1 /*
2  * Copyright (c) 2006 Oracle.  All rights reserved.
3  *
4  * This software is available to you under a choice of one of two
5  * licenses.  You may choose to be licensed under the terms of the GNU
6  * General Public License (GPL) Version 2, available from the file
7  * COPYING in the main directory of this source tree, or the
8  * OpenIB.org BSD license below:
9  *
10  *     Redistribution and use in source and binary forms, with or
11  *     without modification, are permitted provided that the following
12  *     conditions are met:
13  *
14  *      - Redistributions of source code must retain the above
15  *        copyright notice, this list of conditions and the following
16  *        disclaimer.
17  *
18  *      - Redistributions in binary form must reproduce the above
19  *        copyright notice, this list of conditions and the following
20  *        disclaimer in the documentation and/or other materials
21  *        provided with the distribution.
22  *
23  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30  * SOFTWARE.
31  *
32  */
33 #include <linux/kernel.h>
34 #include <linux/slab.h>
35 #include <linux/ratelimit.h>
36 
37 #include "rds.h"
38 #include "iw.h"
39 
40 
41 /*
42  * This is stored as mr->r_trans_private.
43  */
44 struct rds_iw_mr {
45 	struct rds_iw_device	*device;
46 	struct rds_iw_mr_pool	*pool;
47 	struct rdma_cm_id	*cm_id;
48 
49 	struct ib_mr	*mr;
50 	struct ib_fast_reg_page_list *page_list;
51 
52 	struct rds_iw_mapping	mapping;
53 	unsigned char		remap_count;
54 };
55 
56 /*
57  * Our own little MR pool
58  */
59 struct rds_iw_mr_pool {
60 	struct rds_iw_device	*device;		/* back ptr to the device that owns us */
61 
62 	struct mutex		flush_lock;		/* serialize fmr invalidate */
63 	struct work_struct	flush_worker;		/* flush worker */
64 
65 	spinlock_t		list_lock;		/* protect variables below */
66 	atomic_t		item_count;		/* total # of MRs */
67 	atomic_t		dirty_count;		/* # dirty of MRs */
68 	struct list_head	dirty_list;		/* dirty mappings */
69 	struct list_head	clean_list;		/* unused & unamapped MRs */
70 	atomic_t		free_pinned;		/* memory pinned by free MRs */
71 	unsigned long		max_message_size;	/* in pages */
72 	unsigned long		max_items;
73 	unsigned long		max_items_soft;
74 	unsigned long		max_free_pinned;
75 	int			max_pages;
76 };
77 
78 static int rds_iw_flush_mr_pool(struct rds_iw_mr_pool *pool, int free_all);
79 static void rds_iw_mr_pool_flush_worker(struct work_struct *work);
80 static int rds_iw_init_fastreg(struct rds_iw_mr_pool *pool, struct rds_iw_mr *ibmr);
81 static int rds_iw_map_fastreg(struct rds_iw_mr_pool *pool,
82 			  struct rds_iw_mr *ibmr,
83 			  struct scatterlist *sg, unsigned int nents);
84 static void rds_iw_free_fastreg(struct rds_iw_mr_pool *pool, struct rds_iw_mr *ibmr);
85 static unsigned int rds_iw_unmap_fastreg_list(struct rds_iw_mr_pool *pool,
86 			struct list_head *unmap_list,
87 			struct list_head *kill_list,
88 			int *unpinned);
89 static void rds_iw_destroy_fastreg(struct rds_iw_mr_pool *pool, struct rds_iw_mr *ibmr);
90 
rds_iw_get_device(struct rds_sock * rs,struct rds_iw_device ** rds_iwdev,struct rdma_cm_id ** cm_id)91 static int rds_iw_get_device(struct rds_sock *rs, struct rds_iw_device **rds_iwdev, struct rdma_cm_id **cm_id)
92 {
93 	struct rds_iw_device *iwdev;
94 	struct rds_iw_cm_id *i_cm_id;
95 
96 	*rds_iwdev = NULL;
97 	*cm_id = NULL;
98 
99 	list_for_each_entry(iwdev, &rds_iw_devices, list) {
100 		spin_lock_irq(&iwdev->spinlock);
101 		list_for_each_entry(i_cm_id, &iwdev->cm_id_list, list) {
102 			struct sockaddr_in *src_addr, *dst_addr;
103 
104 			src_addr = (struct sockaddr_in *)&i_cm_id->cm_id->route.addr.src_addr;
105 			dst_addr = (struct sockaddr_in *)&i_cm_id->cm_id->route.addr.dst_addr;
106 
107 			rdsdebug("local ipaddr = %x port %d, "
108 				 "remote ipaddr = %x port %d"
109 				 "..looking for %x port %d, "
110 				 "remote ipaddr = %x port %d\n",
111 				src_addr->sin_addr.s_addr,
112 				src_addr->sin_port,
113 				dst_addr->sin_addr.s_addr,
114 				dst_addr->sin_port,
115 				rs->rs_bound_addr,
116 				rs->rs_bound_port,
117 				rs->rs_conn_addr,
118 				rs->rs_conn_port);
119 #ifdef WORKING_TUPLE_DETECTION
120 			if (src_addr->sin_addr.s_addr == rs->rs_bound_addr &&
121 			    src_addr->sin_port == rs->rs_bound_port &&
122 			    dst_addr->sin_addr.s_addr == rs->rs_conn_addr &&
123 			    dst_addr->sin_port == rs->rs_conn_port) {
124 #else
125 			/* FIXME - needs to compare the local and remote
126 			 * ipaddr/port tuple, but the ipaddr is the only
127 			 * available information in the rds_sock (as the rest are
128 			 * zero'ed.  It doesn't appear to be properly populated
129 			 * during connection setup...
