1 /*
2  * Copyright (c) 2006 Oracle.  All rights reserved.
3  *
4  * This software is available to you under a choice of one of two
5  * licenses.  You may choose to be licensed under the terms of the GNU
6  * General Public License (GPL) Version 2, available from the file
7  * COPYING in the main directory of this source tree, or the
8  * OpenIB.org BSD license below:
9  *
10  *     Redistribution and use in source and binary forms, with or
11  *     without modification, are permitted provided that the following
12  *     conditions are met:
13  *
14  *      - Redistributions of source code must retain the above
15  *        copyright notice, this list of conditions and the following
16  *        disclaimer.
17  *
18  *      - Redistributions in binary form must reproduce the above
19  *        copyright notice, this list of conditions and the following
20  *        disclaimer in the documentation and/or other materials
21  *        provided with the distribution.
22  *
23  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30  * SOFTWARE.
31  *
32  */
33 #include <linux/kernel.h>
34 #include <linux/gfp.h>
35 #include <net/sock.h>
36 #include <linux/in.h>
37 #include <linux/list.h>
38 
39 #include "rds.h"
40 
41 /* When transmitting messages in rds_send_xmit, we need to emerge from
42  * time to time and briefly release the CPU. Otherwise the softlock watchdog
43  * will kick our shin.
44  * Also, it seems fairer to not let one busy connection stall all the
45  * others.
46  *
47  * send_batch_count is the number of times we'll loop in send_xmit. Setting
48  * it to 0 will restore the old behavior (where we looped until we had
49  * drained the queue).
50  */
51 static int send_batch_count = 64;
52 module_param(send_batch_count, int, 0444);
53 MODULE_PARM_DESC(send_batch_count, " batch factor when working the send queue");
54 
55 static void rds_send_remove_from_sock(struct list_head *messages, int status);
56 
57 /*
58  * Reset the send state.  Callers must ensure that this doesn't race with
59  * rds_send_xmit().
60  */
rds_send_reset(struct rds_connection * conn)61 void rds_send_reset(struct rds_connection *conn)
62 {
63 	struct rds_message *rm, *tmp;
64 	unsigned long flags;
65 
66 	if (conn->c_xmit_rm) {
67 		rm = conn->c_xmit_rm;
68 		conn->c_xmit_rm = NULL;
69 		/* Tell the user the RDMA op is no longer mapped by the
70 		 * transport. This isn't entirely true (it's flushed out
71 		 * independently) but as the connection is down, there's
72 		 * no ongoing RDMA to/from that memory */
73 		rds_message_unmapped(rm);
74 		rds_message_put(rm);
75 	}
76 
77 	conn->c_xmit_sg = 0;
78 	conn->c_xmit_hdr_off = 0;
79 	conn->c_xmit_data_off = 0;
80 	conn->c_xmit_atomic_sent = 0;
81 	conn->c_xmit_rdma_sent = 0;
82 	conn->c_xmit_data_sent = 0;
83 
84 	conn->c_map_queued = 0;
85 
86 	conn->c_unacked_packets = rds_sysctl_max_unacked_packets;
87 	conn->c_unacked_bytes = rds_sysctl_max_unacked_bytes;
88 
89 	/* Mark messages as retransmissions, and move them to the send q */
90 	spin_lock_irqsave(&conn->c_lock, flags);
91 	list_for_each_entry_safe(rm, tmp, &conn->c_retrans, m_conn_item) {
92 		set_bit(RDS_MSG_ACK_REQUIRED, &rm->m_flags);
93 		set_bit(RDS_MSG_RETRANSMITTED, &rm->m_flags);
94 	}
95 	list_splice_init(&conn->c_retrans, &conn->c_send_queue);
96 	spin_unlock_irqrestore(&conn->c_lock, flags);
97 }
98 
acquire_in_xmit(struct rds_connection * conn)99 static int acquire_in_xmit(struct rds_connection *conn)
100 {
101 	return test_and_set_bit(RDS_IN_XMIT, &conn->c_flags) == 0;
102 }
103 
release_in_xmit(struct rds_connection * conn)104 static void release_in_xmit(struct rds_connection *conn)
105 {
106 	clear_bit(RDS_IN_XMIT, &conn->c_flags);
107 	smp_mb__after_clear_bit();
108 	/*
109 	 * We don't use wait_on_bit()/wake_up_bit() because our waking is in a
110 	 * hot path and finding waiters is very rare.  We don't want to walk
111 	 * the system-wide hashed waitqueue buckets in the fast path only to
112 	 * almost never find waiters.
113 	 */
114 	if (waitqueue_active(&conn->c_waitq))
115 		wake_up_all(&conn->c_waitq);
116 }
117 
118 /*
119  * We're making the conscious trade-off here to only send one message
120  * down the connection at a time.
121  *   Pro:
122  *      - tx queueing is a simple fifo list
123  *   	- reassembly is optional and easily done by transports per conn
124  *      - no per flow rx lookup at all, straight to the socket
125  *   	- less per-frag memory and wire overhead
126  *   Con:
127  *      - queued acks can be delayed behind large messages
128  *   Depends:
129  *      - small message latency is higher behind queued large messages
130  *      - large message latency isn't starved by intervening small sends
131  */
rds_send_xmit(struct rds_connection * conn)132 int rds_send_xmit(struct rds_connection *conn)
133 {
134 	struct rds_message *rm;
135 	unsigned long flags;
136 	unsigned int tmp;
137 	struct scatterlist *sg;
138 	int ret = 0;
139 	LIST_HEAD(to_be_dropped);
140 
141 restart:
142 
143 	/*
144 	 * sendmsg calls here after having queued its message on the send
145 	 * queue.  We only have one task feeding the connection at a time.  If
146 	 * another thread is already feeding the queue then we back off.  This
147 	 * avoids blocking the caller and trading per-connection data between
148 	 * caches per message.
