1 /*
2  * Copyright (c) 2006 Oracle.  All rights reserved.
3  *
4  * This software is available to you under a choice of one of two
5  * licenses.  You may choose to be licensed under the terms of the GNU
6  * General Public License (GPL) Version 2, available from the file
7  * COPYING in the main directory of this source tree, or the
8  * OpenIB.org BSD license below:
9  *
10  *     Redistribution and use in source and binary forms, with or
11  *     without modification, are permitted provided that the following
12  *     conditions are met:
13  *
14  *      - Redistributions of source code must retain the above
15  *        copyright notice, this list of conditions and the following
16  *        disclaimer.
17  *
18  *      - Redistributions in binary form must reproduce the above
19  *        copyright notice, this list of conditions and the following
20  *        disclaimer in the documentation and/or other materials
21  *        provided with the distribution.
22  *
23  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30  * SOFTWARE.
31  *
32  */
33 #include <linux/kernel.h>
34 #include <linux/in.h>
35 #include <linux/device.h>
36 #include <linux/dmapool.h>
37 #include <linux/ratelimit.h>
38 
39 #include "rds.h"
40 #include "iw.h"
41 
rds_iw_send_rdma_complete(struct rds_message * rm,int wc_status)42 static void rds_iw_send_rdma_complete(struct rds_message *rm,
43 				      int wc_status)
44 {
45 	int notify_status;
46 
47 	switch (wc_status) {
48 	case IB_WC_WR_FLUSH_ERR:
49 		return;
50 
51 	case IB_WC_SUCCESS:
52 		notify_status = RDS_RDMA_SUCCESS;
53 		break;
54 
55 	case IB_WC_REM_ACCESS_ERR:
56 		notify_status = RDS_RDMA_REMOTE_ERROR;
57 		break;
58 
59 	default:
60 		notify_status = RDS_RDMA_OTHER_ERROR;
61 		break;
62 	}
63 	rds_rdma_send_complete(rm, notify_status);
64 }
65 
rds_iw_send_unmap_rdma(struct rds_iw_connection * ic,struct rm_rdma_op * op)66 static void rds_iw_send_unmap_rdma(struct rds_iw_connection *ic,
67 				   struct rm_rdma_op *op)
68 {
69 	if (op->op_mapped) {
70 		ib_dma_unmap_sg(ic->i_cm_id->device,
71 			op->op_sg, op->op_nents,
72 			op->op_write ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
73 		op->op_mapped = 0;
74 	}
75 }
76 
rds_iw_send_unmap_rm(struct rds_iw_connection * ic,struct rds_iw_send_work * send,int wc_status)77 static void rds_iw_send_unmap_rm(struct rds_iw_connection *ic,
78 			  struct rds_iw_send_work *send,
79 			  int wc_status)
80 {
81 	struct rds_message *rm = send->s_rm;
82 
83 	rdsdebug("ic %p send %p rm %p\n", ic, send, rm);
84 
85 	ib_dma_unmap_sg(ic->i_cm_id->device,
86 		     rm->data.op_sg, rm->data.op_nents,
87 		     DMA_TO_DEVICE);
88 
89 	if (rm->rdma.op_active) {
90 		rds_iw_send_unmap_rdma(ic, &rm->rdma);
91 
92 		/* If the user asked for a completion notification on this
93 		 * message, we can implement three different semantics:
94 		 *  1.	Notify when we received the ACK on the RDS message
95 		 *	that was queued with the RDMA. This provides reliable
96 		 *	notification of RDMA status at the expense of a one-way
97 		 *	packet delay.
98 		 *  2.	Notify when the IB stack gives us the completion event for
99 		 *	the RDMA operation.
100 		 *  3.	Notify when the IB stack gives us the completion event for
101 		 *	the accompanying RDS messages.
102 		 * Here, we implement approach #3. To implement approach #2,
103 		 * call rds_rdma_send_complete from the cq_handler. To implement #1,
104 		 * don't call rds_rdma_send_complete at all, and fall back to the notify
105 		 * handling in the ACK processing code.
106 		 *
107 		 * Note: There's no need to explicitly sync any RDMA buffers using
108 		 * ib_dma_sync_sg_for_cpu - the completion for the RDMA
109 		 * operation itself unmapped the RDMA buffers, which takes care
110 		 * of synching.
