1 /*
2  * Copyright (c) 2006 Oracle.  All rights reserved.
3  *
4  * This software is available to you under a choice of one of two
5  * licenses.  You may choose to be licensed under the terms of the GNU
6  * General Public License (GPL) Version 2, available from the file
7  * COPYING in the main directory of this source tree, or the
8  * OpenIB.org BSD license below:
9  *
10  *     Redistribution and use in source and binary forms, with or
11  *     without modification, are permitted provided that the following
12  *     conditions are met:
13  *
14  *      - Redistributions of source code must retain the above
15  *        copyright notice, this list of conditions and the following
16  *        disclaimer.
17  *
18  *      - Redistributions in binary form must reproduce the above
19  *        copyright notice, this list of conditions and the following
20  *        disclaimer in the documentation and/or other materials
21  *        provided with the distribution.
22  *
23  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30  * SOFTWARE.
31  *
32  */
33 #include <linux/kernel.h>
34 #include <linux/slab.h>
35 
36 #include "rds.h"
37 #include "iw.h"
38 
39 
40 /*
41  * This is stored as mr->r_trans_private.
42  */
43 struct rds_iw_mr {
44 	struct rds_iw_device	*device;
45 	struct rds_iw_mr_pool	*pool;
46 	struct rdma_cm_id	*cm_id;
47 
48 	struct ib_mr	*mr;
49 	struct ib_fast_reg_page_list *page_list;
50 
51 	struct rds_iw_mapping	mapping;
52 	unsigned char		remap_count;
53 };
54 
55 /*
56  * Our own little MR pool
57  */
58 struct rds_iw_mr_pool {
59 	struct rds_iw_device	*device;		/* back ptr to the device that owns us */
60 
61 	struct mutex		flush_lock;		/* serialize fmr invalidate */
62 	struct work_struct	flush_worker;		/* flush worker */
63 
64 	spinlock_t		list_lock;		/* protect variables below */
65 	atomic_t		item_count;		/* total # of MRs */
66 	atomic_t		dirty_count;		/* # dirty of MRs */
67 	struct list_head	dirty_list;		/* dirty mappings */
68 	struct list_head	clean_list;		/* unused & unamapped MRs */
69 	atomic_t		free_pinned;		/* memory pinned by free MRs */
70 	unsigned long		max_message_size;	/* in pages */
71 	unsigned long		max_items;
72 	unsigned long		max_items_soft;
73 	unsigned long		max_free_pinned;
74 	int			max_pages;
75 };
76 
77 static int rds_iw_flush_mr_pool(struct rds_iw_mr_pool *pool, int free_all);
78 static void rds_iw_mr_pool_flush_worker(struct work_struct *work);
79 static int rds_iw_init_fastreg(struct rds_iw_mr_pool *pool, struct rds_iw_mr *ibmr);
80 static int rds_iw_map_fastreg(struct rds_iw_mr_pool *pool,
81 			  struct rds_iw_mr *ibmr,
82 			  struct scatterlist *sg, unsigned int nents);
83 static void rds_iw_free_fastreg(struct rds_iw_mr_pool *pool, struct rds_iw_mr *ibmr);
84 static unsigned int rds_iw_unmap_fastreg_list(struct rds_iw_mr_pool *pool,
85 			struct list_head *unmap_list,
86 			struct list_head *kill_list);
87 static void rds_iw_destroy_fastreg(struct rds_iw_mr_pool *pool, struct rds_iw_mr *ibmr);
88 
rds_iw_get_device(struct rds_sock * rs,struct rds_iw_device ** rds_iwdev,struct rdma_cm_id ** cm_id)89 static int rds_iw_get_device(struct rds_sock *rs, struct rds_iw_device **rds_iwdev, struct rdma_cm_id **cm_id)
90 {
91 	struct rds_iw_device *iwdev;
92 	struct rds_iw_cm_id *i_cm_id;
93 
94 	*rds_iwdev = NULL;
95 	*cm_id = NULL;
96 
97 	list_for_each_entry(iwdev, &rds_iw_devices, list) {
98 		spin_lock_irq(&iwdev->spinlock);
99 		list_for_each_entry(i_cm_id, &iwdev->cm_id_list, list) {
100 			struct sockaddr_in *src_addr, *dst_addr;
101 
102 			src_addr = (struct sockaddr_in *)&i_cm_id->cm_id->route.addr.src_addr;
103 			dst_addr = (struct sockaddr_in *)&i_cm_id->cm_id->route.addr.dst_addr;
104 
105 			rdsdebug("local ipaddr = %x port %d, "
106 				 "remote ipaddr = %x port %d"
107 				 "..looking for %x port %d, "
108 				 "remote ipaddr = %x port %d\n",
109 				src_addr->sin_addr.s_addr,
110 				src_addr->sin_port,
111 				dst_addr->sin_addr.s_addr,
112 				dst_addr->sin_port,
113 				rs->rs_bound_addr,
114 				rs->rs_bound_port,
115 				rs->rs_conn_addr,
116 				rs->rs_conn_port);
117 #ifdef WORKING_TUPLE_DETECTION
118 			if (src_addr->sin_addr.s_addr == rs->rs_bound_addr &&
119 			    src_addr->sin_port == rs->rs_bound_port &&
120 			    dst_addr->sin_addr.s_addr == rs->rs_conn_addr &&
121 			    dst_addr->sin_port == rs->rs_conn_port) {
122 #else
123 			/* FIXME - needs to compare the local and remote
124 			 * ipaddr/port tuple, but the ipaddr is the only
125 			 * available information in the rds_sock (as the rest are
126 			 * zero'ed.  It doesn't appear to be properly populated
127 			 * during connection setup...
