certain threshold.
779 */
780 if (rs->rs_snd_bytes >= rds_sk_sndbuf(rs) / 2)
781 __set_bit(RDS_MSG_ACK_REQUIRED, &rm->m_flags);
782
783 list_add_tail(&rm->m_sock_item, &rs->rs_send_queue);
784 set_bit(RDS_MSG_ON_SOCK, &rm->m_flags);
785 rds_message_addref(rm);
786 rm->m_rs = rs;
787
788 /* The code ordering is a little weird, but we're
789 trying to minimize the time we hold c_lock */
790 rds_message_populate_header(&rm->m_inc.i_hdr, sport, dport, 0);
791 rm->m_inc.i_conn = conn;
792 rds_message_addref(rm);
793
794 spin_lock(&conn->c_lock);
795 rm->m_inc.i_hdr.h_sequence = cpu_to_be64(conn->c_next_tx_seq++);
796 list_add_tail(&rm->m_conn_item, &conn->c_send_queue);
797 set_bit(RDS_MSG_ON_CONN, &rm->m_flags);
798 spin_unlock(&conn->c_lock);
799
800 rdsdebug("queued msg %p len %d, rs %p bytes %d seq %llu\n",
801 rm, len, rs, rs->rs_snd_bytes,
802 (unsigned long long)be64_to_cpu(rm->m_inc.i_hdr.h_sequence));
803
804 *queued = 1;
805 }
806
807 spin_unlock_irqrestore(&rs->rs_lock, flags);
808 out:
809 return *queued;
810 }
811
812 /*
813 * rds_message is getting to be quite complicated, and we'd like to allocate
814 * it all in one go. This figures out how big it needs to be up front.
815 */
rds_rm_size(struct msghdr * msg,int data_len)816 static int rds_rm_size(struct msghdr *msg, int data_len)
817 {
818 struct cmsghdr *cmsg;
819 int size = 0;
820 int cmsg_groups = 0;
821 int retval;
822
823 for (cmsg = CMSG_FIRSTHDR(msg); cmsg; cmsg = CMSG_NXTHDR(msg, cmsg)) {
824 if (!CMSG_OK(msg, cmsg))
825 return -EINVAL;
826
827 if (cmsg->cmsg_level != SOL_RDS)
828 continue;
829
830 switch (cmsg->cmsg_type) {
831 case RDS_CMSG_RDMA_ARGS:
832 cmsg_groups |= 1;
833 retval = rds_rdma_extra_size(CMSG_DATA(cmsg));
834 if (retval < 0)
835 return retval;
836 size += retval;
837
838 break;
839
840 case RDS_CMSG_RDMA_DEST:
841 case RDS_CMSG_RDMA_MAP:
842 cmsg_groups |= 2;
843 /* these are valid but do no add any size */
844 break;
845
846 case RDS_CMSG_ATOMIC_CSWP:
847 case RDS_CMSG_ATOMIC_FADD:
848 case RDS_CMSG_MASKED_ATOMIC_CSWP:
849 case RDS_CMSG_MASKED_ATOMIC_FADD:
850 cmsg_groups |= 1;
851 size += sizeof(struct scatterlist);
852 break;
853
854 default:
855 return -EINVAL;
856 }
857
858 }
859
860 size += ceil(data_len, PAGE_SIZE) * sizeof(struct scatterlist);
861
862 /* Ensure (DEST, MAP) are never used with (ARGS, ATOMIC) */
863 if (cmsg_groups == 3)
864 return -EINVAL;
865
866 return size;
867 }
868
rds_cmsg_send(struct rds_sock * rs,struct rds_message * rm,struct msghdr * msg,int * allocated_mr)869 static int rds_cmsg_send(struct rds_sock *rs, struct rds_message *rm,
870 struct msghdr *msg, int *allocated_mr)
871 {
872 struct cmsghdr *cmsg;
873 int ret = 0;
874
875 for (cmsg = CMSG_FIRSTHDR(msg); cmsg; cmsg = CMSG_NXTHDR(msg, cmsg)) {
876 if (!CMSG_OK(msg, cmsg))
877 return -EINVAL;
878
879 if (cmsg->cmsg_level != SOL_RDS)
880 continue;
881
882 /* As a side effect, RDMA_DEST and RDMA_MAP will set
883 * rm->rdma.m_rdma_cookie and rm->rdma.m_rdma_mr.