111 		 */
112 		rds_iw_send_rdma_complete(rm, wc_status);
113 
114 		if (rm->rdma.op_write)
115 			rds_stats_add(s_send_rdma_bytes, rm->rdma.op_bytes);
116 		else
117 			rds_stats_add(s_recv_rdma_bytes, rm->rdma.op_bytes);
118 	}
119 
120 	/* If anyone waited for this message to get flushed out, wake
121 	 * them up now */
122 	rds_message_unmapped(rm);
123 
124 	rds_message_put(rm);
125 	send->s_rm = NULL;
126 }
127 
rds_iw_send_init_ring(struct rds_iw_connection * ic)128 void rds_iw_send_init_ring(struct rds_iw_connection *ic)
129 {
130 	struct rds_iw_send_work *send;
131 	u32 i;
132 
133 	for (i = 0, send = ic->i_sends; i < ic->i_send_ring.w_nr; i++, send++) {
134 		struct ib_sge *sge;
135 
136 		send->s_rm = NULL;
137 		send->s_op = NULL;
138 		send->s_mapping = NULL;
139 
140 		send->s_wr.next = NULL;
141 		send->s_wr.wr_id = i;
142 		send->s_wr.sg_list = send->s_sge;
143 		send->s_wr.num_sge = 1;
144 		send->s_wr.opcode = IB_WR_SEND;
145 		send->s_wr.send_flags = 0;
146 		send->s_wr.ex.imm_data = 0;
147 
148 		sge = rds_iw_data_sge(ic, send->s_sge);
149 		sge->lkey = 0;
150 
151 		sge = rds_iw_header_sge(ic, send->s_sge);
152 		sge->addr = ic->i_send_hdrs_dma + (i * sizeof(struct rds_header));
153 		sge->length = sizeof(struct rds_header);
154 		sge->lkey = 0;
155 
156 		send->s_mr = ib_alloc_fast_reg_mr(ic->i_pd, fastreg_message_size);
157 		if (IS_ERR(send->s_mr)) {
158 			printk(KERN_WARNING "RDS/IW: ib_alloc_fast_reg_mr failed\n");
159 			break;
160 		}
161 
162 		send->s_page_list = ib_alloc_fast_reg_page_list(
163 			ic->i_cm_id->device, fastreg_message_size);
164 		if (IS_ERR(send->s_page_list)) {
165 			printk(KERN_WARNING "RDS/IW: ib_alloc_fast_reg_page_list failed\n");
166 			break;
167 		}
168 	}
169 }
170 
rds_iw_send_clear_ring(struct rds_iw_connection * ic)171 void rds_iw_send_clear_ring(struct rds_iw_connection *ic)
172 {
173 	struct rds_iw_send_work *send;
174 	u32 i;
175 
176 	for (i = 0, send = ic->i_sends; i < ic->i_send_ring.w_nr; i++, send++) {
177 		BUG_ON(!send->s_mr);
178 		ib_dereg_mr(send->s_mr);
179 		BUG_ON(!send->s_page_list);
180 		ib_free_fast_reg_page_list(send->s_page_list);
181 		if (send->s_wr.opcode == 0xdead)
182 			continue;
183 		if (send->s_rm)
184 			rds_iw_send_unmap_rm(ic, send, IB_WC_WR_FLUSH_ERR);
185 		if (send->s_op)
186 			rds_iw_send_unmap_rdma(ic, send->s_op);
187 	}
188 }
189 
190 /*
191  * The _oldest/_free ring operations here race cleanly with the alloc/unalloc
192  * operations performed in the send path.  As the sender allocs and potentially
193  * unallocs the next free entry in the ring it doesn't alter which is
194  * the next to be freed, which is what this is concerned with.
195  */
rds_iw_send_cq_comp_handler(struct ib_cq * cq,void * context)196 void rds_iw_send_cq_comp_handler(struct ib_cq *cq, void *context)
197 {
198 	struct rds_connection *conn = context;
199 	struct rds_iw_connection *ic = conn->c_transport_data;
200 	struct ib_wc wc;
201 	struct rds_iw_send_work *send;
202 	u32 completed;
203 	u32 oldest;
204 	u32 i;
205 	int ret;
206 
207 	rdsdebug("cq %p conn %p\n", cq, conn);
208 	rds_iw_stats_inc(s_iw_tx_cq_call);
209 	ret = ib_req_notify_cq(cq, IB_CQ_NEXT_COMP);
210 	if (ret)
211 		rdsdebug("ib_req_notify_cq send failed: %d\n", ret);
212 
213 	while (ib_poll_cq(cq, 1, &wc) > 0) {
214 		rdsdebug("wc wr_id 0x%llx status %u byte_len %u imm_data %u\n",
215 			 (unsigned long long)wc.wr_id, wc.status, wc.byte_len,
216 			 be32_to_cpu(wc.ex.imm_data));
217 		rds_iw_stats_inc(s_iw_tx_cq_event);
218 
219 		if (wc.status != IB_WC_SUCCESS) {
220 			printk(KERN_ERR "WC Error:  status = %d opcode = %d\n", wc.status, wc.opcode);
221 			break;
222 		}
223 
224 		if (wc.opcode == IB_WC_LOCAL_INV && wc.wr_id == RDS_IW_LOCAL_INV_WR_ID) {
225 			ic->i_fastreg_posted = 0;
226 			continue;
227 		}
228 
229 		if (wc.opcode == IB_WC_FAST_REG_MR && wc.wr_id == RDS_IW_FAST_REG_WR_ID) {
230 			ic->i_fastreg_posted = 1;
231 			continue;
232 		}
233 
234 		if (wc.wr_id == RDS_IW_ACK_WR_ID) {
235 			if (ic->i_ack_queued + HZ/2 < jiffies)
236 				rds_iw_stats_inc(s_iw_tx_stalled);
237 			rds_iw_ack_send_complete(ic);
238 			continue;
239 		}
240 
241 		oldest = rds_iw_ring_oldest(&ic->i_send_ring);
242 
243 		completed = rds_iw_ring_completed(&ic->i_send_ring, wc.wr_id, oldest);
244 
245 		for (i = 0; i < completed; i++) {
246 			send = &ic->i_sends[oldest];
247 
248 			/* In the error case, wc.opcode sometimes contains garbage */
249 			switch (send->s_wr.opcode) {
250 			case IB_WR_SEND:
251 				if (send->s_rm)
252 					rds_iw_send_unmap_rm(ic, send, wc.status);
253 				break;
254 			case IB_WR_FAST_REG_MR:
255 			case IB_WR_RDMA_WRITE:
256 			case IB_WR_RDMA_READ:
257 			case IB_WR_RDMA_READ_WITH_INV:
258 				/* Nothing to be done - the SG list will be unmapped
259 				 * when the SEND completes. */
260 				break;
261 			default:
262 				printk_ratelimited(KERN_NOTICE