149 	 */
150 	if (!acquire_in_xmit(conn)) {
151 		rds_stats_inc(s_send_lock_contention);
152 		ret = -ENOMEM;
153 		goto out;
154 	}
155 
156 	/*
157 	 * rds_conn_shutdown() sets the conn state and then tests RDS_IN_XMIT,
158 	 * we do the opposite to avoid races.
159 	 */
160 	if (!rds_conn_up(conn)) {
161 		release_in_xmit(conn);
162 		ret = 0;
163 		goto out;
164 	}
165 
166 	if (conn->c_trans->xmit_prepare)
167 		conn->c_trans->xmit_prepare(conn);
168 
169 	/*
170 	 * spin trying to push headers and data down the connection until
171 	 * the connection doesn't make forward progress.
172 	 */
173 	while (1) {
174 
175 		rm = conn->c_xmit_rm;
176 
177 		/*
178 		 * If between sending messages, we can send a pending congestion
179 		 * map update.
180 		 */
181 		if (!rm && test_and_clear_bit(0, &conn->c_map_queued)) {
182 			rm = rds_cong_update_alloc(conn);
183 			if (IS_ERR(rm)) {
184 				ret = PTR_ERR(rm);
185 				break;
186 			}
187 			rm->data.op_active = 1;
188 
189 			conn->c_xmit_rm = rm;
190 		}
191 
192 		/*
193 		 * If not already working on one, grab the next message.
194 		 *
195 		 * c_xmit_rm holds a ref while we're sending this message down
196 		 * the connction.  We can use this ref while holding the
197 		 * send_sem.. rds_send_reset() is serialized with it.
198 		 */
199 		if (!rm) {
200 			unsigned int len;
201 
202 			spin_lock_irqsave(&conn->c_lock, flags);
203 
204 			if (!list_empty(&conn->c_send_queue)) {
205 				rm = list_entry(conn->c_send_queue.next,
206 						struct rds_message,
207 						m_conn_item);
208 				rds_message_addref(rm);
209 
210 				/*
211 				 * Move the message from the send queue to the retransmit
212 				 * list right away.
213 				 */
214 				list_move_tail(&rm->m_conn_item, &conn->c_retrans);
215 			}
216 
217 			spin_unlock_irqrestore(&conn->c_lock, flags);
218 
219 			if (!rm)
220 				break;
221 
222 			/* Unfortunately, the way Infiniband deals with
223 			 * RDMA to a bad MR key is by moving the entire
224 			 * queue pair to error state. We cold possibly
225 			 * recover from that, but right now we drop the
226 			 * connection.
227 			 * Therefore, we never retransmit messages with RDMA ops.
228 			 */
229 			if (rm->rdma.op_active &&
230 			    test_bit(RDS_MSG_RETRANSMITTED, &rm->m_flags)) {
231 				spin_lock_irqsave(&conn->c_lock, flags);
232 				if (test_and_clear_bit(RDS_MSG_ON_CONN, &rm->m_flags))
233 					list_move(&rm->m_conn_item, &to_be_dropped);
234 				spin_unlock_irqrestore(&conn->c_lock, flags);
235 				continue;
236 			}
237 
238 			/* Require an ACK every once in a while */
239 			len = ntohl(rm->m_inc.i_hdr.h_len);
240 			if (conn->c_unacked_packets == 0 ||
241 			    conn->c_unacked_bytes < len) {
242 				__set_bit(RDS_MSG_ACK_REQUIRED, &rm->m_flags);
243 
244 				conn->c_unacked_packets = rds_sysctl_max_unacked_packets;
245 				conn->c_unacked_bytes = rds_sysctl_max_unacked_bytes;
246 				rds_stats_inc(s_send_ack_required);
247 			} else {
248 				conn->c_unacked_bytes -= len;
249 				conn->c_unacked_packets--;
250 			}
251 
252 			conn->c_xmit_rm = rm;
253 		}
254 
255 		/* The transport either sends the whole rdma or none of it */
256 		if (rm->rdma.op_active && !conn->c_xmit_rdma_sent) {
257 			rm->m_final_op = &rm->rdma;
258 			ret = conn->c_trans->xmit_rdma(conn, &rm->rdma);
259 			if (ret)
260 				break;
261 			conn->c_xmit_rdma_sent = 1;
262 
263 			/* The transport owns the mapped memory for now.
264 			 * You can't unmap it while it's on the send queue */
265 			set_bit(RDS_MSG_MAPPED, &rm->m_flags);
266 		}
267 
268 		if (rm->atomic.op_active && !conn->c_xmit_atomic_sent) {
269 			rm->m_final_op = &rm->atomic;
270 			ret = conn->c_trans->xmit_atomic(conn, &rm->atomic);
271 			if (ret)
272 				break;
273 			conn->c_xmit_atomic_sent = 1;
274 
275 			/* The transport owns the mapped memory for now.
276 			 * You can't unmap it while it's on the send queue */
277 			set_bit(RDS_MSG_MAPPED, &rm->m_flags);
278 		}
279 
280 		/*
281 		 * A number of cases require an RDS header to be sent
282 		 * even if there is no data.
283 		 * We permit 0-byte sends; rds-ping depends on this.
284 		 * However, if there are exclusively attached silent ops,
285 		 * we skip the hdr/data send, to enable silent operation.