128 			 */
129 			if (src_addr->sin_addr.s_addr == rs->rs_bound_addr) {
130 #endif
131 				spin_unlock_irq(&iwdev->spinlock);
132 				*rds_iwdev = iwdev;
133 				*cm_id = i_cm_id->cm_id;
134 				return 0;
135 			}
136 		}
137 		spin_unlock_irq(&iwdev->spinlock);
138 	}
139 
140 	return 1;
141 }
142 
143 static int rds_iw_add_cm_id(struct rds_iw_device *rds_iwdev, struct rdma_cm_id *cm_id)
144 {
145 	struct rds_iw_cm_id *i_cm_id;
146 
147 	i_cm_id = kmalloc(sizeof *i_cm_id, GFP_KERNEL);
148 	if (!i_cm_id)
149 		return -ENOMEM;
150 
151 	i_cm_id->cm_id = cm_id;
152 
153 	spin_lock_irq(&rds_iwdev->spinlock);
154 	list_add_tail(&i_cm_id->list, &rds_iwdev->cm_id_list);
155 	spin_unlock_irq(&rds_iwdev->spinlock);
156 
157 	return 0;
158 }
159 
160 static void rds_iw_remove_cm_id(struct rds_iw_device *rds_iwdev,
161 				struct rdma_cm_id *cm_id)
162 {
163 	struct rds_iw_cm_id *i_cm_id;
164 
165 	spin_lock_irq(&rds_iwdev->spinlock);
166 	list_for_each_entry(i_cm_id, &rds_iwdev->cm_id_list, list) {
167 		if (i_cm_id->cm_id == cm_id) {
168 			list_del(&i_cm_id->list);
169 			kfree(i_cm_id);
170 			break;
171 		}
172 	}
173 	spin_unlock_irq(&rds_iwdev->spinlock);
174 }
175 
176 
177 int rds_iw_update_cm_id(struct rds_iw_device *rds_iwdev, struct rdma_cm_id *cm_id)
178 {
179 	struct sockaddr_in *src_addr, *dst_addr;
180 	struct rds_iw_device *rds_iwdev_old;
181 	struct rds_sock rs;
182 	struct rdma_cm_id *pcm_id;
183 	int rc;
184 
185 	src_addr = (struct sockaddr_in *)&cm_id->route.addr.src_addr;
186 	dst_addr = (struct sockaddr_in *)&cm_id->route.addr.dst_addr;
187 
188 	rs.rs_bound_addr = src_addr->sin_addr.s_addr;
189 	rs.rs_bound_port = src_addr->sin_port;
190 	rs.rs_conn_addr = dst_addr->sin_addr.s_addr;
191 	rs.rs_conn_port = dst_addr->sin_port;
192 
193 	rc = rds_iw_get_device(&rs, &rds_iwdev_old, &pcm_id);
194 	if (rc)
195 		rds_iw_remove_cm_id(rds_iwdev, cm_id);
196 
197 	return rds_iw_add_cm_id(rds_iwdev, cm_id);
198 }
199 
200 void rds_iw_add_conn(struct rds_iw_device *rds_iwdev, struct rds_connection *conn)
201 {
202 	struct rds_iw_connection *ic = conn->c_transport_data;
203 
204 	/* conn was previously on the nodev_conns_list */
205 	spin_lock_irq(&iw_nodev_conns_lock);
206 	BUG_ON(list_empty(&iw_nodev_conns));
207 	BUG_ON(list_empty(&ic->iw_node));
208 	list_del(&ic->iw_node);
209 
210 	spin_lock(&rds_iwdev->spinlock);
211 	list_add_tail(&ic->iw_node, &rds_iwdev->conn_list);
212 	spin_unlock(&rds_iwdev->spinlock);
213 	spin_unlock_irq(&iw_nodev_conns_lock);
214 
215 	ic->rds_iwdev = rds_iwdev;
216 }
217 
218 void rds_iw_remove_conn(struct rds_iw_device *rds_iwdev, struct rds_connection *conn)
219 {
220 	struct rds_iw_connection *ic = conn->c_transport_data;
221 
222 	/* place conn on nodev_conns_list */
223 	spin_lock(&iw_nodev_conns_lock);
224 
225 	spin_lock_irq(&rds_iwdev->spinlock);