263 						"RDS/IW: %s: unexpected opcode 0x%x in WR!\n",
264 						__func__, send->s_wr.opcode);
265 				break;
266 			}
267 
268 			send->s_wr.opcode = 0xdead;
269 			send->s_wr.num_sge = 1;
270 			if (send->s_queued + HZ/2 < jiffies)
271 				rds_iw_stats_inc(s_iw_tx_stalled);
272 
273 			/* If a RDMA operation produced an error, signal this right
274 			 * away. If we don't, the subsequent SEND that goes with this
275 			 * RDMA will be canceled with ERR_WFLUSH, and the application
276 			 * never learn that the RDMA failed. */
277 			if (unlikely(wc.status == IB_WC_REM_ACCESS_ERR && send->s_op)) {
278 				struct rds_message *rm;
279 
280 				rm = rds_send_get_message(conn, send->s_op);
281 				if (rm)
282 					rds_iw_send_rdma_complete(rm, wc.status);
283 			}
284 
285 			oldest = (oldest + 1) % ic->i_send_ring.w_nr;
286 		}
287 
288 		rds_iw_ring_free(&ic->i_send_ring, completed);
289 
290 		if (test_and_clear_bit(RDS_LL_SEND_FULL, &conn->c_flags) ||
291 		    test_bit(0, &conn->c_map_queued))
292 			queue_delayed_work(rds_wq, &conn->c_send_w, 0);
293 
294 		/* We expect errors as the qp is drained during shutdown */
295 		if (wc.status != IB_WC_SUCCESS && rds_conn_up(conn)) {
296 			rds_iw_conn_error(conn,
297 				"send completion on %pI4 "
298 				"had status %u, disconnecting and reconnecting\n",
299 				&conn->c_faddr, wc.status);
300 		}
301 	}
302 }
303 
304 /*
305  * This is the main function for allocating credits when sending
306  * messages.
307  *
308  * Conceptually, we have two counters:
309  *  -	send credits: this tells us how many WRs we're allowed
310  *	to submit without overruning the receiver's queue. For
311  *	each SEND WR we post, we decrement this by one.
312  *
313  *  -	posted credits: this tells us how many WRs we recently
314  *	posted to the receive queue. This value is transferred
315  *	to the peer as a "credit update" in a RDS header field.
316  *	Every time we transmit credits to the peer, we subtract
317  *	the amount of transferred credits from this counter.
318  *
319  * It is essential that we avoid situations where both sides have
320  * exhausted their send credits, and are unable to send new credits
321  * to the peer. We achieve this by requiring that we send at least
322  * one credit update to the peer before exhausting our credits.
323  * When new credits arrive, we subtract one credit that is withheld
324  * until we've posted new buffers and are ready to transmit these
325  * credits (see rds_iw_send_add_credits below).
326  *
327  * The RDS send code is essentially single-threaded; rds_send_xmit
328  * grabs c_send_lock to ensure exclusive access to the send ring.
329  * However, the ACK sending code is independent and can race with
330  * message SENDs.
331  *
332  * In the send path, we need to update the counters for send credits
333  * and the counter of posted buffers atomically - when we use the
334  * last available credit, we cannot allow another thread to race us
335  * and grab the posted credits counter.  Hence, we have to use a
336  * spinlock to protect the credit counter, or use atomics.
337  *
338  * Spinlocks shared between the send and the receive path are bad,
339  * because they create unnecessary delays. An early implementation
340  * using a spinlock showed a 5% degradation in throughput at some
341  * loads.
342  *
343  * This implementation avoids spinlocks completely, putting both
344  * counters into a single atomic, and updating that atomic using
345  * atomic_add (in the receive path, when receiving fresh credits),
346  * and using atomic_cmpxchg when updating the two counters.
347  */
rds_iw_send_grab_credits(struct rds_iw_connection * ic,u32 wanted,u32 * adv_credits,int need_posted,int max_posted)348 int rds_iw_send_grab_credits(struct rds_iw_connection *ic,
349 			     u32 wanted, u32 *adv_credits, int need_posted, int max_posted)
350 {
351 	unsigned int avail, posted, got = 0, advertise;
352 	long oldval, newval;
353 
354 	*adv_credits = 0;
355 	if (!ic->i_flowctl)
356 		return wanted;
357 
358 try_again:
359 	advertise = 0;
360 	oldval = newval = atomic_read(&ic->i_credits);
361 	posted = IB_GET_POST_CREDITS(oldval);
362 	avail = IB_GET_SEND_CREDITS(oldval);
363 
364 	rdsdebug("rds_iw_send_grab_credits(%u): credits=%u posted=%u\n",
365 			wanted, avail, posted);
366 
367 	/* The last credit must be used to send a credit update. */
368 	if (avail && !posted)
369 		avail--;
370 
371 	if (avail < wanted) {
372 		struct rds_connection *conn = ic->i_cm_id->context;
373 
374 		/* Oops, there aren't that many credits left! */
375 		set_bit(RDS_LL_SEND_FULL, &conn->c_flags);
376 		got = avail;
377 	} else {
378 		/* Sometimes you get what you want, lalala. */
379 		got = wanted;
380 	}
381 	newval -= IB_SET_SEND_CREDITS(got);
382 
383 	/*
384 	 * If need_posted is non-zero, then the caller wants
385 	 * the posted regardless of whether any send credits are
386 	 * available.