286 		 */
287 		if (rm->data.op_nents == 0) {
288 			int ops_present;
289 			int all_ops_are_silent = 1;
290 
291 			ops_present = (rm->atomic.op_active || rm->rdma.op_active);
292 			if (rm->atomic.op_active && !rm->atomic.op_silent)
293 				all_ops_are_silent = 0;
294 			if (rm->rdma.op_active && !rm->rdma.op_silent)
295 				all_ops_are_silent = 0;
296 
297 			if (ops_present && all_ops_are_silent
298 			    && !rm->m_rdma_cookie)
299 				rm->data.op_active = 0;
300 		}
301 
302 		if (rm->data.op_active && !conn->c_xmit_data_sent) {
303 			rm->m_final_op = &rm->data;
304 			ret = conn->c_trans->xmit(conn, rm,
305 						  conn->c_xmit_hdr_off,
306 						  conn->c_xmit_sg,
307 						  conn->c_xmit_data_off);
308 			if (ret <= 0)
309 				break;
310 
311 			if (conn->c_xmit_hdr_off < sizeof(struct rds_header)) {
312 				tmp = min_t(int, ret,
313 					    sizeof(struct rds_header) -
314 					    conn->c_xmit_hdr_off);
315 				conn->c_xmit_hdr_off += tmp;
316 				ret -= tmp;
317 			}
318 
319 			sg = &rm->data.op_sg[conn->c_xmit_sg];
320 			while (ret) {
321 				tmp = min_t(int, ret, sg->length -
322 						      conn->c_xmit_data_off);
323 				conn->c_xmit_data_off += tmp;
324 				ret -= tmp;
325 				if (conn->c_xmit_data_off == sg->length) {
326 					conn->c_xmit_data_off = 0;
327 					sg++;
328 					conn->c_xmit_sg++;
329 					BUG_ON(ret != 0 &&
330 					       conn->c_xmit_sg == rm->data.op_nents);
331 				}
332 			}
333 
334 			if (conn->c_xmit_hdr_off == sizeof(struct rds_header) &&
335 			    (conn->c_xmit_sg == rm->data.op_nents))
336 				conn->c_xmit_data_sent = 1;
337 		}
338 
339 		/*
340 		 * A rm will only take multiple times through this loop
341 		 * if there is a data op. Thus, if the data is sent (or there was
342 		 * none), then we're done with the rm.
343 		 */
344 		if (!rm->data.op_active || conn->c_xmit_data_sent) {
345 			conn->c_xmit_rm = NULL;
346 			conn->c_xmit_sg = 0;
347 			conn->c_xmit_hdr_off = 0;
348 			conn->c_xmit_data_off = 0;
349 			conn->c_xmit_rdma_sent = 0;
350 			conn->c_xmit_atomic_sent = 0;
351 			conn->c_xmit_data_sent = 0;
352 
353 			rds_message_put(rm);
354 		}
355 	}
356 
357 	if (conn->c_trans->xmit_complete)
358 		conn->c_trans->xmit_complete(conn);
359 
360 	release_in_xmit(conn);
361 
362 	/* Nuke any messages we decided not to retransmit. */
363 	if (!list_empty(&to_be_dropped)) {
364 		/* irqs on here, so we can put(), unlike above */
365 		list_for_each_entry(rm, &to_be_dropped, m_conn_item)
366 			rds_message_put(rm);
367 		rds_send_remove_from_sock(&to_be_dropped, RDS_RDMA_DROPPED);
368 	}
369 
370 	/*
371 	 * Other senders can queue a message after we last test the send queue
372 	 * but before we clear RDS_IN_XMIT.  In that case they'd back off and
373 	 * not try and send their newly queued message.  We need to check the
374 	 * send queue after having cleared RDS_IN_XMIT so that their message
375 	 * doesn't get stuck on the send queue.
376 	 *
377 	 * If the transport cannot continue (i.e ret != 0), then it must
378 	 * call us when more room is available, such as from the tx
379 	 * completion handler.
380 	 */
381 	if (ret == 0) {
382 		smp_mb();
383 		if (!list_empty(&conn->c_send_queue)) {
384 			rds_stats_inc(s_send_lock_queue_raced);
385 			goto restart;
386 		}
387 	}
388 out:
389 	return ret;
390 }
391 
rds_send_sndbuf_remove(struct rds_sock * rs,struct rds_message * rm)392 static void rds_send_sndbuf_remove(struct rds_sock *rs, struct rds_message *rm)
393 {
394 	u32 len = be32_to_cpu(rm->m_inc.i_hdr.h_len);
395 
396 	assert_spin_locked(&rs->rs_lock);
397 
398 	BUG_ON(rs->rs_snd_bytes < len);
399 	rs->rs_snd_bytes -= len;
400 
401 	if (rs->rs_snd_bytes == 0)
402 		rds_stats_inc(s_send_queue_empty);
403 }
404 
rds_send_is_acked(struct rds_message * rm,u64 ack,is_acked_func is_acked)405 static inline int rds_send_is_acked(struct rds_message *rm, u64 ack,
406 				    is_acked_func is_acked)
407 {
408 	if (is_acked)
409 		return is_acked(rm, ack);
410 	return be64_to_cpu(rm->m_inc.i_hdr.h_sequence) <= ack;
411 }
412 
413 /*
414  * This is pretty similar to what happens below in the ACK
415  * handling code - except that we call here as soon as we get
416  * the IB send completion on the RDMA op and the accompanying
417  * message.