226 	BUG_ON(list_empty(&ic->iw_node));
227 	list_del(&ic->iw_node);
228 	spin_unlock_irq(&rds_iwdev->spinlock);
229 
230 	list_add_tail(&ic->iw_node, &iw_nodev_conns);
231 
232 	spin_unlock(&iw_nodev_conns_lock);
233 
234 	rds_iw_remove_cm_id(ic->rds_iwdev, ic->i_cm_id);
235 	ic->rds_iwdev = NULL;
236 }
237 
238 void __rds_iw_destroy_conns(struct list_head *list, spinlock_t *list_lock)
239 {
240 	struct rds_iw_connection *ic, *_ic;
241 	LIST_HEAD(tmp_list);
242 
243 	/* avoid calling conn_destroy with irqs off */
244 	spin_lock_irq(list_lock);
245 	list_splice(list, &tmp_list);
246 	INIT_LIST_HEAD(list);
247 	spin_unlock_irq(list_lock);
248 
249 	list_for_each_entry_safe(ic, _ic, &tmp_list, iw_node)
250 		rds_conn_destroy(ic->conn);
251 }
252 
253 static void rds_iw_set_scatterlist(struct rds_iw_scatterlist *sg,
254 		struct scatterlist *list, unsigned int sg_len)
255 {
256 	sg->list = list;
257 	sg->len = sg_len;
258 	sg->dma_len = 0;
259 	sg->dma_npages = 0;
260 	sg->bytes = 0;
261 }
262 
263 static u64 *rds_iw_map_scatterlist(struct rds_iw_device *rds_iwdev,
264 			struct rds_iw_scatterlist *sg)
265 {
266 	struct ib_device *dev = rds_iwdev->dev;
267 	u64 *dma_pages = NULL;
268 	int i, j, ret;
269 
270 	WARN_ON(sg->dma_len);
271 
272 	sg->dma_len = ib_dma_map_sg(dev, sg->list, sg->len, DMA_BIDIRECTIONAL);
273 	if (unlikely(!sg->dma_len)) {
274 		printk(KERN_WARNING "RDS/IW: dma_map_sg failed!\n");
275 		return ERR_PTR(-EBUSY);
276 	}
277 
278 	sg->bytes = 0;
279 	sg->dma_npages = 0;
280 
281 	ret = -EINVAL;
282 	for (i = 0; i < sg->dma_len; ++i) {
283 		unsigned int dma_len = ib_sg_dma_len(dev, &sg->list[i]);
284 		u64 dma_addr = ib_sg_dma_address(dev, &sg->list[i]);
285 		u64 end_addr;
286 
287 		sg->bytes += dma_len;
288 
289 		end_addr = dma_addr + dma_len;
290 		if (dma_addr & PAGE_MASK) {
291 			if (i > 0)
292 				goto out_unmap;
293 			dma_addr &= ~PAGE_MASK;
294 		}
295 		if (end_addr & PAGE_MASK) {
296 			if (i < sg->dma_len - 1)
297 				goto out_unmap;
298 			end_addr = (end_addr + PAGE_MASK) & ~PAGE_MASK;
299 		}
300 
301 		sg->dma_npages += (end_addr - dma_addr) >> PAGE_SHIFT;
302 	}
303 
304 	/* Now gather the dma addrs into one list */
305 	if (sg->dma_npages > fastreg_message_size)
306 		goto out_unmap;
307 
308 	dma_pages = kmalloc(sizeof(u64) * sg->dma_npages, GFP_ATOMIC);
309 	if (!dma_pages) {
310 		ret = -ENOMEM;
311 		goto out_unmap;
312 	}
313 
314 	for (i = j = 0; i < sg->dma_len; ++i) {
315 		unsigned int dma_len = ib_sg_dma_len(dev, &sg->list[i]);
316 		u64 dma_addr = ib_sg_dma_address(dev, &sg->list[i]);
317 		u64 end_addr;
318 
319 		end_addr = dma_addr + dma_len;
320 		dma_addr &= ~PAGE_MASK;
321 		for (; dma_addr < end_addr; dma_addr += PAGE_SIZE)
322 			dma_pages[j++] = dma_addr;
323 		BUG_ON(j > sg->dma_npages);
324 	}
325 
326 	return dma_pages;
327 
328 out_unmap:
329 	ib_dma_unmap_sg(rds_iwdev->dev, sg->list, sg->len, DMA_BIDIRECTIONAL);
330 	sg->dma_len = 0;
331 	kfree(dma_pages);
332 	return ERR_PTR(ret);
333 }
334 
335 
336 struct rds_iw_mr_pool *rds_iw_create_mr_pool(struct rds_iw_device *rds_iwdev)
337 {
338 	struct rds_iw_mr_pool *pool;
339 
340 	pool = kzalloc(sizeof(*pool), GFP_KERNEL);
341 	if (!pool) {
342 		printk(KERN_WARNING "RDS/IW: rds_iw_create_mr_pool alloc error\n");
343 		return ERR_PTR(-ENOMEM);
344 	}
345 
346 	pool->device = rds_iwdev;
347 	INIT_LIST_HEAD(&pool->dirty_list);
348 	INIT_LIST_HEAD(&pool->clean_list);
349 	mutex_init(&pool->flush_lock);
350 	spin_lock_init(&pool->list_lock);
351 	INIT_WORK(&pool->flush_worker, rds_iw_mr_pool_flush_worker);
352 
353 	pool->max_message_size = fastreg_message_size;
354 	pool->max_items = fastreg_pool_size;
355 	pool->max_free_pinned = pool->max_items * pool->max_message_size / 4;
356 	pool->max_pages = fastreg_message_size;
357 
358 	/* We never allow more than max_items MRs to be allocated.
359 	 * When we exceed more than max_items_soft, we start freeing
360 	 * items more aggressively.
361 	 * Make sure that max_items > max_items_soft > max_items / 2
362 	 */
363 	pool->max_items_soft = pool->max_items * 3 / 4;
364 
365 	return pool;
366 }
367 
368 void rds_iw_get_mr_info(struct rds_iw_device *rds_iwdev, struct rds_info_rdma_connection *iinfo)
369 {
370 	struct rds_iw_mr_pool *pool = rds_iwdev->mr_pool;
371 
372 	iinfo->rdma_mr_max = pool->max_items;
373 	iinfo->rdma_mr_size = pool->max_pages;
374 }
375 
376 void rds_iw_destroy_mr_pool(struct rds_iw_mr_pool *pool)
377 {
378 	flush_workqueue(rds_wq);
379 	rds_iw_flush_mr_pool(pool, 1);
380 	BUG_ON(atomic_read(&pool->item_count));
381 	BUG_ON(atomic_read(&pool->free_pinned));
382 	kfree(pool);
383 }
384 
385 static inline struct rds_iw_mr *rds_iw_reuse_fmr(struct rds_iw_mr_pool *pool)
386 {
387 	struct rds_iw_mr *ibmr = NULL;
388 	unsigned long flags;
389 
390 	spin_lock_irqsave(&pool->list_lock, flags);
391 	if (!list_empty(&pool->clean_list)) {
392 		ibmr = list_entry(pool->clean_list.next, struct rds_iw_mr, mapping.m_list);
393 		list_del_init(&ibmr->mapping.m_list);
394 	}
395 	spin_unlock_irqrestore(&pool->list_lock, flags);
396 
397 	return ibmr;
398 }
399 
400 static struct rds_iw_mr *rds_iw_alloc_mr(struct rds_iw_device *rds_iwdev)
401 {
402 	struct rds_iw_mr_pool *pool = rds_iwdev->mr_pool;
403 	struct rds_iw_mr *ibmr = NULL;
404 	int err = 0, iter = 0;
405 
406 	while (1) {
407 		ibmr = rds_iw_reuse_fmr(pool);
408 		if (ibmr)
409 			return ibmr;
410 
411 		/* No clean MRs - now we have the choice of either
412 		 * allocating a fresh MR up to the limit imposed by the
413 		 * driver, or flush any dirty unused MRs.
414 		 * We try to avoid stalling in the send path if possible,
415 		 * so we allocate as long as we're allowed to.