387 	 */
388 	if (posted && (got || need_posted)) {
389 		advertise = min_t(unsigned int, posted, max_posted);
390 		newval -= IB_SET_POST_CREDITS(advertise);
391 	}
392 
393 	/* Finally bill everything */
394 	if (atomic_cmpxchg(&ic->i_credits, oldval, newval) != oldval)
395 		goto try_again;
396 
397 	*adv_credits = advertise;
398 	return got;
399 }
400 
rds_iw_send_add_credits(struct rds_connection * conn,unsigned int credits)401 void rds_iw_send_add_credits(struct rds_connection *conn, unsigned int credits)
402 {
403 	struct rds_iw_connection *ic = conn->c_transport_data;
404 
405 	if (credits == 0)
406 		return;
407 
408 	rdsdebug("rds_iw_send_add_credits(%u): current=%u%s\n",
409 			credits,
410 			IB_GET_SEND_CREDITS(atomic_read(&ic->i_credits)),
411 			test_bit(RDS_LL_SEND_FULL, &conn->c_flags) ? ", ll_send_full" : "");
412 
413 	atomic_add(IB_SET_SEND_CREDITS(credits), &ic->i_credits);
414 	if (test_and_clear_bit(RDS_LL_SEND_FULL, &conn->c_flags))
415 		queue_delayed_work(rds_wq, &conn->c_send_w, 0);
416 
417 	WARN_ON(IB_GET_SEND_CREDITS(credits) >= 16384);
418 
419 	rds_iw_stats_inc(s_iw_rx_credit_updates);
420 }
421 
rds_iw_advertise_credits(struct rds_connection * conn,unsigned int posted)422 void rds_iw_advertise_credits(struct rds_connection *conn, unsigned int posted)
423 {
424 	struct rds_iw_connection *ic = conn->c_transport_data;
425 
426 	if (posted == 0)
427 		return;
428 
429 	atomic_add(IB_SET_POST_CREDITS(posted), &ic->i_credits);
430 
431 	/* Decide whether to send an update to the peer now.
432 	 * If we would send a credit update for every single buffer we
433 	 * post, we would end up with an ACK storm (ACK arrives,
434 	 * consumes buffer, we refill the ring, send ACK to remote
435 	 * advertising the newly posted buffer... ad inf)
436 	 *
437 	 * Performance pretty much depends on how often we send
438 	 * credit updates - too frequent updates mean lots of ACKs.
439 	 * Too infrequent updates, and the peer will run out of
440 	 * credits and has to throttle.
441 	 * For the time being, 16 seems to be a good compromise.
442 	 */
443 	if (IB_GET_POST_CREDITS(atomic_read(&ic->i_credits)) >= 16)
444 		set_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
445 }
446 
447 static inline void
rds_iw_xmit_populate_wr(struct rds_iw_connection * ic,struct rds_iw_send_work * send,unsigned int pos,unsigned long buffer,unsigned int length,int send_flags)448 rds_iw_xmit_populate_wr(struct rds_iw_connection *ic,
449 		struct rds_iw_send_work *send, unsigned int pos,
450 		unsigned long buffer, unsigned int length,
451 		int send_flags)
452 {
453 	struct ib_sge *sge;
454 
455 	WARN_ON(pos != send - ic->i_sends);
456 
457 	send->s_wr.send_flags = send_flags;
458 	send->s_wr.opcode = IB_WR_SEND;
459 	send->s_wr.num_sge = 2;
460 	send->s_wr.next = NULL;
461 	send->s_queued = jiffies;
462 	send->s_op = NULL;
463 
464 	if (length != 0) {
465 		sge = rds_iw_data_sge(ic, send->s_sge);
466 		sge->addr = buffer;
467 		sge->length = length;
468 		sge->lkey = rds_iw_local_dma_lkey(ic);
469 
470 		sge = rds_iw_header_sge(ic, send->s_sge);
471 	} else {
472 		/* We're sending a packet with no payload. There is only
473 		 * one SGE */
474 		send->s_wr.num_sge = 1;
475 		sge = &send->s_sge[0];
476 	}
477 
478 	sge->addr = ic->i_send_hdrs_dma + (pos * sizeof(struct rds_header));
479 	sge->length = sizeof(struct rds_header);
480 	sge->lkey = rds_iw_local_dma_lkey(ic);
481 }
482 
483 /*
484  * This can be called multiple times for a given message.  The first time
485  * we see a message we map its scatterlist into the IB device so that
486  * we can provide that mapped address to the IB scatter gather entries
487  * in the IB work requests.  We translate the scatterlist into a series
488  * of work requests that fragment the message.  These work requests complete
489  * in order so we pass ownership of the message to the completion handler
490  * once we send the final fragment.
491  *
492  * The RDS core uses the c_send_lock to only enter this function once
493  * per connection.  This makes sure that the tx ring alloc/unalloc pairs
494  * don't get out of sync and confuse the ring.