418  */
rds_rdma_send_complete(struct rds_message * rm,int status)419 void rds_rdma_send_complete(struct rds_message *rm, int status)
420 {
421 	struct rds_sock *rs = NULL;
422 	struct rm_rdma_op *ro;
423 	struct rds_notifier *notifier;
424 	unsigned long flags;
425 
426 	spin_lock_irqsave(&rm->m_rs_lock, flags);
427 
428 	ro = &rm->rdma;
429 	if (test_bit(RDS_MSG_ON_SOCK, &rm->m_flags) &&
430 	    ro->op_active && ro->op_notify && ro->op_notifier) {
431 		notifier = ro->op_notifier;
432 		rs = rm->m_rs;
433 		sock_hold(rds_rs_to_sk(rs));
434 
435 		notifier->n_status = status;
436 		spin_lock(&rs->rs_lock);
437 		list_add_tail(&notifier->n_list, &rs->rs_notify_queue);
438 		spin_unlock(&rs->rs_lock);
439 
440 		ro->op_notifier = NULL;
441 	}
442 
443 	spin_unlock_irqrestore(&rm->m_rs_lock, flags);
444 
445 	if (rs) {
446 		rds_wake_sk_sleep(rs);
447 		sock_put(rds_rs_to_sk(rs));
448 	}
449 }
450 EXPORT_SYMBOL_GPL(rds_rdma_send_complete);
451 
452 /*
453  * Just like above, except looks at atomic op
454  */
rds_atomic_send_complete(struct rds_message * rm,int status)455 void rds_atomic_send_complete(struct rds_message *rm, int status)
456 {
457 	struct rds_sock *rs = NULL;
458 	struct rm_atomic_op *ao;
459 	struct rds_notifier *notifier;
460 	unsigned long flags;
461 
462 	spin_lock_irqsave(&rm->m_rs_lock, flags);
463 
464 	ao = &rm->atomic;
465 	if (test_bit(RDS_MSG_ON_SOCK, &rm->m_flags)
466 	    && ao->op_active && ao->op_notify && ao->op_notifier) {
467 		notifier = ao->op_notifier;
468 		rs = rm->m_rs;
469 		sock_hold(rds_rs_to_sk(rs));
470 
471 		notifier->n_status = status;
472 		spin_lock(&rs->rs_lock);
473 		list_add_tail(&notifier->n_list, &rs->rs_notify_queue);
474 		spin_unlock(&rs->rs_lock);
475 
476 		ao->op_notifier = NULL;
477 	}
478 
479 	spin_unlock_irqrestore(&rm->m_rs_lock, flags);
480 
481 	if (rs) {
482 		rds_wake_sk_sleep(rs);
483 		sock_put(rds_rs_to_sk(rs));
484 	}
485 }
486 EXPORT_SYMBOL_GPL(rds_atomic_send_complete);
487 
488 /*
489  * This is the same as rds_rdma_send_complete except we
490  * don't do any locking - we have all the ingredients (message,
491  * socket, socket lock) and can just move the notifier.
492  */
493 static inline void
__rds_send_complete(struct rds_sock * rs,struct rds_message * rm,int status)494 __rds_send_complete(struct rds_sock *rs, struct rds_message *rm, int status)
495 {
496 	struct rm_rdma_op *ro;
497 	struct rm_atomic_op *ao;
498 
499 	ro = &rm->rdma;
500 	if (ro->op_active && ro->op_notify && ro->op_notifier) {
501 		ro->op_notifier->n_status = status;
502 		list_add_tail(&ro->op_notifier->n_list, &rs->rs_notify_queue);
503 		ro->op_notifier = NULL;
504 	}
505 
506 	ao = &rm->atomic;
507 	if (ao->op_active && ao->op_notify && ao->op_notifier) {
508 		ao->op_notifier->n_status = status;
509 		list_add_tail(&ao->op_notifier->n_list, &rs->rs_notify_queue);
510 		ao->op_notifier = NULL;
511 	}
512 
513 	/* No need to wake the app - caller does this */
514 }
515 
516 /*
517  * This is called from the IB send completion when we detect
518  * a RDMA operation that failed with remote access error.
519  * So speed is not an issue here.
520  */
rds_send_get_message(struct rds_connection * conn,struct rm_rdma_op * op)521 struct rds_message *rds_send_get_message(struct rds_connection *conn,
522 					 struct rm_rdma_op *op)
523 {
524 	struct rds_message *rm, *tmp, *found = NULL;
525 	unsigned long flags;
526 
527 	spin_lock_irqsave(&conn->c_lock, flags);
528 
529 	list_for_each_entry_safe(rm, tmp, &conn->c_retrans, m_conn_item) {
530 		if (&rm->rdma == op) {
531 			atomic_inc(&rm->m_refcount);
532 			found = rm;
533 			goto out;
534 		}
535 	}
536 
537 	list_for_each_entry_safe(rm, tmp, &conn->c_send_queue, m_conn_item) {
538 		if (&rm->rdma == op) {
539 			atomic_inc(&rm->m_refcount);
540 			found = rm;
541 			break;
542 		}
543 	}
544 
545 out:
546 	spin_unlock_irqrestore(&conn->c_lock, flags);
547 
548 	return found;
549 }
550 EXPORT_SYMBOL_GPL(rds_send_get_message);
551 
552 /*
553  * This removes messages from the socket's list if they're on it.  The list
554  * argument must be private to the caller, we must be able to modify it
555  * without locks.  The messages must have a reference held for their
556  * position on the list.  This function will drop that reference after
557  * removing the messages from the 'messages' list regardless of if it found
558  * the messages on the socket list or not.
559  */
rds_send_remove_from_sock(struct list_head * messages,int status)560 static void rds_send_remove_from_sock(struct list_head *messages, int status)
561 {
562 	unsigned long flags;
563 	struct rds_sock *rs = NULL;
564 	struct rds_message *rm;
565 
566 	while (!list_empty(messages)) {
567 		int was_on_sock = 0;
568 
569 		rm = list_entry(messages->next, struct rds_message,
570 				m_conn_item);
571 		list_del_init(&rm->m_conn_item);
572 
573 		/*
574 		 * If we see this flag cleared then we're *sure* that someone
575 		 * else beat us to removing it from the sock.  If we race
576 		 * with their flag update we'll get the lock and then really
577 		 * see that the flag has been cleared.
578 		 *
579 		 * The message spinlock makes sure nobody clears rm->m_rs
580 		 * while we're messing with it. It does not prevent the
581 		 * message from being removed from the socket, though.