884 */
885 switch (cmsg->cmsg_type) {
886 case RDS_CMSG_RDMA_ARGS:
887 ret = rds_cmsg_rdma_args(rs, rm, cmsg);
888 break;
889
890 case RDS_CMSG_RDMA_DEST:
891 ret = rds_cmsg_rdma_dest(rs, rm, cmsg);
892 break;
893
894 case RDS_CMSG_RDMA_MAP:
895 ret = rds_cmsg_rdma_map(rs, rm, cmsg);
896 if (!ret)
897 *allocated_mr = 1;
898 break;
899 case RDS_CMSG_ATOMIC_CSWP:
900 case RDS_CMSG_ATOMIC_FADD:
901 case RDS_CMSG_MASKED_ATOMIC_CSWP:
902 case RDS_CMSG_MASKED_ATOMIC_FADD:
903 ret = rds_cmsg_atomic(rs, rm, cmsg);
904 break;
905
906 default:
907 return -EINVAL;
908 }
909
910 if (ret)
911 break;
912 }
913
914 return ret;
915 }
916
rds_sendmsg(struct kiocb * iocb,struct socket * sock,struct msghdr * msg,size_t payload_len)917 int rds_sendmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *msg,
918 size_t payload_len)
919 {
920 struct sock *sk = sock->sk;
921 struct rds_sock *rs = rds_sk_to_rs(sk);
922 struct sockaddr_in *usin = (struct sockaddr_in *)msg->msg_name;
923 __be32 daddr;
924 __be16 dport;
925 struct rds_message *rm = NULL;
926 struct rds_connection *conn;
927 int ret = 0;
928 int queued = 0, allocated_mr = 0;
929 int nonblock = msg->msg_flags & MSG_DONTWAIT;
930 long timeo = sock_sndtimeo(sk, nonblock);
931
932 /* Mirror Linux UDP mirror of BSD error message compatibility */
933 /* XXX: Perhaps MSG_MORE someday */
934 if (msg->msg_flags & ~(MSG_DONTWAIT | MSG_CMSG_COMPAT)) {
935 printk(KERN_INFO "msg_flags 0x%08X\n", msg->msg_flags);
936 ret = -EOPNOTSUPP;
937 goto out;
938 }
939
940 if (msg->msg_namelen) {
941 /* XXX fail non-unicast destination IPs? */
942 if (msg->msg_namelen < sizeof(*usin) || usin->sin_family != AF_INET) {
943 ret = -EINVAL;
944 goto out;
945 }
946 daddr = usin->sin_addr.s_addr;
947 dport = usin->sin_port;
948 } else {
949 /* We only care about consistency with ->connect() */
950 lock_sock(sk);
951 daddr = rs->rs_conn_addr;
952 dport = rs->rs_conn_port;
953 release_sock(sk);
954 }
955
956 /* racing with another thread binding seems ok here */
957 if (daddr == 0 || rs->rs_bound_addr == 0) {
958 ret = -ENOTCONN; /* XXX not a great errno */
959 goto out;
960 }
961
962 /* size of rm including all sgs */
963 ret = rds_rm_size(msg, payload_len);
964 if (ret < 0)
965 goto out;
966
967 rm = rds_message_alloc(ret, GFP_KERNEL);
968 if (!rm) {
969 ret = -ENOMEM;
970 goto out;
971 }
972
973 /* Attach data to the rm */
974 if (payload_len) {
975 rm->data.op_sg = rds_message_alloc_sgs(rm, ceil(payload_len, PAGE_SIZE));
976 if (!rm->data.op_sg) {
977 ret = -ENOMEM;
978 goto out;
979 }
980 ret = rds_message_copy_from_user(rm, msg->msg_iov, payload_len);
981 if (ret)
982 goto out;
983 }
984 rm->data.op_active = 1;
985
986 rm->m_daddr = daddr;
987
988 /* rds_conn_create has a spinlock that runs with IRQ off.