495  */
rds_iw_xmit(struct rds_connection * conn,struct rds_message * rm,unsigned int hdr_off,unsigned int sg,unsigned int off)496 int rds_iw_xmit(struct rds_connection *conn, struct rds_message *rm,
497 		unsigned int hdr_off, unsigned int sg, unsigned int off)
498 {
499 	struct rds_iw_connection *ic = conn->c_transport_data;
500 	struct ib_device *dev = ic->i_cm_id->device;
501 	struct rds_iw_send_work *send = NULL;
502 	struct rds_iw_send_work *first;
503 	struct rds_iw_send_work *prev;
504 	struct ib_send_wr *failed_wr;
505 	struct scatterlist *scat;
506 	u32 pos;
507 	u32 i;
508 	u32 work_alloc;
509 	u32 credit_alloc;
510 	u32 posted;
511 	u32 adv_credits = 0;
512 	int send_flags = 0;
513 	int sent;
514 	int ret;
515 	int flow_controlled = 0;
516 
517 	BUG_ON(off % RDS_FRAG_SIZE);
518 	BUG_ON(hdr_off != 0 && hdr_off != sizeof(struct rds_header));
519 
520 	/* Fastreg support */
521 	if (rds_rdma_cookie_key(rm->m_rdma_cookie) && !ic->i_fastreg_posted) {
522 		ret = -EAGAIN;
523 		goto out;
524 	}
525 
526 	/* FIXME we may overallocate here */
527 	if (be32_to_cpu(rm->m_inc.i_hdr.h_len) == 0)
528 		i = 1;
529 	else
530 		i = ceil(be32_to_cpu(rm->m_inc.i_hdr.h_len), RDS_FRAG_SIZE);
531 
532 	work_alloc = rds_iw_ring_alloc(&ic->i_send_ring, i, &pos);
533 	if (work_alloc == 0) {
534 		set_bit(RDS_LL_SEND_FULL, &conn->c_flags);
535 		rds_iw_stats_inc(s_iw_tx_ring_full);
536 		ret = -ENOMEM;
537 		goto out;
538 	}
539 
540 	credit_alloc = work_alloc;
541 	if (ic->i_flowctl) {
542 		credit_alloc = rds_iw_send_grab_credits(ic, work_alloc, &posted, 0, RDS_MAX_ADV_CREDIT);
543 		adv_credits += posted;
544 		if (credit_alloc < work_alloc) {
545 			rds_iw_ring_unalloc(&ic->i_send_ring, work_alloc - credit_alloc);
546 			work_alloc = credit_alloc;
547 			flow_controlled++;
548 		}
549 		if (work_alloc == 0) {
550 			set_bit(RDS_LL_SEND_FULL, &conn->c_flags);
551 			rds_iw_stats_inc(s_iw_tx_throttle);
552 			ret = -ENOMEM;
553 			goto out;
554 		}
555 	}
556 
557 	/* map the message the first time we see it */
558 	if (!ic->i_rm) {
559 		/*
560 		printk(KERN_NOTICE "rds_iw_xmit prep msg dport=%u flags=0x%x len=%d\n",
561 				be16_to_cpu(rm->m_inc.i_hdr.h_dport),
562 				rm->m_inc.i_hdr.h_flags,
563 				be32_to_cpu(rm->m_inc.i_hdr.h_len));
564 		   */
565 		if (rm->data.op_nents) {
566 			rm->data.op_count = ib_dma_map_sg(dev,
567 							  rm->data.op_sg,
568 							  rm->data.op_nents,
569 							  DMA_TO_DEVICE);
570 			rdsdebug("ic %p mapping rm %p: %d\n", ic, rm, rm->data.op_count);
571 			if (rm->data.op_count == 0) {
572 				rds_iw_stats_inc(s_iw_tx_sg_mapping_failure);
573 				rds_iw_ring_unalloc(&ic->i_send_ring, work_alloc);
574 				ret = -ENOMEM; /* XXX ? */
575 				goto out;
576 			}
577 		} else {
578 			rm->data.op_count = 0;
579 		}
580 
581 		ic->i_unsignaled_wrs = rds_iw_sysctl_max_unsig_wrs;
582 		ic->i_unsignaled_bytes = rds_iw_sysctl_max_unsig_bytes;
583 		rds_message_addref(rm);
584 		ic->i_rm = rm;
585 
586 		/* Finalize the header */
587 		if (test_bit(RDS_MSG_ACK_REQUIRED, &rm->m_flags))
588 			rm->m_inc.i_hdr.h_flags |= RDS_FLAG_ACK_REQUIRED;
589 		if (test_bit(RDS_MSG_RETRANSMITTED, &rm->m_flags))
590 			rm->m_inc.i_hdr.h_flags |= RDS_FLAG_RETRANSMITTED;
591 
592 		/* If it has a RDMA op, tell the peer we did it. This is
593 		 * used by the peer to release use-once RDMA MRs. */
594 		if (rm->rdma.op_active) {
595 			struct rds_ext_header_rdma ext_hdr;
596 
597 			ext_hdr.h_rdma_rkey = cpu_to_be32(rm->rdma.op_rkey);
598 			rds_message_add_extension(&rm->m_inc.i_hdr,
599 					RDS_EXTHDR_RDMA, &ext_hdr, sizeof(ext_hdr));
600 		}
601 		if (rm->m_rdma_cookie) {
602 			rds_message_add_rdma_dest_extension(&rm->m_inc.i_hdr,
603 					rds_rdma_cookie_key(rm->m_rdma_cookie),
604 					rds_rdma_cookie_offset(rm->m_rdma_cookie));
605 		}
606 
607 		/* Note - rds_iw_piggyb_ack clears the ACK_REQUIRED bit, so
608 		 * we should not do this unless we have a chance of at least
609 		 * sticking the header into the send ring. Which is why we
610 		 * should call rds_iw_ring_alloc first. */
611 		rm->m_inc.i_hdr.h_ack = cpu_to_be64(rds_iw_piggyb_ack(ic));
612 		rds_message_make_checksum(&rm->m_inc.i_hdr);
613 
614 		/*
615 		 * Update adv_credits since we reset the ACK_REQUIRED bit.