130 			 */
131 			if (src_addr->sin_addr.s_addr == rs->rs_bound_addr) {
132 #endif
133 				spin_unlock_irq(&iwdev->spinlock);
134 				*rds_iwdev = iwdev;
135 				*cm_id = i_cm_id->cm_id;
136 				return 0;
137 			}
138 		}
139 		spin_unlock_irq(&iwdev->spinlock);
140 	}
141 
142 	return 1;
143 }
144 
145 static int rds_iw_add_cm_id(struct rds_iw_device *rds_iwdev, struct rdma_cm_id *cm_id)
146 {
147 	struct rds_iw_cm_id *i_cm_id;
148 
149 	i_cm_id = kmalloc(sizeof *i_cm_id, GFP_KERNEL);
150 	if (!i_cm_id)
151 		return -ENOMEM;
152 
153 	i_cm_id->cm_id = cm_id;
154 
155 	spin_lock_irq(&rds_iwdev->spinlock);
156 	list_add_tail(&i_cm_id->list, &rds_iwdev->cm_id_list);
157 	spin_unlock_irq(&rds_iwdev->spinlock);
158 
159 	return 0;
160 }
161 
162 static void rds_iw_remove_cm_id(struct rds_iw_device *rds_iwdev,
163 				struct rdma_cm_id *cm_id)
164 {
165 	struct rds_iw_cm_id *i_cm_id;
166 
167 	spin_lock_irq(&rds_iwdev->spinlock);
168 	list_for_each_entry(i_cm_id, &rds_iwdev->cm_id_list, list) {
169 		if (i_cm_id->cm_id == cm_id) {
170 			list_del(&i_cm_id->list);
171 			kfree(i_cm_id);
172 			break;
173 		}
174 	}
175 	spin_unlock_irq(&rds_iwdev->spinlock);
176 }
177 
178 
179 int rds_iw_update_cm_id(struct rds_iw_device *rds_iwdev, struct rdma_cm_id *cm_id)
180 {
181 	struct sockaddr_in *src_addr, *dst_addr;
182 	struct rds_iw_device *rds_iwdev_old;
183 	struct rds_sock rs;
184 	struct rdma_cm_id *pcm_id;
185 	int rc;
186 
187 	src_addr = (struct sockaddr_in *)&cm_id->route.addr.src_addr;
188 	dst_addr = (struct sockaddr_in *)&cm_id->route.addr.dst_addr;
189 
190 	rs.rs_bound_addr = src_addr->sin_addr.s_addr;
191 	rs.rs_bound_port = src_addr->sin_port;
192 	rs.rs_conn_addr = dst_addr->sin_addr.s_addr;
193 	rs.rs_conn_port = dst_addr->sin_port;
194 
195 	rc = rds_iw_get_device(&rs, &rds_iwdev_old, &pcm_id);
196 	if (rc)
197 		rds_iw_remove_cm_id(rds_iwdev, cm_id);
198 
199 	return rds_iw_add_cm_id(rds_iwdev, cm_id);
200 }
201 
202 void rds_iw_add_conn(struct rds_iw_device *rds_iwdev, struct rds_connection *conn)
203 {
204 	struct rds_iw_connection *ic = conn->c_transport_data;
205 
206 	/* conn was previously on the nodev_conns_list */
207 	spin_lock_irq(&iw_nodev_conns_lock);
208 	BUG_ON(list_empty(&iw_nodev_conns));
209 	BUG_ON(list_empty(&ic->iw_node));
210 	list_del(&ic->iw_node);
211 
212 	spin_lock(&rds_iwdev->spinlock);
213 	list_add_tail(&ic->iw_node, &rds_iwdev->conn_list);
214 	spin_unlock(&rds_iwdev->spinlock);
215 	spin_unlock_irq(&iw_nodev_conns_lock);
216 
217 	ic->rds_iwdev = rds_iwdev;
218 }
219 
220 void rds_iw_remove_conn(struct rds_iw_device *rds_iwdev, struct rds_connection *conn)
221 {
222 	struct rds_iw_connection *ic = conn->c_transport_data;
223 
224 	/* place conn on nodev_conns_list */
225 	spin_lock(&iw_nodev_conns_lock);
226 
227 	spin_lock_irq(&rds_iwdev->spinlock);