416 		 *
417 		 * We're fussy with enforcing the FMR limit, though. If the driver
418 		 * tells us we can't use more than N fmrs, we shouldn't start
419 		 * arguing with it */
420 		if (atomic_inc_return(&pool->item_count) <= pool->max_items)
421 			break;
422 
423 		atomic_dec(&pool->item_count);
424 
425 		if (++iter > 2) {
426 			rds_iw_stats_inc(s_iw_rdma_mr_pool_depleted);
427 			return ERR_PTR(-EAGAIN);
428 		}
429 
430 		/* We do have some empty MRs. Flush them out. */
431 		rds_iw_stats_inc(s_iw_rdma_mr_pool_wait);
432 		rds_iw_flush_mr_pool(pool, 0);
433 	}
434 
435 	ibmr = kzalloc(sizeof(*ibmr), GFP_KERNEL);
436 	if (!ibmr) {
437 		err = -ENOMEM;
438 		goto out_no_cigar;
439 	}
440 
441 	spin_lock_init(&ibmr->mapping.m_lock);
442 	INIT_LIST_HEAD(&ibmr->mapping.m_list);
443 	ibmr->mapping.m_mr = ibmr;
444 
445 	err = rds_iw_init_fastreg(pool, ibmr);
446 	if (err)
447 		goto out_no_cigar;
448 
449 	rds_iw_stats_inc(s_iw_rdma_mr_alloc);
450 	return ibmr;
451 
452 out_no_cigar:
453 	if (ibmr) {
454 		rds_iw_destroy_fastreg(pool, ibmr);
455 		kfree(ibmr);
456 	}
457 	atomic_dec(&pool->item_count);
458 	return ERR_PTR(err);
459 }
460 
461 void rds_iw_sync_mr(void *trans_private, int direction)
462 {
463 	struct rds_iw_mr *ibmr = trans_private;
464 	struct rds_iw_device *rds_iwdev = ibmr->device;
465 
466 	switch (direction) {
467 	case DMA_FROM_DEVICE:
468 		ib_dma_sync_sg_for_cpu(rds_iwdev->dev, ibmr->mapping.m_sg.list,
469 			ibmr->mapping.m_sg.dma_len, DMA_BIDIRECTIONAL);
470 		break;
471 	case DMA_TO_DEVICE:
472 		ib_dma_sync_sg_for_device(rds_iwdev->dev, ibmr->mapping.m_sg.list,
473 			ibmr->mapping.m_sg.dma_len, DMA_BIDIRECTIONAL);
474 		break;
475 	}
476 }
477 
478 static inline unsigned int rds_iw_flush_goal(struct rds_iw_mr_pool *pool, int free_all)
479 {
480 	unsigned int item_count;
481 
482 	item_count = atomic_read(&pool->item_count);
483 	if (free_all)
484 		return item_count;
485 
486 	return 0;
487 }
488 
489 /*
490  * Flush our pool of MRs.
491  * At a minimum, all currently unused MRs are unmapped.
492  * If the number of MRs allocated exceeds the limit, we also try
493  * to free as many MRs as needed to get back to this limit.
494  */
495 static int rds_iw_flush_mr_pool(struct rds_iw_mr_pool *pool, int free_all)
496 {
497 	struct rds_iw_mr *ibmr, *next;
498 	LIST_HEAD(unmap_list);
499 	LIST_HEAD(kill_list);
500 	unsigned long flags;
501 	unsigned int nfreed = 0, ncleaned = 0, free_goal;
502 	int ret = 0;
503 
504 	rds_iw_stats_inc(s_iw_rdma_mr_pool_flush);
505 
506 	mutex_lock(&pool->flush_lock);
507 
508 	spin_lock_irqsave(&pool->list_lock, flags);
509 	/* Get the list of all mappings to be destroyed */
510 	list_splice_init(&pool->dirty_list, &unmap_list);
511 	if (free_all)
512 		list_splice_init(&pool->clean_list, &kill_list);
513 	spin_unlock_irqrestore(&pool->list_lock, flags);
514 
515 	free_goal = rds_iw_flush_goal(pool, free_all);
516 
517 	/* Batched invalidate of dirty MRs.
518 	 * For FMR based MRs, the mappings on the unmap list are
519 	 * actually members of an ibmr (ibmr->mapping). They either
520 	 * migrate to the kill_list, or have been cleaned and should be
521 	 * moved to the clean_list.
522 	 * For fastregs, they will be dynamically allocated, and
523 	 * will be destroyed by the unmap function.