582 		 */
583 		spin_lock_irqsave(&rm->m_rs_lock, flags);
584 		if (!test_bit(RDS_MSG_ON_SOCK, &rm->m_flags))
585 			goto unlock_and_drop;
586 
587 		if (rs != rm->m_rs) {
588 			if (rs) {
589 				rds_wake_sk_sleep(rs);
590 				sock_put(rds_rs_to_sk(rs));
591 			}
592 			rs = rm->m_rs;
593 			sock_hold(rds_rs_to_sk(rs));
594 		}
595 		spin_lock(&rs->rs_lock);
596 
597 		if (test_and_clear_bit(RDS_MSG_ON_SOCK, &rm->m_flags)) {
598 			struct rm_rdma_op *ro = &rm->rdma;
599 			struct rds_notifier *notifier;
600 
601 			list_del_init(&rm->m_sock_item);
602 			rds_send_sndbuf_remove(rs, rm);
603 
604 			if (ro->op_active && ro->op_notifier &&
605 			       (ro->op_notify || (ro->op_recverr && status))) {
606 				notifier = ro->op_notifier;
607 				list_add_tail(&notifier->n_list,
608 						&rs->rs_notify_queue);
609 				if (!notifier->n_status)
610 					notifier->n_status = status;
611 				rm->rdma.op_notifier = NULL;
612 			}
613 			was_on_sock = 1;
614 			rm->m_rs = NULL;
615 		}
616 		spin_unlock(&rs->rs_lock);
617 
618 unlock_and_drop:
619 		spin_unlock_irqrestore(&rm->m_rs_lock, flags);
620 		rds_message_put(rm);
621 		if (was_on_sock)
622 			rds_message_put(rm);
623 	}
624 
625 	if (rs) {
626 		rds_wake_sk_sleep(rs);
627 		sock_put(rds_rs_to_sk(rs));
628 	}
629 }
630 
631 /*
632  * Transports call here when they've determined that the receiver queued
633  * messages up to, and including, the given sequence number.  Messages are
634  * moved to the retrans queue when rds_send_xmit picks them off the send
635  * queue. This means that in the TCP case, the message may not have been
636  * assigned the m_ack_seq yet - but that's fine as long as tcp_is_acked
637  * checks the RDS_MSG_HAS_ACK_SEQ bit.
638  *
639  * XXX It's not clear to me how this is safely serialized with socket
640  * destruction.  Maybe it should bail if it sees SOCK_DEAD.
641  */
rds_send_drop_acked(struct rds_connection * conn,u64 ack,is_acked_func is_acked)642 void rds_send_drop_acked(struct rds_connection *conn, u64 ack,
643 			 is_acked_func is_acked)
644 {
645 	struct rds_message *rm, *tmp;
646 	unsigned long flags;
647 	LIST_HEAD(list);
648 
649 	spin_lock_irqsave(&conn->c_lock, flags);
650 
651 	list_for_each_entry_safe(rm, tmp, &conn->c_retrans, m_conn_item) {
652 		if (!rds_send_is_acked(rm, ack, is_acked))
653 			break;
654 
655 		list_move(&rm->m_conn_item, &list);
656 		clear_bit(RDS_MSG_ON_CONN, &rm->m_flags);
657 	}
658 
659 	/* order flag updates with spin locks */
660 	if (!list_empty(&list))
661 		smp_mb__after_clear_bit();
662 
663 	spin_unlock_irqrestore(&conn->c_lock, flags);
664 
665 	/* now remove the messages from the sock list as needed */
666 	rds_send_remove_from_sock(&list, RDS_RDMA_SUCCESS);
667 }
668 EXPORT_SYMBOL_GPL(rds_send_drop_acked);
669 
rds_send_drop_to(struct rds_sock * rs,struct sockaddr_in * dest)670 void rds_send_drop_to(struct rds_sock *rs, struct sockaddr_in *dest)
671 {
672 	struct rds_message *rm, *tmp;
673 	struct rds_connection *conn;
674 	unsigned long flags;
675 	LIST_HEAD(list);
676 
677 	/* get all the messages we're dropping under the rs lock */
678 	spin_lock_irqsave(&rs->rs_lock, flags);
679 
680 	list_for_each_entry_safe(rm, tmp, &rs->rs_send_queue, m_sock_item) {
681 		if (dest && (dest->sin_addr.s_addr != rm->m_daddr ||
682 			     dest->sin_port != rm->m_inc.i_hdr.h_dport))
683 			continue;
684 
685 		list_move(&rm->m_sock_item, &list);
686 		rds_send_sndbuf_remove(rs, rm);
687 		clear_bit(RDS_MSG_ON_SOCK, &rm->m_flags);
688 	}
689 
690 	/* order flag updates with the rs lock */
691 	smp_mb__after_clear_bit();
692 
693 	spin_unlock_irqrestore(&rs->rs_lock, flags);
694 
695 	if (list_empty(&list))
696 		return;
697 
698 	/* Remove the messages from the conn */
699 	list_for_each_entry(rm, &list, m_sock_item) {
700 
701 		conn = rm->m_inc.i_conn;
702 
703 		spin_lock_irqsave(&conn->c_lock, flags);
704 		/*
705 		 * Maybe someone else beat us to removing rm from the conn.
706 		 * If we race with their flag update we'll get the lock and
707 		 * then really see that the flag has been cleared.
708 		 */
709 		if (!test_and_clear_bit(RDS_MSG_ON_CONN, &rm->m_flags)) {
710 			spin_unlock_irqrestore(&conn->c_lock, flags);
711 			continue;
712 		}
713 		list_del_init(&rm->m_conn_item);
714 		spin_unlock_irqrestore(&conn->c_lock, flags);
715 
716 		/*
717 		 * Couldn't grab m_rs_lock in top loop (lock ordering),
718 		 * but we can now.