228 	BUG_ON(list_empty(&ic->iw_node));
229 	list_del(&ic->iw_node);
230 	spin_unlock_irq(&rds_iwdev->spinlock);
231 
232 	list_add_tail(&ic->iw_node, &iw_nodev_conns);
233 
234 	spin_unlock(&iw_nodev_conns_lock);
235 
236 	rds_iw_remove_cm_id(ic->rds_iwdev, ic->i_cm_id);
237 	ic->rds_iwdev = NULL;
238 }
239 
240 void __rds_iw_destroy_conns(struct list_head *list, spinlock_t *list_lock)
241 {
242 	struct rds_iw_connection *ic, *_ic;
243 	LIST_HEAD(tmp_list);
244 
245 	/* avoid calling conn_destroy with irqs off */
246 	spin_lock_irq(list_lock);
247 	list_splice(list, &tmp_list);
248 	INIT_LIST_HEAD(list);
249 	spin_unlock_irq(list_lock);
250 
251 	list_for_each_entry_safe(ic, _ic, &tmp_list, iw_node)
252 		rds_conn_destroy(ic->conn);
253 }
254 
255 static void rds_iw_set_scatterlist(struct rds_iw_scatterlist *sg,
256 		struct scatterlist *list, unsigned int sg_len)
257 {
258 	sg->list = list;
259 	sg->len = sg_len;
260 	sg->dma_len = 0;
261 	sg->dma_npages = 0;
262 	sg->bytes = 0;
263 }
264 
265 static u64 *rds_iw_map_scatterlist(struct rds_iw_device *rds_iwdev,
266 			struct rds_iw_scatterlist *sg)
267 {
268 	struct ib_device *dev = rds_iwdev->dev;
269 	u64 *dma_pages = NULL;
270 	int i, j, ret;
271 
272 	WARN_ON(sg->dma_len);
273 
274 	sg->dma_len = ib_dma_map_sg(dev, sg->list, sg->len, DMA_BIDIRECTIONAL);
275 	if (unlikely(!sg->dma_len)) {
276 		printk(KERN_WARNING "RDS/IW: dma_map_sg failed!\n");
277 		return ERR_PTR(-EBUSY);
278 	}
279 
280 	sg->bytes = 0;
281 	sg->dma_npages = 0;
282 
283 	ret = -EINVAL;
284 	for (i = 0; i < sg->dma_len; ++i) {
285 		unsigned int dma_len = ib_sg_dma_len(dev, &sg->list[i]);
286 		u64 dma_addr = ib_sg_dma_address(dev, &sg->list[i]);
287 		u64 end_addr;
288 
289 		sg->bytes += dma_len;
290 
291 		end_addr = dma_addr + dma_len;
292 		if (dma_addr & PAGE_MASK) {
293 			if (i > 0)
294 				goto out_unmap;
295 			dma_addr &= ~PAGE_MASK;
296 		}
297 		if (end_addr & PAGE_MASK) {
298 			if (i < sg->dma_len - 1)
299 				goto out_unmap;
300 			end_addr = (end_addr + PAGE_MASK) & ~PAGE_MASK;
301 		}
302 
303 		sg->dma_npages += (end_addr - dma_addr) >> PAGE_SHIFT;
304 	}
305 
306 	/* Now gather the dma addrs into one list */
307 	if (sg->dma_npages > fastreg_message_size)
308 		goto out_unmap;
309 
310 	dma_pages = kmalloc(sizeof(u64) * sg->dma_npages, GFP_ATOMIC);
311 	if (!dma_pages) {
312 		ret = -ENOMEM;
313 		goto out_unmap;
314 	}
315 
316 	for (i = j = 0; i < sg->dma_len; ++i) {
317 		unsigned int dma_len = ib_sg_dma_len(dev, &sg->list[i]);
318 		u64 dma_addr = ib_sg_dma_address(dev, &sg->list[i]);
319 		u64 end_addr;
320 
321 		end_addr = dma_addr + dma_len;
322 		dma_addr &= ~PAGE_MASK;
323 		for (; dma_addr < end_addr; dma_addr += PAGE_SIZE)
324 			dma_pages[j++] = dma_addr;
325 		BUG_ON(j > sg->dma_npages);
326 	}
327 
328 	return dma_pages;
329 
330 out_unmap:
331 	ib_dma_unmap_sg(rds_iwdev->dev, sg->list, sg->len, DMA_BIDIRECTIONAL);
332 	sg->dma_len = 0;
333 	kfree(dma_pages);
334 	return ERR_PTR(ret);
335 }
336 
337 
338 struct rds_iw_mr_pool *rds_iw_create_mr_pool(struct rds_iw_device *rds_iwdev)
339 {
340 	struct rds_iw_mr_pool *pool;
341 
342 	pool = kzalloc(sizeof(*pool), GFP_KERNEL);
343 	if (!pool) {
344 		printk(KERN_WARNING "RDS/IW: rds_iw_create_mr_pool alloc error\n");
345 		return ERR_PTR(-ENOMEM);
346 	}
347 
348 	pool->device = rds_iwdev;
349 	INIT_LIST_HEAD(&pool->dirty_list);
350 	INIT_LIST_HEAD(&pool->clean_list);
351 	mutex_init(&pool->flush_lock);
352 	spin_lock_init(&pool->list_lock);
353 	INIT_WORK(&pool->flush_worker, rds_iw_mr_pool_flush_worker);
354 
355 	pool->max_message_size = fastreg_message_size;
356 	pool->max_items = fastreg_pool_size;
357 	pool->max_free_pinned = pool->max_items * pool->max_message_size / 4;
358 	pool->max_pages = fastreg_message_size;
359 
360 	/* We never allow more than max_items MRs to be allocated.
361 	 * When we exceed more than max_items_soft, we start freeing
362 	 * items more aggressively.
363 	 * Make sure that max_items > max_items_soft > max_items / 2
364 	 */
365 	pool->max_items_soft = pool->max_items * 3 / 4;
366 
367 	return pool;
368 }
369 
370 void rds_iw_get_mr_info(struct rds_iw_device *rds_iwdev, struct rds_info_rdma_connection *iinfo)
371 {
372 	struct rds_iw_mr_pool *pool = rds_iwdev->mr_pool;
373 
374 	iinfo->rdma_mr_max = pool->max_items;
375 	iinfo->rdma_mr_size = pool->max_pages;
376 }
377 
378 void rds_iw_destroy_mr_pool(struct rds_iw_mr_pool *pool)
379 {
380 	flush_workqueue(rds_wq);
381 	rds_iw_flush_mr_pool(pool, 1);
382 	BUG_ON(atomic_read(&pool->item_count));
383 	BUG_ON(atomic_read(&pool->free_pinned));
384 	kfree(pool);
385 }
386 
387 static inline struct rds_iw_mr *rds_iw_reuse_fmr(struct rds_iw_mr_pool *pool)
388 {
389 	struct rds_iw_mr *ibmr = NULL;
390 	unsigned long flags;
391 
392 	spin_lock_irqsave(&pool->list_lock, flags);
393 	if (!list_empty(&pool->clean_list)) {
394 		ibmr = list_entry(pool->clean_list.next, struct rds_iw_mr, mapping.m_list);
395 		list_del_init(&ibmr->mapping.m_list);
396 	}
397 	spin_unlock_irqrestore(&pool->list_lock, flags);
398 
399 	return ibmr;
400 }
401 
402 static struct rds_iw_mr *rds_iw_alloc_mr(struct rds_iw_device *rds_iwdev)
403 {
404 	struct rds_iw_mr_pool *pool = rds_iwdev->mr_pool;
405 	struct rds_iw_mr *ibmr = NULL;
406 	int err = 0, iter = 0;
407 
408 	while (1) {
409 		ibmr = rds_iw_reuse_fmr(pool);
410 		if (ibmr)
411 			return ibmr;
412 
413 		/* No clean MRs - now we have the choice of either
414 		 * allocating a fresh MR up to the limit imposed by the
415 		 * driver, or flush any dirty unused MRs.
416 		 * We try to avoid stalling in the send path if possible,
417 		 * so we allocate as long as we're allowed to.