616 		 */
617 		rds_iw_send_grab_credits(ic, 0, &posted, 1, RDS_MAX_ADV_CREDIT - adv_credits);
618 		adv_credits += posted;
619 		BUG_ON(adv_credits > 255);
620 	}
621 
622 	send = &ic->i_sends[pos];
623 	first = send;
624 	prev = NULL;
625 	scat = &rm->data.op_sg[sg];
626 	sent = 0;
627 	i = 0;
628 
629 	/* Sometimes you want to put a fence between an RDMA
630 	 * READ and the following SEND.
631 	 * We could either do this all the time
632 	 * or when requested by the user. Right now, we let
633 	 * the application choose.
634 	 */
635 	if (rm->rdma.op_active && rm->rdma.op_fence)
636 		send_flags = IB_SEND_FENCE;
637 
638 	/*
639 	 * We could be copying the header into the unused tail of the page.
640 	 * That would need to be changed in the future when those pages might
641 	 * be mapped userspace pages or page cache pages.  So instead we always
642 	 * use a second sge and our long-lived ring of mapped headers.  We send
643 	 * the header after the data so that the data payload can be aligned on
644 	 * the receiver.
645 	 */
646 
647 	/* handle a 0-len message */
648 	if (be32_to_cpu(rm->m_inc.i_hdr.h_len) == 0) {
649 		rds_iw_xmit_populate_wr(ic, send, pos, 0, 0, send_flags);
650 		goto add_header;
651 	}
652 
653 	/* if there's data reference it with a chain of work reqs */
654 	for (; i < work_alloc && scat != &rm->data.op_sg[rm->data.op_count]; i++) {
655 		unsigned int len;
656 
657 		send = &ic->i_sends[pos];
658 
659 		len = min(RDS_FRAG_SIZE, ib_sg_dma_len(dev, scat) - off);
660 		rds_iw_xmit_populate_wr(ic, send, pos,
661 				ib_sg_dma_address(dev, scat) + off, len,
662 				send_flags);
663 
664 		/*
665 		 * We want to delay signaling completions just enough to get
666 		 * the batching benefits but not so much that we create dead time
667 		 * on the wire.
668 		 */
669 		if (ic->i_unsignaled_wrs-- == 0) {
670 			ic->i_unsignaled_wrs = rds_iw_sysctl_max_unsig_wrs;
671 			send->s_wr.send_flags |= IB_SEND_SIGNALED | IB_SEND_SOLICITED;
672 		}
673 
674 		ic->i_unsignaled_bytes -= len;
675 		if (ic->i_unsignaled_bytes <= 0) {
676 			ic->i_unsignaled_bytes = rds_iw_sysctl_max_unsig_bytes;
677 			send->s_wr.send_flags |= IB_SEND_SIGNALED | IB_SEND_SOLICITED;
678 		}
679 
680 		/*
681 		 * Always signal the last one if we're stopping due to flow control.
682 		 */
683 		if (flow_controlled && i == (work_alloc-1))
684 			send->s_wr.send_flags |= IB_SEND_SIGNALED | IB_SEND_SOLICITED;
685 
686 		rdsdebug("send %p wr %p num_sge %u next %p\n", send,
687 			 &send->s_wr, send->s_wr.num_sge, send->s_wr.next);
688 
689 		sent += len;
690 		off += len;
691 		if (off == ib_sg_dma_len(dev, scat)) {
692 			scat++;
693 			off = 0;
694 		}
695 
696 add_header:
697 		/* Tack on the header after the data. The header SGE should already
698 		 * have been set up to point to the right header buffer. */
699 		memcpy(&ic->i_send_hdrs[pos], &rm->m_inc.i_hdr, sizeof(struct rds_header));
700 
701 		if (0) {
702 			struct rds_header *hdr = &ic->i_send_hdrs[pos];
703 
704 			printk(KERN_NOTICE "send WR dport=%u flags=0x%x len=%d\n",
705 				be16_to_cpu(hdr->h_dport),
706 				hdr->h_flags,
707 				be32_to_cpu(hdr->h_len));
708 		}
709 		if (adv_credits) {
710 			struct rds_header *hdr = &ic->i_send_hdrs[pos];
711 
712 			/* add credit and redo the header checksum */
713 			hdr->h_credit = adv_credits;
714 			rds_message_make_checksum(hdr);
715 			adv_credits = 0;
716 			rds_iw_stats_inc(s_iw_tx_credit_updates);
717 		}
718 
719 		if (prev)
720 			prev->s_wr.next = &send->s_wr;
721 		prev = send;
722 
723 		pos = (pos + 1) % ic->i_send_ring.w_nr;
724 	}
725 
726 	/* Account the RDS header in the number of bytes we sent, but just once.