719 		 */
720 		spin_lock_irqsave(&rm->m_rs_lock, flags);
721 
722 		spin_lock(&rs->rs_lock);
723 		__rds_send_complete(rs, rm, RDS_RDMA_CANCELED);
724 		spin_unlock(&rs->rs_lock);
725 
726 		rm->m_rs = NULL;
727 		spin_unlock_irqrestore(&rm->m_rs_lock, flags);
728 
729 		rds_message_put(rm);
730 	}
731 
732 	rds_wake_sk_sleep(rs);
733 
734 	while (!list_empty(&list)) {
735 		rm = list_entry(list.next, struct rds_message, m_sock_item);
736 		list_del_init(&rm->m_sock_item);
737 
738 		rds_message_wait(rm);
739 		rds_message_put(rm);
740 	}
741 }
742 
743 /*
744  * we only want this to fire once so we use the callers 'queued'.  It's
745  * possible that another thread can race with us and remove the
746  * message from the flow with RDS_CANCEL_SENT_TO.
747  */
rds_send_queue_rm(struct rds_sock * rs,struct rds_connection * conn,struct rds_message * rm,__be16 sport,__be16 dport,int * queued)748 static int rds_send_queue_rm(struct rds_sock *rs, struct rds_connection *conn,
749 			     struct rds_message *rm, __be16 sport,
750 			     __be16 dport, int *queued)
751 {
752 	unsigned long flags;
753 	u32 len;
754 
755 	if (*queued)
756 		goto out;
757 
758 	len = be32_to_cpu(rm->m_inc.i_hdr.h_len);
759 
760 	/* this is the only place which holds both the socket's rs_lock
761 	 * and the connection's c_lock */
762 	spin_lock_irqsave(&rs->rs_lock, flags);
763 
764 	/*
765 	 * If there is a little space in sndbuf, we don't queue anything,
766 	 * and userspace gets -EAGAIN. But poll() indicates there's send
767 	 * room. This can lead to bad behavior (spinning) if snd_bytes isn't
768 	 * freed up by incoming acks. So we check the *old* value of
769 	 * rs_snd_bytes here to allow the last msg to exceed the buffer,
770 	 * and poll() now knows no more data can be sent.
771 	 */
772 	if (rs->rs_snd_bytes < rds_sk_sndbuf(rs)) {
773 		rs->rs_snd_bytes += len;
774 
775 		/* let recv side know we are close to send space exhaustion.
776 		 * This is probably not the optimal way to do it, as this
777 		 * means we set the flag on *all* messages as soon as our
778 		 * throughput hits a certain threshold.
779 		 */
780 		if (rs->rs_snd_bytes >= rds_sk_sndbuf(rs) / 2)
781 			__set_bit(RDS_MSG_ACK_REQUIRED, &rm->m_flags);
782 
783 		list_add_tail(&rm->m_sock_item, &rs->rs_send_queue);
784 		set_bit(RDS_MSG_ON_SOCK, &rm->m_flags);
785 		rds_message_addref(rm);
786 		rm->m_rs = rs;
787 
788 		/* The code ordering is a little weird, but we're
789 		   trying to minimize the time we hold c_lock */
790 		rds_message_populate_header(&rm->m_inc.i_hdr, sport, dport, 0);
791 		rm->m_inc.i_conn = conn;
792 		rds_message_addref(rm);
793 
794 		spin_lock(&conn->c_lock);
795 		rm->m_inc.i_hdr.h_sequence = cpu_to_be64(conn->c_next_tx_seq++);
796 		list_add_tail(&rm->m_conn_item, &conn->c_send_queue);
797 		set_bit(RDS_MSG_ON_CONN, &rm->m_flags);
798 		spin_unlock(&conn->c_lock);
799 
800 		rdsdebug("queued msg %p len %d, rs %p bytes %d seq %llu\n",
801 			 rm, len, rs, rs->rs_snd_bytes,
802 			 (unsigned long long)be64_to_cpu(rm->m_inc.i_hdr.h_sequence));
803 
804 		*queued = 1;
805 	}
806 
807 	spin_unlock_irqrestore(&rs->rs_lock, flags);
808 out:
809 	return *queued;
810 }
811 
812 /*
813  * rds_message is getting to be quite complicated, and we'd like to allocate
814  * it all in one go. This figures out how big it needs to be up front.