418 		 *
419 		 * We're fussy with enforcing the FMR limit, though. If the driver
420 		 * tells us we can't use more than N fmrs, we shouldn't start
421 		 * arguing with it */
422 		if (atomic_inc_return(&pool->item_count) <= pool->max_items)
423 			break;
424 
425 		atomic_dec(&pool->item_count);
426 
427 		if (++iter > 2) {
428 			rds_iw_stats_inc(s_iw_rdma_mr_pool_depleted);
429 			return ERR_PTR(-EAGAIN);
430 		}
431 
432 		/* We do have some empty MRs. Flush them out. */
433 		rds_iw_stats_inc(s_iw_rdma_mr_pool_wait);
434 		rds_iw_flush_mr_pool(pool, 0);
435 	}
436 
437 	ibmr = kzalloc(sizeof(*ibmr), GFP_KERNEL);
438 	if (!ibmr) {
439 		err = -ENOMEM;
440 		goto out_no_cigar;
441 	}
442 
443 	spin_lock_init(&ibmr->mapping.m_lock);
444 	INIT_LIST_HEAD(&ibmr->mapping.m_list);
445 	ibmr->mapping.m_mr = ibmr;
446 
447 	err = rds_iw_init_fastreg(pool, ibmr);
448 	if (err)
449 		goto out_no_cigar;
450 
451 	rds_iw_stats_inc(s_iw_rdma_mr_alloc);
452 	return ibmr;
453 
454 out_no_cigar:
455 	if (ibmr) {
456 		rds_iw_destroy_fastreg(pool, ibmr);
457 		kfree(ibmr);
458 	}
459 	atomic_dec(&pool->item_count);
460 	return ERR_PTR(err);
461 }
462 
463 void rds_iw_sync_mr(void *trans_private, int direction)
464 {
465 	struct rds_iw_mr *ibmr = trans_private;
466 	struct rds_iw_device *rds_iwdev = ibmr->device;
467 
468 	switch (direction) {
469 	case DMA_FROM_DEVICE:
470 		ib_dma_sync_sg_for_cpu(rds_iwdev->dev, ibmr->mapping.m_sg.list,
471 			ibmr->mapping.m_sg.dma_len, DMA_BIDIRECTIONAL);
472 		break;
473 	case DMA_TO_DEVICE:
474 		ib_dma_sync_sg_for_device(rds_iwdev->dev, ibmr->mapping.m_sg.list,
475 			ibmr->mapping.m_sg.dma_len, DMA_BIDIRECTIONAL);
476 		break;
477 	}
478 }
479 
480 /*
481  * Flush our pool of MRs.
482  * At a minimum, all currently unused MRs are unmapped.
483  * If the number of MRs allocated exceeds the limit, we also try
484  * to free as many MRs as needed to get back to this limit.
485  */
486 static int rds_iw_flush_mr_pool(struct rds_iw_mr_pool *pool, int free_all)
487 {
488 	struct rds_iw_mr *ibmr, *next;
489 	LIST_HEAD(unmap_list);
490 	LIST_HEAD(kill_list);
491 	unsigned long flags;
492 	unsigned int nfreed = 0, ncleaned = 0, unpinned = 0;
493 	int ret = 0;
494 
495 	rds_iw_stats_inc(s_iw_rdma_mr_pool_flush);
496 
497 	mutex_lock(&pool->flush_lock);
498 
499 	spin_lock_irqsave(&pool->list_lock, flags);
500 	/* Get the list of all mappings to be destroyed */
501 	list_splice_init(&pool->dirty_list, &unmap_list);
502 	if (free_all)
503 		list_splice_init(&pool->clean_list, &kill_list);
504 	spin_unlock_irqrestore(&pool->list_lock, flags);
505 
506 	/* Batched invalidate of dirty MRs.
507 	 * For FMR based MRs, the mappings on the unmap list are
508 	 * actually members of an ibmr (ibmr->mapping). They either
509 	 * migrate to the kill_list, or have been cleaned and should be
510 	 * moved to the clean_list.
511 	 * For fastregs, they will be dynamically allocated, and
512 	 * will be destroyed by the unmap function.