727 	 * The caller has no concept of fragmentation. */
728 	if (hdr_off == 0)
729 		sent += sizeof(struct rds_header);
730 
731 	/* if we finished the message then send completion owns it */
732 	if (scat == &rm->data.op_sg[rm->data.op_count]) {
733 		prev->s_rm = ic->i_rm;
734 		prev->s_wr.send_flags |= IB_SEND_SIGNALED | IB_SEND_SOLICITED;
735 		ic->i_rm = NULL;
736 	}
737 
738 	if (i < work_alloc) {
739 		rds_iw_ring_unalloc(&ic->i_send_ring, work_alloc - i);
740 		work_alloc = i;
741 	}
742 	if (ic->i_flowctl && i < credit_alloc)
743 		rds_iw_send_add_credits(conn, credit_alloc - i);
744 
745 	/* XXX need to worry about failed_wr and partial sends. */
746 	failed_wr = &first->s_wr;
747 	ret = ib_post_send(ic->i_cm_id->qp, &first->s_wr, &failed_wr);
748 	rdsdebug("ic %p first %p (wr %p) ret %d wr %p\n", ic,
749 		 first, &first->s_wr, ret, failed_wr);
750 	BUG_ON(failed_wr != &first->s_wr);
751 	if (ret) {
752 		printk(KERN_WARNING "RDS/IW: ib_post_send to %pI4 "
753 		       "returned %d\n", &conn->c_faddr, ret);
754 		rds_iw_ring_unalloc(&ic->i_send_ring, work_alloc);
755 		if (prev->s_rm) {
756 			ic->i_rm = prev->s_rm;
757 			prev->s_rm = NULL;
758 		}
759 		goto out;
760 	}
761 
762 	ret = sent;
763 out:
764 	BUG_ON(adv_credits);
765 	return ret;
766 }
767 
rds_iw_build_send_fastreg(struct rds_iw_device * rds_iwdev,struct rds_iw_connection * ic,struct rds_iw_send_work * send,int nent,int len,u64 sg_addr)768 static void rds_iw_build_send_fastreg(struct rds_iw_device *rds_iwdev, struct rds_iw_connection *ic, struct rds_iw_send_work *send, int nent, int len, u64 sg_addr)
769 {
770 	BUG_ON(nent > send->s_page_list->max_page_list_len);
771 	/*
772 	 * Perform a WR for the fast_reg_mr. Each individual page
773 	 * in the sg list is added to the fast reg page list and placed
774 	 * inside the fast_reg_mr WR.
775 	 */
776 	send->s_wr.opcode = IB_WR_FAST_REG_MR;
777 	send->s_wr.wr.fast_reg.length = len;
778 	send->s_wr.wr.fast_reg.rkey = send->s_mr->rkey;
779 	send->s_wr.wr.fast_reg.page_list = send->s_page_list;
780 	send->s_wr.wr.fast_reg.page_list_len = nent;
781 	send->s_wr.wr.fast_reg.page_shift = PAGE_SHIFT;
782 	send->s_wr.wr.fast_reg.access_flags = IB_ACCESS_REMOTE_WRITE;
783 	send->s_wr.wr.fast_reg.iova_start = sg_addr;
784 
785 	ib_update_fast_reg_key(send->s_mr, send->s_remap_count++);
786 }
787 
rds_iw_xmit_rdma(struct rds_connection * conn,struct rm_rdma_op * op)788 int rds_iw_xmit_rdma(struct rds_connection *conn, struct rm_rdma_op *op)
789 {
790 	struct rds_iw_connection *ic = conn->c_transport_data;
791 	struct rds_iw_send_work *send = NULL;
792 	struct rds_iw_send_work *first;
793 	struct rds_iw_send_work *prev;
794 	struct ib_send_wr *failed_wr;
795 	struct rds_iw_device *rds_iwdev;
796 	struct scatterlist *scat;
797 	unsigned long len;
798 	u64 remote_addr = op->op_remote_addr;
799 	u32 pos, fr_pos;
800 	u32 work_alloc;
801 	u32 i;
802 	u32 j;
803 	int sent;
804 	int ret;
805 	int num_sge;
806 
807 	rds_iwdev = ib_get_client_data(ic->i_cm_id->device, &rds_iw_client);
808 
809 	/* map the message the first time we see it */
810 	if (!op->op_mapped) {
811 		op->op_count = ib_dma_map_sg(ic->i_cm_id->device,
812 					     op->op_sg, op->op_nents, (op->op_write) ?
813 					     DMA_TO_DEVICE : DMA_FROM_DEVICE);
814 		rdsdebug("ic %p mapping op %p: %d\n", ic, op, op->op_count);
815 		if (op->op_count == 0) {
816 			rds_iw_stats_inc(s_iw_tx_sg_mapping_failure);
817 			ret = -ENOMEM; /* XXX ? */
818 			goto out;
819 		}
820 
821 		op->op_mapped = 1;
822 	}
823 
824 	if (!op->op_write) {
825 		/* Alloc space on the send queue for the fastreg */
826 		work_alloc = rds_iw_ring_alloc(&ic->i_send_ring, 1, &fr_pos);
827 		if (work_alloc != 1) {
828 			rds_iw_ring_unalloc(&ic->i_send_ring, work_alloc);
829 			rds_iw_stats_inc(s_iw_tx_ring_full);
830 			ret = -ENOMEM;
831 			goto out;
832 		}
833 	}
834 
835 	/*
836 	 * Instead of knowing how to return a partial rdma read/write we insist that there
837 	 * be enough work requests to send the entire message.
838 	 */
839 	i = ceil(op->op_count, rds_iwdev->max_sge);
840 
841 	work_alloc = rds_iw_ring_alloc(&ic->i_send_ring, i, &pos);
842 	if (work_alloc != i) {
843 		rds_iw_ring_unalloc(&ic->i_send_ring, work_alloc);
844 		rds_iw_stats_inc(s_iw_tx_ring_full);
845 		ret = -ENOMEM;
846 		goto out;
847 	}
848 
849 	send = &ic->i_sends[pos];
850 	if (!op->op_write) {
851 		first = prev = &ic->i_sends[fr_pos];
852 	} else {
853 		first = send;
854 		prev = NULL;
855 	}
856 	scat = &op->op_sg[0];
857 	sent = 0;
858 	num_sge = op->op_count;
859 
860 	for (i = 0; i < work_alloc && scat != &op->op_sg[op->op_count]; i++) {
861 		send->s_wr.send_flags = 0;
862 		send->s_queued = jiffies;
863 
864 		/*
865 		 * We want to delay signaling completions just enough to get
866 		 * the batching benefits but not so much that we create dead time on the wire.