524 	 */
525 	if (!list_empty(&unmap_list)) {
526 		ncleaned = rds_iw_unmap_fastreg_list(pool, &unmap_list, &kill_list);
527 		/* If we've been asked to destroy all MRs, move those
528 		 * that were simply cleaned to the kill list */
529 		if (free_all)
530 			list_splice_init(&unmap_list, &kill_list);
531 	}
532 
533 	/* Destroy any MRs that are past their best before date */
534 	list_for_each_entry_safe(ibmr, next, &kill_list, mapping.m_list) {
535 		rds_iw_stats_inc(s_iw_rdma_mr_free);
536 		list_del(&ibmr->mapping.m_list);
537 		rds_iw_destroy_fastreg(pool, ibmr);
538 		kfree(ibmr);
539 		nfreed++;
540 	}
541 
542 	/* Anything that remains are laundered ibmrs, which we can add
543 	 * back to the clean list. */
544 	if (!list_empty(&unmap_list)) {
545 		spin_lock_irqsave(&pool->list_lock, flags);
546 		list_splice(&unmap_list, &pool->clean_list);
547 		spin_unlock_irqrestore(&pool->list_lock, flags);
548 	}
549 
550 	atomic_sub(ncleaned, &pool->dirty_count);
551 	atomic_sub(nfreed, &pool->item_count);
552 
553 	mutex_unlock(&pool->flush_lock);
554 	return ret;
555 }
556 
557 static void rds_iw_mr_pool_flush_worker(struct work_struct *work)
558 {
559 	struct rds_iw_mr_pool *pool = container_of(work, struct rds_iw_mr_pool, flush_worker);
560 
561 	rds_iw_flush_mr_pool(pool, 0);
562 }
563 
564 void rds_iw_free_mr(void *trans_private, int invalidate)
565 {
566 	struct rds_iw_mr *ibmr = trans_private;
567 	struct rds_iw_mr_pool *pool = ibmr->device->mr_pool;
568 
569 	rdsdebug("RDS/IW: free_mr nents %u\n", ibmr->mapping.m_sg.len);
570 	if (!pool)
571 		return;
572 
573 	/* Return it to the pool's free list */
574 	rds_iw_free_fastreg(pool, ibmr);
575 
576 	/* If we've pinned too many pages, request a flush */
577 	if (atomic_read(&pool->free_pinned) >= pool->max_free_pinned ||
578 	    atomic_read(&pool->dirty_count) >= pool->max_items / 10)
579 		queue_work(rds_wq, &pool->flush_worker);
580 
581 	if (invalidate) {
582 		if (likely(!in_interrupt())) {
583 			rds_iw_flush_mr_pool(pool, 0);
584 		} else {
585 			/* We get here if the user created a MR marked
586 			 * as use_once and invalidate at the same time. */
587 			queue_work(rds_wq, &pool->flush_worker);
588 		}
589 	}
590 }
591 
592 void rds_iw_flush_mrs(void)
593 {
594 	struct rds_iw_device *rds_iwdev;
595 
596 	list_for_each_entry(rds_iwdev, &rds_iw_devices, list) {
597 		struct rds_iw_mr_pool *pool = rds_iwdev->mr_pool;
598 
599 		if (pool)
600 			rds_iw_flush_mr_pool(pool, 0);
601 	}
602 }
603 
604 void *rds_iw_get_mr(struct scatterlist *sg, unsigned long nents,
605 		    struct rds_sock *rs, u32 *key_ret)
606 {
607 	struct rds_iw_device *rds_iwdev;
608 	struct rds_iw_mr *ibmr = NULL;
609 	struct rdma_cm_id *cm_id;
610 	int ret;
611 
612 	ret = rds_iw_get_device(rs, &rds_iwdev, &cm_id);
613 	if (ret || !cm_id) {
614 		ret = -ENODEV;
615 		goto out;
616 	}
617 
618 	if (!rds_iwdev->mr_pool) {
619 		ret = -ENODEV;
620 		goto out;
621 	}
622 
623 	ibmr = rds_iw_alloc_mr(rds_iwdev);
624 	if (IS_ERR(ibmr))
625 		return ibmr;
626 
627 	ibmr->cm_id = cm_id;
628 	ibmr->device = rds_iwdev;
629 
630 	ret = rds_iw_map_fastreg(rds_iwdev->mr_pool, ibmr, sg, nents);
631 	if (ret == 0)
632 		*key_ret = ibmr->mr->rkey;
633 	else
634 		printk(KERN_WARNING "RDS/IW: failed to map mr (errno=%d)\n", ret);
635 
636 out:
637 	if (ret) {
638 		if (ibmr)
639 			rds_iw_free_mr(ibmr, 0);
640 		ibmr = ERR_PTR(ret);
641 	}
642 	return ibmr;
643 }
644 
645 /*
646  * iWARP fastreg handling
647  *
648  * The life cycle of a fastreg registration is a bit different from
649  * FMRs.
650  * The idea behind fastreg is to have one MR, to which we bind different
651  * mappings over time. To avoid stalling on the expensive map and invalidate
652  * operations, these operations are pipelined on the same send queue on
653  * which we want to send the message containing the r_key.
654  *
655  * This creates a bit of a problem for us, as we do not have the destination
656  * IP in GET_MR, so the connection must be setup prior to the GET_MR call for
657  * RDMA to be correctly setup.  If a fastreg request is present, rds_iw_xmit
658  * will try to queue a LOCAL_INV (if needed) and a FAST_REG_MR work request
659  * before queuing the SEND. When completions for these arrive, they are
660  * dispatched to the MR has a bit set showing that RDMa can be performed.
661  *
662  * There is another interesting aspect that's related to invalidation.