513 	 */
514 	if (!list_empty(&unmap_list)) {
515 		ncleaned = rds_iw_unmap_fastreg_list(pool, &unmap_list,
516 						     &kill_list, &unpinned);
517 		/* If we've been asked to destroy all MRs, move those
518 		 * that were simply cleaned to the kill list */
519 		if (free_all)
520 			list_splice_init(&unmap_list, &kill_list);
521 	}
522 
523 	/* Destroy any MRs that are past their best before date */
524 	list_for_each_entry_safe(ibmr, next, &kill_list, mapping.m_list) {
525 		rds_iw_stats_inc(s_iw_rdma_mr_free);
526 		list_del(&ibmr->mapping.m_list);
527 		rds_iw_destroy_fastreg(pool, ibmr);
528 		kfree(ibmr);
529 		nfreed++;
530 	}
531 
532 	/* Anything that remains are laundered ibmrs, which we can add
533 	 * back to the clean list. */
534 	if (!list_empty(&unmap_list)) {
535 		spin_lock_irqsave(&pool->list_lock, flags);
536 		list_splice(&unmap_list, &pool->clean_list);
537 		spin_unlock_irqrestore(&pool->list_lock, flags);
538 	}
539 
540 	atomic_sub(unpinned, &pool->free_pinned);
541 	atomic_sub(ncleaned, &pool->dirty_count);
542 	atomic_sub(nfreed, &pool->item_count);
543 
544 	mutex_unlock(&pool->flush_lock);
545 	return ret;
546 }
547 
548 static void rds_iw_mr_pool_flush_worker(struct work_struct *work)
549 {
550 	struct rds_iw_mr_pool *pool = container_of(work, struct rds_iw_mr_pool, flush_worker);
551 
552 	rds_iw_flush_mr_pool(pool, 0);
553 }
554 
555 void rds_iw_free_mr(void *trans_private, int invalidate)
556 {
557 	struct rds_iw_mr *ibmr = trans_private;
558 	struct rds_iw_mr_pool *pool = ibmr->device->mr_pool;
559 
560 	rdsdebug("RDS/IW: free_mr nents %u\n", ibmr->mapping.m_sg.len);
561 	if (!pool)
562 		return;
563 
564 	/* Return it to the pool's free list */
565 	rds_iw_free_fastreg(pool, ibmr);
566 
567 	/* If we've pinned too many pages, request a flush */
568 	if (atomic_read(&pool->free_pinned) >= pool->max_free_pinned ||
569 	    atomic_read(&pool->dirty_count) >= pool->max_items / 10)
570 		queue_work(rds_wq, &pool->flush_worker);
571 
572 	if (invalidate) {
573 		if (likely(!in_interrupt())) {
574 			rds_iw_flush_mr_pool(pool, 0);
575 		} else {
576 			/* We get here if the user created a MR marked
577 			 * as use_once and invalidate at the same time. */
578 			queue_work(rds_wq, &pool->flush_worker);
579 		}
580 	}
581 }
582 
583 void rds_iw_flush_mrs(void)
584 {
585 	struct rds_iw_device *rds_iwdev;
586 
587 	list_for_each_entry(rds_iwdev, &rds_iw_devices, list) {
588 		struct rds_iw_mr_pool *pool = rds_iwdev->mr_pool;
589 
590 		if (pool)
591 			rds_iw_flush_mr_pool(pool, 0);
592 	}
593 }
594 
595 void *rds_iw_get_mr(struct scatterlist *sg, unsigned long nents,
596 		    struct rds_sock *rs, u32 *key_ret)
597 {
598 	struct rds_iw_device *rds_iwdev;
599 	struct rds_iw_mr *ibmr = NULL;
600 	struct rdma_cm_id *cm_id;
601 	int ret;
602 
603 	ret = rds_iw_get_device(rs, &rds_iwdev, &cm_id);
604 	if (ret || !cm_id) {
605 		ret = -ENODEV;
606 		goto out;
607 	}
608 
609 	if (!rds_iwdev->mr_pool) {
610 		ret = -ENODEV;
611 		goto out;
612 	}
613 
614 	ibmr = rds_iw_alloc_mr(rds_iwdev);
615 	if (IS_ERR(ibmr))
616 		return ibmr;
617 
618 	ibmr->cm_id = cm_id;
619 	ibmr->device = rds_iwdev;
620 
621 	ret = rds_iw_map_fastreg(rds_iwdev->mr_pool, ibmr, sg, nents);
622 	if (ret == 0)
623 		*key_ret = ibmr->mr->rkey;
624 	else
625 		printk(KERN_WARNING "RDS/IW: failed to map mr (errno=%d)\n", ret);
626 
627 out:
628 	if (ret) {
629 		if (ibmr)
630 			rds_iw_free_mr(ibmr, 0);
631 		ibmr = ERR_PTR(ret);
632 	}
633 	return ibmr;
634 }
635 
636 /*
637  * iWARP fastreg handling
638  *
639  * The life cycle of a fastreg registration is a bit different from
640  * FMRs.
641  * The idea behind fastreg is to have one MR, to which we bind different
642  * mappings over time. To avoid stalling on the expensive map and invalidate
643  * operations, these operations are pipelined on the same send queue on
644  * which we want to send the message containing the r_key.
645  *
646  * This creates a bit of a problem for us, as we do not have the destination
647  * IP in GET_MR, so the connection must be setup prior to the GET_MR call for
648  * RDMA to be correctly setup.  If a fastreg request is present, rds_iw_xmit
649  * will try to queue a LOCAL_INV (if needed) and a FAST_REG_MR work request
650  * before queuing the SEND. When completions for these arrive, they are
651  * dispatched to the MR has a bit set showing that RDMa can be performed.
652  *
653  * There is another interesting aspect that's related to invalidation.
654  * The application can request that a mapping is invalidated in FREE_MR.
655  * The expectation there is that this invalidation step includes ALL
656  * PREVIOUSLY FREED MRs.