867 		 */
868 		if (ic->i_unsignaled_wrs-- == 0) {
869 			ic->i_unsignaled_wrs = rds_iw_sysctl_max_unsig_wrs;
870 			send->s_wr.send_flags = IB_SEND_SIGNALED;
871 		}
872 
873 		/* To avoid the need to have the plumbing to invalidate the fastreg_mr used
874 		 * for local access after RDS is finished with it, using
875 		 * IB_WR_RDMA_READ_WITH_INV will invalidate it after the read has completed.
876 		 */
877 		if (op->op_write)
878 			send->s_wr.opcode = IB_WR_RDMA_WRITE;
879 		else
880 			send->s_wr.opcode = IB_WR_RDMA_READ_WITH_INV;
881 
882 		send->s_wr.wr.rdma.remote_addr = remote_addr;
883 		send->s_wr.wr.rdma.rkey = op->op_rkey;
884 		send->s_op = op;
885 
886 		if (num_sge > rds_iwdev->max_sge) {
887 			send->s_wr.num_sge = rds_iwdev->max_sge;
888 			num_sge -= rds_iwdev->max_sge;
889 		} else
890 			send->s_wr.num_sge = num_sge;
891 
892 		send->s_wr.next = NULL;
893 
894 		if (prev)
895 			prev->s_wr.next = &send->s_wr;
896 
897 		for (j = 0; j < send->s_wr.num_sge && scat != &op->op_sg[op->op_count]; j++) {
898 			len = ib_sg_dma_len(ic->i_cm_id->device, scat);
899 
900 			if (send->s_wr.opcode == IB_WR_RDMA_READ_WITH_INV)
901 				send->s_page_list->page_list[j] = ib_sg_dma_address(ic->i_cm_id->device, scat);
902 			else {
903 				send->s_sge[j].addr = ib_sg_dma_address(ic->i_cm_id->device, scat);
904 				send->s_sge[j].length = len;
905 				send->s_sge[j].lkey = rds_iw_local_dma_lkey(ic);
906 			}
907 
908 			sent += len;
909 			rdsdebug("ic %p sent %d remote_addr %llu\n", ic, sent, remote_addr);
910 			remote_addr += len;
911 
912 			scat++;
913 		}
914 
915 		if (send->s_wr.opcode == IB_WR_RDMA_READ_WITH_INV) {
916 			send->s_wr.num_sge = 1;
917 			send->s_sge[0].addr = conn->c_xmit_rm->m_rs->rs_user_addr;
918 			send->s_sge[0].length = conn->c_xmit_rm->m_rs->rs_user_bytes;
919 			send->s_sge[0].lkey = ic->i_sends[fr_pos].s_mr->lkey;
920 		}
921 
922 		rdsdebug("send %p wr %p num_sge %u next %p\n", send,
923 			&send->s_wr, send->s_wr.num_sge, send->s_wr.next);
924 
925 		prev = send;
926 		if (++send == &ic->i_sends[ic->i_send_ring.w_nr])
927 			send = ic->i_sends;
928 	}
929 
930 	/* if we finished the message then send completion owns it */
931 	if (scat == &op->op_sg[op->op_count])
932 		first->s_wr.send_flags = IB_SEND_SIGNALED;
933 
934 	if (i < work_alloc) {
935 		rds_iw_ring_unalloc(&ic->i_send_ring, work_alloc - i);
936 		work_alloc = i;
937 	}
938 
939 	/* On iWARP, local memory access by a remote system (ie, RDMA Read) is not
940 	 * recommended.  Putting the lkey on the wire is a security hole, as it can
941 	 * allow for memory access to all of memory on the remote system.  Some
942 	 * adapters do not allow using the lkey for this at all.  To bypass this use a
943 	 * fastreg_mr (or possibly a dma_mr)
944 	 */
945 	if (!op->op_write) {
946 		rds_iw_build_send_fastreg(rds_iwdev, ic, &ic->i_sends[fr_pos],
947 			op->op_count, sent, conn->c_xmit_rm->m_rs->rs_user_addr);
948 		work_alloc++;
949 	}
950 
951 	failed_wr = &first->s_wr;
952 	ret = ib_post_send(ic->i_cm_id->qp, &first->s_wr, &failed_wr);
953 	rdsdebug("ic %p first %p (wr %p) ret %d wr %p\n", ic,
954 		 first, &first->s_wr, ret, failed_wr);
955 	BUG_ON(failed_wr != &first->s_wr);
956 	if (ret) {
957 		printk(KERN_WARNING "RDS/IW: rdma ib_post_send to %pI4 "
958 		       "returned %d\n", &conn->c_faddr, ret);
959 		rds_iw_ring_unalloc(&ic->i_send_ring, work_alloc);
960 		goto out;
961 	}
962 
963 out:
964 	return ret;
965 }
966 
rds_iw_xmit_complete(struct rds_connection * conn)967 void rds_iw_xmit_complete(struct rds_connection *conn)
968 {
969 	struct rds_iw_connection *ic = conn->c_transport_data;
970 
971 	/* We may have a pending ACK or window update we were unable
972 	 * to send previously (due to flow control). Try again. */
973 	rds_iw_attempt_ack(ic);
974 }
975