663  * The application can request that a mapping is invalidated in FREE_MR.
664  * The expectation there is that this invalidation step includes ALL
665  * PREVIOUSLY FREED MRs.
666  */
667 static int rds_iw_init_fastreg(struct rds_iw_mr_pool *pool,
668 				struct rds_iw_mr *ibmr)
669 {
670 	struct rds_iw_device *rds_iwdev = pool->device;
671 	struct ib_fast_reg_page_list *page_list = NULL;
672 	struct ib_mr *mr;
673 	int err;
674 
675 	mr = ib_alloc_fast_reg_mr(rds_iwdev->pd, pool->max_message_size);
676 	if (IS_ERR(mr)) {
677 		err = PTR_ERR(mr);
678 
679 		printk(KERN_WARNING "RDS/IW: ib_alloc_fast_reg_mr failed (err=%d)\n", err);
680 		return err;
681 	}
682 
683 	/* FIXME - this is overkill, but mapping->m_sg.dma_len/mapping->m_sg.dma_npages
684 	 * is not filled in.
685 	 */
686 	page_list = ib_alloc_fast_reg_page_list(rds_iwdev->dev, pool->max_message_size);
687 	if (IS_ERR(page_list)) {
688 		err = PTR_ERR(page_list);
689 
690 		printk(KERN_WARNING "RDS/IW: ib_alloc_fast_reg_page_list failed (err=%d)\n", err);
691 		ib_dereg_mr(mr);
692 		return err;
693 	}
694 
695 	ibmr->page_list = page_list;
696 	ibmr->mr = mr;
697 	return 0;
698 }
699 
700 static int rds_iw_rdma_build_fastreg(struct rds_iw_mapping *mapping)
701 {
702 	struct rds_iw_mr *ibmr = mapping->m_mr;
703 	struct ib_send_wr f_wr, *failed_wr;
704 	int ret;
705 
706 	/*
707 	 * Perform a WR for the fast_reg_mr. Each individual page
708 	 * in the sg list is added to the fast reg page list and placed
709 	 * inside the fast_reg_mr WR.  The key used is a rolling 8bit
710 	 * counter, which should guarantee uniqueness.
711 	 */
712 	ib_update_fast_reg_key(ibmr->mr, ibmr->remap_count++);
713 	mapping->m_rkey = ibmr->mr->rkey;
714 
715 	memset(&f_wr, 0, sizeof(f_wr));
716 	f_wr.wr_id = RDS_IW_FAST_REG_WR_ID;
717 	f_wr.opcode = IB_WR_FAST_REG_MR;
718 	f_wr.wr.fast_reg.length = mapping->m_sg.bytes;
719 	f_wr.wr.fast_reg.rkey = mapping->m_rkey;
720 	f_wr.wr.fast_reg.page_list = ibmr->page_list;
721 	f_wr.wr.fast_reg.page_list_len = mapping->m_sg.dma_len;
722 	f_wr.wr.fast_reg.page_shift = PAGE_SHIFT;
723 	f_wr.wr.fast_reg.access_flags = IB_ACCESS_LOCAL_WRITE |
724 				IB_ACCESS_REMOTE_READ |
725 				IB_ACCESS_REMOTE_WRITE;
726 	f_wr.wr.fast_reg.iova_start = 0;
727 	f_wr.send_flags = IB_SEND_SIGNALED;
728 
729 	failed_wr = &f_wr;
730 	ret = ib_post_send(ibmr->cm_id->qp, &f_wr, &failed_wr);
731 	BUG_ON(failed_wr != &f_wr);
732 	if (ret && printk_ratelimit())
733 		printk(KERN_WARNING "RDS/IW: %s:%d ib_post_send returned %d\n",
734 			__func__, __LINE__, ret);
735 	return ret;
736 }
737 
738 static int rds_iw_rdma_fastreg_inv(struct rds_iw_mr *ibmr)
739 {
740 	struct ib_send_wr s_wr, *failed_wr;
741 	int ret = 0;
742 
743 	if (!ibmr->cm_id->qp || !ibmr->mr)
744 		goto out;
745 
746 	memset(&s_wr, 0, sizeof(s_wr));
747 	s_wr.wr_id = RDS_IW_LOCAL_INV_WR_ID;
748 	s_wr.opcode = IB_WR_LOCAL_INV;
749 	s_wr.ex.invalidate_rkey = ibmr->mr->rkey;
750 	s_wr.send_flags = IB_SEND_SIGNALED;
751 
752 	failed_wr = &s_wr;
753 	ret = ib_post_send(ibmr->cm_id->qp, &s_wr, &failed_wr);
754 	if (ret && printk_ratelimit()) {
755 		printk(KERN_WARNING "RDS/IW: %s:%d ib_post_send returned %d\n",
756 			__func__, __LINE__, ret);
757 		goto out;
758 	}
759 out:
760 	return ret;
761 }
762 
763 static int rds_iw_map_fastreg(struct rds_iw_mr_pool *pool,
764 			struct rds_iw_mr *ibmr,
765 			struct scatterlist *sg,
766 			unsigned int sg_len)