657  */
658 static int rds_iw_init_fastreg(struct rds_iw_mr_pool *pool,
659 				struct rds_iw_mr *ibmr)
660 {
661 	struct rds_iw_device *rds_iwdev = pool->device;
662 	struct ib_fast_reg_page_list *page_list = NULL;
663 	struct ib_mr *mr;
664 	int err;
665 
666 	mr = ib_alloc_fast_reg_mr(rds_iwdev->pd, pool->max_message_size);
667 	if (IS_ERR(mr)) {
668 		err = PTR_ERR(mr);
669 
670 		printk(KERN_WARNING "RDS/IW: ib_alloc_fast_reg_mr failed (err=%d)\n", err);
671 		return err;
672 	}
673 
674 	/* FIXME - this is overkill, but mapping->m_sg.dma_len/mapping->m_sg.dma_npages
675 	 * is not filled in.
676 	 */
677 	page_list = ib_alloc_fast_reg_page_list(rds_iwdev->dev, pool->max_message_size);
678 	if (IS_ERR(page_list)) {
679 		err = PTR_ERR(page_list);
680 
681 		printk(KERN_WARNING "RDS/IW: ib_alloc_fast_reg_page_list failed (err=%d)\n", err);
682 		ib_dereg_mr(mr);
683 		return err;
684 	}
685 
686 	ibmr->page_list = page_list;
687 	ibmr->mr = mr;
688 	return 0;
689 }
690 
691 static int rds_iw_rdma_build_fastreg(struct rds_iw_mapping *mapping)
692 {
693 	struct rds_iw_mr *ibmr = mapping->m_mr;
694 	struct ib_send_wr f_wr, *failed_wr;
695 	int ret;
696 
697 	/*
698 	 * Perform a WR for the fast_reg_mr. Each individual page
699 	 * in the sg list is added to the fast reg page list and placed
700 	 * inside the fast_reg_mr WR.  The key used is a rolling 8bit
701 	 * counter, which should guarantee uniqueness.
702 	 */
703 	ib_update_fast_reg_key(ibmr->mr, ibmr->remap_count++);
704 	mapping->m_rkey = ibmr->mr->rkey;
705 
706 	memset(&f_wr, 0, sizeof(f_wr));
707 	f_wr.wr_id = RDS_IW_FAST_REG_WR_ID;
708 	f_wr.opcode = IB_WR_FAST_REG_MR;
709 	f_wr.wr.fast_reg.length = mapping->m_sg.bytes;
710 	f_wr.wr.fast_reg.rkey = mapping->m_rkey;
711 	f_wr.wr.fast_reg.page_list = ibmr->page_list;
712 	f_wr.wr.fast_reg.page_list_len = mapping->m_sg.dma_len;
713 	f_wr.wr.fast_reg.page_shift = PAGE_SHIFT;
714 	f_wr.wr.fast_reg.access_flags = IB_ACCESS_LOCAL_WRITE |
715 				IB_ACCESS_REMOTE_READ |
716 				IB_ACCESS_REMOTE_WRITE;
717 	f_wr.wr.fast_reg.iova_start = 0;
718 	f_wr.send_flags = IB_SEND_SIGNALED;
719 
720 	failed_wr = &f_wr;
721 	ret = ib_post_send(ibmr->cm_id->qp, &f_wr, &failed_wr);
722 	BUG_ON(failed_wr != &f_wr);
723 	if (ret)
724 		printk_ratelimited(KERN_WARNING "RDS/IW: %s:%d ib_post_send returned %d\n",
725 			__func__, __LINE__, ret);
726 	return ret;
727 }
728 
729 static int rds_iw_rdma_fastreg_inv(struct rds_iw_mr *ibmr)
730 {
731 	struct ib_send_wr s_wr, *failed_wr;
732 	int ret = 0;
733 
734 	if (!ibmr->cm_id->qp || !ibmr->mr)
735 		goto out;
736 
737 	memset(&s_wr, 0, sizeof(s_wr));
738 	s_wr.wr_id = RDS_IW_LOCAL_INV_WR_ID;
739 	s_wr.opcode = IB_WR_LOCAL_INV;
740 	s_wr.ex.invalidate_rkey = ibmr->mr->rkey;
741 	s_wr.send_flags = IB_SEND_SIGNALED;
742 
743 	failed_wr = &s_wr;
744 	ret = ib_post_send(ibmr->cm_id->qp, &s_wr, &failed_wr);
745 	if (ret) {
746 		printk_ratelimited(KERN_WARNING "RDS/IW: %s:%d ib_post_send returned %d\n",
747 			__func__, __LINE__, ret);
748 		goto out;
749 	}
750 out:
751 	return ret;
752 }
753 
754 static int rds_iw_map_fastreg(struct rds_iw_mr_pool *pool,
755 			struct rds_iw_mr *ibmr,
756 			struct scatterlist *sg,
757 			unsigned int sg_len)
758 {
759 	struct rds_iw_device *rds_iwdev = pool->device;
760 	struct rds_iw_mapping *mapping = &ibmr->mapping;