815  */
rds_rm_size(struct msghdr * msg,int data_len)816 static int rds_rm_size(struct msghdr *msg, int data_len)
817 {
818 	struct cmsghdr *cmsg;
819 	int size = 0;
820 	int cmsg_groups = 0;
821 	int retval;
822 
823 	for (cmsg = CMSG_FIRSTHDR(msg); cmsg; cmsg = CMSG_NXTHDR(msg, cmsg)) {
824 		if (!CMSG_OK(msg, cmsg))
825 			return -EINVAL;
826 
827 		if (cmsg->cmsg_level != SOL_RDS)
828 			continue;
829 
830 		switch (cmsg->cmsg_type) {
831 		case RDS_CMSG_RDMA_ARGS:
832 			cmsg_groups |= 1;
833 			retval = rds_rdma_extra_size(CMSG_DATA(cmsg));
834 			if (retval < 0)
835 				return retval;
836 			size += retval;
837 
838 			break;
839 
840 		case RDS_CMSG_RDMA_DEST:
841 		case RDS_CMSG_RDMA_MAP:
842 			cmsg_groups |= 2;
843 			/* these are valid but do no add any size */
844 			break;
845 
846 		case RDS_CMSG_ATOMIC_CSWP:
847 		case RDS_CMSG_ATOMIC_FADD:
848 		case RDS_CMSG_MASKED_ATOMIC_CSWP:
849 		case RDS_CMSG_MASKED_ATOMIC_FADD:
850 			cmsg_groups |= 1;
851 			size += sizeof(struct scatterlist);
852 			break;
853 
854 		default:
855 			return -EINVAL;
856 		}
857 
858 	}
859 
860 	size += ceil(data_len, PAGE_SIZE) * sizeof(struct scatterlist);
861 
862 	/* Ensure (DEST, MAP) are never used with (ARGS, ATOMIC) */
863 	if (cmsg_groups == 3)
864 		return -EINVAL;
865 
866 	return size;
867 }
868 
rds_cmsg_send(struct rds_sock * rs,struct rds_message * rm,struct msghdr * msg,int * allocated_mr)869 static int rds_cmsg_send(struct rds_sock *rs, struct rds_message *rm,
870 			 struct msghdr *msg, int *allocated_mr)
871 {
872 	struct cmsghdr *cmsg;
873 	int ret = 0;
874 
875 	for (cmsg = CMSG_FIRSTHDR(msg); cmsg; cmsg = CMSG_NXTHDR(msg, cmsg)) {
876 		if (!CMSG_OK(msg, cmsg))
877 			return -EINVAL;
878 
879 		if (cmsg->cmsg_level != SOL_RDS)
880 			continue;
881 
882 		/* As a side effect, RDMA_DEST and RDMA_MAP will set
883 		 * rm->rdma.m_rdma_cookie and rm->rdma.m_rdma_mr.
884 		 */
885 		switch (cmsg->cmsg_type) {
886 		case RDS_CMSG_RDMA_ARGS:
887 			ret = rds_cmsg_rdma_args(rs, rm, cmsg);
888 			break;
889 
890 		case RDS_CMSG_RDMA_DEST:
891 			ret = rds_cmsg_rdma_dest(rs, rm, cmsg);
892 			break;
893 
894 		case RDS_CMSG_RDMA_MAP:
895 			ret = rds_cmsg_rdma_map(rs, rm, cmsg);
896 			if (!ret)
897 				*allocated_mr = 1;
898 			break;
899 		case RDS_CMSG_ATOMIC_CSWP:
900 		case RDS_CMSG_ATOMIC_FADD:
901 		case RDS_CMSG_MASKED_ATOMIC_CSWP:
902 		case RDS_CMSG_MASKED_ATOMIC_FADD:
903 			ret = rds_cmsg_atomic(rs, rm, cmsg);
904 			break;
905 
906 		default:
907 			return -EINVAL;
908 		}
909 
910 		if (ret)
911 			break;
912 	}
913 
914 	return ret;
915 }
916 
rds_sendmsg(struct kiocb * iocb,struct socket * sock,struct msghdr * msg,size_t payload_len)917 int rds_sendmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *msg,
918 		size_t payload_len)
919 {
920 	struct sock *sk = sock->sk;
921 	struct rds_sock *rs = rds_sk_to_rs(sk);
922 	struct sockaddr_in *usin = (struct sockaddr_in *)msg->msg_name;
923 	__be32 daddr;
924 	__be16 dport;
925 	struct rds_message *rm = NULL;
926 	struct rds_connection *conn;
927 	int ret = 0;
928 	int queued = 0, allocated_mr = 0;
929 	int nonblock = msg->msg_flags & MSG_DONTWAIT;
930 	long timeo = sock_sndtimeo(sk, nonblock);
931 
932 	/* Mirror Linux UDP mirror of BSD error message compatibility */
933 	/* XXX: Perhaps MSG_MORE someday */
934 	if (msg->msg_flags & ~(MSG_DONTWAIT | MSG_CMSG_COMPAT)) {
935 		printk(KERN_INFO "msg_flags 0x%08X\n", msg->msg_flags);
936 		ret = -EOPNOTSUPP;
937 		goto out;
938 	}
939 
940 	if (msg->msg_namelen) {
941 		/* XXX fail non-unicast destination IPs? */
942 		if (msg->msg_namelen < sizeof(*usin) || usin->sin_family != AF_INET) {
943 			ret = -EINVAL;
944 			goto out;
945 		}
946 		daddr = usin->sin_addr.s_addr;
947 		dport = usin->sin_port;
948 	} else {
949 		/* We only care about consistency with ->connect() */
950 		lock_sock(sk);
951 		daddr = rs->rs_conn_addr;
952 		dport = rs->rs_conn_port;
953 		release_sock(sk);
954 	}
955 
956 	/* racing with another thread binding seems ok here */
957 	if (daddr == 0 || rs->rs_bound_addr == 0) {
958 		ret = -ENOTCONN; /* XXX not a great errno */
959 		goto out;
960 	}
961 
962 	/* size of rm including all sgs */
963 	ret = rds_rm_size(msg, payload_len);
964 	if (ret < 0)
965 		goto out;
966 
967 	rm = rds_message_alloc(ret, GFP_KERNEL);
968 	if (!rm) {
969 		ret = -ENOMEM;
970 		goto out;
971 	}
972 
973 	/* Attach data to the rm */
974 	if (payload_len) {
975 		rm->data.op_sg = rds_message_alloc_sgs(rm, ceil(payload_len, PAGE_SIZE));
976 		if (!rm->data.op_sg) {
977 			ret = -ENOMEM;
978 			goto out;
979 		}
980 		ret = rds_message_copy_from_user(rm, msg->msg_iov, payload_len);
981 		if (ret)
982 			goto out;
983 	}
984 	rm->data.op_active = 1;
985 
986 	rm->m_daddr = daddr;
987 
988 	/* rds_conn_create has a spinlock that runs with IRQ off.