767 {
768 	struct rds_iw_device *rds_iwdev = pool->device;
769 	struct rds_iw_mapping *mapping = &ibmr->mapping;
770 	u64 *dma_pages;
771 	int i, ret = 0;
772 
773 	rds_iw_set_scatterlist(&mapping->m_sg, sg, sg_len);
774 
775 	dma_pages = rds_iw_map_scatterlist(rds_iwdev, &mapping->m_sg);
776 	if (IS_ERR(dma_pages)) {
777 		ret = PTR_ERR(dma_pages);
778 		dma_pages = NULL;
779 		goto out;
780 	}
781 
782 	if (mapping->m_sg.dma_len > pool->max_message_size) {
783 		ret = -EMSGSIZE;
784 		goto out;
785 	}
786 
787 	for (i = 0; i < mapping->m_sg.dma_npages; ++i)
788 		ibmr->page_list->page_list[i] = dma_pages[i];
789 
790 	ret = rds_iw_rdma_build_fastreg(mapping);
791 	if (ret)
792 		goto out;
793 
794 	rds_iw_stats_inc(s_iw_rdma_mr_used);
795 
796 out:
797 	kfree(dma_pages);
798 
799 	return ret;
800 }
801 
802 /*
803  * "Free" a fastreg MR.
804  */
805 static void rds_iw_free_fastreg(struct rds_iw_mr_pool *pool,
806 		struct rds_iw_mr *ibmr)
807 {
808 	unsigned long flags;
809 	int ret;
810 
811 	if (!ibmr->mapping.m_sg.dma_len)
812 		return;
813 
814 	ret = rds_iw_rdma_fastreg_inv(ibmr);
815 	if (ret)
816 		return;
817 
818 	/* Try to post the LOCAL_INV WR to the queue. */
819 	spin_lock_irqsave(&pool->list_lock, flags);
820 
821 	list_add_tail(&ibmr->mapping.m_list, &pool->dirty_list);
822 	atomic_add(ibmr->mapping.m_sg.len, &pool->free_pinned);
823 	atomic_inc(&pool->dirty_count);
824 
825 	spin_unlock_irqrestore(&pool->list_lock, flags);
826 }
827 
828 static unsigned int rds_iw_unmap_fastreg_list(struct rds_iw_mr_pool *pool,
829 				struct list_head *unmap_list,
830 				struct list_head *kill_list)
831 {
832 	struct rds_iw_mapping *mapping, *next;
833 	unsigned int ncleaned = 0;
834 	LIST_HEAD(laundered);
835 
836 	/* Batched invalidation of fastreg MRs.
837 	 * Why do we do it this way, even though we could pipeline unmap
838 	 * and remap? The reason is the application semantics - when the
839 	 * application requests an invalidation of MRs, it expects all
840 	 * previously released R_Keys to become invalid.
841 	 *
842 	 * If we implement MR reuse naively, we risk memory corruption
843 	 * (this has actually been observed). So the default behavior
844 	 * requires that a MR goes through an explicit unmap operation before
845 	 * we can reuse it again.
846 	 *
847 	 * We could probably improve on this a little, by allowing immediate
848 	 * reuse of a MR on the same socket (eg you could add small
849 	 * cache of unused MRs to strct rds_socket - GET_MR could grab one
850 	 * of these without requiring an explicit invalidate).
851 	 */
852 	while (!list_empty(unmap_list)) {
853 		unsigned long flags;
854 
855 		spin_lock_irqsave(&pool->list_lock, flags);
856 		list_for_each_entry_safe(mapping, next, unmap_list, m_list) {
857 			list_move(&mapping->m_list, &laundered);
858 			ncleaned++;
859 		}
860 		spin_unlock_irqrestore(&pool->list_lock, flags);
861 	}
862 
863 	/* Move all laundered mappings back to the unmap list.
864 	 * We do not kill any WRs right now - it doesn't seem the
865 	 * fastreg API has a max_remap limit. */
866 	list_splice_init(&laundered, unmap_list);
867 
868 	return ncleaned;
869 }
870 
871 static void rds_iw_destroy_fastreg(struct rds_iw_mr_pool *pool,
872 		struct rds_iw_mr *ibmr)
873 {
874 	if (ibmr->page_list)
875 		ib_free_fast_reg_page_list(ibmr->page_list);
876 	if (ibmr->mr)
877 		ib_dereg_mr(ibmr->mr);
878 }
879