761 	u64 *dma_pages;
762 	int i, ret = 0;
763 
764 	rds_iw_set_scatterlist(&mapping->m_sg, sg, sg_len);
765 
766 	dma_pages = rds_iw_map_scatterlist(rds_iwdev, &mapping->m_sg);
767 	if (IS_ERR(dma_pages)) {
768 		ret = PTR_ERR(dma_pages);
769 		dma_pages = NULL;
770 		goto out;
771 	}
772 
773 	if (mapping->m_sg.dma_len > pool->max_message_size) {
774 		ret = -EMSGSIZE;
775 		goto out;
776 	}
777 
778 	for (i = 0; i < mapping->m_sg.dma_npages; ++i)
779 		ibmr->page_list->page_list[i] = dma_pages[i];
780 
781 	ret = rds_iw_rdma_build_fastreg(mapping);
782 	if (ret)
783 		goto out;
784 
785 	rds_iw_stats_inc(s_iw_rdma_mr_used);
786 
787 out:
788 	kfree(dma_pages);
789 
790 	return ret;
791 }
792 
793 /*
794  * "Free" a fastreg MR.
795  */
796 static void rds_iw_free_fastreg(struct rds_iw_mr_pool *pool,
797 		struct rds_iw_mr *ibmr)
798 {
799 	unsigned long flags;
800 	int ret;
801 
802 	if (!ibmr->mapping.m_sg.dma_len)
803 		return;
804 
805 	ret = rds_iw_rdma_fastreg_inv(ibmr);
806 	if (ret)
807 		return;
808 
809 	/* Try to post the LOCAL_INV WR to the queue. */
810 	spin_lock_irqsave(&pool->list_lock, flags);
811 
812 	list_add_tail(&ibmr->mapping.m_list, &pool->dirty_list);
813 	atomic_add(ibmr->mapping.m_sg.len, &pool->free_pinned);
814 	atomic_inc(&pool->dirty_count);
815 
816 	spin_unlock_irqrestore(&pool->list_lock, flags);
817 }
818 
819 static unsigned int rds_iw_unmap_fastreg_list(struct rds_iw_mr_pool *pool,
820 				struct list_head *unmap_list,
821 				struct list_head *kill_list,
822 				int *unpinned)
823 {
824 	struct rds_iw_mapping *mapping, *next;
825 	unsigned int ncleaned = 0;
826 	LIST_HEAD(laundered);
827 
828 	/* Batched invalidation of fastreg MRs.
829 	 * Why do we do it this way, even though we could pipeline unmap
830 	 * and remap? The reason is the application semantics - when the
831 	 * application requests an invalidation of MRs, it expects all
832 	 * previously released R_Keys to become invalid.
833 	 *
834 	 * If we implement MR reuse naively, we risk memory corruption
835 	 * (this has actually been observed). So the default behavior
836 	 * requires that a MR goes through an explicit unmap operation before
837 	 * we can reuse it again.
838 	 *
839 	 * We could probably improve on this a little, by allowing immediate
840 	 * reuse of a MR on the same socket (eg you could add small
841 	 * cache of unused MRs to strct rds_socket - GET_MR could grab one
842 	 * of these without requiring an explicit invalidate).
843 	 */
844 	while (!list_empty(unmap_list)) {
845 		unsigned long flags;
846 
847 		spin_lock_irqsave(&pool->list_lock, flags);
848 		list_for_each_entry_safe(mapping, next, unmap_list, m_list) {
849 			*unpinned += mapping->m_sg.len;
850 			list_move(&mapping->m_list, &laundered);
851 			ncleaned++;
852 		}
853 		spin_unlock_irqrestore(&pool->list_lock, flags);
854 	}
855 
856 	/* Move all laundered mappings back to the unmap list.
857 	 * We do not kill any WRs right now - it doesn't seem the
858 	 * fastreg API has a max_remap limit. */
859 	list_splice_init(&laundered, unmap_list);
860 
861 	return ncleaned;
862 }
863 
864 static void rds_iw_destroy_fastreg(struct rds_iw_mr_pool *pool,
865 		struct rds_iw_mr *ibmr)
866 {
867 	if (ibmr->page_list)
868 		ib_free_fast_reg_page_list(ibmr->page_list);
869 	if (ibmr->mr)
870 		ib_dereg_mr(ibmr->mr);
871 }
872