989 * Caching the conn in the socket helps a lot. */
990 if (rs->rs_conn && rs->rs_conn->c_faddr == daddr)
991 conn = rs->rs_conn;
992 else {
993 conn = rds_conn_create_outgoing(rs->rs_bound_addr, daddr,
994 rs->rs_transport,
995 sock->sk->sk_allocation);
996 if (IS_ERR(conn)) {
997 ret = PTR_ERR(conn);
998 goto out;
999 }
1000 rs->rs_conn = conn;
1001 }
1002
1003 /* Parse any control messages the user may have included. */
1004 ret = rds_cmsg_send(rs, rm, msg, &allocated_mr);
1005 if (ret)
1006 goto out;
1007
1008 if (rm->rdma.op_active && !conn->c_trans->xmit_rdma) {
1009 if (printk_ratelimit())
1010 printk(KERN_NOTICE "rdma_op %p conn xmit_rdma %p\n",
1011 &rm->rdma, conn->c_trans->xmit_rdma);
1012 ret = -EOPNOTSUPP;
1013 goto out;
1014 }
1015
1016 if (rm->atomic.op_active && !conn->c_trans->xmit_atomic) {
1017 if (printk_ratelimit())
1018 printk(KERN_NOTICE "atomic_op %p conn xmit_atomic %p\n",
1019 &rm->atomic, conn->c_trans->xmit_atomic);
1020 ret = -EOPNOTSUPP;
1021 goto out;
1022 }
1023
1024 rds_conn_connect_if_down(conn);
1025
1026 ret = rds_cong_wait(conn->c_fcong, dport, nonblock, rs);
1027 if (ret) {
1028 rs->rs_seen_congestion = 1;
1029 goto out;
1030 }
1031
1032 while (!rds_send_queue_rm(rs, conn, rm, rs->rs_bound_port,
1033 dport, &queued)) {
1034 rds_stats_inc(s_send_queue_full);
1035 /* XXX make sure this is reasonable */
1036 if (payload_len > rds_sk_sndbuf(rs)) {
1037 ret = -EMSGSIZE;
1038 goto out;
1039 }
1040 if (nonblock) {
1041 ret = -EAGAIN;
1042 goto out;
1043 }
1044
1045 timeo = wait_event_interruptible_timeout(*sk_sleep(sk),
1046 rds_send_queue_rm(rs, conn, rm,
1047 rs->rs_bound_port,
1048 dport,
1049 &queued),
1050 timeo);
1051 rdsdebug("sendmsg woke queued %d timeo %ld\n", queued, timeo);
1052 if (timeo > 0 || timeo == MAX_SCHEDULE_TIMEOUT)
1053 continue;
1054
1055 ret = timeo;
1056 if (ret == 0)
1057 ret = -ETIMEDOUT;
1058 goto out;
1059 }
1060
1061 /*
1062 * By now we've committed to the send. We reuse rds_send_worker()
1063 * to retry sends in the rds thread if the transport asks us to.
1064 */
1065 rds_stats_inc(s_send_queued);
1066
1067 if (!test_bit(RDS_LL_SEND_FULL, &conn->c_flags))
1068 rds_send_xmit(conn);
1069
1070 rds_message_put(rm);
1071 return payload_len;
1072
1073 out:
1074 /* If the user included a RDMA_MAP cmsg, we allocated a MR on the fly.
1075 * If the sendmsg goes through, we keep the MR. If it fails with EAGAIN
1076 * or in any other way, we need to destroy the MR again */
1077 if (allocated_mr)
1078 rds_rdma_unuse(rs, rds_rdma_cookie_key(rm->m_rdma_cookie), 1);
1079
1080 if (rm)
1081 rds_message_put(rm);
1082 return ret;
1083 }
1084
1085 /*
1086 * Reply to a ping packet.
1087 */
1088 int
rds_send_pong(struct rds_connection * conn,__be16 dport)1089 rds_send_pong(struct rds_connection *conn, __be16 dport)
1090 {
1091 struct rds_message *rm;
1092 unsigned long flags;
1093 int ret = 0;
1094
1095 rm = rds_message_alloc(0, GFP_ATOMIC);
1096 if (!rm) {
1097 ret = -ENOMEM;
1098 goto out;
1099 }
1100
1101 rm->m_daddr = conn->c_faddr;
1102 rm->data.op_active = 1;
1103
1104 rds_conn_connect_if_down(conn);
1105
1106 ret = rds_cong_wait(conn->c_fcong, dport, 1, NULL);
1107 if (ret)
1108 goto out;
1109
1110 spin_lock_irqsave(&conn->c_lock, flags);
1111 list_add_tail(&rm->m_conn_item, &conn->c_send_queue);
1112 set_bit(RDS_MSG_ON_CONN, &rm->m_flags);
1113 rds_message_addref(rm);
1114 rm->m_inc.i_conn = conn;
1115
1116 rds_message_populate_header(&rm->m_inc.i_hdr, 0, dport,
1117 conn->c_next_tx_seq);
1118 conn->c_next_tx_seq++;
1119 spin_unlock_irqrestore(&conn->c_lock, flags);
1120
1121 rds_stats_inc(s_send_queued);
1122 rds_stats_inc(s_send_pong);
1123
1124 if (!test_bit(RDS_LL_SEND_FULL, &conn->c_flags))
1125 rds_send_xmit(conn);
1126
1127 rds_message_put(rm);
1128 return 0;
1129
1130 out:
1131 if (rm)
1132 rds_message_put(rm);
1133 return ret;
1134 }
1135