989 	 * Caching the conn in the socket helps a lot. */
990 	if (rs->rs_conn && rs->rs_conn->c_faddr == daddr)
991 		conn = rs->rs_conn;
992 	else {
993 		conn = rds_conn_create_outgoing(rs->rs_bound_addr, daddr,
994 					rs->rs_transport,
995 					sock->sk->sk_allocation);
996 		if (IS_ERR(conn)) {
997 			ret = PTR_ERR(conn);
998 			goto out;
999 		}
1000 		rs->rs_conn = conn;
1001 	}
1002 
1003 	/* Parse any control messages the user may have included. */
1004 	ret = rds_cmsg_send(rs, rm, msg, &allocated_mr);
1005 	if (ret)
1006 		goto out;
1007 
1008 	if (rm->rdma.op_active && !conn->c_trans->xmit_rdma) {
1009 		if (printk_ratelimit())
1010 			printk(KERN_NOTICE "rdma_op %p conn xmit_rdma %p\n",
1011 			       &rm->rdma, conn->c_trans->xmit_rdma);
1012 		ret = -EOPNOTSUPP;
1013 		goto out;
1014 	}
1015 
1016 	if (rm->atomic.op_active && !conn->c_trans->xmit_atomic) {
1017 		if (printk_ratelimit())
1018 			printk(KERN_NOTICE "atomic_op %p conn xmit_atomic %p\n",
1019 			       &rm->atomic, conn->c_trans->xmit_atomic);
1020 		ret = -EOPNOTSUPP;
1021 		goto out;
1022 	}
1023 
1024 	rds_conn_connect_if_down(conn);
1025 
1026 	ret = rds_cong_wait(conn->c_fcong, dport, nonblock, rs);
1027 	if (ret) {
1028 		rs->rs_seen_congestion = 1;
1029 		goto out;
1030 	}
1031 
1032 	while (!rds_send_queue_rm(rs, conn, rm, rs->rs_bound_port,
1033 				  dport, &queued)) {
1034 		rds_stats_inc(s_send_queue_full);
1035 		/* XXX make sure this is reasonable */
1036 		if (payload_len > rds_sk_sndbuf(rs)) {
1037 			ret = -EMSGSIZE;
1038 			goto out;
1039 		}
1040 		if (nonblock) {
1041 			ret = -EAGAIN;
1042 			goto out;
1043 		}
1044 
1045 		timeo = wait_event_interruptible_timeout(*sk_sleep(sk),
1046 					rds_send_queue_rm(rs, conn, rm,
1047 							  rs->rs_bound_port,
1048 							  dport,
1049 							  &queued),
1050 					timeo);
1051 		rdsdebug("sendmsg woke queued %d timeo %ld\n", queued, timeo);
1052 		if (timeo > 0 || timeo == MAX_SCHEDULE_TIMEOUT)
1053 			continue;
1054 
1055 		ret = timeo;
1056 		if (ret == 0)
1057 			ret = -ETIMEDOUT;
1058 		goto out;
1059 	}
1060 
1061 	/*
1062 	 * By now we've committed to the send.  We reuse rds_send_worker()
1063 	 * to retry sends in the rds thread if the transport asks us to.
1064 	 */
1065 	rds_stats_inc(s_send_queued);
1066 
1067 	if (!test_bit(RDS_LL_SEND_FULL, &conn->c_flags))
1068 		rds_send_xmit(conn);
1069 
1070 	rds_message_put(rm);
1071 	return payload_len;
1072 
1073 out:
1074 	/* If the user included a RDMA_MAP cmsg, we allocated a MR on the fly.
1075 	 * If the sendmsg goes through, we keep the MR. If it fails with EAGAIN
1076 	 * or in any other way, we need to destroy the MR again */
1077 	if (allocated_mr)
1078 		rds_rdma_unuse(rs, rds_rdma_cookie_key(rm->m_rdma_cookie), 1);
1079 
1080 	if (rm)
1081 		rds_message_put(rm);
1082 	return ret;
1083 }
1084 
1085 /*
1086  * Reply to a ping packet.
1087  */
1088 int
rds_send_pong(struct rds_connection * conn,__be16 dport)1089 rds_send_pong(struct rds_connection *conn, __be16 dport)
1090 {
1091 	struct rds_message *rm;
1092 	unsigned long flags;
1093 	int ret = 0;
1094 
1095 	rm = rds_message_alloc(0, GFP_ATOMIC);
1096 	if (!rm) {
1097 		ret = -ENOMEM;
1098 		goto out;
1099 	}
1100 
1101 	rm->m_daddr = conn->c_faddr;
1102 	rm->data.op_active = 1;
1103 
1104 	rds_conn_connect_if_down(conn);
1105 
1106 	ret = rds_cong_wait(conn->c_fcong, dport, 1, NULL);
1107 	if (ret)
1108 		goto out;
1109 
1110 	spin_lock_irqsave(&conn->c_lock, flags);
1111 	list_add_tail(&rm->m_conn_item, &conn->c_send_queue);
1112 	set_bit(RDS_MSG_ON_CONN, &rm->m_flags);
1113 	rds_message_addref(rm);
1114 	rm->m_inc.i_conn = conn;
1115 
1116 	rds_message_populate_header(&rm->m_inc.i_hdr, 0, dport,
1117 				    conn->c_next_tx_seq);
1118 	conn->c_next_tx_seq++;
1119 	spin_unlock_irqrestore(&conn->c_lock, flags);
1120 
1121 	rds_stats_inc(s_send_queued);
1122 	rds_stats_inc(s_send_pong);
1123 
1124 	if (!test_bit(RDS_LL_SEND_FULL, &conn->c_flags))
1125 		rds_send_xmit(conn);
1126 
1127 	rds_message_put(rm);
1128 	return 0;
1129 
1130 out:
1131 	if (rm)
1132 		rds_message_put(rm);
1133 	return ret;
1134 }
1135